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Solids Whose Parallel Cross-Sections are

Regular Polygons

Matthew E. Coppenbarger
Department of Mathematics and Statistics

Rochester Institute of Technology
Rochester, NY 14414

Email: mecsma@rit.edu

July 27, 2004

Abstract

Given a solid in R
3 whose base is contained in the xy-plane and

parallel cross-sections perpendicular to the xy-plane are regular poly-

gons, the volume and surface area are determined. Additionally, the

asymptotic behavior of the solid as the number of sides of the cross-

sectional polygon increases is analyzed.

1 Introduction

In many introductory calculus textbooks (such as [1] and [3]) there is the
traditional section on calculating volumes and surface areas of regions in the
xy-plane that are rotated about one of the coordinate axes or some other
line in the plane.

One conventional way of introducing volumes by slicing is by defining a
hard-to-imagine, let alone draw freehand on a blackboard, solid whose base is
a region R in the xy-plane such that the z-coordinate of any point in the solid
is never negative and parallel cross-sections of the solid perpendicular to the
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Figure 1: Base is the unit disk and cross-sections are equilateral triangles.

x-axis (or y-axis) are semi-circles, squares, or triangles. The most common
solid is to take the base to be a unit disk with parallel cross-sections per-
pendicular to the x-axis as either equilateral triangles (Figure 1) or squares
(Figure 2).

A natural question would be to generalize the problem so that cross-
sections are regular polygons with with n sides for n ≥ 3. See Figures 3 and
4 for two additional examples. Determining the height and volume of these
solids are simple, but the surface area is not as straightforward.

To generalize further, given differentiable functions f and g defined on
the interval [a, b] such that f(x) ≥ g(x) for all x ∈ [a, b], let R be the region
defined as

R := {(x, y, 0) : a ≤ x ≤ b, g(x) ≤ y ≤ f(x)} (1.1)

and let Sn
R be the solid whose base is R and cross-sections parallel to the

yz-plane are regular n-gons.

2 Height, Volume and Surface Area

Let R be a region given by (1.1) and let n ≥ 3. Represent the height, volume
and lateral surface area (that is, the surface area not including any regular
polygons formed at x = a and x = b) of Sn

R as, respectively, H(Sn
R ), V (Sn

R )
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Figure 2: Base is the unit disk and cross-sections are squares.
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Figure 3: Base is the unit disk and cross-sections are regular hexagons.
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Figure 4: Base is the unit disk and cross-sections are regular dodecagons.
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and A(Sn
R ).

2.1 Height

The height is determined initially to provide some of the common notation
needed to calculate the volume and surface area, the formula is also necessary
for the asymptotic analysis in section 3.

The highest point on Sn
R will take place wherever the longest vertical slice

in R occurs. The length of this slice is

M := sup
x∈[a,b]

{(f − g)(x)}. (2.1)

Let C ≡ C(x) be the circle that circumscribes the cross-sectional poly-

gon formed at x ∈ [a, b]. The circle has radius r ≡ r(x) = (f−g)(x)
2

csc π
n

with the center at (x, yc, zc), where yc ≡ yc(x) = (f+g)(x)
2

and zc ≡ zc(x) =
(f−g)(x)

2
cot π

n
. Each polygonal slice can be subdivided into n isosceles tri-

angles with a vertex at the center of C. The altitude of each triangle is
h ≡ h(x) = (f−g)(x)

2
cot π

n
.

The overall height of the solid depends on the parity of n. The two cases
are illustrated in Figures 5 and 6. Consequently, the height of Sn

R is

H(Sn
R ) =

cn

sin π
n

M, (2.2)

where

cn =

{

cos π
n
, if n is even;

1
2
(1 + cos π

n
), if n is odd.

(2.3)

Note that cn → 1 as n → ∞. As a result, for fixed R, H(Sn
R ) is O(n).

2.2 Volume

To determine V (Sn
R ), the cross-sectional area of a polygonal slice at x ∈ [a, b],

A(x), is needed. The area of each of the n sub-triangles at x is 1
2
r2 sin 2π

n
,

where r is the radius of the circle that circumscribes the polygon at x given
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Figure 5: Cross-section of Sn
R at x ∈ [a, b] to determine height for n even.

in the previous section. And so the cross-sectional area of Sn
R at x is A(x) :=

n
2
r2 sin 2π

n
= n

4
(cot π

n
)
[

(f − g)(x)
]2

.

Following standard techniques in defining integrals from beginning cal-
culus textbooks, let ∆ = {x0, x1, . . . , xm} be a partition of [a, b] such that
a = x0 < x1 < · · · < xm = b where ∆xi is the length of the i-th subinter-
val. The norm of ∆, denoted ‖∆‖, is the length of the largest subinterval
formed by the partition. For each i, choose a sample point x∗

i ∈ [xi−1, xi].
An approximation of the volume is given by the Riemann sum

V (Sn
R ) ≈

m
∑

i=1

A(x∗
i )∆xi.
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Figure 6: Cross-section of Sn
R at x ∈ [a, b] to determine height for n odd.

The exact volume,

V (Sn
R ) = lim

‖∆‖→0

m
∑

i=1

A(x∗
i )∆xi =

∫ b

a

A(x)dx =
n

4
(cot π

n
)

∫ b

a

[

(f − g)(x)
]2

dx,

(2.4)
is the integral over [a, b] of the cross-sectional areas. For fixed R, V (Sn

R ) is
O(n2).

2.3 Surface Area

The surface of Sn
R can be approximated as the union of quadrilaterals. The

goal is therefore to determine the area of each quadrilateral. To do so, we
need to find the coordinates of the vertices of the cross-sectional polygons.
Likewise, it is necessary to parameterize the circle that circumscribes the
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polygon.

Given x ∈ [a, b], recall from section 2.1 that the center of C is given by
(x, yc, zc). Let θ be the angle measured counterclockwise (as viewed from the
positive x-axis) from the half-line beginning at the center of C and directed
downward (in the negative z direction). The angle that corresponds to the
vertices on the polygon are θk = π

n
(2k + 1) for k ∈ {0, . . . , n}. Define the

points P k ≡ P k(x) to have coordinates
(

x, yk(x), zk(x)
)

, where

yk(x) := yc + r cos(θk − π
2
)

= yc + r sin θk

= (f+g)(x)
2

+ (f−g)(x)
2

(csc π
n
) sin (2k+1)π

n
(2.5a)

and

zk(x) := zc + r sin(θk − π
2
)

= zc − r cos θk

= (f−g)(x)
2

(csc π
n
)
(

cos π
n
− cos (2k+1)π

n

)

. (2.5b)

The collection of points {P k : k = 0, . . . , n} are the vertices of the cross-
sectional polygon at x (Figure 7). It is readily verified that the base vertices
P n−1 and P 0 are, respectively, located at (x, g(x), 0) and (x, f(x), 0), as ex-
pected. Also, note that P n ≡ P 0.

Given k ∈ {1, . . . , n} , the change in the y-coordinate and z-coordinate
from P k−1 to P k is, respectively,

y∆k(x) := yk(x) − yk−1(x) = (f − g)(x) cos 2kπ
n

(2.6a)

and

z∆k(x) := zk(x) − zk−1(x) = (f − g)(x) sin 2kπ
n

. (2.6b)

As in the volume problem, let ∆ = {x0, . . . , xm} be a partition of [a, b]
where ∆xi is the length of the i-th subinterval.

To simplify notation that appears later, define each of the following for
all i ∈ {0, . . . ,m} and k ∈ {0, . . . , n}.
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Figure 7: Cross-section of Sn
R at x ∈ [a, b].

• fi := f(xi) and gi := g(xi).

• ∆fi := fi − fi−1 and ∆gi := gi − gi−1 for i 6= 0.

• yk
i := yk(xi) and zk

i := zk(xi).

• P k
i is the point

(

xi, y
k
i , z

k
i

)

.

• y∆k
i := y∆k(xi) and z∆k

i := z∆k(xi) for k 6= 0.

• yk
∆i := yk

i − yk
i−1 and zk

∆i := zk
i − zk

i−1 for i 6= 0.

Given k ∈ {1, . . . , n}, the non-zero vectors in the collection
{
−−−−−→
P k−1

i P k
i =

〈0, y∆k
i , z∆k

i 〉 : i = 0, . . . ,m
}

are mutually parallel because every nondegener-
ate vector is in the same direction as the unit vector uk := 〈0, cos 2kπ

n
, sin 2kπ

n
〉.

So, for any i ∈ {1, . . . ,m}, the quadrilateral P k−1
i−1 P k−1

i P k
i P k

i−1 forms one of
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three shapes: a trapezoid (as in Figure 8), a triangle (in the case that either
fi = gi or fi−1 = gi−1), or is degenerate (in the case that both are true). To
determine the area of this quadrilateral, let Lk

i be the line passing through
P k

i and parallel to uk (and hence Lk
i also passes through P k−1

i ). The area of
this quadrilateral, Ak

i , is

Ak
i = 1

2

(

∣

∣P k−1
i−1 P k

i−1

∣

∣ +
∣

∣P k−1
i P k

i

∣

∣

)

dk
i =

(fi + fi−1

2
− gi + gi−1

2

)

dk
i ,

where dk
i is the distance between Lk

i−1 and Lk
i . This distance is the magni-

tude of the orthogonal projection of vk
i :=

−−−−−→
P k

i−1P
k
i = 〈∆xi, y

k
∆i, z

k
∆i〉 in the

direction of uk. That is,

dk
i =

∣

∣vk
i − (uk ·vk

i )u
k
∣

∣ =
∣

∣〈∆x,Qk
i sin 2kπ

n
,−Qk

i cos 2kπ
n
〉
∣

∣ =
√

(∆xi)2 + (Qk
i )

2,

where

Qk
i = yk

∆i

(

sin 2kπ
n

)

−zk
∆i

(

cos 2kπ
n

)

= 1
2
sin(2kπ

n
)
(

∆fi+∆gi+
tan(kπ/n)
tan(π/n)

(∆fi−∆gi)
)

.

If Ai is the sum of the area of all the quadrilaterals in [xi−1, xi], then

Ai =
n

∑

k=1

Ak
i

=
(

fi+fi−1

2
− gi+gi−1

2

)

n
∑

k=1

√

1 +
[

1
2
sin(2kπ

n
)
(

∆fi+∆gi

∆xi

+ tan(kπ/n)
tan(π/n)

∆fi−∆gi

∆xi

)]2

∆xi.

Since f and g are differentiable on [a, b], apply the Mean Value Theorem
and the Intermediate Value Theorem to each interval [xi−1, xi], where i =
1, . . . ,m. There exists ui, vi, µi, νi ∈ (xi−1, xi) such that ∆fi = f ′(ui)∆xi,
∆gi = g′(vi)∆xi, f(µi) = 1

2
(fi + fi−1) and g(νi) = 1

2
(gi + gi−1).

An approximation of the lateral surface area is given by the Riemann sum

A(Sn
R ) ≈

m
∑

i=1

Ai,

where

Ai =
(

f(µi)−g(νi)
)

n
∑

k=1

√

1 +
[

f ′(ui)+g′(vi)
2

sin(2kπ
n

) + f ′(ui)−g′(vi)
tan(π/n)

sin2(kπ
n

)
]2

∆xi.
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Figure 8: Approximating the surface of Sn
R area using trapezoids.
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Duhamel’s principle [4, pages 515–8] is the generalized technique of represent-
ing a limit of certain sums as an integral. In essence, it states that anything
which looks like a good approximation to an integral really is. The lateral
surface area is therefore

A(Sn
R ) = lim

‖∆‖→0

m
∑

i=1

Ai

=

∫ b

a

(f − g)(x)
n

∑

k=1

√

1 +
[

(f+g)′(x)
2

sin(2πk
n

) + (f−g)′(x)
tan(π/n)

sin2(kπ
n

)
]2

dx.

(2.7)

We will see in the next section that A(Sn
R ) is O(n2) for fixed R.

The equation for the lateral surface area is also valid if f and g are non-
differentiable for a finite number of points in [a, b] by choosing appropriate
partitions to include the non-differentiable points.

The general form of the formula for the surface area (2.7) can be somewhat
confirmed by appealing to the the well-known formula for the area of a surface
of revolution. Given a differentiable function F defined on [a, b] rotated about
the x-axis, the surface area is

A = 2π

∫ b

a

F (x)
√

1 + [F ′(x)]2dx,

which is remarkably similar to (2.7) in appearance. An alternative approach
to derive the formula for the lateral surface area of Sn

R is outlined in the
appendix.

3 Asymptotic Behavior

Here we would like to determine the asymptotic behavior of the volume and
lateral surface area of Sn

R as n increases with R fixed. Both volume and
lateral surface area grow without bound, so the solid must be normalized to
make the analysis meaningful by rescaling the base region in such a way that
the height of the solid is always 1. This rescaling will be justified later in the
section after looking at two examples.

12



Example 3.1. Let R be the unit disk centered at the origin. Some of the
solids generated by this base have already been given in Figures 1 through
4. R is defined by taking f(x) =

√
1 − x2 and g(x) = −

√
1 − x2 on [−1, 1].

For each n, rescale the dimensions of the base so that the height of the solid
is 1. As a consequence, the base will be smaller and the overall appearance
of the solid will be very thin for n large. The volume will be very close to
zero, but the surface should approach that of two disks with unit diameter
(since regular polygons for large number of sides approximate a circle). �

Example 3.2. Let R be the polygon with vertices at the points (−2, 0),
(−1, 2), (0, 1), (1, 2) and (2, 0). This region is shown in Figure 9. R is
defined by taking f as a piecewise linear function or, more explicitly, as
f(x) = |x| − 3

2

(

|x − 1| + |x + 1|
)

+ |x − 2| + |x + 2| and g(x) = 0 on [−2, 2].
Examples of this solid with various values of n is given in Figures 10 through
12. For each n, rescale the dimensions of the base so that the height of
the solid is 1. As in Example 3.1, the volume will be close to zero as n
increases, but the surface area is not as simple. Since the height increases
at a linear rate, the height of the rescaled solid at x = 0 will always be 1/2.
But as n increases, the base will get thinner and the surface between the two
maximums will be “sandwiched” between the two outside “disks”. Can you
determine the limiting surface area? The answer will be given at the end of
this section. �

x

y

Figure 9: Polygon base for Example 3.2.

The general problem of determining the asymptotic behavior of the vol-
ume and surface area of any region defined by (1.1) are given in Theorems

13
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Figure 10: The non-normalized solid S4
R for Example 3.2.
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Figure 11: The non-normalized solid S6
R for Example 3.2.
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Figure 12: The non-normalized solid S12
R for Example 3.2.
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3.4 and 3.5. But first we will need a lemma to describe how the solids are to
be normalized.

Lemma 3.3. Given a solid Sn
R , let Sn

R be the solid normalized to a height of
1. Then

V (Sn
R ) =

V (Sn
R )

H(Sn
R )3

and A(Sn
R ) =

A(Sn
R )

H(Sn
R )2

.

Proof. First scale the x and y coordinates of R by a factor of t ∈ (0,∞).
Replace f(x) and g(x) by, respectively, 1

t
f(tx) and 1

t
g(tx). These new func-

tions are defined on the interval [a
t
, b

t
]. Define the new base, R(t), scaled by

t as
R(t) := {(x, y, 0) : a

t
≤ x ≤ b

t
, 1

t
g(tx) ≤ y ≤ 1

t
f(tx)}.

The longest vertical strip in R(t) is M(t) := supx∈[a/t,b/t]

{

1
t
(f − g)(tx)

}

=
M/t, where M ≡ M(1) is the longest vertical strip in R ≡ R(1) given by
(2.1). The height of Sn

R(t) is given by (2.2) and is

H(Sn
R(t)) =

cnM(t)

sin π
n

=
cnM

t sin π
n

.

We need to find a positive number t0 such that H(Sn
R(t0)) = 1. Taking

t0 = cn

sin(π/n)
M = H(Sn

R ) will give the desired height.

From (2.4), the volume is

V (Sn
R ) = V (Sn

R(t0)) = n
4
(cot π

n
)

∫ b/t0

a/t0

[

1
t0

(f − g)(t0x)
]2

dx

= n
4t3

0

(cot π
n
)

∫ b

a

[(f − g)(u)]2du =
V (Sn

R )

H(Sn
R )3

.

To find the lateral surface area, use (2.7) along with the identity d
dx

[

1
t0

(f ±
g)(t0x)

]

= (f ± g)′(t0x) followed by the substitution u = t0x to obtain

A(Sn
R ) = A(Sn

R(t0)) = 1
t2
0

A(Sn
R ) =

A(Sn
R )

H(Sn
R )2

.

Theorem 3.4. Given R, the volume of Sn
R , normalized so that the height is

1, converges to 0 as n → ∞.
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Proof. By Lemma 3.3,

lim
n→∞

V (Sn
R ) = lim

n→∞

V (Sn
R )

H(Sn
R )3

=

∫ b

a

[

(f − g)(x)
]2

dx

4M3
lim

n→∞

n sin3(π
n
)

c3
n tan(π

n
)

= 0.

This result should not be surprising since V (Sn
R ) is O(n2) and H(Sn

R ) is
O(n).

Theorem 3.5. Given R, the lateral surface area of Sn
R , normalized so that

the height is 1, converges provided (f − g)|(f − g)′| is integrable on [a, b] and
converges to πK

4M2 as n → ∞, where K is total variation of (f − g)2 on [a, b]
and M is given by (2.1).

Proof. Since

|ξk| ≤
√

1 + ξ2
k ≤ 1 + |ξk|

for any ξk ∈ R, then summing all terms over ξ1 through ξn yields

n
∑

k=1

∣

∣ξk

∣

∣ ≤
n

∑

k=1

√

1 + ξ2
k ≤ n +

n
∑

k=1

∣

∣ξk

∣

∣.

By the triangle inequality,

n
∑

k=1

∣

∣ξk

∣

∣ ≥
∣

∣

∣

n
∑

k=1

ξk

∣

∣

∣
,

so
∣

∣

∣

n
∑

k=1

ξk

∣

∣

∣
≤

n
∑

k=1

√

1 + ξ2
k ≤ n +

n
∑

k=1

∣

∣ξk

∣

∣. (3.1)

Let ξk ≡ ξk(x) := α sin(2kπ
n

)+βn sin2(kπ
n

), where α ≡ α(x) := 1
2
(f +g)′(x)

and βn ≡ βn(x) := (f − g)′(x) cot(π
n
).

Since
∑n

k=1 sin(2kπ
n

) =
∑n

k=1 cos(2kπ
n

) = 0, then
∑n

k=1 sin2(kπ
n

) = 1
2
n for

all n ≥ 3 and so

n
∑

k=1

ξk = α

n
∑

k=1

sin(2kπ
n

) + βn

n
∑

k=1

sin2(kπ
n

) = 1
2
nβn.
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Again, by the triangle inequality,
n

∑

k=1

∣

∣ξk

∣

∣ ≤ |α|
n

∑

k=1

∣

∣ sin(2kπ
n

)
∣

∣ + |βn|
n

∑

k=1

sin2(kπ
n

) = |α|
n

∑

k=1

∣

∣ sin(2kπ
n

)
∣

∣ + 1
2
n|βn|.

Thus (3.1) can be written as

1
2
n|βn| ≤

n
∑

k=1

√

1 + ξ2
k ≤ n(1 + 1

2
|βn|) + |α|

n
∑

k=1

∣

∣ sin(2kπ
n

)
∣

∣. (3.2)

Multiply all terms in the previous inequality by sin2(π/n)
c2n

, where cn is given by

(2.3), and take the limit as n goes to infinity. The term on the left of (3.2)
becomes

lim
n→∞

sin2(π
n
)

c2
n

n|βn|
2

=
|(f − g)′(x)|

4
lim

n→∞

n sin(2π
n

)

c2
n

= 1
2
π|(f − g)′(x)|.

The first term on the right of (3.2) becomes

lim
n→∞

sin2(π
n
)

c2
n

n(1 + 1
2
|βn|) = 1

2
π|(f − g)′(x)|.

The second term on the right of (3.2) becomes

lim
n→∞

sin2(π
n
)

c2
n

|α|
n

∑

k=1

| sin(2kπ
n

)| = 0

since sin2(π
n
) is O( 1

n2 ), cn is O(1) and
∑n

k=1 | sin(2kπ
n

)| is at most O(n).

Now, to determine the asymptotic behavior of A(Sn
R ), utilize Lemma 3.3

followed by the Squeeze Theorem applied to the inequality (3.2) and the
previous three limits. We have

lim
n→∞

A(Sn
R ) = lim

n→∞

A(Sn
R )

H(Sn
R )2

= lim
n→∞

sin2(π
n
)

M2c2
n

∫ b

a

(f − g)(x)
n

∑

k=1

√

1 + ξ2
kdx

=
1

M2

∫ b

a

(f − g)(x)
(

lim
n→∞

sin2(π
n
)

c2
n

n
∑

k=1

√

1 + ξ2
k

)

dx

=
π

2M2

∫ b

a

(f − g)(x)|(f − g)′(x)|dx,
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where it was necessary to interchange the limit and integral.

In [2, page 176], it is given that the total variation of a differentiable

function F on [a, b] is
∫ b

a
|F ′(x)|dx provided that |F ′| is integrable. Since

f − g ≥ 0 on [a, b], then, taking F = (f − g)2, we have

lim
n→∞

A(Sn
R ) =

πK

4M2
.

Since A(Sn
R ) and H(Sn

R )2 behave in a similar manner asymptotically and
H(Sn

R ) is O(n), then A(Sn
R ) is O(n2). It is an interesting coincidence that,

for fixed R, the volume and lateral surface area of Sn
R are both O(n2).

Answer. For Example 3.2, M = 2 and K = 14 implies A(Sn
R ) ∼ 7π

8
by

Theorem 3.5. This is the same as the area of four disks of unit diameter
minus the area of two disks of half-unit diameter.

4 Open Questions

A few problems are left open to the gentle and curious readers. Here, we will
assume we are provided a region R given by (1.1).

• Let θ ∈ (0, π] and consider the solid Cθ
R generated by the region R

whose cross-sections parallel to the yz-plane at x ∈ [a, b] are disks such
that θ is the central angle of the sector of the circle formed by the
intersection of the boundary of the cross-sectional disk with f and g in
the xy-plane (see Figure 13 for a typical cross-section). Determine the
height, volume and surface area of Cθ

R. (A specific example of this type
of solid is given in Figure 14 where the solid is generated by the unit
disk with θ = π

3
.)

• Calculate the centroid of Sn
R for n ≥ 3 or Cθ

R for θ ∈ (0, π].

• Describe a geodesic on the surface of Sn
R for n ≥ 3 or Cθ

R for θ ∈ (0, π].

• Consider the solid dynamically generated by a region R. That is, move
R along a simple path in R

3 and let DR be the solid swept out by

19



R. Care must be taken to define the orientation of R as it is moving.
Determine the volume and surface area of DR. (This is the generalized
case seen in calculus of generating a solid by rotating a region about a
line.)

y

z

(x, g(x), 0) (x, f(x), 0)

θ

Figure 13: Cross-section of Cθ
R at x ∈ [a, b].
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man that this author has taught over the past few years that were patient
enough to derive (2.4) on their own as a part of class.
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Figure 14: Cπ/3
R where R is the unit disk.

Appendix - Parametric Equations Represent-

ing the Lateral Surface of Sn
R

Let R be the base given by (1.1) and let n ≥ 3. Referring to (2.5) and (2.6),
for k ∈ {1, . . . , n}, the parametric equations of the k-th lateral surface of Sn

R

are

x(u, v) = u

y(u, v) = yk(u) − vy∆k(u)

= (f+g)(u)
2

+ (f−g)(u)
2

[

(cot π
n
)(sin 2kπ

n
) + (1 − 2v)(cos 2kπ

n
)
]

z(u, v) = zk(u) − vz∆k(u)

= (f−g)(u)
2

(sin 2kπ
n

)
[

(cot π
n
)(tan kπ

n
) + 1 − 2v

]

,

where u ∈ [a, b] and v ∈ [0, 1].

The area of a smooth parametric surface, S, is given in [3, page 1104] by

A(S) =

∫∫

D

∣

∣

∣
〈∂x

∂u
, ∂y

∂u
, ∂z

∂u
〉 × 〈∂x

∂v
, ∂y

∂v
, ∂z

∂v
〉
∣

∣

∣
dA, (4.1)
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where D is the domain and S is covered just once as (u, v) ranges throughout
D.

Substituting the parametric equations into (4.1), integrating over v, and
summing over the n surfaces will result in an equivalent version of (2.7) with
the integral and summation reversed.
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