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Abstract

We propose a novel technique that exploits some interesting properties of the Beta dis-
tribution to derive a sparse solution to the traditional general linear regression under the
Gaussian noise assumption. Our proposed technique provides a theoretically, conceptually
and computationally better alternative to both the LASSO and the relevance vector ma-
chine in the sense that it is centered around an objective function that is convex and easy
to interpret. We demonstrate the strength of our proposed technique through examples,
and we also provide a theoretical proof of the merits of our method.

Keywords: Normal Linear model, Maximum a posteriori, Sparsity, Beta hyperprior.

1. Introduction

Let x⊤
i ≡ (x1i, x2i, · · · , xpi) denote the p-dimensional vector of characteristics. Consider

the p-dimensional vector β = (β1, β2, · · · , βp)
⊤ of regression coefficients. Assuming a linear

model without intercept, the response or measurement at point xi can be written as

Yj = β1x1j + β2xi2 + · · · + βpxip + ǫi, i = 1, · · · , n

where ǫj will be assumed i.i.d N(0, σ2) throughout this paper. Under this homoscedastic

noise model, the ordinary least squares estimator β̂ of β is such that

β̂OLS =
(

X⊤X
)−1

X⊤y and cov(β̂OLS) = σ2
(

X⊤X
)−1

where X is the n × p data matrix, and y = (y1, y2, · · · , yn)⊤ is the vector of n observed
response values. Recall here that

β̂OLS = arg min
β

{

1

n

n
∑

i=1

[yi − (β1x1j + · · · + βpxip)]
2

}

= arg min
β

{

1

n

n
∑

i=1

(yi − x⊤
i β)2

}

When the data matrix X is full rank and well conditioned, the above least squares estimator
has many desirable properties. When the data matrix X is not full rank, one solution is
ridge regression

β̂RIDGE = arg min
β







1

n

n
∑

i=1



yi −

p
∑

j=1

βjxij





2




+ w

p
∑

j=1

β2
j
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Explicitly, the ridge estimator is given by

β̂RIDGE =
(

X⊤X + wIp

)−1
X⊤y

The ridge estimator is biased estimator of β, but has the advantage of a reduced variance.
The other severe limitations is that the regularizer w controls the overall extend of shrinkage
and does not have the capability of addressing each variable separately. In other words,
if w goes to infinity, all the values of β shrink towards 0. When the matrix X is not full
rank, it is clearly the case that some of the predictor variables are not relevant, and one
would want an estimator of β for which the βj ’s corresponding to such variables to be zero,
while the βj ’s for the relevant variables are nonzero. Hence the idea of generalized ridge,
for which the objective function is

β̂GR = arg min
β







1

n

n
∑

i=1



yi −

p
∑

j=1

βjxij





2




+

p
∑

j=1

wjβ
2
j

A little bit of algebra reveals that

β̂GR =
(

X⊤X + W
)−1

X⊤y

where W = diag(w1, · · · ,wp) with each wj ∈ (0,+∞). The most important estimation
question then becomes, how to determine the optimal wj’s? Now, if we reparameterize in
such a way that κ ∈ (0,+∞) and wj ∈ (0, 1), then our new and indeed improved objective
function is

β̂GR = arg min
β







1

n

n
∑

i=1



yi −

p
∑

j=1

βjxij





2




+λ

p
∑

j=1

wjβ
2
j +

1

2

p
∑

j=1

log(wj)+
1

2

p
∑

j=1

log(1 − wj)

It is straightforward to see that

∂L

∂wj

=
1

2wj

−
1

2(1 − wj)
+ λβ2

j

We need to solve ∂L/∂wj = 0

−2λβ2
j w2

j + 2(λβ2
j − 1)wj + 1 = 0.

If λ = 0, then all the wj are equal to 1/2. Now, wj = 1/2 interpreted as a probability of
occurrence of variable xj expresses noninformativeness, which can also be translated as no
sparsity pressure put on the parameter space. For λ > 0,

∆ = 4(λβ2
j − 1)2 + 8λβ2

j = 4(1 + λ2β4
j ) > 0

Therefore, for λ > 0, the solution yielding the optimal weight wj is

wj =
λβ2

j − 1 +
√

(1 + λ2β4
j )

2λβ2
j
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Simplifying the above yields,

wj =
1

2
−

1

2λβ2
j

+

√

1

4λ2β4
j

+
1

4

which can be written as

wj =
1

2

[

1 −
1

λβ2
j

+

√

1 +
1

λ2β4
j

]

The scenarios confirm the ability of this technique to deliver sparse solutions. Indeed, as
λ gets larger and larger for a fixed set of βj ’s, both 1/2λβ2

j and 1/4λ2β4
j tend to 0. As a

consequence,
lim

λ→∞
wj = 0/1

For relevance variables, meaning variables with very large values of βj , it is immediate to
see that both 1/2λβ2

j and 1/4λ2β4
j tend to 0. As a consequence,

lim
βj→∞

wj = 1,

signifying that our weight performs exact variable selection.

2. Application to regression problems

It is very straightforward to implement this technique by running a two step iterative
procedure as follows.

Choose a range for the values of λ, i.e., λ ∈ [λmin, λmax]

For each fixed λ, set initial weights and run the following two step updating procedure

Step 1: Obtain the new vector of regression coefficients

β̂ =
(

X⊤X + λW
)−1

X⊤y

Step 2: Update the weights wj, for j = 1, · · · , n,

ŵj =
1

2

[

1 −
1

λβ̂2
j

+

√

1 +
1

λ2β̂4
j

]

Repeat the above for each λ until convergence is achieved.

Note: Remember to show the beta distribution at 1/2 to justify the choice of the second
order penalty!

3. Application to regression problems

• Get the examples from Clarke, Fokoue, Zhang first with simple structure and then
with noise variables and correlated variables

• Get example from Fokoue (2008)
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4. Bibliography

• Cite Fokoue, Goel (Communication in Statistics, Theory and Methods)

• Cite LASSO

• Cite RVM

• Cite Grandvalet

• Cite other variable selection papers

All the above updates are straightforward and will be provided once time allows me to
do so!
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