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INTEGRATING SEVERAL VARIANCE ESTIMATORS

Danald S. Holmes, Stochos Inc. 14 N, College Street, Schenectady, N.Y. 12305,
(518} 372-53426, dsholmesi@stochos.com
A, Erhan Mergen, Rochester Institute of Technology, College of Business
Decision Sciences, 107 Lomb Memorial Drive, Rochester, N.Y. [4623-3608.
(385) 475-6143, emergenigcob.ritedu

ABSTRACT

[t is crucial to wnderstand the proper variance estimator in statistical process control (SPC)
when vou are trying to answer the questions on the process behavior both in the short term
and the long term. In this paper we will discuss various variance estimators including their
calculation using range and/or range squares, their potential use in SPC, their similarities and
differences.

Keywords: Statistical process control, mean square successive differemce, range,
capability variance, performance variance,

DISCUSSION

Range is a measure of process width which is lairly simple to caleulate; the process width is
the distance between the largest and the smallest values. Let's expand the width concept by
looking at the distances between every possible pair of values, ie. X's (e.g., Xi — X3). You
can see, of course; that the absolute value of every possible pair is just every possible range
that can be formed for the given data set.  Averaging every possible width should provide
better insight into the process width than just using one range (after all, we don’t use a single
X 1o estimate the process center!).

Suppose we take the following easy set of X's to demonstrate this approach:
1.2,3,4,.5, e, n=5.

Process
Average (X ) = 3.0 center
Range (R) = 4.4) width
Sid, dev. (s} = 1.58
H¥s = width = 9.48 which is differant than 4.0,
Variance () = 2.5

Note that the width measure that uses only two X's is 4.0 whereas the one that uses all X's is
948, That is a major disparity which may, as vou say, be helped some by converting R to an
estimate of standard deviation by dividing a correction factor ds (see any book on SPC, for
example, one by Montgomery (5, pp.210-211]) and then multiplying by 6 to get the
estimated width. Estimated process width would then be:
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This is considerably different than the value of 9.48.
Next let's take a look at the ranges ol every possible pair of all X's rather than just one.

Table 1. Ranges

X 1 2 3 4 5
1 0 1 2 3 4
2 1 0 1 2 3
3 2 I 0 I p
4 3 2 | 0 1
5 4 3 2 1 0

The zeroes on the main diagonal [urnish no information and can be ignored —~ we know that
the range of a variable with itself 18 zero. Thus there are (5x5) — 5 (in general

- n or n(r-1)) many ranges to consider. The average range is then the sum of all off
diagonal elements divided by n(n-1), which in this case 40/20 = 2. Now this value adjusted to
7

1.128
say, using all of the ranges (not just one) we can gél an estimate of process width without
calculating the average of the X s at all.

b
estimate width is [ Jﬁ =10.6 - which is much closer to the 6s width of 948, That s to

We can actually estimate the variance (5°) without using the average value, This can be done
by taking the ranges of possible pairs of data in the sampk, squaring the ranges, averaging
the squared ranges and then dividing the average squared range by 2 to get the variance.
Let’s use the above data set 1o demonstrate this.

As you see, this estimate of variance is identical to the one that we obtained using the
average. It is relatively easy to prove that this is generally true — that is, not just peculiar to

this data set.

Table 2. Squared Ranges

X 2 3 4 5
I 0 | 4 9 6
2 | 0 | 4 9
3 4 | 0 | 4
o 9 B | ¥ |
5 16 9 4 1 0

_41
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Eliminating the zero ranges on the main diagonal was based on the fact that these are
incscapable facts which provide no information about the average width., Thus one is
averaging (n){n)-n values (or n{r=1}). The information argument, extended, would be that the
matrix of R above is symmetrical and the top half provides no more information than the
bottom half. So, the average of the R* values obtained by dividing by n(r-1) is to be
multiplied by % (i.e., divided by 2) to get the variance estimator.

Another way to show that this “divide by 2" is a valid approach is to calculate R for any pair
and show that it is simply the R divided by two. Let's use first and the last observation from
the above set, e, X and Xs and n=2.

Let Ris = [(X, = X, )|and Rs; = |(X, =X ,)|. The sample variance then would be
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So each of the sample size two R's are divided by two to get a variance and then they are
averaged. What has been shown is that the variance measure of process width is just the
average of a bunch of squared ranges (R%) divided by two. One may ask the importance of
this. Answering that question brings us to the next issue: Dynamic (order dependent) vs.
static (order independent) variances (and thus standard deviations).

The usual definition for variance (i.c., average of squared distances between each X and the
average of the Xs) is time independent. That is to say, the variance of the data set 1. 2, 3. 4.
5 is the same for the data set 1, 4, 3. 3, 2 which is the same for the data set 3, 5. 2. 4. |, ete,
from the average, Referring to the range squared matrix above, it is calculated using all of
the entries other than those on the main diagonal. The value of this variance is 2.3,



The next definition of variance is one which utilizes the first diagonal below the main
diagonal. It is called the Mean Square Successive Difference (MSSD) estimator for the
variance (see, for example, Neumann, et al. [6], Hald [1, pp.357-360], Holmes and Mergen

[3]. Since it is the result of just one specific diagonal, rather than all the values, the result
depends upon the order of the data.
Examples
Remember that the regular vanance for the data set above 1s 2.5 (as shown above).
X's: 1,2,3.4,5
Case |:
X's in order of occurrence: 2.3 4.5
Character of “time series”™:  Pure linear trend
Squared ranges: Lok T ]
IR* 4
Variance estimate (MSSD): 11_2_ 1 =% =(.5 (8)

Note that this is the first diagonal below the main diagonal in the Range squared matrix

above.
Case 2:
X'sinorder of occurrence:  1,3.4, 2.5
Character of “time series”™;  Nearly random
Squared ranges: 4.1, 4. 9
IR* 18
Variance estimate (MSSD); D ;] = % =024 (9)
Case 3:
X’s in order of occurrence: 1,5,4,2,3
Character of “time series™  Nearly random
Squared ranges: 16, 1,4, 1
PR® 2%
Variance estimate (MSSD): - ; Lo % =2.75 (10)
Case 4
X'sinorder of cccurrence: 1,35.2.4.3
Character of “‘time series™  Highly eyclical
Squared ranges: 16,9, 4,1
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Variance estimate (MSSD): = L= .i:_ =315 (1)

Use of These Variances

As you can see from these examples, if the data series is nearly random, the MSSD variance
estimate is approximately the same as the regular variance. In the SPC sense, if the process
is “'in control™ (i.e., random). the two estimates are similar. On the other hand, if there is a
stooth trend in the data, the MSSD estimator is smaller than the regular estimator, That is to
say, if the process is subject o unexpected trénds (not “in control™), the MSSD variance
provides an estimate of the potential reduction in process variance which can be achieved if
the process were brought “into control™ In a generic sense; this variance is an estimate of
the “capability” variance of the process. In contrast, the regular variance provides an
estimate of the “performance™ variance of a process (see, for example. Holmes and Mergen
[3]). i.e., current total variance in the process.  Should the MSSD variance indicate that there
are cyeles in the data; the data must be segregated prior to looking for the capability measure
of variance.

The MSSI} variance estimate can be used, for example, to determine the potential capability
of a process which is not in statistical control (i.e., not stable) should the norrandom causes
be removed (Holmes and Mergen [4]). This potential capability estimate of the process can
then be compared to the current capability estimate (i.e.. current performance of the process),
which uses the regular variance estimate. The proper actions can then be taken to improve
the process capability.

Another use of MSSD variance estimate would be in testing the rationality of the subgroups
formed in control charts. A comparison of the MSSD wvariance estimator with the regular
variance estimator in each subgroup can be tested for significant difference (Holmes and
Mergen [2]).

= o & . R . % . i
[he dandard deviation estimator, such as;d—. 5 sorl o at unconventional estimator in the

)

sense it does not take the squared differences; that's why the average R value should be

divided by a bias reduction factor, d:. Another estimate which is similar to this is— . This

ud
standard deviation estimate sumis the sample standard deviations, averages it and then divides
the average by a bias reduction factor, . to estimate the process standard deviation. This
has to be done because this estimate is not based on the sum of the sample variances, but
rather on the sum of the sample standard deviations

CONCLUSION

In this paper we introduced several variance estimators that can be used in SPC. It is
important that the proper variance estimator is chosen to deal with the question at hand.
Failure to do this may lead to an erroneous conclusion about the process variability.
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