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Abstract 
 

Even though the transition from IPv4 to IPv6 has not been realized at the pace that it was 

anticipated, eventually with the depletion of IPv4 address space and the ever-growing demands 

of the Internet, the transition is inevitable. In the rapidly evolving world of technology, 

multimedia applications and voice/video conferencing are fast finding their ways into the 

Internet and corporate networks. Multicast routing protocols run over unicast routing protocols to 

provide efficient routing of such applications. This thesis was aimed at understanding how the 

transition from IPv4 to IPv6 would impact multicast routing. The multicast routing protocol 

Protocol Independent Multicast – Sparse Mode (PIM - SM) was used over both IPv4 and IPv6 

networks and a mixed IPv4-IPv6 network. Parameters such as protocol overheads, throughput 

and jitter were evaluated in a lab environment using jperf.   
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1 Introduction 

 
The Internet has grown tremendously over the last few years. What started as an experiment has 

grown to the worldwide network that we know today. Large numbers of users subscribe to online 

multimedia services such as video streaming. Messenger services such as Skype and Gtalk are 

replacing traditional phones for long distance calls across urban areas in many countries.  

 

Information exchange can broadly be classified as unicast (one-to-one), broadcast (one-to-all) 

and multicast (one-to-many). A typical example of multicasting is Yahoo Messenger where 

multiple hosts subscribe to the service and the server communicates only with those hosts that 

have subscribed to it. One of the biggest advantages of multicasting is the conservation of 

bandwidth. The multicast server sends out only one packet and the router then generates multiple 

packets to reach each of the receivers. In this manner the network resources are used efficiently. 

Also, multicasting ensures timely reception of the data by the receivers [1]. In unicast routing, 

the server sends out a packet to each of the receivers. A more recent variation of multicast is 

anycast. It is a one-to-“one-of-many” distribution. There may be multiple recipients of an 

anycast message, but the sender sends the message only to the node that is logically or 

topologically the closest to it. The figure below is a comparison of unicast, broadcast, multicast 

and anycast.  
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Figure 1: Unicast, multicast, broadcast and anycast depiction 

Courtesy: www.trainsignaltraining.com 

 

 

As part of this research, a survey was conducted to learn if enterprises deployed multicast routing 

in their networks and if so, for what kind of applications. The survey was also aimed at gathering 

which multicast routing protocols were used widely. The results of the survey indicated 

enterprises used multicast applications. Protocol Independent Multicast (PIM) was the multicast 

routing protocol preferred by most enterprise network administrators, since it is independent of 

the underlying unicast routing protocol in the network. Unlike Distance Vector Multicast 

Routing Protocol (DVMRP) that can be used only in networks that use a distance-vector unicast 

routing protocol, PIM can be used whether the unicast routing protocol is a distance-vector or 

link-state protocol.  For this reason, PIM was chosen for this study.  
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This thesis was a quantitative one involving gathering results from laboratory experiments. The 

laboratory experimental setup consisted of four Cisco 2811 routers connected back to back using 

Cisco serial WAN Interface Cards (WICs). The first and the last routers in the chain were 

connected to hubs. Each hub had two PCs connected to it. One of the PCs was the source for the 

multicast traffic and the other three were receivers. The underlying unicast routing protocol 

chosen was Open Shortest Path First (OSPF), a popularly used routing protocol in enterprise 

networks. This network was maintained across all four scenarios, which were 

1. IPv4 network 

2. IPv6 network 

3. IPv4-IPv6 network using dual-stack 

4. IPv4-IPv6 network using Generic Routing Encapsulation (GRE) tunneling 

 

Jperf [2, 3] was used for generating multicast traffic and obtaining graphical results.  

 

2 IPv4 multicast and IGMP 
 

In IPv4, host membership to multicast group(s) is governed by the Internet Group Management 

Protocol (IGMP) [4]. The switches that the hosts connect to should have IGMP enabled. The 

multicast querying router is a chosen router on the network that periodically sends out group 

membership queries to all hosts connected to its local network. Any host that is interested in 

joining a multicast group sends a join request or membership report to that group. Any traffic 

destined to that multicast group address is then sent to the host. IP multicast is very dynamic and 

any host can join or leave a group at any time. A querying router need not be aware of all the 

hosts that belong to a particular multicast group. The router only needs to know that there is at 
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least one member in each of the groups attached to its local network, so that it ensures that the 

multicast traffic destined for that group reaches the group.  

 

IGMPv3 [5] is the latest version of IGMP. The significant difference between IGMPv1 and 

IGMPv2 is that in IGMPv2, a host that wishes to leave a multicast group has to explicitly send a 

Leave message to the querying router. This can significantly reduce bandwidth usage in 

bandwidth intensive applications. The major improvement of IGMPv3 over IGMPv2 is that in 

IGMPv3, source-specific multicast is supported. So a host can specify the host or hosts from 

which it wants to receive multicast traffic from. 

 

A sample of a receiver sending a report to the multicast querying router can be seen from the 

Wireshark capture below: 

 

 

 

Figure 2: Wireshark capture showing IGMPv2 Membership Report 

 

IGMPv2 Membership Report 
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From the circled portions, it can be seen that the host 10.10.10.20 sends a membership report to 

the multicast group 239.255.255.250. 

 

3 IPv6 multicast and MLD 

Multicast Listener Discovery [6] is the IGMP equivalent used in IPv6. MLD however uses 

Internet Control Message Protocol for IPv6 (ICMPv6). There are three types of MLD messages: 

 

Multicast Listener Query – This is similar to the IGMP query sent by the router periodically for 

group memberships. 

 

Multicast Listener Report – This is sent by the multicast host group in response to a router 

query or for the host to indicate that it wants to join a group. 

 

Multicast Listener Done – This message is sent by the multicast host when it leaves a multicast 

group. The Done message is sent by the last group member so that the router is aware that there 

are no more hosts for the multicast traffic on that segment. This is similar to the IGMPv2 Leave 

Group message used in IPv4.  

 

The Wireshark capture below shows an ICMPv6 Multicast Listener Report sent from a multicast 

receiver to a multicast group. 
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Figure 3: Wireshark capture showing Multicast Listener Report 

 

The source address seen in the capture is the Link Local address of the host’s Ethernet interface. 

The multicast group to which it sends the Multicast Listener Report is ff06::6.  

 

4 Statement of Purpose 

Ever since the convergence of data and voice networking, applications such as video 

conferencing and Voice over IP (VoIP) have found their way into enterprise networks. Since 

such applications are bandwidth intensive, a multicast solution can be adopted when there are 

multiple recipients for the same data.  

 

The IPv4 address space is expected to eventually deplete, since the Internet is growing every 

day. The migration to the 128-bit IPv6 address has already begun and would replace IPv4. While 

this transition is in its nascent stages, this thesis provides an opportunity to acquire working 

knowledge of IPv6, which is the future of the Internet. In essence, this thesis is aimed at 

Multicast Listener Report 
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evaluating multicast performance in the IPv4 era, the future IPv6 era and the transitional phase in 

which IPv6 forms the core or backbone and the edge devices are IPv4 compliant. 

 

It is hypothesized in this thesis that the multicast routing overhead in an IPv6 network would be 

higher than in an IPv4 network due to the significantly larger address format of IPv6. It then 

becomes of experimental interest to verify the hypothesis.  

 

5 Related Works 

IP multicasting has been around for over two decades now. This section highlights some of the 

related work that has been conducted in the area of this research. 

 

Research in the multicast domain started in the early 80s. Steve Deering invented multicasting 

and in 1989 RFC 1112 [7] was formulated. The initial works were on IGMP and DVMRP. 

DVMRP being a distance vector routing protocol had the same shortcomings as those faced by 

unicast distance vector protocols such as Routing Information Protocol (RIP), where the hop-

count limited the protocols to be used only in smaller networks.  

 

Link state routing protocols soon gained popularity as they could be deployed in larger networks. 

Open Shortest Path First (OSPF) had its own extension to support multicast called Multicast 

Open Shortest Path First (MOSPF – RFC 1584) [8]. This protocol failed and is not supported by 

lead vendors like Cisco.  
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In 1995, Steve Deering published his paper [1] on extending the multicasting used in Local Area 

Networks (LANs) to larger internetworks and the challenges involved due to the increased 

distances between the source and the receivers. The main objective of the multicast routing 

protocols discussed in the paper is to determine a low latency multicast routing protocol. This is 

important in an internetwork environment due to the possibility of lower link speeds when 

connecting several smaller networks.  

 

In [9], Deborah Estrin et al. documented an Internet Draft for the IETF suggesting the 

interoperation of two different multicast routing protocols. It focused on the interconnectivity 

between a PIM-SM multicast domain and a DVMRP backbone by placing PIM Multicast Border 

Routers at the boundaries between the PIM- SM and DVMRP domains.  

 

In their paper Active Reliable Multicast [10], Li-wei H. Lehman, Stephen J. Garland and David 

L. Tennenhouse from the MIT Lab for Computer Science suggested a new scheme for loss 

recovery in large multicast networks. They also suggested performance improvement by 

reducing protocol overheads by the routers in both directions – upstream and downstream.  Since 

latency is one of the challenges in large networks, the suggested mechanism employs a “local” 

retransmission by the router from its cache. Also, most multicast networks are very dynamic. 

Receivers subscribe and unsubscribe to groups often and a partial multicasting technique is 

suggested so that retransmissions are targeted only to those hosts that lost the packet.  

 

XCAST6 is a novel multicast routing mechanism suggested by Yuji IMAI, Hiro Kishimoto, 

Myung-Ki SHIN and Young-Han KIM in their paper XCAST6: eXplicit Multicast on IPv6 [11]. 
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The method suggests using IPv6 addresses’ extended headers to include the multicast 

destinations instead of a multicast group address. Though the protocol claims to eliminate some 

of the complexities of the multicast routing protocols in use, it does have a big limitation in the 

number of members a group can have, as it is limited to the IPv6 header length.  

 

Network Address Translation – Protocol Translation (NAT-PT) is one of the suggested ways for 

protocol translation between IPv4 and IPv6 networks [12]. As mentioned in the RFC one of the 

limitations of NAT-PT is its inability to translate between IPv4 and IPv6 multicast traffic. 

Referenced in the RFC are two solutions to overcome this issue. 

 

In his paper [13], Kazuaki Tsuchiya suggests an IPv6/IPv4 multicast proxy that would do both 

proxying and translation. IPv6 clients would send a request to the translator to join the multicast 

group and the translator sends a proxy IGMP request to the IPv4 router. On receiving the 

multicast traffic, the translator translates IPv4 to IPv6 and sends it to the IPv6 client/receiver.  

Similarly, IPv4 hosts can also join and receive traffic from an IPv6 multicast source.  

 

Also referred in RFC 4966, An IPv4 - IPv6 Multicast Gateway [14], Venaas suggests embedding 

of IPv4 addresses in IPv6 addresses. The IPv4 multicast group address is mapped to an IPv6 

multicast group address, by attaching prefixes to the IPv4 group address. Every IPv4 multicast 

group is mapped in this manner to an IPv6 multicast group.  

 

Performance- Comparison Testing of IPv4 and IPv6 Throughput and Latency on Key Cisco 

Router Platforms – A Summary of findings, [15] is a whitepaper published by Cisco with test 
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results on IPv4 only, IPv6 only and dual-stack networks in response to a query raised by federal 

agencies to understand if there would be any impact on the network performance on migrating to 

IPv6 networks.  

 

Cisco conducted the tests using Spirent TestCenter across multiple router platforms on 100% 

IPv4, 100% IPv6 and a mix of IPv4 and IPv6 traffic on dual-stack networks and concluded from 

the results that only when the frame size was very small (< 256 bytes) was the throughput on 

IPv6 networks less than IPv4 networks. With larger frames, the performance was identical across 

all the network types studied. The paper also found that the variation in latency was negligible 

and in some cases, there was an improvement with the introduction of IPv6 traffic. In my paper, 

a performance comparison is done for multicast traffic.  

 

Research on the performance of both IPv4 and IPv6 on different Windows operating systems 

was performed in 2008 [16] and the results indicate that in most cases, IPv4 outperforms 

IPv6.This is in line with the hypothesis of this paper, where it is presumed that IPv6 would have 

more overhead and therefore result in a performance degradation in a network. Since there is 

little work done on the performance comparison of IPv4 and IPv6 in multicast routing, this 

research is aimed at presenting experimental analysis to study this area.    

 

Protocol Independent Multicast (PIM) [17, 18] is a multicast routing protocol that is most widely 

used. As the name suggests, this protocol is independent of the underlying unicast routing 

protocol. Irrespective of whether the unicast routing protocol is a distance vector or link-state 

protocol, PIM can be used. 
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PIM operates in two main modes- Sparse Mode (SM) [18] and Dense Mode (DM) [17]. In dense 

mode the multicast group receivers are highly concentrated in an area, whereas in sparse mode, 

large numbers of users are distributed over a wide area such as the Internet. PIM follows a tree-

based structure. PIM- DM uses a source tree structure where the root of the tree is the source 

router and the rest of the tree structure is built from the root. In the sparse mode [19], the 

distribution tree has its root in the Rendezvous Point (RP) and all control messages from the 

source are sent to this RP. Every local network has a Designated Router (DR), which manages 

the PIM control messages. Multicast receivers that want to become part of a group send the 

request message to the RP. It is for this reason that SM is more efficient in the case of a wider 

area with scattered receivers.  

 

6 Limitations 

1. These experiments were conducted in a lab environment. The only traffic in the network 

was the simulated traffic generated by jperf.  

2. Multicast traffic was generated using a traffic generator and not from real-world 

applications. 

3. Switches could not be used in this study for consistency purposes. Hubs were used 

instead because the lab environment did not have switches that had support for Multicast 

Listener Discovery (MLD) which is the Internet Group Management Protocol (IGMP) 

equivalent in IPv6. 

4. The impact of scalability on the performance was originally proposed in this study using 

simulation. OPNET Modeler was the chosen simulation tool. But the OPNET server in 
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the lab did not have licenses for IPv6 models and as a reason scalability could not be 

studied.  

 

7 Experimental Setup 

The hardware used for the lab experiments is as in the table below: 

 

Device Quantity 

Cisco 2811 routers 4 (IOS 12.4 – Advanced IP Services) 

NetGear 10/100 Mbps Hubs 2 

Windows XP machines 4 

 

Table 1: Hardware setup  

 

The lab setup consisted of connecting four Cisco 2811 routers back-to-back using serial 

connections. NetGear hubs were connected to the fast Ethernet interface on Routers 1 and 4. 

Router 1 had 2 PCs connected to it via the hub. One of the PCs was the source of the multicast 

traffic. Two PCs were connected to Router 4 via another hub. The multicast group had three 

receivers.  

 

The routers were configured to run OSPF as the unicast routing protocol. PIM-SM was 

configured on all the interfaces on all four routers. Jperf was used as the multicast traffic 

generator. The throughput and jitter were obtained using jperf, the Java based graphical front-end 

of iperf.  
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For each scenario, jperf was run for ten 10-minute periods and two 1-hour periods. For each test, 

jperf was transmitting 122 Kbytes per second at 1000 kbps. 

 

The results were collected from two receivers – one on the same subnet as the source and the 

other on a different subnet. This was done in order to understand the impact of routing on the 

multicast traffic. 

 

In jperf terminology, the client is the source of the multicast traffic and the servers are receivers 

of the multicast traffic. Also, it should be noted that the receivers have to join the multicast group 

before the source starts sending traffic, so that each of the receivers receives all the multicast 

traffic that was sent by the source and there is no packet loss.  

Wireshark was used to capture packets at the network interface cards of the two receivers to 

gather additional information such as learning IGMP/MLD workings and the packets generated 

by PIM-SM.  

 

8 Experimental Scenarios 

This research was conducted in four different scenarios: 

1. The present IPv4 only networks, which is the case in most enterprise networks. 

2. The anticipated future IPv6 only networks. 

3. The interim transitional phase where IPv4 and IPv6 co-exist. This dual network was set 

up using two different configurations: 

a. Dual-stack 

b. GRE tunneling 
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The rest of this section will explain in detail the four scenarios. 

 

8.1 IPv4 only network 

The network diagram and the IP addressing scheme for the IPv4 only network were as depicted 

in the figure below: 

 

 

Figure 4: IPv4 only network diagram and addressing scheme 

 

 

The source of the multicast traffic was 10.10.10.10 and the other three PCs were the receivers. 

The time-to-live (TTL) on the source was set to 10 (to account for the four routers that the traffic 

has to travel through to reach some of the multicast receivers). A sample router configuration can 

be seen at Appendix 12.1. 
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8.2 IPv6 only network 

The IPv6 network connectivity and addressing scheme are shown in the figure below: 

 

 

 

Figure 5: IPv6 only network diagram and addressing scheme 

 

The source of the multicast traffic was 2001:175::10 and the other three PCs were the receivers. 

The time-to-live (TTL) on the source was set to 10 (to account for the four routers that the traffic 

has to travel through to reach some of the multicast receivers). A sample router configuration is 

presented at Appendix 12.2. 
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8.3 IPv4-IPv6 network – Dual-stack  

In this scenario, the hosts and routers were configured with both IPv4 and IPv6 addresses. The 

multicast source generated two separate multicast streams – one for IPv4 and one for IPv6. 

Router R4 had an IPv4 receiver and an IPv6 receiver. 

The network diagram and IPv4/v6 addressing scheme were as below: 

 

Figure 6: IPv4-IPv6 dual-stack network diagram and addressing scheme 

 

A sample router configuration is included in Appendix 12.3. 

 

8.4 IPv4-IPv6 network – GRE Tunneling 

In this scenario, two IPv4 only networks were connected via an IPv6 only backbone network. 

For instance, during the migration period from IPv4 to IPv6, the backbone (ISPs) may migrate to 
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IPv6 before the edges. In such a case, the IPv4 end networks would communicate with each 

other via the IPv6 network. A GRE IPv6 tunnel was set up between the IPv4 only networks to 

encapsulate/decapsulate the IPv4 traffic.  

 

GRE is a Cisco developed protocol that is used to connect networks running different protocols 

such as connecting an IP and IPX network and in this case connecting two IPv4 networks across 

an IPv6 backbone. In this scenario, a logical IPv6 GRE tunnel was configured. IPv4 packets 

entering the tunnel are encapsulated with an IPv6 header and decapsulated when the packet 

reaches the other end of the tunnel. 

 

For the OSPF configuration, all the serial interfaces were in Area 0. The fast Ethernet interfaces 

of routers R1 and R4 and the GRE tunnel were in Area 1. A sample configuration of the 

tunneling edge router can be seen in Appendix 12.4.a and the core router configuration can be 

found at Appendix 12.4.b.  

 

The network connectivity and IPv4/IPv6 addressing were as in the figure below: 
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Figure 7: IPv4-IPv6 network diagram and addressing scheme – GRE tunneling  

 

9 Experimental results and analyses 

9.1 IPv4 only network 

9.1.1 Throughput and Jitter 

From the output obtained from jperf, it was seen that in all the ten 10-minute test periods there 

was no packet loss and the throughput was 100%. The jitter showed some variation. The jitter 

varied from 0 ms in some tests to a maximum of 7.792 ms. Sample screenshots and jperf output 

are shown below: 
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Figure 8: IPv4 Multicast Source 

 

 

On starting jperf as the multicast receiver on the PC, the following information is displayed: 

bin/Jperf.exe -s -u -P 0 -i 1 -p 5001 -B 239.255.255.250 -f k 

------------------------------------------------------------ 

Server listening on UDP port 5001 

Binding to local address 10.10.20.10 

Receiving 1470 byte datagrams 

UDP buffer size: 8.00 KByte (default) 

 

Here we can see that the multicast group address is 239.255.255.250 to which the local host 

(10.10.20.10) binds.  
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The graphical output from jperf was captured at different points during the 10-minute period. It 

provides a real-time graph of the bandwidth and jitter. A sample of the screenshot is provided 

below: 

 

 

Figure 9: Sample jperf screenshot from IPv4 multicast receiver 

 

The last 10 seconds of the jperf output captured from a multicast receiver: 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 
[1928] 591.0-592.0 sec   122 KBytes  1000 Kbits/sec  7.293 ms    0/   85 (0%) 

[1928] 592.0-593.0 sec   122 KBytes  1000 Kbits/sec  7.282 ms    0/   85 (0%) 

[1928] 593.0-594.0 sec   122 KBytes  1000 Kbits/sec  7.251 ms    0/   85 (0%) 

[1928] 594.0-595.0 sec   122 KBytes  1000 Kbits/sec  7.212 ms    0/   85 (0%) 

[1928] 595.0-596.0 sec   122 KBytes  1000 Kbits/sec  7.146 ms    0/   85 (0%) 
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[1928] 596.0-597.0 sec   122 KBytes  1000 Kbits/sec  6.955 ms    0/   85 (0%) 

[1928] 597.0-598.0 sec   123 KBytes  1011 Kbits/sec  8.315 ms    0/   86 (0%) 

[1928] 598.0-599.0 sec   122 KBytes  1000 Kbits/sec  8.314 ms    0/   85 (0%) 

[1928] 599.0-600.0 sec   122 KBytes  1000 Kbits/sec  8.311 ms    0/   85 (0%) 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928]  0.0-600.0 sec  73243 KBytes  1000 Kbits/sec  7.792 ms    0/51021 (0%) 

 

Table 2: 10-second jperf output  from IPv4 multicast receiver 

 

It can be observed from the output above, that over the 10-minute period, 73.244 MB of data was 

transferred at 1 Mbps. The jitter was 7.792 ms. The packet loss is 0% which implies a 100% 

throughput. 

 

Two 1-hour test samples were also obtained from the multicast receiver. This was to simulate a 

real multicast application such as a 1-hour webinar. The jitter was 0 ms and 7.817 ms and the 

throughput was 100% in both the test cases.  

 

9.1.2 Protocol Overheads 

PIM-SM was used as the multicast routing protocol. The protocol did not produce much of an 

overhead (deduced from the Wireshark captures). The PIMv2 Hello packets were sent out at 30-

second intervals, as seen from time-stamps in the capture below. Apart from these Hello packets, 

the protocol was not very chatty in the IPv4 network.  
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Figure 10: PIM Hello packets for IPv4 multicast  

 

9.2 IPv6 only network 

9.2.1 Throughput and Jitter  

On starting jperf on the receiver, the following is displayed: 

bin/Jperf.exe -s -u -P 0 -i 1 -p 5001 -B ff06::6 -V -f k 

------------------------------------------------------------ 

Server listening on UDP port 5001 

Binding to local address :: 

Receiving 1470 byte datagrams 

UDP buffer size: 8.00 KByte (default) 

  

The multicast group address is ff06::6. 

 

As in the case of the IPv4 only network, results were obtained from a multicast receiver for ten 

10-minute tests and two 1-hour tests. 

 

It can be inferred from the results that IPv6 multicast does not introduce any significantly higher 

jitter or packet loss than in the case of an IPv4 only network. During the ten 10-minute tests, the 
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jitter ranged from 0 ms to 9.487 ms. The throughput was 100% in all the ten tests. From these 

tests it can be concluded that the hypothesis of this research does not hold good.  

 

For the two 1-hour tests, the jitter was 0 ms in one test and 7.299 in the second test with 100% 

throughput in both the tests.  

 

The last 10 seconds of the jperf output captured from a multicast receiver is pasted below: 

[ ID]            Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928] 591.0-592.0 sec   122 KBytes  1000 Kbits/sec  8.302 ms    0/   85 (0%) 

[1928] 592.0-593.0 sec   122 KBytes  1000 Kbits/sec  8.292 ms    0/   85 (0%) 

[1928] 593.0-594.0 sec   122 KBytes  1000 Kbits/sec  8.265 ms    0/   85 (0%) 

[1928] 594.0-595.0 sec   122 KBytes  1000 Kbits/sec  8.230 ms    0/   85 (0%) 

[1928] 595.0-596.0 sec   122 KBytes  1000 Kbits/sec  8.173 ms    0/   85 (0%) 

[1928] 596.0-597.0 sec   122 KBytes  1000 Kbits/sec  8.005 ms    0/   85 (0%) 

[1928] 597.0-598.0 sec   122 KBytes  1000 Kbits/sec  7.795 ms    0/   85 (0%) 

[1928] 598.0-599.0 sec   122 KBytes  1000 Kbits/sec  7.794 ms    0/   85 (0%) 

[1928] 599.0-600.0 sec   122 KBytes  1000 Kbits/sec  7.792 ms    0/   85 (0%) 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928]  0.0-600.0 sec  73244 KBytes  1000 Kbits/sec  7.305 ms    0/51022 (0%) 

 

Table 3: 10-second jperf output from IPv6 multicast receiver 

 

From the output, it can be seen that over the 10-minute period, 73.244 MB of data was 

transferred at 1 Mbps with 0% packet loss. The jitter was 7.305 ms.  

A screenshot of the live output from jperf is displayed below: 
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Figure 11: Sample jperf screenshot from IPv6 multicast receiver 

 

9.2.2 Protocol Overheads 

When compared to IPv4, there was no difference in the protocol overhead that PIM adds when 

running over IPv6. Similar to IPv4, PIM sends out hello packets at 30-second intervals as can be 

seen from the Wireshark capture below. 

 

Figure 12: PIM Hello packets for IPv6 multicast 
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9.3 IPv4-IPv6 network – Dual-stack 

 

9.3.1 Throughput and Jitter 

 
For this scenario, an end-to-end dual-stack network was configured. Test outputs were obtained 

from an IPv4 only multicast receiver and an IPv6 only multicast receiver.  

 

In this scenario, there was some jitter and packet loss in almost every test that was conducted. 

Sample screenshots and outputs from jperf are shown below: 

 

 

Figure 13: Sample jperf screenshot from IPv4 multicast receiver in dual-stack network 
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Figure 14: Sample jperf screenshot from IPv6 multicast receiver in dual-stack network 

 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1924] 591.0-592.0 sec   116 KBytes   953 Kbits/sec  5.800 ms    3/   84 (3.6%) 

[1924] 592.0-593.0 sec   115 KBytes   941 Kbits/sec  6.404 ms    5/   85 (5.9%) 

[1924] 593.0-594.0 sec   116 KBytes   953 Kbits/sec  6.948 ms    4/   85 (4.7%) 

[1924] 594.0-595.0 sec   115 KBytes   941 Kbits/sec  7.782 ms    5/   85 (5.9%) 

[1924] 595.0-596.0 sec   115 KBytes   941 Kbits/sec  5.511 ms    4/   84 (4.8%) 

[1924] 596.0-597.0 sec   116 KBytes   953 Kbits/sec  9.027 ms    5/   86 (5.8%) 

[1924] 597.0-598.0 sec   116 KBytes   953 Kbits/sec  4.183 ms    4/   85 (4.7%) 

[1924] 598.0-599.0 sec   115 KBytes   941 Kbits/sec  7.172 ms    6/   86 (7%) 

[1924] 599.0-600.0 sec   116 KBytes   953 Kbits/sec  7.661 ms    4/   85 (4.7%) 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1924]  0.0-600.5 sec  69424 KBytes   947 Kbits/sec  4.873 ms 2600/50961 (5.1%) 

 

Table 4: 10-second jperf output from IPv4 multicast receiver in dual-stack network 
 
 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928] 591.0-592.0 sec   116 KBytes   953 Kbits/sec  5.237 ms    4/   85 (4.7%) 

[1928] 592.0-593.0 sec   115 KBytes   941 Kbits/sec  6.996 ms    5/   85 (5.9%) 

[1928] 593.0-594.0 sec   116 KBytes   953 Kbits/sec  5.481 ms    5/   86 (5.8%) 

[1928] 594.0-595.0 sec   115 KBytes   941 Kbits/sec  5.986 ms    4/   84 (4.8%) 

[1928] 595.0-596.0 sec   118 KBytes   964 Kbits/sec  6.764 ms    4/   86 (4.7%) 

[1928] 596.0-597.0 sec   115 KBytes   941 Kbits/sec  6.676 ms    4/   84 (4.8%) 

[1928] 597.0-598.0 sec   116 KBytes   953 Kbits/sec  5.115 ms    4/   85 (4.7%) 
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[1928] 598.0-599.0 sec   115 KBytes   941 Kbits/sec  6.401 ms    5/   85 (5.9%) 

[1928] 599.0-600.0 sec   116 KBytes   953 Kbits/sec  5.288 ms    4/   85 (4.7%) 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928]  0.0-600.4 sec  69519 KBytes   949 Kbits/sec  7.775 ms 2595/51022 (5.1%) 

 

Table 5: 10-second jperf output from IPv6 multicast receiver in dual-stack network 

 

From the screenshots it can be seen that for every interval of packet transmission, there is some 

packet loss. 

 

Two 1-hour tests were also conducted and packet loss was observed in both the test cases.  

The table below shows the throughput for an IPv4 multicast receiver and an IPv6 multicast 

receiver for all the ten 10-minute tests: 

 

10-minute 

test 

Dual-stack IPv4 

multicast receiver 

throughput (%) 

Dual-stack IPv6 

multicast receiver 

throughput (%) 

1 94.84 94.988 

2 94.871 94.966 

3 94.863 94.914 

4 94.898 94.932 

5 94.88 94.959 

6 94.913 94.931 

7 94.837 94.934 

8 94.79 94.955 

9 94.844 94.962 

10 94.897 94.952 

 

Table 6: Throughput for IPv4 and IPv6 receivers in dual-stack network 
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For all the tests conducted in all the four scenarios, a few sample results were obtained from a 

multicast receiver in the same subnet as the source and consistently, the jitter was 0 ms in most 

cases and less than 2 ms in other cases. So it can be concluded that any variation in latency and 

packet loss was caused due to the routing of the multicast traffic across the four routers. This 

result is significant in this dual-stack scenario, where the multicast receiver residing in the same 

subnet as the source has negligible jitter and packet loss. A screenshot of an IPv4 host on the 

same subnet is shown below: 

 

 

 
Figure 15: IPv4 multicast receiver in the same subnet as the source in dual-stack network 
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[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928] 591.0-592.0 sec   122 KBytes  1000 Kbits/sec  3.155 ms    0/   85 (0%) 

[1928] 592.0-593.0 sec   122 KBytes  1000 Kbits/sec  0.254 ms    0/   85 (0%) 

[1928] 593.0-594.0 sec   122 KBytes  1000 Kbits/sec  0.022 ms    0/   85 (0%) 

[1928] 594.0-595.0 sec   122 KBytes  1000 Kbits/sec  2.773 ms    0/   85 (0%) 

[1928] 595.0-596.0 sec   122 KBytes  1000 Kbits/sec  0.450 ms    0/   85 (0%) 

[1928] 596.0-597.0 sec   122 KBytes  1000 Kbits/sec  0.011 ms    0/   85 (0%) 

[1928] 597.0-598.0 sec   122 KBytes  1000 Kbits/sec  0.879 ms    0/   85 (0%) 

[1928] 598.0-599.0 sec   122 KBytes  1000 Kbits/sec  2.891 ms    0/   85 (0%) 

[1928] 599.0-600.0 sec   122 KBytes  1000 Kbits/sec  1.794 ms    0/   85 (0%) 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928]  0.0-600.0 sec  73207 KBytes   999 Kbits/sec  1.682 ms    2/50998 (0.0039%) 

 

Table 7: 10-second jperf output from IPv6 multicast receiver in the same subnet as the source in 

a dual-stack network 

 

 

9.3.2 Protocol Overheads 

 
As in the case of the previous scenarios, the routing protocol PIM does not contribute to any 

significant router traffic as can be seen from the capture below. Every 30 seconds, hello packets 

are exchanged and it can be seen from this Wireshark capture for both IPv4 and IPv6 multicast. 

 

 
 
Figure 16: PIM hello packets for IPv4-IPv6 dual-stack multicast 

 

 

 

9.4 IPv4-IPv6 network – GRE Tunneling 

 
This scenario is one that is most likely to occur during the interim period when the transition 

from an IPv4 only network to an IPv6 only network takes place. While ISPs may start the 

migration, end users may not make the transition at the same pace. The GRE tunnel was 
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configured to route the IPv4 multicast traffic across an IPv6 backbone. Refer to Appendix for 

sample router configuration.  

 

9.4.1 Throughput and Jitter 

Similar to an IPv4 or IPv6 only network, this network also did not have much jitter and had no 

packet loss during all the tests, which can be seen from the jperf screenshot and outputs below: 

 

 
 

Figure 17: Sample jperf screenshot from IPv4 multicast receiver across GRE tunnel  

 

 

The last ten seconds of the jperf output was as below:  

 

 

 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928] 591.0-592.0 sec   122 KBytes  1000 Kbits/sec  0.002 ms    0/   85 (0%) 
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[1928] 592.0-593.0 sec   122 KBytes  1000 Kbits/sec  0.000 ms    0/   85 (0%) 

[1928] 593.0-594.0 sec   122 KBytes  1000 Kbits/sec  0.000 ms    0/   85 (0%) 

[1928] 594.0-595.0 sec   122 KBytes  1000 Kbits/sec  0.000 ms    0/   85 (0%) 

[1928] 595.0-596.0 sec   122 KBytes  1000 Kbits/sec  0.000 ms    0/   85 (0%) 

[1928] 596.0-597.0 sec   122 KBytes  1000 Kbits/sec  0.000 ms    0/   85 (0%) 

[1928] 597.0-598.0 sec   122 KBytes  1000 Kbits/sec  1.078 ms    0/   85 (0%) 

[1928] 598.0-599.0 sec   122 KBytes  1000 Kbits/sec  0.004 ms    0/   85 (0%) 

[1928] 599.0-600.0 sec   122 KBytes  1000 Kbits/sec  0.118 ms    0/   85 (0%) 

[ ID] Interval       Transfer     Bandwidth       Jitter   Lost/Total Datagrams 

[1928]  0.0-600.0 sec  73244 KBytes  1000 Kbits/sec  0.111 ms    0/51022 (0%) 

 

Table 8: 10-second jperf output from IPv4 multicast receiver across GRE tunnel 

 

In this sample, the jitter was 0.111 ms with no packet loss. During all the sample tests the jitter 

ranged from 0 ms to   7.792 ms.  

 

9.4.2 Protocol Overhead 

As in the case of all the scenarios, the only traffic that PIM generated was the hello packets at 

30-second intervals. This can be seen from the Wireshark capture below, where only the PIM 

traffic has been filtered out.  

 

 

Figure 18: PIM hello packets for IPv4-IPv6 GRE tunneled network multicast  
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9.5 Graphical representation of results 

 
The 10-minute and 1-hour test results collected from the different scenarios were plotted in graph 

charts.  

 

Figure 19: 10-minute multicast tests for IPv4, IPv6 and GRE tunneled networks 

 

 

 
Figure 20: 10-minute multicast tests for dual-stack network 
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Figure 21: 1-hr multicast tests for IPv4, IPv6 and GRE tunneled networks 

Note: The values on the graphs indicate the jitter was 0 ms in some of the tests 

 

 

 
Figure 22: 1-hr multicast tests for dual-stack network 
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10 Conclusions from experimental results 

 
The same set of outputs was gathered from an all IPv4 and an all IPv6 network. While the 

difference in the results is not significantly different, the results disprove the hypothesis of this 

thesis that the protocol overhead, jitter and throughput in an IPv6 network would be significantly 

larger than an IPv4 network, due to its larger address space. The protocol overheads in both the 

networks remained the same.  

 

In the experiments conducted in this thesis, the payload in the case of IPv4 and IPv6 was kept 

constant. The interface Maximum Transfer Units (MTUs) were kept at their default values - PC 

Network Interface Cards (NICs) had the default MTU of 1500 and the Cisco routers were also 

left at the default value of 1500. In the case of IPv4, there was no fragmentation, whereas in IPv6 

the fragmentation was handled by the host. Even with the additional task of fragmentation, there 

was no deterioration in the performance of the IPv6 network, which proves that IPv6 handled the 

fragmentation efficiently. A future study could be conducted with varying MTUs/packet sizes 

across the network and see how it affects the performance.  

 

Moreover, since IPv6 was designed as a replacement for IPv4, it was designed to be better than 

IPv4. The IPv6 header is simpler than an IPv4 header. For instance, the options field, which is 

included in the IPv4 header, is an extension in the IPv6 header. So without any options, the IPv6 

header is not as complex as an IPv4 header. Checksum, for error detection in IPv4, is eliminated 

in IPv6 (other layers take care of error detection). More information on IPv6 design can be 

obtained from its RFC [20].  
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In the case of the interim period during the transition from IPv4 to IPv6, both protocols would 

co-exist. From the experimental results, it can be seen that an end-to-end dual-stack network 

experiences more packet loss as compared to tunneling. It has to be noted though, that in the case 

of the dual-stack network, there were two multicast streams – one for IPv4 and one for IPv6. 

Running multiple streams of multicast traffic on the different scenarios has been proposed as a 

future work. This would help in understanding if tunneling is a better option thank dual-stack in 

the case of mixed IPv6-IPv6 networks.    

 

11 Future Work 

 
• All the tests were conducted in a lab environment, with no other traffic, except for 

that generated for experimental purposes. As a next step, other traffic can be 

introduced into the network, to study the performance in a closer to real-world setup. 

 

• Further complexity can be introduced into the network, by adding more multicast 

groups and receivers being members of more than one multicast group. This would 

help in understanding what latency/jitter the router introduces when it has to process 

more multicast traffic and multicast routing decisions.  

 

• A similar study can be conducted to test other unicast and multicast routing protocols 

that are used. This would help in understanding how different protocols perform and 

aid in deciding a protocol that would best suit a network.  
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• The impact of scalability can be studied by increasing the number of multicast 

sources and receivers either in an experimental setup where feasible or using a 

simulation tool.  
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12 Appendix 

 

12.1 Sample IPv4 Router configuration 

 
! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname R4v4 

! 

boot-start-marker 

boot-end-marker 

! 

enable password cisco 

! 

no aaa new-model 

no network-clock-participate wic 2  

no network-clock-participate wic 3  

! 

! 

ip cef 

! 

! 

ip multicast-routing  

ip auth-proxy max-nodata-conns 3 

ip admission max-nodata-conns 3 

! 

! 

voice-card 0 

 no dspfarm 

! 

! 

 controller T1 0/2/0 

 framing esf 

 linecode b8zs 

! 

controller T1 0/3/0 

 framing esf 

 linecode b8zs 

! 

!  

interface FastEthernet0/0 

 ip address 10.10.20.1 255.255.255.0 

 ip pim sparse-mode 
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 ip igmp static-group 239.255.255.250 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1 

 no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1/0 

! 

interface FastEthernet0/1/1 

! 

interface FastEthernet0/1/2 

! 

interface FastEthernet0/1/3 

! 

interface Serial0/0/0 

 no ip address 

 shutdown 

 no fair-queue 

 clock rate 2000000 

! 

interface Serial0/0/1 

 ip address 192.168.3.2 255.255.255.252 

 ip pim sparse-mode 

 ip igmp static-group 239.255.255.250 

! 

interface Vlan1 

 no ip address 

! 

router ospf 4 

 log-adjacency-changes 

 network 10.10.0.0 0.0.255.255 area 0 

 network 192.168.0.0 0.0.255.255 area 0 

! 

ip forward-protocol nd 

! 

! 

ip http server 

no ip http secure-server 

ip pim rp-address 10.10.10.1 

! 

control-plane 

! 
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!line con 0 

line aux 0 

line vty 0 4 

 login 

! 

scheduler allocate 20000 1000 

! 

End 

 
 

12.2 Sample IPv6 router configuration: 
 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname R4v6 

! 

boot-start-marker 

boot-end-marker 

! 

enable password cisco 

! 

no aaa new-model 

no network-clock-participate wic 2  

no network-clock-participate wic 3  

! 

! 

ip cef 

! 

! 

 --More— 

ip auth-proxy max-nodata-conns 3 

ip admission max-nodata-conns 3 

! 

ipv6 unicast-routing 

ipv6 multicast-routing 

! 

voice-card 0 

 no dspfarm 

! 

! 

! 

 --More--  
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controller T1 0/2/0 

 framing esf 

 linecode b8zs 

! 

controller T1 0/3/0 

 framing esf 

 linecode b8zs 

! 

!  

 interface FastEthernet0/0 

 no ip address 

 duplex auto 

 speed auto 

 ipv6 address 2001:179::1/64 

 ipv6 mld static-group FF06::6 

 ipv6 ospf 4 area 0 

! 

interface FastEthernet0/1 

 --More— 

no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1/0 

! 

interface FastEthernet0/1/1 

! 

interface FastEthernet0/1/2 

! 

interface FastEthernet0/1/3 

! 

interface Serial0/0/0 

 no ip address 

 shutdown 

 clock rate 2000000 

! 

interface Serial0/0/1 

 no ip address 

 encapsulation ppp 

 ipv6 address 2001:178::2/64 

 ipv6 mld static-group FF06::6 

 --More— 

ipv6 ospf 4 area 0 

 clock rate 2000000 

! 
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interface Vlan1 

 no ip address 

! 

ip forward-protocol nd 

! 

! 

ip http server 

no ip http secure-server 

! 

snmp-server community public RW 

ipv6 router ospf 4 

 router-id 10.10.40.1 

 log-adjacency-changes 

! 

ipv6 pim rp-address 2001:175::1 

! 

! 

control-plane 

 --More--  

! 

! 

line con 0 

line aux 0 

line vty 0 4 

 login 

! 

scheduler allocate 20000 1000 

! 

end 

 
Notes: 

 

• There are small variations in the configuration of OSPF for IPv4 and IPv6. In OSPF for 

IPv6, every interface has to be explicitly configured to run OSPF. In IPv4, once OSPF is 

configured, the interfaces indirectly start participating in the OSPF process.  

• The router ID that is configured on the routers for neighbor discovery is a 32-bit ID. For 

IPv4, since the address is a 32-bit address, it was used as the router ID. In IPv6, any 32-

bit ID has to be set as the router ID (I chose to use an IPv4 address as the 32-bit router 

ID).  

 

Reference  

http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-ospf.html 
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12.3 Sample IPv4-IPv6 dual-stack configuration: 

 
version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname R4v4v6ds 

! 

boot-start-marker 

boot-end-marker 

! 

no aaa new-model 

no network-clock-participate wic 2  

no network-clock-participate wic 3  

! 

! 

ip cef 

! 

! 

ip multicast-routing  

ip auth-proxy max-nodata-conns 3 

ip admission max-nodata-conns 3 

! 

ipv6 unicast-routing 

ipv6 multicast-routing 

! 

voice-card 0 

 no dspfarm 

! 

! 

controller T1 0/2/0 

 framing esf 

 linecode b8zs 

! 

controller T1 0/3/0 

 framing esf 

 linecode b8zs 

! 

!  

interface FastEthernet0/0 

 ip address 10.10.20.1 255.255.255.0 

 ip pim sparse-mode 

 ip igmp static-group 239.255.255.250 

 ip ospf 4 area 0 

 duplex auto 
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 speed auto 

 ipv6 address 2001:179::1/64 

 ipv6 mld static-group FF06::6 

 ipv6 ospf 4 area 0 

! 

interface FastEthernet0/1 

 no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1/0 

! 

interface FastEthernet0/1/1 

! 

interface FastEthernet0/1/2 

! 

interface FastEthernet0/1/3 

! 

interface Serial0/0/0 

 no ip address 

 shutdown 

 no fair-queue 

 clock rate 2000000 

! 

interface Serial0/0/1 

 ip address 192.168.3.2 255.255.255.252 

 ip pim sparse-mode 

 encapsulation ppp 

 ip igmp static-group 239.255.255.250 

 ip ospf 4 area 0 

 ipv6 address 2001:178::2/64 

 ipv6 mld static-group FF06::6 

 ipv6 ospf 4 area 0 

! 

interface Vlan1 

 no ip address 

! 

router ospf 4 

 log-adjacency-changes 

! 

ip forward-protocol nd 

! 

! 

ip http server 

no ip http secure-server 
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ip pim rp-address 10.10.10.1 

! 

ipv6 router ospf 4 

 router-id 4.4.4.4 

 log-adjacency-changes 

! 

ipv6 pim rp-address 2001:175::1 

! 

control-plane 

! 

! 

line con 0 

line aux 0 

line vty 0 4 

 login 

scheduler allocate 20000 1000 

! 

End 

 

 

12.4 Sample IPv4-IPv6 GRE tunnel configuration: 

 

12.4.a Edge router sample configuration:  

 
version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname R4v4v6gre 

! 

boot-start-marker 

boot-end-marker 

! 

! 

no aaa new-model 

no network-clock-participate wic 2  

no network-clock-participate wic 3  

! 

ip cef 

! 

ip multicast-routing  

ip auth-proxy max-nodata-conns 3 

ip admission max-nodata-conns 3 

! 

ipv6 unicast-routing 
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! 

voice-card 0 

 no dspfarm 

! 

! 

controller T1 0/2/0 

 framing esf 

 linecode b8zs 

! 

controller T1 0/3/0 

 framing esf 

 linecode b8zs 

! 

! 

interface Tunnel10 

 ip address 192.168.1.1 255.255.255.252 

 ip pim sparse-mode 

 ip igmp static-group 239.255.255.250 

 ip ospf 4 area 1 

 ipv6 address 2001:180::1/64 

 tunnel source Serial0/0/1 

 tunnel destination 2001:176::1 

 tunnel mode gre ipv6 

! 

 interface FastEthernet0/0 

 ip address 10.10.20.1 255.255.255.0 

 ip pim sparse-mode 

 ip igmp static-group 239.255.255.250 

 ip ospf 4 area 1 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1 

 no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1/0 

! 

interface FastEthernet0/1/1 

! 

interface FastEthernet0/1/2 

! 

interface FastEthernet0/1/3 

! 
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interface Serial0/0/0 

no ip address 

 shutdown 

 no fair-queue 

 clock rate 2000000 

! 

interface Serial0/0/1 

 no ip address 

 encapsulation ppp 

 ipv6 address 2001:178::2/64 

 ipv6 ospf 4 area 0 

 clock rate 2000000 

! 

interface Vlan1 

 no ip address 

! 

router ospf 4 

 log-adjacency-changes 

! 

ip forward-protocol nd 

! 

! 

ip http server 

no ip http secure-server 

 ip pim rp-address 10.10.10.1 

! 

ipv6 router ospf 4 

 router-id 4.4.4.4 

 log-adjacency-changes 

! 

! 

control-plane 

! 

! 

line con 0 

line aux 0 

 line vty 0 4 

 login 

! 

scheduler allocate 20000 1000 

! 

End 
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12.4.b Core IPv6 router sample configuration: 
 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname R3v4v6gre 

boot-start-marker 

boot-end-marker 

! 

no aaa new-model 

! 

! 

ip cef 

! 

! 

ip auth-proxy max-nodata-conns 3 

ip admission max-nodata-conns 3 

! 

 ipv6 unicast-routing 

! 

voice-card 0 

 no dspfarm 

! 

! 

interface FastEthernet0/0 

 no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1 

 no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1/0 

! 

interface FastEthernet0/1/1 

! 

interface FastEthernet0/1/2 

! 

interface FastEthernet0/1/3 

! 
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interface Serial0/0/0 

no ip address 

 encapsulation ppp 

 ipv6 address 2001:178::1/64 

 ipv6 ospf 3 area 0 

 no fair-queue 

! 

interface Serial0/0/1 

 no ip address 

 encapsulation ppp 

 ipv6 address 2001:177::2/64 

 ipv6 ospf 3 area 0 

 clock rate 2000000 

! 

interface Vlan1 

 no ip address 

! 

ip forward-protocol nd 

! 

! 

ip http server 

no ip http secure-server 

! 

ipv6 router ospf 3 

router-id 3.3.3.3 

 log-adjacency-changes 

! 

! 

control-plane 

! 

! 

line con 0 

line aux 0 

line vty 0 4 

 login 

! 

scheduler allocate 20000 1000 

! 

end 
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12.5 Steps to configure manual IPv6 address on Windows XP: 

 
From command prompt, execute the following commands: 

 

Step 1: Ipv6 install 

 

Once IPv6 is installed successfully, proceed to the next step. 

 

Step 2: ipv6 if 

This command will display all the interfaces on the machine along with the interface indices. 

 

Step 3: ipv6 adu <interface index>/<IPv6 address> 

 

Where Interface index, is the index of the interface for which the IPv6 address is to be 

configured (obtained from Step 2).  

 

To uninstall IPv6 

 

From the command prompt, run the following command: 

 

netsh int ipv6 uninstall  

 
Reference: 

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-

us/sag_ip_v6_pro_inst.mspx?mfr=true 
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