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Simplified Explanation of Pneumatic Tire Behavior 

George H. Sutherland, PhD, PE 
Professor, MMET/PS Department 
Rochester Institute of Technology 

Rochester, NY 14623 
 

 One can get some insight into how a pneumatic tire behaves when it is vertically 
loaded by studying a thick-skinned spherical membrane (like a junior size basketball) 
being compressed between two flat plates.  Bicycle, motorcycle, truck, general purpose 
and early model automobile tires have a circular cross-section similar to a junior-size 
basketball.  However modern automobile tires have a wide aspect ratio when unloaded 
(like the loaded state shown in Figure 1), have unloaded line contact with the ground 
across the tread width, and have relatively stiff sidewalls that contribute to the tire’s load 
carrying capability (and in the case of run-flat tires can totally support the car’s weight).  
Thus the analysis in this report is quantitatively representative for tires of initially round 
cross-section, like a typical motorcycle tire, but provides only a qualitative idea of the 
tire support mechanism for modern automobile tires. 
 

 

Figure 1   Compressed and Uncompressed Sphere 
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 The sphere (basketball) starts in state 1 with a certain mass of air in it such that it 
has radius r1 and internal pressure p1.  The sphere is then compressed vertically 
between two flat plates so it takes the shape of a cylinder of radius rc surrounded by a 
ring with a half-circle cross-section of radius r2.  (It is the same shape as that of a jelly-
filled doughnut.) 

 The sphere initially has volume 

 V1 = (4/3) π r1
3         (1) 

and surface area 

 S1 = 4 π r1
2          (2) 

After being compressed it has volume 

 V2 = π r2 (2 rc
2 + (4/3) r2

2 + π r2 rc)       (3) 

and surface area 

 S2 = 2 π [rc
2 + r2 (2 r2 + π rc)]       (4) 

 

 As a first approximation it is reasonable to assume, since no additional air is to 
be added to the thick-skinned sphere, that the surface area does not change in going 
from state 1 to state 2.  The condition S1 = S2 yields 

 0 = 2 (r2
2 – r1

2) + π r2 rc + rc
2       (5) 

  

 In addition it can be assumed that air behaves as a perfect gas and that the 
temperature of the air in states 1 and 2 is the same.  In this case 

 p1 V1 = p2 V2          (6) 

Substituting (1) and (3) into (6) yields 

 4 p1 r1
3 = p2 r2 (6 rc

2 +4r2
2 +3 π r2 rc)      (7) 

 

 The overall vertical reaction force of the sphere’s contact surface on the plate 
must be equal to the load F.  If a free body diagram is made of this contact area (Figure 
2), it is clear that the tension, T2, in the thick membrane contributes little to the vertical 
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load equilibrium condition due to its almost horizontal angle.  The contact force is thus 
given by 

 F = p2 π rc
2          (8) 

 

Figure 2   Free Body Diagram of Sphere/Plate Contact 

 Equations (5), (7) and (8) represent 3 equations in 3 unknowns p2, r2 and rc, 
assuming p1, r1 and F are given.  Equation (8) is solved for p2, which can then be 
substituted into equation (7) yielding 

 4 π p1 r1
3 rc

2= F r2 (6 rc
2 +4r2

2 +3 π r2 rc)      (9) 

Equation (5) is quadratic in both r2 and rc while equation (9) is a cubic in r2 and a 
quadratic in rc.  Both equations have some mixed terms in rc and r2.  Obtaining an 
explicit equation for either r2 or rc appears difficult and would likely be of 6th order if it 
could be developed.  Thus a direct algebraic solution for r2 or rc does not seem possible.  
However a numerical state 2 solution for a given set of state 1 parameters and a force F 
can easily be obtained using standard computer software like Excel. 

 For example, for the situation where F = 1000 lbf, r1 = 4.5 inches, and p1 = 36 
psi, the Solver routine in Excel yields 

 r2 = 2.41 inches  

 rc = 2.79 inches 

and  p2 = 40.86 psi  

Also V1 =  381.70 in3  and V2 = 336.09 in3. 

The 1000 pound load is carried by deforming the sphere, increasing its internal pressure 
by 13.5% and reducing its internal volume by 11.9%. 

 The sphere example leads to some understanding as to what happens in a 
pneumatic tire when it is inflated to 36 psi while not installed and then placed in service 
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with a vertical loading of 1000 pounds.  With a pneumatic tire the assumption of S1 = S2 
is quite accurate.  Of course the overall geometry of a pneumatic tire is more complex 
than a sphere.  However if only the cross-section of the inside of the unloaded tire 
(where the tire contacts the road) is considered and approximated by a circle, then there 
is a direct comparison to the sphere cross-section geometry.  When the tire is loaded, 
the tire contacting the road surface will flatten out in an oval (but not necessarily 
perfectly circular) pattern. Where the sphere model differ substantially from an actual 
tire is that the upper load in the tire is transmitted to the wheel rim which contacts the 
tire (at the tire bead) a ways down on the cross-section from the top of the cross-section 
(whereas the upper flat plate contacts the sphere at the very top of the cross-section).  
Thus there is no symmetric flattening of the real tire cross-section at its top, but rather 
there is a broader area of load transfer from the tire to the rim. 

 With the above-mentioned caveats the sphere model provides a reasonable 
approximation to pneumatic tire behavior in the area of contact with the road.  The tire 
outside of the road contact region can be considered to remain geometrically 
unchanged, and just serves as a reservoir of air that increases the overall volume of air 
to be compressed as the contact patch area flattens out and reduces the volume inside 
of the tire.  In other words consider an imaginary sphere inside of the tire at the road 
contact point.  Most of the volume of the inside of the tire is outside of the imaginary 
sphere.  Only the volume inside of the sphere is reduced by ∆V when the tire is loaded.  
However when equation (6) is applied, the whole inside volume of the tire (4797 in3) 
must be considered.  Thus while a ∆V of 45.61 in3 will lead to a pressure increase of 
4.86 psi when only the sphere (381.70 in3) is considered, when the entire tire volume is 
included, the pressure increase needed to support 1000 pounds is only about 0.35 psi.  
In other words, the pressure must increase within a pneumatic tire when it is loaded, but 
the increase is barely noticeable with a typical tire gage.  What is more obvious is the 
deformation of the tire (∆V) that occurs where the tire contacts the road surface, with 
the height of the tire being reduced by about 4 inches (2 (r1 –r2)) in the model.  In a real 
tire, as the tire deforms more of the load is spread into the tire carcass (effectively 
increasing the system stiffness) so that the actual tire deflection will not be as much as 
predicted by the simple sphere model. 

 In summary, the primary mechanism by which a pneumatic tire supports its load 
is by the volume inside the tire being reduced due to deformation in the area of contact 
with the road surface.  The road surface contact area of the deformed tire times the tire 
internal air pressure equals the vertical vehicle load on the tire.  The tire air pressure 
increases slightly when the tire is loaded.  The rolling radius of the tire is reduced by the 
local deformation of the tire at the road surface. 
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