




Test Type	SF6(sccm)	CF4(sccm)	O2(sccm)	Pressure(mTorr)	Power (watts)
Etch Selectivity/ETM	0	40	5	75	125
Etch Selectivity/ETM	0	40	5	150	250
Etch Selectivity/ETM	0	40	5	150	125
Etch Selectivity/ETM	40	0	5	150	125

Test type	SF6	CHF3	02	Pressure	Power
Wafer 1	30	30	5	60	160
Wafer 2	15	45	5	60	160
Wafer 3 (etch rate test)	45	15	5	60	160
Wafer 4	30	30	5	60	160
Wafer 5	30	30	5	120	160
Wafer 6	30	30	5	60	120

Etching process characterization of nitride and polysilicon layer using trion III Etcher Sudmun Habib, Advisor: Dr Jackson, Dr Pearson and Dr Ewbank Rochester Institute of Technology, Department of Electrical and Microelectronic Engineering, Rochester NY 14623

	Results (cont)
A w u: th F e	olysilicon Experiment: Ifter the process of RCA clean of Bare silicon wafers, 250nm of oxide vas deposited on top and then 500nm of polysilicon was deposited sing LPCVD method. The table below shows the Non uniformity data ne polysilicon deposition layer wafer ID Test Type polysilicon Thickness A Non Uniformity Std Dev 4 A39 2 Etch Selectivity/ETM Yes 4805 9.13 439 2.5 55157 11.5 594 4 25 Etch Selectivity/ETM Yes 4830 9.97 481 5 501 5 501 12.59 632 From previous data from now decommissioned Drytek Etcher we established a etch time of 5 min. This resulted in being over etching the
	vafers hence showing a variation between the tools. Below we show new etch rate of the polysilicon layer. Polysilicon etch rate data Wafer ID SF6 (sccm) CHF3 (sccm) O2 (sccm) Pressure (mtorr) Power (watts) Time (sec) Etched poly Etch rate (nm/sec) 1 30 30 5 60 160 300 500 NA 2 40 0 5 60 160 300 500 NA 3 30 30 5 60 160 300 500 NA 5 30 30 5 60 120 470 3.9166666667 6 30 30 5 60 120 470 3.9166666667
	Wafer 1Wafer 2Wafer 3Wafer 4Wafer 5Wafer 5
	V. Conclusions
	Nitride data showed varied difference in etch rate with the change
	combination and percentage of oxygen present in chamber. Low base pressure lead to slow etch rates where as high RIE forwar power resulted in high etch rate with more directionality Polysilicon etch rates showed faster etch rates across the DOE comp to previous data gathered from DryTek Quad. Future Work
Ð	Low base pressure lead to slow etch rates where as high RIE forwar power resulted in high etch rate with more directionality Polysilicon etch rates showed faster etch rates across the DOE comp to previous data gathered from DryTek Quad.
•	Low base pressure lead to slow etch rates where as high RIE forward power resulted in high etch rate with more directionality Polysilicon etch rates showed faster etch rates across the DOE comp to previous data gathered from DryTek Quad. Future Work Next step of this study will be to have the profile checked using SEN and understand the impact of the gas combination to the power an
•	Low base pressure lead to slow etch rates where as high RIE forwar power resulted in high etch rate with more directionality Polysilicon etch rates showed faster etch rates across the DOE comp to previous data gathered from DryTek Quad. Future Work Next step of this study will be to have the profile checked using SEN and understand the impact of the gas combination to the power an pressure levels of the system.
	Low base pressure lead to slow etch rates where as high RIE forwar power resulted in high etch rate with more directionality Polysilicon etch rates showed faster etch rates across the DOE comp to previous data gathered from DryTek Quad. Future Work Next step of this study will be to have the profile checked using SEN and understand the impact of the gas combination to the power an pressure levels of the system. References Dr Fullers powerpoint slides of CMOS factory process Microchip Manufacturing by S.Wolf Etching Wikipedia
	Low base pressure lead to slow etch rates where as high RIE forwar power resulted in high etch rate with more directionality Polysilicon etch rates showed faster etch rates across the DOE comp to previous data gathered from DryTek Quad. Future Work Next step of this study will be to have the profile checked using SEN and understand the impact of the gas combination to the power and pressure levels of the system. Dr Fullers powerpoint slides of CMOS factory process Microchip Manufacturing by S.Wolf Etching Wikipedia Dr Jacksons Thin films LPCD data