
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2012

A Historical evaluation of C&C complexity A Historical evaluation of C&C complexity

Conzetti Finocchiaro

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Finocchiaro, Conzetti, "A Historical evaluation of C&C complexity" (2012). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/505?utm_source=repository.rit.edu%2Ftheses%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Historical Evaluation of C&C Complexity

By

Conzetti N. Finocchiaro

Committee Members

Dr. Peter Lutz
Dr. Jim Leone
Dr. Bo Yuan

Thesis submitted in partial fulfillment of the requirements for the degree

of

Master of Science in Networking and System Administration

Rochester Institute of Technology

B. Thomas Golisano College

of

Computing and Information Sciences

August 20, 2012

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

Master of Science in

Networking and System Administration

Thesis Approval Form

Student Name: Conzetti Finocchiaro

Thesis Title: A Historical Evaluation of C&C Complexity

Thesis Committee

 Name Signature Date

Peter Lutz
Chair

Jim Leone
Committee Member

Bo Yuan
Committee Member

i

Table of Contents
Abstract .. 1

1. Introduction .. 1

2. Related Work &Background .. 4

2.1 Related Work ... 4

2.1.1 Botnet Detection ... 4

2.1.2 Botnet Evaluation ... 5

2.2 Botnet C&C Architecture ... 5

2.2.1 Centralized Architecture .. 6

2.2.2 Decentralized Architecture ... 7

2.3 Botnet Selections & Overview ... 9

2.3.1 Agobot .. 9

2.3.2 Asprox .. 9

2.3.3 Bagle .. 10

2.3.4 Bobax ... 10

2.3.5 Conficker .. 10

2.3.6 iKee .. 10

2.3.7 GTbot ... 10

2.3.8 Nugache.. 11

2.3.9 Peacomm .. 11

2.3.10 Phatbot ... 11

2.3.11 SDbot ... 11

2.3.12 Sinit .. 11

2.3.13 Waledac .. 11

2.3.14 Zeus .. 12

3. Evaluation Methodology .. 12

3.1 Manual C&C Evaluation Tools & Processes ... 12

3.1.1 Infection Point .. 12

3.1.2 Imaging .. 13

3.1.3 Packet Analysis .. 13

3.1.4 Evaluation Criteria ... 13

3.2 Lab Topology ... 14

3.3 Botnet C&C Evaluation ... 14

ii

3.3.1 Agobot .. 15

3.3.2 Asprox .. 16

3.3.3 Bagle .. 18

3.3.4 Bobax ... 19

3.3.5 Conficker .. 20

3.3.6 iKee .. 21

3.3.7 GTbot ... 22

3.3.8 Nugache.. 23

3.3.9 Peacomm .. 24

3.3.10 Phatbot ... 25

3.3.11 SDbot ... 26

3.3.12 Sinit .. 27

3.3.13 Waledac .. 28

3.3.14 Zeus .. 29

3.4 Complexity Matrix ... 31

3.4.1 C&C Characteristic Definitions ... 32

4. Historical Data ... 34

4.1 Complexity Score ... 34

5. Limitations & Future Work.. 35

6. Conclusion ... 36

7. Acknowledgements .. 36

8. References .. 37

A. Appendix ... 41

A.1 Definitions ... 41

A.1.1 Distributed Hash Table .. 41

A.1.2 Domain Generation Algorithm .. 41

A.1.3 Single-flux DNS .. 42

A.1.4 Double-flux DNS .. 42

iii

Table of Figures

Figure 1: A Legacy Centralized Design with co-located C&C servers & a single Botmaster 6

Figure 2: A Next-generation Centralized Design utilizing Supernodes and Subcontrollers for hierarchical C&C 7

Figure 3: A Full P2P Decentralized Design, utilizing partial mesh P2P relationships & a single Botmaster 8

Figure 4: A Hierarchical P2P Decentralized Design, using partial mesh P2P relationships between Subnodes and

utilizing Supernodes and Subcontrollers for hierarchical C&C .. 8

Figure 5: The three separate high-level processes and their respective topologies.. 14

Figure 6: Botnet C&C complexity scores relative to date of inception or discovery of the particular variant of

malware ... 34

1

Abstract

The actions of Malware are often controlled through uniform communications mechanisms, which are

regularly changing to evade detection techniques and remain prolific. Though geographically dispersed,

malware-infected nodes being controlled for a common purpose can be viewed as a logically joint

network, now loosely referred to as a botnet. The evolution of the mechanisms or processes for

controlling the networks of malware-infected nodes may be indicative of their sophistication relative to a

point of inception or discovery (if inception time is unknown).

A sampling of botnet related malware at different points of inception or discovery can provide

accurate representations of the sophistication variance of command and control processes. To accurately

measure a sampling, a matrix of sophistication, deemed the Complexity Matrix (CM), was created to

categorize the signifying characteristics of Command and Control (C&C) processes amongst a

historically-diverse selection of bot binaries.

In this paper, a survey of botnets is conducted to identify C&C characteristics that accurately represent

the level of sophistication being implemented within a specified time frame. The results of the survey are

collected in a CM and used to generate a subsequent roadmap of C&C milestones.

1. Introduction

Network-based Covert Channels (NCCs) have been used as discrete end-to-end data transfer mediums for

botnet communications. C&C operations rely on NCCs to remotely manage and update resources while

evading detection mechanisms. An evolution of detection mechanisms directly impacts the evolution of

NCCs used for such purposes, and as such, methods of C&C operations have vastly changed over time.

The objective of the subsequent work is to identify and quantify the sophistication variance of C&C

processes throughout a comparative analysis of multiple botnets created at different points in history. This

2

analysis will effectively prove or disprove that the sophistication or complexity of C&C methods are

increasing over time.

Bots may rely on C&C communications, for the distribution of instructions, for routine updating

purposes, and to remain effective and evasive. These communications serve as the lifeline to a Botmaster,

or the entity managing the botnet, and as such are typically very important to the overall success of a

botnet. Anti-malware solutions pose a significant threat to the longevity of C&C communications, so

methods of evasion are regularly implemented to enable bots to operate unscathed.

The architecture of a botnet will vastly affect the methods of C&C that are implemented, and in some

situations will directly affect the complexity of the C&C processes. A thorough understanding of the

major botnet designs is thus a prerequisite to C&C evaluation. Botnets can be defined as either

centralized, decentralized, or hybrid in design [22, 32], but only centralized and decentralized

architectures will be explored in this research. The designs are briefly defined, below, and are explored in

greater depth in section 2.2.

 Centralized: Receives or retrieves all C&C communications from a master node (or nodes) in a

master/slave design (Master

 Bot).

 Decentralized: Receives or retrieves some or all C&C communications from a series of peers in a

peer-to-peer (P2P) design (Bot

 Bot).

Historically, the centralized architecture has been a widely adopted design for successful botnet

implementations. C&C master servers can be viewed as a single point of failure despite the potential to

have intermediary nodes relaying communications [22]. In contrast, a decentralized design focuses on

C&C methods being delivered through peers (other Bots), and effectively eliminates a central point of

failure [3, 13]. A decentralized design must therefore rely upon a mechanism to discover or communicate

with other peers, and may be much more difficult in practice to implement. The effectiveness of each

design truly depends upon the methods of obscuring or securing the C&C traffic from detection.

3

 In addition to being measured on architectural style, C&C communications will be measured by other

distinguishable features. Distinguishable features will be categorized under one of the following high-

level capability offerings: high availability and fault tolerance, authentication and non-repudiation,

encryption methods, evasion tactics, transport protocols, and application protocols.

A broad analysis of C&C methods, adopted by well-known botnets throughout history, is required to

interpret their overall complexity. This work seeks to do just that, by categorizing the characteristics of

the C&C method into a complexity matrix (CM) and generating metrics from the collected data. As such,

the analysis required two methods of evaluation to create complexity measurements:

(1) A logical deconstruction of C&C processes based upon prior research

(2) A physical evaluation of C&C processes on selected Bots, where prior research is missing or

inadequate

The work herein produces a roadmap of measurable advancements in C&C methods through the

evaluation of several botnet variants. The roadmap and supporting documentation will explicitly prove

sophistication advancement as time progresses. Ideally, the outcomes of this project will enable a

researcher to quickly and easily identify when a C&C method surfaced, relative to the malware that used

it. In addition to being time-bound, the maturity of a specific C&C method will also be measurable.

4

2. Related Work &Background

In a sampling of prior research, major attention was paid towards innovative techniques for detecting

C&C traffic or, alternatively, performing static analysis on particular C&C technologies to understand

their functionality and potential applications. Functional advancements and varying levels of

sophistication are documented in such efforts, which help identify a period of performance for a particular

C&C method.

2.1 Related Work

Lashkari et al. introduced a broad overview of various prominent botnets [4], but the work lacks specifics

on the capabilities and technologies leveraged by the botnet authors. The work presented in [4] is also

lacking tangible evidence to prove or disprove advancements in C&C techniques. Norman introduced a

similar approach at wide-scale botnet evaluation, but purely tailored his work towards the logical

deconstruction and evaluation of P2P botnets [3]. Norman does, however, present a very detailed

narrative on the history and direction of botnets in general.

 This work improves upon a broad botnet survey and hones in on specifics of the C&C methods

employed by Botmasters. To supplement the work performed in this survey, two other categories of prior

research were leveraged for their specific vantage point on botnet functionality: botnet detection and

botnet evaluation.

2.1.1 Botnet Detection

Botnets may elicit specific characteristics that can be used for detection purposes. Various detection

methods are presented in prior research [5, 6, 24, 27, 29, 30, 32, 40], either as novel approaches or as

sources of comparison for already available detection methods. This research methodology does not

typically focus on detecting a single botnet family, but more generally provides a plausible basis for the

detection of multiple botnets. Such research inevitably reveals many specifics of botnet C&C methods

indirectly.

5

2.1.2 Botnet Evaluation

Evaluation tends to focus on the dissection of botnet families in an effort to understand the underlying

technologies utilized by Botmasters. C&C methods are evaluated based upon specific protocol

characteristics and design features in the chosen work [2-4, 7, 9-13, 21-23, 26, 28, 33, 37, 38, 39, 43, 44].

Such approaches directly reveal specifics of C&C methods.

2.2 Botnet C&C Architecture

Each botnet selected for evaluation in this research receives or retrieves C&C communications in either a

centralized or decentralized fashion. Strictly speaking, a centralized architecture requires C&C

communications to propagate from centralized masters (C&C server) to slaves (Bots). A decentralized

architecture would thus purely rely upon peers (Bots) to receive and retrieve C&C communications.

There are, however, designs that go beyond the traditional understanding of centralized or decentralized.

Thus, we have several designs presented in the sampling of botnets chosen in this research.

 Modern malware may introduce the separation of duties amongst different nodes in a hierarchical

fashion. This hierarchical format exists in both Centralized and Decentralized architectures, and the

naming conventions used to identify those roles are listed below and used throughout the document.

 Subnodes: The lowest tier of a hierarchical design; the bot or zombie computers

 Supernodes: The next intermediary tier of nodes after subnodes; bots equipped with more

functionality or responsibilities

 Subcontrollers: The next intermediary tier of nodes after supernodes; services deployed to

managed systems to hide C&C servers and perform basic C&C functions for lower layers

 C&C Operations Center: The highest tier of a hierarchical design; services deployed to manage

and delegate responsibilities to the lower tiers, directly operated by a Botmaster

6

2.2.1 Centralized Architecture

A centralized architecture follows a master/slave topology, where a central authority (master) is

responsible for the actions of its slaves. A legacy implementation (Fig. 1) of the centralized architecture

follows a very simple one-to-many relationship. However, the addition of intermediary nodes to perform

selective C&C functions represents a delegation of responsibilities and increases the difficulty in

identifying the central authority for a botnet. The method of introducing layers of intermediary C&C

nodes to create a more scalable, robust botnet is identified as the next-generation centralized design

(Figure 2).

Legacy Centralized Design

Subnodes (Bots) C&C Operations Center

Figure 1: A Legacy Centralized Design with co-located C&C servers & a single Botmaster

7

Subnodes (Bots) C&C Operations CenterSupernodes Subcontrollers

Next-generation Design

Figure 2: A Next-generation Centralized Design utilizing Supernodes and Subcontrollers for hierarchical C&C

2.2.2 Decentralized Architecture

A decentralized architecture follows a P2P topology, where no central authority is directly responsible for

the actions of a peer. A basic implementation of the decentralized architecture follows a simple many-to-

many relationship, where participating bots may have multiple connections to other participating bots at

any given point in time. A full P2P (Fig. 3) design purely relies on its peers (Bots) for C&C instruction

dissemination, but enables a Botmaster to distribute C&C instructions to his entire botnet through any

given Bot. A hierarchical P2P design (Fig. 4) utilizes P2P communications for the use of specific C&C

purposes, and introduces layers of hierarchical control points for extended C&C distribution and more

robust functionality.

8

Full P2P Design

Figure 3: A Full P2P Decentralized Design, utilizing partial mesh P2P relationships & a single Botmaster

Hierarchical P2P Design

Subnodes (Bots) C&C Operations CenterSupernodes Subcontrollers

Figure 4: A Hierarchical P2P Decentralized Design, using partial mesh P2P relationships between Subnodes and utilizing Supernodes

and Subcontrollers for hierarchical C&C

9

2.3 Botnet Selections & Overview

The growing number of botnet families presents a challenge when identifying an accurate subset of

botnets that are representative of a given era. Thus, the botnets selected for evaluation in this project were

chosen based upon the significance of one or more of the following properties:

(1) The proliferation or wide-scale effect on the Internet (and thus the users of)

(2) The precedence set by, or the novel use of, a C&C technique

(3) The period of performance of a specific botnet

By limiting the selection of botnet examples in this fashion, a manageable scope for botnet evaluation is

created. However, the limited scope does not hinder the ability to accurately represent historical C&C

sophistication variance.

To satisfy the requirement to represent a full spectrum of botnet C&C advancements, fourteen botnet

examples were chosen after evaluating their respective C&C methods against the selection criteria. The

following subsections will provide introductory details on the selected botnets.

2.3.1 Agobot

Agobot is a name given to a large family of botnet variants that were identified by Sophos [48] in October

of 2002. The Agobot malware source code was released to the general public under the GNU General

Public License, version 2 (GPL v2), spawning many subsequent botnets. Based on this open distribution,

Agobot also may collectively refer to Gaobot, which Symantec first reported on January 13, 2004 [51].

2.3.2 Asprox

The Asprox botnet is comprised of spambots, used for the sole purpose of sending unsolicited email [42]

and phishing attacks. The botnet was discovered and categorized as a Trojan by Symantec on June 8,

2007 [49].

10

2.3.3 Bagle

The Bagle botnet is comprised of spambots, used for the sole purpose of sending unsolicited email.

According to M86 Security, Bagle surfaced in early 2004 [15, 16]. It is characterized by its ability to act

as a proxy server for the relay of spam to its final destination, but can ultimately serve other purposes as

required.

2.3.4 Bobax

Bobax is malware used primarily for spamming purposes. According to F-Secure [45], the botnet was

discovered on May 16, 2004. Much like other spamming botnets, it is characterized by its ability to act as

a proxy server for the relay of spam to its final destination.

2.3.5 Conficker

Conficker is a worm that exploits a vulnerability in Microsoft Windows Server service and provides

several methods of propagation to other vulnerable hosts. The overall objective of the worm is not clearly

understood, beyond the act of infecting other nodes. Microsoft reports that the first variant of Conficker

was reported on November 21, 2008 [25].

2.3.6 iKee

iKee is a worm that propagates to vulnerable Apple iOS devices purportedly for the sake of phishing and

information mining [11]. The malware was discovered on November 19, 2009 [11].

2.3.7 GTbot

GTbot, or Global Threat Bot, is the name given to a wide variety of malware with similar IRC-based

botnet characteristics. Prior research by Canavan documents the introduction of GTbot variants in late

2000 [44].

11

2.3.8 Nugache

Nugache is malware utilized mainly for information mining [53], but has the capacity to be used for other

nefarious purposes. Early variants of Nugache were discovered on April 30, 2006 [53].

2.3.9 Peacomm

Peacomm, otherwise known as Storm, is a multi-stage infection that is largely used for the generation of

spam and DDoS attacks. Symantec identified the malware on January 19, 2007 [50].

2.3.10 Phatbot

Phatbot is an Agobot variant [51] that was detected by Symantec on November 21, 2003 as

W32.HLLW.Gaobot.gen [52]. Phatbot inherits the capabilities of earlier variants, but is equipped with a

larger exploit toolkit for compromising vulnerable machines.

2.3.11 SDbot

SDbot is remote control and administration malware used for information mining, DDoS attacks and

infecting other nodes to perform similar functions. SDbot’s existence became known by Symantec on

April 30, 2002 [17].

2.3.12 Sinit

Sinit is remote control and administration malware purportedly used for the distribution of other malware

[46]. Symantec first discovered the threat on October 9, 2003 [18].

2.3.13 Waledac

Waledac is multifunctional piece of malware that spreads and infects using various different attack

vectors. The malware is utilized mainly for generation of spam, emerging in November 2008 [6, 43, 54].

12

2.3.14 Zeus

Zeus is the name given to a large crimeware suite used to create and control customized bot binaries. The

name has become synonymous with the bots generated from the various versions of the Zeus suite, but

this is not an accurate identifier for any single binary. The creation time of the crimeware is not known

with absolute precision, but the kit is readily used as of this writing (August, 2012).

3. Evaluation Methodology

A sampling of botnet variants is evaluated for the existence of specific features to enable stealthy

communications in their respective C&C topology. The analysis begins with a literature review of

research performed on all of the identified botnet variants and completed with manual network traffic

analysis as returned from a machine infected with a bot binary.

The manual analysis is utilized to enforce prior research and support statements made in this research.

In the event that a bot binary was unattainable, the generated CM identifies this and utilizes the details of

prior research.

3.1 Manual C&C Evaluation Tools & Processes

3.1.1 Infection Point

All malware was installed and executed on an unpatched version of the Microsoft Windows XP operating

system (OS). A physical system was used to host the OS to avoid the possibility of the bot binary

behaving differently if operated in a virtual environment. The only modification to the guest operating

system was the installation of network and video device drivers.

 A dedicated residential broadband connection was utilized as the connection medium for the infection

point. A publicly routable IP address was assigned to the machine via DHCP.

13

3.1.2 Imaging

The Ghost 4 Linux (G4L) project was leveraged for the bare metal backup and restore of the system

utilized as the infection point. The physical host was configured to boot using the Intel PXE protocol and

download the unadulterated XP image using TFTP; these processes were executed for every malware

review cycle.

3.1.3 Packet Analysis

Packet analysis of the chosen malware was performed using Tcpdump and Wireshark from a host running

Debian Linux 6.0. The host shared a physical hub with the infection point, but was forced into

promiscuous mode for raw network access to the collision domain.

3.1.4 Evaluation Criteria

Due to the number of malware variants selected for this research, limitations were placed on the

evaluation to only relevant C&C details. The evaluation was limited in time and scope.

 Each botnet evaluation lasted 4 hours, limiting the total time exhausted to a maximum of 56 hours.

The inability to directly evaluate two of the botnet variants further reduced this value to 48 hours. This

time does not include the time spent configuring the lab environment or reviewing the packet traces.

 Several of the selected botnets implement a form of transport encryption or file-based encryption, but

were not reverse engineered as part of this research. This restricts the evaluation to only glean the

information that is human readable by means of direct packet analysis.

14

Infection Point Internet

R
e

si
d

e
n

ti
al

 IS
P

Analyzer

G4L/TFTP/DHCP Infection Point

R
e

si
d

e
n

ti
al

 IS
P

Ubuntu 12.04/Usenet/Web

SEP 12.X

Internet

IMAGING

DISCOVERY INFECTION

3.2 Lab Topology

Fig. 5 is a representation of the different topologies used in this work. The lab environment was separated

for three different processes for the physical evaluation:

- Imaging: The bare-metal XP installation

- Discovery: Finding suitable malware for evaluation and performing signature-based identification

- Infection: Installing the malware on the infection point

Figure 5: The three separate high-level processes and their respective topologies

3.3 Botnet C&C Evaluation

After conducting thorough research on fourteen botnet families, 1312 examples of botnet-related malware

were sourced using Usenet and a variety of sites hosted on the .box.sk network. All malware samples

were downloaded using a live distribution of Ubuntu Linux (12.04) and transported to a Windows 7 x64

virtual machine utilizing Symantec Endpoint Protection (SEP) for signature-based identification of the

malware. The actual IP addresses of the externally hosted C&C nodes or botnet peers are not recorded as

15

part of the evaluation, as the research focuses purely on methods of C&C communications. The first three

octets of the IP address associated with the infection point and the destination C&C master/peer are

replaced with x’s in the tabular data.

The observations of the malware are supplemented with references to prior research. The behaviors

associated with a specific bot are verified through the research of others. In the case of the iKee iOS

botnet, a working example could not be tested due to resource constraints, and thus the evaluation purely

relies on the in depth research of iKee.B conducted by Porras et al. [11]. Additionally, only a number of

the bots were capable of establishing C&C relationships with remote hosts presumably due to the removal

or abandonment of key elements of their infrastructure.

Both the expected behaviors of the malware, dissected from prior research, and the actual observations

of the malware C&C communications are generalized below. The CM presented in section 3.4 contains a

complete list of features that identify C&C functionality for the chosen malware.

3.3.1 Agobot

Expected Behavior

Agobot implements a Legacy Centralized Design for C&C communications, based upon the descriptions

of the malware in [12, 44]. Agobot variants attempt to utilize Internet Relay Chat (IRC) as the common

method of C&C communications, as confirmed in [7, 27, 48] without implementing encryption or

obfuscation of data at rest or data in motion. Agobot is expected to implement a custom syntax for the

execution of actions as directed by a Botmaster [8].

Observed Behavior

The Agobot selection was identified as W32.Gaobot.BUU utilizing SEP. This Agobot variant attempted

to utilize IRC as the common method of C&C communications over TCP/6667 (Table 1), but failed to

complete a simple TCP three-way handshake to the remote host. After random intervals of time, the bot

would attempt to connect to the same remote host, but the three-way handshake never completed.

16

Symptoms suggest that the downloaded binary is hardcoded with a C&C server IP address, and does not

attempt to implement any forms of high availability.

No. Time Source Prot. Destination Len. Info
10 11.137147 x.x.x.66 TCP X.X.X.54 58 54906 > 6667 [SYN] Seq=0

Table 1: Infected node attempting to initiate a connection on TCP/6667.

3.3.2 Asprox

Expected Behavior

Asprox utilizes the HTTP protocol for Next-generation Centralized C&C communications, without the

advent of transport layer encryption. It does, however, retrieve C&C instructions in an encrypted template

file which must be decrypted and interpreted by the recipient bot [10]. Outbound C&C communications

are expected to occur on either TCP/80 or TCP/82 [15, 49]. Based upon the research by M86 Security

Labs [42], Asprox bots are distributed with a list of domain names for initial C&C bootstrapping. The

initial check-in process occurs with a HTTP/1.1 POST request to a remote host, followed by a HTTP/1.1

GET request to download an encrypted file with a .BIN file extension [10, 46]. The authoritative response

for the given name lookup during the initial connection requests will return one of a series of IP addresses

due to the use of double-flux DNS [42], which also indicates that responsible C&C servers are well

protected from plain view.

17

Observed Behavior

The Asprox example was identified as Trojan.Asprox utilizing SEP. Seconds after installation, TCP SYN

probes are issued against several well-known search engines (Table.2), which appear to be the

connectivity checks identified in [15, 16, 46]. Within 60 seconds of running for the first time, the bot

performed a name lookup for a seemingly random FQDN (Table.3).

No. Time Source Prot. Destination Len. Info
14 2.077903 x.x.x.66 TCP

74.125.228.97 58 43756 > http [SYN]

Seq=0 Win=1024 Len=0

MSS=1460

15 2.082287 74.125.228.97

TCP

x.x.x.66 58 http > 43756 [SYN,

ACK] Seq=0 Ack=1

Win=14300 Len=0

MSS=1430

16 4.212670 x.x.x.66 TCP

98.138.253.109 58 50799 > http [SYN]

Seq=0 Win=1024 Len=0

MSS=1460

17 5.047804 98.138.253.109 TCP

x.x.x.66 58 http > 50799 [SYN,

ACK] Seq=0 Ack=1

Win=8192 Len=0

MSS=1460

Table 2: TCP SYN scans initiated against Google.com and Yahoo.com.

No. Time Source Prot. Destination Len. Info
31 58.183426 x.x.x.66 DNS x.x.x.81 83 Standard query 0x0004

A xxxxx.ru

32 59.656053 x.x.x.81 DNS x.x.x.66 119 Standard query

response 0x0004 A

x.x.x.19

Table 3: Name lookup for C&C resource.

After the IP address of the remote host was resolved, the machine contacted the remote host utilizing

TCP/80 and issued a standard HTTP/1.1 POST request for a file with a .PHP extension (Table 4). This

behavior mimics the behavior identified in [10]. After a period of approximately thirty minutes, the

malware requested the download of another file with a .PHP extension using a HTTP/1.1 GET request

(Table 5). The extension of the retrieved file differed from the expected behavior. However, the contents

of the file were still encrypted. Outbound traffic on TCP/25 became evident shortly after the download of

the encrypted .PHP file, indicating that the bot was now equipped with a spamming template and

instructions to perform the process of spamming.

No. Time Source Prot. Destination Len. Info
41 78.183426 x.x.x.66 HTTP X.X.X.121 517 POST /ckl/stanje.php HTTP/1.1

Table 4: HTTP/1.1 POST check-in.

18

No. Time Source Prot. Destination Len. Info
1437 1837.783528 x.x.x.66 HTTP X.X.X.97 540 GET /ckl/bar.php HTTP/1.1

Table 5: HTTP/1.1 GET request.

3.3.3 Bagle

Expected Behavior

Much like Asprox, Bagle utilizes the HTTP protocol for C&C communications, without the advent of

transport layer encryption [19]. Initial check-in requests are performed against a series of hard-coded

URLs with a HTTP/1.1 GET request on TCP/80 against a file with a .PHP file extension [1]. The

malware then begins listening for connections on a series of TCP ports, as identified in [20]. Bagle does,

however, retrieve C&C instructions in an encrypted file, which must be decrypted and interpreted by the

recipient bot [19]. Unlike Asprox, it uses a Legacy Centralized Design for C&C communications.

Observed Behavior

The selected variant of Bagle is identified as W32.Beagle.AV@mm by SEP. The infected machine began

performing name lookups on a series of FQDNs immediately after installation (Table 6). This name

lookup behavior mimicked the expected behavior identified in prior research [1,19]. Many of the URLs

were likely offline, as a connection wasn’t built to a remote host until several lookups were performed.

The machine fetched a .PHP file utilizing a standard HTTP/1.1 GET request (Table 7). The same standard

procedure is purportedly performed when downloading an updated version of the bot binary [19], but was

not witnessed in testing.

No. Time Source Prot. Destination Len. Info
22 8.691871 x.x.x.66 DNS x.x.x.81 78 Standard query 0x0004 A

xxxxxxx.com

24 9.141238 x.x.x.81 DNS x.x.x.66 132 Standard query response 0xec47

No such name

27 9.470919 x.x.x.66 DNS x.x.x.81 83 Standard query 0x0004 A

xxxxxx.in.cc

28 9.480868 x.x.x.81 DNS x.x.x.66 139 Standard query response 0x0004

A x.x.x.122

Table 6: A snippet of name lookup failures/successes.

No. Time Source Prot. Destination Len. Info
107 25.632279 x.x.x.66 HTTP X.X.X.230 437 GET /brg.php HTTP/1.1

Table 7: HTTP/1.1 GET request (similar to Asprox).

19

Similar to Asprox, the infected node began opening outbound connections on TCP/25 in a typical

fashion to spam. However, no further HTTP connections were discovered during the evaluation. The

infected machine did, however, acknowledge TCP SYN scans from remote hosts that targeted

TCP/33112, indicating that the malware began listening on TCP/33112 (Table 8). This was confirmed on

the infection point by using the command-line application NETSTAT to view listening sockets (Table 9).

No. Time Source Prot. Destination Len. Info
914 1233.698020 x.x.x.102 TCP

x.x.x.66 58 46752 > 33112 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

917 1235.321910 x.x.x.66 TCP x.x.x.102 60 33112 > 46752 [SYN, ACK] Seq=0

Ack=1 Win=14600 Len=0

Table 8: TCP SYN against TCP/33112 with TCP AC from infection point.

Prot. Local Addr. Foreign Addr. State PID
TCP X.X.X.66:33112 0.0.0.0:0 LISTENING 3412

Table 9: Using NETSTAT on the infection point to verify a listening state on TCP/33112.

3.3.4 Bobax

Expected Behavior

A Legacy Centralized Design is used by Bobax for C&C communications using HTTP or HTTPS as its

transport medium. C&C traffic is sent encrypted or unencrypted to a C&C server over TCP/80 or

TCP/447 respectively [38, 48]. Bobax utilizes port scanning to identify vulnerable hosts listening on

TCP/5000 (UPnP) [45], and launches a remote exploit on the node to execute the Bobax malware loader.

Bobax leverages a DGA to resolve an address of a C&C server and remain resilient.

Observed Behavior

The selected variant of Bobax is identified as W32.Bobax.B by SEP. After being infected with the Bobax

malware, the machine began performing name lookups for a series of FQDNs. A series of TCP SYN

requests were issued against the IP addresses returned from the name lookups. The remote hosts appear to

be inactive, as TCP three-way handshake never completed. The malware remained dormant after these

attempts to resolve inactive FQDNs.

20

3.3.5 Conficker

Expected Behavior

Conficker variants may utilize a decentralized or centralized architecture depending on the build of

Conficker being evaluated and the circumstances that the bot is operating under [2]. Early variants of

Conficker utilized only a DGA to resolve the addresses of C&C servers, whereas later variants were

equipped with added capabilities to perform Internet-wide port scanning and various other methods to

detect, exploit and build P2P relationships with other vulnerable nodes. Porras et al. discover that C&C

communications are possible over UDP and TCP, and the payload in either situation is digitally signed

and encrypted. Digital signage is performed using a 4096 byte RSA key and the MD6 hashing algorithm.

Data encryption is performed with the RC4 stream cipher, and an encryption routine can be executed

several times to add further layers of encryption [26]. When operating in a centralized architecture,

Conficker will communicate on TCP/80, but will dynamically assign a communication port when

operating in P2P mode. P2P port bindings are based upon the open ports discovered or requested during

the port scan discovery phase [24].

Observed Behavior

The selected variant of Conficker is identified as W32.Downadup.E by SEP. Within ten minutes of the

installation of the Conficker malware, the infected machine began scanning randomized IP addresses in

the public address space using TCP SYN requests. Porras et al. describe similar behavior in their analysis

of the Conficker C variant [26] as its method of building a P2P relationship with other Conficker peers in

its discovery phase (Table 10). Unlike the prior research, however, a TCP connection was never built with

a remote host. During the scanning process, TCP SYN packets were sent to several prominent websites,

in what appears to be connectivity checks (Table 11). Beyond the constant port scanning cycle of the

malware, no other established connections were observed.

Based upon the observed scanning behavior and the signature detection by SEP, the chosen binary of

Conficker is ultimately a P2P variant. Prior research thus serves as the major source of input for the CM.

21

No. Time Source Prot. Destination Len. Info
1022 587.658121 x.x.x.66 TCP

x.x.x.118

58

51718 > 45597 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

1023 591.189130 x.x.x.118 TCP x.x.x.66 60 45597 > 51718[RST, ACK]

Seq=1 Ack=1 Win=0 Len=0

1024 592.665070 x.x.x.66 TCP

x.x.x.118

58

51718 > 18343 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

1026 593.341012 x.x.x.118 TCP x.x.x.66 60 18343 > 51718[RST, ACK]

Seq=1 Ack=1 Win=0 Len=0

<< Truncated >>

1057 643.172901 x.x.x.66 TCP

x.x.x.43 58

55670 > 50590 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

1061 644.138873 x.x.x.66 TCP x.x.x.43 58 55670 > 15851 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

Table 10: TCP SYN probes launched from the infection point to random IP public IP addresses. In the first example, TCP RST

responses are received, whereas the responses are being filtered for the second example.

No. Time Source Prot. Destination Len. Info
1022 1422.497360 x.x.x.66 TCP 65.55.206.228 58

53990 > http [SYN] Seq=0

Win=1024 Len=0 MSS=1460

1023 1424.176123 65.55.206.228 TCP x.x.x.66 58 http > 53990 [SYN, ACK]

Seq=0 Ack=1 Win=8190

Len=0 MSS=1460

Table 11: TCP SYN scan initiated against MSN.com.

3.3.6 iKee

Expected Behavior

IKee.B utilizes a Legacy Centralized Design for C&C communications and, unlike other botnets

evaluated in this work, specifically targets a mobile platform (Apple iOS) [11]. Utilizing HTTP as a

transport medium, iKee.B sends a specially crafted GET request to a hard-coded IP address of a C&C

server over TCP/80 to begin its bootstrap process [28]. The initial bootstrap process is comprised of

downloading and executing various UNIX shell scripts on the infected handheld device. Due to the use of

a hard-coded C&C server address, removing the C&C servers behind the IP address will cripple the

botnet.

Observed Behavior

The resources to perform static packet analysis on the iKee.B botnet were not available. Furthermore, the

research led by Porras et al. [11] identifies that the C&C servers for this malware are no longer active.

22

3.3.7 GTbot

Expected Behavior

Per the research presented by Canavan in [44], the Aladinz family of infections is a derivative of GTbot,

and was amongst the assortment of malware collected prior to the manual evaluation. Such variants utilize

a Legacy Centralized Design for IRC-based C&C communications, typically over TCP/6667 [12], but can

vary based upon the infection. A mIRC client is bundled with the malware to retrieve customized C&C

instructions [44] from the remote host due to the added functionality and powerful scripting capabilities

[35, 36] available to a Botmaster.

Observed Behavior

The selected variant of GTbot is identified as Backdoor.IRC.Aladinz.B by SEP. Despite its age, the

malware was capable of connecting to a remote IRC server using TCP/6667 and performing a simple

login routine. The login routine utilized a randomized string of alphanumeric characters as the NICK and

USER variables (Table 12) for the authentication phase, and responded to the standard PING message

from the remote host with a PONG message (Table 13). Shortly thereafter, the bot appeared to join a

channel named #MRZ by issuing the command /join #MRZ (Table 14). The IRC connection remained in

an idle mode for the duration of evaluation, with only PING and PONG messages exchanged to keep the

connection alive at 100 second intervals.

No. Time Source Prot. Destination Len. Info
15 3.020929 x.x.x.66 IRC x.x.x.4 106 Request (NICK) (USER)

NICK :2373abxd

USER :2373abxd

Table 12: IRC NICK/USER authentication to remote C&C server.

No. Time Source Prot. Destination Len. Info

104 39.691632 x.x.x.66 IRC x.x.x.4 86 Request (PING)

105 39.780873 x.x.x.4 IRC x.x.x.66 131 Response (PONG)

Table 13: Initial IRC PING/PONG exchange.

No. Time Source Prot. Destination Len. Info

33 10.234800 x.x.x.66 IRC x.x.x.4 114 Request (JOIN)

Request: JOIN #MRZ :

42 16.049790 x.x.x.4 IRC x.x.x.66 148 Response (JOIN)

Response:

2343abxd@x.x.x.66.x.cox.net JOIN

#MRZ

Table 14: IRC channel join on channel #MRZ.

23

3.3.8 Nugache

Expected Behavior

Dittrich and Dietrich [37, 39] detail two C&C architectures present in different revisions of Nugache –

centralized and decentralized. Nugache variants that operate with a centralized architecture rely on the

traditional use of IRC for a C&C mechanism. The focus for this research, however, will be on Nugache

variants that employ P2P C&C communications.

Nugache infected peers rely upon a seed list of 22 other infected nodes [9] for its P2P bootstrap

process. C&C communications utilize random, high-numbered TCP ports for outbound communications

and encrypt their payload using 256-bit AES (Rijndael) session keys [13]. Session keys are exchanged

between other peers referenced in the seed list [13] using ephemeral (short lifetime) RSA keys ranging in

size from 64 to 128 bytes [39]. Dittrich and Dietrich further identify the AES block cipher mode as

Output Feedback (OFB) [39], which effectively changes a block cipher into a stream cipher, making it

ideal for networked communications. Upon a successful P2P connection, an updated list of peers is

purportedly downloaded from a peer or series of peers [13, 32, 39].

Observed Behavior

The selected variant of Nugache is identified as W32.Nugache.A@mm.B by SEP, but did not illicit the

characteristics as identified by Symantec [53]. Namely, Symantec identifies this variant as utilizing IRC

over TCP/8 for C&C communications. This, however, was not the case. The only activities observed

during the evaluation were TCP SYN requests against 9 unique IP addresses on randomized ports, which

were never retried after the timeout period had lapsed (Table 15). The limited information gathered from

the observation indicates a P2P variant of Nugache.

No. Time Source Prot. Destination Len. Info
911 86.138892 x.x.x.66 TCP

x.x.x.113

58

56133 > 53126 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

912 86.605351 x.x.x.66 TCP x.x.x.84 58 56133 > 47813 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

913 86.694362 x.x.x.66 TCP

x.x.x.97

58

56133 > 34521 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

<< Truncated >>

Table 15: A snippet of TCP SYN probes observed by the Nugache variant.

24

3.3.9 Peacomm

Expected Behavior

Peacomm resembles a decentralized architecture, due to its custom implementation of the Overnet P2P

protocol [2], but utilizes hierarchy in C&C communications. Thus, this is categorized as a Hierarchical

P2P Design.

Stewart identifies that the Overnet protocol is purely used for locational data; used by subnodes to

identify the location of supernodes and used by subcontrollers to identify the location of subnodes [33].

The Overnet protocol utilizes the Kademlia [34] algorithm, which functions as a Distributed Hash Table

(DHT) for file sharing purposes over UDP or TCP. A brief description of a DHT is presented in Appendix

A.1.1. Likewise, Peacomm too utilizes Kademlia as its method of searching, but manipulates it to allow

supernodes to publish its C&C socket to subnodes, and allow subnodes to function as search engines to

other subnodes and subcontrollers [6, 33, 47]. Each participant of the Overnet network used by Peacomm

stores other peer MD4 hashes (a unique peer identifier). The current date and a checksum value are

encoded into the peer MD4 hash for subnodes. The hash is published to the other subnodes, whose peer

MD4 hashes are close matches (as identified with a simple XOR function) to enable them to resolve the

location for that specific subnode. If a peer MD4 hash is unknown by a peer, a search will yield the peer

MD4 hash value of other subnodes that contain a close match (again, using an XOR function), and thus

will quickly locate the subnode.

The actual C&C communications are performed over HTTP, using several tiers of nodes to direct and

proxy communications [33]. As previously discussed, the socket of a supernode is made known to

subnodes using P2P relationships. C&C traffic to supernodes is encoded using Base64, compressed using

the zlib compression library, and is encapsulated in HTTP/1.1 POST requests. A challenge/response

authentication method is also invoked prior to HTTP communications ensuing between supernodes and

subnodes. Communications between the subcontroller layer and the C&C server vary slightly from these

25

methods, as traffic may also be encrypted using the RSA cipher suite to secure the transmission of

locational data associated with active subcontrollers.

Peacomm leverages the use of double-flux DNS, at the supernode level of the hierarchy, to perform

name resolutions for subnodes. It also introduces a reverse proxy at the supernode level, which delivers

HTTP C&C communications to the subcontrollers [33] without revealing their location.

Observed Behavior

The variant of Peacomm that was downloaded was identified by SEP as Trojan.Peacomm.E. In what

appear to be Overnet-style connection requests, the malware begins generating outbound UDP traffic on

UDP/14507 to a series of remote hosts on random UDP ports immediately after being executed for the

first time (Table 16). With no responses to the UDP traffic, this variant provided very little additional data

to the prior information within the period of evaluation.

No. Time Source Prot. Destination Len. Info
140 39.128984 x.x.x.66 UDP

x.x.x.25

42 Source port: 14507

Destination port: 40125

[Malformed Packet]

141 39.131857 x.x.x.66 UDP x.x.x.2 42 Source port: 14507

Destination port: 40125

[Malformed Packet]

142 39.133289 x.x.x.66 UDP

x.x.x.67

42 Source port: 14507

Destination port: 40125

[Malformed Packet]

<< Truncated >>

Table 16: A snippet of malformed UDP traffic directed at external nodes.

3.3.10 Phatbot

Expected Behavior

Phatbot initiates and accepts connections to/from other Phatbot peers to efficiently route C&C

communications. The WASTE protocol can be leveraged by Phatbot peers to participate in a partial mesh

network [37], using link-level encryption to secure the communications between only the participants of a

given WASTE session [14]. RSA is utilized as the method of session key exchange between participants

for encrypted communications, in addition to being the technology used for public key authentication.

WASTE encrypts the link using the Blowfish cipher in Propagating Cipher-block Chaining (PCBC) mode

to secure the data in transit. Internet-routable and private (RFC 1918) addresses are both capable of

26

participating in the WASTE partial mesh topology [14], but will communicate in either an active or

passive capacity (respectively) for C&C communications.

Observed Behavior

The variant of Phatbot that was downloaded was identified by SEP as W32.HLLW.Gaobot.gen, which is

a signature description that covers Polybot variants as well [52]. During static analysis, TCP SYN

requests were initiated against remote IP addresses on TCP/4387 (Table 17). For the duration of the

evaluation, the malware attempted to connect to five different IP addresses over TCP/4387, but a three-

way handshake never succeeded. The age of the malware and abandonment of WASTE is estimated to

have played a large factor in such limited results.

No. Time Source Prot. Destination Len. Info
252 79.909342 x.x.x.66 TCP

x.x.x.34

58 39487 > 4387 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

253 79.910353 x.x.x.66 TCP

x.x.x.92 58 39487 > 4387 [SYN] Seq=0

Win=1024 Len=0 MSS=1460

254 79.914608 x.x.x.66 TCP

x.x.x.185

60 4387 > 39487 [RST, ACK] Seq=1

Ack=1 Win=0 Len=0

<< Truncated >>

Table 17: TCP SYN probes against remote nodes using the native WASTE TCP port designation.

3.3.11 SDbot

Expected Behavior

Gu identifies SDbot as the first standalone and open-source botnet utilizing IRC for C&C purposes [5].

SDbot is bundled with its own custom IRC client, which is required to send and receive IRC C&C

communications over its Legacy Centralized architecture. During an initial bootstrapping process, SDbot

initiates an IRC connection to the IP address of a C&C server, which is hard-coded into the application,

and proceeds to download updated instructions. As described by Barford in [12], a bot performs an

automated connection process, joins a channel, and awaits announcements from the Botmaster. The

channel announcements honored by bots are limited to the KICK, NICK and PART/QUIT commands,

and the remainder of commands is delivered to bots through PRIVMSG, NOTICE or TOPIC messages

[12]. The extensive evaluation Gu et al. perform on IRC command obscurity [5] identifies that the IRC

channel utilized for SDbot is not encrypted, nor are the communications difficult to discern.

27

Observed Behavior

The variant of SDbot that was downloaded was identified by SEP as Backdoor.IRC.SDbot, which is a

very broad categorization for a large family of malware, making it difficult to know the specifics of the

variant prior to infecting the victim (infection point). Upon infection, the malware immediately attempted

to contact a remote host to establish a socket on TCP/6667. Within five minutes of the initial TCP

connection request occurring, another request was initiated against a second remote host, again over

TCP/6667. Neither connection was established. To verify that this variant of SDbot was capable of

launching the IRC connection sequence to a remote host, a router was placed in front of the infected node

to perform inbound and outbound address translations to a known active and anonymous IRC server. The

two IP addresses observed from the initial (failed) connection requests were translated to a single IP of a

live IRC server, resulting in the bot attempting to perform its login routine; a NICK of {malade}-4343844

and USER of m4343844 were used in the connection request (Table 18). An expected IRC PING

message, as defined in RFC2812 [36] and outlined by Barford [12], was never received by the Bot, which

resulted in the connection attempt failing permanently. At a very minimum, this process revealed a

similar NICK naming convention that was identified by Goebel and Holz in [40] and confirmed the major

C&C transport protocols.

No. Time Source Prot. Destination Len. Info
1022 1230.291838 x.x.x.66 IRC x.x.x.86 114 Request (NICK) (USER)

 NICK : {malade}-4343844
USER : m4343844

Table 18: The USER/NICK revealed when translating the original destination address to a known/active IRC server.

3.3.12 Sinit

Expected Behavior

Sinit utilizes the Full P2P Decentralized design, building relationships with other bots through internet-

wide port scans. Port scans are conducted through UDP/53 and check for the existence of other active

bots by probing open ports [22]. Bots utilize HTTP as the C&C transport medium, and fetch updated

versions of the Sinit client or C&C data using HTTP/1.1 GET requests over TCP/53 or a random, high-

numbered TCP port. Sinit utilizes public key cryptography for authentication and encryption of data

28

between peers [9, 23] prior to the download of updated information. Infected machines perform

connectivity checks against the random, high-numbered TCP ports to determine if the machine is

reachable from the Internet [22].

Observed Behavior

A Sinit binary could not be accurately identified by means of signature-based detection for the purpose of

research, limiting the research to a logical evaluation process.

3.3.13 Waledac

Expected Behavior

Waledac’s architecture is largely decentralized, but described by Nunnery as hierarchical due to the role-

based separation of duties amongst the infected hosts and the Botmaster-owned infrastructure [6]. This

malware is being classified in this work as utilizing a Next-generation Centralized design. C&C

communications require HTTP as the application protocol. Encoding of the HTTP traffic is performed

using the Base64 encoding scheme, and the payload is compressed and encrypted. HTTP traffic is sent

and received over TCP/80 and uses double-flux name resolution to retrieve C&C instructions from a

subcontroller [6]. Calvet identifies that Waledac binaries are hardcoded with a list of 100-500 unique

FQDNs or IP addresses for known supernodes (repeaters) [43]. Multiple supernodes are contacted for

C&C instructions and to gather an updated list of other supernodes.

 The takedown efforts by Microsoft [55, 56] for the infrastructure of Waledac in 2010 give reason to

believe that limited results will be achieved through manual evaluation. Due to the nature of malware, and

the time that has passed manual evaluation was still performed to collect further data about the malware.

Observed Behavior

The variant of malware was identified as W32.Waledac.C by SEP. Initial signs of C&C behavior were

evident in the packet trace through a series of TCP three-way handshakes to seemingly random FQDNs

on TCP/80. This behavior differs from the initial behavior described by Symantec [54], as it established a

connection to several remote hosts rather than waiting for commands. The machine did, however, begin

listening on TCP/80 for incoming connections. Within the period of evaluation a single download

29

occurred using a HTTP/1.1 GET request against a file with a .EXE extension, but the machine remained

dormant following this download (Table 19).

No. Time Source Prot. Destination Len. Info
1007 1079.909342 x.x.x.66 HTTP x.x.x.31 534 GET /runes123.exe HTTP/1.1

1008 1079.910353 x.x.x.31 TCP x.x.x.66 1514 [TCP segment of a reassembled PDU]

<< Truncated >>

1518 1079.914608 x.x.x.31 HTTP x.x.x.66

421 HTTP/1.1 200 OK (application/x-

msdos-program)

Table 19: HTTP/1.1 GET request and subsequent download of executable file.

3.3.14 Zeus

Expected Behavior

The bots created from various distributions of Zeus have different feature sets, so expectations were

minimal. The Zeus variant was expected to communicate in a Next-generation Centralized design, using

HTTP as its C&C transport mechanism, based upon the information from the Zeus Tracker project [57].

Observed Behavior

The variant of malware was identified as Trojan.Zbot by SEP. It initiated a TCP connection against a

remote host using TCP/80 and successfully completed a three-way handshake (Table 20). During this

process, no name lookups occurred, and only a single remote host was communicated with. Immediately

following the handshake, a HTTP/1.1 GET request was issued to download a file with a .BIN file

extension (Table 21) and then proceeded to download a file with a .EXE file extension (Table 22). The

downloaded .BIN file was presumably an updated instruction file, but its contents were encrypted with an

unknown cipher. The .EXE file was an installation package for the AV Security 2012 rogue-security

software, which was revealed when the package was executed and launched on the infection point.

Further analysis of the HTTP payload associated with the download of AV Security 2012 revealed several

commands being appended to the payload as data padding (Table 23). The only further C&C

communications observed during the evaluation were periodic check-ins to the remote host, with

HTTP/1.1 POST requests against a file with a .PHP file extension. Due to the very simplistic nature of

this variant, it is suspected that the malware is utilizing a Legacy Centralized Design for C&C

communications as opposed to the expectations.

30

No. Time Source Prot. Destination Len. Info
12 11.854251 x.x.x.66 TCP x.x.x.20 62 1052 > http [SYN] Seq=0

Win=64240 Len=0 MSS=1460

SACK_PERM=1

13 12.219794 x.x.x.20 TCP x.x.x.66 62 http > 1052 [SYN, ACK] Seq=0

Ack=1 Win=5840 Len=0 MSS=1372

SACK_PERM=1

14 12.221962 x.x.x.66 TCP x.x.x.20 60 1052 > http [ACK] Seq=1 Ack=1

Win=64484 Len=0

Table 20: Three-way TCP handshake with remote C&C host

No. Time Source Prot. Destination Len. Info
15 12.223935 x.x.x.66 HTTP x.x.x.20 220 GET /nbren.bin HTTP/1.1

16 12.444535 x.x.x.20 TCP x.x.x.66 54 http > 1052 [ACK] Seq=1 Ack=166

Win=6432 Len=0

17 12.449296 x.x.x.66 TCP x.x.x.66 1426 [TCP segment of a reassembled

PDU]

<< Truncated >>

56 13.535691 x.x.x.20 HTTP/DL x.x.x.66

1265 unknown (0xa7)

[Message: HTTP/1.1 200 OK\r\n]

Table 21: HTTP/1.1 GET request for a file with a .BIN extension

No. Time Source Prot. Destination Len. Info
173 130.885970 x.x.x.66 HTTP x.x.x.20 219 GET /loader.exe HTTP/1.1

174 131.105633 x.x.x.20 TCP x.x.x.66 54 http > 1054 [ACK] Seq=1 Ack=165

Win=6432 Len=0

175 131.111460 x.x.x.20 TCP x.x.x.66 1426 [TCP segment of a reassembled PDU]

<< Truncated >>

197 131.925387 x.x.x.20 HTTP/DL x.x.x.66

1162 unknown (0x4d)

[Message: HTTP/1.1 200 OK\r\n]

Table 22: Executable file download from remote host, presumably containing AV Security 2012.

KERNEL32.DLL...GetLastError...GetModuleHandleA... LoadLibraryA.2.FreeLibrary.D.VirtualProtect.

.ExitProcess....USER32.DLL...CloseWindow...SwitchToThisWindow.................................

..|K...P........

.......(...@...8...D.......k...............Z...g...s.......

vhgqn.dll.EndHyaessfre.ReadRqonhxb.InitYsyliubvg.Petugd

Table 23: Functions padded into the payload of the executable file download from Table 22.

31

3.4 Complexity Matrix

C&C Characteristics AgoBot AsProx Bagle Bobax Conficker iKee GTbot Nugache Peacomm Phatbot Sdbot Sinit Waledac Zeus

A
rc

h
it

e
ct

u
re

Centralized 1 1 1 1 1 1 1 0 0 0 1 0 1 1

Decentralized 0 0 0 0 1 0 0 1 1 1 0 1 0 0

Role Based Separation of Duties 0 1 0 0 1 0 0 1 1 0 0 0 1 0

Uses Distributed Computing 0 0 0 0 0 0 0 1 1 1 0 1 0 0

At least 1 Intermediary 0de 0 1 0 0 1 0 0 1 1 0 0 0 1 0

More than 1 Intermediary 0des 0 1 0 0 1 0 0 1 1 0 0 0 1 0

H
ig

h
 A

va
ila

b
ili

ty
 &

 F
au

lt
 T

o
le

ra
n

ce

Uses a Domain Generation Algorithm 0 1 0 1 1 0 0 0 0 0 0 0 0 0

Uses Single-flux DNS 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Uses Double-flux DNS 0 0 0 0 1 0 0 0 1 0 0 0 1 0

Uses List of 0des 0 1 1 1 0 0 1 1 0 0 0 1 1 1

Uses Hash Table of 0de Locations 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Dynamically Updates List of 0des 0 1 1 1 0 0 1 1 0 0 0 1 1 1

Dynamically Updates List of Hashes 0 0 0 0 0 0 0 0 1 1 0 0 0

Performs Connectivity Checks 0 1 0 0 1 0 0 0 0 0 0 0 1 1

Automatically Builds Relationships 0 0 0 0 1 0 0 1 1 1 0 1 1 0

A
u

th
e

n
ti

ca
ti

o
n

 &

0
n

-R
e

p
u

d
ia

ti
o

n

Requires Authentication 1 1 0 1 1 0 1 1 1 1 1 1 1 1

Digitally Signs Messages 0 0 0 0 1 0 0 1 1 1 0 1 1 0

Uses Challenge/Response Authentication 0 0 0 0 0 0 0 0 1 0 0 0 0 0

En
cr

yp
ti

o
n

 M
et

h
o

d
s

Payload Encryption 0 0 0 0 1 0 0 1 1 1 0 0 1 0

Instruction File Encryption 0 1 1 1 0 0 0 0 0 0 0 0 1 1

End-to-End Encryption 0 0 0 1 0 0 0 0 0 0 0 1 0 0

Link-Layer Encryption 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Ev
as

io
n

 T
ac

ti
cs

 Generates Arbitrary Traffic 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Pads Instructions into Protocol Payload 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Obscures Commands 1 0 0 0 0 1 0 0 0 0 1 0 0 0

Hides Instructions in Flat File 0 1 1 1 0 0 0 0 1 1 0 1 1 1

Encodes Payload 0 0 0 0 0 0 1 0 1 0 0 0 1 0

Compresses Payload 0 1 1 1 1 1 0 0 1 0 0 0 1 1

Tr
an

sp
o

rt

P
ro

to
co

ls

Uses TCP 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Uses UDP 0 0 0 0 1 0 0 0 1 0 0 0 0 0

A
p

p
lic

at
io

n

P
ro

to
co

ls

Uses HTTP (includes HTTPS) 0 1 1 1 1 1 0 0 0 0 0 1 1 1

Uses IRC 1 0 0 0 0 0 1 0 0 0 1 0 0 0

Uses WASTE 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Uses Overnet 0 0 0 0 0 0 0 0 1 0 0 0 0

Uses Custom Protocol 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Complexity Score 5 14 8 11 16 5 7 13 19 12 5 11 19 12

Dates of Inception or Discovery 2002 2007 2004 2004 2008 2009 2000 2006 2007 2003 2002 2003 2008 2012

32

3.4.1 C&C Characteristic Definitions

 C&C Characteristics Definition

A
rc

h
it

e
ct

u
re

Centralized Botnet utilizes a centralized design.

Decentralized Botnet utilizes a decentralized design.

Role Based Separation of Duties
Infected nodes are capable of serving different purposes in a botnet
hierarchy.

Uses Distributed Computing
Harnesses the computing power of other infected nodes to
collectively perform a process or processes (e.g. searching).

At least 1 Intermediary Node
At least 1 intermediary node is performing C&C functions between
a subnode (bot) and a C&C master.

More than 1 Intermediary Nodes
More than 1 intermediary nodes are performing C&C functions
between a subnode (bot) and a C&C master.

H
ig

h
 A

va
ila

b
ili

ty
 &

 F
au

lt
 T

o
le

ra
n

ce

Uses a Domain Generation Algorithm
Utilizes an algorithm for generating domain names, specifically
those domain names used for C&C communications.

Uses Single-flux DNS
Utilizes single-flux DNS to resolve C&C infrastructure elements
(refer to A.1.3).

Uses Double-flux DNS
Utilizes double-flux DNS to resolve C&C infrastructure elements
(refer to A.1.4).

Uses List of Nodes
Bots retain a list of nodes used in C&C communications, in the form
of peers or masters (depending on design type).

Uses Hash Table of Node Locations
Bots retain a hash table of node locations for identifying other
nodes used in C&C communications (refer to A.1.1).

Dynamically Updates List of Nodes
Bots are capable of updating node lists (used for C&C
communications) on their own.

Dynamically Updates List of Hashes
Bots are capable of updating hash tables (used for C&C location
information) on their own.

Performs Connectivity Checks

Performs checks for connectivity to identify:

 Outbound connectivity to the Internet

 Outbound/inbound communication ports

 Access to C&C resources

Automatically Builds Relationships
Automatically identifies relationships with peers or masters
(depending on design) for C&C communications.

A
u

th
e

n
ti

ca
ti

o
n

 &

N
o

n
-R

e
p

u
d

ia
ti

o
n

Requires Authentication
C&C communications only occur after authentication between
botnet members occurs.

Digitally Signs Messages
Messages used in C&C communications are digitally signed to verify
the sender’s identity.

Uses Challenge/Response
Authentication

C&C communications only occur after a challenge/response
authentication routine succeeds.

33

En
cr

yp
ti

o
n

 M
et

h
o

d
s

Payload Encryption

The payload of the C&C communications is encrypted and requires
a decryption routine to be run when the communications are
processed by the recipient. The entire transport protocol is not
encrypted, however.

Instruction File Encryption
C&C instructions are provided in an instruction file that must be
decrypted prior to reading from it.

End-to-End Encryption
Encryption is used to secure a C&C communications channel
between sender and receiver. Only the sender and receiver are
intended to decrypt the communications.

Link-Layer Encryption

Encryption is used to secure an entire domain of nodes. C&C
communications can be encrypted and decrypted by all members
of the encryption domain (e.g. all participants). Non-participants
cannot communicate in the encryption domain.

Ev
as

io
n

 T
ac

ti
cs

Generates Arbitrary Traffic
Botnet members generate meaningless network traffic to confuse
a researcher.

Pads Instructions into Protocol Payload

Instructions for carrying out a given task are padded in the
protocol payload in addition to other content (e.g. updated bot
binary). The task is carried out after the recipient processes the
communications.

Obscures Commands
C&C commands do not follow a typical or standard format, by
means of manipulating a protocol message format.

Hides Instructions in Flat File C&C instructions are provided in an instruction file.

Encodes Payload
The payload of C&C transactions are encoded prior to transmission
and must be decoded by the recipient.

Compresses Payload
The payload of C&C transactions are compressed prior to
transmission and must be inflated by the recipient.

Tr
an

sp
o

rt

P
ro

to
co

ls

Uses TCP
Utilizes the Transmission Control Protocol (TCP) as the primary
transport protocol for C&C communications.

Uses UDP
Utilizes the User Datagram Protocol (UDP) as the primary transport
protocol for C&C communications.

A
p

p
lic

at
io

n
 P

ro
to

co
ls

 Uses HTTP (includes HTTPS)
Utilizes the Hypertext Transfer Protocol (HTTP) or HTTP Secure
(HTTPS) as the primary application protocols for C&C
communications.

Uses IRC
Utilizes Internet Relay Chat (IRC) as the primary application
protocol for C&C communications.

Uses WASTE
Utilizes the P2P protocol WASTE as the primary application
protocol for C&C communications.

Uses Overnet
Utilizes the P2P protocol Overnet as the primary application
protocol for C&C communications.

Uses Custom Protocol
Utilizes a custom protocol (e.g. non-standard) for C&C
communications.

34

4. Historical Data

In this thesis, logical elements of C&C communications are identified and used to characterize various

botnets. A complexity matrix was then created for the chosen botnets, and the hypothesis that botnets are

becoming more complex over time is verified.

Historical data is used to quickly illustrate trends in malware complexity. A complexity score will be

used to define the C&C complexity associated with a given botnet variant.

4.1 Complexity Score

By graphing the complexity scores created from the CM, it is possible to illustrate the changes in botnet

complexity relative to an inception or discovery date (Fig. 6). The average of multiple complexity scores

is used in Fig. 6 when multiple botnet variants exist for a given year.

Due to the infancy of mobile botnets, a drop in complexity is identified in 2009 with the logical

evaluation of the iKee botnet. Also, another unexpected value is seen in 2012, which represents the

unsophisticated variant of Zbot (Zeus) that was used in the evaluation.

Figure 6 : Botnet C&C complexity scores relative to date of inception or discovery of the particular variant of malware

0

2

4

6

8

10

12

14

16

18

20

2000 2002 2003 2004 2006 2007 2008 2009 2012

Botnet C&C Complexity

Score

35

5. Limitations & Future Work

This thesis evaluates a broad range of C&C methods employed by malware, but specific limitations exist

in this research. The work presented is based upon static network traffic analysis and prior malware case

studies; it does not utilize the advanced methods of malware deconstruction presented in prior research.

Additionally, ideal conditions for manually evaluating a majority of the botnet examples were not present

due to the degradation or removal of core C&C infrastructure elements.

Encrypting data at rest and in transit presents a challenge in identifying the core components of C&C

communications. A significant number of the botnet selections utilized encryption for hiding C&C

components, making static analysis limited in scope. Reverse engineering and real-time memory analysis

make it possible to deconstruct encrypted C&C components. These methods were not employed in the

evaluation phase of the work, and as such it relies on the credibility of prior research.

The proliferation of mobile devices has fueled the creation of malware for mobile platforms, which

was not heavily discussed in this survey and subsequent evaluation. The single example, iKee, is an

example of botnet behavior in its infancy. The topic of mobile platforms creating a larger canvas for

botnets is thus left for future work.

The selected malware had 42.8% success rate of connecting to C&C resources during the manual

evaluations. The limited results are caused by the age of the malware, environmental factors affecting key

C&C infrastructure components, and the inability for the malware to recover from failure.

Due to the evaluation of some antiquated botnet variants, a manual approach of gathering the malware

is used over an automated Honeypot/Honeynet design. A process for automation in this regard is left to

future work as well.

36

6. Conclusion

Methods of C&C communications have vastly changed over time. Every aspect of C&C communications,

from the architecture to advanced features of high-availability, is changing to evade detection. On a large

scale, C&C communications are becoming more complex over time. The re-use of aging technologies or

C&C approaches indicates that limited success is still possible without evolving, but it doesn’t reap the

benefits that more sophisticated approaches will for a Botmaster.

 In testing, limited results were acquired with a manual evaluation of the selected variants of malware.

Thus, it becomes difficult to evaluate malware of yesterday purely through observation. A collaborative

effort is better leveraged to identify the idiosyncrasies that comprise a given botnet.

 An approach at categorizing C&C features into a matrix proved useful, as the existence of specific

features can accurately measure its complexity relative to prior malware and its creation date. Though

legacy approaches at C&C still remain effective under specific circumstances, they ultimately will not

achieve the same level of utility for affecting a large audience. Complexity in C&C techniques and the

infrastructure that supports a botnet will ultimately impact its longevity, and an upward trend in

complexity throughout history is clearly visible with the advent of a Complexity Matrix.

7. Acknowledgements

I would like to extend my thorough appreciation to my thesis committee for their sage guidance and

assistance. I’d also like to extend a warm thank you to Susan Herzberg, whom gave me the final push to

complete the requirements for the VNSM MS degree. Most importantly, I’d like to thank Gulmira

Zhavgasheva, RIT VNSM 2010, whom has been my driving force for completion.

37

8. References
[1] “A Little Spam With Your Bagle?: M86 Security.” [Online]. Available:

http://www.m86security.com/labs/i/A-Little-Spam-With-Your-Bagle-,trace.999~.asp. [Accessed: 01-Jul-

2012].

[2] P. Porras, H. Saidi, and V. Yegneswaran, “A multi-perspective analysis of the storm (peacomm)

worm,” Computer Science Laboratory, SRI International, Tech. Rep, 2007.

[3] B. J. Norman, “A Study of Peer-to-Peer Botnets,” M.S., Utah State University, United States -- Utah,

2008.

[4] A. H. Lashkari, S. G. Ghalebandi, and M. Reza Moradhaseli, “A Wide Survey on Botnet,” Digital

Information and Communication Technology and Its Applications, pp. 445–454, 2011.

[5] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, and W. Lee, “Active Botnet Probing to Identify Obscure

Command and Control Channels,” in Computer Security Applications Conference, 2009. ACSAC ’09.

Annual, 2009, pp. 241 –253.

[6] C. E. Nunnery, “Advances in modern botnet understanding and the accurate enumeration of infected

hosts,” Ph.D., The University of North Carolina at Charlotte, United States -- North Carolina, 2011.

[7] “Agobot and the “Kit-chen Sink,” infectionvectors.com - Agobot, Jul-2004. [Online]. Available:

http://www.infectionvectors.com/vectors/kitchensink.htm. [Accessed: 15-Jul-2012].

[8] “agobot3 command reference.” [Online]. Available:

http://www.stanford.edu/~stinson/paper_notes/bots/bot_refs/agobot3_commandref.html. [Accessed: 04-

Aug-2012].

[9] Ping Wang, S. Sparks, and C. C. Zou, “An Advanced Hybrid Peer-to-Peer Botnet,” IEEE

Transactions on Dependable and Secure Computing, vol. 7, no. 2, pp. 113–127, Apr. 2010.

[10] R. Borgaonkar, “An Analysis of the Asprox Botnet,” in Emerging Security Information Systems and

Technologies (SECURWARE), 2010 Fourth International Conference on, 2010, pp. 148 –153.

[11] P. Porras, H. Saïdi, and V. Yegneswaran, “An Analysis of the iKee. B iPhone Botnet,” Security and

Privacy in Mobile Information and Communication Systems, pp. 141–152, 2010.

[12] P. Barford and V. Yegneswaran, “An inside look at botnets,” Malware Detection, pp. 171–191,

2007.

[13] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, “Analysis of the Storm and Nugache Trojans:

P2P is here,” USENIX; login, vol. 32, no. 6, pp. 2007–12, 2007.

[14] “Anonymous-P2P.org: WASTE.” [Online]. Available: http://anonymous-p2p.org/waste.html.

[Accessed: 05-Aug-2012].

[15] “Asprox « M86 Security Labs Blog.” [Online]. Available: http://labs.m86security.com/tag/asprox/.

[Accessed: 04-Aug-2012].

38

[16] “Asprox: M86 Security.” [Online]. Available:

http://webcache.googleusercontent.com/search?q=cache:yJfP8261TWwJ:www.m86security.com/labs/spa

mbotitem.asp%3Farticle%3D935+&cd=6&hl=en&ct=clnk&gl=us. [Accessed: 16-Jul-2012].

[17] “Backdoor.Sdbot | Symantec.” [Online]. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2002-051312-3628-99. [Accessed: 22-

Jul-2012].

[18] “Backdoor.Sinit | Symantec.” [Online]. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2003-100910-5701-99. [Accessed: 28-

Jul-2012].

[19] “Bagle: M86 Security.” [Online]. Available:

http://www.m86security.com/labs/spambotitem.asp?article=938. [Accessed: 03-Jul-2012].

[20] “Bagle: Port Count.” [Online]. Available:

http://www.m86security.com/newsImages/TRACE/Bagle_PortCount.txt. [Accessed: 04-Aug-2012].

[21] H. R. Zeidanloo and A. A. Manaf, “Botnet Command and Control Mechanisms,” in Computer and

Electrical Engineering, 2009. ICCEE ’09. Second International Conference on, 2009, vol. 1, pp. 564 –

568.

[22] S. Heron, “Botnet command and control techniques,” Network Security, vol. 2007, no. 4, pp. 13–16,

Apr. 2007.

[23] B. Sharmila, H. Bsubashini, and M. Hkalaiselvi, “Botnet Construction of Peer-to-Peer Network

Schemes.” [Online]. Available: http://www.scribd.com/doc/57984998/final-doc. [Accessed: 06-Aug-

2012].

[24] Q. Wang, “Characterizing Internet Worm Spatial-Temporal Infection Structures,” Ph.D., Florida

International University, United States -- Florida, 2010.

[25] “Conficker | Conficker Worm | Conficker Virus.” [Online]. Available:

http://www.microsoft.com/security/pc-security/conficker.aspx. [Accessed: 22-Jul-2012].

[26] P. Porras, H. Saidi, and V. Yegneswaran, “Conficker C P2P Protocol and Implementation,” 21-Sep-

2009. [Online]. Available: http://mtc.sri.com/Conficker/P2P/. [Accessed: 22-Jul-2012].

[27] G. Gu, “Correlation-Based Botnet Detection in Enterprise Networks,” Ph.D., Georgia Institute of

Technology, United States -- Georgia, 2008.

[28] Y. Zeng, K. G. Shin, and X. Hu, “Design of SMS commanded-and-controlled and P2P-structured

mobile botnets,” in Proceedings of the fifth ACM conference on Security and Privacy in Wireless and

Mobile Networks, New York, NY, USA, 2012, pp. 137–148.

[29] M. Neugschwandtner, P. M. Comparetti, and C. Platzer, “Detecting malware’s failover C&C

strategies with squeeze,” in Proceedings of the 27th Annual Computer Security Applications Conference,

New York, NY, USA, 2011, pp. 21–30.

39

[30] M. Steggink and I. Idziejczak, “Detection of peer-to-peer botnets,” University of Amsterdam,

Netherlands, 2007.

[31] A. Ghodsi, “Distributed k-ary system: Algorithms for distributed hash tables,” KTH-Royal Institute

of Technology, 2006.

[32] B. Coskun, S. Dietrich, and N. Memon, “Friends of an enemy: identifying local members of peer-to-

peer botnets using mutual contacts,” in Proceedings of the 26th Annual Computer Security Applications

Conference, New York, NY, USA, 2010, pp. 131–140.

[33] J. Stewart, “Inside the Storm: Protocols and Encryption of the Storm Botnet,” 2008.

[34] “Kademlia: A Design Specification.” [Online]. Available:

http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html#intro. [Accessed: 05-Aug-2012].

[35] “mIRC: About mIRC.” [Online]. Available: http://www.mirc.com/about.html. [Accessed: 26-Jul-

2012].

[36] “mIRC: RFC2812.” [Online]. Available: http://www.mirc.com/rfc2812.html. [Accessed: 04-Aug-

2012].

[37] D. Dittrich and S. Dietrich, “New Directions in Peer-to-Peer Malware,” in Sarnoff Symposium, 2008

IEEE, 2008, pp. 1 –5.

[38] P. Royal, “On the kraken and bobax botnets,” Whitepaper, Damball, Apr, 2008.

[39] D. Dittrich and S. Dietrich, “P2P as botnet command and control: A deeper insight,” in Malicious

and Unwanted Software, 2008. MALWARE 2008. 3rd International Conference on, 2008, pp. 41 –48.

[40] J. Goebel and T. Holz, “Rishi: Identify bot contaminated hosts by IRC nickname evaluation,” in

Proceedings of the first conference on First Workshop on Hot Topics in Understanding Botnets, 2007, pp.

8–8.

[41] “SSAC Advisory on Fast Flux Hosting and DNS.” ICANN Security and Stability Advisory

Committee, Mar-2008.

[42] “The Asprox Spambot Resurrects: M86 Security.” [Online]. Available:

http://www.m86security.com/labs/i/the-asprox-spambot-resurrects,trace.1345~.asp. [Accessed: 01-Jul-

2012].

[43] J. Calvet, C. R. Davis, J. M. Fernandez, J.-Y. Marion, P.-L. St-Onge, W. Guizani, P.-M. Bureau, and

A. Somayaji, “The case for in-the-lab botnet experimentation: creating and taking down a 3000-node

botnet,” in Proceedings of the 26th Annual Computer Security Applications Conference, New York, NY,

USA, 2010, pp. 141–150.

[44] J. Canavan, “The Evolution of Malicious IRC Bots,” in Proceedings of the VB2005 Conference,

2005.

40

[45] “Threat Description: Bobax.” [Online]. Available: http://www.f-secure.com/v-descs/bobax.shtml.

[Accessed: 22-Jul-2012].

[46] “Threat Description: Sinit.” [Online]. Available: http://www.f-secure.com/v-descs/sinit.shtml.

[Accessed: 28-Jul-2012].

[47] J. Stewart, “Top Spam Botnets Exposed | Dell SecureWorks,” Top Spam Botnets Exposed, 08-Apr-

2008. [Online]. Available: http://www.secureworks.com/research/threats/topbotnets/. [Accessed: 22-Jul-

2012].

[48] “Troj/Agobot-A - Viruses and Spyware - Threat Analyses - Threat Center - Sophos.” [Online].

Available: http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~Agobot-

A.aspx. [Accessed: 15-Jul-2012].

[49] “Trojan.Asprox | Symantec.” [Online]. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2007-060812-4603-99. [Accessed: 16-

Jul-2012].

[50] “Trojan.Peacomm Technical Details | Symantec.” [Online]. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2007-011917-1403-99&tabid=2.

[Accessed: 28-Jul-2012].

[51] “W32.Gaobot.DX Technical Details | Symantec.” [Online]. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2004-051816-5418-99&tabid=2.

[Accessed: 15-Jul-2012].

[52] “W32.HLLW.Gaobot.gen | Symantec.” [Online]. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2003-112112-1102-99. [Accessed: 28-

Jul-2012].

[53] “W32.Nugache.A@mm | Symantec.” [Online]. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2006-043016-0900-99. [Accessed: 26-

Jul-2012].

[54] “W32.Waledac.C | Symantec.” [Online]. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2012-020814-3639-99. [Accessed: 05-

Aug-2012].

[55] “Waledac Technical Action Plan.” [Online]. Available:

http://www.microsoft.com/security/sir/story/default.aspx#!waledac_technical. [Accessed: 22-Jul-2012].

[56] “What we know (and learned) from the Waledac takedown - Microsoft Malware Protection Center -

Site Home - TechNet Blogs.” .

[57] “ZeuS Tracker :: ZeuS statistic.” [Online]. Available: https://zeustracker.abuse.ch/statistic.php.

[Accessed: 05-Aug-2012].

41

A. Appendix

A.1 Definitions

Specific feature definitions are provided here due to their significance. The features have been clearly

identified in prior work and are being summarized below for reference purposes. The presence or absence

of these features is also used to categorize the sophistication of a botnet in the CM.

A.1.1 Distributed Hash Table

Ghodsi defines a Distributed Hash Table (DHT) as hash table distributed amongst a set of cooperating

computers [31]. The hash table is used to store key/value pairs, to identify the location of a given

resource. Searching across a set of cooperating computers is conducted to locate resources. Searching for

a specific key will yield a given value, and the participating node that possesses the information on the

searched resource will return the value or a pointer to another node with the value. This approach has

been leveraged for file sharing services, such as BitTorrent, and has become useful in P2P malware as

well.

A.1.2 Domain Generation Algorithm

A domain generation algorithm (DGA) is a computational method of generating FQDNs [31]. In terms of

C&C communications, malware may utilize a DGA mechanism to create the FQDNs of C&C peers or

masters (depending on the C&C topology). The DGA must be crafted in a manner that allows it to

produce the same FQDNs for the individual responsible for registering the domain names. A DGA may

not generate FQDNs in the same order when run, but it will be predictable to a certain degree. A malware

author may perform the work of registering the domain names created by the DGA well in advance of the

malware being distributed to enable it to quickly communicate with remote hosts behind seemingly

random FQDNs. Malware can thus attempt connections to the FQDNs generated by an internal DGA

until it discovers a domain that resolves to an IP address. The predictable FQDN generation techniques

can also be utilized by researchers to identify domain names that will be used by a particular variant of

malware prior to its registration with a registrar.

42

A.1.3 Single-flux DNS

Single-flux DNS refers to a method of overloading an Address (A) record in DNS with multiple IP

addresses and very short time to live (TTL) values [10, 41]. The combination of these two features

enables multiple IP addresses to be resolved from a single FQDN. Authoritative responses to name

lookups can return a multitude of different IP addresses due to the round-robin behavior that occurs as a

result of short TTL values. Malware authors utilize this functionality within botnets to build resiliency

and redundancy into their C&C design and overcome the connectivity issues associated with utilizing

single points of failure.

Additional advents to this technology could include overloading A records by means of dynamic

registration with a rogue name server. This process allows other infected nodes to perform the duties of

A record updates.

A.1.4 Double-flux DNS

Double-flux DNS builds upon the original idea of Single-flux DNS, but overloads the A records that map

to NS records for a particular DNS zone [10, 41]. The result of such resource record overloading produces

a large number of name servers for a zone. The remote host corresponding to a NS record at any point in

time may purely be used to proxy a DNS lookup request to a true authoritative name server. By restricting

the visibility of authoritative name servers to the remote hosts that proxy the DNS lookups, an

authoritative name server can remain hidden from others.

	A Historical evaluation of C&C complexity
	Recommended Citation

	A Historic Evaluation of C&C Complexity

