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A Process for Synthesizing Bandlimited Chaotic
Waveforms for Digital Signal Transmission

Chance M. Glenn

Abstract-- In our development of a chaotic oscillator
technology to produce high-quality communication signals, we
have found a novel method for limiting the out-of-band
spectral power from chaotic oscillators. This development is
an important breakthrough that has allowed us to make a
major step toward a commercially viable technology.

Index Terms--chaos, chaotic, communications, transmission,
digital, wireless, bandlimiting, bandwidth, filtering, symbolic
dynamics, binary

I. INTRODUCTION

In a practical wireless communication system, the signal
transmitted from the antenna must be limited to a finite
range of frequencies. Such signals are known as
bandlimited signals, and if the range of frequencies does not
include dc (zero frequency) they are called passhand
signals. Typically, passband signals are bandlimited signals
that occupy a small percentage bandwidth about a center or
carrier frequency. Multiple signals can then be transmitted
by using passbands that do not overlap, then separating the
signals at the receivers by filtering all but the passband of
interest. This method of sending multiple signals, known as
frequency-division multiplexing, is the basis for many
multiple user systems in use today. When many users can
access a system on either a fixed or flexible frequency
division plan, the method is known as frequency-division
multiple access. Although some methods, such as CDMA
(code division multiple access) do not rely upon frequency
division for signal separation, the signals are still limited to
a passband defined by the FCC™.

If the signals generated by chaotic systems are to be used in
commercially viable systems, then the transmitted signal
must be bandlimited in some way. One obvious and often-
used way to do this is to generate a signal that has
considerable out-of-band spectral power, and then filter the
signal to remove most of the power that lies outside of the
desired frequency band. This method is, however, costly in
many ways. Filters that can remove out-of-band energy
well while passing the signal in band with minimal
distortion are expensive and take up space. The power
outside of the band is also wasted, and must be dissipated to
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heat. This wasted power translates to a higher required
transmitter power and faster battery drain.

In our development effort to produce commercially viable
chaotic oscillator technology, we have discovered a
particularly simple and effective way to limit the out-of-
band radiation from a chaotic oscillator. This method
causes the oscillator itself to produce a signal with
bandwidth-constrained signal power, and thus there is no
need for a filter or waste of power. In doing so we are
applying a principle that may be used for more general
signal shaping or spectral shaping.

The idea behind our bandlimited chaotic oscillation (BCO)
synthesis method is based on our segment hopping method
of oscillator control?. In segment hopping, a digital source
produces an analog waveform that is used to guide the
transmit oscillator. The guide signal is an analog copy of a
signal that could be produced by the transmit oscillator
itself, except that it follows a pre-defined symbol sequence
that contains the digital information being transmitted. In
this scheme, the transmit oscillator is acting as an amplifier
for the guide signal, because the output of the transmitter
can be much higher in power than the power drawn from
the guide source.

Il. SYNTHESIS/ANALYSIS

A prototypical chaotic oscillator used to produce signals
useful for digital communication is the Lorenz system®. It
was the oscillator first used by Hayes” to introduce the
notion of controlling symbolic dynamics, a process to
encode digital information in the oscillations of a chaotic
system. The Lorenz system is described by a three
dimensional system of equations having the form:

X = gy —OX
y=pX—Yy—XZ
2=xy- [

where g, p and 3 are parameters that Lorenz orignally set to
10, 28, and 8/3 respectively. The state-space attractor
defined by these equations takes on a double-lobed
structure which lends itself nicely to a binary symbol
partition. Fig. 1 is an example of a two-dimensional
projection of the solutions of the Lorenz equations, showing
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Figure 1. Two-dimensional projection of the solutions
to the Lorenz equations showing state coordinates x
and y and the binary partitioning of the state-space.

The time varying state-variable, x(t), is a bipolar waveform
well-suited for baseband transmission of digital
information. Fig. 2 is an example of the waveform in it’s
generalized time coordinates, and Fig. 3 a plot of the
frequency content of this signal with respect to it’s average
cycle frequency. The average cycle frequency is the
reciprocal of the average cycle time. The cycle time is
defined as the time it takes a point on the attractor to travel
from one Poincaré surface to the other, or back to itself.
The average cycle time is the mean time, in dimensionless
units, calculated by integrating the system with a fixed
integration step and collecting thousands of surface
crossings. Tayg Was found to be about 1.7, with a variance
of about 1.8.

normalized time (sec)

Figure 2. Time dependent solution of the Lorenz
equations for state coordinate x(t).
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Figure 3. Frequency content of the state
coordinate x(t) with respect to the average
cycle frequency.

Fig. 4 is a block diagram of the implementation of a
bandlimited chaotic signal source. A binary sequence is fed
into a discrete-time, bandlimited, segment-hopping source.
We will describe this source in the next section. The output
signal, y[n;t], is a sampled waveform used as a guide signal
to synchronize a continuous-time Lorenz oscillator to it. A
single state-variable synchronization method is used to lock
the oscillator to the dynamics, thus to the embedded digital
sequence of the guide signal.
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Figure 4. Block diagram of the implementation of a
bandlimited digital signal synthesizer.

Since Pecora and Carroll first introduced the concept of
synchronization of chaotic oscillator circuits® many
methods have been developed and realized. The following
mathematical model works extremely well:

X = 0y — OX
y=px-y=xz+(y[mt]-y)R
2=y - fi



Here R is a coupling factor. This method works well from
the standpoint of simplicity and ultimately from a circuit
realization perspective. There have been circuit realizations
proposed for the Lorenz equations®. In such circuits this
coupling method is simply a resistive feed of a voltage
across, or current into, a single arm.

I1l. SEGMENT HOPPING

Now we turn our attention to the synthesis of the guide

signal, y[n;t]. Two new concepts are introduced here.

1. Continuous, digitally encoded chaos waveforms can be
generated by piecing together the proper signal
segments.

2. These segments can be bandlimited prior to storage,
and can impress its characteristics upon a continuous
time oscillator via synchronization.

The sequencing of stored segments in memory in some pre-
defined order is commonly used in arbitrary waveform
synthesis. What is new and not obvious about segment
hopping is that an arbitrary controlled trajectory of a
deterministic dynamical system can be generated, even
though the system produces continuous and non-repeating
trajectories in state space under the action of deterministic
differential equations. This signal can furthermore be made
to carry an arbitrary sequence of digital symbols
representing encoded data. Thus the difference between this
method and arbitrary waveform synthesis is that this
method allows for the production of a signal carrying
arbitrary data that appears to have been produced by the
action of differential equations. This is achieved by putting
out segments that follow the desired symbol sequence while
satisfying the grammar of the oscillator. The theoretical
basis for this method of signal synthesis is the idea from
ergodic theory that chaos can be approximated to an
arbitrary degree of accuracy by completely deterministic
mappings in state space intermediated by completely

random choices’.

For example, in an 8-bit encoding there are 256 signal
pieces, or segments, that can be put together to form any
desired binary symbol sequence. The segments are assigned
numbers from 0 to 255 according to the bit sequence they
initiate.

In a physical implementation, a segment hopping system
can be stored in a static memory device such as a ROM or
EPROM and clocked out according to input the bit-
sequence.

A more detailed description of the segment hopping process
will be published shortly. In the following section we
consider a complete computer model of the BCO synthesis
method.
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IV. COMPUTER MODEL RESULTS

The first, important step is to determine the amount of
bandlimiting that can be achieved. Any amount of filtering
will cause some distortion to the waveforms. It is then
important that the binary encoding remain preserved, and
that the guide signal remain capable of synchronizing the
continuous-time oscillator.

Given the determination of the average cycle time, Tayq, as
stated earlier, we applied a smooth, low-pass filter to the
Lorenz oscillations having a cutoff-frequency at twice the
average bit rate. With the filtering applied we stored the
segments which source the appropriate 8-bit symbol
sequences. Figs. 5 and 6 below show the filter
characteristics and the response of the frequency spectra
and the resultant attractor.
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Figure 5. The result of the low-pass filtering of the state-
variable of y(t).
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Figure 6. Two-dimensional projection of a filtered
Lorenz oscillation using the low-pass filter characteristic
shown by its effect on the y spectrum in fig. 5.
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The filtering is applied to all three state coordinates in order
to produce a new attractor. It is with this new attractor that
the symbolic dynamics of the system are determined and
the associated segments are produced. Even though only
one state-coordinate is used as a guide signal, namely y, the
entire attractor must be transformed in order to synthesize
the segments needed for segment hopping control.

In the following example we will encode and transmit the
binary sequence,

B =11001101100010101111000110101100011.

Fig. 7 shows what the desired output waveform x(t) would
be for a typical Lorenz oscillator.
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Figure 7. Typical Lorenz oscillation producing the
binary sequence,
B =11001101100010101111000110101100011

Given the bandlimited segments, we now can synthesize the
guide signal, y[n]. Fig. 8 is a plot of the frequency
spectrum of the original, unfiltered transmit signal x(t), the
result if x(t) was filtered using the low-pass filter described,
and the frequency spectrum of the new transmit signal from
the BCO synthesis method.
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Figure 8. Frequency spectra of the x(t) from the
Lorenz equations, a filtered version, and the output of
a BCO system.

Note the dramatic reduction in frequency content.
Particularly, there is nearly a 20 dB reduction at 3.5 times
the cycle frequency and a 30 dB reduction at 6 times the
cycle frequency.

Earlier we stated that it is important that binary encoding
remain preserved and that synthesized BCO guide signal be
capable of synchronizing a Lorenz oscillator to it. Figs. 9
and 10 demonstrate this.
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Figure 9. BCO synthesized transmit signal. Note that
the binary encoding is preserved.
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Figure 10. BCO synthesized attractor projection.

What is remarkable is how “flexible” the Lorenz oscillator
can be. This is an important realization not only for this
work but as we continue to work towards synthesizing
signals even more compatible with traditional
communication signal formats and standards. We have
been able to demonstrate in the lab in prototypes that
physical chaotic oscillators can be made to produce signals



that have constant timing intervals between Poincaré
surface crossings by simply synchronizing it to an
artificially synthesized waveform having those properties.
This timing regularization is of utmost importance for use
in commercially viable communication systems because it
makes accurate clock timing recovery is possible.
Combined with bandwith compression, as outlined here, we
have solved some of the most critical technological
problems for using chaotic oscillators in commercial
systems.

V. CONCLUSION

What we have described here in a simple example is an
enabling technology. In order to use chaotic systems and
processes in commercial digital communication systems,
the waveforms must be restricted in bandwidth in a
controllable way. The focus must shift to the design of
waveforms and sources, and away from the use of existing
easily-constructed oscillators.

Our BCO synthesis technique is a simple, efficient,
effective way to generate baseband signals for wireless
communication. Some chaotic oscillators, such as the
Colpitt’s circuit® and the double scroll oscillator®, produce
signals with very different characteristics. However, this
technique is a general procedure applicable to a variety of
chaotic oscillators.

Another area of technology development that we are
focusing on is in the development of oscillators that are
more ideally suited for given communication channels.
Although the Lorenz system has excellent properties for
binary baseband digital signaling in white noise, there may
be oscillations even more suitable that can produced with
efficient circuitry.

Since Ott, Grebogi, and Yorke’s initial formalism for
controlling chaotic processes using small perturbations®,
there has been a consistent march toward development of
technological applications. Arguably, the application to
communications technology has held the most promise and
has been the source of the most activity. Beyond simple
applications is the realm of commercially viable
applications that have characteristics that make chaotic
dynamics technology attractive to the fast-moving world of
the telecommunications industry.

Some of he improvement areas that make chaotic dynamics
technology attractive are increases in efficiency, reduction
of system complexity, increase in transmission ranges and
digital transmission data rates.
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