
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2005

A formal process for the testing of servers A formal process for the testing of servers

Scott Hancock

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Hancock, Scott, "A formal process for the testing of servers" (2005). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/567?utm_source=repository.rit.edu%2Ftheses%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Formal Process for the Testing of Servers

By

Scott Hancock

Thesis submitted in partial fulfillment of the requirements for the

degree ofMaster of Science in Information Technology

Rochester Institute of Technology

B. Thomas Golisano College

of

Computing and Information Sciences

May 20, 2005

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

Master of Science in Information Technology

Thesis Approval Form

Student Name: Scott Hancock

Thesis Title: A Formal Process for the Testing of Servers

Thesis Committee

Name Signature Date

_D_r. _Y_in_p_an ________________ --J.JL:......-J [je;
Chair

Dr. Swaminathan Natarajan _ / / __
_____________________ 5-i-~_c_·~O t s
Committee Member

Dr. Charles Border

Committee Member

Thesis Reproduction Permission Form

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

Master of Science in Information Technology

A Formal Process for the Testing of Servers

I, Scott Hancock, hereby grant permission to the Wallace Library of the
Rochester Institute of Technology to reproduce my thesis in whole or in part.
Any reproduction must not be for commercial use or profit.

Date: iJ/"l1 /o~ Signature of Author: _S_co_tt_H_a_nc_o_ck ____ _

Acknowledgements

I would like to thank my wonderful wife, Dr. Stephanie Ludi, who encouraged me to

continue my education and gave me the moral support I needed. I love you.

I would also like to give special thanks to Dr. Swaminathan Natarajan for being on my
thesis committee, helping me to improve this paper over many versions and for helping
me get through the thesis process.

Finally, I would like to thank the rest of my thesis committee Dr. Yin Pan and Dr.

Charles Border.

Table of Contents

1 Introduction 1

2 Objective 3

2.1 Motivation 3

3 The Model 4

3.1 Software Engineering 5

3.2 Software Testing 6

3.3 Applying the Concepts to System Administration 10

4 The Framework 14

4. 1 Test Design 17

4.1.1 Gathering Requirements 17

4.1.2 Defining Baselines 19

4.1.3 Regression Tests 21

4.1.4 Prioritizing the Test Cases 21

4.1.5 Automating Test Execution 22

4.2 Implementation Issues 24

4.3 Analyzing Test Results 26

4.4 Evaluating the Framework Against Its Objectives 27

5 Validation of the Framework 31

6 Putting the Framework Into Practice: An Example Scenario for the Guidance

ofPractitioners 35

7 Conclusion 41

8 Appendix A - Test Plans 43

9 Appendix B - Server Baseline Test Cases 46

9.1 Server Baseline - Disk Usage 47

9.2 Server Baseline - Memory Usage . 48

9.3 Server Baseline - Network Usage 49

9.4 Server Baseline - Process Inventory 50

10 Appendix C - Apache Test Cases
.

51

10.1 Apache - Web Page 52

1 1 Appendix D - MySQL Test Cases 53

11.1 MySQL - Add Table 54

11.2 MySQL - Select Data 55

11.3 MySQL - Remote Select Data .

56

12 Appendix E - Test Results .

57

13 Appendix F - Cost of Intrusion 61

14 References .

62

m

1 Introduction

Making sure that servers are constantly up and running correctly is a core

responsibility for system administrators. This requires that they avoid downtime by

detecting early warning signals of potential problems and addressing them promptly.

Server configuration changes are also notorious trouble spots, since there is always a

possibility that the changes might break something that was working earlier, or that

newly introduced software might interfere with the operation of the server. These

requirements point to the need for constantly checking that all aspects of the system are

operating correctly. This research presents a framework and methodology for the

systematic testing of servers based on software engineering principles. Using software

testing as a model, the framework describes the steps for the baselining and testing of

servers.

This paper has its origins in a number of observations arising from the author's

experience in system administration, and circumstantial evidence from the news media

and security researchers (Kaner, Bach, & Pettichord, 2002; Naraine, 2003; Rescorla,

2002; Roberts, 2003). First, system administrators are not applying security patches to

their servers in a timely manner and in some cases not at all (Rescorla, 2002). This leaves

these servers open to hackers and worms that exploit previously known operating system

and software vulnerabilities, even those that have had fixes available for as much as six

months (Roberts, 2003).

Second, one of the reasons that system administrators do not apply security

patches in a timely manner is that patches must be tested before they are used in

production servers to make sure that they will not cause a malfunction in the server

1

(Naraine, 2003). System administrators see this testing as time consuming and not

foolproof. Even if they do test, there is a possibility that the patch will break something

that they did not test (Steve Beattie, 2002). Some administrators wait for a full release or

service pack so they can test many patches all at once (TechRepublic, 2002).

Unfortunately, while patches come out as needed, full versions or service packs may

come out only once or twice a year.

Third, system administrators are not monitoring their servers closely enough. As a

result, they are unable to detect changes in their servers. This has allowed hackers to

break into systems and use them for their own enterprises undetected (Delio, 2001 ;

Dizard III, 2003). It may be understandable for a system administrator to not detect the

presence ofhacker activity on their server when it is covert. However, when a server is

used to distribute gigabytes of illegally copied movies, music and software (Kucher,

2004) it is hard to understand how a system administrator could not detect the change in

storage and network use.

Currently, there is no generally accepted systematic methodology for the testing

of servers. A review of course syllabi for System Administration courses (Couch, 2004),

(Oslo University College, 2004) shows that most do not cover testing at all. A similar

review of System Administration texts again (Limoncelli & Hogan, 2002), (Burgess,

2004) finds few if any references to testing. The few that do mention testing merely say

that it should be done and refer the reader to Software Engineering texts. Thus, system

administrators have no specific guidance on how to build test plans for their servers.

The aim of this research is to remedy this gap and provide guidance to system

administrators on how to plan their server testing, design and set up automated periodic

tests and analyze the results.

2 Objective

The objective of this project is to design a systematic methodology for system

administrators to regularly test that their systems are operating correctly and to
detect

potential problems as early as possible. This objective directly leads to the evaluation

criteria for the effectiveness of the framework:

Ability to detect problems arising from software installations, upgrades

Ability to detect problems arising during normal operation

Ability to detect unauthorized activities and intrusions

Costs of using the framework, including effort required and cost of

acquiring tools

2.1 Motivation

Currently, there is no generally accepted systematic methodology for the testing

of servers. Most system administrators test their servers when they are built and anytime

patches or upgrades are applied. Ideally, the system administrators have a server set aside

for testing patches, new software and software upgrades before installing them to

production systems (Howes, 2002). Unfortunately, many organizations cannot afford to

dedicate one or more servers to testing. Whether or not they do, the testing process

involves manually testing the functionality of the server to see if the software change has

caused a problem. For instance, after applying a patch to the operating system of a web

server, the system administrator may test that web applications on the server still work. In

most cases there is no test plan and no test cases to guide the testing. The system

administrator just superficially tests that the web applications still run. Any problems

outside of that, such as performance degradation or incompatibilities with other software

on the server will not be found until the server is in production and then the problems will

be found by users. With the large number of security patches being regularly released,

there is less time for administrators to test them all thoroughly (Kawamoto, 2005).

As an example, in March of 2003, Windows system administrators began

reporting that their systems would not reboot. The problem was traced to a security patch

to fix a buffer overflow in Microsoft's Internet Information Server. The patch was

incompatible with a previous patch that some system administrators had applied. As a

result, when the system administrators attempted to reboot the machines, they crashed

and could only be fixed by using the recovery console. Many system administrators, in a

panic to patch the vulnerability before they were attacked by internet worms such as

Code Red and Nimda, did not test the patch and were left with non-functional servers

(Evers, 2003). A systematic server testing methodology with execution automation

would avert such situations.

3 The Model

The framework and methodology developed in this paper draw heavily upon the

field of software engineering, particularly software testing. The first part of this section

provides background information on concepts in software engineering and software

testing. This review is framed in such a way that the ideas are also applicable to system

administration. The second part of the section addresses challenges in applying these

ideas to system administration, thereby laying the foundation for the framework.

4

3. 1 Software Engineering
Software Engineering is being used as the model for the framework because "In

general, software engineers adopt a systematic and organized approach to their work as

this is often the most effective way to produce high-quality
software"

(Sommerville,

2001). In order for system administration to go from a folk-art to an engineering-type

profession, practitioners must adopt such systematic and organized approaches in their

work.

Software engineering is defined as, "an engineering discipline which is concerned

with all aspects of software production from the early stages of system specification

through to maintaining the system after it has gone into
use"

(Sommerville, 2001).

"Computer software is the product that software engineers design and build. It

encompasses programs that execute within a computer of any size and architecture,

documents that encompass hard-copy and virtual forms, and data that combine numbers

and text but also includes representations of pictorial, video, and audio
information"

(Pressman, 2001). Correspondingly, in system administration, the services provided by

the system are the product, and it encompasses the hardware and the software used to

provide those services.

Software engineering process is defined as, "...the glue that holds the technology

layers together and enables rational and timely development of computer software.

Process defines a framework for a set of key process areas (KPAs)(Paulk, 1993) that

must be established for effective delivery of software engineering
technology"

(Pressman, 2001). The process defines a set of activities that are common to all software

projects. The framework activities are made up of a collection of task sets comprised of

software engineering work tasks, project milestones, work products and quality
assurance

activities (Pressman, 2001). Testing is the cornerstone quality assurance activity.

3.2 Software Testing
Software testing involves creating an overall test plan and designing test cases

that will exercise a program in ways that are most likely to uncover errors that need to be

fixed (Pressman, 2001). Any engineered product (and most other things) can be tested in

one of two ways: (1) Knowing the specific function that a product has been designed to

perform, tests can be conducted to demonstrate that each function is fully operational

while at the same time searching for errors in each function; (2) knowing the internal

workings of a product, tests can be conducted to ensure that "all gears
mesh,"

that is,

internal operations are performed according to specifications and all internal components

have been adequately exercised. The first test approach is called black-box testing and the

second, white-box
testing"

(Pressman, 2001).

White-box testing, also called glass-box testing, of software requires a knowledge

of the inner workings of the source code of the software and "is predicated on close

examination of the procedural detail. Logical paths through the software are tested by

providing test cases that exercise specific sets of conditions and/or loops. The 'status of

the
program'

may be examined at various points to determine if the expected or asserted

status corresponds to the actual
status"

(Pressman, 2001).

Black-box testing, also called behavioral testing, involves sending input to a

program and verifying that the output matches what is expected (Sommerville, 2001). It

"focuses on the functional requirements of the software. That is, black-box testing

enables the software engineer to derive sets of input conditions that will fully exercise all

functional requirements for a program. ... Tests are designed to answer the following

questions:

How is functional validity tested?

How is system behavior and performance tested?

What classes of input will make good test cases?

Is the system particularly sensitive to certain input
values?

How are the boundaries of a data class isolated?

What data rates and data volume can the system tolerate?

What effect will specific combinations of data have on system operation?

"

(Pressman, 2001).

Black-box testing requires the tester to know the requirements of the software:

"the requirements for a system are the descriptions of the services provided by the system

and its operational constraints. These requirements reflect the needs of customers for a

system that helps solve some problem such as controlling a device, placing an order or

finding
information"

(Sommerville, 2001). Software requirements can be classified as

functional or non-functional. Functional requirements "are statements of services the

system should provide, how the system should react to particular inputs and how the

system should behave in particular
situations"

(Sommerville, 2001). Non-functional

requirements "are requirements that are not directly concerned with the specific functions

delivered by the system. They may relate to emergent system properties such as

reliability, response time and store occupancy. Alternatively, they may define constraints

on the system such as the capabilities of I/O devices and the data representations used in

system
interfaces"

(Sommerville, 2001).

There are several methods for gathering the requirements for a system.

Interviewing the customer is one method. The developer discusses what the potential

users want the system to do. Another method is to analyze existing systems. If the new

7

system is replacing an old one, the older system can be observed to see how users utilize

it. One other method is task analysis, where the developer observes how the customer

performs a task that will be replaced or enhanced by the software (Sommerville, 2001).

The testing process begins with a test plan (Black, 1999) which lays out the scope

of the testing, how the testing will be carried out and how problems will be reported

(Culbertson, Brown, & Cobb, 2002). Then the test cases are developed (Tamres, 2002).

Each test case describes a test that will exercise one aspect of the program. The test case

lists the steps to setup the test, run the test, and return the test system to its original state

(Black, 1999). Problems discovered during testing are reported to the software developers

who make the needed fixes to the software. After the software is fixed, it is then sent

back for further testing.

Any time a change is made in the software, including fixing a defect found during

testing, the software must be regression tested. "The purpose of Regression Testing is to

ensure that the Application Under Test (AUT) still functions correctly following

modification or extension of the system (such as user enhancements or upgrades).

Typically, the modifications or extensions will be tested to ensure that they meet their

requirements, after which a series of tests will be run to confirm that the existing

functionality still meets its
requirements"

(Watkins, 2001).

The testing process continues until the software is ready for release and starts over

whenever a change is made to the software after its release. The diagram below is an

overview of the Software Testing Process:

Figure 1: The Software Testing Process

Regression

Testing

Create Test

Plan

Report Test

Errors to

Programmers

Yes
Deliver

Software

Defects Are Fixed

by Programmers

Planning and documenting the testing process makes testing more thorough and

repeatable. To find the most errors in software "tests must be conducted systematically

and test cases must be designed using disciplined techniques"(Pressman, 2001). One

method to use in deciding what software needs to be tested is risk analysis. "Most

recently, the notion of defining testing in terms of risk has become increasingly popular.

In this use, the term
'risk'

relates to the possibility that the
Application Under Test (AUT)

will fail to be reliable or robust and may cause commercially damaging problems for the

users"(Watkins, 2001).

3.3 Applying the Concepts to System Administration

When we try to apply these concepts to system administration, two challenges are

immediately obvious:

What requirements do we test against? The purpose of software testing is to

ensure that the software meets the requirements that have been defined. In

system administration, there is no requirements document against which to test.

What does white-box testing mean in the context of system administration? In

software engineering, programmers have access to the source code of the

software and can then identify flaws in it's internal operation, but system

administrators may not even have access to the code for the applications they

run.

One of the challenges in software testing is identifying behavioral requirements to

test against. The requirements document is generally written by the software designer

who interviews the software's user to see what they want the software to do and how it

should perform. The functional requirements describe what the software is supposed to

do. An example for a word processor might be that it can spell check, print documents

and automatically save the document. Non-functional requirements describe how the

10

software should perform. For example, a spreadsheet program may need to be able to do

one hundred calculations per second or it may need to run on a computer with 128 MB of

RAM and a 500 MHz processor. If the requirements document for the software is written

well then it will have a complete list of functional and non-functional requirements and

tests can be written to verify that the software does what the requirements
document says

that it should. However, if there are few or no documented requirements for the software

then the tester must go to the user of the software to find out what the requirements are

for the software. In addition, how users use the software may change over time, so the

test plan must evolve to keep up with these changes. For instance, after a year the users

may find that they need the spreadsheet to do at least two hundred calculations per

second. Thus, the tester must keep in touch with the users in order to know if tests need to

be changed or new ones added to reflect how the software is being used.

For system administration, the requirements are the system behaviors that the users

expect. These requirements include both the services that the server should provide and

performance requirements of the users. To be able to perform testing, system

administrators must identify and document these user requirements. They must go

through a requirements gathering process similar to that performed by software engineers

above. These requirements must be kept updated as user needs change. They must cover

the specific functionality and services to be delivered:

The applications that must be available and operational.

The processing, storage, communication and output services to be provided.

The management policies to be supported.

Services provided to external agencies e.g. mail routing and forwarding,

nameserver services etc.

11

The requirements document must also cover the non-functional requirements i.e.

user expectations of system behavior:

The level of availability of the system and its services.

Performance expectations.

Security expectations: threat identification, threat management, data

integrity and data confidentiality.

In system administration, black-box tests are performed to ensure that the system

services meet these requirements. This includes testing that the applications and server

are working correctly and delivering the expected behavior. This paper describes how

tests can be set up to regularly check that the system is meeting all these requirements,

and to detect and report problems as soon as they occur. These are the types of problems

that users will find if they are not first detected by system administrators.

White-box testing tests the internal behavior of the system. The key to applying

white-box software engineering principles to system administration is to realize that

system administrators deal with the system, consisting of closely integrated software and

hardware, as a whole, rather than with the internals of software. While software engineers

look at the software at a high level (black-box testing) and a low level (white-box

testing), system administrators are only interested in the software at the high level, to

ensure that it is behaving correctly. They look at the low level of the system, which is the

internal behavior of the server, specifically its performance and configuration parameters.

These are the parts of the system that the user never sees but will impact them indirectly

if there are any problems. Based on their knowledge of the system internals, system

administrators can define a set of internal parameters that need to be tested e.g. level of

CPU usage, storage usage levels, desired network throughput etc. They can define tests

that monitor whether these parameters are within acceptable levels. This has exactly the

12

same flavor as white-box tests for software, in that if this internal behavior is not correct,

the product as a whole will not behave correctly.

This in turn brings up the question of how system administrators can define what

constitute "acceptable
levels"

for each parameter e.g. storage usage or CPU usage. These

levels depend heavily on the specific hardware as well as the usage patterns of the users,

and these change over time, hence it is hard to pre-define a specific level as being

"acceptable".

The solution that this work presents is the concept of "server baselines". System

usage typically follows established patterns, and it is changes in these patterns that

indicate problems. As long as the system continues to behave as it has in the past, the

administrator has reasonable confidence that it is functioning normally. When there are

sudden drastic and unexpected changes in behavior, this might indicate that something

has gone wrong. Hence system administrators can establish server baselines by

observing the behavior patterns of internal system parameters, and then constantly test

that the system is continuing to match these baseline behaviors. Whenever a significant

change is detected, they can investigate to determine whether this change is due to a

problem or merely due to a temporary or permanent change in the usage pattern. The

system must be re-baselined periodically to track the evolution of usage patterns.

Regression testing after making changes is also applicable to system

administration. System administrators must test that applications continue to work as

expected after making changes, such as installing new applications or new hardware,

applying patches or making changes to the system configuration. They must watch for

bugs in the new software as well as incompatibilities with other software that is already

13

running on the server. They must also watch for unexpected changes in system

parameters that might indicate a problem with the change. If there are changes in the

system parameters but these are found to be reasonable considering the modification that

has been made, then they must re-baseline the system.

These ideas enable us to define a mapping of the software testing concepts to

system administration. Other principles of software testing, such as test processes,

planning, test automation and configuration management can also be applied to server

testing. The next section describes a server testing framework that incorporates these

concepts.

4 The Framework

This section describes the server testing framework and methodology. The

framework utilizes functional, baseline and regression tests. It is general and can be

applied to any server regardless of hardware, software or operating system differences.

The core concepts of the framework, derived from the discussion in the previous section,

are as follows:

Correct operation of servers is viewed as consisting of two parts: a set of

functional services to be provided to users, and a set of non-functional

characteristics to be satisfied.

Server testing consists of a set of black-box tests that check that the systems

are operating correctly, and a set ofwhite-box tests that track various

operational and configuration parameters of the system. These tests are run

periodically to detect problems in system operation. Ifproblems are found,

they are fixed and the tests are run again.

14

Sudden significant changes in system operational parameters are indicative of

possible problems. They may be caused either by normal system usage or by

unauthorized activities or system problems. When such changes are observed,

it is a trigger for further analysis by the system administrator to determine the

actual cause.

Tracking of changes to server parameters is done through the use of baselines

and comparison against baselines. Baselines are created periodically based on

an observation of current system parameter values. The baseline may either

be a single value, or a set of values that account for variations in pattern of

system usage over a day / week or other patterns. Subsequently, each time a

test is run, the results are compared against the baseline to check for

significant deviations. Each new baseline is also compared with previous

baselines to detect significant changes

Whenever a significant change is made to the system, such as installing new

applications, applying patches or changing the system configuration, the

system parameters should be re-baselined. The parameters should also be

compared before and after the change to detect possible problems with the

change (conflicts between components, buggy patches). Ifno problems are

detected, then the regression tests should be run.

Figure 2 shows the process associated with this framework.

The rest of this section discusses the methodology for performing the framework

activities, including gathering the requirements, designing the test cases, executing the

tests and analyzing the results.

15

Figure 2 Server Testing Framework

Create Initial

Baseline)
On a regular

schedule create a

new baseline.

Yes Determine if this is

due to unauthorized

activity.

Yes
Create a new

baseline.

Install Patch or

Update

No
Yes

Create New

Baseline

Yes There could be a bug
in the patch or

update.

Yes

No
No

Run Regression

Tests on Server

Applications Yes

Create New

Baseline

16

4. 1 Test Design

In order to begin creating tests for the server, the system administrator must first

make an inventory of the hardware and software on the server. This includes but is not

limited to:

Operating System

Software Applications Installed

Processor Type and Speed

Amount ofRAM installed

Hard Disk Space

RAID Configuration

Network Connections

Other Hardware Installed

4.1.1 Gathering Requirements

Second, the system administrator must determine the requirements for the server.

Like software requirements, the server requirements are determined by the needs of the

users. The requirements will include the services that the server should provide as well as

performance and other non-functional user needs. As with software engineering, the

system administrator can gather these requirements by:

Customer Interviews

Task Analysis

Observing Existing Systems

For example, the system administrator may sit down with the users of the system and

discuss their needs. They will identify what services the users need the server to provide.

These may be things such as printing, a web store or a database. Next, they will

determine performance needs by asking the users questions such as how many users will

use the database at the same time and how quickly they need the database to respond to

queries. By watching the users do their work, the system administrator may also discover

other requirements for the system. Finally, if the new system is replacing an old one, then

17

the old system can be observed to see what services it provides and its performance

requirements. Using these methods, the system administrator can determine the

functional and non-functional requirements of the servers. Examples of functional

requirements for the server include:

The user can make a purchase with the shopping cart program.

The user can print a document on a shared printer.

The user view their past purchases in a web browser.

The user can create and use tables in a database.

Remote users can upload and download files.

Examples of non-functional requirements for the server are:

The shopping cart program can handle at least 10 simultaneous users.

The print spooler can handle at least 500 simultaneous print jobs.

The web application can retrieve the user's past purchases in less than 30

seconds.

The database server will handle at least 10 simultaneous users.

The database server will respond to queries in no more than 5 seconds.

Users will be able to send and receive Email with no more than a 2-minute

delay due to this server.

The server must have 90% availability.

The
users'

requirements will always be changing so it is important for the system

administrator to keep in touch with them and to modify the tests as necessary. For

example, an online shopping cart program may need to support ten simultaneous

shoppers and the tests developed by the system administrator must verify that the system

can handle that at a minimum. In six months, the business may have expanded, and the

shopping cart program may need to support at least twenty simultaneous shoppers. The

test must be modified to reflect this shift in the requirements. Once the system

administrator has compiled an inventory of system components and the requirements for

the server, then they can begin creating the baseline and regression tests.

18

4.1.2 Defining Baselines

Baseline tests, which are equivalent to white-box testing in software engineering,

collect information about the state of the server. The tests should gather all pertinent

information about the state of the server. The set ofparameters that will be monitored

must include those that are likely to be affected by unauthorized activity and problems

arising on the server. Parameters that are likely to vary widely and unpredictably during

the normal operation of the server must be avoided. While the parameters may vary

widely based on the type and configuration of the server, the following list may be a

useful starting point for choosing relevant parameters:

Memory Usage

Memory Paging
Hard Disk Usage

Hard Disk Reads in per Second

Hard Disk Writes out per Second

Open Network Ports

Listening Network Ports

Network Packets in per Second

Network Packets Out per Second

Total Network Packets In

Total Network Packets Out

Network Utilization

Total Processor utilization

Running Processes

Process CPU Utilization

Process Real Memory Utilization

Process Virtual Memory Utilization

Date and Time Process was Started

Process ID

Process Owner

Number of Threads Used by Each Process

These properties will vary depending on the day and the hour so several baselines

should be made of the server. For instance, the file server for a small business may see

peak utilization from 9 am to 5 pm Monday through Friday and very little utilization

from 6 pm to 7 am during the week and all day on the weekends. In this case, baselines

19

would be made during office hours, after hours and on the weekend for a total of three

different baselines. It is up to the system administrator to choose the most appropriate

times and days for which to make baselines. These tests will be repeated on a regular

basis and the results will be compared with the previous baseline test results. If the results

of the test differ significantly from the previous baseline, then this is an indication that

there may be something amiss with the server. It may be a hardware or software problem,

an indication of unauthorized activity or it may simply be a result of normal usage. The

system administrator must determine what caused the change and if it is a problem, then

fix it. If the change is not caused by a problem but by a rare or one time event then

another baseline may need to be created. Otherwise, the baseline tests may need to be

modified to avoid repeated false alarms.

The first baseline should be created when testing is first instituted. Ideally, this

should be done on a trusted system such as one newly built from trusted media. The

system should be re-baselined on a regular basis (such as once a week) and before and

immediately after any significant change is made in the server. Significant changes

include:

Installation of New Software

Installation of Patches

Upgrading of Existing Software

Installation of New Hardware

Replacement of Hardware

This is done because any change to the system will affect the properties of the server,

thus a new baseline must be created to reflect this. The new software may, for instance,

increase the amount of memory or processor time used. The new baseline is then

20

compared against the previous. This will allow the system administrator to see if the new

software is using too many resources and may be causing a problem.

4.1.3 Regression Tests

Server regression tests test the behavior of the server, and are equivalent to
black-

box testing in software engineering. They are run after any software change is made in

the server. Changes include the installation of software upgrades, new software and

patches. These tests could cover items like printing, database server, web server, web

based applications, etc. They check to make sure that the new software works correctly

and does not interfere with the existing software. The challenge is to determine what it

means for the software to be working properly. This can be found in the requirements

compiled by the system administrator. Using the functional and non-functional

requirements of the system, tests can be developed that make sure that the software is

both working correctly and meeting the performance needs of the users.

As new software is added to the server and the requirements change based on the

users'

needs, new tests will need to be added and old tests will need to be modified to

reflect these changes.

4.1.4 Prioritizing the Test Cases

Operating systems come with a great deal of software. Exhaustively testing every

piece of software and the operating system on a server every time new software is

installed is not practical. The system administrator can use two methods to prioritize

testing and to choose what to test.

Using the risk-based approach the system administrator must decide what

software is essential to the server and to the business. If the failure of a piece of software

21

would have significant business impact and/or cause significant interruption to or

interference with the work of employees, then it is essential. "Using a risk-based

approach, the tester is involved in the analysis of the software to identify areas of high

risk that need to be tested thoroughly to ensure the threat is not realized during operation

of the system by the
user"

(Watkins, 2001). Software whose failure would have a high

impact must be covered during every regression test to make certain that it is functioning

properly, even if the patch or software installed has no apparent connection to this

software.

The second method is for the system administrator to carefully analyze what a

patch is designed to affect. Information about the patch may come from documentation,

security alerts or by examining the files in the patch itself. While the patch may not

adversely affect the software it is designed to patch, it may break another piece of

software that is related to the first. For example, a patch for a web server service may not

break the web server service, but it may break the ftp service that was part of the same

package. Software that might have been affected by the patch should be tested after the

patch is installed.

4.1.5 Automating Test Execution

Once it has been decided what to test, it must be determined how to perform the

tests. Manually testing everything is one option, but that would take a great deal of time.

It is a much better idea to automate as much of the testing as possible. For baseline

testing and some regression testing, software such as Nagios (Galstad, 2004) and Big

Brother (Quest, 2004) can automate the process of gathering performance data. They

were developed to continuously monitor servers and network devices to alert system

22

administrators when predefined thresholds are reached or when certain events occur.

They are capable of monitoring multiple devices and centralizing the reporting of

information. Agents that monitor properties such as memory usage, processor time, and

network utilization are installed on servers or network devices such as switches. This

information is continuously collected in a central server, where it is compared against

appropriate baseline values. If significant differences are observed, it triggers, a message

to the system administrator. This may also include triggers on predefined thresholds or

events. For example, the software may be set to give an alarm if the agent installed on a

server detects that the hard disk usage on the server has reached 80%. The collected

information is accessible through a web interface so that current status and historical data

can be viewed.

The data collected by monitoring software can be used to create the baselines. The

historical data can be analyzed to determine when the most appropriate times for baseline

creation should be. These should be times that the system performance is consistent and

representative of how the computer is expected to be used at that point. One of the

benefits of constant monitoring is that the exact point that the performance of the system

changed is recorded. This can be correlated with logs to determine what activities

occurred at that time that may have caused the change. Thus automated periodic

monitoring greatly facilitates causal analysis, in addition to reducing time lags in

detecting problems.

The monitoring software can also be used to monitor the server services

constantly and notify the system
administrator if there is a problem with any of them. For

instance, the monitoring software can be configured to test the web server every five

23

minutes by accessing a static web page or web application. If the web service does not

respond, responds incorrectly or responds with a Page Not Found error, then the system

administrator can be notified immediately that there is a problem with the web server.

Another way to automate testing is the create scripts that can be run manually or

run by a task scheduling program such as cron. These scripts can use operating system

utilities to measure the properties of the server and write them to a log, or even better, a

database.

As described previously, the set of tests to be run after a change should include

both high impact applications and those likely to have been affected. It is possible to

group the tests into subsets based on risk and execution effort. Different subsets of tests

can be run at different intervals. For example, the level 1 (critical and fully automated)

tests can be run every hour. Level 2 tests that are less important or take more resources

to run, but are can still be automated, may be run every day. Level 3 tests that require

manual intervention may be run, for example, once a month by the administrator. Level

4 tests that require significant effort and comprehensively test all aspects may only be run

occasionally after major changes to the system. Subsets of these level 4 tests could be

run as regression tests after changes that are viewed as likely to affect the particular

services or applications.

4.2 Implementation Issues

There are several issues that can impact the implementaion of the framework. It

may not be possible to automate some tests because they require human interaction. One

example would be verifying that a printout has occured. The computer may show that a

print job has completed but it cannot verify that the job actually printed and printed

24

properly. The only way to verify the printing is for someone to go to the printer and see

the printout.

Time is also a factor, even after testing has been prioritized and automated, there

may not be time to test every possible bit of functionality thoroughly. The system

administrator must create tests that are the most likely to detect a problem.

Another issue that may arise is unexplainable, intermittent test failures. Some

tests may fail but there is no explanation for it and the failure is not repeatable. In this

case, the system administrator watches the logs of such failures for patterns that may

eventually provide a clue as to causes. Correlations with another system event that also

occurs whenever a failure occurs, with network loading patterns, with spikes in processor

load etc may provide indicators of the source of the problem.

Change management is important to the success of server testing. The system

administrator must be aware of any software that is legitamately installed on the server by

other system administrators or users.

There may be certain applications or services which are particularly difficult to

test automatically, either because they are not amenable to automation or because the

problems leave no discernible footprint e.g. unauthorized intrusion through a loophole

that does not cause large changes in any of the measured parameters. It is quite clear that

automated testing will not catch such problems, just as software testing does not find

every bug. However, the value of systematic testing is that it results in early detection of

many common problems.

25

4.3 Analyzing Test Results

When the tests detect a problem or a change in the behavior of the system, it must

be analyzed to determine the cause. Functional failures directly indicate the application

that is not functioning, but they do not reveal the cause of the failure. Investigation will

be needed to find the cause of the malfunction. System parameter changes such as an

increase in network or CPU usage can be more difficult and require more analysis since

there are so many factors that can affect them. The starting point can be a checklist of

possible causes such as:

User behavior change

Software patch causes problem

Incompatibility with new software

Misconfiguration or other administration error

Hardware failure (intermittent or permanent)

Software failure due to application bug

Runaway process

Intrusion

When anomalies or failures are detected by the tests, there are several ways to

track down the cause. One is to check the system and application logs on the server to see

if they show activity that would explain the anomalies. Most operating systems have logs

for security, the system, and applications. These logs record important events and errors

by date and time. By cross referencing the time of the test failure with the logs, the

system administrator can see if any events or errors were recorded that might explain the

failure or it may point them to the cause. A few important events that can be found in

logs are:

User activity

Network activity

Software crashes

Hardware errors

Software errors

26

Some logs can be configured to increase the amount of information they record or

the verbosity of the messages in the log. Configuring these options can make the logs

even more useful in tracking down problems. System administrators, in attempting to

track down a problem may increase the verbosity of logging temporarily to gain

additional information.

Another is to analyze the system manually using system utilities. Many of the

utilities that can be used for testing have verbose modes that give a great deal more

information than the default mode and may aid in explaining the anomalies. Thus it is

important for system administrators to be familiar with these types of utilities for their

operating system so they can react quickly to problems.

A third technique is to look at recent changes to the system such as a configuration

change or new software as the possible cause. Changes that are under suspicion of

causing a conflict can be rolled back to a previous version or removed to see if it resolves

the problem.

The most important aspect of analysis is that it must be performed every time there

is a significant change in behavior. It is the continuity of observing behaviors and

changes from the current trusted baseline that ensures that we can trust the current state to

be reasonably free of problems. If analysis is performed sporadically, then a number of

problems will escape notice until the consequences become serious.

4.4 Evaluating the FrameworkAgainst Its Objectives

The preivous sections have described the framework, and how it is used:

designing a set of server tests, running the tests and analyzing the results. This section

now evaluates the framework against its original objectives.

27

The framework is being evaluated based on the following criteria:

Ability to detect problems arising from software installations, upgrades

Ability to detect problems arising during normal operation

Ability to detect unauthorized activities and intrusions

Cost of using the framework, both effort required and cost of acquiring
tools

The first three criteria are the ability to detect different types of problems on the

server. The framework is not able to detect all types of problems that may occur. The

table below shows some of the types of software bugs, server problems and unauthorized

activity that the framework will and will not detect.

Table 1: Problems and Unauthorized Activity Detection IV atrix

^^^^^^^^^^^^^^^^^H Detect Won't Detect

Bad Password Attempts X

Buffer Overflow X

Denial of Service Vulnerability X

Gradual change in Disk Space Usage X

Gradual Change in Memory Usage X

Gradual Change in Processor Usage X

Logic Error X

Memory Leak X

Port Scan X

PrinterMalfunction X

Runaway Process X

Server Service Failure X

Security Vulnerability in Software X

Spike in Disk Space Usage X

Spike in Memory Usage X

Spike in Processor Use X

Unauthorized Files Loaded X

Unauthorized Network Connections X

Unauthorized New User Added X

Unauthorized Ports Opened X

Unauthorized Software Installed X

As the table shows, the framework detects many common problems that can occur

on a server. Some of the problems that it won't detect such as logic errors or security

28

vulnerabilities in software can only be found by experienced programmers with access to

the source code. In short, the framework can only test what you can write a test for. For

instance, right now there is no software that can automatically detect security

vulnerabilities in software without access to the source code. If at some point software

that can do this becomes available, then the framework would be able to detect security

vulnerabilities in software.

The last criterion is the cost of using the framework. The approach we will use to

determine the cost effectiveness of the framework is to compare the cost of the

framework with the value it provides i.e. the cost of not using the framework. The

primary cost of using the framework is the cost in staff hours to create, implement, and

monitor the tests and to respond to anomalies or errors detected by them. Creating the

tests involves designing the tests, writing and debugging them. The implementation of the

tests includes installing the tests on the servers and maintaining the tests by making any

necessary changes to them. The amount of time taken in creating and implementing the

tests depends on how many are created and how complex they need to be. Most of the

anomalies reported by the tests will be innocent and their source will be quickly

identified. A few (2-3 a month) will be a real error that may take several hours to

investigate.

The second cost is the cost of any software used in testing. Most operating

systems already come with most of the necessary software utilities to do the tests and

scripting engines to automate the testing. If the system administrator decides to use server

monitoring software or needs other software to implement a test, then that cost will

depend on whether they choose an open source or commercial product. In that case, the

29

cost can range from nothing to thousands of dollars. Automating the testing will

dramatically reduce the amount of time needed to use the framework. The cost

calculation for using the framework then is:

(Hours *

Salary) + Cost of Software = Cost of Using the Framework

The costs of not using the framework can be calculated by looking at the

immediate, short-term and long-term costs incurred by a company due to a server failure.

(Cisco, 2002) (CounterStrike, 2004)

Immediate:

Cost to Fix Systems: Staff * (Salary*Time)
Disruption of Business: Staff * (Salary

* Down Time)

Loss of Business: (Projected Sales per hour * Down Time)

Short Term:

Loss of New Business Opportunity: Avg. New Customers per year *

Avg Customer

Spending
Loss of New Customers: (Avg New Customers per hour * Down Time)*(Avg. Spent per

customer per year).

Long Term:

Loss of Stature: Increase in Advertising spending to offset bad publicity.

While the actual numbers will depend on the specifics of the situation, it is clear

that that the cost of using the framework is of the order of a few thousands of dollars one

time, plus a significant portion of the system administrator's time (to monitor test results

and run manual tests)
- perhaps another couple of thousand dollars a month. If the

approach detects 2 or 3 problems a few hours earlier each month, and avoids a few hours

of business downtime per month, it would easily pay for itself. This does not take into

account the possibility of major failures and undetected intrusions, which could cost tens

or hundreds of thousands of dollars per incident. It also does not take into account the

significant increases in customer satisfaction due to the improvement in quality and

30

reliability of system performance. It is clear that the small cost of using the framework is

greatly outweighed by the potential cost of not using it.

5 Validation of the Framework

This section describes the result of an experiment in using the framework. The

experiment set up a typical small server configuration, and designed a set of tests for it

according to the framework. These tests were implemented with scripts and run

periodically, with results being compared against baselines. To determine its

effectiveness in finding problems, a series of patches and updates were applied, and the

framework was used to determine if these changes had created problems. This was then

compared with the known list of issues with those patches, to check whether the

framework indeed managed to find the problems. The methodology and results are

detailed below.

The first step was to create a Server Baseline Test Plan (see Appendix A). The

test plan described the overall purpose, scope, and configuration of the tests to be run.

These tests recorded the disk space usage, network ports in use, running processes and

memory usage on the server. These attributes were chosen as the most likely to indicate

unauthorized activity and problems on this type of server. Together, the results of the

tests were the Baseline for the server. The Server Baseline Tests were run on a regular

basis as well as before and after any patches or updates were installed on the server.

The second step was to create the regression test plan called "Apache and MySQL

Test
Plan"

(see Appendix A) for the software applications on the server. The test plan

described the overall purpose, scope, and configuration of the tests to be run. These tests

verified that the Apache Web Server and MySQL database server were functioning

31

properly. The Apache and MySQL tests were run immediately after any patch or update

was installed on the server.

Next, test cases for both of the test plans were developed (see Appendix B, C and

D). The test cases described the initial setup for the tests, the steps to run the tests and

what the expected output should be from the test.

The server used in the experiment was a Sun Microsystems Blade 100. First, the

Solaris 9 operating system was installed on the server. Second, Apache, an open source

web server, was installed. Third, MySQL, an open source database server, was installed.

Finally, several web pages and databases were installed to enable the testing of the web

and database server software.

After the server operating system, web and database server software were

installed, the entire system was tested to determine if all of the software was working

properly. Once it had been determined that all of the software was functioning correctly,

the Server Baseline Tests were run in order to create the initial baseline for the server.

The test cases recorded:

List of running processes

Total amount of physical RAM being used

List of all network connections to and from the server

Total amount of hard disk space being used

Every twenty-four hours, the Server Baseline Tests were run. The results of these

tests were compared to the previous baseline. If there were no significant differences

between the two, then the new baseline test results became the new baseline for the

server. If there were significant differences, then the reasons for them had to be tracked

down.

32

The next step was to begin applying existing software upgrades and patches to the

server. Each of the
products'

home websites were checked for new security patches and

updates which were then downloaded. The patches and updates were applied to the server

one at a time but before each patch or update was installed, a new baseline was created

for the server. Then, after the patch or update was installed, the Apache and MySQL tests

were run to verify that the software was unaffected by the updates or patches. If any

problems had been found, they would have been fixed before proceeding, either by

removing the update or patch or by the installing a fix for the problem from the

software's publisher. Finally, another baseline was created since the update might have

changed the properties of the server. The new baseline was compared to the previous.

The differences in the two baselines were checked to make sure that there were no

problems in the server caused by the updates and patches such as memory overuse or

unwanted network ports being opened.

After all of the existing patches and upgrades were applied, the
products'

websites

and the Computer Emergency Response Team (CERT) advisories were monitored for

new security-related updates.

The results of the tests showed that the tests were indeed effective in finding

problems (see Appendix E). The patches and updates applied to the server operating

system and MySQL did not cause any problems. The tests did detect the changes in disk

space that accompanied the installation of patches. The Apache test did detect a problem

with the Apache update. A problem found only on the Solaris version ofApache caused

the web server to stop responding to requests after the update was installed. The update

was removed. A subsequent update fixed the problem. To validate the

33

comprehensiveness of problem identification, the support web pages for Solaris, MySQL,

and Apache were checked for information about bugs that had been found in the updates

and patches after they were released. Other than the Apache bug mentioned previously,

no other bugs were found that the test cases should have identified.

Of course, this was not a real-world test of the framework. However, it does also

enable us to analyze the operational aspects of using the framework, particularly the

effort required for test creation and test execution. The tests each took an average of one

and a half minutes to run (See Appendix E). The tests themselves are basic, using simple

commands to gather the necessary information. Each of the tests took less than fifteen

minutes each to design, write, test and debug. The results returned are also very basic,

often just a number, which makes them easy to analyze. The exception to this is the

running processes since normally there are more than twenty running processes on a

server. The comparison of the results of the tests to the previous results took an average

of one and a half minutes. The tests and the comparison of the output against previous

tests could be automated to make the process even faster.

It was found that the test Memory Usage is not valuable on the Solaris platform.

Solaris uses all available memory for file caching so the amount of available physical

memory eventually goes to zero. Normally UNIX system administrators look at memory

paging activity to monitor memory usage on their
servers. This however, is a time

consuming task with little benefit to the goal of the
experiment. Thus, the Memory Usage

test should be dropped from the test plan when using UNIX. On other platforms, such as

Windows, it may be of benefit.

34

6 Putting the Framework Into Practice: An Example

Scenario for the Guidance of Practitioners

The previous sections have described the concept of the framework and discussed

its implementation in conceptual terms. However, some system administrators may find

it easier to grasp the concepts and benefits in terms of actual operational scenarios. With

that in mind, this narrative example has been included to show how the framework might

be used in a real-world environment.

Bob Johnson is the senior system administrator for a medium sized company

called ITP. Bob and his staff are responsible for the company's two dozen servers. These

include departmental file servers, human resources and payroll application servers,

enterprise email servers and web servers. Bob's department also has several development

servers for their programmers to develop, test and maintain enterprise applications and

testing servers used to test new software and patches before they are installed on

production servers. In addition, the testing servers are used to test their backups and as

replacement servers if one of the production servers becomes nonfunctional. The servers

run a mixture of Linux and Windows 2000.

Bob leads a staff of three junior system administrators who are on call twenty-

four hours a day, seven days a week year-round. Most of the company's enterprise

applications need to be available only during working hours (Monday-Friday 8 A.M. - 8

P.M. excluding holidays). Some of the departments
require their file server and web

applications to be available 24 hours a day seven days a week except holidays so that

sales representatives can access them while on the road. They all allow for a four hour

35

maintenance window once a week during off hours. However, these maintenance

windows must be approved ahead of time.

ITP cannot afford for these servers to be down. Any unscheduled downtime costs

ITP money, either in lost productivity of the company's employees or in lost revenue if

current or potential customers cannot access their website.

The greatest challenge for Bob has been to keep up with all of the critical security

patches for their servers. The patches must be tested and installed before a worm or a

hacker can compromise the servers. At first, Bob would just put the patches on the

servers and then take them off if they caused any problems. However, this caused too

much disruption of business so he procured several servers to use for testing patches,

updates and new software. Even with the test servers there were still problems. His

testing process consisted of installing the software and then just trying various things on

the server to see if they all worked. This process was not documented and was never the

same. It depended on whatever he could think of at the time and how much time he had.

Inevitably, problems were missed and ended up causing problems on production servers.

Bob decided to develop test plans for the servers to make testing consistent and thorough.

First Bob made an inventory of all of the servers. This inventory included all of

the hardware and software on the machines. It was regularly checked and updated any

time software or hardware was added or removed from a server.

Next, he began making a list of requirements for the servers. The typical users

were interviewed to determine how they used the services on the servers and what their

needs were in terms of server application performance. The servers themselves were

observed to see how they were used and how they and their software performed. All this

36

information was compiled into requirements documents for each server. The documents

were regularly updated based on regular feedback from the users on their needs.

Then Bob was able to create a test plan, baseline tests and regression tests based

on the information gathered. These were regularly updated to reflect newly added

software and changes in requirements.

Bob subscribes to several security mailing lists and the security lists of his

software and hardware vendors, so that he is immediately aware of any new security

patches. Once a patch is made available, it is downloaded and he begins the process that

any new software that will be installed on the servers goes through. First, a baseline is

taken of the test server, which is an exact copy of the production server that the patch is

to be installed on. The patch is then installed on the test server. The test server is then

baselined again. This baseline is compared to the last to determine if the patch is

negatively affecting the server's performance. The server is then tested according to the

test plan, to make sure that all the applications and system services are still working.

Once all of the tests have been passed and he is sufficiently sure that the patch does not

interfere with the operation of the servers, it can be installed on the production servers. It

is important that the patches be tested as quickly as possible so that they can be installed

and the servers will be protected.

Baseline tests are run on the servers on a regular basis. These are the same tests

that are used when new software is installed. However, the purpose of these tests are to

detect unusual activity on the server which may indicate unauthorized activity or a

problem with the server. Each baseline test is compared to the previous test at the same

time. If there is a large difference in the results, this indicates that there may be a

37

problem. Bob determined the schedule based on usage patterns on the servers, which are

as follows:

Monday-Friday
7:00 A.M. - 6:00 P.M. - Normal business hours

7:00 P.M. - 1 1:00 P.M. - Staff working from home. Sales reps downloading data.

1:00 A.M. - 2:00 A.M. - Batch processing of Financial and HR Data

2:00 A.M. - 4:00 A.M. - Backups of all servers.

5:00 A.M. - 7:00 A.M. - Maintenance windows.

Saturday-Sunday- Likely Hacker activity all day.

8:00 A.M. - 7:00 P.M. - Staff working from home occasionally.

2:00 A.M. - 4:00 A.M. -

Backup of all servers.

Holidays

No activity.

Bob scheduled the baseline tests so that the results will be a good representation

of the state of the servers throughout the day. He avoided times when the activity would

be unusually high such as during batch processing and early on the workday, when

people are getting to work, logging into the system and checking their email. Conversely,

he also avoided times when server activity would be unusually low such as during

lunchtime. He did however, chose off-hour times when hacker activity would be likely.

The baseline tests are run at the following times.

Monday
- Friday
7:00 A.M. - Minimal Activity
2:00 P.M. - Normal working conditions

12:00 A.M. - Minimal activity. Likely time for hacker activity

Saturday
- Sunday and Holidays

6:00 A.M. - Should be minimal. Looking for unusual activity.

12:00 P.M. - Should be minimal. Looking for unusual activity.

6:00 P.M. - Should be minimal. Looking for unusual activity.

12:00 A.M. - Should be minimal. Looking for unusual activity.

38

In creating baseline tests, Bob had to determine what server properties he was

interested in monitoring. For his tests, Bob chose the following properties:

Memory Usage

Hard Disk Space Used

Running Services

Running Programs

Processor Activity

When Bob and his staff first began running baseline tests on the servers, the tests

were run manually. This worked fine but it limited them to running tests only during

working hours and Bob wanted to have baselines made more often. The solution was to

automate the tests. Bob wrote scripts to run the various tests and record the results. He

then used a task-scheduling program to run the tests at certain days and times.

Along with automating the baseline tests, Bob also created scripts to run some of

the regression tests every 30 minutes. These tests verified that services such as the web

server and database server were still running. If any of them failed, the system

administrator on call was notified automatically so they could fix it.

On aMonday morning, when Bob compared the new baseline tests to the old,

there was a ten-gigabyte increase in hard disk space usage on the Human Resources file

server. By looking over the previous days baselines Bob was able to determine that the

increase had happened suddenly over the weekend. He searched the server for files

created over the weekend. Quickly he found that the server was being used to store and

distribute pirated movies and video games. The account used to save the files was created

that weekend and there was now a small FTP server running on the system. It was clear

that the server had been hacked. It was also clear that other people were accessing the

FTP server over the Internet and downloading the pirated goods. Already this was

39

causing a 20% increase in network activity and was affecting the performance of the

server. Bob gathered as much information as possible, shut down the FTP server process,

deleted the hacker's account and deleted the files. While he would have liked to make a

forensic image of the machine, his main priority was keeping the file server running so

that operations would not be interrupted. That evening, he took that file server down for

closer examination and brought up a backup server in its place. After determining how

the server was hacked, he made the necessary changes to the server and any others that

had the same vulnerability.

In total, it took Bob twelve hours to determine that the server had been hacked

and to fully remediate the system. The event did not cause any downtime, affect any

users or impact business operations since the intrusion was detected early. Since it was a

print server machine, Bob was relieved the server that had been compromised did not

contain confidential data and that the hacker's intent seemed to have been just to use the

server to distribute the pirated materials.

For Bob, the immediate cost of the intrusion was fairy straightforward to

calculate. It was just the cost for him to investigate the incident and to fix the server. The

time it took to deal with the intrusion was minimized since he already had an incident

response plan in place. He also calculated how quickly the costs could have risen if the

intrusion had not been detected early. As more hackers stored and retrieved files from the

server, the extra activity would have slowed the network and the disk response time on

the server. This would then impact the HR staff, batch process on the server and the time

needed to run a backup on the server. If the hackers had decided to be malicious, they

40

could have easily caused the server to crash. These calculations can be found in

Appendix F - Cost of Intrusion.

7 Conclusion

This initial work lays the foundation for applying software engineering testing

principles to system administration. By providing a systematic process, the framework

makes server testing easier, faster and repeatable. System administrators are encouraged

to make server testing a regular part of ongoing maintenance so that servers can be made

more secure and reliable.

The primary cost of using the framework is the cost in staff hours to create,

implement, and monitor the tests and to respond to anomalies or errors detected by them.

This is much less than the cost of an intrusion (which can be found in Appendix F).

Formalizing and documenting exactly what is to be tested, how to test it and what

the expected results are, ensures that the testing is done uniformly by all system

administrators throughout an organization. This means that an organization can be

assured that all of their servers are being monitored and that all patches and updates are

being thoroughly tested before they are put into production.

The test cases are documentation that the servers are being monitored on a regular

basis for unauthorized activity. This documentation could be used in legal proceedings to

help show that due care was used in the securing of the
companies'

systems. This

documentation may also be important to companies for compliance with laws and

regulations such as Sarbanes-Oxely (Langin, 2004).

41

Further work should include adding change management and risk management to

the framework to make it more complete. Software could be developed to automate and

centralize the testing of servers. The data could be automatically analyzed and alerts sent

out to the appropriate individuals.

42

8 Appendix A - Test Plans

43

Server Baseline Test Plan

Overview

The purpose of this plan is not to test for defects in the server operating system, it is to

record a set of properties for the server. The properties that will be recorded are:

1. List of processes in RAM

2. Total amount of physical RAM being used

3. List of all network connections to and from the server

4. Total amount of hard disk space being used

The list of properties is called the baseline of the server. These tests will be run after any

software is installed since the installation will change one or more of these properties.

Then the tests will be run on a schedule. The results will then be checked against the

baseline. If there are significant differences between the test results and the current

baseline, it may indicate that there is unauthorized activity occurring on the server.

Scope

These tests are for recording properties of the server. They will not confirm the

functionality of or identify defects in the server.

Test Configurations

The tests will be run directly on the server. The programs used in the tests directly on the

server will be run from trusted removable media (such as a CD). This is to assure that the

programs used have not been replaced in order to hide unauthorized activity.

Resources

Server

Model: Sun Blade 100

Operating System: Solaris 9

Software: df, netstat, top, ps

Change History
No changes.

Reference Documents

None.

44

Apache andMySQL Test Plan

Overview

The purpose of this plan is to test that the Apache and MySQL software are functioning
properly.

Scope

These tests are used to confirm that the software continues to function properly after it

has been patched or upgraded. The tests will not identify pre-existing defects in the

software. The tests will not determine if the updates have fixed the security issues they

are designed to.

Test Configurations

The tests will be run directly on the server and from a remote computer workstation. The

server and the workstation will be connected over a local area network (LAN). The

programs used in the tests directly on the server will be run from trusted removable

media (such as a CD) and from a workstation. This is to assure that the programs used

have not been replaced in order to hide unauthorized activity.

Resources

Server

Model: Sun Blade 100

Operating System: Solaris 9

Software: Apache 1.3, MySQL 4.0

Workstation

Model: Any UNIX compatible

Operating System: Any UNIX compatible

Software: MySQL 4.0, a web browser

Change History
No changes.

Reference Documents

None

45

9 Appendix B - Server Baseline Test Cases

46

9. 1 Server Baseline - Disk Usage

Test Case ID SBDF Test Date

Software Solaris Version 9

Test Start Time Test End Time

Purpose

Determine the amount of disk space in use on the server.

Initial Setup

1. Server idle.

2. A trusted copy of the program is run from CDROM or other trusted media.

3. The program is run from a terminal window or the console.

Input

1. Type./dfk

Expected Results

Pass/Fail

47

9.2 Server Baseline - Memory Usage

Test Case ID SBMU Test Date

Software Solaris Version 9
^

Test Start Time Test End Time

Purpose

Determine the amount of RAM in use on the server.

Initial Setup

1. Server idle.

2. A trusted copy of the program is run from CDROM or other trusted media.

3. The program is run from a terminal window or the console.

Input

1. Type
./top

Expected Results

Pass/Fail

48

9.3 Server Baseline - Network Usage

Test Case ID SBNU Test Date

Software Solaris Version 9

Test Start Time Test End Time

Purpose

Determine the network ports in use on the server.

Initial Setup

1. Server idle.

2. A trusted copy of the program is run from CDROM or other trusted media.

3. The program is run from a terminal window or the console.

Input

1 . Type ./netstat a

Expected Results

Pass/Fail

49

9.4 Server Baseline - Process Inventory

Test Case ID PIMU Test Date

Software Solaris Version 9

Test Start Time Test End Time

Purpose

Determine the processes running on the server.

Initial Setup

1. Server idle.

2. A trusted copy of the program is run from CDROM or other trusted media.

3. The program is run from a terminal window or the console.

Input

1. Type ps aux

Expected Results

Pass/Fail

50

10 Appendix C - Apache Test Cases

51

10.1 Apache - Web Page

Test Case ID APWP Test Date

Software Apache Version 1.3

Test Start Time Test End Time

Purpose

Verify that Apache is serving web pages.

Initial Setup

1. Launch a web browser on a remote computer.

Input

1. Type http://server address/test.html

Expected Results

Web page is returned.

Pass/Fail

52

1 1 Appendix D - MySQL Test Cases

53

7 7.7 MySQL - Add Table

Test Case ID MSQA Test Date

Software MySQL Version 4.0

Test Start Time Test End Time

Purpose

Verify that a database can be added and dropped.

Initial Setup

1. Open a terminal window or run from console.

2. Switch to mysql directory.

Input

1. Type ./bin/mysql -u root
-p

2. Type MySQL root password.

3. Type create database test;

4. Type show databases;

5. Type drop database scott;

Expected Results

Pass/Fail

54

7 1.2MySQL - Select Data

Test Case ID MSQS Test Date

Software MySQL Version 4.0

Test Start Time Test End Time

Purpose

Verify that data can be returned from the database.

Initial Setup

1. Open a terminal window or run from console.

2. Switch to mysql directory.

Input

1. Type ./bin/mysql -u root -p

2. Type MySQL root password

3. Type use mysql;

4. Type select host, name from user;

Expected Results

Pass/Fail

55

77.3 MySQL - Remote Select Data

Test Case ID MSQR Test Date

Software MySQL Version 4.0

Test Start Time Test End Time

Purpose

Verify that data can be returned from the database from a remote computer.

Initial Setup

1 . On a remote computer, open a terminal window or run from console.

2. Switch to mysql directory.

Input

1 . Type ./bin/mysql -u root -p

2. Type MySQL root password

3. Type use mysql;

4. Type select host, name from user;

Expected Results

Pass/Fail

56

12 Appendix E - Test Results

Test

Case ID

Date Software Version Start

Time

End

Time

Elapsed

Time

(min)

Results Pass/Fail Notes

SBPI1 7/3/03 Solaris 9 4:37

PM

4:38

PM

1 na Pass Initial

Baseline

SBNU1 7/3/03 Solaris 9 4:35

PM

4:36

PM

2 na Pass Initial

Baseline

SBMU1 7/3/03 Solaris 9 4:26

PM

4:27

PM

2 na Pass Initial

Baseline

SBDF1 7/3/03 Solaris 9 4:03

PM

4:04

PM

1 na Pass Initial

Baseline

MSQS1 7/3/03 MySQL 4 8:42

PM

8:43

PM

1 retrieve

table

Pass Initial

test

MSQR1 7/3/03 MySQL 4 8:39

PM

8:40

PM

1 it

responded

Pass Initial

test

MSQA1 7/3/03 MySQL 4 4:48

PM

4:50

PM

2 showed

table

Pass Initial

test

APWP1 7/3/03 Apache 1.3 4:46

PM

4:48

PM

2 showed

web page

Pass Initial

test

SBPI2 7/4/03 Solaris 9 2:22

PM

2:24

PM

1 processes Pass Install

Solaris

Update

Package

SBNU2 7/4/03 Solaris 9 2:18

PM

2:20

PM

2 ports Pass Install

Solaris

Update

Package

SBMU2 7/4/03 Solaris 9 2:15

PM

2:16

PM

2 memory Pass Install

Solaris

Update

Package

SBDF2 7/4/03 Solaris 9 2:12

PM

2:13

PM

1 disk

usage

Pass Install

Solaris

Update

Package

MSQS2 7/4/03 MySQL 4 2:09

PM

2:10

PM

1 retrieve

table

Pass Install

Solaris

Update

Package

MSQR2 7/4/03 MySQL 4 2:06

PM

2:07

PM

1 it

responded

Pass Install

Solaris

Update

57

Package

MSQA2 7/4/03 MySQL 4 2:03

PM

2:04

PM

2 showed

table

Pass Install

Solaris

Update

Package

APWP2 7/4/03 Apache 1.3 2:00

PM

2:01

PM

2 showed

web page

Pass Install

Solaris

Update

Package

SBPI3 7/5/03 Solaris 9 2:22

PM

2:24

PM

1 processes Pass Apache

Update

1

SBNU3 7/5/03 Solaris 9 2:18

PM

2:20

PM

2 ports Pass Apache

Update

1

SBMU3 7/5/03 Solaris 9 2:15

PM

2:16

PM

2 memory Pass Apache

Update

1

SBDF3 7/5/03 Solaris 9 2:12

PM

2:13

PM

1 disk

usage

Pass Apache

Update

1

MSQS3 7/5/03 MySQL 4 2:09

PM

2:10

PM

1 retrieve

table

Pass Apache

Update

1

MSQR3 7/5/03 MySQL 4 2:06

PM

2:07

PM

1 it

responded

Pass Apache

Update

1

MSQA3 7/5/03 MySQL 4 2:03

PM

2:04

PM

2 showed

table

Pass Apache

Update

1

APWP3 7/5/03 Apache 1.3 2:00

PM

2:01

PM

2 No

response

Fail Apache

Update

1

SBPI3 7/6/03 Solaris 9 2:22

PM

2:24

PM

1 processes Pass MySQL

Update

1

SBNU3 7/6/03 Solaris 9 2:18

PM

2:20

PM

2 ports Pass MySQL

Update

1

SBMU3 7/6/03 Solaris 9 2:15

PM

2:16

PM

2 memory Pass MySQL

Update

1

SBDF3 7/6/03 Solaris 9 2:12

PM

2:13

PM

1 disk

usage

Pass MySQL

Update

1

MSQS3 7/6/03 MySQL 4 2:09 2:10 1 retrieve Pass MySQL

58

PM PM table Update

1

MSQR3 7/6/03 MySQL 4 2:06

PM

2:07

PM

1 it

responded

Pass MySQL

Update

1

MSQA3 7/6/03 MySQL 4 2:03

PM

2:04

PM

2 showed

table

Pass MySQL

Update

1

APWP3 7/6/03 Apache 1.3 2:00

PM

2:01

PM

2 showed

web page

Pass MySQL

Update

1

SBPI4 7/10/03 Solaris 9 3:00

PM

3:01

PM

1 processes Pass Baseline

Test 1

SBNU4 7/10/03 Solaris 9 3:03

PM

3:04

PM

2 ports Pass Baseline

Test 1

SBMU4 7/10/03 Solaris 9 3:06

PM

3:07

PM

2 memory Pass Baseline

Test 1

SBDF4 7/10/03 Solaris 9 3:09

PM

3:10

PM

1 disk

usage

Pass Baseline

Test 1

SBPI4 7/11/03 Solaris 9 3:00

PM

3:01

PM

1 processes Pass Baseline

Test 2

SBNU4 7/11/03 Solaris 9 3:03

PM

3:04

PM

2 ports Pass Baseline

Test 2

SBMU4 7/11/03 Solaris 9 3:06

PM

3:07

PM

2 memory Pass Baseline

Test 2

SBDF4 7/11/03 Solaris 9 3:09

PM

3:10

PM

1 disk

usage

Pass Baseline

Test 2

SBPI3 7/12/03 Solaris 9 2:22

PM

2:24

PM

1 processes Pass Apache

Update

2

SBNU3 7/12/03 Solaris 9 2:18

PM

2:20

PM

2 ports Pass Apache

Update

2

SBMU3 7/12/03 Solaris 9 2:15

PM

2:16

PM

2 memory Pass Apache

Update

2

SBDF3 7/12/03 Solaris 9 2:12

PM

2:13

PM

1 disk

usage

Pass Apache

Update

2

MSQS3 7/12/03 MySQL 4 2:09

PM

2:10

PM

1 retrieve

table

Pass Apache

Update

2

MSQR3 7/12/03 MySQL 4 2:06

PM

2:07

PM

1 it

responded

Pass Apache

Update

2

59

MSQA3 7/12/03 MySQL 4 2:03

PM

2:04

PM

2 showed

table

Pass Apache

Update

2

APWP3 7/12/03 Apache 1.3 2:00

PM

2:01

PM

2 showed

web page

Pass Apache

Update

2

60

13 Appendix F - Cost of Intrusion

The costs of the intrusion can be calculated by looking at the immediate, short-

term and long-term costs incurred by a company due to the intrusion.(Cisco, 2002)

(CounterStrike, 2004)

Immediate:

Cost to Fix Systems: Staff * (Salary*Time)
Disruption of Business: Staff * (Salary

* Down Time)
Loss of Business: (Projected Sales per hour * Down Time)
Cost to Notify Customers of Exposure of Personal Info: Mailing Cost

* No. of Customers

Short Term:

Loss of New Business Opportunity: Avg. New Customers per year * Avg Customer

Spending
Loss of New Customers: (Avg New Customers per hour * Down Time)*(Avg. Spent per

customer per year).

Long Term:

Loss of Stature: Increase in Advertising spending to offset bad publicity.

61

1 4 References

Black, R. (1999). Managing the testing process. Redmond, WA: Microsoft Press.

Burgess, M. (2004). Analytical network and system administration : managing
human-

computer networks. Chichester, West Sussex, England ; Hoboken, NJ: John Wiley

& Sons.

Cisco. (2002). The Return on Investmentfor Network Security. Retrieved 7/2004, 2004

Couch, A. L. (2004). Compl50NETNetwork Administration. Retrieved 5/2005, 2005,

from http://www.cs.tufts.edu/comp/150NET/

CounterStrike. (2004). Computer Network Security - System Shield Cost Justification.

Retrieved 7/2004, 2004, from http://www.counterstrike.com/sscostjs.html

Culbertson, R., Brown, C, & Cobb, G. (2002). Rapid testing. Upper Saddle River, NJ:

Prentice Hall PTR.

Delio, M. (2001, June 23, 2001). Hoosier Favorite Hack Victim? Retrieved July 23,

2003, 2003, from http://www.wired.eom/news/culture/0.1284.44501.00.html

Dizard III, W. P. (2003, July, 30, 2003). Kentucky Shakes Up Systems After Large-scale

Hacking. Retrieved August 18, 2003, 2003, from

http://www.gcn.com/vol 1 no 1 /dai ly-updates/22965- 1 .html

Evers, J. (2003). Latest Windows Patch Poses Problems. Retrieved February 2005, 2005,

from http://www.pcworld.eom/news/article/0.aid, 1 09877.00. asp

Galstad, E. (2004, December 14, 2004). Nagios. Retrieved June 2004, 2004, from

www.nagios.org

Howes, T. (2002, October 2002). Winning the Cybersecurity War. Computer Technology

Review, 22, 2.

Kaner, C, Bach, J., & Pettichord, B. (2002). Lessons learned in software testing : a

context-driven approach. New York: Wiley.

Kawamoto, D. (2005). Patching Up Problems. Retrieved January 2005, 2005, from

http://news.com.com/Patching+up+problems/2 100-7347 3-

5553945.html?tag=nefd.lede

Kucher, K. (2004, March 17, 2004). SDSU Says Computer Server Was Infiltrated.

Retrieved May 9, 2004, 2004, from

62

http://www.signonsandiego.com/news/computing/20040317-9999-

news 7ml7hacker.html

Langin, D. J. (2004, 2004). Darning SOX: Technology and Corporate Governance

Elements ofSarbanes-Oxley. Retrieved December 2004, 2004, from

http://www.tripwire.com/files/literature/white papers/Tripwire SOX VVP.pdf

Limoncelli, T., & Hogan, C. (2002). The practice ofsystem and network administration.

Boston: Addison-Wesley.

Naraine, R. (2003, March 31, 2003). When Patches Aren't Applied. Retrieved March 26,

2003, 2003, from http://www.cioupdate.eom/reports/article.php/2 1 7205 1

Oslo University College, O. (2004, Thu, Aug 19, 2004). Course plan for masters degree

in network administration/network and system administration at Oslo University

College:. Retrieved 3/2005, from http://www.iu.hio.no/data/msc-course.html

Paulk, M. e. a. (1993). Capability MaturityModelfor Software. Pittsburgh: Software

Engineering Institute, Carnegie Mellon University.

Pressman, R. S. (2001). Software engineering : a practitioner's approach (5th ed.).

Boston, Mass. ; London: McGraw-Hill.

Quest, S. (2004). Big Brother System andNetworkMonitor. Retrieved February 2005,

2005, from www.bb4.org

Rescorla, E. (2002, November 15, 2002). Security Holes.. Who cares? Retrieved April

26, 2003, 2003, from http://www.rtfm.com/upgrade.html

Roberts, P. (2003, January 28, 2003). Microsoft Slammed by Its Own Vulnerability.

Retrieved March 26, 2003, 2003, from Software giant says that unpatched

machines on its network were hit by the Slammer worm.

Sommerville, I. (2001). Software engineering (6th ed.). Harlow, England ; New York:

Addison-Wesley.

Steve Beattie, S. A., Crispin Cowan, Perry Wagle, Chris Wright. (2002, November

2002). Timing the Application ofSecurity Patches
for Optimal Uptime. Paper

presented at the LISA '02: Sixteenth System Administration Conference,

Philadelphia, PA.

Tamres, L. (2002). Introducing software testing. London ; Boston, MA: Addison-Wesley.

TechRepublic. (2002). Most admins patch Windows monthly or quarterly.

63

Watkins, J. (2001). Testing IT: An Off-the-ShelfSoftware Testing Process. Cambridge

New York: Cambridge University Press.

64

	A formal process for the testing of servers
	Recommended Citation

	Book title
	Cover Page
	(R0006448662_000003.jpg)
	Table of Contents
	1 (R0006448662_000007.jpg)
	2 (R0006448662_000008.jpg)
	3 (R0006448662_000009.jpg)
	4 (R0006448662_000010.jpg)
	5 (R0006448662_000011.jpg)
	6 (R0006448662_000012.jpg)
	7 (R0006448662_000013.jpg)
	8 (R0006448662_000014.jpg)
	9 (R0006448662_000015.jpg)
	10 (R0006448662_000016.jpg)
	11 (R0006448662_000017.jpg)
	12 (R0006448662_000018.jpg)
	13 (R0006448662_000019.jpg)
	14 (R0006448662_000020.jpg)
	15 (R0006448662_000021.jpg)
	16 (R0006448662_000022.jpg)
	17 (R0006448662_000023.jpg)
	18 (R0006448662_000024.jpg)
	19 (R0006448662_000025.jpg)
	20 (R0006448662_000026.jpg)
	21 (R0006448662_000027.jpg)
	22 (R0006448662_000028.jpg)
	23 (R0006448662_000029.jpg)
	24 (R0006448662_000030.jpg)
	25 (R0006448662_000031.jpg)
	26 (R0006448662_000032.jpg)
	27 (R0006448662_000033.jpg)
	28 (R0006448662_000034.jpg)
	29 (R0006448662_000035.jpg)
	30 (R0006448662_000036.jpg)
	31 (R0006448662_000037.jpg)
	32 (R0006448662_000038.jpg)
	33 (R0006448662_000039.jpg)
	34 (R0006448662_000040.jpg)
	35 (R0006448662_000041.jpg)
	36 (R0006448662_000042.jpg)
	37 (R0006448662_000043.jpg)
	38 (R0006448662_000044.jpg)
	39 (R0006448662_000045.jpg)
	40 (R0006448662_000046.jpg)
	41 (R0006448662_000047.jpg)
	42 (R0006448662_000048.jpg)
	43 (R0006448662_000049.jpg)
	44 (R0006448662_000050.jpg)
	45 (R0006448662_000051.jpg)
	46 (R0006448662_000052.jpg)
	47 (R0006448662_000053.jpg)
	48 (R0006448662_000054.jpg)
	49 (R0006448662_000055.jpg)
	50 (R0006448662_000056.jpg)
	51 (R0006448662_000057.jpg)
	52 (R0006448662_000058.jpg)
	53 (R0006448662_000059.jpg)
	54 (R0006448662_000060.jpg)
	55 (R0006448662_000061.jpg)
	56 (R0006448662_000062.jpg)
	57 (R0006448662_000063.jpg)
	58 (R0006448662_000064.jpg)
	59 (R0006448662_000065.jpg)
	60 (R0006448662_000066.jpg)
	61 (R0006448662_000067.jpg)
	62 (R0006448662_000068.jpg)
	63 (R0006448662_000069.jpg)
	Cover Page

