Rochester Institute of Technology

RIT Digital Institutional Repository
Articles Faculty & Staff Scholarship

2004

Lean object-oriented software development

Jack Cook

Victoria Semouchtchak

Follow this and additional works at: https://repository.rit.edu/article

Recommended Citation

Cook, Jack and Semouchtchak, Victoria, "Lean object-oriented software development" (2004). Accessed
from

https://repository.rit.edu/article/550

This Article is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/article
https://repository.rit.edu/facstaff
https://repository.rit.edu/article?utm_source=repository.rit.edu%2Farticle%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/article/550?utm_source=repository.rit.edu%2Farticle%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Lean Object-Oriented Software Development

Jack Cook, Rachester Institute of Technology

Victoria Semouchtchak, Rochester Institute of Technology

T
L
1

]
1=

f—ﬁ
ot

-

Software failures can be dramatic, expensive,
and catastrophic. The London Stock Exchange
was developed eleven years late and 13,200%
over budget (Corr 2002). A catastrophic software
failure in February 1998 interrupted the New
York Mercantile Exchange and phone service in
several East Coast cities (NIST 2002). All indus-
tries need software development process im-
provement. Of 800 business technology
managers responding to an InformationWeek
survey, 97% reported problems with software
bugs in the past year and nine out of 10 reported
higher costs, lost revenue, or both as a result
{(Hayes 2002, p. 40). A study commissioned by
the Department of Commerce’s National Insti-
tute of Standards and Technology (NIST) esti-
mated that software bugs cost the U.S, economy
$59.5 billion annually, or approximately 0.6% of
the gross domestic product (NIST 2002). Orga-
nizations are so dependent on software for
virtually every aspect of business that any failure
carries the threat of imeparable harm, especially
for systems that operate around the clock (Hayes
2002). Development, production, distribution
and after-sales support of products and services
all depend on software.

Software systems should satisfy customer
requirements at the agreed cost within the estab-
lished timeframe. However, it is very difficult 1o
estimate the cost and time needed to develop
new and increasingly complex software applica-
tions. Hence, poorly understood projects are
consistently late and over budget. The Standish
Group (Corr 2002) found that 31% of all soft-
ware development projects are cancelled due to
defects. The average cost for “failed” projects is
189% of the onginal estimate, almost double
whal was budgeted. Average time for software
development projects is even more than double
the original estimate. Finally, an average project
delivers only 61% of the specified functions and

requirements. Only 16% of software develop-
ment projects are successful. Process throughput
times and the guality of finished goods would be
unacceptable if manufactuning performed this
poorly.

Software sales in the U.S. exceed $180 billion
annually, supported by approximately 1.3 mil-
lion software engineers and computer program-
mers (NIST 2002). Due to the difficulties of
monitoring progress, defining the problem as
well as altemnative solutions, the degree of preci-
sion required, and the rapid pace of technologi-
cal advances, many software developers have
accepted that projects will be late and over
budget. But software is more than code, It has a
life cycle similar to manufactured products.
Maintenance costs for software often exceed
60% of the total cost. Imagine the nightmare if
cars were not designed to be maintained over the
life of the product. Software is no different.

The high demand for software, shonage of
skilled developers, limited financial resources,
and the need for quality systems, requires the
software development process be re-examned.
Current economic conditions and increased
competition make the case for change. Increased
IT outsourcing will force developers to recon-
sider how they create systems. Better tools and
management techniques can help if they reduce
complexity and support the software project
throughout its entire life cycle. Applying lean
manufacturing techniques 1o software develop-
ment is one alternative. The transformation of
object-onientad software development (OOSD)
from traditional to lean using techniques and
examples from lean manufacturing is innovative
and challenging.

00SD clearly has parallels to manufacturing,
and these similarities facilitate the application of
lean techniques. Lean thinking is not a quick fix
for software quality, The journey is long and

difficult and may not suit every company. This
paper explains major lean techniques and their
successful application to software development.
It is aimed at decision-makers who initiate
software development projects, the users as-
signed to assist developers, and the project
leaders charged with the task of developing
systems. The introductory sections discuss basic

lean techniques, their benefits, and requirements.

Subsequently, the need for lean thinking in the
current software development environment is
established. Finally, preliminary steps and rec-
ommendations for implementing lean proce-
dures in application development are provided.

Lean Manufacturing techniques
The four principle concepts of lean are eliminate

waste, standardize work, produce zero defects,
and institute one-piece flow (Piszczalski 2000).
The APICS online dictionary (apics.org) defines
“lean™ as a
philosophy of production that emphasizes
the minimization of the amount of all the
resources (including time) used in the
various activities of the enterprise. It in-
volves identifying and eliminating non-
value-adding activities in design,
production, supply chain management, and
dealing with the customers. Lean producers
employ teams of multi-skilled workers at all
levels of the arganization and use highly
flexibie. increasingly automated machines
1o produce volumes of products in poten-
tially enormous variety. It contains a set of

Figure 1. Lean Manufacturing Principles

Employee LEAN
empowerment MANUFACTURING
Single piece
Statistical flow and pull
quality control production
e control
ifunctional

principles and practicey to reduce cost

through the relentless removal of waste and

throwgh the simplification of all manufac-

turing and support processes.

Ultimately, lean improves productivity, qual-
ity, and tlexibility

Lean requires strong support from all organi-
zational levels. It requires changing the
company’s vision and scope as well as its man-
agement style. Management often resists change,
insisting that benefits, potential savings, and
guality improvements are clear. Employees, on
the other hand, are frequently more concerned
with the ease of implementation and operation of
new processes and equipment than with overall
company savings. Emplovees need to be in-
cluded in the ransformation and decision-
making processes, resulting in “ownership” and
an increased sense of vitality, necessity, and
importance in the organization. Employee
involvement empowers, enables, and encourages
continuous feedback, cooperation, and sugges-
tions, Eliminating waste (muda) necessitates
employee invelvement. Muda is everywhere —
in the unnecessary complexity of a product, the
labor used in production, the space taken up by
the materials and the output, the defects, the raw
materials, the inventory on hand caused by
overpreduction, the distance traveled by a prod-
uct from materials to the final output, the time,
and the skills.

® Benefits

Lean manufacturing encourages agility and
responsiveness to customer demand, leading to
greater profitability in a world where customer
requirements are demanding and ever-changing,
Ultimately, production costs are reduced by
eliminating waste, decreasing defects, standard-
ization, reduction of process variations, produc-
tion control with a lot size that lowers
overproduction, and lastly, continuous improve-
ment to exceed customer expectations. In sum-
mary, lean practices are a set of valuable
strategies and tools to advance current manufac-
turing processes and achieve maximum produc-
tivity with increased customer satisfaction,

* Requirements

Implementing lean successfully requires a clear
understanding of lean principles (see Figure 1)
and a methodical, step-by-step approach. Em-
ployees must be educated about the major lean
theories and principles as well as trained to

perform ad hoc problem selving, identify pro-
cess waste and defects, and collaborate in mulii-
functional teams. An organization must
implement statistical process control. Measure-
ments recorded at strategically located points in
production identify irregularities that require
immediate attention. Moreover, employees must
track their own performance and be informed
concerning the company's progress in meeting
its lean goals. Commitment of a substantial
amount of time and money is required. There-
fore, management needs to be aware that the
transformation is not going to be immediate and
cost beneficial right away. Most important,
improperly implemented lean initiatives are
expensive and involve complicated corrective
action,

Drawing the Parallels

* Current Software Development Environment
Industry-Wide standards and company-

spectfic uniform coding conventions. Commit-
ment to standardizing the software development
process is required. Only 245 of organizations
implementing the Capability Maturity Model
have reached level 3, and only about 6% have
achieved level 5 (Hayes 2002). Third-party class
libraries increase productivity and software
quality by allowing developers to focus on
unique aspects of an application, essentially
ignoring standard infrastructure issues. Although
third-party component markets exist (e.g.,
componentsource,com), issues that must be
resolved before developers broaden their use
include (1) certifying components and possibly
their developers. (2) creating appropriate con-
trols to prevent reverse engineering and subse-
quent réengineenng, (3) instituting numerous
pricing policies (e.g., outright purchase, pay-per-
use, and time-expired use}), and (4) devising
suitable licensing agreements that document
“appropriate” usage and developer liability in
case of defective components among other
things (Vitharana 2003). Defects would include
hacker-prone, cormupt, or virus-infected compo-
nents (Vitharana 2003).

Unnecessary, single-use or unused code. Cur-
rently, many systems contain poorly documented
and inefficient code. Programmers, pressured by
deadlines, tend not to produce reusable code
since such code takes more time to initially
develop. The absence of suitable incentives to

promote reuse of existing objects is also a com-
mon roadblock. Since reusability is a major way
to cut costs and shorten product development
time in the long run, management must establish
such incentives.

Information encapsulation. OOSD incorporates
the concept of information encapsulation, an
important step from structured programming.
Information encapsulation hides the nuts and
bolts of an object from the user. The user utilizes
an object’s interface (e.g.. a button. checkbox, or
menu) as a means 10 an end without necessarily
understanding its intemal methods. Coded,
functioning objects are unavailable to the user to
edit.

* Manufacturing and OOSD parallels
Manufacturing parallels OOSD in many ways
not exploited thus far. Although other software
development methodologies exist, Q08D is
increasingly used by many companies today. It
allows programmers to work with higher levels
of abstraction, making objects more reusable.
QOSD encourages developers to create ohjects
that collaborate to produce software that better
models ‘problem domains’ than systems created
with traditional methods. Think of objects as
standardized parts in a manufacturing environ-
ment. Objects encapsulate their data and func-
tionality to model real-world entities. Once fully
tested, many software systems can incorporate
an object. Object-oriented systems leverage the
costs of developing objects through reuse and
are easier to adapt and mamtain. Object-ori-
ented systems created from pre-tested objects
take less time to develop. QOSD integrates and
intertwines stages of software development more
than traditional methodologies. For example,
design can begin before analysis is complete.
Also, user feedback can drive design changes
even while programmers begin implementation.
Finally, OOSD promotes reusability of prewrit-
ten code, although, in practice, reusability is
more of a dream than a reality.

The adoption of lean practices into the abject-
onented realm witimately comes about with the
standardization of programming methods, With
lean manufactuning, less is best, but with infor-
mation systems departments, more is better
(Piszczalski 2000)). With the introduction of lean
manufacturing technigues into O0SD, program-
mers will have to produce less code as well as
become much more proficient in the field of

reusability. “Object-onientation teaches the
principle of ‘design for change': if we structure
the code mto modules we can minimize the
impact of future changes, i.e., side effects on the
structure as 2 whole™ (Valerio: Cardino: Di Leo
2001, pz. 100). Implementing lean techniques in
software development improves processes,
lowers development costs, shortens development
times, enhances reusability, increases maintain-
ability, and improves documentation.

* Inputs, processing, and outpuls
Manufacturing. at its most basic, is a combina-
tion of inputs, processing, and outputs. Raw
materials, engineering specifications, and cus-
lomer requirements are some inputs. Raw mate-
rigls are transformed based on specifications and
designs into real products that satisfy customer
requirements. As a result, the outputs are the
final products that meet or exceed customer
expectations and satisfy engineering specifica-
tions.

In OOSD, the inputs are the system analysts’
specifications, customer requirements, and
programmers’ coded objects, Customers are
often present during processing, where process-
ing solicits customer reactions to application
prototypes. Objects interact to create the final
software system. During the entire development
stage, system analysts” specifications are up-
dated to correspond to changing clients’ require-
ments. Finally, the outputs of the software
development process are similar to those of
manufacturing. They include the final applica-
tion matching customer specifications as well as
the library of objects and documentation that
will be used later for training and process stan-
dardization. Figure 2 summarizes the correlation
of inputs, processing. and outputs for both
manufacturing and O0SD.

Implementation of Lean Techniques to
00SD

This section applies the major lean techniques
that so effectively increase productivity and
efficiency in manufacturing to OOSD. Lean
software may be the solution 10 minimizing
defects, reducing numerous occurrences of
waste, and maximizing efficiency and overall
improvement of software guality.

* Preliminary Steps
Determine reasons to go lean. First, before
implementation, a company must answer the

Figure 2. Process Inputs, Throughputs, and Cutputs

Inputs Throughputs Outputs
Raw materials Processing of aw Final products that
Ercineest materials meet or exceed
Mamfacturing | specification } Component .._D [
= | assembly expectations and
Customer satisfy engineering
requirements specifications
f?“‘?mﬁ a;:.gsls' CE mﬂack Apphications that
Software rnaf.ch Ganes
Development Cm i} Requirements > specifications
k = Uit Library of objects
Programmers' Assembly of user ;
coded objects interfaces i

Table 1. Impact of Functional and Relationship Quality on Clients

Functional Craality

Low High
& ® upi];?uns?t:rsm Client provides repeat
E) : s business and referrals
3
= X . Client provides no
5
kS E Chml;l:‘;mﬁmtes Cinacs afl
= P} project completed

question “Why pursue lean?" A lean transforma-

tion 15 not a quick fix. Tt is expensive, reguires
hard work, and creative thinking about how to
become lean and persistence. However, compa-
nies have little choice but to ¢reate guality
software or else face the possibility that poorly
designed systems will result in lawsuits from
customers, government agencies, or sharehold-
ers. Two general types of quality are key: fune-
tional and relationship.

Functional quality is more than the absence
of syntactical and semantic bugs, Satisfaction
i driven by the presence of features that fulfill
needs. Quality depends on how well the system
fulfills users’ needs (i.e., functional quality)
and the quality of the relationship with the
service provider (i.e., relationship quality). In
addition to functional quality, both internal and
external clients “attach as much if not more
importance to the relationship they have with

service providers than they do to the functional
quality of the deliverables.” (Russell and
Chatterjee, 2003, p. 86) See Table 1 for the
impact of functional and relationship quality on
clients (adapted from Russell and Chatierjee
2003). Going lean allows companies to devote
more resources (o functional and relationship
quality.

In addition to determining which quadrant
with respect to functional and relationship qual-
ity @ company is in, a company needs to deter-
mine which of the following four scenanios of
applying lean best applies to their current situa-
non:

A. Many benefits with little or no negative
repercussions

B. Some benefits as well as minor negative
rePercussions

C. Few benefits and major negative repercus-
sions

D. Many benefits but major negative repercus-
sions

Organizations that fit into A and B are good
candidates for applying lean techniques. Those
in B probably have underestimated the benefits.
Start-ups and companies with limited operating
funds falling under scenario C have little spare
capital for education and tramning and lack the
time to research and develop appropriate imple-
mentation plans or resources needed to create a
library of reusable objects. Large companies as
well may be unwilling to invest the necessary
capital into a lean transformation. First, it may
not be cost effective to change a functioning,
although inefficient, system. Second, employees
may not be receptive and committed to the
transformation process, sentencing it to failure.
Companies in scenario D should work to reduce
the negative repercussions, moving the company
toward scenano A and ultimately enabling it to
pursue a lean transformation. Once the decision
has been made 10 pursve lezn, developers must
be educated. trained. and empowered.

Educate and train developers. Educating devel-
opers, project leaders, and users in change man-
agement, dealing with resistance and problem
employees, communication and feedback skills,
goal-setting and leadership, and management
principles for a collaborative environment are all
desirable first steps. Specific lean conversion
training for developers should include value
stream mapping and analysis — how to create
current, ideal, and future value stream maps.

Developers should be educated concemning what
constitutes inventory in a software development
environment. For example, every file, script,
Web page, object, and design document repre-
sents capital tied up in the form of labor (i.e.,
mventory). Just as in manufacturing, inventory
levels should be lowered over time. Developers
need 1o define metrics such as the number of
usable objects transferred out of a projectas a
percentage of the total number created or mile-
stone due-date performance (i.e., percentage
completed on or before due date). Measuning the
trend in inventory reduction should be empha-
sized rather than setting specific absolute goals.
“Five §” training should be mandatory for ev-
ervone. The five Ss are (Tomas 2002):

® Sort — classify tools, programs, and proce-
dures into necessary and unnecessary, elimi-
nating the former.

® Straighten — designate a place for everything
and ensure everything is in its place.

* Shine — clean workplace, maintain ils ap-
pearance, and use preventive measures to
keep it clean.

* Standardize — make sort, straighten, and
shine standard practice.

* Sustain — make a habit of properly maintain-
ing and following standard practices
Training in a variety of areas allows the as-

sembly of multi-functional teams capable of

performing assorted software development tasks.

When developers understand the diverse nature

of business, it is easier for them 1o interact and

commumnicate with users, thus increasing produc-
tivity. Education in lean principles encourages
developers to recognize problems and potential
waste independently without management's
tedious and constant involvement.

Empower developers. Management must include
all employess from the beginning in the lean
transformation process to minimize resistance
and prevent developers from feeling lean is
being forced on them. Circulate information
about upcomng changes regularly throughout
the entire organization. Clearly state and post
company statistics. policies, and agendas. Insti-
tute an easy and effective suggestion system to
gather employee feedback and focus on quality
improvement. Train workers to make decisions
and then give them enough authority to use their
mdividual or team problem-solving skills to
establish and execute effective solutions. For
example, value stream mapping will do little for

your business without action. If developers
know what should be done to solve new prob-
lems autonomously, then project leaders can
concentrate on investigating new techniques and
strategies to increase productivity and efficiency.

Encourage cooperation among users, system
analysts, and programmers. Empowering em-
plﬂym not only increases job satisfaction,
improves the working environment, and in-
creases interdepanmental cooperation, but also
encourages teamwork, independent decision-
making, and efficient responsibility delegation
with shared accountability. Workers will not
depend on management to make all the deci-
sions. Allocating support without removing an
individual's responsibility is not only achievable
but also generates greater feelings of individual
accomplishment and contribution. Cross-training
in a variety of different business areas ensures
that the majority of developers have the neces-
sary knowledge and hands-on expedence 1o
cooperate with users. Choosing the proper per-
son for a specific task is imperative. While the
tusk is delegated to a particular individual, it is
everyone's job to provide continuous perfor-
munce feedback so that the person can track his
or her progress. Key performance measurements
should be reported weekly. Avoid o many
metrics.

To assure continuous flow in software devel-
opment, users, programmers, and system ana-
lysts must collaborate throughout the entire
process. Effective communication and feedback
about customer requirements, application proto-
types, design specification, and implementation
details is crucial. Cooperation does not stop at
effective communication. It should include
collaborative idea generation and decision-
making relevant 1o software development as
well as continuous resource support. Finally,
allocate adequate time to discuss sofiware devel-
opment processes and potential improvement
sirategies.

Apply persistence and commitment. Lean is a
high-nisk, high-return endeavor. Even when
implementing lean techniques successfully, the
benefits of reduced errors, lower costs, and
shortened development or return on investments
will take months and sometimes years to materi-
alize. A company may need to spend millions
first on training developers to reuse code, insti-
tuting a system that rewards reuse, and setting

up a library to house and track software artifacts.
Successfully implementing lean techniques
requires the dedication of the entire organiza-
tion. As a resull, a company pursuing lean must
have an implementation road map with clearly
defined milestones and metrics to measure
performance. Otherwise, lean will not be used to
its full potential. Transform all aspects of the
software development life cycle. Areas that
onginally might seem inconsequential can later
be crucial. Inconsistently implementing lean will
creale more waste, rework, and recovery. Fur-
thermore, 1t might discourage continued imple-
mentation of lean and prolong the payback
period by requiring a higher financial resource
allocation.

Customize the transformation process. Corpora-
tions wishing to implement lean cannot use
another company's transformation process
without adapting it to their culture, infrastruc-
ture, and environment. Customization involves
adjusting lean principles and implementation
strategies to fit a particular organization's vision,
mission, and processes. Commitment, custom-
ization, action, and accountability are key to
success.

® Recommendations

Three general recommendations should enable
the transition to lean to be valuable, efficient,
and straightforward. As mentioned, lean prin-
ciples include eliminating waste, standardizing
work, producing zero defects, and continually
improving. The following sub-sections address
these lean principles.

Eliminate waste. A company must examine its
entire system, documenting it in full. Problem
areas, especially wasteful processes, are identi-
fied and removed. One area where manufactur-
ing and software development are very similar is
with respect to muda. Therefore, if lean tech-
niques help eliminate waste in manufactuning,
they have the potential to substantially decrease
or eliminate waste in software development.

Value stream mapping helps identify waste.
Carefully investigate every process to determine
if it adds value. Categorize activities as value-
added, nonvalue-added, and nonvalue-added but
required. Five S programs provide the organiza-
tional discipline for waste reduction and correc-
tion (Tomas 2002). The following strategics are
suggested:

Table 2. Waste Correlations in Manufacturing and Software Development

can quickly locate software antifacts.

Area of waste Manufacturing Software Development
Unnecessary Product features, some never used by the | Applhication objects and methods not
complexity customer, or documentation that makes it | needed to perform the specified task or the

harder 1o understand and use. elements and added features that will never
be used by the customer.

Labor used in A1 nmes production is subdivided into Development teams have an unnecessary

production overly specific sections that require too | large oumber of members carrving out
many people performing sinular or same | redundant functions and reworking each
tasks. other’s code and ideas.

by materials amount, talang valuable space ina unnecessary features and inefficient coding,
factory. Even though the products or is unreasonably large. Therefore, a
parts are not being sold or used, the customer might not be able to utilize the
company still pays for the space. application duc to hard drive space

A

Defects Product defects might exceed the Excessive number of program defects due
accepled norm, often 0-1%. to the lack of testing and debugging, or the

lack of acceptable defect rates.

Raw materials Unused inventory of materials on hand Unreasonable customer requirements with
becanse of incorrect order numbers or unattainable details as well as the size and
supplier delivery schedule, Just-intime | complexity of objects.
delivery not implemented,

Inventory on Pull production might not be instituted in | The programmers are writing code and

hand as a result | the company and, therefore, too many features that the customer might not be

of parts are being produced without being | willing to pay for due to poor

overproduction wsed by the assembly department. At communication with system analysts,
times, one component piles up while the | Therefore, vou have too much code or
team waits for another part. objects that will not be implemented.

Travel distance of | Components might be too far away from | The virtual travel of the code can be

a product cach other so that the travel time is excessive. Also, departments or teams
wasted. might be located too far from cach other

whether different floors or buildings. This
does not allow a clear communication flow
and lcads 1o misunderstanding.

Time In manufacmring, this involves both In object-onented software development,
production and delivery time. this deals with the time it takes for the

development of individual objects and
design specifications, as well as the time to
deliver the final system.

Skills Each factory needs unsklled and skilled | Overqualified employees might be
Iabor to perform vanious tasks, however, | performing nonvaluc-adding tasks. Under-
at times the balance is not achieved gualified personnel can be in inappropriate
wasted.

® Organize the digital workspace to ensure employee travel.

developers are not distracted by clutter and * Compile a predefined list of components and

capabilities to allow customers to select

* Eliminate cubicles to allow easier information

flow and communication berween developers.

Team members should be located close to

each other. This decreases the waste associ-

ated with information flow and product or

features, similar to buying a car. A standard
package should be available and add-ons

chosen separately. This not only clarifies user
requirements but also eliminates unnecessary
and unused features in an application,

Waste elimination smoothes process flow
before it improves individual operations (Tomas
2002). Once waste is eliminated, increase pro-
cess flow velocity and standardize work prac-

oces.

Focus on standardization, not creativity. The
goal of making programs readable and easily
maintainable is laudable. However, trying to get
every programmer on the same page is nearly
impossible, The training costs to do 5o may
outweigh the benefits with no guarantee of
success. Some believe focusing on standardiza-
tion rather than creativity is an argument against
the introduction of lean to software develop-
ment. Automation and rense may stifle the
creativity of programmers and quite possibly
impede their ability to solve problems. It also
constrains a programmer’s flexibility. However,
standardization results reduces process vanation
and defects, increasing the quality of systems
and reusability of objects.

Standardization means the identical sequence,
material, tools, education and training, orienta-
tion, and steps to complete a process. It suggests
that a company should inaugurate a set of stan-
dards, rules, and procedures that developers
follow consistently. These would include general
design principles like object encapsulation,
information hiding, hierarchical structure utiliza-
tion. polymorphism, and, finally, inheritance.
These are just some of the object-oriented design
principles. Standardization also applies to waste
reduction during all development stages and to
statistical quality control procedures where the
same measurements are evaluated for all appli-
cations, and to the processes themselves. An
organization should encourage standardized
coding procedures, provide methods to analyze
requirements, and implement design principles.

A company's software development standards
should be consistent with industry standards.
Lean techniques cannot be implemented effec-
tively if the company's software processes are
always changing. Development process stability
15 important. Newly instituted standards must be
used on a regular basis for lean execution to be
productive. Standard practices guide and effec-
tively constrain each programmer’s object de-
sign and implementation, as well as the overall
software development process. This increases
reusability of objects, code blocks, methods, and
functions.

Produce zero defects and continually improve.
Standardized testing tools, suites, scripts, refer-
ence and test data, reference implementation,
and metrics that have undergone a rigorous
certification process can go a loag way toward
improving software quality (NIST 2002). Stan-
dardized testing also provides a consistent way
to determine when 10 stop testing (NIST 2002).
Unfortunately, not all objects are unit-tested
upon creation, Some programmers defer testing
until integration or systems testing. The rationale
is supposedly to save debugging time during the
development stage. However, research shows it
takes much longer to debug and test if unit
testing is inadequate or nonexistent, since it is
about five times harder to detect defects and
errors, especially if they are the result of incor-
rectly translating user requirements. Therefore,
if testing is properly conducted, the resulling
system will have substantially fewer errors and
deficiencies.

Lean is a daily improvement process, and
continuous improvement is the most important
implementation principle. Even if transformation
from traditional to lean software development is
successful, an organization cannot stop search-
ing for better quality and process efficiency.
Continuous improvement encourages ceaseless
system, software, and hardware updates to keep
up with changing customer requirements. Ex-
ceeding customer expeclations and raising the
quality bar for competitors is essential for sur-
vival. Developers should think lean, produce
lean, and recognize waste. Training developers
in new technologies, processes, and principles
will help them continuously improve.

Conclusion
Without a doubt, unless certain transformations
are undertaken and new approaches developed,
the problems plaguing software development
will persist. Reforms and standards must be
instituted, One solution is to incorporate lean
techniques into O0OSD, Before manufacturing
transformed to lean, it had similar problems.
Lean techniques significantly decreased the
number of emmors and encouraged a more effec-
tive and productive manufacturing system with
just-in-time inventory, less waste, and better
resource management.

There are oumerous paraliels between manu-
facturing and software development. Implement-
ing lean techniques drastically reduces the

0" Conner, R. (2002). Plug the Expairiate Knowledge Drain.
HR Magazine, 47(10), 101-107.

Paik, Y., Segaud, B., and Malinowski, C. (2002). How 1o
expectations congruent between the company and expa-
tristes [ntermational Journal of Manpewer, 23(T}), 635~
B48

Poc. A (2000} Welcome back. HR Magazine, £3(3), 34105,

Solomon, C. M. (2001). Global HR: Repatriation planning.
Worlgforee. 22-23.

Soumari, V., and Brewster, C. (2001). Exparriste management
practices amd perceived relevance: Evidence from Finn-
ish exparristes Personnel Review, 3(3/6), 554377,

Taylor, 5.J. and Bogdan, R. C. (1984). Introducsion to quali-
tative research: The search for meanings. New York: John
Wiley & Scus.

number of defects waste, decreases product
development time, increases quality, and helps
standardize software development within a firm.
However, to utilize lean principles to their full
potential, companies must undergo a difficult
and time-consuming transformation process.
Some lean initiatives are destined to fail. The
success of implementing lean in software devel-
opment depends on a company’s internal pro-
cesses, social structure, physical environment,
and a reexamination of its mission with lean
principles in mind. Upon successful implemen-
tation, object-oriented software development
will uncover its true potential of producing
reusable objects as well as high-quality, lower-
cost applications that exceed customer expecta-
tions.

Dr. Cook. professor, speaker, author, and con-
sultant, has made over 60 conference presenia-
tions and published numerous journal articles.
His areas of expertise include electronic com-
merce, information systems, and production /
operations management, Victoria Semauchtchak
is completing her Bachelor of Science in Man-
agement Information Systems and working as an
intern in VeriSign's Engineering Department.

REFERENCES

Corr, P. (2002). Software quality assurance, using Standivh
Group Statistics MIEEE (www.standishgroup.com),
Belfast: Queens University, Rewleved February 22, 2004
from http:/iwww.cs.qub.ac.uk/-P.Corr/ProfPrac/
Software_(JA ppt#2

Hayes, M. (2002, May 200, Quality first. informanionWeek,
859, 38-54.

NIST. (2002, Tune 28). Software Errors Cost £1.5. Economy
$59.5 Billion Anoually: NIST Assesses Technical Needs
of [ndusiry to Improve Software-Testing. Retrieved Au-
gust I35, 2003, from hitpc/fwww.nist. gov public_ affairs/
releasevn(2- 10 btm.

Piszczalsia, M. (2000, August). Lean vs. information sysiems.
Automotive Design & Production, 1128}, 26-27.

Russell, B_ Chamerjee, 5. (2003, August). Relanionship qual-
ity: The undcrvalucd dimension of software quality. Com-
mumications of the ACM, 46{R), 8589,

Tomas, S (2002, July/August). A good fit. APICS — The
Performance Advantage, 34-39,

Valerio, A.. Cardino, G.. and Di Leo, V. (2001). Improving
software development practices through components. 27
Eurennicro Conference Proceedings, 97-103.

Vitharana, P, (2003, August). Risks and challenges of com-
ponent-based software development. Communications af
the ACM, A6(E), 67-T72,

	Lean object-oriented software development
	Recommended Citation

	tmp.1392582965.pdf.cu8Od

