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Abstract

Negative index materials are a subclass of metamaterials which are materials hav-

ing properties that are not found in nature. Present day research regarding meta-

materials indicates that they possess remarkable behavior. This thesis is focused

on a metamaterial-based photonic directional coupler employing a negative index

material (NIM) in one of its waveguides while the other waveguide consists of a

positive index material (PIM). A NIM-PIM directional coupler (DC) exhibits op-

tical feedback even without any actual traditional resonator structure. This feed-

back exists because of the NIM employed in one of the structure’s waveguides.

The ability of a NIM-PIM DC to propagate light in the backward direction indi-

cates the possible use of NIM-PIM DC for any optical component requiring optical

feedback.

We seek to study, for the first time, a laser based on a NIM-PIM DC. Coupled-

mode equations and corresponding solutions have been devised for an active NIM-

PIM DC in which optical gain is introduced. An analysis of the transmittivity and
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reflectivity for the case of a resonator-type optical amplifier has been carried out.

Lasing behavior of an active NIM-PIM directional coupler has also been investi-

gated for the first time. We do so using two approaches: the transmittivity and the

transcendental eigenvalue equation which we derive for the first time. Through-

out the thesis, a distributed feedback (DFB) resonator and standard PIM-PIM DC

have been detailed for comparison.

Our equations and solutions are general enough to consider a range of optical

gain configurations. In particular, we study three important cases of NIM optical

gain: 1) equal to PIM gain; 2) zero gain; 3) negative gain, i.e. loss. The results show

that that it is possible to achieve lasing with a NIM-PIM DC similar to that of an

a DFB laser if the same amount of gain is introduced in both of its waveguides.

It is also possible for the device to lase in the case of gain in the PIM waveguide

and no gain in the NIM waveguide. The more practical case involving loss in

the NIM waveguide has also been investigated and found to naturally exhibit the

much sought-after case of single mode lasing operation. Thus, this research lays

the foundation for a new kind of single-mode laser.
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CHAPTER 1

INTRODUCTION

1.1 METAMATERIALS

Metamaterials is a field with many exciting possibilities and can be rightly termed

as one of the hottest areas of present day optical research.

Metamaterials are artificial materials having properties that are pre-fabricated

and are not found in naturally occurring materials. "Meta" is a Greek term which

means, "beyond" hence, the term meta-material indicates something that does not

occur naturally i.e. man-made. These materials are very small structures and allow

for manipulation of the trajectory of light or acoustic waves through a material [1].

In the laboratory, metamaterials are fabricated as periodic structures. Each such

structure is a meta atom or meta molecule. Each structure is carefully lined up

to alter the object’s properties and provide custom features. These may include
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CHAPTER 1: INTRODUCTION

properties like permeability and permittivity, affecting how waves are transmit-

ted across the material. The size of each structure depends on the electromagnetic

radiation it interacts with. Thus materials employed for microwave applications

will have a structure size on the millimeter scale while photonic metamaterials

will have a structure size smaller than the wavelength of light i.e. in the nano me-

ter range [2]. Since the structure size is very small, metamaterials may appear as

homogeneous to the interacting wavelength [1].

Metamaterials are used in the research fields of imaging and lithography. They

are also being studied for more efficient data storage, computer chips and much

lighter, faster and durable microprocessors. Their special features may be ex-

ploited to produce special antennas and enhanced transmission lines etc [3].

Some of the challenges encountered in fabricating metamaterials include the fact

that the period of the material has to be in the sub wavelength region. Current

lithographic techniques are usually insufficient to satisfy this condition. However,

advancement in some of the fabrication procedures has greatly helped in over-

coming such limitations. Modern fabrication methods like direct laser writing and

nano imprint lithography can also be employed [3]. Metamaterials usually exhibit

high optical losses [2]. Such limitations maybe reduced by the introduction of gain

medium or through some other novel approaches [3].

Among the various classes of metamaterials, negative index materials (NIMS)

2



CHAPTER 1: INTRODUCTION

have received considerable importance both from researchers and engineers.

1.2 NEGATIVE INDEX MATERIALS (NIMs)

Refraction is one of the most important behaviors of light and can be described

as the bending of light. Refraction explains certain phenomena like how a small

coin placed in a pond of water appears closer to the surface than it actually is to an

observer standing near the pond.

Every medium has an index of refraction. When light travels from one medium

to another, a change in its trajectory can occur due to difference in the refractive

indexes of the two mediums. If the light enters from a rarer medium to a denser

medium, it bends towards the normal. The reverse is true when traveling from

denser to a rarer medium. The normal can be defined as an imaginary line per-

pendicular to the interface. Naturally occurring materials possess a positive index

of refraction. This fact however, does not mean that a material cannot possess a

negative index of refraction. A medium with a negative index of refraction results

in bending light the ’wrong way’. Such materials are known as negative index ma-

terials (NIM) and have negative permittivity and negative permeability.

The phenomenon of negative permittivity and permeability was investigated

by a Russian scientist Victor Veselago around four decades back [5]. Veselago re-

ported that such materials possess anti parallel Poynting vector and phase veloc-

3



CHAPTER 1: INTRODUCTION

ity. Thus it can be stated that in a negative index material energy flows in the same

direction as the conventional positive index materials. However, their phase ve-

locities are oppositely directed. Negative index materials (NIMs) do not occur in

nature and are a classified as a subclass of metamaterials.

The concept of NIMs having negative ’n’ has a revolutionary impact on present

day optical research. The fact that index of refraction can be negative, has made

researchers consider revising basic formulae of optics. More recent contributions

are from John Pendry who predicted the famous NIM based superlens, besides

making other significant contributions to this field [6]. Some of the interesting

applications of negative index materials include invisibility cloaks, optical nano-

lithography, super lens, antennae with advanced properties of reception and range

and enhancing MRI.

1.3 NIM-PIM DIRECTIONAL COUPLERS

The proposed research for this thesis aims at understanding the performance of a

photonic directional couplern(DC) in which one of its waveguides is a NIM and

the other waveguide is a positive index material (PIM), which we call a NIM-PIM

DC. Such couplers with opposite index materials result in backward propagation

of light, establishing a behavior similar to that of fiber Bragg grating, where light

is reflected back. Thus a NIM-PIM DC acts like a resonator, which is remarkable

4



CHAPTER 1: INTRODUCTION

since there is no resonator structure in the DC.

The ability of a NIM-PIM photonic coupler to propagate light in the backward

direction indicates the possible use of NIM-PIM waveguides in enhanced opti-

cal components. NIMs can be used for generating certain linear and non-linear

optical phenomena including optical parametric amplification (OPA) and optical

bi-stability [4] [8] [9]. Directional couplers with negative index material (backward

coupling) have been reported by Alu, Engheta and Litchinitser. While Alu and

Engheta reported on the linear performance of a NIM-PIM directional coupler [7],

Litchinitser focused on its non-linear performance [8]. Present day research regard-

ing optical NIM-PIM coupling phenomena indicate that it could result in optical

components with capabilities such as optical signal processing, optical memory,

buffering and optical switching and routing.

1.4 OVERVIEW OF THESIS

Chapter two concentrates on solving equations and analyzing the behavior of dif-

ferent types of passive directional couplers. Section one introduces the coupled-

mode equations which have been developed describing the propagation of light

through the linear optical DC. These equations are solved for the conventional

PIM-PIM DC. Expressions for power exchange at the output ports are calculated

and analyzed with the help of matlab plots. Section two focuses upon a linear

5



CHAPTER 1: INTRODUCTION

DC comprised of a NIM-PIM waveguide structure. The dispersion relation along

with a solution for the transmitted and reflected spectrum using the coupled-mode

equations for NIM-PIM DC is analyzed in the same section. Section three explores

a conventional distributed feedback (DFB) resonator structure along with its gov-

erning equations and solutions, which are found to be quite like the NIM-PIM DC

case.

Chapter three concentrates on solving equations and analyzing the behavior of

an active NIM-PIM DC for the first time. This chapter also demonstrates the effect

of introducing equal and variable amount of gain in the two waveguides. Expres-

sions for transmittivity and reflectivity are derived using the coupler boundary

conditions. Variation in the gain in one or both the waveguides and its effect on

the transmittivity peaks is investigated. Section three deals with the addition of

gain to the conventional DFB resonator and derives the solutions accordingly.

Chapter four investigates and analyzes the lasing behavior of an active NIM-

PIM DC. Coupled-mode equations including gain are solved and investigated us-

ing the lasing boundary conditions. The well-known transcendental eigenvalue

equation for an active DFB resonator is derived. A numerical solution is obtained

in order to determine the values of gain and detuning at lasing. All of this analysis

is modeled in Matlab. Section two of this chapter involves solving the coupled-

mode equations using the lasing boundary conditions for the active NIM-PIM DC

6



CHAPTER 1: INTRODUCTION

for the first time. Lasing behavior of the coupler for the case when both the waveg-

uides have equal gain is modeled and compared with the lasing behavior of the ac-

tive DFB resonator. Section three addresses unequal amounts of gain in NIM and

PIM waveguides. In particular, we study the conditions for single-mode operation

of a NIM-PIM DC laser.

7



CHAPTER 2

PASSIVE NIM-PIM DIRECIONAL

COUPLER

2.1 OPTICAL WAVEGUIDES AND COUPLED-MODE

THEORY

An optical waveguide constitutes the basic physical structure in integrated pho-

tonics. A waveguide guides the optical waves by essentially confining it within its

boundaries. This confinement is achieved by the principle of total internal reflec-

tion of light where a high index medium is surrounded by a medium with lower

index of refraction.

A set of modes can be used to represent the electromagnetic waves travelling in

a waveguide. A mode can be defined as the transverse distribution of the electro-

8



CHAPTER 2: PASSIVE NIM-PIM DIRECIONAL COUPLER

magnetic field intensity passing through the waveguide. Optical waveguides can

be classified on the number of supported modes i.e. single mode or multimode,

the refractive index (gradient, step-index) and the geometry of the waveguide, i.e.

the number of dimensions in which the light is confined [10].

Structures that confine light in a single dimension are classified as the planar

waveguides. Channel waveguides confine light in two dimensions [10].The struc-

ture that we consider in this thesis are comprised of channel waveguides.

Coupled-mode theory explains the energy transfer between modes of a waveg-

uide. As mentioned earlier, a waveguide structure can support a number of modes.

These modes are independent of each other while propagating across the structure.

However, if some sort of perturbation is introduced, then the modes are no longer

independent and may be mutually coupled i.e. exchanging energy. In order to

understand the propagation of such coupled waveguide modes, Maxwell’s equa-

tions along with exact boundary conditions can be employed. Though this method

is more accurate and provides an exact solution, it is fairly tedious and complicated

[11].

Perturbation theory is another approach to explain the mentioned phenomena.

It may provide approximate but fairly accurate results and is much simpler and

more widely used. If an isolated waveguide is replaced by a system of waveg-

uides i.e. two or more waveguides placed close to each other, their mode structure

9
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is disturbed. The new modes generated by the perturbation are different from the

original modes and exhibit modified propagation constants. These modes propa-

gate along the waveguide and interact with each other to exchange energy. This

exchange of power is more significant when the interacting modes have the same

phase velocity.

This phenomenon of exchange of power between a coupled waveguide system

has led into the design of many components of optical communication systems.

Such components include optical couplers, optical filters, optical modulators and

switches.

2.2 PASSIVE PIM-PIM DIRECIONAL COUPLER

2.2.1 Directional Coupler

A directional coupler (DC) is a device that couples or splits several optical inputs.

A 3dB photonic directional coupler as shown in Figure 2.1, allows light from one

side to split equally and exit the opposite side. In Figure 2.1 two identical and

single mode waveguides A and B are placed parallel to each other. Both these

waveguides are composed of conventional positive index material and have for-

ward propagating modes. Waveguide A has input energy introduced at ζ = 0

which results in out1 and out2 at ζ = 1. Such directional optical couplers are very

10



CHAPTER 2: PASSIVE NIM-PIM DIRECIONAL COUPLER

important in-line, passive components of modern fiber optic systems [12].

Figure 2.1: PIM-PIM Directional Coupler

Couplers can be symmetric or asymmetric depending upon the core of the two

waveguides. In case of symmetric couplers, the two cores must be identical in all

respects. The amount of coupling that takes place can be controlled by the diam-

eter of the cores in the coupling region, the distance between the two cores in the

coupling region, the length of the coupler, and the operating wavelength.

When two waveguides are placed close to each other, a coupling region is cre-

ated between them. Within this coupling region, the mode fields of these waveg-

uides overlap each other and create coupled modes which facilitates the exchange

of power between the two waveguides at periodic intervals.

Optical couplers, currently in commercial use use the conventional positive

index material (PIM-PIM) for each waveguide. In case of PIM-PIM DC the two

modes are co-directional, resulting in forward coupling.

11



CHAPTER 2: PASSIVE NIM-PIM DIRECIONAL COUPLER

2.2.2 Coupled-Mode Equations and Generalized Solution

The coupled-mode equations for the passive PIM-PIM DC are [13]:

dEa(z)
dz

= iκe−2i∆βzEb(z) (2.2.1)

dEb(z)
dz

= iκe+2i∆βzEa(z) (2.2.2)

where κ is the coupling co-efficient, ∆β is the detuning between the two waveg-

uides ∆β = β1− β2, β1 = 2π
λ0

n1 is the wavenumber of light wave in the first waveg-

uide, and β2 = 2π
λ0

n2 expresses the wavenumber of light in the second waveguide.

Ea and Eb represent the field in the forward and backward traveling modes respec-

tively. Normalizing the equations above by introducing the quantity ’L’ yields:

L
dEa(z)

dz
= iκLe−2i∆β L

L zEb(z) (2.2.3)

L
dEb(z)

dz
= iκLe+2i∆β L

L zEa(z). (2.2.4)

Introducing ζ = z/L, equations (2.2.3) and (2.2.4) become:

dEa(ζ)

dζ
= iκLe−2i∆βLζ Eb(ζ)

dEb(ζ)

dζ
= iκLe+2i∆βLζ Ea(ζ)

dEa(ζ)

dζ
= iκe−2i∆βζ Eb(ζ) (2.2.5)

dEb(ζ)

dζ
= iκe+2i∆βζ Ea(ζ). (2.2.6)

where κ = κL and ∆β = ∆βL represent the normalized coupling coefficient and

normalized waveguide detuning respectively.

12



CHAPTER 2: PASSIVE NIM-PIM DIRECIONAL COUPLER

The two electromagnetic modes with amplitudes A and B respectively, are as-

sumed as:

Ea(z) = Ae−i∆βz

Eb(z) = Be+i∆βz.

The normalized form for Ea and Eb becomes:

Ea(z) = Ae−i∆β z
L L

Ea(ζ) = Ae−i∆βLζ

Ea(ζ) = Ae−i∆βζ . (2.2.7)

Eb(z) = Be+i∆β z
L L

Eb(ζ) = Be+i∆βLζ

Eb(ζ) = Be+i∆βζ . (2.2.8)

Solving equation (2.2.5) with the help of equations (2.2.7) and (2.2.8) yields:

d(Ae−i∆βζ)

dζ
= iκe−2i∆βζ(Be+i∆βζ)

A
d

dζ
e−i∆βζ = iκBe−2i∆βζ+i∆βζ

dA
dζ

+ A(−i∆β) = iκB

dA
dζ

= i∆βA + iκB. (2.2.9)

13
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Solving equation (2.2.6) with the help of equations (2.2.7) and (2.2.8) yields:

d(Bei∆βζ)

dζ
= iκe+2i∆βζ(Ae−i∆βζ)

B
d

dζ
e+i∆βζ = iκAe+2i∆βζ−i∆βζ

dB
dζ

+ B(+i∆β) = iκA

dB
dζ

= −i∆βB + iκA. (2.2.10)

Equations (2.2.9) and (2.2.10) are the main equations that we will be solving for

PIM-PIM coupling.

A general solution to the equations can be assumed as:

A(z) = A1eiqz + A2e−iqz

B(z) = B1eiqz + B2e−iqz

where q is the unknown eigenvalue of the solutions. Normalizing the general so-

lution outlined above yields:

A(ζ) = A1eiqζ + A2e−iqζ (2.2.11)

B(ζ) = B1eiqζ + B2e−iqζ (2.2.12)

where q = qL is the normalized eigenvalue.
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2.2.3 Dispersion Relation and Eigenvalue

Substituting equations (2.2.11) and (2.2.12) in (2.2.9) yields:

d
dζ

(A1eiqζ + A2e−iqζ) = (i∆β)(A1eiqζ + A2e−iqζ) + iκ(B1eiqζ + B2e−iqζ)

A1(iq)eiqζ + A2(−iq)e−iqζ = (i∆β)(A1eiqζ + A2e−iqζ) + iκ(B1eiqζ + B2e−iqζ).

Equating coefficients of eiqζ yields:

A1(iq)eiqζ = (i∆β)A1eiqζ + iκB1eiqζ

(q− ∆β)A1 = κB1. (2.2.13)

Equating coefficients of e−iqζ yields:

A2(−iq)e−iqζ = (i∆β)A2e−iqζ + iκB2e−iqζ

(q + ∆β)A2 = −κB2. (2.2.14)

Substituting equations (2.2.11) and (2.2.12) in (2.2.10) yields:

d
dζ

(B1eiqζ + B2e−iqζ) = −(i∆β)(B1eiqζ + B2e−iqζ) + iκ(A1eiqζ + A2e−iqζ)

(B1(iqeiqζ + B2 − (iqe−iqζ) = −(i∆β)(B1eiqζ + B2e−iqζ) + iκ(A1eiqζ + A2e−iqζ).

Equating coefficients of eiqζ yields:

B1(iq)eiqζ = −(i∆β)B1eiqζ + iκA1eiqζ

(q + ∆β)B1 = κA1. (2.2.15)
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Equating coefficients of e−iqζ yields:

B2(−iq)e−iqζ = −(i∆β)B2e−iqζ + iκA2e−iqζ

(q− ∆β)B2 = −κA2. (2.2.16)

Equations (2.2.13), (2.2.14),(2.2.15) and (2.2.16) relate the constants A1, A2, B1, and

B2. Substituting (2.2.15) in (2.2.13) allows us to defines the unknown eigenvalue q

in terms of the known κ and ∆β.

(q− ∆β)A1 = κB1

(q− ∆β)A1 = κ
κA1

q + ∆β

q2 = ∆β
2
+ κ2

q = ±
√

∆β
2
+ κ2. (2.2.17)

2.2.4 Boundary Conditions and Specific Solution

Suppose we are transferring energy from waveguide A to waveguide B. This means

that initially at ζ = 0, all energy is in A and B(ζ = 0) = 0. Using these values in

equation (2.2.12) yields:

B(ζ) = B1eiqζ + B2e−iqζ

0 = B1 + B2

B2 = −B1.
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Substituting the above expression in equation (2.2.12) yields:

B(ζ) = B1eiqζ + B2e−iqζ

B(ζ) = B1eiqζ − B1e−iqζ .

Using the identity eiα − e−iα = 2i sin(α) yields:

B(ζ) = 2iB1 sin(qζ).

We can now find A(ζ) as follows:

dB
dζ

= −(i∆β)B + iκA

d(2iB1 sin(qζ))

dζ
= −(i∆β)2iB1 sin(qζ) + iκA

2B1d(sin(qζ))

dζ
= −(i∆β)2B1 sin(qζ) + κA

2B1q cos(qζ) = i∆β2B1 sin(qζ) + κA

κA = 2B1q cos(qζ)− i∆β2B1 sin(qζ)

A(ζ) =
2B1

κ
{q cos(qζ)− i∆β sin(qζ)}. (2.2.18)
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2.2.5 Power Exchange (Output ports)

As shown in Figure 2.1, waveguide A is excited at ζ = 0. Hence, the initial power

P0 pumped into waveguide A at ζ = 0 can be determined as follows:

A(ζ) =
2B1

κ
{q cos(qζ)− i∆β sin(qζ)}

A(ζ = 0) =
2B1

κ
q

P0 = |A(ζ = 0)|2 = (
2B1

κ
)2|q|2.

The power in waveguide A, PA is:

PA = |PA(ζ)|2

PA = P0| cos (qζ) +
∆β

q
sin (qζ)|2.

The field in waveguide B at ζ = 1 is:

B(ζ) = 2iB1 sin(qζ)

B(ζ = 1) = 2iB1 sin(q).

The power in waveguide B, PB is:

PB = |PB(ζ)|2 = P0κ2|sin (qζ)

q
|2.

The expression for transmittivity T at out1 in Figure 2.1 [13]:

T1 =
PA(ζ = 1)
PA(ζ = 0)

=
|q cos q + i∆β sin q|2

|q|2 .
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Expression for transmittivity at out2 in Figure 2.1 [13]:

T2 =
PB(ζ = 1)
PA(ζ = 0)

=
|κ sin q|2
|q|2 .

Neither T1 nor T2 depend on the sign of q.

Figure 2.2: The well-known exchange of power between the two waveguides for a PIM-

PIM DC. κ = 7 and ∆β = 0.5

Figure 2.2 shows the sinusoidal exchange of normalized power between the

singlemode waveguides A and B. It is fairly evident from the plot that at ζ = 0

all the power is in input waveguide A and the power in B(ζ) = 0 is minimum.
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For this plot, we have selected coupling coefficient κ = 7. Propagation constants

for the two modes are not the same, resulting in a phase difference as the fields

propagate. This phase difference of π and 2π leads to the periodic exchange of

power between the two waveguides. Generally, a significant amount of power

exchange occurs when the two propagation constants are close to each other.

2.3 PASSIVE NIM-PIM DIRECIONAL COUPLER

2.3.1 Directional Coupler

A NIM-PIM DC is a two waveguide structure just like the conventional PIM-PIM

DC. However, as opposed to the conventional coupler, one of the waveguides em-

ploys a negative index material (NIM). NIM waveguides can guide its modes in a

direction opposite to that of PIM waveguides. Thus a negative index of refraction

can act as a key component in providing feedback and in coupling the forward and

backward propagating modes of the optical waves which may result in exchange

of power between the forward and backward propagating modes.
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Figure 2.3: NIM-PIM Directional Coupler

In Figure 2.3 two single mode waveguides A and B are placed parallel to each

other. Waveguide A is composed of conventional positive index material (PIM)

and guides its mode in forward direction. Waveguide B is composed of negative

index material (NIM) and has a backward propagating mode. Input energry is

transferred to waveguide A at ζ = 0. Once the waveguides are brought sufficiently

close to each other, a coupling region is created and exchange of power between

the oppositely directed modes takes place.

2.3.2 Coupled-Mode Equations and Generalized Solution

The coupled-mode equations for the passive NIM-PIM DC are [14][15]:

d
dζ

Ea(ζ) = +iκe−2i∆βζ Eb(ζ) (2.3.1)

d
dζ

Eb(ζ) = −iκe+2i∆βζ Ea(ζ) (2.3.2)
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where κ is the coupling co-efficient, ∆β is the detuning between the two waveg-

uides ∆β = β1 − β2, β1 = 2π
λ0

n1 is the wavenumber of light wave in the PIM

waveguide, and β2 = 2π
λ0

n2 expresses the wavenumber of light wave in the NIM

waveguide. Ea and Eb represent the forward and backward traveling modes. The

two electromagnetic modes with amplitudes A and B along with rotating frames

e−i∆βζ and e+i∆βζ respectively, are defined as:

Ea(ζ) = Ae−i∆βζ (2.3.3)

Eb(ζ) = Be+i∆βζ . (2.3.4)

Solving equation (2.3.1) with the help of equations (2.3.3) and (2.3.4) yields:

d(Ae−i∆βζ)/dζ = iκe−2i∆βζ(Be+i∆βζ)

A
d

dζ
e−i∆βζ = iκBe−2i∆βζ+i∆βζ

dA
dζ

+ A(−i∆β) = iκB

dA
dζ

= i∆βA + iκB. (2.3.5)
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Solving equation (2.3.2) with the help of equations (2.3.3) and (2.3.4) yields:

d(Bei∆βζ)/dζ = −iκe+2i∆βζ(Ae−i∆βζ)

dB
dζ

e+i∆βζ = −iκAe+2i∆βζ−i∆βζ

B
d

dζ
+ B(+i∆β) = −iκA

dB
dζ

= −i∆βB− iκA

−dB
dζ

= i∆βB + iκA. (2.3.6)

Equations (2.3.5) and (2.3.6) are the main equations that we will be solving for the

NIM-PIM DC. Comparing the mentioned equations to the coupled-mode equa-

tions (2.2.9) and (2.2.10) for a standard directional coupler (PIM-PIM DC), a dif-

ference of sign is observed for the equation representing the propagation in the

second waveguide. This essentially states the fact that the choice of this sign de-

pends on the direction of coupling. In case of codirectional coupling, a positive

sign is chosen for both the equations. If the two modes are counter propagating, a

negative sign is the valid choice [14]. A general solution can be postulated as:

A(ζ) = A1eiqζ + A2e−iqζ (2.3.7)

B(ζ) = B1eiqζ + B2e−iqζ (2.3.8)

where q = qL.
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2.3.3 Dispersion Relation and Eigenvalue

Substituting equations (2.3.7) and (2.3.8) in (2.3.5) yields:

d
dζ

(A1eiqζ + A2e−iqζ) = (i∆β)(A1eiqζ + A2e−iqζ) + iκ(B1eiqζ + B2e−iqζ)

A1(iq)eiqζ + A2(−iq)e−iqζ = (i∆β)(A1eiqζ + A2e−iqζ) + iκ(B1eiqζ + B2e−iqζ).

Equating coefficients of eiqζ yields:

A1(iq)eiqζ = (i∆β)A1eiqζ + iκB1eiqζ

(q− ∆β)A1 = κB1. (2.3.9)

Equating coefficients of e−iqζ yields:

A2(−iq)e−iqζ = (i∆β)A2e−iqζ + iκB2e−iqζ

(q + ∆β)A2 = −κB2. (2.3.10)

Substituting equations (2.3.7) and (2.3.8) in (2.3.6) yields:

d
dζ

(B1eiqζ + B2e−iqζ) = −(i∆β)(B1eiqζ + B2e−iqζ)− iκ(A1eiqζ + A2e−iqζ)

B1(iq)eiqζ + B2(−iq)e−iqζ) = −(i∆β)(B1eiqζ + B2e−iqζ)− iκ(A1eiqζ + A2e−iqζ).

Equating coefficients of eiqζ yields:

B1(iq)eiqζ = −(i∆β)B1eiqζ − iκA1eiqζ

(q + ∆β)B1 = −κA1. (2.3.11)
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Equating coefficients of e−iqζ yields:

B2(−iq)e−iqζ = −(i∆β)B2e−iqζ − iκA2e−iqζ

(q− ∆β)B2 = κA2. (2.3.12)

Equations (2.3.9), (2.3.10),(2.3.11) and (2.3.12) relate the constants A1, A2, B1 and

B2. Substituting (2.3.11) in (2.3.9) yields unknown eigenvalue q in terms of known

κ and ∆β.

(q− ∆β)A1 = κB1

(q− ∆β)A1 = κ{ −κA1

q + ∆β
}

q2 = ∆β
2 − κ2

q = ±
√

∆β
2 − κ2. (2.3.13)

In case of a standard PIM-PIM directional coupler as discussed earlier, the power

exchange was always sinusoidal. However, in case of NIM-PIM DC the power

exchange is not always sinusoidal. Considering the result obtained above, if we

have a relatively small κ as compared to the detuning between the waveguides

then q is real and power is exchanged sinusoidally. However, if the two waveg-

uides are brought closer enough, κ increases and q may decrease to zero. Further

increase in κ bears an imaginary q which indicates an exponential change in the

power exchanged between the waveguides and power is reflected back in the sec-

ond waveguide.
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2.3.4 Boundary Conditions and Specific Solution

There is no backward propagating wave at ζ = 1. This means B(ζ = 1) = 0. Using

these values in equation (2.3.8) yields:

B(ζ) = B1eiqζ + B2e−iqζ

0 = B1eiq + B2e−iq

B2 = −B1e2iq. (2.3.14)

Substituting the above expression in equation (2.3.8) yields:

B(ζ) = B1eiqζ + B2e−iqζ

B(ζ) = B1eiqζ − (B1e2iq)e−iqζ

B(ζ) =
B1

e−iq (e
iqζ−iq − e2iq−iqζ−−iq)

B(ζ) = B′1{ei(qζ−q) − e−i(qζ−q}

B(ζ) = B′1 sinh {i(qζ − q)} (2.3.15)

where B′1 = B1
e−iq . We can now find A(ζ) by using:

−dB
dζ

= (i∆β)B + iκA

−
d[B′1 sinh {i(qζ − q)}]

dζ
= (i∆β)[B′1 sinh {i(qζ − q)}+ iκA

−B′1(iq) cosh {i(qζ − q)} = (i∆β)[B′1 sinh {i(qζ − q)}+ iκA

−B′1[q cosh {i(qζ − q)}] = (∆β)[B′1 sinh {i(qζ − q)}] + κA.
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Solving for A(ζ) yields:

κA = −B′1[q cosh {i(qζ − q)} − (∆β) sinh {i(qζ − q)}]

A(ζ) =
−B′1

κ
[q cosh {i(qζ − q)} − ∆β sinh {i(qζ − q)}]. (2.3.16)

2.3.5 Transmittivity and Reflectivity

Power carried by waveguide A and waveguide B can be expressed as:

PA = |A(ζ)|2 = |
−B′1

κ
[q cosh {i(qζ − q)} − ∆β sinh {i(qζ − q)}]|2

PB = |B(ζ)|2 = |B′1 sinh {i(qζ − q)}|2.

Transmittivity T at out1 of Figure 2.3 can be expressed as:

T =
PA(ζ = 1)
PA(ζ = 0)

=
|q|2

|q cosh (−iq) + (∆β) sinh (−iq)|2
.

Figure 2.4 shows the normalized transmittivity of a passive NIM-PIM DC versus

the mismatch between the wave numbers of the two waveguides. We have selected

coupling coefficient κ = 3 for this plot. Power is exchanged sinusoidally between

the two waveguides as long as ∆β > κ. Once the two β′s are close enough, strongly

coupling occurs which results in the entire power being reflected back to out2 and

hence, a drop in the transmittivity for this range. This results in formation of a

stopband in the transmittivity spectrum.
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Figure 2.4: NIM-PIM - Transmittivity at out1 (κ = 3)

Reflectivity R at out2 of Figure 2.3 can be expressed as:

R =
PB(ζ = 0)
PA(ζ = 0)

=
|κ sinh (−iq)|2

|q cosh (−iq) + (∆β) sinh (−iq)|2
.
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Figure 2.5: NIM-PIM DC - Reflectivity at out2 (κ = 3). Similar spectrum shown in

[14].

Figure 2.5 shows the normalized reflectivity plot of a passive NIM-PIM DC

with coupling coefficient κ = 3. Power is exchanged sinusoidally between the two

waveguides as long as ∆β > κ. Once the two β′s are close enough strong coupling

occurs, q becomes imaginary and the power exchange becomes exponential rather

than sinusoidal. This results in the entire power being reflected back to out2.

Both T and R are independent of the sign of q. We can define the effective re-

29



CHAPTER 2: PASSIVE NIM-PIM DIRECIONAL COUPLER

flectivity ra =
A1
B1

and rb =
A2
B2

using equations (2.3.9), (2.3.10), (2.3.11) and (2.3.12):

ra =
A1

B1
=

q− ∆β

κ
.

rb =
A2

B2
=
−κ

q + ∆β
.

ra =
B1

A1
=
−κ

q + ∆β
.

rb =
A2

B2
=

q− ∆β

κ
.

From these expressions obtained for ra and rb, it is evident that ra = rb = r for the

case of a passive NIM-PIM DC. Figure 2.6 shows a matlab plot of |r| versus ∆β.

It is clear from the plot that in order to hold the condition |r| <= 1 [16], positive

value of q is considered when ∆β > 0 and vice versa.
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Figure 2.6: NIM-PIM DC- Effective Reflectivity (κ = 3).

2.4 PASSIVE DFB RESONATOR

2.4.1 DFB Resonator

Contra directional coupling results from two modes propagating in opposite direc-

tions. For coupling to occur within a distributed feedback (DFB) resonator, some
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kind of periodic perturbation is introduced in the waveguide e.g. a diffraction

grating. Gratings are periodic structures that are normally built on or etched in a

waveguide. Unlike a co-directional coupler with two waveguides, a DFB resonator

only consists of a single waveguide. The periodic structures introduce a perturba-

tion within the waveguide. Variations in the refractive index act as a key compo-

nent in providing feedback and in coupling the forward and backward propagat-

ing modes of the optical waves inside the waveguide. Thus exchange of power

between the forward and backward propagating mode is possible.

Figure 2.7: DFB Resonator

Figure 2.7, shows a DFB waveguide structure with periodic perturbations. These

perturbations help in mode coupling in the DFB structure, whose modes would

otherwise remain independent. Power is introduced at ζ = 0 and and is reflected

back at out2 when the phase mismatch is sufficiently smaller than κ.
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2.4.2 Coupled-Mode Equations and Generalized Solution

The coupled-mode equations for the passive DFB resonator are [16]:

dA
dζ

= i∆βA + iκB

dB
dζ

= −i∆βB− iκA

where κ is the normalized coupling coefficient. κ = (πL/λ)∆n, ∆n is the index

perturbation, ∆β = β1 − β2 represent the normalized waveguide detuning, β1

is the wavenumber of light wave in the waveguide, and β2 = π
Λ represents the

wavenumber of the grating structure, Λ is the grating period. A general solution

can be postulated as:

A(ζ) = A1eiqζ + A2e−iqζ

B(ζ) = B1eiqζ + B2e−iqζ .

It is fairly evident that both the passive DFB resonator and NIM-PIM DC are gov-

erned by the same system of coupled-mode equations.

2.4.3 Comparison with NIM-PIM DC

The dispersion relation for the passive DFB resonator is expressed as [16]:

q = ±
√

∆β
2 − κ2.
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The transmittivity at output 1 is given by:

T =
PA(ζ = 1)
PA(ζ = 0)

=
|q|2

|q cosh (−iq) + (∆β) sinh (−iq)|2
.

While reflectivity at output 2 is calculated as [16]:

R =
PB(ζ = 0)
PA(ζ = 0)

=
|κ sinh (−iq)|2

q cosh (−iq) + (∆β) sinh (−iq)
.

Comparing the above three relations with those derived for the passive NIM-PIM

DC, we conclude that a passive NIM-PIM DC demonstrates a behavior which is

the same as a passive DFB resonator.

2.5 COMPARISON BETWEEN STRUCTURES

Both the DFB structure and NIM-PIM DC evaluates equations similarly, how-

ever the physical interpretation is different. The passive DFB resonator is a single

waveguide structure whereas a passive NIM-PIM DC consists of two waveguides.

Detuning for both the passive DFB resonator and the passive NIM-PIM DC

is expressed as ∆β = β1 − β2. In case of passive DFB resonator this may be in-

terpreted as the difference between the wave number of the light wave in the

waveguide and the grating structure’s wave number. Mathematically, it may be
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expressed as:

β1 =
2π

λ0
n

β2 =
π

Λ
.

In case of passive NIM-PIM DC detuning is interpreted as the difference between

the wave number of the light wave in the PIM and NIM waveguide. Mathemati-

cally, it may be expressed as:

β1 =
2π

λ0
n1

β1 =
2π

λ0
n2.

Coupling coefficient κ represents the coupling strength for both passive DFB

resonator and passive NIM-PIM DC. In case of a passive DFB resonator κ is inter-

preted as:

κ =
πL
λ

∆n

In case of passive NIM-PIM DC the interpretation of κ is as follows [14]:

Ckm1 =
ω

2

∫
S2
[∆ε2e∗m1(y).ek2(y) + ∆µ2h∗m1(y).hk2(y)]dy

Ckm2 =
ω

2

∫
S1
[∆ε1e∗m2(y).ek1(y) + ∆µ1h∗m2(y).hk1(y)]dy.
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2.6 SUMMARY OF KEY DERIVATIONS

Deriving the Dispersion Relation

1. Consider the normalized coupled-mode equations (2.3.5) and (2.3.6).

2. Postulate the general solution e.g. equations (2.3.7) and (2.3.8).

3. Plug in the general solution in the first coupled mode equation. e.g. equa-

tions (2.3.7) and (2.3.8) in (2.3.5).

4. Equate the coefficients of eiqζ , and two sub equations are obtained e.g. equa-

tions (2.3.9) and (2.3.10).

5. Equate the coefficients of e−iqζ , and two sub equations are obtained e.g.

equations (2.3.11) and (2.3.12).

6. Substitute for the value of B1 or A1 in the first pair of sub equations with

the value from the second pair of sub equations derived above e.g. equation

(2.3.11) in (2.3.9).

7. Dispersion Relation is obtained e.g. equation (2.3.13).

8. Repeat steps 3-8 for the second coupled-mode equation e.g. equation (2.3.6).

9. Same dispersion relation is obtained.

Deriving Transmittivity and Reflectivity

1. Consider the general solution e.g. equation (2.3.8).

2. Apply the boundary condition to the general solution i.e B(ζ) = B1 + B2 to
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find B2 e.g. equation (2.3.14).

3. Plug this value of B2 in the original generalized solution and an expression

for B(ζ) is obtained e.g. equation (2.3.15).

4. Consider the first coupled-mode equation and substitute for the value of B

with the expression obtained above e.g. equations (2.3.5) and (2.3.15).

5. An expression for A(ζ) is derived e.g. equation (2.3.16).

6. Reflectivity is the ratio of output power at B(ζ = 0) and input power A(ζ =

0).

7. Transmittivity is the ratio of output power at A(ζ = 1) and input power

A(ζ = 0).
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ACTIVE NIM-PIM DIRECIONAL

COUPLER

In this chapter, optical gain is introduced into the waveguide structure. The gov-

erning equations for the active system are stated and solved for both the DFB and

NIM-PIM waveguide structures. Initially equations for the well known DFB res-

onator with gain are solved and different attributes like the dispersion relation,

transmittivity, and reflectivity are derived and analyzed. Later, the same process

is applied to the more complicated case of an active NIM-PIM system for the first

time and its corresponding dispersion relation, transmittivity, and reflectivity ex-

pressions are derived and analyzed.
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3.1 ACTIVE DFB RESONATOR

3.1.1 Coupled-Mode Equations and General Solution

The normalized coupled-mode equations for an active DFB resonator [16] are:

dA
dζ

= i(∆β− i
g
2
)A + iκB (3.1.1)

−dB
dζ

= i(∆β− i
g
2
)B + iκA, (3.1.2)

where ζ = z/L is the normalized length, g = gL is the normalized gain in the DFB

structure, κ is the coupling coefficient, κL = κ represent the normalized coupling

strength, ∆β represents the wavenumber detuning, ∆β = ∆βL represents the nor-

malized wavenumber detuning. The detuning between two wavenumbers can be

expressed as ∆β = β1 − β2. β2 = π
Λ is Bragg’s wave number and Λ is the grating

period. A(ζ) and B(ζ) represent the amplitude of the forward and backward trav-

eling fields respectively. Equations (3.1.1) and (3.1.2) are the main equations that

we will be solving for active DFB coupling.

A generalized solution for the active system can be postulated as:

A(ζ) = A1eiqζ + A2e−iqζ (3.1.3)

B(ζ) = B1eiqζ + B2e−iqζ , (3.1.4)

where q = qL, represents the unknown eigenvalue for the DFB waveguide struc-

ture and, A1, A2, B1 and B2 are constant coefficients to be solved for.
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3.1.2 Dispersion Relation and Eigenvalue

Substituting equations (3.1.3) and (3.1.4) in (3.1.1) yields:

d
dζ

(A1eiqζ + A2e−iqζ) = i(∆β− g
2
)(A1eiqζ + A2e−iqζ) + iκ(B1eiqζ + B2e−iqζ)

A1(iq)eiqζ + A2(−iq)e−iqζ = i(∆β− i
g
2
)(A1eiqζ + A2e−iqζ) + iκ(B1eiqζ + B2e−iqζ).

Equating coefficients of eiqζ yields:

A1(iq)eiqζ = i(∆β− ig/2)A1eiqζ + iκ(B1eiqζ)

(iq)A1 = i(∆β− ig/2)A1 + iκB1

{q− (∆β− ig/2)}A1 = κB1. (3.1.5)

Equating coefficients of e−iqζ yields:

A2(−iq)e−iqζ = i(∆β− igp/2)A2e−iqζ + iκ(B2e−iqζ)

(−iq)A2 = i(∆β− ig/2)A2 + iκB2

{q + (∆β− ig/2)}A2 = −κB2. (3.1.6)

Substituting equations (3.1.3) and (3.1.4) in (3.1.2) yields:

−d
dζ

(B1eiqζ + B2e−iqζ) = i(∆β− i
g
2
)(B1eiqζ + B2e−iqζ) + iκ(A1eiqζ + A2e−iqζ)

B1(−iq)eiqζ − B2(−iq)e−iqζ = i(∆β− i
g
2
)(B1eiqζ + B2e−iqζ) + iκ(A1eiqζ + A2e−iqζ).
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Equating coefficients of eiqζ yields:

−B1(iq)eiqζ = i(∆β− ig/2)B1eiqζ + iκ(A1eiqζ)

−B1(iq) = i(∆β− ig/2)B1 + iκA1

{q) + (∆β− ig/2)}B1 = −κA1. (3.1.7)

Equating coefficients of e−iqζ yields:

−B2(−iq)e−iqζ = i(∆β− ig/2)B2e−iqζ + iκA2e−iqζ

−B2(−iq) = i(∆β− ig/2)B2 + iκA2

{q− (∆β− ig/2)}B2 = κA2. (3.1.8)

Equations (3.1.5),(3.1.6), (3.1.7) and (3.1.8) relate the constants A1, A2, B1 and B2.

Substituting (3.1.7) in (3.1.5) yields:

{q− (∆β− i
g
2
)}A1 = κ

−κA1

{q) + (∆β− i g
2 )}

(3.1.9)

{q− (∆β− i
g
2
)}{q) + (∆β− i

g
2
)} = −(κ)2

(q)2 = (∆β− ig/2)2 − (κ)2

q = ±
√
(∆β− i

g
2
)2 − (κ)2. (3.1.10)

This expression defines the unknown eigenvalue q in terms of known values of

coupling constant κ, detuning ∆β, and gain g. The same expression is obtained if

we use (3.1.8) in (3.1.6).
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3.1.3 Amplifier Boundary Conditions and Specific Solution

Using the DFB resonator as a resonant type amplifier means that there is no back-

ward propagating wave at ζ = 1 i.e. B(ζ = 1) = 0. Applying this condition to

(3.1.4) yields:

B(ζ) = B1eiqζ + B2e−iqζ

B(1) = B1eiq + B2e−iq

0 = B1eiq + B2e−iq

B2 = −B1e2iq.

Substituting the above relation for B2 into (3.1.4) yields:

B(ζ) = B1eiqζ + B2e−iqζ

B(ζ) = B1eiqζ + (−B1e2iq)e−iqζ

B(ζ) = B1eiqζ − B1e2iq−iqζ

B(ζ) = B1(
e−iq

e−iq )(e
iqζ − e2iq−iqζ)

B(ζ) =
B1

e−iq (e
iqζ−iq − e−iqζ+iq)

B(ζ) = B′1(sinh i(qζ − q)) (3.1.11)
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where B′1 = B1
e−iq . We can now find A(ζ) by substituting the expression (3.1.11) for

B(ζ) into (3.1.2):

−dB
dζ

= i(∆β− i
g
2
)B + iκA

−d
dζ
{B′1(sinh i(qζ − q))} = i(∆β− i

g
2
){B′1(sinh i(qζ − q))}+ iκA

−B′1(iq)(cosh i(qζ − q)) = i(∆β− i
g
2
){B′1(sinh i(qζ − q))}+ iκA.

Simplifying the above expression yields:

−iκA = B′1(iq)(cosh i(qζ − q)) + i(∆β− i
g
2
){B′1(sinh i(qζ − q))}

−κA = B′1(q)(cosh i(qζ − q)) + (∆β− i
g
2
){B′1(sinh i(qζ − q))}

A(ζ) =
−B′1

κ
[q cosh i(qζ − q) + (∆β− i

g
2
){sinh i(qζ − q)}]. (3.1.12)

3.1.4 Reflectivity and Transmittivity

The transmittivity T at out1 in Figure 2.7 of an active DFB resonator can be ex-

pressed using equation (3.1.12) at ζ = 1 and ζ = 0 [16]:

T =
|A(ζ = 1)|2
|A(ζ = 0)|2 =

|q|2

|q cosh (−iq) + (∆β− ig/2) sinh (−iq)|2
.
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Figure 3.1: Active DFB - Transmittivity at out1 (κ = 3).

Figure 3.1 depicts the behavior of the transmission peaks of an active DFB res-

onator with different levels of optical gain versus the normalized detuning. Tmax

on the y-axis represent the highest level of peaks in the spectrum. For this plot,

we have chosen the coupling coefficient κ = 3. It is interesting to note that with

increasing levels of gain the peaks grow. At a certain detuning and optical gain,

the peak may hit infinity even for a very small increase in gain and achieve a lasing

action. Such lasing behavior will be studied in more detail in chapter four. Increas-
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ing the gain further beyond this point result in a gradual lowering of the peak.

The reflectivity R at out2 in figure 2.7 of an active DFB resonator can be ex-

pressed by using equations (3.1.12) and (3.1.11) at ζ = 0 [16]:

R =
|B(ζ = 0)|2
|A(ζ = 0)|2 = κ2 | sinh (−iq)|2

|q cosh (−iq) + (∆β− ig/2) sinh (−iq)|2
.

Figure 3.2: Active DFB - Reflectivity at out2 (κ = 3).

Figure 3.2 depicts the behavior of the reflectivity peaks of an active DFB res-

onator with different levels of optical gain versus the normalized detuning. For
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this plot, we have chosen the coupling coefficient κ = 3. It is interesting to note

that with lesser gain the reflectivity dips push downward while with increasing

levels of optical gain these peaks grow upward. At a certain detuning and optical

gain, the peak may push up and hit infinity even for a very small increase in gain

and achieve a lasing action.

3.2 ACTIVE NIM-PIM DC

In this section we study the introduction of optical gain into the NIM-PIM DC for

the first time. Contrary to the DFB case, the NIM-PIM structure has two waveg-

uides and the amount of gain in one waveguide can be different from the other.

Hence the use of gp (gain in PIM) and gn (gain in NIM). A different amount of

gain in the waveguides lends an asymmetry to the system which leads to the use

of a modified generalized solution for the active NIM PIM DC. The normalized

eigenvalue for NIM is expressed as q′ and the same for PIM can be represented by

q.
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3.2.1 Coupled-Mode Equations and General Solution

Normalized coupled-mode equations for active NIM-PIM coupler are:

dA
dζ

= i(∆β− igp/2)A + iκB (3.2.1)

−dB
dζ

= i(∆β− ign/2)B + iκA, (3.2.2)

where ζ = z/L is the normalized length, gp = gpL is the normalized gain in

the PIM waveguide, gn = gnL is the normalized gain in the NIM waveguide, κ

is the coupling coefficient, κL = κ represent the normalized coupling strength,

∆β represents the waveguide detuning, and ∆β = ∆βL, represent the normal-

ized waveguide detuning. Detuning between two waveguides can be expressed

as ∆β = β1 − β2. β1 and β2 are the respective wavenumbers of light in the PIM

and NIM waveguide. A(ζ) and B(ζ) represent the amplitude of the forward and

backward traveling fields respectively. Equations (3.2.1) and (3.2.2) are the main

equations that we will be solving for NIM-PIM coupling.

A modified general solution for the active NIM-PIM system can be postulated

as:

A(ζ) = A1eiqζ + A2e−iqζ (3.2.3)

B(ζ) = B1eiq′ζ + B2e−iq′ζ (3.2.4)

where q and q′, represents the eigenvalue for the PIM and NIM waveguides as

discussed previously. q′ differs from q by an amount x. i.e. q′ = q + x. We will
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soon arrive at an explicit expression for x later in this chapter. A1, A2, B1 and B2

are constant coefficients to be solved for.

3.2.2 Dispersion Relation and Eigenvalue

Substituting equations (3.2.3) and (3.2.4) in (3.2.1) yields:

d
dζ

(A1eiqζ + A2e−iqζ) = i(∆β− i
gp

2
)(A1eiqζ + A2e−iqζ) + iκ(B1eiq′ζ + B2e−iq′ζ)

A1(iq)eiqζ + A2(−iq)e−iqζ = i(∆β− i
gp

2
)(A1eiqζ + A2e−iqζ) + iκ(B1eiq′ζ + B2e−iq′ζ).

Equating coefficients of eiqζ yields:

A1(iq)eiqζ = i(∆β− igp/2)A1eiqζ

(iq)A1 = i(∆β− igp/2)A1. (3.2.5)

Equating coefficients of e−iqζ yields:

A2(−iq)e−iqζ = i(∆β− igp/2)A2e−iqζ

(−iq)A2 = i(∆β− igp/2)A2. (3.2.6)

Equating coefficients of eiq′ζ yields:

0 = iκ(B1eiq′ζ)

0 = iκB1. (3.2.7)
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Equating coefficients of e−iq′ζ yields:

0 = iκ(B2e−iq′ζ)

0 = iκB2. (3.2.8)

In case of an active DFB resonator we only have to equate the coefficients of eiqζ and

e−iqζ resulting in two sub equations. The derivation process for an active NIM-PIM

DC involves the additional steps of equating coefficients of eiq′ζ and e−iq′ζ which

eventually result in four sub equations. Later, we combine these four sub equations

into two sub equations. Substituting equations (3.2.3) and (3.2.4) in (3.2.2) yields:

−d
dζ

(B1eiq′ζ + B2e−iq′ζ) = i(∆β− i
gn

2
)(B1eiq′ζ + B2e−iq′ζ) + iκ(A1eiqζ + A2e−iqζ)

B1(−iq′)eiq′ζ − B2(−iq′)e−iq′ζ = i(∆β− i
gn

2
)(B1eiq′ζ + B2e−iq′ζ) + iκ(A1eiqζ + A2e−iqζ).

Equating coefficients of eiqζ yields:

0 = iκ(A1eiqζ)

0 = iκA1. (3.2.9)

Equating coefficients of e−iqζ yields:

0 = iκ(A2e−iqζ)

0 = iκA2. (3.2.10)
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Equating coefficients of eiq′ζ yields:

B1(−iq′)eiq′ζ = i(∆β− ign/2)(B1eiq′ζ)

B1(−iq′) = i(∆β− ign/2)B1. (3.2.11)

Equating coefficients of e−iq′ζ yields:

−B2(−iq′)e−iq′ζ = i(∆β− ign/2)(B2e−iq′ζ)

−B2(−iq′) = i(∆β− ign/2)B2. (3.2.12)

Similar to the process followed for the coupled-mode expression for PIM, NIM-

PIM waveguides also involve the additional steps of equating coefficients of eiq′ζ

and e−iq′ζ which eventually result in four sub equations. This situation is different

from an active DFB resonator where we end up with two sub equations. Later, we

combine these four sub equations into two sub equations.

Now, we can combine (3.2.5) and (3.2.7). Addition of these two equations

yields:

(iq)A1 = i(∆β− igp/2)A1 + iκB1

qA1 = (∆β− igp/2)A1 + κB1

(q− ∆β + igp/2)A1 = κB1. (3.2.13)
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Adding (3.2.6) and (3.2.8) yields:

(−iq)A2 = i(∆β− igp/2)A2 + iκB2

(−q)A2 = (∆β− igp/2)A2 + κB2

(q + ∆β− igp/2)A2 = −κB2. (3.2.14)

Adding (3.2.9) and (3.2.11) yields:

(−iq′)B1 = i(∆β− ign/2)B1 + iκA1

(−q′)B1 = (∆β− ign/2)B1 + κA1

(q′ + ∆β− ign/2)B1 = −κA1. (3.2.15)

Adding (3.2.10) and (3.2.12) yields:

−(−iq′)B2 = i(∆β− ign/2)B2 + iκA2

(q′)B2 = (∆β− ign/2)B2 + κA2

(q′ − ∆β + ign/2)B2 = κA2. (3.2.16)

Equations (3.2.13), (3.2.14), (3.2.15) and (3.2.16) relate the constants A1, A2, B1 and

B2. Substituting (3.2.15) in (3.2.13) yields:

(q− ∆β + igp/2)A1 = κB1

(q− ∆β + igp/2)A1 = κ[−κA1/(q′ + ∆β− ign/2)]

(q− ∆β + igp/2)(q′ + ∆β− ign/2) = −(κ)2.
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The above expression differs from the standard active DFB resonator case as it

contains two different variables gp and gn. Taking the product yields:

qq′ + q(∆β− i
gn

2
)− q′(∆β− i

gp

2
) + ∆β(i

gp

2
+ i

gn

2
)− (∆β)2 +

gpgn

4
= −(κ)2.

(3.2.17)

Substituting (3.2.16) in (3.2.14) yields:

(q + ∆β− igp/2)A2 = −κ[κA2/(q′ − ∆β + ign/2)]

(q + ∆β− igp/2)(q′ − ∆β + ign/2) = −(κ)2.

Taking the product:

qq′ − q(∆β− i
gn

2
) + q′(∆β− i

gp

2
) + ∆β(i

gp

2
+ i

gn

2
)− ∆β

2
+

gpgn

4
= −(κ)2.

(3.2.18)

Adding (3.2.17) and (3.2.18):

2(qq′) + 2∆β(i
gp

2
+ i

gn

2
)− 2(∆β)2 +

gpgn

2
+ 2(κ)2 = 0

qq′ − [(∆β)2 − (κ)2 − ∆β(i
gp

2
+ i

gn

2
)−

gpgn

2
] = 0. (3.2.19)
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Subtracting (3.2.18) from (3.2.17) yields:

2q(∆β− i
gn

2
)− 2q′(∆β− i

gp

2
) = 0

q(∆β− i
gn

2
)− q′(∆β− i

gp

2
) = 0

q(∆β− i
gn

2
) = q′(∆β− i

gp

2
)

(q′ − x)(∆β− i
gn

2
) = q′(∆β− i

gp

2
)

q′∆β− q′(i
gn

2
)− x∆β + x(i

gn

2
) = q′∆β− q′(i

gp

2
)

−q′(i
gn

2
) + q′(i

gp

2
) = x∆β− x(i

gn

2
)

q′(i
gp

2
− i

gn

2
) = x(∆β− i

gn

2
)

x =
q′(i gp

2 − i gn
2 )

(∆β− i gn
2 )

. (3.2.20)

Here, we introduce a new quantity ′H′, defined as x = q′H, which yields:

H =
(igp/2− ign/2)

(∆β− ign/2)
. (3.2.21)

The eigenvalue q and q′ are related by H as follows:

q′ = q + x

q′ = q + q′H

q = q′ − q′H

q = q′(1− H). (3.2.22)
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Using (3.2.22) and substituting for q in (3.2.19) yields:

qq′ − [(∆β)2 − (κ)2 − ∆β(i
gp

2
+ i

gn

2
)−

gpgn

2
] = 0

(q′(1− H))q′ − [(∆β)2 − (κ)2 − ∆β(i
gp

2
+ i

gn

2
)−

gpgn

2
] = 0

(q′)2(1− H)− [(∆β)2 − (κ)2 − ∆β(i
gp

2
+ i

gn

2
)−

gpgn

2
] = 0.

Applying the quadratic formula yields:

q′ = ±

√
−4(1− H)[−(∆β)2 + (κ)2 + ∆β(i gp

2 + i gn
2 ) +

gpgn
4 ]

4(1− H)2

q′ = ±

√
(∆β)2 − (κ)2 − ∆β(i gp

2 + i gn
2 )−

gpgn
4

(1− H)
. (3.2.23)

This expression defines the unknown eigenvalue q′ in terms of κ, H, gp, gn, and

∆β. H is defined in terms of gp, gn, and ∆β.

3.2.3 Amplifier Boundary Conditions and Specific Solution

Here, we apply amplifier boundary conditions to an active NIM-PIM coupler. Sim-

ilar to the case of an active DFB resonator, there is no backward propagating wave

in the NIM-PIM DC at ζ = 1 i.e. B(ζ = 1) = 0.

B(ζ) = B1eiq′ζ + B2e−iq′ζ

B(1) = B1eiq′ + B2e−iq′

0 = B1eiq′ + B2e−iq′

B2 = −B1e2iq′ . (3.2.24)
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Substituting the above expression for B2 into (3.2.4) yields:

B(ζ) = B1eiq′ζ + B2e−iq′ζ

B(ζ) = B1eiq′ζ + (−B1e2iq′)e−iq′ζ

B(ζ) = B1eiq′ζ − B1e2iq′−iq′ζ

B(ζ) = B1(
e−iq′

e−iq′
)(eiq′ζ − e2iq′−iq′ζ)

B(ζ) =
B1

e−iq′
(eiq′ζ−iq′ − e−iq′ζ+iq′)

B(ζ) = B′1(sinh i(q′ζ − q′)) (3.2.25)

where B′1 = B1
e−iq . We can now find A(ζ) by using expression (3.2.25) in equation

(3.2.2):

−dB
dζ

= i(∆β− i
gn

2
)B + iκA

−d
dζ

(B′1 sinh{i(q′ζ − q′)}) = i(∆β− i
gn

2
)(B′1 sinh{i(q′ζ − q′)}) + iκA

−B′1(iq′) cosh{i(q′ζ − q′)} = i(∆β− i
gn

2
)(B′1 sinh{i(q′ζ − q′)}) + iκA.

Solving the above expression for A:

−iκA = B′1(iq′)(cosh i(q′ζ − q′)) + i(∆β− i
gn

2
)(B′1(sinh i(q′ζ − q′)))

−κA = B′1(q′)(cosh i(q′ζ − q′)) + (∆β− i
gn

2
)(B′1(sinh i(q′ζ − q′)))

A(ζ) =
−B′1

κ
[q′(cosh i(q′ζ − q′)) + (∆β− i

gn

2
) sinh i(q′ζ − q′)]. (3.2.26)
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3.2.4 Reflectivity and Transmittivity

The reflectivity at out2 in Figure 2.3 of an active NIM-PIM DC can be expressed

using equations (3.2.25) and (3.2.26) as:

R =
|B(ζ = 0)|2
|A(ζ = 0)|2 = κ2 | sinh (−iq′)|2

|q′ cosh (−iq′) + (∆β− ign/2) sinh (−iq′)|2
.

Transmittivity at out1 in Figure 2.3 of an active NIM-PIM DC can be expressed

using equations (3.2.25) and (3.2.26) as:

T =
|A(ζ = 1)|2
|A(ζ = 0)|2 =

|q′|2

|q′ cosh (−iq′) + (∆β− ign/2) sinh (−iq′)|2
. (3.2.27)

The expressions obtained above are the general expressions for transmittivity T

and reflectivity R of an active NIM-PIM DC. Note that the sign of q′ does not affect

R or T. Altering the values of optical gain in either one or both the waveguides

of the NIM-PIM DC may result in a simplified form of these expressions. Such

scenarios are discussed as follows:

Case: gp = gn = g:

Now we analyze the case when both PIM and NIM waveguides have the same

amount of gain. ’H’, the offset between q and q′ is reduced to zero. This implies
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that q = q′ in the case of equal gain.

H =
(igp/2− ign/2)

(∆β− ign/2)

H =
(ig/2− ig/2)
(∆β− ig/2)

⇒ H = 0

q = q′(1− H)

⇒ q = q′.

The dispersion relation (3.2.23) boils down to an expression which is the equal to

that of the active DFB resonator.

q′ = ±

√
(∆β)2 − (κ)2 − ∆β(igp/2 + ign/2)− (gpgn)/4]

(1− H)

q = ±
√
(∆β)2 − (κ)2 − ∆β(ig/2 + ig/2)− (gg)/4

q = ±
√
(∆β)2 − 2(∆β)(ig/2) + (ig/2)2 − (κ)2

q = ±
√
(∆β− ig/2)2 − κ2.

The transmittivity T for the equal gain case is:

T =
|A(ζ = 1)|2
|A(ζ = 0)|2 =

|q|2

|q cosh (−iq) + (∆β− ig/2) sinh (−iq)|2
.

Using this simplified expression of ’T’ and plotting the transmittivity versus the

detuning results in Figure 3.3. Tmax on the y-axis represent the highest peaks in the

spectrum. For this plot, we have chosen coupling coefficient κ = 3. It is interesting

to note that with increasing levels of gain the peaks grow on both sides of the
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stopband. At a certain detuning and optical gain, the peak may hit infinity even for

a very small increase in gain and achieve a lasing action. This behavior is the same

as that of an active DFB resonator. It is also observed that the identical levels of

peaks result from the same values of ∆β and g as those of the active DFB resonator

in Figure 3.1. Hence, it is concluded that under equal gain circumstances, an active

NIM-PIM DC acts like an active DFB resonator.

Figure 3.3: Active NIM PIM DC - Transmittivity (gp = gn = g) and κ = 3.

Figure 3.4 depicts the behavior of reflectivity peaks of an active NIM-PIM DC
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with different levels of optical gain versus the normalized detuning. For this plot,

we have chosen coupling coefficient κ = 3. It is interesting to note that with lesser

gain the reflectivity dips push downward while with increasing levels of optical

gain these peaks grow upward. At a certain detuning and optical gain, the peak

may push up and hit infinity even for a very small increase in gain and achieve a

lasing action. It is also observed that the identical levels of peaks result from the

same values of ∆β and g as those of the active DFB resonator in Figure 3.2. Hence,

it is concluded that under equal gain circumstances, an active NIM-PIM DC acts

like an active DFB resonator.

59



CHAPTER 3: ACTIVE NIM-PIM DIRECIONAL COUPLER

Figure 3.4: Active DFB - Reflectivity (gp = gn = g) and κ = 3.

Case: gp = g and gn = 0:

Next we analyze the case where we have introduced gain into the PIM waveguide

while there is no such gain or loss in the NIM waveguide. ’H’, the offset between
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q and q′ is reduced to:

H =
(igp/2− ign/2)

(∆β− ign/2)

H =
(ig/2− 0)
(∆β− 0)

H =
ig/2
∆β

.

The dispersion relation boils down to the following expression:

q′ = ±

√
(∆β)2 − (κ)2 − ∆β(i gp

2 + i gn
2 )−

gpgn
4

(1− H)

q′ = ±

√
(∆β)2 − (κ)2 − ∆β(i g

2 + 0)− 0
(1− H)

q′ = ±

√
∆β

2 − κ2 − ∆βig/2
(1− H)

.

The transmittivity T in case of the above mentioned scenario is:

|A(ζ = 1)|2
|A(ζ = 0)|2 =

|q′|2

|q′ cosh (−iq′) + ∆β sinh (−iq′)|2
.

We may now use the above simplified expression of ’T’ for analyzing the transmis-

sion spectrum of an active NIM-PIM DC with gain in PIM only. Plotting transmit-

tivity versus the detuning results in Figure 3.5 where Tmax on the y-axis represent

the highest peaks in the spectrum. For this plot, we have chosen coupling coeffi-

cient κ = 3. It is interesting to note that similar to the case of equal optical gain in

both waveguides, increasing levels of gain result in the growth of peaks on both

sides of the stopband. At a certain detuning and optical gain, the peak may hit in-

finity even for a very small increase in gain and achieve a lasing action. However,
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it is observed that much higher amounts of optical gain are required in the PIM to

accomplish lasing.

Figure 3.5: Active NIM-PIM DC - Transmittivity (gp = g and gn = 0 and κ = 3).

Hence, it can be concluded that in the case where we have gain in the PIM

waveguide and zero gain/loss in the NIM waveguide, more than twice the gain is

required by the active NIM PIM DC to achieve the same levels of peaks as those of

an active NIM-PIM DC with equal gain in each waveguide.

In Figure 3.5, we do notice a small hump in the middle and the transmittivity
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seems to get clamped at zero at this point. The following mathematical reasoning

may help explain this phenomena. The hump occurs at ∆β = 0 and for the case

where gn = 0. Plugging these values of ∆β and gn into equation (3.2.21), and

calculating the offset H:

H =
(igp/2− ign/2)

(∆β− ign/2)

H =
(ig/2− 0)

0

H = ∞.

Substituting H = ∞ in the dispersion relation (3.2.23) yields:

q′ = ±

√
(∆β)2 − (κ)2 − ∆β(igp/2 + ign/2)− (gpgn)/4

(1− H)

q′ = ±

√
(∆β)2 − (κ)2 − ∆β(igp/2)

∞

q′ = 0.

Substituting q′ = 0 in the expression for transmittivity T in equation (3.2.27) yields:

T =
|A(ζ = 1)|2
|A(ζ = 0)|2 =

|q′|2

|q′ cosh (−iq′) + (∆β− ign/2) sinh (−iq′)|2

T =
0

|0 + 0|2 .

From Figure 3.5, it is clear that T = 0. Thus at gn = 0 and ∆β = 0 for all values of

g in PIM, T = 0.
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Case: gp >= |gn| and gn = −g:

Next we analyze the case where we have introduced loss into the NIM waveguide

and gain into the PIM waveguide. Here, we tried to model a more practical ma-

terial where NIMs are usually marked by losses. This scenario is very interesting.

It is observed in Figure 3.6 that peaks in the spectrum occur at ∆β = 0 i.e. in

the middle of the stopband, with increasing values of optical gain in PIM. For this

plot, we have chosen coupling coefficient κ = 3. For a specific loss in NIM, the

peak may hit infinity even for a very small increase in gain in the PIM and achieve

a lasing action. Moreover, since there is a single strong resonance, the NIM-PIM

DC exhibits a single lasing mode.
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Figure 3.6: Active NIM-PIM DC - Transmittivity (gp >= |gn|, gn = −0.3) and κ = 3.

3.3 SUMMARY OF STEPS

Active DFB Resonator

• The steps to follow in order to solve the coupled-mode equations of an active

DFB resonator are the same as those carried out for the passive case. The only

difference being the addition of g (gain) to the system.
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Active NIM PIM DC - Deriving the Dispersion Relation

1. Consider the normalized asymmetric coupled-mode equations. e.g.equations

(3.2.1) and (3.2.2).

2. Postulate the general solution e.g. equations (3.2.3) and (3.2.4).

3. Take one of the equations and plug in with the general solution e.g. equa-

tions (3.2.3) and (3.2.4) in (3.2.1).

4. Equate the coefficients of eiqζ and those of eiq′ζ e.g. equations (3.2.5) and

(3.2.7).

5. Add the two equations obtained above e.g. equation (3.2.13).

6. Equate the coefficients of e−iqζ and those of e−iq′ζ e.g. equations (3.2.6) and

(3.2.8).

7. Add the two equations obtained above e.g. equation (3.2.14).

8. Repeat the steps above for the second coupled-mode equation. This will

also result in two equations. e.g. equations (3.2.3) and (3.2.4) in (3.2.2).

9. Thus, after carrying all these steps mentioned above, four equations are ob-

tained e.g. e.g. equations (3.2.13), (3.2.14), (3.2.15) and (3.2.16).

10. Substitute for the value of B1 in the first pair of equations, with the its value

from the second pair of equations derived above e.g. equation (3.2.15) in

(3.2.13).

11. Substitute for the value of B2 in the first pair of equations, with the its value
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from the second pair of equations derived above. e.g. equation (3.2.16) in

(3.2.14).

12. Add these two equations and apply the quadratic formula to solve for q′ i.e.

equations (3.2.17) and (3.2.18). Dispersion Relation is obtained!

13. Subtract these two equations and an expression for the offset H is obtained

i.e. i.e. equations (3.2.17) and (3.2.18)!

Active NIM-PIM DC - Solving for Transmittivity and Reflectivity

1. Consider the general solution e.g. equations (3.2.3) and (3.2.4).

2. Apply the boundary condition to the general solution to find B2 e.g. equa-

tion (3.2.4).

3. Plug this value of B2 in the original generalized solution and an expression

for B(ζ) is obtained e.g. equations (3.2.24) and (3.2.4).

4. Consider the first coupled-mode equation and substitute for the value of B

with the expression obtained above e.g. equation (3.2.25) in equation (3.2.2).

5. An expression for A(ζ) is derived e.g. equation (3.2.26).

6. Reflectivity is the ratio of power at B(ζ = 0) and input power i.e. A(ζ = 0).

7. Transmittivity is the ratio of power at A(ζ = 1) and input power i.e. A(ζ =

0).
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LASING BEHAVIOR

4.1 DFB RESONATOR

4.1.1 Lasing and Lasing Modes

Lasing Action

A laser generally consists of a gain medium and reflecting mirrors which provide

the effective feedback. Once input light is generated by spontaneous emission, it

passes through the gain medium and is amplified through stimulated emission.

Since, the light travels back and forth through the laser cavity it undergoes re-

peated amplification before it is emitted.

The condition where gain equals the cavity losses is known as the lasing thresh-

old. Once the gain overcomes the cavity losses, it results in an exponential increase

in output photons, a sign of lasing action. The minimum gain required to achieve
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lasing is known as lasing threshold gain [17].

Laser Modes

A resonant cavity consists of two types of spatial modes, the longitudinal modes

and transverse modes. Transverse modes are perpendicular to the axis of the reso-

nant cavity. By carefully analyzing a cross section of an output beam from a laser, a

number of intensity distributions (patterns) are observed. These are the transverse

modes referred to as TEM modes.

Longitudinal modes correspond to the standing waves formed by the waves

travelling within the resonant cavity. The resonant cavity only supports waves

with certain wavelengths. This can be explained with the help of the following

figure:

Figure 4.1: Conditions to generate a standing wave.

Stimulated light within the cavity travels in all directions and is reflected back

after applying the boundary conditions as depicted in Figure 4.1. These reflected

waves interfere with each other which may result in either constructive or destruc-
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tive interference. Notice in (b), the wave is reflected back with a phase change of

180 degrees. However, this wave suffers a break in its phase. (a) depicts another

wave which also suffers a phase change of 180 degrees but, with no break in its

phase. Case (a) is the type of wave that results in a standing wave and is sup-

ported by the resonator. This condition can be expressed as 2d/λ = N, where d

is the distance between the reflecting surfaces, λ is the wavelength and N is an

integer [17]. Hence it can be stated that in order to support the longitudinal mode

pattern the length of the resonator should be equal to some integer multiple of half

of the wavelength and that the resonant cavity’s dimensions are very important in

deciding the longitudinal laser modes [12]. A laser may support several longitudi-

nal modes. However, only those standing mode patterns which occur in a spatial

region of gain above the cavity losses are actually radiated out [17]. The number

of longitudinal modes is proportional to the spectral width of a laser.

In the case of a DFB laser, grating perturbations provide the required feed-

back. The condition required to generate standing waves needs to be modified in

terms of Bragg’s grating condition expressed as 2Λne f f = λ where Λ is the grating

period, ne f f is the refractive index of the medium. Two longitudinal modes are

generated where one of them is suppressed in order to yield a single mode highly

efficient narrow beam of light. These two modes correspond to the resonant peaks

in figure 3.3. Our work on NIM-PIM DC is exciting in part because the spectra in
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Figure 3.6 show one dominant mode. This may result in a naturally single-mode

laser.

4.1.2 Transmittivity (Lasing Behavior with increasing gain)

Earlier in chapter three, we analyzed the transmission spectrum of an active DFB

resonator. It was observed that with an increased gain in the medium, the transmit-

tivity peaks at both ends of the stop band shoot up. At some point in the process, a

very small increase in gain will result in very high peaks i.e. reaching infinity. This

corresponds to the fact that a DFB resonator with an active gain medium can lase.

The following plot depicts this behavior.
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Figure 4.2: Active DFB Resonator: Lasing Behavior - Tmax vs Gain, κ = 3.

In Figure 4.2, the y-axis plots the maximum of the transmittivity spectrum ob-

tained for a specific value of gain while the x-axis plots increasing values of nor-

malized gain g for κ = 3. It is observed that maximum transmittivity Tmax exhibits

an exponential increase with increasing values of gain g. As more and more gain is

added to the DFB structure, the transmittivity peaks grow and eventually a point

is reached where a very small increase increase in gain would result in a very high

peaks reaching infinity indicating the lasing behavior of an active DFB structure.
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It is also observed from Figure 4.2 that a threshold gain (gth) of 1.25 is required to

achieve lasing at ∆β = 4.148, and is termed as the corresponding threshold de-

tuning (∆βth). We will be referring back to these threshold values later in section

(4.1.5).

4.1.3 Lasing Boundary Conditions and Specific Solution

Boundary conditions for lasing assure that there is no light injected into the active

structure:

A(ζ = 0) = 0

B(ζ = 1) = 0.

Applying the above lasing boundary conditions to the general solution yields:

A(ζ) = A1eiqζ + A2e−iqζ

0 = A1 + A2

A2 = −A1.

A(ζ) can now be expressed as:

A(ζ) = A1eiqζ − A1e−iqζ

A(ζ) = A1(eiqζ − e−iqζ). (4.1.1)
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Similarly, applying the boundary conditions to B(ζ) yields:

B(ζ) = B1eiqζ + B2e−iqζ

0 = B1eiq + B2e−iq

B2 = −B1e2iq.

Substituting the above expression into the general expression for B(ζ) yields:

B(ζ) = B1eiqζ + B2e−iqζ

B(ζ) = B1eiqζ + (−B1e2iq)e−iqζ

B(ζ) = B1(eiqζ − e2iq−iqζ)

B(ζ) = B1eiq(eiqζ−iq − e−iqζ+iq). (4.1.2)

4.1.4 Effective Reflectivity Coefficients

Expressions for the effective reflectivity coefficients encountered by the forward

and backward propagating waves can be derived using the expressions derived
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earlier in chapter three, i.e., (3.1.5), (3.1.6), (3.1.7) and (3.1.8):

ra =
B1

A1
=

q− (∆β− ig/2)
κ

, (4.1.3)

ra =
B1

A1
=

−κ

q + (∆β− ig/2)
, (4.1.4)

rb =
A2

B2
=

−κ

q + (∆β− ig/2)
, (4.1.5)

rb =
A2

B2
=

q− (∆β− ig/2)
κ

. (4.1.6)

From the above expressions, ra = rb = r, for an active DFB coupler. Expressing the

general solution (3.2.3) and (3.2.4) in terms of the reflectivities ra and rb yields:

A(ζ) = A1eiqζ + raB2e−iqζ (4.1.7)

B(ζ) = rb A1eiqζ + B2e−iqζ . (4.1.8)

Applying the lasing boundary conditions to (4.1.8) yields:

0 = rb A1eiq + B2e−iq

B2 = −rb A1e2iq. (4.1.9)
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Applying lasing boundary conditions to (4.1.7) and using (4.1.9) yields:

0 = A1 + raB2

0 = A1 + ra(−rb A1e2iq)

0 = A1(1− rarbe2iq)

rarbe2iq = 1. (4.1.10)

Since in the case of a DFB coupler, ra = rb, the above expression simplifies down

to:

r2e2iq = 1. (4.1.11)

This equation will be used later when deriving the trancendental eigenvalue equa-

tion for the active DFB resonator.

4.1.5 Transcendental Eigenvalue Equation

The coupled-mode equation for the forward propagating mode as mentioned pre-

viously, is expressed as:

dA
dζ

= i(∆β− ig/2)A + iκB.

Applying the lasing boundary conditions to the general solution for these coupled-

mode equations, and substituting the resulting expressions (4.1.1) and (4.1.2) in the
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above coupled-mode equation:

d
dζ
{A1(eiqζ − e−iqζ)} = i(∆β− i

g
2
){A1(eiqζ − e−iqζ)}+ iκB1eiq(eiq′ζ−iq − e−iqζ+iq).

Differentiating the above equation:

iqA1{eiqζ + e−iqζ}+ A1(−i∆β− g
2
){eiqζ − e−iqζ}

= iκB1eiq{eiqζ−iq − e−iqζ+iq}

iqA1{eiqζ + e−iqζ}+ A1(−i∆β− g
2
){eiqζ − e−iqζ}

= iκ(±A1e−iq)eiq{eiqζ−iq − e−iqζ+iq}

iqA1{eiqζ + e−iqζ}+ A1(−i∆β− g
2
){eiqζ − e−iqζ}

= iκ(±A1){eiqζ−iq − e−iqζ+iq}.

Equating coefficients of eiqζ and taking the positive value yields:

(iq)A1 + (−i∆β− g/2)A1 = ±iκA1e−iq. (4.1.12)

Equating coefficients of e−iqζ and taking the negative value yields:

(iq)A1 − (−i∆β− g/2)A1 = ∓iκA1e−iq. (4.1.13)

The coupled-mode equation for the backward propagating mode as mentioned

previously, is expressed as:

−dB
dζ

= i(∆β− ig/2)B + iκA.
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Applying the lasing boundary conditions to the general solution for the coupled-

mode equations, and substituting the resulting expressions (4.1.1) and (4.1.2) in the

above equation yields:

−d
dζ

B1eiq(eiqζ−iq − e−iqζ+iq) = i(∆β− i
g
2
)B1eiq(eiqζ−iq − e−iqζ+iq) + iκA1(eiqζ − e−iqζ).

Differentiating the above equation yields:

−iqB1eiq{eiqζ−iq + e−iqζ+iq}+ (i∆β− g
2
)B1eiq{eiqζ−iq − e−iqζ+iq}

= iκA1{eiqζ − e−iqζ}

−iqB1eiq{eiqζ−iq + e−iqζ+iq}+ (i∆β− g
2
)B1eiq{eiqζ−iq − e−iqζ+iq}

= iκ(±B1eiq){eiqζ − e−iqζ}

−iqB1{eiqζ−iq + e−iqζ+iq}+ (i∆β− g
2
)B1{eiqζ−iq − e−iqζ+iq}

= ±iκB1{eiqζ − e−iqζ}.

Equating coefficients of eiqζ and taking the positive value yields:

(−iq)B1{e−iq}+ (i∆β− g/2)B1{eiq} = ±iκB1

(−iq)B1 + (−i∆β− g/2)B1 = ±iκB1{e−iq.} (4.1.14)

Equating coefficients of e−iqζ and taking the negative value yields:

(−iq)B1{eiq}+ (−i∆β− g/2)B1{eiq} = ∓iκB1

(−iq)B1 + (−i∆β− g/2)B1 = ∓iκB1{e−iq}. (4.1.15)
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Adding equations (4.1.12) and (4.1.13) or (4.1.14) and (4.1.15) yields:

2(iq)A1 = iκA1{e−iq − eiq}

2(iq) = −iκ{eiq − e−iq}

(iq) = κ sin q. (4.1.16)

The above transcendental equation provides a numerical solution for the threshold

modes of a DFB structure; the solutions are known as transcendental eigenvalue

solutions of the coupled-mode equations [18]. This expression relates gain and the

corresponding detuning at threshold as depicted in the plot below:
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Figure 4.3: Active DFB Resonator: Threshold gain vs Detuning.

The longitudnal modes of an active DFB resonator can be obtained by a numer-

ical solution of equation (4.1.16) which is explained in section three of this chapter.

This solution results in the required threshold level gains and their respective de-

tuning. Figure 4.3 depicts one side of the symmetric spectrum of the DFB structure

with various modes obtained for different values of κ. It is observed that in or-

der to reach threshold the lowest amount of gain is required for the first mode

followed by the higher modes. Thus we may conclude that modes closer to the
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Bragg’s wavelength are the first ones to lase. The threshold values of gain and de-

tuning obtained from Figure 4.3 for κ = 3 are 1.245 and 4.149 respectively. These

are similar to the threshold values obtained using Figure 4.2 for κ = 3. Hence it

is possible to find the threshold values gth and ∆βth using the Tmax versus g plot.

However, numerical solution of the transcendental eigenvalue equations makes

life more easier.

4.2 NIM-PIM DC

4.2.1 Transmittivity (Lasing Behavior with increasing gain)

In this subsection, different scenarios of gain/loss based on equation (3.2.27) in

one or both channels of a NIM-PIM DC are considered and their respective lasing

behavior is analyzed.

Case: gp = gn = g

The first case to be analyzed includes gain in both the waveguides. We introduce

equal amount of gain in both PIM and NIM channels. This case might not be

practically viable but it acts as a good check for the model since the equations

reduce to the expressions that govern active DFB structures.

The plot below shows behavior which matches that of a known DFB SOA.
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Figure 4.4: Active NIM-PIM DC: Lasing Behavior - Same amount of gain in both PIM

and NIM: gp = gn, ∆β of maximum T, κ = 3.

In figure 4.4, the y-axis plots the maximum of transmittivity spectrum obtained

for a specific value of gain while the x-axis plots increasing values of normalized

gain g for κ = 3. It is observed that maximum transmittivity Tmax exhibits an

exponential increase with increasing values of gain g. As more and more gain is

added to both NIM and PIM waveguides, the transmittivity peaks grow and even-

tually a point is reached where a very small increase increase in gain would result
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in a very high peaks reaching infinity. Such behavior indicates that it is possible

to achieve lasing with a NIM-PIM DC similar to that of an active DFB structure

demonstrated previously in Figure 4.2. The difference being the fact that there is

no grating structure and NIM provides the required feedback. It is also observed

from Figure 4.4 that a threshold gain (gth) of 1.25 is required at ∆β = 4.148, and is

termed as the corresponding threshold detuning (∆βth). We will be referring back

to these threshold values in a later section.

Case: gn = 0 and gp > 0

Next, we consider the case where gain is introduced into the PIM waveguide only.

NIM has zero gain. From Figure 3.5, it is clear that as we increase the gain, the

transmittivity peaks shoot up, confirming the lasing action of a NIM-PIM DC.

However, in this case more than twice the gain is required for the peaks to shoot

up.
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Figure 4.5: Active NIM-PIM DC: Lasing Behavior - Gain in PIM (gp), gn = 0 and ∆β

of maximum T, κ = 3.

In Figure 4.5, the y-axis plots the maximum of transmittivity spectrum obtained

for a specific value of gain while the x-axis plots increasing values of normalized

gain g for κ = 3. It is observed that maximum transmittivity Tmax exhibits an expo-

nential increase with increasing values of gain gp in the PIM waveguide. As more

and more gain is added, the transmittivity peaks grow and eventually a point is

reached where a very small increase increase in gain would result in a very high
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peaks reaching infinity. However, if we compare this case to the equal gain sce-

nario in Figure 4.4, it is observed that a much higher amount of gain is required to

reach the same level of Tmax. Hence, we may conclude that it is possible to achieve

lasing with a NIM-PIM DC where only the PIM waveguide has an increased gain.

It is also observed from Figure 4.5 that a threshold gain (gth) of 5.625 is required

at ∆β = 3.419, and is termed as the corresponding threshold detuning (∆βth). We

will be referring back to these threshold values in a later section.

Figure 4.6: Active NIM-PIM DC: Lasing Behavior - Gain in PIM (gp), gn = 0 and

∆β = 0, κ = 3.
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In chapter three, Figure 3.5, a small hump was noticed at ∆β = 0. Here, we

model this behavior for increasing values of gain and Figure 4.6 confirms the find-

ing that no lasing is possible at ∆β = 0 where we have gain in PIM only and gn = 0

for κ = 3.

Case: gn < 0, gp >= |gn| and ∆β = 0

This scenario is very interesting. Here, we tried to model a more practical de-

vice having loss in the NIM waveguide and gain in the PIM waveguide. It was

observed that a stable lasing action is achieved if the gain in PIM is equal to or

greater than the absolute value of loss in NIM.
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Figure 4.7: Active NIM-PIM DC: Lasing Behavior - Losses in NIM with gain in PIM at

∆β = 0 and gp >= |gn|, κ = 3.

Figure 4.7 shows the Tmax versus gp for various values of gn where κ = 3. No-

tice how each curve on this plot starts off with gp >= |gn| and grows upward with

increasing values of gp in the PIM waveguide. As more gain is added, the trans-

mittivity peaks exhibit an exponential growth and eventually a point is reached

where these peaks hit infinity indicating that such a device can lase. Hence, we

may conclude that it is possible to achieve lasing with a NIM-PIM DC where we
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have a lossy NIM while the PIM waveguide must posses gain which is either equal

to or greater than the absolute value of losses in the NIM waveguide. It is also ob-

served from Figure 4.7 that the required threshold gains (gth) to achieve lasing at

∆β = 0 for gn = -0.1, -0.3, -0.6 and -0.9 are 0.35, 0.97, 1.73 and 2.32 respectively.

Case: gn < 0, gp < |gn| and ∆β = 0

This can be considered as an extension of the case discussed above. Here we stud-

ied what will happen if the gain in the PIM waveguide is lesser than the absolute

value of loss in the NIM waveguide. A very peculiar behavior consisting of nu-

merous longitudinal modes that can actually lase is observed.
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Figure 4.8: Active NIM-PIM DC: Lasing Behavior - Losses in NIM with gain in PIM at

∆β = 0 and gp < |gn|, κ = 3.

Figure 4.8 shows the Tmax versus gp for various values of gn where κ = 3. Notice

how the number of lasing modes decrease with higher values of gain gp and the

device achieves a stable lasing behavior once gp is increased beyond |gn|.

The existence of multiple lasing modes when ∆β = 0 and gp < |gn| can be

explained by analyzing the behavior of q′ at ∆βth for the cases where 1) gp = gn =

g and gp = g and 2) gp = g and gn = 0. In the first case with equal gain in both the
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waveguides, the behavior of q′ at ∆βth with increasing values of gain is analyzed

and the results are plotted in Figure 4.9. From Figure 4.9 it is observed that q′ is

always a complex quantity bearing both a real and imaginary part. Furthermore,

q′ varies over a small range.

Figure 4.9: Active NIM-PIM DC: q′ versus increasing g at ∆βth = 4.148, gp = gn = g,

and κ = 3.

Figure 4.10 depicts the behavior of q′ at ∆βth when there is no gain or loss in the

NIM waveguide. Notice that similar to the previous case, q′ is always a complex
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quantity bearing both a real and imaginary part. Furthermore, q′ varies over a

small range.

Figure 4.10: Active NIM-PIM DC: q′ versus increasing g at ∆βth = 3.419, gp = g,

gn = 0, and κ = 3.

Figure 4.11 depicts the behavior of q′ at ∆βth = 0 when there are losses in the

NIM waveguide. Figure 4.11 shows that q′ is always a real quantity as opposed to

the previous two cases. Besides q′ being real, a huge variation is observed in its

value. It is only at g >= |gn| = 0.3 that this variation gets comparable to that of
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the previous two cases and multiple lasing modes disappear.

Figure 4.11: Active NIM-PIM DC: q′ versus increasing g at ∆βth = 0, gp = g, gn =

−0.3, and κ = 3.
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4.2.2 Lasing Boundary Conditions and Specific Solution

Boundary conditions for lasing a NIM PIM DC are the same as in case of a DFB

structure, i.e. :

A(ζ = 0) = 0

B(ζ = 1) = 0.

Applying the above lasing boundary conditions to the general solution of the

coupled-mode equations of a NIM-PIM DC yields:

A(ζ) = A1eiqζ + A2e−iqζ

0 = A1 + A2

A2 = −A1.

A(ζ) can now be expressed as:

A(ζ) = A1eiqζ − A1e−iqζ

A(ζ) = A1(eiqζ − e−iqζ). (4.2.1)

Similarly applying the boundary conditions to B(ζ) yields:

B(ζ) = B1eiq′ζ + B2e−iq′ζ

0 = B1eiq′ + B2e−iq′

B2 = −B1e2iq′ .
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Substituting the above expression for B2 into the general expression (3.2.4) for B(ζ)

yields:

B(ζ) = B1eiq′ζ + B2e−iq′ζ

B(ζ) = B1eiq′ζ + (−B1e2iq′)e−iq′ζ

B(ζ) = B1(eiq′ζ − e2iq′−iq′ζ)

B(ζ) = B1eiq′(eiq′ζ−iq′ − e−iq′ζ+iq′). (4.2.2)
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4.2.3 Effective Reflectivity Coefficients

Expressions for the reflectivities encountered by the forward and backward prop-

agating waves can be derived using (3.2.13), (3.2.14), (3.2.15) and (3.2.16).

ra =
B1

A1
=

q− ∆β + igp/2
κ

. (4.2.3)

ra =
B1

A1
=

−κ

q′ + ∆β− ign/2
. (4.2.4)

rb =
A2

B2
=

q′ − ∆β + ign/2
κ

. (4.2.5)

rb =
A2

B2
=

−κ

q + ∆β− igp/2
. (4.2.6)

where ra is the effective reflectivity of the forward-propagating mode while rb in-

dicates that of the backward-propagating mode.

Expressing the general solution in terms of the reflectivities ra and rb yields:

A(ζ) = A1eiqζ + raB2e−iqζ (4.2.7)

B(ζ) = rb A1eiq′ζ + B2e−iq′ζ . (4.2.8)
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Applying the above mentioned boundary condition to (4.2.8) yields:

0 = rb A1eiq′ + B2e−iq′

B2 = −rb A1e2iq′ . (4.2.9)

Applying boundary conditions to (4.2.7) and using (4.2.9) yields:

0 = A1 + raB2

0 = A1 + ra(−rb A1e2iq′)

0 = A1(1− rarbe2iq′)

rarbe2iq′ = 1. (4.2.10)

Expression (4.2.10) is different from the one obtained for an active DFB structure

(4.1.11). It involves ra, rb which are not always the same, and q′ which is different

from q for an asymmetric system. For an active NIM-PIM DC ra is only equal to

rb when both NIM and PIM have the same amount of optical gain. The fact that

ra is not always equal to rb lends a complexity to the process when we derive the

transcendental eigenvalue equations for an active NIM-PIM DC in a later section

of the chapter.
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4.2.4 Transcendental Eigenvalue Equations

The coupled-mode equation for a PIM waveguide as mentioned previously, is ex-

pressed as:

dA
dζ

= i(∆β− igp/2)A + iκB.

Applying the lasing boundary conditions to the general solution for the coupled

mode equations of an active NIM-PIM DC, equations (4.2.1) and (4.2.2) are ob-

tained. By substituting these two expressions in the above coupled-mode equation

yields:

d
dζ
{A1(eiqζ − e−iqζ)} = i(∆β− i

gp

2
)A1(eiqζ − e−iqζ) + iκB1eiq′(eiq′ζ−iq′ − e−iq′ζ+iq′)

(iq)A1{eiqζ + e−iqζ}+ A1(−i∆β−
gp

2
){eiqζ − e−iqζ} = iκB1eiq′{eiq′ζ−iq′ − e−iq′ζ+iq′}

(iq)A1{eiq′ζ−iq′Hζ + e−iq′ζ+iq′Hζ}+ A1(−i∆β−
gp

2
){eiq′ζ−iq′Hζ − e−iq′ζ+iq′Hζ}

= iκB1eiq′{eiq′ζ−iq′ − e−iq′ζ+iq′}.

Equating coefficients of eiq′ζ yields:

(iq)A1{e−iq′Hζ}+ A1(−i∆β−
gp

2
){e−iq′Hζ} = iκB1eiq′{e−iq′}

(iq)A1 + A1(−i∆β−
gp

2
) = iκB1eiq′{e−iq′+iq′Hζ}. (4.2.11)

Equating coefficients of e−iq′ζ yields:

(iq)A1{eiq′Hζ} − A1(−i∆β−
gp

2
){eiq′Hζ} = −iκB1eiq′{eiq′}

(iq)A1 − A1(−i∆β−
gp

2
) = −iκB1eiq′{eiq′−iq′Hζ}. (4.2.12)
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Adding equations (4.2.10) and (4.2.12) yields:

2(iq)A1 = iκB1eiq′{e−iq′+iq′Hζ − eiq′−iq′Hζ}

2(iq)A1 = −iκB1eiq′{eiq′−iq′Hζ − e−iq′+iq′Hζ}

(iq) = κ
B1

A1
eiq′ sin{q′ − q′Hζ}. (4.2.13)

The coupled-mode equation for a NIM waveguide as mentioned previously is

expressed as:

−dB
dζ

= i(∆β− ign/2)B + iκA.

Applying the lasing boundary conditions to the general solution of an active NIM-

PIM DC, equations (4.2.1) and (4.2.2) are obtained. By substituting these two ex-

pressions in the above coupled-mode equation for NIM yields:

−d
dζ

B1eiq′(eiq′ζ−iq′ − e−iq′ζ+iq′) = i(∆β− i
gn

2
)B1eiq′(eiq′ζ−iq′ − e−iq′ζ+iq′) + iκA1(eiqζ − e−iqζ).

Differentiating the above expression yields:

(−iq′)B1eiq′{eiq′ζ−iq′ + e−iq′ζ+iq′}+ (i∆β− gn

2
)B1eiq′{eiq′ζ−iq′ − e−iq′ζ+iq′}

= iκA1{eiqζ − e−iqζ}

(−iq′)B1eiq′{eiq′ζ−iq′ + e−iq′ζ+iq′}+ (i∆β− gn

2
)B1eiq′{eiq′ζ−iq′ − e−iq′ζ+iq′}

= iκA1{eiqζ − e−iqζ}

(−iq′)B1eiq′{eiq′ζ−iq′ + e−iq′ζ+iq′}+ (i∆β− gn

2
)B1eiq′{eiq′ζ−iq′ − e−iq′ζ+iq′}

= iκA1{eiq′ζ−iq′Hζ − e−iqζ+iq′Hζ}.
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Equating coefficients of eiq′ζ yields:

−iq′B1eiq′{e−iq′}+ (i∆β− gn

2
)B1eiq′{e−iq′} = iκA1{e−iq′Hζ}

−iq′B1eiq′ + (i∆β− gn

2
)B1eiq′ = iκA1{e−iq′Hζ+iq′}

−iq′B1 + (i∆β− gn

2
)B1 = iκA1e−iq′{e−iq′Hζ+iq′}.(4.2.14)

Equating coefficients of e−iq′ζ yields:

−iq′B1eiq′{eiq′} − (i∆β− gn

2
)B1eiq′{eiq′} = −iκA1{eiq′Hζ}

−iq′B1eiq′ − (i∆β− gn

2
)B1eiq′ = −iκA1{eiq′Hζ−iq′}

−iq′B1 − (i∆β− gn

2
)B1 = −iκA1eiq′{e−iq′Hζ+iq′}. (4.2.15)

Adding equations (4.2.14) and (4.2.15) yields:

−2(iq′)B1 = iκA1e−iq′{eiq′−iq′Hζ − e−iq′+iq′Hζ}

−q′B1 = iκA1e−iq′ sin{q′ − q′Hζ}

iq′ = κ
A1

B1
e−iq′ sin{q′ − q′Hζ}. (4.2.16)

Equations (4.2.13) and (4.2.16) are the two transcendental eigenvalue equations for

an active NIM-PIM DC.

The transcendental eigenvalue equations obtained for the DFB structure and

NIM-PIM DC with equal gain in both waveguides can be solved using Matlab’s

root finding technique. However, in the case of varying gain in both waveguides

it is not possible to use the mentioned routine since such a scenario involves more
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than one unknown variable and no such routines are readily available for finding

roots of equations with multiple unknowns. In order to overcome this problem,

a technique is devised which involves the transmittivity equation (3.2.27) derived

earlier in chapter three and the dispersion relation (3.2.23). The transcendental

eigenvalue equation is solved numerically for the case where we have equal gain

in both waveguides. This results in all possible values of q′ along with the corre-

sponding threshold values of ∆β and gn. These values serve as the initial guess to

our system. For lasing, the condition T → ∞ or 1/T → 0 holds where T represents

the transmittivity in equation (3.2.27). Find the minimum of 1/T using a matlab

routine (fminsearch). The initial guess value is updated accordingly by the system

with any variation in gain (gn) as it tries to find the lasing peak of the transmit-

tivity spectrum using equation (3.2.27). The resulting modified values of q′ along

with the threshold values of ∆β and gn are then fed into the dispersion relation

(3.2.23) for the active NIM-PIM DC and solved for threshold values of gp. Figure

4.12 indicates the threshold gain and detuning values for gp = gn using the above

mentioned technique. Note that the threshold values obtained for gain and detun-

ing using this technique are the same as those obtained from Figure 4.4 indicating

the accuracy of this method.
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Figure 4.12: Active NIM-PIM DC: Threshold gain vs detuning gp = gn.

Figure 4.13 indicates the threshold gain and detuning values for gp = g and

gn = 0 using the above mentioned technique. Note that the threshold values ob-

tained for gain and detuning using this technique are similar to those obtained

from Figure 4.5 indicating the accuracy of this method and that increased levels of

gp are required to achieve lasing in this case.
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Figure 4.13: Active NIM-PIM DC: Threshold gain vs detuning gp = g and gn = 0.

The above technique however does not provide a feasible solution for the case

where the NIM waveguide has losses. In this particular case, lasing occurs at ∆β =

0 and we have to manually assign ∆β = 0 in order for the system to converge at a

correct solution.
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4.3 SUMMARY OF STEPS

Active DFB Resonator - Effective Reflectivities

1. Define ra =
B1
A1

and rb =
A2
B2

(derived using expressions (3.1.5), (3.1.6), (3.1.7)

and (3.1.8)).

2. Modify the general solution in terms of ra and rb e.g. equations (4.1.7) and

(4.1.8).

3. Apply laser boundary conditions to the modified general solution and solve

for B2 e.g. equations (4.1.7), (4.1.8) and (4.1.9).

4. Plug in the value of B2 in the modified solution for A(ζ) with boundary con-

ditions applied and simplify to yield an expression for ra and rb. For a DFB

resonator ra = rb e.g. equation (4.1.11).

Active DFB Resonator - Transcendental Eigenvalue Equation

1. Apply the laser boundary conditions on both forward and backward travel-

ing modes resulting in modified expression for A(ζ) and B(ζ) e.g. equations

(4.1.1) and (4.1.2).

2. Plug this modified expression of A and B in the coupled-mode equation for

the forward traveling mode e.g. equations (4.1.1) and (4.1.2) in (3.1.1).

3. Differentiate the resulting expression. Replace A1 by ±B1eiq (obtained from

effective reflectivity) and simplify accordingly.
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4. Equate coefficients of eiqζ and take the positive value e.g. equation (4.1.12).

5. Equate coefficients of e−iqζ and take the negative value e.g. equation (4.1.13).

6. Add these two equations which results in required equation e.g. equation

(4.1.16).

7. Repeat all of the above steps for coupled-mode equation of the backward

traveling mode.

8. Similar results are obtained.

Active DFB Resonator - Lasing Thresolds (Numerical Solution)

1. Using root finding technique, find all possible roots of q for one fixed value

of κ.

2. Substitute each value of q in the dispersion relation to find ∆β and g.

3. The real part of this solution finds the threshold g while the imaginary part

calculate the corresponding ∆β at threshold.

Active NIM PIM DC - Effective Reflectivities

1. Define ra = B1
A1

and rb = A2
B2

, using the relations obtained in chapter three

while deriving the dispersion relation e.g. equations (3.2.13), (3.2.14), (3.2.15)

and (3.2.16).

2. Modify the general solution in terms of ra and rb e.g. equations (4.2.7) and
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(4.2.8).

3. Apply laser boundary conditions to the modified general solution and solve

for B2 e.g. equations (4.2.7), (4.2.8) and (4.2.10).

4. Plug in the value of B2 and simplify to yield an expression for ra and rb e.g.

(4.2.10). In this case ra = rb only when the two waveguides have identical

gain.

Active NIM PIM DC - Transcendental Eigenvalue Equation

1. Apply the laser boundary conditions to both forward and backward travel-

ing modes resulting in modified expression for A(ζ) and B(ζ) e.g. equations

(4.2.1) and (4.2.2).

2. Plug the modified expressions of A and B in the coupled-mode equation for

PIM waveguide. e.g. equations (4.2.1) and (4.2.2) in (3.2.1).

3. Differentiate the resulting expression. Replace the exponentials involving q

in terms of q′.

4. Equate coefficients of eiq′ζ e.g. equation (4.2.10).

5. Equate coefficients of e−iq′ζ e.g. equations (4.2.12).

6. Add these two equations which results in a transcendental equation e.g.

equations (4.2.10), (4.2.12) and (4.2.13).

7. Repeat all of the above steps for coupled-mode equation of the NIM waveg-
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uide which results in equation (4.2.16).
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