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ASSESSMENT OF ACCEPTANCE SAMPLING PLANS USING POSTERIOR 

DISTRIBUTION FOR A DEPENDENT PROCESS 

 

ABSTRACT 

In this study, performance of single acceptance sampling plans by attribute is 

investigated by using the distribution of fraction nonconformance (i.e., lot quality 

distribution (LQD)) for a dependent production process.  It is the aim of this study to 

demonstrate that, in order to emphasize consumer risk (i.e., the risk of accepting a bad lot), 

it is better to evaluate a sampling plan based upon its performance as assessed by the 

posterior distribution of fractions nonconforming in accepted lots.  Similarly, it is the 

desired posterior distribution that sets the basis for designing a sampling plan.  The prior 

distribution used in this study is derived from a Markovian model of dependence. 

KEY WORDS: Acceptance sampling, dependent production processes, lot quality 

distribution (LQD), posterior distribution, mean squared nonconformance. 

 

INTRODUCTION 

In production processes where the individual items are produced and formed into 

lots sequentially, the dependence in quality of successive items significantly affects the 

variance measures. The resultant dependence bias often distorts the performance of the 

conventional acceptance sampling plans.  In order to prevent the failure of such plans, 

there is a need to incorporate the serial dependence in the process as an integral part of the 

sampling plan. This problem is substantiated in a long list of studies (Mergen [9], Holmes 

and Mergen [6], Chen and Chou [1], Tang and Cheong [11]).   
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To address the outgoing quality in a dependent process, our study starts with a 

custom tailored dependence distribution as the prior.  This distribution describes a 

stochastic process that is representative of many real applications. Using such a prior we 

first develop a posterior distribution and then a convenient indicator to assess the outgoing 

quality in the accepted lots under a given acceptance sampling plan.  Integrating the quality 

distribution into an acceptance decision, our measure economically summarizes the 

information about outgoing quality levels. This model is applicable to situations where 

quality is measured by dichotomous quality conformance. The posterior distribution is 

derived using a two-state Markovian process. By recognizing the serial nature of the 

production process, the Markovian model directly incorporates sequential dependence as 

an integral part of the acceptance sampling plan.  

In the following, first we summarize the background studies and the development 

of our prior distribution. Then, we demonstrate the computation of the posterior 

distribution and outgoing quality indicator. In the subsequent section we provide three 

examples. One example is a synthetic application, the second is based on data from 

practice, and third attempts to demonstrate the level of inaccuracy from erroneous 

independence assumption. Finally, we close the article with a conclusion. 

 

BACKGROUND 

The focus of this line of research has been capturing the dependence with a proper 

distribution or an adjustment to a selected conventional distribution. For example, 

recognizing the sequentiality problem, Mergen [9] and Holmes and Mergen [6] discuss a 
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lot quality distribution for an item to item dependence in a production process.  

Specifically, they introduce a new measure for outgoing quality in accepted lots using a lot 

quality distribution.  Chen and Chou [1] propose a linear cost model for continuous 

sampling plans under a dependent production process.  Similarly, Tang and Cheong [11] 

develop a control scheme for detecting changes in fraction nonconforming in processes 

with correlation.  In additional work, the significance of dependence in processes has been 

demonstrated in Deligonul and Mergen [4]. Also, Deligonul and Mergen [4] examine the 

impact of correlated data on the control limits for p-chart. 

Along this stream of research a group of studies has considered a Bayesian 

approach to the dependence problem. Those studies, however, start from generic priors 

(Wetherill [12], Hald [5], Chiu [2], Jaraidei et.al. [8], Jaraidei and Asoudegi [7]). Although 

this venue is a welcome addition to the acceptance sampling literature, it does not give the 

selection of prior the attention it devotes to sampling design and its outcomes (e.g,Chun 

and Rinks, [3].  Most priors in this line of research are selected by criteria based on 

mathematical convenience. Typically, the question of suitability and convergence 

characteristic of the priors receive scant attention, if any at all.  

 

MODEL 

Prior distribution of fraction nonconformance: 

 The first step in this study is the development of a prior distribution for fraction 

nonconformance in dependent production processes.  To this end, the following first order 

Markovian model, which is based on our prior work, is used to depict the dependence 
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behavior of the production process (see Mergen [9], Mergen and Holmes [10], and 

Deligonul and Mergen [4]). 

 Let’s suppose that large lots of size N are formed from a dependent production 

process.  Further suppose that (d, g) and (d, b) are two states with d number of 

nonconforming items given that the last item produced (and lotted) was conforming and 

nonconforming, respectively.  Let P(d: g, N) and P(d: b, N) denote the probabilities of d 

number of nonconforming items in a lot of size N where the last item was conforming and 

nonconforming, respectively.  At any time p’ indicates the fraction nonconforming (i.e., 

p’=d/N).  Let x and y be the conditional process probabilities of having a conforming item 

given that the last item was conforming and nonconforming, respectively.  Then the 

difference equations associated with the Markov Process depicting the number of 

nonconforming items are given as follows: 

 

)N,g:d(P  )N,b:d(P  )N:d(P        (1) 

where 

)1N,b:1d(P)y1(  )1N,g:1d(P)x1(  )N,b:d(P    (2) 

)1N,b:d(yP  )1N,g:d(xP  )N,g:d(P      (3) 

for d = 1, 2, ….., N and N > d 

and 

0  )N,b:0(P  

)1N,g:0(xP  )N,g:0(P                                         for N>1 
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The prior distribution giving the probabilities associated with the lot quality is 

obtained from the solution of the above recursive equations, assuming that the Markov 

process starts, say, from the steady state probability of a conforming item, namely, 

 

yx1

y
  )1,g:0(P          (4) 

 

This choice of the above initial condition is a reasonable start up for the Markovian 

process given that the process is convergent.  In literature there are alternative suggestions, 

such as antitetehic initiation procedures, for effective start up options. However, for our 

purposes the initial point in (4) is sufficient as it is rapid in convergence and reliable in 

use
1
. 

The solution of the difference equation yields the following distribution (see 

Mergen [9] and Mergen and Holmes [10] for details): 

 

Dy)x1(x  C)y1(y)x1(x 
idN

1dN
  )d(P d1d1d2N

)1d,dN(Min

1i

1idi1iidN

N   

for d = 1,2, .., N-1         (5) 

where 

0  
Q

R
  if R ≤ 0 and Q < 0 

                                                 
1
 We thank a referee for bringing this issue to our attention. 
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yx1

)y1(
1id

1d
)y1)(x1(

id

1d
2)x1( 

1id

1d

  C

22

   (6) 

yx1

)x1(y
1d2N

1dN
)y1(x )1d(

d2N

1dN
)x1(x

d2N

1dN
2

  D  (7) 

yx1

yx
  )d(P

1N

   for d = 0     (8) 

yx1

)y1)(x1(
  )d(P

1N

  for d = N     (9) 

  

The above distribution depicts the probability of the number of nonconforming 

items.  For the fractions nonconforming, associated probabilities are exactly the same if we 

switch from d with the range 0,1, 2,…, N to p’ with 0/N, 1/N, 2/N, …, N/N.  Therefore 

P(p’: N) is obtained directly from the above distribution. 

 

NOTATION TABLE 

P(d)N = probability distribution of nonconforming items in lots of size N 

d = number of nonconforming items 

N = lot size 

x  = probability that the next item will be conforming given that the last item was 

conforming 

y  = probability that the next item will be conforming given that the last item  was 

nonconforming. 

n = sample size 

c = acceptance number 
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'

dp  = fraction nonconforming (=lot quality = d/N) 

 

Posterior distribution conditioned upon acceptance: 

After obtaining the unconditional distribution of fractions nonconforming, we 

obtain the posterior distribution of the same random variable conditioned upon acceptance, 

that is P(p’: A), where A denotes the event that the lot was accepted.  Furthermore, we 

suppose the single acceptance sampling plan S(n, c) is adopted.  Here n, c denotes sample 

size and acceptance number, respectively.  If no more than c nonconforming items are 

found in a sample size n randomly drawn from a lot size N, the lot will be accepted as 

good. Given the sampling plan S(n, c), probability of acceptance, P(A: p’, S), can be 

calculated by using binomial distribution. 

 

  0 for  d=N 

 P  )S,p:A(P a

'

d  
in'

d

i '

d

c

0i

)p1(p 
i

n
  for 

'

dp = (d-1)/N >0, for d=2, …, N 

 1 for 
'

dp = 0 

 

                  (10) 

Then the posterior distribution P(p’: A, S) is obtained as, 

N

1j

'

j

'

j

'

d

'

d'

d

'

d

)N:p(P )S,p:A(P

)N:p(P )S,p:A(P
  )p(P  )S,A:p(P  for 

'

dp = (d-1)/N>0 for d = 2, …, N       (11)
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The calculation implicitly assumes that during an inspection process fractions 

nonconforming are not affected.  Although this assumption does not hold for all cases, it is 

reasonable for large lot sizes. 

Computing the quality indicator MSNC: 

 The average outgoing quality limit (AOQL), which is the maximum value of 

average outgoing quality (AOQ) values as p’ ranges from 0 to 1, is a possible single 

quantity of interest for assessing the outgoing quality (where AOQ can be computed as 

a

'

p
PpAOQ '  where Pa is the probability of accepting a lot with p’ fraction 

nonconformance using a specific acceptance sampling plan). However, AOQL is a 

conservative measure in the sense that it inflates the maximum outgoing fraction 

nonconformance since it does not take into account the lot quality distribution.  This in 

turn causes sample sizes getting bigger to maintain a desired outgoing quality.  In fact, 

Holmes and Mergen [6]
2
, Jaraidei et al. [8], Jaraidei and  Asoudegi [7], and others enrich 

the idea by treating p
’
 as a random variable and calculate the expected value of the average 

outgoing quality values (EAOQ). 

 Although this seems to be an improvement over the AOQL, this indicator is not 

sensitive to the dispersion of the distribution.  This is a significant defect against many 

fractions nonconformance distributions (i.e., lot quality distribution (LQD’s)) observed 

from dependent production processes.  Mergen [9] surprisingly reports that, in practice, 

                                                 
2
 Mergen [9] and Holmes and Mergen [6] define EAOQ as, 

1

0p

'

a

'

''

)N:p(P PpEAOQ   if the P(p
’
: N) is discrete 

'
1

0

'

a

' dp )N:p(P PpEAOQ   if the P(p
’
: N) is continuous.  
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some LQD’s exhibit higher right tails, which is significant for cases with strong 

dependence.  In fact, this is one of the prime reasons differentiating the observed LQD’s 

from Poisson or binomial types.  This characteristic injects a downward bias in the 

expected value of the AOQ computations. 

 Here we propose an indicator combining the square of the mean with the variance 

of the posterior distribution.  This quantity, termed mean squared nonconformance  

(MSNC), addresses both the expected value component and variability. In MSNC the 

expected value of p’ is squared to bring it to the same scale with the variance. With its 

encompassing nature this measure captures a wider view of the quality characteristics by 

imitating the mean square quantity: 

)A:p(Var  )A:p(E  MSNC ''2       (12) 

MSNC, as computed from the posterior distribution, incorporates the dependence 

characteristics of the process and the dispersion of nonconformance fraction as an integral 

part of the sampling plan. 

 

EXAMPLES 

 In order to demonstrate the approach proposed in this study, first a dependent 

process with x=0.95 and y=0.30 is utilized.  Although this example is a synthetic situation, 

it describes the mechanics of our approach well. To demonstrate the computational 

process, the lot quality distributions, both prior and posterior, have been calculated 

together with MSNC as the indicator for outgoing quality under various inspection plans.  

The results are exhibited in the Table 1. 
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(Approximate location for Table 1) 

In Table 1, the difference between prior and posterior distribution indicates the 

improvement in the outgoing lot quality through the use of a given sampling plan. As in 

this example, under dependence, EAOQ and MSNC converge in performance for lower 

values of variance. As the variance gets bigger, especially inflated by dependence, then 

MSNC more accurately represents the average outgoing quality. This happens because at 

higher variance levels, indicators that are based on expected value of the outgoing quality, 

such as EAOQ, will lag behind other indicators that incorporate variance. 

  The second example is a real case from industry. The data gathered from the 

manufacturing of a subassembly of an aircraft engine. Further details about this data can be 

found in Mergen and Holmes [10].  In Table 2 we exhibit the pertinent lot quality 

distribution obtained from a 100% inspection of 1487 lots of size 8 of the subassembly.  

MSNC values are calculated from the posterior distribution given various different 

sampling plans.  In order to better show the utility of the proposed method we provide an 

application of the method on the same data, this time under the independence assumption. 

The independence is ensured by assigning the steady state value of the fraction 

nonconforming to x and y.   

(Approximate location for Table 2) 

Results in Table 2 show the results under the erroneous assumption of 

independence when the process is dependent.  As can be seen, under the assumption of 

independence, MSNC values show that we tend to overestimate the outgoing fraction 

nonconformance when the acceptance numbers are small and underestimate it when the 
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acceptance numbers are bigger. Either way would result in an increased cost to the 

producer and/or the user. 

 

CONCLUDING REMARKS 

This study proposes a new indicator, MSNC, to gauge the performance of single 

acceptance sampling plans for attributes by using the distribution of fraction 

nonconformance (i.e., lot quality distribution (LQD). The context of the study is a 

sequential sampling from a dependent production process by a model based on a two-state 

dependent process. It is widely documented that the quality dependence of a stream of 

items from a manufacturing process will frequently violate the randomness of the binomial 

process.  In the presence of autocorrelation, back to back items will distort the acceptance 

sampling plan. The adverse effect of this is that it obviously elevates the risk for both 

producer and/or consumer. Moreover, frequent misspecification of outgoing quality will 

also discredit quality programs in the eye of  personnel and devalue the acceptance 

sampling plan. 

Our recommendation of a special indicator, MSNC, for the outgoing quality of the 

lots provides a simple approach for a single sampling inspection.  By incorporating 

dependence as an integral part of its measure, MSNC helps the efficiency of sampling plan. 

First, it improves the measure by incorporating more information by the use of a custom 

tailored prior distribution which in turn improves precision.  Second, it accounts for 

variance, Var(p’: A) for both small and large acceptance numbers (c values). This is 
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particularly important when the dependence variance is substantial in the original stream of 

items.. 

 The outgoing quality indicator, MSNC, will rise with increasing acceptance 

numbers and deflate with sample size for a given acceptance number in the plan. This is 

expected since the information content will be depressed in smaller sample sizes. 

Therefore MSNC reacts to the uncertainty in the anticipated way. Also, there might be 

other uses for MSNC.  For example, MSNC, as calculated over the prior distribution, is the 

maximum value that can be observed with any sampling inspection plan.  The difference 

between a MSNC-prior and a MSNC-posterior is a measure of the contribution of the 

inspection plan in quality assessment. This procedure exhibits an indirect value of the use 

of alternative acceptance plans.  

As future research venues, we find value in the performance simulation of MSNC 

in wide range of conditions. This will clarify its applicability and test its conformance to 

various contexts.  Second, it may be a useful direction to consider a MSNC for multi-

attribute data. Alternatively, the concept can be used for acceptance sampling by variable 

measure as opposed to attribute data.  Despite its potential complexity, this will broaden 

the implementation potential of the indicator. Lastly, the performance of MSNC under 

various sampling plans will be a valuable contribution to the practice.  

  In short, MSNC may be useful in designing acceptance sampling plans or 

evaluating existing ones from the point of view of consumer risk, and it differs from the 

existing quality level oriented measures on two accounts.  First, MSNC takes into account 
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that the process has certain dependency characteristics, and second, it adopts a Bayesian 

approach by employing a prior distribution for computing outgoing quality. 
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Table 1. Prior and Posterior Distribution and MSNC’s for a Dependent Process for Lot sizes 20, 30, 

40 for various sampling plans. 

 

 

 

     POSTERIOR 

  PRIOR   c = 1 

  N = 20   N = 20 

p’     n = 2 

________________________________________________ 

0.00  0.3234   0.3391 

0.05  0.1318   0.1368 

0.10  0.1151   0.1194 

0.15  0.0978   0.1003 

0.20  0.0807   0.0813 

0.25  0.0649   0.0638 

0.30  0.0509   0.0485 

0.35  0.0390   0.0359 

0.40  0.0292   0.0257 

0.45  0.0214   0.0179 

0.50  0.0154   0.0121 

0.55  0.0108   0.0079 

0.60  0.0074   0.0050 

0.65  0.0050   0.0030 

0.70  0.0032   0.0017 

0.75  0.0021   0.0009 

0.80  0.0013   0.0005 

0.85  0.0008   0.0002 

0.90  0.0004   0.0001 

0.95  0.0002   0.0000 

1.00  0.0002   0.0000 

_________________________________________________ 

EAOQ     0.1234 

MEAN     0.1290 

VAR     0.0210 

MSNC     0.0380 

 

For all cases x = 0.95, y = 0.30. 
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Table 1 (contd.) 

__   POSTERIOR___                  

  PRIOR   c = 1  c = 1 

  N = 30   N = 30  N = 30 

p’     n = 2  n = 3 

______________________________________________________________ 

0.00   0.1937   0.2041  0.2124 

0.03   0.1115   0.1148  0.1208 

0.07   0.1075   0.1113  0.1164 

0.10   0.1003   0.1032  0.1069 

0.13   0.0904   0.0923  0.0943 

0.17   0.0791   0.0799  0.0803 

0.20   0.0675   0.0673  0.0663 

0.23   0.0563   0.0553  0.0532 

0.27   0.0460   0.0444  0.0416 

0.30   0.0368   0.0348  0.0316 

0.33   0.0290   0.0268  0.0235 

0.37   0.0224   0.0201  0.0171 

0.40   0.0170   0.0149  0.0121 

0.43   0.0127   0.0107  0.0084 

0.47   0.0094   0.0076  0.0056 

0.50   0.0068   0.0053  0.0037 

0.53   0.0048   0.0036  0.0024 

0.57   0.0034   0.0024  0.0015 

0.60   0.0023   0.0015  0.0009 

0.63   0.0016   0.0010  0.0005 

0.67   0.0010   0.0006  0.0003 

0.70   0.0007   0.0004  0.0002 

0.73   0.0004   0.0002  0.0001 

0.77   0.0003   0.0001  0.0000 

0.80   0.0002   0.0001  0.0000 

0.83   0.0001   0.0000  0.0000 

0.87   0.0001   0.0000  0.0000 

0.90   0.0000   0.0000  0.0000 

0.93   0.0000   0.0000  0.0000 

0.97   0.0000   0.0000  0.0000 

1.00   0.0000   0.0000  0.0000 

_______________________________________________________________ 

EAOQ      0.1296  0.1141 

MEAN      0.1350  0.1250 

VAR      0.0160  0.0140 

MSNC      0.0340  0.0300 

For all cases x = 0.95, y = 0.30. 
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Table 1 (contd.) 

__________POSTERIOR_____________                      

 PRIOR   c = 1  c = 1  c = 1 

 N = 40   N = 40  N = 40  N = 40 

p’    n = 2  n = 3  n = 4 

______________________________________________________________________ 

0.00 0.1160   0.1200  0.1262  0.1337 

0.02 0.0854   0.0884  0.0928  0.0981 

0.05 0.0907   0.0937  0.0980  0.1031 

0.07 0.0914   0.0941  0.0979  0.1021 

0.10 0.0884   0.0906  0.0936  0.0966 

0.13 0.0828   0.0844  0.0863  0.0879 

0.15 0.0754   0.0763  0.0771  0.0774 

0.17 0.0670   0.0672  0.0670  0.0661 

0.20 0.0582   0.0578  0.0568  0.0550 

0.22 0.0496   0.0488  0.0470  0.0446 

0.25 0.0415   0.0403  0.0382  0.0354 

0.27 0.0342   0.0327  0.0303  0.0274 

0.30 0.0277   0.0261  0.0237  0.0208 

0.32 0.0221   0.0205  0.0181  0.0155 

0.35 0.0174   0.0158  0.0136  0.0113 

0.38 0.0135   0.0120  0.0101  0.0081 

0.40 0.0104   0.0090  0.0073  0.0057 

0.42 0.0078   0.0066  0.0052  0.0039 

0.45 0.0058   0.0048  0.0037  0.0026 

0.47 0.0043   0.0034  0.0025  0.0017 

0.50 0.0031   0.0024  0.0017  0.0011 

0.52 0.0022   0.0017  0.0011  0.0007 

0.55 0.0016   0.0011  0.0007  0.0004 

0.57 0.0011   0.0008  0.0005  0.0003 

0.60 0.0008   0.0005  0.0003  0.0002 

0.63 0.0005   0.0003  0.0002  0.0001 

0.65 0.0004   0.0002  0.0001  0.0001 

0.67 0.0002   0.0001  0.0001  0.0000 

0.70 0.0002   0.0001  0.0000  0.0000 

0.72 0.0001   0.0000  0.0000  0.0000 

0.75 0.0001   0.0000  0.0000  0.0000 

0.77 0.0000   0.0000  0.0000  0.0000 

0.80 0.0000   0.0000  0.0000  0.0000 

0.82 0.0000   0.0000  0.0000  0.0000 

0.85 0.0000   0.0000  0.0000  0.0000 

0.88 0.0000   0.0000  0.0000  0.0000 

0.90 0.0000   0.0000  0.0000  0.0000 

0.92 0.0000   0.0000  0.0000  0.0000 

0.95 0.0000   0.0000  0.0000  0.0000 

0.97 0.0000   0.0000  0.0000  0.0000 

1.00 0.0000   0.0000  0.0000  0.0000 

___________________________________________________________________ 

EAOQ    0.1325  0.1193  0.1061 

MEAN    0.1370  0.1300  0.1220 

VAR    0.0130  0.0110  0.0100 

MSNC    0.0320  0.0280  0.0250 

For all cases x = 0.95, y = 0.30                    
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Table 2. Comparison of the Posterior Distributions for Independent and Dependent Case. 

 

INDEPENDENT          DEPENDENT 

 __________________________________ __________________________________ 

N c E(p’) Var(p’)  MSNC  E(p’)  Var(p’)  MSNC  

_ __________________________________ __________________________________ 

3 0 0.104 0.011  0.021  0.041  0.010  0.012 

3 1 0.139 0.014  0.033  0.084  0.023  0.030 

3 2 0.152 0.016  0.039  0.119  0.037  0.051 

 

4 0 0.092 0.010  0.018  0.031  0.007  0.008 

4 1 0.130 0.013  0.030  0.067  0.017  0.021 

4 2 0.047 0.015  0.037  0.099  0.028  0.038 

4 3 0.053 0.016  0.039  0.125  0.040  0.056 

 

5 0 0.081 0.009  0.015  0.024  0.005  0.006 

5 1 0.121 0.012  0.027  0.054  0.012  0.015 

5 2 0.141 0.014  0.034  0.083  0.022  0.029 

5 3 0.151 0.015  0.038  0.109  0.032  0.044 

5 4 0.154 0.016  0.040  0.129  0.041  0.058 

 

6 0 0.071 0.008  0.013  0.019  0.004  0.004 

6 1 0.112 0.011  0.024  0.045  0.010  0.012 

6 2 0.135 0.013  0.036  0.071  0.017  0.022 

6 3 0.147 0.014  0.037  0.095  0.026  0.035 

6 4 0.152 0.016  0.039  0.115  0.034  0.047 

6 5 0.154 0.016  0.040  0.131  0.043  0.060 

 

7 0 0.063 0.007  0.011  0.015  0.003  0.003 

7 1 0.104 0.010  0.021  0.038  0.008  0.009 

7 2 0.128 0.012  0.028  0.061  0.014  0.017 

7 3 0.143 0.014  0.034  0.083  0.021  0.028 

7 4 0.150 0.015  0.038  0.103  0.029  0.040 

7 5 0.153 0.016  0.039  0.120  0.037  0.051 

7 6 0.154 0.016  0.040  0.133  0.044  0.062 

 

8 0 0.056 0.006  0.009  0.012  0.002  0.002 

8 1 0.097 0.009  0.018  0.032  0.006  0.007 

8 2 0.122 0.011  0.026  0.053  0.011  0.014 

8 3 0.138 0.013  0.032  0.074  0.017  0.022 

8 4 0.147 0.015  0.037  0.092  0.024  0.032 

8 5 0.152 0.016  0.039  0.109  0.031  0.043 

8 6 0.154 0.016  0.040  0.123  0.038  0.053 

8 7 0.154 0.016  0.040  0.134  0.045  0.063 

____________________________________________________________________________________ 

x=0.95  y=0.274  Prior distribution: E(p’)=0.154,   Var(p’)=0.059 

____________________________________________________________________________________ 
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TABLE CAPTIONS 

(Mergen and Deligonul) 

 

Table 1. Prior and Posterior Distribution and MSNC’s for a Dependent Process for 

Lot sizes 20, 30, 40 for various sampling plans. 

 

Table 2. Comparison of the Posterior Distributions for Independent and Dependent 

Case. 
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