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Introduction 
 
Dispersion or pulse spreading is a basic topic in an undergraduate engineering technology course 
in fiber optic communication systems. Students need to understand what causes dispersion and to 
be able to calculate pulse spread and determine how it limits the length and data rate of a 
communications system. Chromatic dispersion, which results from the wavelength dependency 
of the velocity of light in an optical fiber, is the primary source of pulse spread in modern 
communications systems. The standard formula for calculating pulse spread due to chromatic 
dispersion can be derived using basic calculus and the derivation is comprehensible by most 
engineering technology students. However, although this formula is quite useful, it does not 
quantify all of the effects of chromatic dispersion on optical pulses. To get the total picture, one 
can always solve the pulse propagation equation, but this kind of rigorous analysis is more suited 
for engineering graduate students. A reasonable compromise between these two extremes is to 
model an optical fiber as a linear system and many texts do so using a Gaussian impulse 
response and pointing to references to justify the choice of Gaussian. 
 
A typical open foot race, which often has 1000 or more participants, provides a model of the 
dispersion process. At the start the runners are tightly packed and it takes only a few minutes for 
all of the runners to cross the start line. By the finish, however, the runners are widely dispersed 
and the gap between the winner and the last runner can be an hour or more for a long race. 
Moreover, a plot of finishing time versus place for such a race resembles a Gaussian cumulative 
distribution function. This foot race analogy can be used to model chromatic dispersion in terms 
of the fiber impulse response. In the “photon marathon”, the runners are photons with 
wavelength-dependent paces. The photon marathon has a perfect start – N photons are launched 
into the fiber simultaneously, corresponding to an optical power impulse. The “race results” 
define the impulse response of the fiber. The model and the associated mathematics are well 
within the capability of third and fourth year engineering technology students. 
 
This paper is organized as follows: 
 

• Overview of chromatic dispersion 
• Customary approaches to modeling chromatic dispersion 

o First-order pulse spread formula 
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o Pulse propagation equation 
o Linear system model 

• The photon marathon model 
• Summary and conclusions 

 
Chromatic Dispersion in Optical Fiber 
 
When an optical pulse is launched into an optical fiber, different components of the pulse arrive 
at the far end at different points in time. This phenomenon is known as dispersion and results in a 
pulse at the far end that has a longer pulse period and lower amplitude than the launched pulse. 
Dispersion is the result of one or more of the following: 
 

• Modal dispersion – this occurs when the pulse propagates through the fiber in more than 
one transmission mode. Modal dispersion does not occur in single-mode fiber at 
wavelengths above the cut-off wavelength. 

• Chromatic dispersion – this occurs because the group velocity, which is the pulse 
propagation velocity, is wavelength-dependent. Any real optical pulse includes a range of 
wavelengths and components at different wavelengths propagate at different velocities. 

• Polarization-mode dispersion – this occurs because the pulse propagation velocity is 
polarization-dependent. Polarization-mode dispersion is usually significantly less than 
chromatic or modal dispersion. 

 
This paper focuses on chromatic dispersion, which is the most common type of dispersion 
encountered in optical fiber telecommunication. 
 
Figure 1 shows the wavelength dependence of the group delay (the inverse of the group velocity) 
for a typical standard single-mode fiber. Although the variation in group delay is small, the 
cumulative effect of this variation over 100 km of fiber can be significant. Note that the group 
delay has a minimum at a wavelength just above 1300 nm. This wavelength is called the zero-
dispersion wavelength. 
 
An optical pulse has a finite spectral width, i.e., has its power spread over a range of 
wavelengths, for one or more of the following reasons: 
 

• Optical source spectral width – this is typically 50 – 100 nm or more for a light-emitting 
diode (LED) and 2 – 5 nm for a multi-mode laser diode. Single-mode laser diodes (e.g., 
distributed feedback (DFB) laser diodes) have spectral width much less than 1 nm. 

• Chirp – this is a transient variation in the source wavelength that occurs when the source 
is directly-modulated (i.e., turned on and off rapidly). A directly-modulated single-mode 
laser has a spectral width on the order of 0.1 nm. 

• Modulation – even if the source has a very narrow spectral width (e.g., DFB laser diode) 
and is indirectly modulated to reduce chirp significantly, the optical pulse will still have 
some spectral width because of the sidebands that are a consequence of modulation. 



 
Thus an optical pulse has components at different wavelengths and these components require 
different amounts of time to propagate through a length of fiber. The pulse spreads, i.e., its 
period increases and its peak amplitude decreases, as it propagates. The spreading is small 
(theoretically zero) at the zero-dispersion wavelength and increases away from this wavelength 
(in either direction). 
 
Pulse spreading eventually leads to inter-symbol interference (ISI), which happens when the 
pulses overlap significantly. Pulse spread also results in a power penalty due to the fact that not 
all of the pulse energy is received during a bit period. Both ISI and the power penalty contribute 
to an increase in the bit error rate (BER), which is a key measure of the performance of a 
telecommunication system. 
 

Figure 1 
 

Variation of Group Delay With Wavelength 
 

 
 
Ideally, one would like to know exactly how dispersion affects the size and shape of an optical 
pulse. The goal of this paper, however, is to provide and reasonably justify a way to determine 
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the effects of dispersion that can be explained to undergraduate engineering technology students. 
Most texts use one or more of the following approaches: 
 

• First-order pulse spread formula 
• Pulse propagation equation 
• Linear system model 

 
I will discuss all of these approaches briefly in the sections that follow and note some advantages 
and disadvantages. I will focus in particular on the trade-off between the level of detail provided 
by each approach and ability of engineering technology students to comprehend it. I will then 
introduce an analogy: a marathon footrace, which exhibits dispersion very dramatically. Finally, 
I will exploit this analogy to develop a straightforward linear system model for optical fiber. 
Although using a linear system to model optical fiber is not a new idea, the “photon marathon” 
approach appears to be unique. 
 
Modeling Chromatic Dispersion in Optical Fiber 
 
First-Order Pulse Spread Formula 
 
The simplest way to characterize dispersion is in terms of the pulse spread ΔT, the increase in the 
pulse width due to dispersion. The pulse spread formula can be derived quite simply [1, 2]. 
 
Consider a fiber of length L (typically in km) and a wavelength-dependent group delay of τg(λ) 
(ps/km). The time T (ps) required for a pulse with wavelength λ to propagate through the fiber is 
 

)(λτ gLT =  
 
If the spectral width of the pulse is Δλ, then the pulse spread is corresponding value of ΔT, which 
is given to first order by 
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The parameter D(λ), normally stated in ps/nm-km, is listed on the specification sheet for optical 
fibers used in telecommunication. The spectral width Δλ, normally stated in nm, is listed on the 
specification sheet for optical transmitters. Thus, given the fiber length and specifications for the 
fiber and the transmitter, one can use this formula to calculate the pulse spread. 
 
This pulse spread formula is easy to derive and apply and is well within the grasp of engineering 
technology students. The formula is useful in practice since fiber optic systems are normally 
designed such that the pulse spread is no greater than some fraction (typically 0.25 – 0.5) of a bit 
period. 
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The disadvantage of the formula is that it provides only a one-dimensional view of the effect of 
dispersion on an optical pulse. How does dispersion affect pulse amplitude? Pulse shape? A 
more rigorous approach is needed to answer these questions. 
 
Pulse Propagation Equation 
 
The pulse propagation equation is based on the theory of propagation of electromagnetic waves 
through a guided medium, such as an optical fiber. The optical pulse is modeled as a modulated 
sinusoid propagating along the axis of the fiber. A lengthy derivation yields the following 
equation describing the propagation of an optical pulse through a fiber [2]: 
 

0
62 3

3
3

2

2
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Where A(z,t) is the pulse envelop, βn are terms in the Taylor expansion of the wave propagation 
constant and 1−=j . The beauty of this approach is that given the input pulse A(0,t), one can 
solve for A(z,t) and therefore have complete information about the size and shape of the pulse as 
it travels along the fiber. The beast is the mathematics involved. This approach is, in my view, 
inappropriate for undergraduate engineering technology students. 
 
Optical Fiber Transfer Function 
 
Linear system theory provides a compromise approach for describing the effect of dispersion on 
an optical pulse. According to the linear model, the output pulse po(t) at the far end of the fiber is 
related to the input pulse pi(t) launched into the fiber by 
 

∫
∞

∞−
−= duuputhtp io )()()(  

 
or in the frequency domain 
 

)()()( ωωω io PHP =   
 
where h(t) and H(ω) are the impulse response and transfer function, respectively, of the optical 
fiber. According to [2], this model is approximately valid when the source spectrum is much 
larger than the signal spectrum. Moreover, again according to [2], the transfer function is 
approximately Gaussian if the operating wavelength is far away from the zero-dispersion 
wavelength of the fiber. 
 
Like the pulse propagation equation approach, the linear system approach provides a means to 
determine the complete pulse shape, not just the pulse width. In addition, the linear system model 
is easy to apply, especially if both the input pulse and the transfer function are Gaussian – in this 
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case the output pulse is also Gaussian. But the mathematical justification for this model, which is 
based on a special case of the pulse propagation model, is still a bit much for engineering 
technology students. 
 
The Marathon Approach 
 
Anyone who has run in (or even observed) a heavily-subscribed long-distance foot race has 
observed that the burst of runners leaving the starting area in a dense pack disperses significantly 
by the end of the race, especially in a full marathon. However, only those who also teach fiber 
optic telecommunication may have drawn an analogy between this phenomenon and chromatic 
dispersion in optical fiber! And these days marathon organizers often post results on the web, 
making it easy to study this analogy in more detail. 
 
For example, the results of the 2004 Toronto Marathon are posted on the web [3] in a form that 
can be easily downloaded for analysis. The results data include, for each runner* who completed 
the race 
 

• Place 
• Official (“gun”) time – finish time relative to start of race 
• Elapsed (“chip”) time – finish time relative to individual start time 
• Other data (name, category, etc.) 

 
The “chip” time is measured from the time each runner crosses the start line, as recorded using 
an electronic device tied to the runners’ shoes. The difference between the “gun” time and the 
“chip” time is the time required to reach the start line. 

 

 
* Including the author! 



Figure 2 

Toronto Marathon Start Intensity
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Figure 3 

Toronto Marathon Finish Intensity
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Figures 2 and 3 show the start and finish time distributions for the marathon. The “start pulse” is 
roughly rectangular with a pulse width of about 2 minutes. The “finish pulse” is roughly 
Gaussian with a pulse width (based on standard deviation) of about 2 hours. Also, the peak 
intensity of the finish pulse (20 runners/minute) is significantly smaller than that of the start 
pulse (1000 runners/minute). Clearly there was significant dispersion in the Toronto Marathon! 
 
Now consider a photon marathon. A large number of photons line up at one end of a fiber. This 
group of photons has a total energy E depending on the number of photons and their 
wavelengths. At a certain moment, the photons are launched simultaneously into the fiber and 
race toward the far end. In terms of optical energy entering the fiber, the simultaneous launch of 
the photons is a step function. In terms of optical power, it is an impulse. Thus the pulse 
observed at the finish line will be identical to the impulse response of the fiber. 
 
Let e(λ) be the energy spectrum of the optical pulse so that the total energy in the pulse is given 
by 
 

∫
∞

∞−
= λλ deE )(  
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Normally, e(λ) is a narrow function centered around the nominal operating wavelength λc. If the 
“pace” of a photon is equal to the group delay (defined earlier), then the propagation time t (i.e., 
the “finish” time) for a photon with wavelength λ is 
 

)(λτ gLt =  
 
An increment of energy ttpE Δ=Δ )(  arriving at the far end of the fiber corresponds to the 
increment of energy λλ Δ= )(eΔE  launched at the input where t and λ are related by the above 
equation (p(t) is the output pulse in terms of power). The energy increment can be viewed as a 
pack of photons running at the same pace. Equating the two expressions for the energy increment 
and taking the limit yields 
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This equation is further simplified using a linear approximation for the propagation time, i.e., 
 

))(( ccc LDtt λλλ −+≈  
 
where )( cgc Lt λτ= . Applying the linear relationship between t and λ yields the following 
expression for the output pulse 
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where t’ = t – tc is the time shifted by the nominal propagation time and e’(x) is e(x) centered 
about the nominal wavelength . This result states that the output pulse has the same mathematical 
form as the energy spectrum of the input pulse. Recall that since the input pulse is an impulse, 
then p(t) (dropping the prime) is the fiber impulse response h(t). 
 
Thus the photon marathon approach leads to a relatively straightforward formulation of the fiber 
impulse response. The fiber impulse response can be used to determine the impact of the fiber on 
any input pulse. 
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Summary and Conclusions 
 
I developed a course in fiber optic telecommunication technology when I came to RIT in the fall 
of 2000 and have taught it at least once per year since then. When it came to chromatic 
dispersion, I initially covered only the first-order pulse spread model. I was troubled, however, 
by the limitations of this model. Realizing that most students who take this upper-level 
undergraduate course have taken a course in linear system theory, I added the linear system 
model to the course material. Unfortunately, I was not able to offer much justification for any 
particular impulse response function – I simply followed the custom of assuming a Gaussian 
function. 
 
The photon marathon, which occurred to me while I was training for the Toronto Marathon, 
turns out to provide a reasonable way to characterize the impulse response of an optical fiber. 
What it may lack in mathematical rigor is compensated by entertainment value, judging by the 
reaction of my students. The first-order pulse spread formula is still the best starting point for a 
discussion of chromatic dispersion and it is a useful tool in practice. Addition of the photon 
marathon takes the students a step further in understanding the technology and provides them 
with a more powerful tool. 
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