AUTOMATED DROPLET MANIPULATION THROUGH ELECTROWETTING ON DIELECTRIC FOR DNA SYNTHESIS

HEE TAE AN ADVISOR: DR. MICHAEL SCHERTZER
WHAT IS AN OLIGONUCLEOTIDE?

- Short DNA/RNA molecules
- Characterized by the sequence of nucleobases: adenine, guanine, cytosine, thymine, uracil
- Two use cases [1]:
 - Primers – Used to start chain reaction of target
 - Probes – Used to bind and hold target
- Common use is antisense therapy

Depiction of antisense oligonucleotide application [2].
1) Addition of solid-phase support material
2) Addition of protected nucleobase
3) Attachment of protected nucleobase to solid support
4) Removal of unattached protected nucleobase molecules
5) Deprotection of attached nucleobase
6) Removal of detached protecting groups + addition of protected nucleobase
7) Attachment of protected nucleobase to deprotected nucleobase
8) Removal of unattached protected nucleobase molecules + reentry into cycle at step 4

Simplified depiction of solid-phase oligonucleotide synthesis [3].
WHY ELECTROWETTING ON DIELECTRIC (EWOD)?

- EWOD allows for the manipulation of fluids
- Filtration techniques allows for selective removal of excess molecules
- Fluids can be split into droplets of very small volumes
- Devices can be designed to support many fluids simultaneously
- Manipulation can be easily automated

Depiction of particle filtration using SU-8 pillars [5]
EWOD ACTUATION THEORY

1. Voltage is applied to actuation electrode
2. Charge is induced in overlapping region of the droplet
3. Electrostatic force deforms the droplet, reducing the liquid solid surface tension at the leading edge
4. Surface tension gradient forces the droplet forward

\[F_m = \frac{\varepsilon_0 \varepsilon_R}{2d} V^2 - F_T \]

- \(F_m \): external force per unit length,
- \(\varepsilon_0 \): permittivity of free space,
- \(\varepsilon_R \): relative permittivity of the entire film stack,
- \(d \): gap distance between the top and bottom electrodes,
- \(V \): applied voltage, and
- \(F_T \): threshold initiation force
PROJECT OBJECTIVES

- Design an electrowetting on dielectric (EWOD) device and process that manipulates droplets successfully, supports RIT SMFL fabrication processes, and also supports RIT DMFL testing facilities
- Perform and automate droplet manipulation with key functions such as droplet creation at reservoirs
- Perform and characterize particle filtration
DEVICE DESIGN CONSIDERATIONS

- Import from Schertzer et al. [5]
- RIT Semiconductor & Microsystems Manufacturing Laboratory (SMFL)
 - Wafer Standards
 - Available tools and chemistry
 - Supported chemistry
- RIT Discrete Microfluidics Laboratory (DMFL) testing facility
 - Pin placement and dimension
 - Mounting mechanism
 - Top plate ground
FABRICATION PROCESS FLOW

(1) Device Fabrication
 a. Al electrode PVD
 b. Electrode patterning
 c. SiO₂ insulator CVD
 d. Insulator patterning
 e. SU-8 filter lithography
 f. Teflon coating

(2) Top Plate Fabrication
 a. ITO PVD
 b. Teflon coating

Complete device cross section
SMFL Fabricated Device

- Reservoir Electrode 2 mm x 1.75 mm
- Actuation Electrode 1 x 1 mm
- SU-8 Stand-off Region
- Pin Contacts
- Filter Dimensions Information
- Film Stack Information

SMFL Fabricated Filters on Device

118 \(\mu \)m thick pillars with \(\sim 4 \mu \)m gap
AUTOMATED TESTING DESIGN

a) Function generator signal control
b) Digital multimeter
c) Switch matrix initialization
d) Program assignment and details
e) Pin contact to pin assignment
f) Split/merge and move timing with split/merge step number assignment
g) Program status and control
DROPLET MANIPULATION

35.5 Vrms, 1 kHz, 100-150 um gap
DROPLET MERGE/SPLIT

35.5 V_{rms}, 1 \text{ kHz}, 100-150 \text{ um gap}
CONCLUSIONS

- All the necessary device components for a complete DNA synthesis EWOD platform was designed, fabricated, and tested for functionality.
- While the movement of droplets was easily performed, separation of droplets from reservoir seemed to be much more sensitive to the top plate distance.
- Integration of the various device components will be necessary to perform reliable separation and allow solid-phase oligonucleotide synthesis.
- Testing mounting changes will improve manipulation.
QUESTIONS?
THANK YOU!
REFERENCES

