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Abstract— This paper proposes a new model for secure
communication channels between two parties. The new model
assumes that adversaries are storage space bounded, but not
computationally bounded. At the initial phase of the secret
communication, both parties exchange a large amount of random
bits so that adversaries are not able to save them due to the
storage space limitation. Each party only saves received data.
At the second phase, each party regenerates the random bits,
combines them with received data, and generates an encryption
key iteratively with a one-way hash function. The key is then used
to encrypt the future transmissions from one party to the other.
After each transmission, the key is updated iteratively based on
data received. Applications of the new model are also discussed.

I. INTRODUCTION

The basic problem in cryptography is secure communication
over an insecure channel. Party A wants to send to Party
B a secret message over a communication line which may
be tapped by an adversary. The traditional solution can be
illustrated in Figure 1. It requires two channels to realize
secure communication between Party A and Party B. It is
called the secret key approach. Through one channel with
guaranteed secrecy, Party A and Party B exchange an agree
upon an encryption method, E, and its associated secret key,
k, and decryption method, D. On the other insecure channel,
Party A sends a cipher text c = E(m, k) to Party B. When
Party B receives the cipher text c, it performs D(c, k) =
D(E(m, k), k) = m to decrypt the cipher text. The adversary
C should not be able to decrypt the cipher text without
knowing the encryption method E and the secret key k.

Fig. 1. Traditional Solution

In 1949, Shannon proved that to reach absolute security,
the length of the key, k, needs to be at least as long as the
message, m, itself [1]. It is assumed that the adversary has
unlimited computational resources in Shannon’s theory.

One problem with the traditional solution is the key distri-
bution. It requires a guaranteed secure channel to exchange
a common key to both Party A and Party B. This is very
difficult to realize in many real world applications, especially
for today’s online applications of e-commerce.

In 1976, Diffie and Hellman solved this key distribution
problem in their seminal paper [2] and started so-called
modern cryptography. Diffie and Hellman introduced a public
key distribution system to eliminate the need of a secure key
distribution channel. It is based on assumptions that the adver-
sary is computationally bounded. That is, it is computationally
infeasible for the adversary to decrypt cipher text. More
specifically, the public key encryption is based on assumptions
that some one way functions are ”easy” to compute but ”hard”
to invert. Examples include one way functions which factoring
a very large integer, the discrete logarithm, RSA functions, etc.
For detailed discussion of these functions refer to [3]. Many
applications have been developed for public key cryptography.
In fact, public key cryptography has enabled private data
transactions on the Internet; online shopping, online banking,
and e-commence have become reality.

However, the public key cryptography also has its short-
comings. First, public key cryptography is susceptible to the
man in the middle attack [4]. Thus a public key infrastructure
has to be established to authenticate public keys themselves.
Secondly, the computationally infeasibility of some problems
may be temporary. As a matter of fact, in [5], Shor has shown
that factoring large integers and discrete logarithms can be
performed in polynomial time on a quantum computer. This
leaves a possibility that a passive eavesdropper can record all
secret communications between two parties, and later, with
more advanced computational algorithms and hardware, the
adversary could decipher the messages.

To overcome the temporary nature of the computational
infeasibility assumed in public key based cryptography, Au-
mann, Ding and Rabin introduced an bounded storage model
in [6]. In the bounded storage model, it is assumed that an



adversary is computationally unbounded, but is bounded by the
amount of storage available to store the output of computation.
The authors also proved information-theoretic security in this
model. However, the storage bounded model does require a
shared secret key by both parties, which may be the reason
why the storage bounded model is not as successful as the
public key model in real world applications.

In this paper, the asymptotic secrecy model is introduced to
address both issues of the secret key sharing and computational
infeasibility. Applications of the model are also demonstrated
in sensor networks, where sensor nodes are usually storage
bounded.

II. THE ASYMPTOTIC SECRECY MODEL

In this model, the following assumptions are made.

1) The channel between Party A and B is noiseless and
a passive adversary can capture all data exchanged
between A and B.

2) The adversary is storage space bounded. That is, the
storage space of the adversary is less than the total
storage spaces available to Party A and B.

Many information based security theories assume a noise
channel between two parties, which implies that an adversary
is not able to obtain the exact the same information as the
parties involved. With this assumption, researchers are able
to prove that the information-theoretic security is able to be
achieved with privacy amplification. See [7], [8] and [9]. In
many real world applications, especially today’s data networks,
noiseless channels are required. It may be the reason why
it is hard to find real world applications for information-
theoretic based security theories. In the Asymptotic Secrecy
model, however, the second assumption limits an adversary’s
capability of knowing all communications between A and B.
Hence, the Asymptotic secrecy model can be regarded as a
special case of information theoretic cryptography.

The protocol of the asymptotic secrecy model can be
described in three phases.

A. Phase I: Initialization

Party A and Party B exchange unencrypted random texts.
Both parties save only the received random texts. They ex-
change enough random texts so as to consume all of their
storage spaces. Since the adversary’s storage space is less than
the total storage spaces of both parties, the adversary is not
able to keep all random text exchanged between A and B.

Suppose R1, R2, R3, ..., Rp are p random bit streams ex-
changed between Party A and Party B. li = |Ri| denotes the
length of the bit stream i for i = 1, ..., p. Suppose again Ri is
transmitted from A to B, when i is odd; from B to A when i
is even. Thus the total number of bits transmitted between A
and B is

Bitstotal =
p∑

i=1

li. (1)

Total bits Party A received is

BitsA =
p∑

i=1,i|2
li, (2)

and total bits received by Party B is

BitsB =
p∑

i=1,i-2
li. (3)

It is easy to see that Bitstotal = BitsA + BitsB . Note that
when li is 0, it means that no bits are exchanged between
Party A and Party B.

The assumption that the adversary is storage space bounded,
then, can be formulated as

Bitstotal > M, (4)

where M is the size in bits of the maximum storage space
that the adversary possesses.

B. Phase II: Generating a shared secret

Both parties regenerate random bit streams, combine them
with saved bit streams, and use the combination as the shared
secret for both A and B to generate a key with a current
timestamp. Since the adversary is not able to save all the
random text exchanged in Phase I, it does not have the shared
secret. The timestamp is public. The current timestamp can be
synchronized with a message exchange. The timestamp is used
to prevent the adversary from obtaining pre-calculated keys
in order to save storage spaces. A reasonably good pseudo
random number generator should be used with given seeds so
that A and B can regenerate identical random bits. It should
not be reversible, i.e., it should not be possible to reconstruct
the pseudo random numbers, seeds, or algorithm from some
amount of random bits.

With this the shared knowledge, an encryption key can be
generated in the following manner.

Suppose f : {0, 1}n −→ {0, 1}m with m < n is a
one-way hash function which is known to both parties and
the adversary. Then a secret key k can be generated by the
following equations.

k = fp(Rp) (5)

where
fi(Ri) = f(Ri ‖ fi−1(Ri−1)) (6)

for i = 1, ..., p; R0 should be the current timestamp; and
f0 is the identity function. The symbol ‖ stands for the
concatenation of the two bit streams.

C. Phase III: Updating keys

Suppose m1,m2, ..., mt are t messages needed to be ex-
changed between Party A and B. Then, the cipher text should
be generated by

ci = E(mi, fi(mi−1)) (7)



for i = 1, ..., t and m0 = k, where k is the key generated
in Eq. 5. Then, decryption is performed by the following
equation.

mi = D(ci, fi(mi−1))
= D(E(mi, fi(mi−1)), fi(mi−1)) (8)

for i = 1, ..., t.

III. ANALYSIS OF THE PROTOCOL

The basic assumption of the protocol is that the adversary
is storage space bounded. Its limit is less than the total storage
spaces of Party A and Party B. When the adversary collects
all data exchanged between A and B from the very beginning,
the adversary does not have enough storage space to save
all captured data, hence it does not have shared information
between A and B. For A and B, they simply need to store
all data received from the other party and they are able to
regenerate their own data transmitted to the other party. If the
adversary does not collect data from the very beginning, it does
not know the shared data. This protocol does not exclude the
old fashion security practice, i.e., exchanging a shared security
through a guaranteed channel, which, in fact, provides more
confidence in the privacy of the channel between Party A and
Party B.

One concern is that both Party A and B do not know the
storage space limit of the adversary, thus, Party A and B are not
certain of the security of their channel. There are many ways to
mitigate this risk. First, both parties should maximize the usage
of the opposite party’s storage space by transmitting random
bit streams as much as possible. Secondly, Party A and B
can exchange some apparently public meaningless information
to discourage the adversary from saving the exchanged data.
Third, party A and B should use the private channel only when
it is necessary. Thus, data exchanged on the open channel can
be used as common knowledge to generate secret keys, and
the adversary may not save data on the open channel.

On the other hand, the same concern can be raised for com-
putationally bounded assumptions. Adversaries are assumed to
be resource limited individuals and not big organizations or
governments.

The function f in the protocol is a one-way hash function.
It can be any hash function with reasonable strength. From
Eq. 5, we can see that the initial secret key is derived by
applying the hash function f iteratively in same way that an
iterative hash function is applied. Note that the function f
may be an iterative hash function itself. According to [10], an
iterative hash function is at least as secure as its underlying
compression function, i.e., no iterative hash function. Thus, the
initial key generated by Eq. 5 should be reasonably strong.

The worse case scenario is when the size of the storage
space of the adversary is just one bit less than the total storage
space of Party A and B. In this case, the adversary has all
common knowledge between Party A and Party B except one
bit in Rp. This requires that the hash function f should be
sensitive to at least one bit differences in inputs. That is, two
inputs with only one bit difference should yield very different

hash values. On the other hand, the adversary can guess the
missing bit, since it is just one bit. In general, the security of
the protocol relies on how many bits the adversary is unable
to save. The more bits the adversary misses, the smaller the
probability it will The following proposition demonstrate this
probability.

Proposition 1: Suppose the maximum total storage space
of the two parties A and B is N bits and the maximum storage
space of the adversary is M < N bits. Then the probability
that the adversary obtains the initial key k is

P (k) = 2(M−N). (9)
Proof: The adversary cannot store N−M bits transmitted

between A and B. Thus 2(M−N) is the probability that the
adversary guesses the missing bits correctly.

On the other hand, the protocol can be applied iteratively.
That is, at the second round of the protocol, instead of
transmitting plain random bit streams R1, R2, R3, ..., Rp, both
parties transmit encrypted random bit streams by Eq. 7.

Proposition 2 (Asymptotic Security): Suppose the maxi-
mum total storage space of the two parties A and B is N bits
and the maximum storage space of the adversary is M < N
bits. Then the probability that the adversary obtains the initial
key k is

P (k) = 2K(M−N). (10)

where K is the number of times the protocol is applied.
Proposition 2 indicates that even if A and B have just a few

extra bits than the adversary, they can still achieve asymp-
totic secrecy for the communication channel by applying the
protocol iteratively.

From Eq. 7, we can see that encryption keys are updated
whenever new data is received. Encryption keys are never
reused, thus minimizing the risk of key discovery attacks. This
leaves the adversary the only choice of brute-force attacks.
Since keys are hash values, dictionary attacks do not apply.
With a reasonable length of hash values, such as 256 bits
coupled with a strong encryption algorithm E, it will be
very difficult for the adversary to crack keys. A symmetric
encryption, E can also be selected as a strong algorithm
without compromise the performance.

IV. APPLICATIONS IN SENSOR NETWORKS

Security challenges for wireless sensor networks fall into the
following areas. First, sensor nodes in typical wireless sensor
networks are usually resource bounded. They have small
computational power, low memory capacity and low trans-
mission bandwidth. These limitations prevent certain popular
security models, such as PKI and encryption algorithms, from
being employed in sensor networks. Secondly, sensor networks
are often deployed in hostile environments. Sensor nodes
are subject to capture and tampering. Wireless transmissions
among sensor nodes can be easily overheard by adversaries.
Hence, resilience against node capture and eavesdropping are
requirements for wireless sensor networks.

Several security schemes have been proposed for wireless
sensor networks. Perrig et al proposed SPINS framework in



[11]. In SPNS, It is assumed that each node shares a secret
key with a base station in the SPINS framework. Two sensors
cannot establish a secret key directly. They need to use the base
station as a trusted third party to establish a shared secret key.
One advantage of this scheme is that each node only needs to
store one shared key with its base station. The disadvantage,
however, is that additional key exchange messages need to
be transmitted between base stations and nodes. This scheme
does not work in those sensor networks that do not have base
stations.

Eschenauer and Gligor [12] originated the random key
predistribution scheme based on random graph theory. Before
they are deployed, sensor nodes are preloaded with some
number of random keys from a large key pool. After de-
ployment, a common random key that two neighboring nodes
process, if it exists, is used as a shared secret key to encrypt
communications between the two nodes. A shared random key
is not guaranteed, but it is proven that as the number of total
nodes in the network n increases, each node needs to preload
(n−1)(ln(n)+ c)/n random keys from the key pool in order
to ensure the network connectivity with a probability Pc =
e−e−c

, where c is a constant. The advantage of this scheme
is that it does not require a key exchange protocol. There
are no additional messages exchanged. A disadvantage of this
scheme is that each node needs to store (n− 1)(ln(n)+ c)/n
number of random keys. Another disadvantage is that there is
no mechanism to update the keys.

In LEAP, proposed by Zhu et al [13], each node is preloaded
with a common master key. Once deployed, each node imme-
diately identifies its neighbors and generates shared keys for
all of its one-hop neighbors; then, the master key is erased
from memory. One advantage of LEAP is its resilience to
node capture. If one node is captured, only its neighboring
nodes are potentially vulnerable to attack. One disadvantage
of the LEAP, however, is that it does not have a key update
mechanism. It is usually a not good practice to use a fixed
encryption key for a long period of time. First, a single
encryption will provide a large amount of cipher text for
adversaries attempt to crack. Secondly, if the encryption key is
compromised, all previous transmitted data with the same key
is also compromised. In other words, the LEAP encryption
scheme does not provide so-called “perfect forward secrecy.”

Using the asymptotic secrecy model introduced previously,
we can solve the following two problems in sensor networks.

1) updating secret keys to achieve “perfect forward se-
crecy”

2) establishing secure communication channels for non-
neighboring nodes

V. AUTOMATIC KEY UPDATING SCHEME IN SENSOR
NETWORKS

To apply the asymptotic secrecy model to sensor networks,
modifications are required. First, the scheme adopts the same
initial master key distribution method as in LEAP. That
is, before deployment all nodes are loaded with a shared
secret master key. Once deployed, each node identifies its

neighboring nodes and exchange some random text using the
asymptotic secrecy model with the master key as the initial
encryption key. As soon as this is done, each node stores
a shared secret with each of its neighboring nodes, and the
master key is erased from memory. In fact, a time can be set
so that if a node cannot find a neighboring node with certain
time, the master key is erased automatically. Thus, after a
pre-set time, there is no node possessing the master key. This
property will mitigate the node capture problem of the sensor
networks.

The asymptotic secrecy model based key updating method
can be illustrated in Figure 2. The basic idea of the automatic
key updating is to XOR a hash value of previously transmitted
secret messages with the current key to generate the next
encryption key. More formally,

ki = ki−1 ⊗ hi(mi−1) (11)
hi(mi−1) = h(mi−1‖hi−1(mi−2)) (12)

where mi−1 is the secret message transmitted under key ki−1,
for i ∈ {1, 2, 3, ...}; and h is a one-way hash function; k0 is a
shared master key; m0 is random data generated during the key
agreement phase; ‖ denotes string concatenation; and m−1 and
h0 are defined as null string and function, respectively. When
Part A transmits a message to Part B, the first message from A
to B is the cipher text of a random text, m0, encrypted with the
shared master key, k0; the second message is the cipher text of
m1, encrypted with a new key that is the XOR of the previous
key with the hash value of m0; the third message is the cipher
text of m2 encrypted with another new key that is XOR of the
previous key with the hash value of the concatenated string of
m1 and the hash value of m0; and so on.

At the receiver side, the decryption process is symmetric.
Key updating is identical. Both sides share the same one-way
hash function and the secret key.

Note that in Figure 2, a stream cipher is used. The key auto-
updating scheme is not specific to any cipher type. However,
a stream cipher is preferred in sensor networks as reported by
Luo et al in [14].

An encryption algorithm paired with the proposed key auto-
updating scheme has the following characteristics:

• Each message is encrypted with a different key. Keys are
constantly updated with respect to messages.

• Encryption and decryption keys are self-synchronized,
assuming the receiver received all cipher text.

• It has the “perfect forward secrecy” property. That is, if
one key is compromised, messages encrypted under other
keys are still secure.

This encryption scheme has also some weaknesses:

• Some encryption algorithms need an initialization time
before encrypting message. The more key updates, the
more initialization time is spent, thus prolonging the
overall transmitting time.

• It is common in real world applications that some
messages may never reach the intended receiver. If the



Fig. 2. An Encryption Scheme with Self-updating Keys

receiver misses some messages, the encryption and de-
cryption keys are not synchronized.

To address the weakness of the key auto-updating scheme,
first we can configure how often a key is updated according
to the encryption algorithm employed. If the encryption algo-
rithm needs a longer time to initialize a new key, less frequent
updating should be specified. However, the hash value, which
is used to generate the key, still needs frequent updates. More
formally, we can use the following equations.

ki =

{
ki−1 ⊗ hi(mi−1), for i ≡ 0 mod T,

ki−1, otherwise.
(13)

where T is an integer that specifies how often to update the
key. When T = 1, the encryption key is updated after every
message; when T = 2, it is updated every other message, etc.
This can be set according to the encryption algorithm so that
best overall performance is reached.

To address the problem of message loss, the so-called
efficient ACK method can be implemented. After transmitting
T messages, the sender waits for an acknowledge message
from the receiver. The acknowledge message can be very
compact. It can be as little as T bits with bit 1 indicating a
received message and bit 0 indicating a missed message. When
the sender receives the ACK, it uses only those messages
acknowledged to update the encryption key. Note that this
ACK message is also encrypted with the current encryption
key.

VI. SHARED SECRET ESTABLISHMENT FOR NON
NEIGHBORING NODES

A. multi-path approach

In [15], Chan, Perrig and Song introduced a multi-path key
reinforcement scheme to mitigate the compromised node prob-
lem. First, two nodes,Party A and Party B, identity a common
key, k, from the predistributed key pool. This method assumes
that all disjoint paths between the two nodes are known. Part
A generates n random text messages, v1, v2, · · · , vn and sends
them via n different paths to Party B. Then a new key can be
generated by k′ = k ⊗ v1 ⊗ v2 ⊗ · · · ⊗ vn. The secrecy of
the new key is protected by all n random text messages, since

the adversary has difficulty eavesdropping on all n paths. As
pointed by the authors, the more paths used, the more security
the new key provides for the channel between Parties A and
B.

The multi-path approach by Chan, Perrig and Song is used
as a reinforcement to the secrecy of a link between Parties A
and B. It is assumed that Party A and Party B already share
a key from the predistribution key pool. In the Asymptotic
Secrecy model, however, there is no shared key between
Parties A and B. The initial shared master key should have
been erased from memory a short time after the deployment.
Also note that it may not be easy to find multiple disjoint
paths between the two nodes.

B. single path approach

Suppose a path between non-neighboring nodes A and B is
known. The protocol of the asymptotic secrecy can be used
to establish a shared secret between A and B. At the initial
stage of the protocol, both A and B transmit random text to
each other and exhaust storage spaces of both nodes. Since
all nodes should have more or less the same storage space in
the same sensor network, the total amount of random text is
about twice the storage space of any compromised nodes on
the path. Thus, compromised nodes are not able to store all
random text. Moreover, hop to hop transmissions on the path
are all encrypted with shared secrets of neighboring nodes.
Nodes that are not on the path should not be able to understand
the traffic on the path. When A and B send encrypted data,
even nodes on the path between A and B do not understand
the traffic passing between them.

VII. CONCLUSIONS

The proposed asymptotic secrecy model is based on the
assumption that an adversary is storage bounded. It is founded
on the idea of privacy amplification in information-theoretic
security. The protocol of the model is introduced and applied
to solve two problems in sensor networks. One is the “perfect
forward secrecy” problem; the other is the problem of the
shared secret establishment between non neighboring nodes.
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