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Abstract 

Plasmopara viticola is considered one of the most damaging grapevine 

pathogens, costing growers millions of dollars in losses. Despite the discovery of 

resistance to P. viticola (RPV) loci in grapevines to combat this pathogen, recent 

research shows that P. viticola can rapidly adapt virulence on some RPV loci, 

reducing their effectiveness. This thesis explored two strategies to understand how 

P. viticola adapted to two resistance loci of moderate strength, RPV3.1 and RPV10.3, 

by identification and characterization of P. viticola genomic regions showing a high 

selective sweep. Using sequenced natural infections from field samples, multiple tools 

and custom R scripts were applied to detect high selective sweep signals, objectively 

select regions of interest, and determine what genes and proteins are present.  This 

pipeline of analysis revealed distinct sweep regions and patterns across the RPV 

resistant samples tested. While no selective sweep was detected for P. viticola 

collected from vines with only RPV3.1, P. viticola from RPV10.3 showed a strong 

selective sweep on scaffold 6, spanning 42 genes. These genes included a homologue 

of a known RxLR effector protein critical in host-pathogen interactions 

(PVIT_0003606) and a hypothetical protein predicted by SignalP to be secreted 

(PVIT_0003584). Similarly, vines containing both RPV3.1 and RPV10.3 showed 

strong selective sweeps on scaffolds 3, 11, and 6. The strong selective sweep on 

scaffold 3 spanned 21 genes, including two homologues of known avirulence proteins 

(PVIT_0002214 and PVIT_0002215). The sweep on scaffold 11 corresponded with 
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another hypothetical protein predicted by SignalP to be secreted (PVIT_0006058). 

Comparative genomic analysis of scaffold 6 between samples revealed that RPV10.3 

and RPV3.1+10.3 grown samples contain the same genes. This substantial overlap 

suggests a conserved selective sweep on scaffold 6 when RPV10.3 is present in the 

host vine. The findings suggest regions within P. viticola that are responsible for 

overcoming resistance and how these differ between RPVs as well as providing 

insight into possible future evolutionary responses of P. viticola. 
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Introduction 

 

Effects of Downy Mildew on the Grape Industry 

 

Considered one of the most damaging grapevine pathogens, P.  viticola, an oomycete that 

is notorious for causing grapevine downy mildew, can result in yield losses of up to 75% in 

grapevines during humid conditions. German vineyards saw a reduction in output by nearly 33% 

from 1907 to 1916 while French vineyards saw 70% of grapevines destroyed in 1915. 

(Koledenkova et al., 2022). In the 1960s, Texas saw $2.5 million in losses and up to 90% in field 

incidence. Then in 1979, Canada and northeastern U.S growers lost $200 million (Koledenkova 

et al., 2022). All these losses were attributed to P. viticola, and despite the creation of the 

Bordeaux mixture in 1885 that harnessed the antifungal properties of copper sulfate, P. viticola 

continues to have a significant economic impact. Fungicides designed to manage this pathogen 

account for 54% of the $1.2 billion global fungicide market specifically targeting oomycete 

pathogens (Taylor and Cook, 2018). 

 

Chemical Fungicide Use 

 

Management of P. viticola is reliant on fungicide that is applied at 7-10 day intervals if 

the weather is wet and 10-14 day intervals if the weather is dry from mid-April to mid-

September. Specifically, growers in Georgia are estimated to apply 17 applications per growing 

season (Campbell et al., 2021). The frequency of these applications provides selection pressure 

on P. viticola, which leads to an increase in chance of fungicide resistance within the pathogen 

population (Campbell et al., 2021). Fungicides such as mancozeb and captan and newer active 
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ingredients such as azoxystrobin and mandipropamid are all used. However, while mancozeb and 

captan remain relatively effective against P. viticola, single-site mode of action fungicides such 

as quinone outside inhibitor (QoI) (azoxystrobin is an example) rapidly become ineffective. 

Resistance to QoI fungicides emerged after four years on the market in both France and Italy. 

Additionally, pyraclostrobin poses a high risk for development of resistance (Campbell et al., 

2021). 

 

History and Origins  

 

The cultivated grapevine (Vitis vinifera) emerged from the domestication of the wild 

Eurasian species V. sylvestris in Transcaucasia. The oomycete attributed to causing downy 

mildew in grapes, Plasmopara viticola was first collected in northeastern America in 1834 and 

subsequently observed for the first time in Bordeaux, France in 1878. Due to this lack of co-

evolution, P. viticola has threatened viticulture since the middle of the 19th century (Rouxel et 

al., 2012). It is believed that this introduction can be attributed to the French grafting vines onto 

American rootstocks to prevent phylloxera, a grapevine pest of American origin that appeared in 

Europe. From France, the pathogen spread to Northern Italy in 1879 and the Mosel region of 

Germany in 1880 (Gobbin et al., 2007). P. viticola crossed over the Mediterranean to Algeria in 

1881(Taylor et al., 2019). The pathogen continued its trajectory and spread to Eastern Europe 

such as Turkey and Greece around 1887 and South Africa around 1907. Continuing from Eastern 

Europe, the pathogen reached Australia around 1917, New Zealand around 1926, and Tasmania 

in 1959 (Taylor et al., 2019) as is shown in Figure 1C. From Australia, the pathogen arrived in 

Argentina in 1920 (Fontaine et al., 2021). Most recently, P. viticola was detected in South Korea 
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in 2018 (Kim et al., 2019) and the Russian Far East in 2022 (Nityagovsky et al., 2024). Figure 

1A shows the overall movements while Figure 1B and 1C shown more specific movements 

within Australia and Europe as described previously. After Fontaine et al. (2013) analyzed 

spatial pattern of genetic diversity in P. viticola, they concluded that the European P. viticola 

populations were less diverse than the North American populations, which suggested a founder 

effect during the introduction of this pathogen to Europe. As of recent, cryptic-specialized 

species have been identified in North American populations of P. viticola, perhaps due to co-

evolution of clades on North American resistant wild species. 

Figure 1: The historical geographical trajectory of Plasmopara viticola, based on reports of grapevine downy 

mildew. A) This is a concise overview of detection of P. viticola starting in the United States, moving to Europe, 

and subsequently to Africa, Asia, and Australia. B) A more detailed map of the path throughout Europe. C) A more 

detailed map of the path through Australia starting in Rutherglen, Victoria and subsequently moving to New 

Zealand, Tasmania, and westward. The arrows show time sequence of detection, and do not imply movement from 

point A directly to point B. (This figure was created with BioRender.com). 
 

B A 

C 
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Cryptic Species 

 

Cryptic species refer to species that are not clearly distinguishable morphologically, 

resulting in two or more taxa grouped under a single name. These species are useful in providing 

novel insight into patterns and processes of biodiversity (Wei et al., 2022). There are currently 

five identified P. viticola cryptic species in North America. They are P. viticola f. sp. riparia 

(PvR), P. viticola f. sp. aestivalis (PvA), P. viticola f. sp. vinifera (PvV), P. viticola f. sp. 

quinquefolia (PvQ), and P. viticola f. sp. vulpina (PvVU). While both PvA and PvV infect Vitis 

vinifera, PvA is more abundant in vineyards that contain V. vinifera than PvV (Rouxel et al., 

2014). Previously Rouxel et al. (2012) concluded the host range expansion of P. viticola from 

wild species to cultivated species. They determined PvR began in V. riparia and expanded to a 

hybrid of Chancellor; PvA began in V. aestivalis and expanded to V. labrusca ‘Niagara’ and V. 

vinifera; PvV has unclear wild species origins but has since expanded to V. vinifera; and finally, 

PvQ began in Parthenocissus quinquefolia and has yet to expand to a cultivated host (Rouxel et 

al. 2012). PvVU was the most recently determined cryptic species and has only been observed in 

V. vulpina, which is its original host. 

 

Polymorphic Sites (SNPs) for Cryptic Species Identification 

To distinguish between cryptic species, certain single nucleotide polymorphisms (SNP) 

have been confirmed as having the ability to differentiate between the species (Rouxel et al., 

2012). PvR is the most divergent taxa for each of these sequences, with 36 of the 67 of the 

polymorphisms (53.7%) being unique to the PvR cryptic species. These SNPs can be visualized 

in Table 1 to see the diagnostic nucleotide change. This information was gathered by doing a 
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multi-sequence alignment using datasets provided by Rouxel et al. PvVU only had strains present 

for the ITS region, and therefore, only has the specified SNPs in that region.  

 

ITS region 

Location (bp) 37 38 53 56 70 75 94 102 172 173 

riparia T A C T T C T T T G 

aestivalis C T T C G C T T C G 

vinifera C T T C T C A A C G 

quinquefolia C T T C T T T T C G 

vulpina C T T C T C T T C A 

 

β-tubulin region 

Location 1 2

2 

3

0 

3

3 

3

6 

6

9 

7

8 

8

4 

9

0 

9

1 

11

1 

11

4 

15

3 

15

4 

16

2 

17

1 

17

4 

17

5 

18

3 

riparia G C C G T T T T C T T T G T A G A C T 

aestivalis A T T A C T C C C T C C G C G A A T T 

vinifera A C T A C A C C C T C C G T G A A T C 

quinquefoli

a 

A C T A A T C C T C C C A T G A G T T 

 

β-tubulin region (continued) 

Location 216 246 273 288 297 345 411 414 417 471 

riparia C T A T A T T/C T G C 

aestivalis T C T C G C A T T T 

vinifera T T A C G C A T G T 

quinquefolia T T A C G C G C G T 

Table 1: The SNPs identified between the different cryptic species for four different regions: Internal Transcribed 

(ITS) region, 28S region, -tubulin region, and actin region. 
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28S region 

Location 58 76 132 134 137 200 374 377 408 443 457 606 

riparia A A A C T T C G G G C T 

aestivalis A G G C C T T A T T G G 

vinifera G G A C T C C A T C A G 

quinquefolia A G A T T T C A T T A A 

 

Actin region 

Location 1

5 

3

3 

5

1 

6

0 

6

7 

6

8 

11

7 

15

0 

17

4 

18

3 

20

7 

21

6 

21

7 

24

3 

26

7 

27

9 

33

3 

37

8 

riparia C C T A T C A T T A/

C 

A/

G 

G T T C/

T 

T G C 

aestivalis A T G G T C G C G T T G C C G G T A 

vinifera A T T G T C G T G T C G T T G T T A 

quinquefo

lia 

A T T G A G G T G T T A T T G T T A 

Table 1 (continued) 
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Figure 2: Symptoms and signs of grapevine downy mildew on leaves. A) The beginning stage of P. viticola. The oil 

spots appear on the adaxial side of a leaf of a Vitis amurensis hybrid. B) Another beginning stage of P viticola, but 

the oil spot appears a dark reddish brown. This leaf is from the hybrid ‘Steuben’. C) The sporulation of P. viticola 

on the abaxial side of a V. amurensis leaf. After optimal conditions are met, the oomycete begins to sporulate in 

fluffy white lesions. D) The white berries were infected with P. viticola soon after flowering. Several discolored and 

shriveled berries were infected subsequently, but too late for sporulation, as their stomata converted to lenticels. 

Some of the berries were not infected and have developed resistance as they mature. 

 

Symptoms of Grapevine Downy Mildew 

The first symptoms of P. viticola typically appear 3 to 4 days after infection but can be 

extended to 5 to 7 days depending on weather conditions and susceptibility of the host. The 

B 

D 

A 

C 
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initial symptoms are yellow “oil” spots that appear on the adaxial side of the leaf as shown in 

Figure 2(A). Young oil spots may be surrounded by a thin, brown halo that disappears as the spot 

matures. These oil spots can also present as a reddish brown on certain darker grape varieties as 

shown in Figure 2(B). On the abaxial side of the leaf, directly underneath the oil spots, white 

sporangia will appear in lesions as shown in Figure 2(C). Although the leaves are the most 

common area of infection, the berries may also become infected. The young berries, similar to 

the leaves, will present the white sporangia before becoming discolored and necrotic as shown in 

Figure 2(D) (Jones and McManus, 2017). These fruit infections are particularly devastating to 

the yield and quality of grape harvest. However, as the berries mature, they develop ontogenic 

resistance mostly likely caused by the non-functionality of the stomata after their conversion to 

lenticels (Kennelly et al., 2005). Berries typically become fully resistant within 2 to 3 weeks after 

blooming. The stem of the grapevine may also be infected and remains susceptible up to two 

months after bloom (Jones and McManus, 2017). 

 

Life Cycle of P. viticola 

P. viticola is an obligately, biotrophic oomycete organism that causes downy mildew on 

grapevines. P. viticola is a polycyclic pathogen that causes both primary and secondary 

infections (Maddalena, Russo, and Toffolatti, 2021. The oospores are considered the main 

survival structure of this pathogen. They are large (25-50 µm diameter) thick-walled sexual 

spores that form within leaf tissues. The process of infection begins with the overwintering of 

oospores on the soil surface and fallen leaves from the previous growing season, which produces 

an inoculum for the following growing season. At the tip of the germ tube, the oospore 

differentiates a macrosporangium where the infection spores, zoospores, are formed (Maddalena, 
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Russo, and Toffolatti, 2021). The inoculum is dispersed by wind and rain, with free water 

allowing the swimming zoospores to infect susceptible grapevine tissue through the stomata 

(Brischetto et al., 2021). The joining of the sexual gametangia (oogonium and antheridium) 

forms the oospores, and a single antheridial nucleus passes through a fertilization tube into the 

oosphere. The new oospore with then begin maturing. As this process is active, the antheridial 

and oogonial nuclei fuse and the multi-layered cell wall increases in thickness for protection 

(Vercesi et al., 1999). Studies have shown that the maturation period is completed over variable 

time-period, relying most on the time required by the oospores to reach the peak in the 

germination percentage at the optimal temperature of 20 ˚C. For most of the population, this 

process will take up to 5 months to complete, yet many oospores do not complete this process 

and die (Vercesi et al., 1999). Secondary infections are caused by sporangia produced on 

P. viticola lesions. Under favorable weather conditions, the pathogen emerges from the stomata 

and forms sporangia-bearing sporangiophores (Brischetto et al., 2021). Ideal conditions for 

sporangial sporulation are as follows: darkness (as sporulation does not occur in sunlight), a 

minimum of 4 hours with ≥ 98% relative humidity, and ≥ 19˚C ambient temperature (Brischetto 

et al., 2021). The number of sporangia produced by a lesion will depend on the weather 

conditions and the lesion age. Once matured, the sporangia will detach themselves from 

sporangiophores and disperse through rainfall/water droplets and wind (Turrà and Pietro, 2015). 

A concise life cycle is shown in Figure 3. 
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Figure 3: The basic life cycle of P. viticola. The primary infection involves oospores, the products of sexual 

reproduction, which occurs only once in the pathogen’s lifecycle. The secondary infections happen many times 

through the growing season (summer) through asexual reproduction. (This figure was created with BioRender.com). 
 

Host Resistance  

 

Quantitative trait locus (QTL) mapping involves the division of progeny into groups 

according to inherited genotypes and phenotypes, and then applying a comparison to identify if 

there is a significant association between the traits and the allelic variants. As of August 2022, 33 

loci for resistance to P. viticola have been identified (Possamai and Wiedermann-Merdinoglu, 

2022)  in Vitis spp: Resistance to P. viticola (RPV)1 and RPV2 in V. rotundifolia; RPV3.1 and 

RPV19 in V. rupestris; RPV4, RPV7, RPV11, RPV17, RPV18, RPV20, and RPV21 in an 

unspecified American species; RPV5, RPV6, RPV9, and RPV13 in V. riparia; RPV8, RPV10.3, 

RPV12, RPV22, RPV23, RPV24, RPV24, and RPV26 in V. amurensis; RPV14 in V. cinerea; 

RPV15 and RPV16 in V. piasezkii; and RPV27 in V. aestivalis (Sargolzaei et al., 2020). RPV1 is 
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found on chromosome 12 and is a nuclear-binding site of leucine-rich receptors (NB-LRR). 

RPV3.1 is found on the distal part of chromosome 18 (Bellin et al. 2009) and associated with the 

biosynthesis of stilbenes. RPV10 locus originated from the Asian grape species V. amurensis and 

has been mapped to chromosome 9 (Wingerter et al. 2021), however, the mechanism for this 

locus remains under characterized. 

 

 

 

 

Figure 4: Images of P. viticola on leaves containing different RPVs. For (A) left and right, this leaf contains no 

known RPVs. For (B) left and right, this leaf contains RPV3.1. For (C) left and right, this leaf contains RPV10.3. 

For (D) left and right, this leaf contains both RPV3.1 and RPV10.3. 

 

A 

B 

C 
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Figure 4 (continued) 

 

The RPVs within the leaves provide quantitative variation in the disease severity 

phenotype of the grape to P. viticola (Figure 4). Genetic variability in unknown loci also impacts 

disease severity.  For a leaf that has no known RPVs, the sporangia are clustered together. There 

are densely populated sporulating lesions and less densely sporulating lesions interspersed across 

the leaf. For a leaf that contains RPV3.1, there is a distinct lack of clustering. The few sporangia 

present are dispersed across the leaf instead. For a leaf containing RPV10.3, the sporangia are 

densely cluster together to the point of clusters combining with each other to form one large 

patch of sporangia. Finally, a leaf that contains RPV3.1 and RPV10.3 shows few sporangia 

dispersed across the leaf as well as large patches of the sporangia clustering together. Because 

RPV3.1 and RPV10.3 quantitatively shift the mean severity toward more resistance amid the 

variable genetic background of other undetected loci impacting disease severity, substantial 

variation can be seen among resistance phenotypes give the presence or absence of each 

resistance locus. 

 

Preliminary Suppositions and Implications (Hypothesis) 

Given their mixed mode of reproduction (primarily clonal with a single sexual cycle per 

year), P. viticola strains that are able to grow on a resistant grapevine will show a selective 

sweep and the resulting increased linkage disequilibrium (fixed alleles) at one locus responsible 

D 
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for virulence on that resistant grapevine and random assortment of alleles on other chromosomes 

and away from the virulence locus. Different host resistance genes will cause selective sweeps 

around different virulence loci. 

 

Materials and Methods 

Overview 

This experiment had three different aspects as highlighted in Figure 5. The first objective 

was to assmeble a reference genome from a single spore collected from Western New York and 

sent out for Paci Bio sequncing. This was hypothesized to better encapsulates the diversity 

present here than the most recent genome assemble of an isolate from Blanquefort, France. The 

second objective was to detect selective sweep signals to characterize the biology of virulence 

and selection on different Resistance to P. viticola (RPVs) after natural infection in the field over 

the course of one growing season, which would provide about five generations of P. viticola. 

This was to determine the regions under selections, and predict what genes and proteins were 

present in those locations that may be attributed to the host’s resistance. The third aspect looked 

to mimic the field infections by serial passaging a mixed population of P. viticola in the lab for at 

least five generations. 
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Figure 5: A flow chart visualizing a brief overview of the steps taken for each of the three different parts of this 

thesis research. 

 

Single Spore Isolations (Genome Assembly) 

56 leaves were collected from around the New York Finger Lakes Region from different 

Vitis vinifera cultivars and multiple Vitis species. The 56 leaves containing the P. viticola spores 

were placed under a microscope, and fine tip tweezers were used to extract a single sporophore 

from the leaf. Two susceptible, Chardonnay leaves were placed abaxial side up on a wet paper 

towel in a petri dish. The sporophore was then placed in a 10 µL droplet of nanopore water on 

the Chardonnay leaf. This process was repeated seven more times for the same leaf and 

subsequently for the remaining 55 leaves. The petri dishes were placed in a dark cabinet 

overnight and moved to an incubator the following morning. After 6 days, the leaves should have 

grown mini colonies of P. viticola sporangial on the surface. The same procedure was repeated 
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to assure that each clusters contained a single, genetically identical colony. 6 days after the 

second transfer, a leaf disc containing a cluster of P. viticola was punched out and placed in a 

1.5 mL tube. Once sporulation was observed, the leaf discs were dried at room temperature for 8 

hours and frozen at -20 ˚C. 500 µl of water was added to the tube containing the DeChaunac leaf 

disk to create a sporangial suspension. This suspension was pipetted in small drops onto 

Chardonnay leaves. Once sporulation was observed, the sporangia were washed off the leaf 

surface with water. This mixture was transferred to a spray bottle and sprayed onto new 

Chardonnay leaves. To increase the biomass, the above rinse and spray procedure was replicated, 

and the resulting Chardonnay leaves were placed in crisper boxes with moist paper towels. The 

sporangia were then collected using a cotton swab dipped into Type 1 water. One cotton swab 

could be used for one leaf’s sporangia. The swab was then rinsed into a 2 mL microfuge tube 

filled with 0.5 mL of Type 1 water. After this collection, the samples were frozen at -80 ˚C to 

await transport to University of Delaware for PacBio sequencing.  

 

Hifiasm Pipeline (Genome Assembly) 

The Pac Bio FastQ file containing the long reads was put through bbmap (Bushnell, 

2014) using the reformat.sh built in bash script to convert the FastQ to Fasta format. The fasta 

file was then used as the input file for bbmap using the readlength.sh built in script to generate a 

histogram for read lengths with a bin size of 100. This histogram was then put through a custom 

R script that generated a bar plot of read lengths. Using the fasta file, K-mer Counting (KMC) 

(Kokot et al., 2017) was applied to count the k-mers from the sequencing reads with a k-mer size 

of 21 as this is the size Dussert et al. used when generating INRA-PV221 (Dussert et al., 2019). 

The kmer count file was then transformed into a histogram to visualize. GenomeScope (Vurture 
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et al., 2017) was then applied to analyze the k-mer histogram. Hifiasm (Cheng et al., 2021) was 

used to assemble long reads from the original FastaQ file. Custom awk commands were then 

used to extract the contig sequences from the gfa files generated from hifiasm and reading this 

information into Fasta files. These Fasta files were then ran through Busco (Simão et al., 2015) 

using the Alveolata, stramenopiles, and eukaryote datasets as the lineage dataset to assess 

completeness. These fasta files were also put through a custom python script that measured the 

N50 and N90 statistics as well as total length. This concluded the genome assembly and the field 

sample analysis was started. 

  

Disease Ratings for Field Infections (Field Samples) 

The following method was applied to all 19 plants in this experiment. 10 leaves were 

located on the plant. If more than half of the leaf was covered in P. viticola, and this was evident 

in all 10 of the leaves, the plant received a disease rating of 0.5. If this same parameter was met, 

and 10 clean leaves were unable to be located, the plant was evaluated by counting the number of 

clean leaves able to be located multiplied by 0.05 and subtracted from 1. For P. viticola infected 

leaves, if the lesions were small and covered only a small section of the leaf, a disease rating 

between 0.01 and 0.09 was provided. After the final disease rating, the leaves were then 

collected for sequencing. 

 

DNA Collection and Extraction (field samples) 

4 leaves were selected per plant within a collection. If the leaves did not have an adequate 

amount of downy mildew, the number of leaves used was increased. It was observed that using 

four leaves was the least number of leaves to use on a plant containing no RPVs and 
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RPV3.1+RPV10.3 (which has the least number of lesions), and still produce a high, yet similar 

amount of DNA. An Eppendorf tube was then filled with 300 µL of CTAB extraction solution. A 

separate Eppendorf tube was filled with CTAB extraction solution as well. Using a Q-tip, one 

end was dipped in one of the full Eppendorf tubes and was rolled over all areas containing spores 

on the leaf. In the other tube, the “spored” end of the Q-tip was twisted around. Failure to soak 

the Q-tip before collecting the spores will result in the absorption of the 300 µL of extraction 

buffer. If this does happen, another 300 µL was added and continued twisting the Q-tip around. It 

is still possible to collect DNA. Once all four leaves had their spores removed, the tubes were 

placed in the centrifuge and spun for one minute at 12,000 rpm. If DNA has formed into a pellet 

but does not remain stuck to the side of the tube, centrifuge for another minute maintaining the 

12,000 rpm speed. After the centrifugation was completed, the extraction buffer was emptied 

from the tube. 100 µL of isopropyl alcohol was added to dry out the excess extraction buffer to 

ensure ice does not form over the pellet because of excess liquid. After the isopropyl alcohol was 

added, the tube was centrifuged for 15 seconds at 12,000 rpm. Any more than 100 µl or longer 

than 15-20 seconds resulted in the pellet dissolving slightly or become dislodged. If the pellet 

does become dislodged, 100 more µl of extraction buffer was added and centrifuged with the 

same parameters (15-20 seconds at 12,000 rpm) but allowing the tube to sit opened for 3 minutes 

to evaporate the excess liquid. After the time is complete, two Spex beads were placed into the 

tubes containing the DNA pellet. Once tube beads were inserted, all tubes were placed on ice 

until the DNA collection was complete. Once DNA collection was completed, the tubes were put 

into a freezer safe container and placed in the -80 ˚C freezer until DNA extraction. For DNA 

extraction, the spore pellet was thawed and placed in 500 µl of CTAB buffer before being 

transferred to a microfuge tube. The mixture was incubated for 15 minutes at 55˚C in 
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recirculating water bath. Following the incubation, the mixture was centrifuged at 12000g for 5 

minutes. The supernatant was transferred to clean microfuge tubes. To each tube, 250 µl of 

Chloroform: Isoamyl Alcohol (24:1) was added and mixed by inversion. After thoroughly mixed, 

the tubes were then centrifuged at 14000 rpm for 1 minute. The upper aqueous phase was 

transferred to a clean microfuge tube were 50 µl of 7.5 M Ammonium Acetate was added. 500 µl 

of ice-cold absolute ethanol was then added. The tube was then inverted slowly several times to 

precipitate the DNA. After precipitating the DNA, the DNA was then pipetted off by slowly 

rotating a tip in the cold solution. The DNA stuck to the pipette. To wash the DNA, the 

precipitate was transferred to a microfuge tube containing 500 µl of ice cold 70% ethanol and 

mixed using careful inversion. After washing the DNA, the tube was centrifuged for one minute 

at 14000 rpm. The supernatant was disposed while the DNA pellet was allowed to air dry for 15 

minutes. The DNA was then resuspended in sterile Dnase free water (between 50-400 µl). The 

amount of water depended on the amount of DNA isolated. 10 µl/ml of RNaseA was added prior 

to the addition of DNA to the water to remove RNA. After resuspension, the DNA was incubated 

for 20 minutes at 65˚C to deactivate Dnase and stored at 4 ˚C. To access the DNA quality, 

agarose (1% solution) gel electrophoresis was used. A 10 µl 1 kb ladder and 5 µl sample + 5 µl 

water or 10 µl sample + 2 µl 6x loading buffer was added to the wells. The gel was run for 30 

minutes at 100 V and imaged. DNA was isolated and Illumina libraries prepared for each sample 

using the Illumina DNA Prep (M) Tagmentation kit, followed by sequencing on an Illumina 

NovaSeq X. The reads were returned in FastQ format, and the adapter sequences were trimmed 

off using Trim Galore!, and then heterozygosity was ready to be assessed. 

 

Heterozygosity within Field Samples 
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Jellyfish count was applied to the 17 field samples using a kmer size of 25 and a hash 

table size of 6250000000 (to account for the memory available) (Marçais and Kingsford, 2011). 

Jellyfish histo was then applied to obtain the .histo format that GenomeScope requires. 

GenomeScope was then run using a kmer size of 25 and a -p of 2 to indicate these samples are 

diploid (Vurture et al., 2017). 

 

Alignments (Field Sample) 

After confirming that the samples were majority PvA, FastQC (Andrews, 2012) was then 

applied to the 17 paired-end sample reads. Once cleaned, they were then aligned to the reference 

genome INRA_Pvit_2 (GCA_001695595.3) using BWA-MEM as the aligner with default 

parameters (Li, Heng, and Durbin, 2009). Once the alignment was complete, the number of 

mapped reads versus the number of unmapped reads was accessed using Samtools flagstat 

(Danecek, Petr, et al., 2020). This was then visualized with a custom R script utilizing the library 

ggplot2 and is shown in Figure 10. 

 

Selective Sweep Pipeline (Field Samples) 

Using the output file from the samtools (Danecek, Petr, et al., 2020).  filtering, freebayes 

(Garrisone, Erik, and Marth, 2012) was applied for variant calling using default parameters. The 

variant vcf files had to be zipped and indexed using bgzip and tabix respectively. These variant 

files, which contained variants from strains growing on the same RPVs, were then merged using 

bcftools merge (Danecek, Petr, et al., 2020).  with default parameters. The haplotypes were then 

calculated using Beagle (Browning et al., 2021). If a genotype was ambiguous (marked by ./.), it 

was filtered out using bcftools view (Danecek, Petr, et al., 2020). 
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The selective sweep regions were predicted using SweeD-P-C (Pavlidis, Pavlos, et al., 

2013) with a grid size of 694. SweeD uses theoretical models based on population size changes 

and exponential growth without the need of computing a site frequency spectrum (SFS) for the 

individual genomes. If this is not provided, it will estimate based on the population data, and 

choose the neutral SFS model based on these estimations. This helps account for various 

demographic events that could cause deviation from the neutral SFS. It also scans broad regions 

to determine if the deviations are isolated or part of a broader pattern. If a region significantly 

diverges from the neutral SFS, then the probability it is a “sweep model” is divided by the 

probability that it follows the neutral model is calculated and reported only if the sweep model is 

higher. The neutral model expects a distribution that’s heavily weighted towards low frequency 

variants due to the random effects of genetic drift. The selective sweep will then result in an SFS 

that has fewer intermediate frequencies and an excess of high-frequency alleles as the beneficial 

mutation and its linked sites rapidly increase in frequency (Nielsen et al., 2005). The sweep data 

from across the genome was visualized in Q-Q plots (Wickham, 2009) that can be seen in 

Figures 12-14. The x-axis contains the log values of no rpv P. viticola samples functioning as the 

control while the y axis contains the samples grown on vines containing the different RPVs. 

Because each of the quantiles represents 16.7% of the data, the range of quantiles in which the 

divergence was located was multiplied by 16.7% to get the lower and upper percentile for that 

divergence. Once the sweep data had been filtered, the filtered file’s range was compared to 

Dussert et al. (Dussert et al., 2018) gene annotation range for the reference genome to determine 

what genes are present in the high likelihood sweep region. After determining the upper range of 

likelihood scores based on breaks in the data as shown in Figures 16 and 17, Augustus (Stanke et 

al., 2006) was run on the scaffolds of those “upper” scores. The gene’s start and end position was 
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then compared with those found by Augustus (Stanke et al., 2006) to find regions of overlap. 

From there, the protein sequences were extracted and put through blastp (Altschul et al., 2007). 

This entire pipeline is shown in Figure 6. The top hit was recorded, which is where the predicted 

proteins came from in Tables 4 and 5. SignalP (Almargo et al., 2019) was used to determine if 

signal peptides were present by selecting Eukarya for the organism group and the long output for 

format. EffectorP (Sperschneider & Dodds, 2022) and SecretomeP (Bendtsen et al., 2004) was 

used to determine what type of effect, cytoplasmic or apoplastic, an identified RxLR effector was 

as well as if the predicted effector is secreted without having a signal peptide identified by 

SignalP. For EffectorP, EffectorP-fungi 3.0 was used as this included oomycete. For 

SecretomeP, mammalian was selected as there was not an option for fungi or oomycetes. The 

final aspect, serial passaging, was now ready to be analyzed. 
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Figure 6: A flow chart outlining how the regions of high likelihood sweep regions were identified using Augustus 

(Stanke et al., 2006). 

 

Propagation (Serial Passaging) 

5 greenwood cuttings were selected from 20 plants used in both the laboratory and field 

experiments discussed later in this section. All cuttings were taken from full sibling plants 

resulting from the cross-hybridization NY84.0101.03 x V. amurensis ‘588634’. The cuttings 

were dipped into 1:5 Dip N Grow rooting hormones before being placed in a soil cone and 

moved to a mist bed. Once roots were visible, the cuttings were transferred into appropriately 

sized pots and placed in the greenhouse to finish growing. The table below details how many 

plants were available. 5 cuttings were taken to propagate to have an adequate number of leaves 
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as well as to repeat the serial passaging a second time to corroborate results/data from the first 

serial passaging. While these plants were propagating, inoculum was prepared. 

Plant Label RPV # of cuttings tried # of that grew 

9-54 None 5 2 

10-14 None 5 0 

10-70 None 5 5 

11-39 None 5 3 

12-25 None 5 3 

9-25 RPV3.1 5 0 

9-37 RPV3.1 5 0 

10-46 RPV3.1 5 2 

11-64 RPV3.1 5 0 

12-58 RPV3.1 5 4 

9-28 RPV10.3 5 2 

10-77 RPV10.3 5 1 

11-57 RPV10.3 5 5 

11-65 RPV10.3 5 0 

12-70 RPV10.3 5 2 

9-20 RPV3.1+RVP10.3 5 0 

11-2 RPV3.1+RVP10.3 5 1 

11-9 RPV3.1+RVP10.3 5 2 

10-28 RPV3.1+RVP10.3 5 3 

12-40 RPV3.1+RVP10.3 5 0 

Table 2: The plant IDs along with the RPV that each cutting contained and how many of the cuttings survived are 

reported in the table above. The plants in bold were used in the serial passaging experiment. 

 

Inoculum (Serial Passaging) 

 

Before the end of the growing season, leaves containing P. viticola from each plant for 

each RPV was collected from the field. The leaves were separated based upon what RPV they 

contained. The leaves containing no RPVs were placed in a funnel connected to a glass jar and 

sprayed with distilled water to collect the spores in the jar below. Once all the leaves for this 

locus were washed, the spores were then sprayed onto four susceptible Thompson Seedless 

leaves. Younger, susceptible leaves were avoided when selecting leaves to infect. This was 

repeated for four susceptible Thompson Seedless leaves receiving inoculum per each of the other 

three loci. The leaves were placed in a cabinet overnight to sporulate and moved to an incubator 

the following morning. This inoculum was transferred to fresh, susceptible leaves every 6 days. 
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Once the propagated plants contained an adequate number of leaves each, the spores from each 

of the separate leaves were washed off together and sprayed onto each of the leaves selected 

from the plants in Table 2. 

 

Serial Passaging 

The propagated plants in Table 2 were grown until an adequate number of leaves could 

be extracted for the two repeated experiments. A single leaf was collected from each plant and 

placed on a wet paper towel at the bottom of a petri dish. The Thompson Seedless leaves, 

containing the downy mildew spores for each of the RPV were combined into a bulk inoculum 

by spraying each of the leaves with distilled water. This bulk inoculum, representing the 

diversity of resistance loci, vines, and pathogen diversity recovered from the field experiment, 

was then used to infect all the leaves from the propagated grapevine leaves using a spray bottle 

to mist the abaxial surface with the newly made inoculum. One-quarter of the inoculum was 

saved for DNA sequencing by being stored in a -20˚C freezer. The petri dishes were sealed with 

parafilm and placed in a dark space for 12 hours to allow for sporulation. After the 12 hours were 

up, the spore suspension was dried by dabbing with a Kimwipe, and petri dishes were then 

transferred to a 20˚C incubator to allow for ideal temperature to induce further sporulation. Two 

days later, a second experiment following the same steps as outlined previously was carried out. 

The spores were allowed to grow for 5-6 days before being transferred onto a fresh leaf for the 

next generation. The individual inoculum was frozen in a -20˚C freezer. Once the Thompson 

Seedless from both experiments finished at the 10th transfer, the experiments were stopped 

despite no other leaves being alive for their 10th transfer. DNA isolation and Illumina sequencing 

on an Illumina NovaSeq X was completed as described above for field samples. 
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Results 

Genome Assembly Stats 

Raw reads from PacBio sequencing were assessed using bbmaps to estimate the read length 

distribution (Figure 7). The peak was at 7,950 bp with a right skewed distribution and standard 

deviation of 1,843 bp. These read lengths were similar to the Dussert et al. (2019) average read 

length of 8,072 bp. Genome Scope was used to predict the layout of the assembly (Figure 8). The 

predicted genome length was 155,100,514 bp, but only 65.4% were unique, which could imply 

duplications, incomplete assemblies, or polyploid genomes. The kcov was on the lower side with 

a score of 33.6 meaning that on average, a k-mer of 21 was observed 33.6 times. Due to the 

relatively low coverage, the assembly may have problems assembling repetitive or complex 

regions, leading to fragmented contigs and larger and more frequent scaffold gaps. Furthermore, 

the assembler may incorrectly collapse short, repetitive sequences into a single contig despite 

their presence in multiple regions of the genome, resulting in errors in the assembly. 
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Figure 7: Frequency of read lengths for the PacBio long reads. 
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Figure 8: The genome scope analysis and predictions for the Pac Bio long reads. 

  



 34 

Statistics describing the Hifiasm assembly indicated a relatively high level of 

completeness based on BUSCO gene representation, but with a high degree of fragmentation 

(Table 3). While the N50 is relatively high (2.3 Mb to 3.0 Mb), suggesting large contigs, the N90 

is smaller (100 kb to 531 kb), suggesting that there are many smaller contigs, causing the 

assembly to be very fragmented. BUSCO (Simão et al., 2015) was used to access for complete. 

P. viticola was part of three different datasets, alveolate, stramenopiles, and eukaryote. Although 

the BUSCO scores were all above 90%, indicated high completeness, these scores were derived 

from high duplication rates (73.7% duplication for Alveolata genes), indicating that this 

assembly was either highly fragmented or multiple haplotypes of the same region were present as 

separate contigs, so to attempt to address these issues, a different –hom-cov of 70 was selected 

when running the Hifiasm assembler (Table 3). The haplotype 1’s length was decreased by 108 

Mb and haplotype 2 was decreased by 56 Mb when using this new -hom-cov. RepeatMasker 

(Tarailo-Graovac and Chen, 2009) was also attempted to mask repetitive sequences to focus the 

analysis on the unique regions of the genome. This resulted in no change of the genome length 

nor the BUSCO completeness. 

 

 Haplotype 1 Haplotype 2 

Total Length 278,494,004 bp 256,636,789 bp 

N50 2,364,878 bp 3,050,775 bp 

N90 100,202 bp 530,945 bp 

BUSCO (Alveolata) 96.5% (S: 22.8% D:73.7%) 96.2% (S:22.8% D:73.7) 

BUSCO (Stramenopiles) 100% (S:19.5% D:80.5%) 100% (S:20% D:80%) 

BUSCO (Eukaryota) 94.5%(S:19.6% D:74.9%) 93.8% (S:18.7% D:75.1%) 
Table 3: Stats on the two haplotypes of the draft diploid assembly. 
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Figure 9: This assembly (query) compared to Dussert et al genome (target). Circled in green are examples of areas 

with good alignment. Areas circled in red are areas of concern due to possible duplications. 

 

Although the assembly showed a high BUSCO completeness score, a majority of the 

completeness derived from duplications. Comparatively, Dusset et al. (2021) obtained a BUSCO 

score of 95.7% with a duplication rate of 1.7% whereas this assembly had an average BUSCO 

score of 97% and an average duplication rate of 76.4%. The next concern was to determine the 

similarities or differences between this assembly and Dussert et al. 2021 to determine areas that 

may have been misassembled, duplicated, or incomplete. Figure 9 shows how well the assembly 

aligned to the previous reference assembly (Dussert et al., 2021). Ideally, a genome dot plot 

comparing two assemblies should be a near perfect diagonal line showing 1:1 matches of 

assembled genome sequences. In comparing our assembly with Dussert et al. 2021 in Figure 9, 

some well-matched examples are circled in green. This indicated the areas that aligned well with 

the reference genome. The areas with points outside of the diagonal suggested differences 
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between this assembly and the Dussert et al. assembly as a result of insertions, deletions, or 

rearrangements. Some areas of possible duplication, a ploidy assembly, or misassembly were 

represented by red circles. 

 

 

Figure 10: The assembly was aligned with the longest scaffolds from the Dussert et al. reference genome. This is the 

resulting alignments. The orange arrows represent the four different haplotypes found. 
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In an ordered dot-plot (Figure 10), there were four distinct haplotypes that were aligning to the 

two longest scaffolds. The bottom two haplotypes appeared to be truncated and ultimately only 

cover half of the genome likely due to the insufficient confidence to extend the contig beyond 

certain boundaries. Therefore, these two haplotypes reached the bounds and could not continue. 

Because of this, instead of using an assembly pipeline for diploid organisms, these reads will 

have to be assembled through a pipeline designed for tetraploid organisms and were therefore not 

used as the reference for the field samples alignment. 

 

Disease Progression across Susceptible vs Resistant Samples 

Disease severity for the 19 field plants was assessed over one growing season, and the 

final ratings were visualized in a box plot (Figure 11). This was estimated to be around five 

generations of P. viticola on the assumption they had a consistent six-day sporulation latent 

period. The susceptible checks (no RPV) had the most sporulation except for plant 10_70, which 

had a final percentage of 8%. Due to these plants being F1 progeny of highly heterozygous 

parents subject to natural infection in the field, there are multiple factors that could be affecting 

this, such as the dispersion of spores not reaching this plant, neighboring vines being resistant 

resulting in lower local inoculum, or uncontrolled background genetic effects. 
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Figure 11: The final disease rating of P. viticola infection at the end of the 2023 growing season in the four host 

resistances. 

 

Illumina library quality control 

 

Using samples that were included in the final disease rating, two of the 19 samples (10-38 

and 11-74) had insufficient Illumina genomic DNA library concentrations, 0.501 ng/µl and 

3.2 ng/µl respectively, to yield high quality sequencing results (Table 4). These P. viticola 

samples grew on grapevines containing both RPV3.1 and RPV10.3 and were eliminated from 

further analysis. This resulted in five samples for no RPV, four samples for RPV3.1, five 

samples for RPV10.3, and three samples for RPV3.1+10.3. 
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Table 4: The DNA concentration for each sample prepared by using Illumina DNA Prep (M) Tagmentation kit. The 

samples highlighted in light red were excluded due to the low concentration of the library. 
 

Heterozygosity of the Field Samples 

 

To generate a baseline understanding of the genetic makeup of the 17 remaining samples, 

heterozygosity, genome length, and repeat percentages were assessed (Figure 12). All the 

samples for no RPVs and RPV10.3 were 2.0% or below heterozygous while two samples from 

RPV3.1 and RPV3.1+RPV10.3 were above 2.0% heterozygous. While there was no significant 

correlation between heterozygosity and RPVs nor heterozygosity and susceptible (no 

RPVs)/resistant (RPV3, RPV10, Both) groups, there was a moderate, negative correlation (R = -

0.45) between heterozygosity and estimated genome length as well as heterozygosity and 
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repeated sequence percentage (R =-0.49). With respect to the correlation between heterozygosity 

and genome length, this could be because of factors diminishing the impact of new mutations, 

reducing heterozygosity or this could be reflecting an evolutionary trend of an increased genome 

is associated with a decreased genetic variation due to selective sweeps. With respect to the 

correlation between heterozygosity and repeat percentage, this correlation suggested that regions 

with high repeat percentages were subjected to selection pressures that maintain the genetic 

diversity, or the accumulation of repeats could be associated with mechanisms that suppress 

mutation rates in surrounding regions. 

 

Figure 12: The heatmaps of heterozygosity, genome length, and repeated sequence percentage across the field 

sample population. The first five samples contained no RPVs (UDP0014, UDP00017, UDP00020, UDP00021, and 

UDP00027). The next four contained RPV 3.1 (UDP00012, UDP00015, UDP00024, and UDP00028). The next five 

contained RPV10.3 (UDP00013, UDP00022, UDP00026, UDP00029, and UDP00030). The final three samples 

contained both RPV3.1 and RPV10.3 (UDP00016, UDP00018, and UDP00025). 
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Field sample Cryptic Species Composition 

 

The 17 Illumina samples were processed starting with trimming the adapters using trim 

galore! (Krueger, 2019). These trimmed reads were then aligned to the PvA ITS and 28S region 

using STAR aligner (Dobin et al., 2012) using the default parameters to determine the 

composition of cryptic species in each sample read (Table 5). Samtools (Danecek, Petr, et al., 

2020) was used to eliminate alignment samples that had a quality score of less than 60. To 

determine the cryptic species, each species had a sequence of 20 nucleotides that included the 

SNPs identified in Table 1. For the ITS region, PvA sequence was 

GCAGCTAATGGATTCCTATC, PvR was TAACTGACTTTATTGTCGGT, PvV was 

ATAGCATGGAATTAATTCCG, and PvQ was TTGATTTCTATCATAGTGAA. For the 28S 

region, PvA was CCGTTCGTCCCCAAGTTGCT and ATTGGCGAGTGTATGCGTGC, PvR 

was GGTCAGTATGAGCACTTGGG, TGACGAGCGTGTGCGTGCGT, and 

AGTGGCCTTTTGGCTGCGCTC, PvV was GTAGTCTATGGAAGCGTGGT, 

GCGCAAAGCAGGTGGTAAA, and TGTGCTTGCCGGTGCCCTGT, and PvQ was 

CCGTTCATTCCTAAGTTGCT and GGATTTGGATCTCCGTGTGC. 
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ITS region 

Plant # Comp. # Aestivalis Riparia Vinifera Quinquefolia 

9-27 00012 ✓ 
  

8 instances 

9-28 00013 ✓ ✓ 
 

2 instances 

9-54 00014 ✓ 
  

8 instances 

10-11 00015 ✓ 
   

10-15 00016 ✓ 
  

2 instances 

10-24 00017 ✓ 
   

10-28 00018 ✓ 
  

4 instances 

10-70 00020 ✓ 
  

14 instances 

11-39 00021 ✓ ✓ 
 

1 instance 

11-57 00022 ✓ ✓ 
 

2 instances 

12-6 00024 ✓ 
   

12-12 00025 ✓ 
  

5 instances 

12-24 00026 ✓ ✓ 
  

12-25 00027 ✓ 
  

1 instance 

12-58 00028 ✓ 
   

12-70 00029 ✓ 
  

14 instances 

12-81 00030 ✓ 
  

9 instances 

Table 5: In bold are the P. viticola samples that contained an admixture of both PvA and PvR. The check marks in 

the ITS region table indicate that the sample has a high number of instances of those identifiers. 
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28S Region 

Plant # Comp. # Aestivalis Riparia Vinifera Quinquefolia 

9-27 00012 19,142 instances 
 

4 instances 2 instances 

9-28 00013 28,480 instances 923 instances 1 instances 8 instances 

9-54 00014 17,919 instances 1 instance 3 instances 3 instances 

10-11 00015 25,596 instances 1 instance 3 instances 
 

10-15 00016 37,581 instances 40 instances 9 instances 2 instances 

10-24 00017 45,181 instances 5 instances 3 instances 5 instances 

10-28 00018 22,898 instances 3 instances 5 instances 4 instances 

10-70 00020 31,123 instances 4 instances 15 instances 4 instances 

11-39 00021 13,966 instances 369 instances 8 instances 
 

11-57 00022 9,862 instances 454 instances 5 instances 8 instances 

12-6 00024 15,831 instances 1 instance 5 instances 3 instances 

12-12 00025 24,584 instances 4 instances 8 instances 5 instances 

12-24 00026 19,119 instances 1,410 instances 5 instances 1 instance 

12-25 00027 30,392 instances 195 instances 16 instances 5 instances 

12-58 00028 12,930 instances 
 

5 instances 1 instance 

12-70 00029 42,073 instances 
 

20 instances 23 instances 

12-81 00030 27,866 instances 10 instances 5 instances 2 instances 

Table 5 (continued) 

 

Mapped vs. Unmapped Reads (Field Samples) 

 

Figure 13 shows the unmapped reads compared to the mapped reads. UDP00021 has the 

highest unmapped reads with 43.36% of reads being unmapped. The first 200 unmapped read 

sequences with a size of 150 bp were extracted and put through BLAST. When using Blastn 

(Altschul et al., 2007) using the ‘nt’ database, the top two results for this sample were a predicted 

Mercenaria mercenaria (hard clam) mRNA (XM_045328816.1) with an 88.1% identity across a 
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total length of 42 bp and Danio rerio (zebrafish) genome assembly of chromosome 17 with a 

100% identity across a total length of 24 bp – both shorter than the 150 bp read length. When 

blastn (Altschul et al., 2007) was performed on UDP00015 that had the least number of 

unmapped reads, the top two results were Pterostichus madidus (black clock beetle) with a 100% 

identity at a total length of 23 bp and Pipistrellus pipistrellus (common pipistrelle) with a 96.6% 

identity and a total length of 29 bp. Due to these results not aligning with P. viticola nor any of 

its relatives, it can be hypothesized that the most recent genome assembly for P. viticola may not 

be adequately encapsulating the diversity these samples of P. viticola contain. 

 

Figure 13: Percentage of mapped reads (blue) compared to unmapped reads (red) of the 17 field samples obtained 

through samtools flagstat. The first five reads are P. viticola that grew on grapevines with no RPV (UDP00014, 

UDP00017, UDP00020, UDP00021, UDP00027), the next four contained RPV3.1 (UDP00012, UDP00015, 

UDP00024, and UDP00028), the next five contained RPV10.3 (UDP00013, UDP00022, UDP00026, UDP00029, 

UDP00030), and the final three contained both RPV3.1 and RPV10.3 (UDP00016, UDP00018, UDP00025). 
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It should be noted that two out of the three highest unmapped scores contained admixtures of 

PvR, which could partially explain the high percentage. The Dussert et al. (2021), genome is 

PvA, so PvR instances may not align well. 

 

Genes and Predicted Proteins in High Selective Sweeps Areas 

Using the SweeD (Pavlidis, Pavlos, et al., 2013) sweep data generated by from the 

mapped reads, the candidate sweep region likelihood scores across the merged samples were 

visualized. Likelihoods represent the ratio of observing the sweep under different models of 

selection. In more depth, the ratio of the genetic variation if a selective sweep occurred at a 

particular location is calculated (Selective Sweep model) as well as the ratio that the genetic 

variation occurred due to random genetic drift (Neutral model). The “likelihood” or ratio that 

was calculated under the selective sweep model is then divided by the “likelihood” calculated 

under the neutral model to get the reported likelihood of that position, indicating potential 

selective sweeps. Higher likelihoods will indicate stronger signals of selection. 

For samples grown on RPV3.1, the log likelihoods were visualized in Q-Q plots (Figure 

14). The values along the x and y axis represented the number of quantiles the program divided 

the data into. A quantile was a percentile. The quantiles represented the likelihood scores 

arranged in ascending order with the red dashed line indicating a 1:1 comparison of the no RPV 

susceptible samples’ likelihood scores in ascending order. The axes were divided into six 

quantiles, which was automatically calculated by the Q-Q plot (Almeida, Loy, and Hoffman, 

2018) function in R based on sample data size (Ford, 2015). In the case of Figure 14-16, each 

number represented the ‘16.7 x n’ percentile of likelihood scores, disregarding positions in the 

genome or scaffold number where n was the quantile number. The x-axis and the red dashed line 
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contained the log-likelihoods taken from samples grown on vines containing no RPV susceptible 

samples. The y-axis contains the log-likelihoods of the sample grown on either RPV3.1 vines, 

RPV10.3 vines, or RPV3.1+RPV10.3 vines. The log was applied to the likelihood scores to 

attempt to normalize the skewed right distribution.   

Between quantile 3 and 3.5 (representing 50-58th percentile of data) as well as quantile 4 

and 4.5 (66-75th percentile of data) was where the likelihood scores for resistant samples 

(RPV3.1) significantly diverged from the expected values of the susceptible samples, suggesting 

regions of potential importance for resistance. Because the divergence was above the 1:1 

comparison, the likelihood scores were higher than expected for these particular ranges. This 

overall divergence was further supported by the box plot(Figure 17). The log of RPV3.1 resistant 

samples was significantly different (P < 0.001) when compared with the log of susceptible 

samples within the box plot according to a Wilcoxon rank-sum test. The high number of outliers 

was most likely explained by the fact that the likelihood scores for all of the samples were 

skewed right, despite attempts to normalize it through log transformation. Combining these 

results (Figure 14 and Figure 17) suggested that the difference in likelihood is not by random 

chance alone.  However, the most statistically significant regions (above 99th percentile) did not 

significantly diverge from expectations, suggesting that no major selective sweep exists on 

RPV3.1 vines. 
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Figure 14: The qq plot for the log of likelihoods of P. viticola samples the grew on RPV3.1 vines (y-axis) versus the 

log of likelihoods of P. viticola samples that grew on no RPV (x-axis). Since there were 6 quantiles, each one 

represents the 16.7 x n percentile of the data where n was quantile number. 

 

For samples grown on RPV10.3, the log likelihoods were visualized in Q-Q plots (Figure 

15). Between quartile 4.75 and quartile 5.5 (79-91st percentile) was extreme divergence from the 

log transformed likelihoods of the susceptible samples. Because the divergence was above 1:1 

comparison, the likelihood scores were greater on samples grown on RPV10.3 vines than with 

samples grown on No RPV. There was a shift below 1:1 comparison around part 2-3 (33-50th 

percentile) but was determined not to be significant. If divergence was below and considered 

significant, the likelihood scores for that range would be lower than expected.   
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To further support this, the log transformed likelihoods of RPV10.3 resistance samples 

were compared with those of no RPV susceptible samples (Figure 17), resulting in extreme 

significance (p < 0.001) and verifying that these regions were not brought about by random 

chance.  

The sweep data for samples grown on RPV3.1+RPV10.3 were visualized in Q-Q plots 

(Figure 16). Unlike the results described above for RPV3.1 resistant and RPV10.3 resistant 

samples, RPV3.1+RPV10.3 resistant samples significantly deviate from no rpv susceptible at 1.5 

(25th percentile and above) onward. This could suggest a compound resistance mechanism as 

opposed to the centralized predicted mechanisms of RPV3.1 resistant samples and RPV10.3 

resistant samples. Because the divergence is above the 1:1 comparison, this indicated that the log 

likelihood values are above the expected threshold. The box plot in Figure 17 also shows 

significant deviation (p < 0.001) of the log transformed likelihoods of RPV3.1+RPV10.3 

resistant samples from the log transformed likelihoods of no RPV susceptible.  
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Figure 15: The Q-Q plot for the log of likelihoods of P. viticola samples that grew on RPV10.3 vines (y-axis) versus 

the log of likelihoods of P. viticola samples that grew on no RPV (x-axis). Since there were 6 quantiles, each one 

represents the 16.7 x n percentile of the data where n was quantile number. 
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Figure 16: The Q-Q plot for the log of likelihoods of P. viticola samples that grew on RPV3.1+RPV10.3 vines (y-

axis) versus the log of likelihoods of P. viticola samples that grew on no RPV (x-axis). Since there were 6 quantiles, 

each one represents the 16.7 x n percentile of the data where n was quantile number. 
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Figure 17: The four different groups tested along with their log transformed likelihoods. The asterisks above each of 

the groups represented the significance level of a Wilcoxon rank-sum test when compared with the log transformed 

likelihoods of the no RPV group. 
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Figure 18: A genome-wide look at how the likelihood scores were distributed across the 358 scaffolds. The top 

scaffolds were highlighted. This plot was representative of RPV3.1 grown samples. 
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Figure 18 (Continued): A genome-wide look at how the likelihood scores were distributed across the 358 scaffolds. 

The top scaffolds were highlighted. This plot was representative of RPV10.3 grown samples. 
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Figure 18 (Continued): A genome-wide look at how the likelihood scores were distributed across the 358 scaffolds. 

The top scaffolds were highlighted. This plot was representative of RPV3.1+10.3 grown samples. 
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The likelihood scores from across the entire RPV3.1, RPV10.3, and RPV3.1+10.3 grown 

samples’ genomes were plotted (Figure 18). The top scatterplot showed the results from RPV3.1 

grown samples. The highest peaks were for scaffold 19 and 6 with likelihood scores around 200. 

However, these top two peaks were not as distinct as the peaks observed in RPV10.3 and 

RPV3.1+10.3, resulting in difficulty determining if these scaffolds were under selection. The 

middle scatter plot shows the results from RPV10.3 grown samples. Scaffold 6 had the highest 

likelihood scores for RPV10.3 at around 600, which suggested this scaffold may have a selective 

sweep as the next highest scaffold had a 400 likelihood score difference. Rpv3.1+10.3 grown 

samples also contained scaffold 6 as one of the scaffolds having a selective sweep with the 

differences in likelihood score being 100. Because this scaffold appeared to have a selective 

sweep in both RPV10.3 and RPV3.1+10.3 and possibly in RPV3.1, it can be hypothesized that 

this scaffold contained elements that are linked to general resistance in P. viticola or at the very 

least, resistance mechanisms in RPV3.1 and RPV10.3. Within RPV3.1+10.3 samples, scaffolds 3 

and 11 appeared to have a selective sweep due to their extremely high likelihood scores of 

around 1,000 and 650 respectively, indicating that these two scaffolds contained genes that are 

critical for overcoming the combined resistance rather than individual resistances.  
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Figure 19: The likelihood scores distributed across scaffold 6 for RPV3.1 (top), RPV10.3(middle), and 

RPV3.1+RPV10.3 (bottom). 
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 Due to all three host resistances containing relatively high likelihood scores on scaffold 6, 

their likelihood scores across this scaffold were plotted in scatter plots (Figure 19).  The areas of 

a selective sweep occured in the same region (~510,000-750,000) of the scaffold for RPV10.3 

(upper right corner) and RPV3.1+10.3 (bottom center). With RPV3.1 samples, it was difficult to 

tell if the small peak was under true selection. The linkage disequilibrium was also evaluated on 

scaffold 6 (Figure 20). The r2 statistic was used with a score of 0.8 or greater applied to 

determine the strength of the LD. The area was the area identified as. Within the site of the 

sweep, a strong LD (>0.75) is observable towards the 750,000 bp position, which was within the 

sweep region (circled in red in Figure 20). Moving away from the site of the sweep, a decrease in 

LD was evident. Because RPV3.1 was difficult to determine if a selective sweep was occurring, 

it was excluded from further LD analysis, gene annotation, and protein prediction. Scaffold 3 

also contained a significant sweep region, and the LD was assessed (Figure 21). Unlike with the 

scaffold 6 LD, this LD pattern was difficult to determine as there was not a clear “high” region 

with the exception at position ~910,000. The site of the sweep was circled in red. Scaffold 11 

was also identified as significant in RPV3.1+10.3. The LD pattern was evident as the LD 

increased towards the end of the sweep region (Figure 22) with the selective sweep site being 

identified by the red box. Around position 200,000, LD was above 0.75, indicating strong LD. 
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Figure 20: The linkage disequilibrium (LD) calculated using VCFtools for scaffold 6 in both the RPV10.3 and 

RPV3.1+RPV10.3 grown samples. The red circle corresponded to the sweep region. 
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Figure 21: The likelihood scores across scaffold 3 (left), and the LD scores across scaffold 3 (right) for 

RPV3.1+10.3 grown samples. The red circle corresponded to the sweep region. 

 

 

 

Figure 22: The likelihood scores across scaffold 11 (left), and the LD scores across scaffold 11 (right) for 

RPV3.1+10.3 grown samples. The red square corresponded to the sweep region. 
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The genes present in the sweep regions (Figure 18) were assessed using the protein 

sequences generated from Augustus (Stanke et al., 2006) and were recorded (Tables 6 and 7). 

Several of these proteins have general roles in pathogenesis but may not explain the specific 

virulence on RPVs that led to a selective sweep. For example, a glycoside hydrolase was found 

and predicted to have cellulase activity. Cellulase are responsible for cellulose degradation (Ejaz, 

Sohail, and Ghanemi, 2021), which is a major component of the cell wall. By degrading this, 

P. viticola may be able to penetrate the plant tissue more effectively and gain access to nutrients. 

39S ribosomal protein are needed for protein synthesis including any protein involved in 

virulence or stress response. Heat shock transcription factor is likewise involved with the stress 

response (Tran Thi Ngoc et al., 2023). In P. viticola, this could mean adapting to the grapevine’s 

stress response to survive in varying conditions.  

Several of the proteins have logical roles in the specific host-pathogen interactions, such 

as secreted RxLR effectors. To establish an infection, oomycetes deploy effector proteins with 

the largest group being RxLR effectors. In an experiment by Lan et al., it was found that 

PvRxLR targets leucine-rich repeat receptor-like kinases (LRR-RLKs)-associated inhibitor BKI1 

for promoting infection. Since LRR-RLKs control downstream resistance responses, targeting 

this is effective for disrupting the corresponding signaling (Lan et al., 2019). Through EffectorP, 

this proposed RxLR factor (PVIT_0003606) was identified as a cytoplasmic effector. This type 

of effector is delivered into the host cell’s cytoplasm. Once inside, the cytoplasmic effector can 

suppress the plant’s defense responses as well as alter the host cell structure and function (Presti 

et al., 2015). Apoplastic effectors, on the other hand are delivered into the apoplast, and function 

to neutralize the host’s defense mechanism as well as protect the pathogen from the plant’s 

defense response (Rocafort et al., 2020). Finally, highlighted in yellow was a predicted 
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hypothetical protein (PVIT_0003584), however, after putting the protein sequences through 

SignalP, this was identified as a potential signal protein with the Signal Peptide (Sec/SPI) being 

0.5362. These short signal peptides (usually between 15-50 amino acid residues in length) are 

usually present at the N-terminus of proteins that are directed towards the secretory pathway. As 

the name suggests, these proteins are involved with transmitting information to regulate multiple 

biological processes, specifically carrying information for protein secretion. This protein may 

have played a role in the overcoming of resistance as it is in a region identified to be under a 

selective sweep. Overall, due to these proteins being in areas predicted to have selective sweeps 

and therefore strong, positive selection, it can be inferred that the proteins may be important for 

P. viticola’s adaptation and interaction with the host grapevines. 

Gene ID Gene Start Gene End Predicted Protein 

Name 

Predicted Protein 

Function 

Species 

PVIT_0003564 1440310 1441401 Glycoside hydrolase 

family 

Cellulase activity; 

Polysaccharide 

catabolism 

Phytophthora 

sojae 

PVIT_0003572 1468861 1469754 39S ribosomal protein 

mitochondrial like 

Structural molecule 

activity 

Plasmopara 

halstedii 

PVIT_0003574 1471063 1471773 Ankyrin repeat-

containing domain 

Unknown Phytophthora 

cinnamomi 

PVIT_0003576 1474766 1476172 Heat Shock 

transcription factor 

RNA binding; 

transcription 

regulator activity 

Plasmopara 

halstedii 

PVIT_0003584 1503969 1504889 Hypothetical Protein Unknown - 

PVIT_0003585 1505052 1506674 Phospholipid hydro 

peroxide glutathione 

Unknown  Plasmopara 

halstedii 

PVIT_0003589 1527909 1528927 Carbonic Lyase activity; zinc 

ion binding 

Plasmopara 

halstedii 

PVIT_0003594 1560715 1574597 Dynein heavy chain C-

Terminal domain 

ATP binding; chain 

binding; microtubule 

motor activity 

Phytophthora 

infestans 

PVIT_0003596 1589893 1590759 Abyhydrolase domain-

containing protein 

Lyase activity Phytophthora 

nicotianae 

Table 6: The gene IDs, their predicted encoded protein, the predicted function, and the species of the top 

protein match for genes located in RPV10.3 and RPV3.1+10.3’s scaffold 6. The protein data was 

collected from Uniprot (Bateman et al., 2022). 
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PVIT_0003597 1590962 1592200 Glutathione 

peroxidase 

Unknown Phytophthora 

cactorum 

PVIT_0003600 1603622 1604830 Oxygen-dependent 

coproporphyrinogen-

III oxidase 

Potential 

oxidoreductase 

activity 

Phytophthora 

citrophthora 

PVIT_0003606 1630255 1631265 RxLR effector protein Virulence factor; 

suppress basal 

immunity 

Phytophthora 

cinnamomi 

PVIT_0003607 1638683 1637895 Cysteine-rich protein ATP binding; metal 

ion binding; unfolded 

protein binding 

Phytophthora 

nicotianae 

PVIT_0003608 1638638 1640614 Leucine-rich repeat 

domain 

Signaling Phytophthora 

cactorum 

Table 6 (continued) 

 

Avirulence (Avr) proteins represent effectors with a function initially discovered by their 

triggering a successful defense response, thereby their presence makes the pathogen avirulent on 

the host (Du et at., 2018). Two homologues of avirulence proteins (PVIT_0002214 and 

PVIT_0002215) were found in a high likelihood area for scaffold 3 selective sweeps. These 

proteins may be evolving rapidly to avoid detection by the resistance mechanisms (i.e. 

RPV3.1+RPV10.3). Other proteins have general roles in pathogenesis but may not explain the 

specific virulence on RPVs. The osmotic stress-sensitive mutant 1 is involved with helping the 

organism’s response to changes in osmotic pressure. This suggests that in P. viticola, this protein 

may be important for managing stress during infection as well as changed in environmental 

conditions, and due to its place in the high likelihood sweep region, this may be crucial for 

adaptation and survival of P. viticola. S-M checkpoint control protein is involved in RNA 

processing and modification. Since this protein is in a high likelihood sweep region, it may play 

a role in regulating genes for adaptation to the host’s environmental and stress conditions. 

Finally, tRNA methyltransferase is involved in the modification of tRNA (Björk et al., 2001). 

This protein may be undergoing selection due to its role in adapting to the host’s defense or other 
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environmental pressures. To confirm these functions, further research will have to be done. 

Finally, for scaffold 11, there were not any RxLR effector proteins or avirulence proteins 

predicted, but there was a signal peptide predicted in the area where a hypothetical protein was 

originally predicted (Table 8). 

 

Gene ID Gene 

Start 

Gene End Predicted Protein Name Predicted 

Protein 

Function 

Species 

PVIT_0002213 2569340 

 

2570026 

 

Urease accessory 

protein 

Nickel cation 

binding 

Phytophthora 

nicotianae  

PVIT_0002214 2570206 2576157 Avirulence (Avr) 

protein 

pathogenicity Phytophthora 

megakarya 

PVIT_0002215 2576249 2576842 Avirulence (Avr) 

protein 

pathogenicity Phytophthora 

megakarya 

PVIT_0002216 2577167 2578950 Osmotic stress-

sensitive mutant 1 

Unclear Plasmopara 

halstedii 

PVIT_0002218 2579517 2582756 S-M checkpoint control 

protein CID1 and 

related 

nucleotidyltransferases 

Transferase 

activity; 

catalytic 

activity, 

acting on 

RNA 

Plasmopara 

halstedii 

PVIT_0002228 2643859 2644656 tRNA (guanine-N(7)) 

methyltransferase 

Catalytic 

activity 

Phytophthora 

citrophthora 

Table 7: The gene IDs, their predicted encoded protein, the predicted function, and the species the top protein match 

for genes located in RPV3.1+RPV10.3 scaffold 3. The protein data was collected from Uniprot (Bateman et al., 

2022). 

 

 

Table 8: Scaffold 11 gene prediction and protein prediction for RPV3.1+10.3 

 

 

Serial Passaging Outcome 
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To mimic the field sample disease progress and analysis, serial passaging was carried out. 

However, despite 46 samples successfully sequenced, the Illumina reads for the serial passaging 

samples were unable to be adequately mapped to the reference genome. The average mapping 

percentage was 2.5% mapped, which indicates very poor mapping. Due to the low number of 

mapped reads, the unmapped reads were put through blast to diagnose the issue. The top results 

were Strenotrophomonas rhizophila, Microbacterium testaceum, Microbacterium sp. (which is a 

common lab contaminant), and P. viticola mitochondrion. One potential reason why these 

species appeared in the reads could do with how the spores were transferred from leaf to leaf. 

Using a spray bottle to mist the leaves and allow the water to drip into a tube which is then used 

to spray a new leaf may have introduced these species seeing as the cluster of spores was already 

small on the first generation. 

 

Discussion 

Genome Assembly Comparison 

In the assembly for this research, 6 kb fragments were sequenced after an attempt was 

made to increase fragment size during the initial library preparation. After conferring with 

INRA-PV221 reference, it was found they used fragments above 5 kb (Dussert et al., 2018), 

which this fit into. There was also an estimated 14x coverage for all four haplotypes, which is 

relatively low. A deeper coverage is being generated with left over DNA at the PacBio facility. 

The samples that the single spore was extracted from were in the freezer for at least a month 

before the extraction, which could cause a degradation of the quality. Using fresh samples from 

the field and continuing to build up the biomass is hypothesized to improve quality. Assembling 

a genome of a virulent isolate would help identify structural variation in the regions under 

selective sweep, in case there are large insertions or deletions involved. Generating RNA-seq 
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data would also have been beneficial and is a procedure that should be produced in the future. 

RNA-seq data would help with gap filling, identifying coding regions of the genome, and refine 

gene models. This assembly can provide novel insight into genes present and how they differ 

from the published reference’s, especially in regard to the avrRpv3.1 locus (Paineau et al., 2023) 

that is important in the pathogen’s resistance mechanism. 

 

Field Sample Analysis 

The overarching goal of this research was to provide an understanding into how 

P. viticola adapts to the grapevines’ host resistant genes with a prediction that there will be 

linkage disequilibrium (fixed alleles) around the loci responsible for virulence and random 

assortment of alleles moving away from the loci. It was also predicted that selective sweeps 

patterns would differ response to different host resistant genes. 

The SweeD analysis of samples grown on RPV3.1, RPV10.3, and RPV3.1+10.3 provided 

insight into the regions of the pathogen’s genome that are undergoing selective sweeps in 

response to certain RPVs such as scaffold 3 in RPV3.1+10.3 grown samples and scaffold 6 in 

RPV10.3 grown samples. However, scaffold 6 also appears to show evidence of a selective 

sweep in RPV3.1+10.3 grown samples, and further investigation determined that the annotated 

genes showing selective sweeps on this scaffold for this RPV were the exact same annotated 

genes showing selective sweeps for RPV10.3 on this scaffold, suggesting strong evidence that 

this region is important for overcoming the RPV10.3 resistance. 

The specific regions under selection were identified as a 121 kb region on scaffold 3 and 

230 kb region on scaffold 6, further pinpointing where the selective pressure is concentrated. 

Within these regions, scaffold 6 contains a gene predicted to encode an RxLR effector protein as 
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well as a gene predicted to encode for a signal protein while scaffold 3 has two genes predicted 

to encode avirulence (Avr) proteins. RxLR effector proteins have a wide range of modes of 

action including stabilization, destabilization of target protein targets, inhibition, use of host 

protein enzyme activity, disruption of host protein complexes, and changing of localization 

targets (Wang et al., 2023). Based on the findings of this research alone, the exact function of the 

RxLR effector within scaffold 6 is relatively unclear. Further experimental validation is 

necessary to confirm this exact functions. Some RxLR proteins are avirulence (Avr) proteins as 

well. Two Avr proteins were predicted on scaffold 6 in RPV10.3 grown samples, and similar to 

RxLR effectors, they are part of a pathogen’s pathogenicity. Since the scaffold 6 genes in 

RPV3.1+10.3 are the same as the RPV10.3 genes, this suggests that these Avr proteins could be 

part of the mechanism for overcoming RPV10.3 resistance. Further wet lab work would have to 

be done to confirm that these genes encode for this protein to conclusively state that. Because 

strong pressure on scaffold 3 is only present in RPV3.1+10.3 grown samples as RPV3.1 grown 

samples do not have a distinctive region of selective sweep signals and RPV10.3 grown samples 

have scaffold 6, this selective pressure can be hypothesized to be brought about by the stacked 

host resistance. Furthermore, the presence of other moderate sweep signals as seen in Figure 15 

by the slight peaks across the genome suggests the RPV3.1+10.3 has less genetic variation 

around the first third of the genome. It would be interesting to see if these regions become more 

pronounced with selective pressure if more generations of sporulation were included. RPV10.3 

grown samples can be hypothesized to have more genetic variation as the sweep signals are low. 

Overall, these findings support the original hypothesis of selective sweeps being concentrated in 

one loci while regions further away from the selective sweeps shows reduced evidence of 

sweeps, proposing a complex mechanism for overcoming RPVs in P.viticola . Because of this 
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support, this can provide insight into methods for developing targeted measures for disrupting 

the resistance mechanisms in P. viticola. However, longer term monitoring may be beneficial in 

identifying the pathogen’s long term adaptive mechanism, which may differ from these findings. 

Furthermore, devising a wet lab procedure for gene knockout in regions proposed to have 

proteins that are relative to pathogenicity could provide further confirmation of these predictions. 

It would also be beneficial to have RNA-seq data to analyze gene expression changes as well as 

also monitoring protein changes. 

 

Conclusion 

This research provides new insight into how P. viticola adapts to three different 

grapevine resistant genes. Important findings include the identification of RPV3.1+10.3 and 

RPV10.3 grown samples’ selective sweep likelihood scores as having extreme divergence from 

the susceptible samples’ selective sweep likelihood scores and identifying scaffold 3 and scaffold 

6 as regions under significant selective pressure with scaffold 6 seeming to be essential for 

overcoming RPV10.3 resistance.  

Future improvements such as using higher quality DNA, assembling a genome of a 

virulent isolate, and generating RNA-seq data would improve the assembly to conclude more 

sound interpretations of genetic differences as well as providing more insight into the field 

samples analyzed. Functional testing of the candidate genes is needed. 

Overall, this research advances the understand of P. viticola’s adaptation mechanisms 

and offers a potential foundation for developing targeted strategies to manage the resistance. 

Future work should thereby focus on confirming the proteins predicted to be encoded and 

explore the impact of long-term sporulation to determine if the same loci remain under strong 

selective pressure over many generations. 
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