
Session M4G

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

M4G-12

A Coherent Sequence of Computer Architecture
Laboratory Assignments

Dorin Patru1, Konboye Oyake2, Eric Peskin3

1 Dorin Patru, Assistant Professor, Rochester Institute of Technology, dxpeee@rit.edu
2 Konboye Oyake, formerly with RIT, now with Vanteon Corp., konboye@hotmail.com
3 Eric Peskin, Assistant Professor, Rochester Institute of Technology, erpeee@rit.edu

Abstract - The Computer Architecture course at the
Rochester Institute of Technology (RIT) is taken by
undergraduate students in their fourth year of study, after
they have had an Introduction to Digital Systems, to
Programming in C, and to Microprocessor Programming.
The course gives students the computer hardware
designer’s perspective, with an emphasis on complete logic
design. The objective of the laboratory is the design,
simulation and implementation of a processor in a
reconfigurable hardware device. Each weekly laboratory
assignment builds upon the previous one. The bottom-top
design process starts with the design of a combinational
logic Arithmetic and Logic Unit, of a Register File and
Memory Blocks. The design of the Central Processing Unit
is divided into the design of the Data Path and Control
Unit. The Instruction Set Architecture is enforced, i.e. the
students do not have to come up with their own instruction
set. All students must follow general and individual design
specifications. The latter are selected using a binary code
assigned to each student. The value of each bit chooses
between design alternatives such as: Von-Neumann versus
Harvard, I/O Mapped versus Memory Mapped
Peripherals, 3-bus versus 2-bus architecture, tri-state
versus multiplexer data transfer, hardwired versus micro-
programmed control unit etc. Each final processor
implementation is different from any other, but can run
the same machine code. The paper presents the
organization of the laboratory sequence, describes each
weekly assignment and the lessons learned after offering it
to six generations of students.

Index Terms - Computer Architecture, Laboratory,
Introductory Course, Hardware Design, Logic Design

INTRODUCTION

Introductory Computer Architecture or Computer Architecture
and Organization courses are taught to junior and senior
undergraduate students in Computer Engineering, Computer
Science and Electrical Engineering. Depending on the major
and of the particular curriculum organization, a course
emphasizes the hardware designer’s view, or the
programmer’s view, or strike a balance between the two. This
variety in emphasis is also visible in the content of most
current textbooks. References [1], [2] and [3] present a system
level hardware design perspective. No block is described at

gate level, but quantitative and qualitative system level
tradeoffs are discussed. In comparison, references [4], [5], [6],
[7] and [8] provide a hardware design perspective down to
gate level. Finally, reference [9] explicitly states that it
describes the computer architecture and organization from a
programmer’s view, i.e. without logic design implementation
details. None of these different approaches to teaching
computer architecture is better than the other, because each
can serve a different set of instructional objectives [10].

In particular, the Computer Architecture course at
Rochester Institute of Technology is preceded by an
Introduction to Microprocessors course. In the latter, students
learn about a microprocessor from a programmer’s
perspective, with a sequence of labs in which they learn
assembly language programming. Consequently, in the
Computer Architecture course, a bottom-up computer
architecture design is taught, with an emphasis on complete
logic design. The sequence of labs described in this paper is
meant to complement such a teaching approach.

The laboratory or project assignments in a Computer
Architecture course allow students to apply the computer
architecture design methodologies presented in the lecture.
While the value of this exercise is generally recognized, few
textbooks propose laboratory or project assignments
associated with the material covered. One such textbook is [8]
and a few others use their accompanying websites. The
assignments address individual topics, apparently independent
and disconnected of each other. However, following a bottom-
up design approach, students could design and implement in
successive assignments individual computer hardware blocks.
These would then be used to build a complete, low-complexity
computer. The advantage of such a coherent and
interdependent sequence of assignments is that it exposes
students to a complete design and implementation cycle of a
computer.

This paper first describes the sequence of laboratory
assignments and its organization. Second, it analyzes how
these labs help students with different learning styles. Third,
the lab policy and grading are discussed. Fourth, student
feedback and lessons learned are presented and analyzed.
Finally, future enhancements to the sequence are considered.

Session M4G

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

M4G-13

LABORATORY ASSIGNMENTS AND SEQUENCE

ORGANIZATION

There are currently nine laboratory assignments, each
spanning a week. The sequence is tailored to a 10 week
quarter system, but as will be shown later it can be expanded
to 14 weeks, or 14 assignments. As this is an introductory
course, insufficient material will have been taught during the
first week and therefore there is no lab in the first week.

The laboratory sequence starts in the second week.
Students are first introduced to the instructional objectives of
the lab [10]. By the end of this laboratory sequence, the
student will be able to:
• Comprehend and explain the function of each hardware

unit used to build a computer.
• Apply the computer design methodology to the design of

a digital computer system.
• Classify computer architectures by different criteria.
• Analyze and evaluate the tradeoffs of different

implementations.
• Design individual hardware units, and use them to

synthesize a complete, low-complexity computer.
Then the laboratory sequence schedule is presented, as
outlined in Table I.

TABLE I

LABORATORY SEQUENCE SCHEDULE

Lab/Week
Number

Lab Title
Date

Performed

2 Introduction to the CAD Tool Week 2
3 Arithmetic and Logic Unit Week 3
4 Registers, ROM and RAM Memories Week 4
5 Processor Data Path - (Design) Week 5

6
Processor Data Path – (Simulation &
Implementation)

Week 6

7 Control Unit – (Design) Week 7

8
Control Unit – (Simulation &
Implementation)

Week 8

9
Complete Processor – (Simulation &
Implementation)

Week 9

10 Complete Processor – (Emulation) Week 10

As can be inferred from the table, at the end of the first seven
labs, each student will have the necessary hardware units to
synthesize a complete, low-complexity computer.

After the reporting requirements and grading policy are
presented, the lab commences with an “Introduction to the
Computer Aided Design (CAD) Tool”. This can be any tool
which provides a graphic, i.e. schematic, or text based, i.e.
Hardware Description Language – HDL, design entries, is
able to logically simulate a circuit, and synthesize it for a
reconfigurable device. During this introduction to the CAD
tool, students design, capture, simulate and synthesize a
decoder and a counter. These are then downloaded to the
target reconfigurable device, for example a Field
Programmable Gate Array, and debugged. At the end of this
lab, the students will have been introduced to the complete
logic design flow for a reconfigurable device.

In the third week, the students design, capture and
simulate a combinational Arithmetic and Logic Unit (ALU).
The operations it implements are shown in Table II. To reduce
the amount of hardware necessary to implement the final
processor, the operands are only four bits wide. The block
diagram of the ALU, which is shown in Figure 1, is given to
the students. However, students need to create the gate level
design of each block. Although quantitatively small, the
design remains qualitatively valid for operands with larger
widths.

TABLE II

ARITHMETIC AND LOGIC UNIT FUNCTIONS
Operation Select - FS[3..0]
FS3 FS2 FS1 CIN Operation Function

0 0 0 0 F = A Transfer A
0 0 0 1 F = A + 1 Increment A
0 0 1 0 F = A + B Addition
0 0 1 1 F = A + B + 1
0 1 0 0 F = A + (not B)
0 1 0 1 F = A + (not B) + 1 Subtraction
0 1 1 0 F = A – 1 Decrement A
0 1 1 1 F = A Transfer A
1 0 0 X F = not A NOT
1 0 1 X F = A AND B AND
1 1 0 X F = A OR B OR
1 1 1 X F = A XOR B XOR

FIGURE 1
BLOCK DIAGRAM OF THE ARITHMETIC AND LOGIC UNIT.

In the fourth week, the students design, capture, initialize

the content and simulate storage blocks, i.e. Registers, Read
Only and Random Access Memory Blocks.

The computer design starts effectively in week five.
Students are given a pre-designed Instruction Set. It contains
16 instructions, covering all fundamental operations, as can be
seen in Table III. For the data manipulation instructions the
source operands are registers A and/or B, and the destination
is always register A. Thus the architecture is load-store or
register-register. The special use of register A makes it also an
accumulator architecture. The source operands and destination
being implicit, the Instruction Word of the manipulation
instructions contains only the 4-bit Operation Code.

The data transfer instructions LOAD and STORE have an
8-bit Direct Address value appended to the 4-bit Operation
Code, i.e. they require two additional readings from the
Program Memory or Code Segment. Similarly, the Flow

Session M4G

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

M4G-14

TABLE III
Instruction Set

4-Bit
Instruction
Code *

Instruction
Mnemonic RTN Description Comments

0 0000 ADD C#A � (A+B)
1 0001 SUB C#A � (A-B)
2 0010 INC C#A � (A+1)
3 0011 DEC C#A � (A-1)

Four-bit result gets stored in A. Carry out gets
stored in C.

4 0100 NOT A � (A’)
5 0101 AND A � (A•B)
6 0110 OR A � (A+B)
7 0111 XOR A � (A⊕B)
8 1000 JMPU See JMPC below for C=’0’ Jump Unconditional

9 1001 JMPC
MAH � M[PC] : PC�PC+1 ;
MAL � M[PC] : PC� PC+1 ;
 C=0� PC � MA

Jump Conditional

���� This is an 8-bit transfer!!!

10 1010 SWAP A � B, B � A
11 1011 COPY B � A REG-A remains Unchanged

12 1100 STORE
MAH � M[PC] : PC�PC+1 ;
MAL � M[PC] : PC� PC+1 ;
M[MA] � A

Write contents of REG-A
 to memory location

13 1101 LOAD
MAH � M[PC] : PC�PC+1 ;
MAL � M[PC] : PC� PC+1 ;
A � M[MA]

Read contents of memory
Location into REG-A

IN
MAH � M[PC] : PC�PC+1 ;
MA<7>=1�A�SWH:
MA<7>=0�A�SWL

Read Input peripheral into
REG-A

14 1110

PUSH **
STK[0] � A: STK[1] � STK[0]: STK[2] � STK[1]:
STK[3] � STK[2]

Push A onto the stack

OUT
MAH � M[PC] : PC�PC+1 ;
MA<7>=1�DISPH�A
MA<7>=0�DISPL� A

Write contents of REG-A to Output Peripheral

15 1111

POP **
A � STK[0]: STK[0] � STK[1]: STK[1] � STK[2]:
STK[2] � STK[3]: STK[3] � 0;

Pop A off the stack

Legend:
A<3..0>: = A Register (4-Bit) MA<7..0>: = MAH<3..0>#MAL<3..0>

Memory Address register (8-Bit, divided into two four-bit halves, MAH and MAL)
B<3..0>: = B Register (4-Bit) C: = Carry Bit (a single-bit register that holds the carry from the most recent arithmetic operation)
PC<7..0>: = Program Counter
(8-Bit)

SWH<3..0>: Value on the left-hand (high-order) set of four switches on the board.
SWL<3..0>: Value on the right-hand (low-order) set of four switches on the board.
DISPH<3..0>: Four-bit register whose value is continuously displayed on the left-hand (high-order) seven-
segment display on the board.
DISPL<3..0>: Four-bit register whose value is continuously displayed on the right-hand (low-order) seven-
segment display on the board.

IR<3..0> := Instruction Register
(4-bit) Holds the OpCode of the
currently executing instruction.

STK[0..3]<3..0> Four-bit, four-location stack. ** M[0..255]<3..0> := Memory (256 words of four
bits each).

Control Instructions JMPU and JMPC use an 8-bit target
address, which is read from the next two locations after the
Operation Code. The IN and OUT instruction only read the
next 4-bits, as they only use the Most Significant Bit.

Although during weeks five and six students are only
concerned with the design and simulation of the Data Path,
the General and Individual Design Specifications of the
computer are presented here.

The General Design Specifications are:
• The Register File contains two 4-bit registers.
• The Arithmetic and Logic Unit is the one designed in

week three.
• The Memories contain 256 4-bit locations, i.e. use 8-bit

addressing and 4-bit Input/Output Data Buses.

• The Program Counter is eight bits wide.
• The Memory Address Register is also eight bits wide.
• There are two 4-bit Input Ports, and two 4-bit Output

Ports.
Each student is assigned a unique 5-bit binary code

number. This is used to infer the Individual Design
Specifications using Table IV. Using these individual design
specifications accomplishes two purposes. First, it
encourages peer tutoring while simultaneously discouraging
copying. Second, it allows students to compare different
architectural features by learning about their peers’
implementations.

The four architectural combinations that arise from
combining B0 and B1 are shown in Figure 2.

Session M4G

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

M4G-15

TABLE IV

INDIVIDUAL DESIGN SPECIFICATIONS

Bit Value = ‘0’ Value = ‘1’ Comments

B0 Von Neumann Harvard
Memory System

Architecture
B1 I/O Mapped Memory Mapped I/O System Architecture

B2 Hardwired
Micro-

Programmed
CU Implementation

B3 3-Bus 2-Bus
Internal Bus
Architecture

B4 Tri-State Multiplexer
2nd & 3rd BUS

implementation

Students whose B1=0 will implement the instructions IN
and OUT. Students whose B1=1, will use the LOAD and
STORE instructions to access the Input/Output Ports. These
latter students will implement an additional hardware based
Stack, and add the PUSH and POP instructions to their
Instruction Set. Through the use of these individual design
specifications, each student designs and implements her/his
own unique computer.

In week five, students do a paper and pencil design of
the data path. They will have seen a similar, but not

identical, Data Path design in the lectures preceding this lab.
Thus, the students do not get a design to copy and paste, but
rather they use the template from the lecture and create their
own solutions for their individual computer. Such a design
is not reproduced here, as it can be found in textbooks. The
paper and pencil design of the Data Path encompasses the
creation of the following documents:
• A schematic with gate level detail.
• An Algorithmic State Machine Chart or State Diagram,

which uses:
o State Boxes, in which operations that happen

in one machine cycle are described using
Register Transfer Notation[4] Language.

o Conditional Boxes
o And (optional) Conditional Output Boxes.

• A Control Signal Table, which contains in the header
the list of all control signals and in the body their values
for each machine cycle. The information in this table is
used as a design input for the Control Unit.
In week six, students capture and simulate their Data

Path design. The design can be captured either using a

FIGURE 2

THE FOUR ARCHITECTURES THAT ARISE FROM COMBINING B0 AND B1.

Session M4G

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

M4G-16

schematic, or one of the established Hardware Description
Languages: VHDL or Verilog.

The paper and pencil design of the Control Unit is
performed in week seven. Based on the value of B2 in Table
IV, students design either a Hardwired or Micro-Programmed
Control Unit. As with the Data Path, they will have seen in the
lecture an example / template design of each kind. The Control
Unit is captured and individually simulated in week eight.

In week nine, students connect the Data Path and Control
Unit together. Using short instruction sequences, they first
verify the entire instruction set. Then they continue with full-
length programs. Once these work correctly, they download
the computer to the reconfigurable device, i.e. to the Field
Programmable Gate Array.

Week ten represents the culmination of their efforts:
running and testing programs on their own computer. On the
prototype board that carries the Field Programmable Gate
Array, the Input Ports pins are connected to eight switches and
the Output Ports pins are connected to two seven-segment
displays. With these input and output devices, the computer
can run programs that would implement functions similar to a
handheld calculator. One of the test programs they are
required to run successfully performs multiplication through
repeated additions.

Although low in complexity, and therefore limited in
capabilities, the design of every one of the 32 different
computers force the students to get involved in every aspect of
the design process of a computer. In a 14 week sequence, one
could further:
• Extend the instruction set.
• Introduce several Addressing Modes. Add B5 to

differentiate between different Addressing Modes.
• Increase the Main Memory and introduce a small Cache.

Add B6 to differentiate between say Direct Mapped and
Set Associative Caches.

• Introduce the option of a Pipelined Data Path.
Although these architectural features are covered in the

lecture, they cannot be practiced in the 9 week sequence
presented above.

ARE ALL STUDENTS BEING SERVED?

The purpose of these laboratory assignments is to complement
the lectures, offering a hands-on approach to learning. As is
the case with every pedagogical tool, one needs to ask the
question: does it serve, i.e. help all students in the learning
process? In this section we attempt to answer this question by
considering different student learning styles [11].

From a perception point of view, learners are classified
into sensing or intuitive. Sensing learners are practical, like
concrete thinking, hands-on work and are methodical. The
laboratory assignments are practical, because they target a
final physical implementation, they are hands-on and students
have to follow a design methodology. Intuitive learners are
imaginative, like abstract, model-based thinking, and like
variety. Students have to create their own solutions to design
problems, which are never the same from one week to another.

From an information input mode point of view, learners
are classified into visual or verbal. Visual learners like
graphic input, such as the schematics and charts the students
use in these lab designs. Verbal learners like text-based input.
These will find the information contained in the tables rather
than in the charts, and could capture their designs using one of
the Hardware Description Languages.

From an information-processing point of view, learners
are classified into active or reflective. Active learners like to
try out and work in groups. During simulation and
verification, students perfect their designs through a lot of trial
and error. Although the assignments are individual, peer
tutoring is allowed because the specific design requirements
make it impossible to copy/paste without an understanding of
how to use the block. Reflective learners like to think it
thoroughly and work solo. The assignments obviously do not
preclude such an approach.

Finally, from an understanding point of view, learners are
classified into sequential and global. Sequential learners can
function/work with partial information. A student does not
have to understand the whole picture in the first weeks to
make steady progress and finish the lab sequence successfully.
Global learners need the big picture. This is being referred to
throughout the lectures, but these Learners will benefit most
during the last weeks when the whole design comes together.

The activities associated with these laboratory
assignments do not favor any particular learning style, but
give each learner the opportunity to benefit from completing
them.

GRADING , ATTENDANCE AND REPORTING

While each instructor can have her or his own grading policy,
for these labs, we have used the following breakdown: Lab of
Week2 = 1%, LW3 = 2%, LW4 = 2%, LW5 = 5%, LW6 =5%,
LW7 = 5%, LW8 = 5%, LW9 = 5% and LW10 = 10%. Thus,
the total lab grade represents 40% of the total grade for the
course. The first three labs are lower weighted because these
are introductory. The last lab grade is highly weighted to
motivate students to complete the entire computer. To receive
any points for the final lab, a submission must successfully
execute at least six of the sixteen instructions. Each additional
instruction is worth one point for a total of ten points possible
for the final demonstration.

Attendance is mandatory. If a student misses a lab
session, she or he needs to attend another lab session. At
Rochester Institute of Technology, lab sessions are conducted
by a Teaching Assistant supervising a maximum of 16
students. However, as instructors, we found it helpful to attend
lab sessions in weeks 5, 7 and 10. The lab sessions are
currently two hours long, and extending them to three hours
could give more time for assistance. However, in either case,
the lab session is only the starting point of work that has to be
completed over the next week. Thus, students must have
access to the CAD tool outside the lab sessions, and the
instructor and teaching assistant(s) must have a sufficient
number of office hours.

Session M4G

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

M4G-17

While we value the exercise of writing a report for each
laboratory assignment, because of the iterative nature of the
design process, and the implicit high number of changes and
fixes to the designs, we do not require weekly written reports.
However, we do require a final laboratory report at the end of
the tenth week session. This has to contain:
• A one page text description of the general and individual

design specifications.
• A two page text description of design choices, problems

encountered, unresolved requirements.
• All schematic diagrams.
• All text based entry files.
• Annotated waveforms showing one complete instruction

cycle for each instruction.

STUDENTS FEEDBACK – LESSONS LEARNED

Because the course is offered in two quarters of each academic
year, this sequence of computer-architecture labs has been
taken by six generations of students, more than 300 students in
all, over the last three years.

As for any other lab, at the end students complete a five-
question, qualitative lab evaluation. Note that this is in
addition to the overall, separate course evaluation. Three of
the five questions pertain to the laboratory assignments, the
other two ask about the Teaching Assistant’s performance.

Question 1: Which aspects of the laboratory assignments
or procedures were of most value? Answers: all, the fact that
everything built on everything else, designing my own
computer, all parts helped in understanding of how a
computer works, the practical implementation of what was
taught in the course, being introduced to the entire design
process, hands-on.

Question 2: Which aspects of the laboratory assignments
or procedures need improvement? Answers: none, need three
hour lab sessions, more than one Teaching Assistant, more
detail in the lab handout, more time. Despite these issues, in
each generation, more than 70% of students completed the
design and implementation of the entire computer. Another
25% had the data manipulation instructions working. The
remaining 5% did not finish, because they did not complete
the early labs on time. The most difficult instructions to
complete seem to be the flow control, i.e. JMPU and JMPC,
and the data transfer with the memory, LOAD and STORE.

Question 3: Did the laboratory work complement the
course lecture and other work? Answers: yes, very well,
everything was relevant to the course material and greatly
helped in understanding it, very helpful, yes it would be
difficult to understand without applying it.

In addition to this direct feedback, we have received
verbal or email reports from students, who have successfully
used the complete computer design in interviews to
demonstrate their skills.

We interpret this feedback as very good. As we cannot
allocate more than one Teaching Assistant to one lab session,
and cannot expand time to mitigate the issues raised in the
answers to question 2, we now specifically encourage students

to plan and manage their time very carefully. In addition, we
closely watch each student’s progress, and intervene with help
when we notice she or he is at risk of falling behind. The
successful use of this sequence of laboratory assignments,
definitively requires substantial instructor involvement.

FUTURE ENHANCEMENTS

As capabilities of reconfigurable hardware devices increase,
we plan to provide to the student some pre-designed
keyboard/mouse and display interface blocks. The student
computers would read/write these through the four peripheral
ports. This improved user interface will make their computer
look and feel more like the personal computers with which
they are familiar, stimulating them to write and run more
complex programs. Towards this end, the amount of memory
could be increased to allow for a small high level language
interpreter. Finally, as we have formerly indicated, in a 14
week sequence the computer architecture itself can be very
much enhanced.

ACKNOWLEDGMENT

The Authors wish to acknowledge the many students who
have provided constructive feedback and helped to refine this
sequence of laboratory assignments. We also want to thank the
more than 10 Teaching Assistants for their hard work and
dedication in the successful use and running of these labs over
the past three years.

REFERENCES

[1] Hennessey and Patterson, Computer Architecture – A Quantitative
Approach, 3rd Edition, Morgan Kaufmann 2003.

[2] Flynn, Michael, J., Computer Architecture – Pipelined and Parallel
Processor Design, Jones and Bartlett, 1995.

[3] Shen, John, P., and Lipasti, Mikho, H., Modern Processor Design,
McGraw Hill, 2005.

[4] Heuring, Vincent, P., and Jordan, Harry, F., Computer Systems Design
and Architecture, 2nd Edition, Pearson Prentice Hall, 2004.

[5] Clements, Alan, Principles of Computer Hardware, 4th Edition, Oxford,
2006.

[6] Hayes, John, P., Computer Architecture and Organization, 3rd Edition,
McGraw Hill, 1998.

[7] Mano, Morris, M., and Kime, Charles, R., Logic and Computer Design
Fundamentals, 3rd Edition, Pearson Prentice Hall, 2004.

[8] Comer, Douglas, E., Essentials of Computer Architecture, Pearson
Prentice Hall, 2005.

[9] Null, Linda, and Lobur, Julia, Computer Organization and Architecture,
Jones and Bartlett, 2003.

[10] Bloom, B.S., and Krathwohl, D.R., Taxonomy of Educational Objectives
– Handbook I – Cognitive Domain, Addison-Wesley, 1984.

[11] R.M. Felder and L.K. Silverman, “Learning and Teaching Styles in
Engineering Education,” Engr. Education, 78(7), 674-681 (1988)

