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Abstract

Here, we investigate the use of the Lorene code to generate quasi-equilibrium initial data for

close binary neutron star configurations. The code has been widely used throughout the field

of numerical relativity, and is capable of generating initial data for a wide range of neutron

star equations of state and binary mass ratios. We also explore the ranges of parameter space

for which the code can generate accurate initial data, and the nature of the instabilities that

arise when the code is asked to produce data outside this range. This work should aid other

groups performing merger simulations of binary neutron star systems to select appropriate

initial data with which to launch simulations.

We also report on a code for calculating photon geodesics moving within the curved space-

time of a black hole. The ultimate goal of this work is to calculate approximations for the light

deflection in terms of the initial parameters of the system. An error analysis is conducted for

the code, and future work on the numerical approach is discussed.

i



ii



Contents

Abstract i

Contents iii

List of Figures v

List of Tables xi

1 Introduction: BNS initial data and light bending 1

1.1 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Compact objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 TOV equation: derivation and solutions . . . . . . . . . . . . . . . . . . 5

1.2.3 Neutron star equation of state . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Binary neutron star: formation and mergers . . . . . . . . . . . . . . . . 11

1.3 Black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Geodesic equations for photons . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Numerical Techniques 19

2.1 Single NS parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 TOV models for polytropes . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The Lorene code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Binary Neutron Star Evolution Codes . . . . . . . . . . . . . . . . . . . . . . . 23

iii



2.4 Techniques for calculating photon geodesics . . . . . . . . . . . . . . . . . . . . 24

3 BNS Initial Data 27

3.1 BNS initial data via Lorene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Description of our routines, initial data generation and dynamical sim-

ulations of binary NS systems . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Summary of parameter space . . . . . . . . . . . . . . . . . . . . . . . . 32

4 BH light deflection 47

4.1 Light deflection in black hole spacetimes . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Non-equatorial geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Light deflection: results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusion 57

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 59

iv



List of Figures

1.1 Binary NS formation. This thesis focuses on the route that starts as a primary

and secondary star, then goes down the path to Roche Lobe overflow, then to

a high-mass system and ends as a double NS binary [1]. . . . . . . . . . . . . . 12

1.2 Light cone relative to A. Here time is the vertical axis . . . . . . . . . . . . . . 17

2.1 Lorene’s grid is divided into sections. The innermost domain contains the NS

which is then further divided into multiple shells. The outer domain seen in the

figure starts at the surface of the NS and contains the non-compactified region

of space just outside of the star. The last domain extends out to infinity and is

not shown [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 TOV gravitational mass and radius relationships for different γ values with

initial data 1.4M⊙ and 14km radius. The dashed lines correspond to unstable

models and the dot corresponds to the last stable model which contains the

maximum gravitational mass for its γ value. . . . . . . . . . . . . . . . . . . . . 28

3.2 Compactness values at each maximum gravitational mass for Fig. 3.1 for dif-

ferent γ values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 maximum compactness at each γ value for Fig. 3.1, including unstable models. 29

3.4 TOV baryonic mass and radius relationships for different γ values with initial

data 1.4M⊙ and 14km radius. conventions are as in Fig. 3.1. . . . . . . . . . . 30

v



3.5 Lorene success rate with an initial separation of 45km. The colors correspond

to the success of Lorene. Green means the code converged and passed below

the change in enthalpy, yellow means the code diverged, it finished running

but could not get below the change in enthalpy and red means the code could

not even start running. This happens when the previous separation distance

diverges. The horizontal axis represents different gamma values used in the

TOV code and the vertical axis shows the mass ratio of the binary system. . . . 35

3.6 Lorene success rate with an initial separation of 45km. Now the separation

distance has decreased to 42.5km. conventions are as in Fig. 3.5. . . . . . . . . 36

3.7 Lorene success rate with an initial separation of 45km. Now the separation

distance has decreased to 40km. conventions are as in Fig. 3.5. . . . . . . . . . 36

3.8 Lorene success rate with an initial separation of 50km. conventions are as in

Fig. 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Lorene success rate with an initial separation of 50km. Now the separation

distance has decreased to 47.5km. conventions are as in Fig. 3.5. . . . . . . . . 37

3.10 Lorene success rate with an initial separation of 50km. Now the separation

distance has decreased to 45km. conventions are as in Fig. 3.5. . . . . . . . . . 38

3.11 Extrinsic curvature KijKij isocontours at 50km for a binary NS system with

both NS having masses of 1.4M⊙ and a NS EOS with γ = 2 shown in the

x− y plane. The NS surface is shown as a heavy solid line. Lorene grid domain

boundaries are shown as dashed green curves, and surround each NS, with both

sets extending throughout all space. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.12 Extrinsic curvature isocontours at 47.5km in the x−y plane, for a binary system

with NS components equivalent to those in Fig. 3.11 . . . . . . . . . . . . . . . 40

3.13 Extrinsic curvature isocontours at 45km in the x− y plane, for a binary system

with NS components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . 40

3.14 Baryon density isocontours at 50km in the x−y plane, for a binary system with

NS components equivalent to those in Fig. 3.11 . . . . . . . . . . . . . . . . . . 41

vi



3.15 Baryon density isocontours at 47.5km in the x − y plane, for a binary system

with NS components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . 41

3.16 Baryon density isocontours at 45km in the x−y plane, for a binary system with

NS components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . 42

3.17 Shift vector at 50km in the x−y plane, for a binary system with NS components

equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.18 Shift vector at 47.5km in the x− y plane, for a binary system with NS compo-

nents equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . . . . . . . 43

3.19 Shift vector at 45km in the x−y plane, for a binary system with NS components

equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.20 Enthalpy isocontours in the x− z plane at 50km, for a binary system with NS

components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . . . 44

3.21 Enthalpy isocontours in the x− y plane at 50km, for a binary system with NS

components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . . . 44

3.22 Enthalpy isocontours in the x−z plane at 47.5km, for a binary system with NS

components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . . . 45

3.23 Enthalpy isocontours in the x − y plane at 47.5km, for a binary system with

NS components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . 45

3.24 Enthalpy isocontours in the x− z plane at 45km, for a binary system with NS

components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . . . 45

3.25 Enthalpy isocontours in the x− y plane at 45km, for a binary system with NS

components equivalent to those in Fig. 3.11. . . . . . . . . . . . . . . . . . . . . 45

3.26 Inaccurate enthalpy isocontours in the x − z plane at 40km, causing the code

diverge. for a binary NS system with both NS having masses of 1.4M⊙, an EOS

with γ = 2.25 and an initial separation distance of 45km. . . . . . . . . . . . . . 46

3.27 Inaccurate enthalpy isocontours in the x − y plane at 40km, causing the code

diverge. for a binary NS system with both NS having masses of 1.4M⊙, an EOS

with γ = 2.25 and an initial separation distance of 45km. . . . . . . . . . . . . . 46

vii



4.1 Photon’s path in the equatorial plane (left) and vertical plane (right) at an

initial distance of 10 times the BH’s, radius with no spin. The photon’s initial

direction is ϕ = π
4 and θ = π

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Differences in radius, as a function of the affine parameter σ that serves as a

proxy for path length (see Eq. 2.4.3), between models computed using varying

stepsizes (left). Initial data is the same as in Fig. 4.1. A calculation of radial

convergence (right) was obtained from dividing by the photon’s path over dif-

ferent step sizes. A value of 16 is expected for fourth-order convergence. The

spike present around σ ∼ 0.08 results from a sign change in the lowest-order

error term, with the expected fourth-order convergence observed both before

and after the crossing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 A calculation of differences in theta values over smaller step sizes (left). Initial

data is the same as in Fig. 4.1. A calculation of radial convergence (right) was

obtained from dividing by the photon’s path over different step sizes. A value of

16 is expected for fourth-order convergence. The spike present around σ ∼ 0.08

results from a sign change in the lowest-order error term, with the expected

fourth-order convergence observed both before and after the crossing. . . . . . . 50

4.4 A calculation of differences in phi values over smaller step sizes (left). Initial

data is the same as in Fig. 4.1. A calculation of radial convergence (right) was

obtained from dividing by the photon’s path over different step sizes. A value of

16 is expected for fourth-order convergence. The spike present around σ ∼ 0.08

results from a sign change in the lowest-order error term, with the expected

fourth-order convergence observed both before and after the crossing. . . . . . . 51

4.5 The final phi directions plotted over different initial theta directions where spin

is set to 0. Each plot contains a linear fit for a set initial radius (r0). The

bottom figure shows how the slope (β) and y-intercept (κ) of each linear fit

change over initial radius and how they decrease proportionally to 1
r0

. . . . . . 53

viii



4.6 The final phi directions plotted over different initial theta directions where spin

is set to -0.5. Each plot contains a linear fit for a set initial radius (r0). The

bottom figure shows how the slope (β) and y-intercept (κ) of each linear fit

change over initial radius and how they decrease proportionally to 1
r0

. . . . . . 54

4.7 The final phi directions plotted over different initial theta directions where spin

is set to 0.5. Each plot contains a linear fit for a set initial radius (r0). The

bottom figure shows how the slope (β) and y-intercept (κ) of each linear fit

change over initial radius and how they decrease proportionally to 1
r0

. . . . . . 55

4.8 The κ and β dependence over different spin values where r0 = 12. β is roughly

linear over the full range while κ seems to show roughly quadratic behavior and

the explanation for this is not currently present. . . . . . . . . . . . . . . . . . . 56

ix



x



List of Tables

4.1 The β values represent the slope of the linear fit used to model the final phi

direction over different initial theta directions, while the κ values represent the

y-intercepts of those linear fits. The calculations were performed for different

initial radii starting at 9.5 and ending at 12, and for different spin values. . . . 52

xi



xii



Chapter 1

Introduction: BNS initial data and

light bending

In this thesis we explore two problems in relativistic astrophysics, the generation of quasi-

equilibrium initial data for binary neutron star systems, and the light deflection around Kerr

black holes. We seek to develop and test the performance of numerical tools used within the

field to simulate relativistic astrophysical phenomena of binary neutron stars and a photon

traveling near a black hole.

For the first project on binary neutron star initial data, our work builds upon [3] which

allows for the simulation of binary neutron stars with unequal mass ratios. This code was built

off of the Lorene code, [2] which is a popular astrophysical code used to obtain a quasiequi-

llibrium relativistic binary neutron star system [3]. Since the neutron star equation of state

is unknown, one goal of these simulations is to produce initial data for mass and radius re-

lationships of neutron stars by running code that approximates the neutron star equation of

state and varies neutron star central density to produce models with different masses and

radii. Lorene is used by many astrophysicists, but it often crashes or struggles to converge,

and there is almost no documentation or mentions of the code breaking down and producing

inaccurate results. This thesis also goes into some detail on initial data that causes Lorene to

produce inaccurate results and some insights as to why these inaccuracies occur.

Chapter 1. Introduction: BNS initial data and light bending 1



Chapter 1. Introduction: BNS initial data and light bending

In the second project, we investigate the simulation of a photon curving around a black

hole. Since it’s nearly impossible to observe a photon’s path curve around a black hole, we

run simulations based on mathematical equations to observe this behavior. The goal of this

project is to use the simplified equations for the path of a photon taken from [4], in hopes

that it will be easier for less experienced scientists to understand our work and use our code.

The equations for the path of a photon involve elliptic integrals which are computationally

intensive due to the fact that they can only be evaluated numerically [5]. Approximating these

equations in simpler forms is a popular technique with many examples such as [5] that uses

an expansion series to approximate the equations for easier calculations. This thesis uses an

approximation from [4] that discretizes the equations so they can be easily solved with an

iterative process.

1.1 General Relativity

When studying neutron stars and black holes, it is not possible to accurately describe their

properties using Newtonian physics alone due to the fact that they are both relativistic bodies.

Both objects are massive enough that they curve spacetime around them, causing it to be

very different from flat space. This curvature of space causes the event horizon of a black hole

and lead to the TOV equation that describes the balance between a neutron star’s gravity

and pressure. Also, the large surface potentials of compact objects can only be accurately

determined by general relativity due to their small size and extreme density [6].

Einstein developed the general theory of relativity to account for phenomena not prop-

erly captured in Newtonian physics, primarily the role of gravity on the underlying geometry

of space. General relativity (GR) involves a four dimensional spacetime geometry, three di-

mensions for a curved space and one for time. The principle of GR states that uniformly

accelerated motion and being at rest in a gravitational field are identical, indistinguishable for

a freely-falling observer.

In practice, GR is a theory of gravitation that involves solving the field equations derived

by Einstein for the metric tensor that defines the curvature of the spacetime and how objects

2 1.1. General Relativity



1.2. Compact objects

move within it. Einstein’s field equations can be written as

Rµν −
1

2
Rgµν + Λgµν = κTµν (1.1.1)

Here, κ is the gravitational constant defined as 8πG
c4

, Λ is the cosmological constant that

seemingly contributes to the expansion of the universe, gµν is the metric tensor that captures

all the geometry of spacetime, Rµν is the Ricci curvature tensor that measures how a given

spacetime differs from flat space, and R is the scalar curvature (the trace of the Ricci tensor)

that depends on only the metric tensor and its first and second derivatives.

These equations and the resulting theory of GR incorporate effects such as spacetime

curvature due to gravity, whose consequences are as wide-ranging as affecting the paths of

photons through space, the production of gravitational radiation, and the expansion of the

universe [7]. The trajectories of photons are described by the geodesic equations, while the

gravitational field is described by the Einstein field equations. The field equations relate

spacetime curvature to the local energy and momentum densities via the stress energy tensor,

which describes the density and flux of energy and momentum in spacetime. In GR, gravity

is not considered to be a traditional force like in Newtonian physics, but rather an effect of

curved spacetime geometry, where the stress energy tensor causes the curvature. Note that

according to GR, mass is not the only source of gravity; GR states that mass and energy are

the same thing in a different form through the famous formula E = mc2. Thus, all sources

of energy gravitate, including but not limited to (baryonic) mass-energy. GR also predicts

gravitational waves propagating via the curvature of spacetime when produced by massive

objects, with the strongest amplitudes thought to be created by the mergers of black holes

and neutron stars.

1.2 Compact objects

Our work here investigates the properties of neutron stars (NS) and black holes (BH). These

are the most dense objects in the universe and are often modeled in simulations due to the fact

Chapter 1. Introduction: BNS initial data and light bending 3



Chapter 1. Introduction: BNS initial data and light bending

that they are very difficult to observe. Since NSs and BHs can produce gravitational waves

during binary mergers, they are commonly studied in simulations to learn more about the

objects involved in the mergers. Gravitational waves are a huge topic in modern astrophysics

due to the fact that they confirm general relativity and the detectors have only been around

for a few years. The next section introduces essential information on compact objects, starting

with an introduction to NSs, their unknown equation of state, and the formation of binary NS

systems. Then the thesis goes into an introduction on BHs and how their gravity can affect

the paths of photons around them.

1.2.1 Neutron Stars

NSs are the dead remnants of a star with an initial mass of approximately 8 to 25 solar

masses, formed at the end of the star’s life during the supernova process. When a star of

this mass range undergoes gravitational collapse, gravity is able to compress the star further

than electron degeneracy pressure can counteract (which would yield a white dwarf), causing

the electrons and protons in the atoms to combine into neutrons, creating a NS. NSs are not

supported by gas and radiation pressure like normal stars, but by nuclear forces. Nuclear

forces start to saturate as the nucleons begin to touch at high densities (∼ 1015g/cm3). The

force is attractive for a small number of nucleons, but becomes repulsive for a larger number

[6].

NSs, particularly ones accreting matter from a companion, can spin up to periods as short

as a few ms [8]. Some of these rapidly rotating NSs emit electromagnetic radiation due to

their magnetic fields and extreme spin. This happens, primarily in the radio regime, by the

acceleration of charged particles along the magnetic field lines of highly magnetized rotating

NSs [1], causing charged particles to accelerate, and this is magnified near the poles where the

magnetic field is strongest. These are called pulsars, and the best theoretical models predict

that they constantly emit light in the general direction of their poles, observed at periodic

times depending on one’s line of sight.

NSs are the densest known objects in the universe other than BHs, but they are quite small

4 1.2. Compact objects



1.2. Compact objects

in size, typically only 10 to 15 km in radius [9]. They are initially very hot with temperatures

greatly exceeding 1010 Kelvin [10] but lack the chemical composition to sustain nuclear fusion,

so over time they cool due to emission processes, including energy losses to both neutrinos and

photons [10]. Isolated NSs are typically quite difficult to observe, since their luminosity is very

small given their size (L = 4πr2σT 4), unless one happens to be a pulsar with one pole facing

earth. Surprisingly, a few isolated NSs have been found, including serendipitous discoveries

such as RX J185635-3754 [11].

A fraction of NSs are in binary systems with another NS, but in many cases it is difficult

to measure precisely all of the properties of both NSs as well as those of the orbits them-

selves. A binary NS system can give off x-rays during accretion, but many X-ray binaries have

faint optical emission or are located near the galactic center, making observations difficult

[12]. Another uncertainty is the mass distribution [13], since NSs that have evolved differently

show distinctive properties through dissimilar distribution peaks and mass cutoff values. Ad-

ditionally, the lower bound on the NS mass is not well known because it is determined by the

unknown equation of state (see below). All of these uncertainties allow for poor constraints

on the mass distribution of NSs. More uncertainty also comes from the fact that measures of

NS masses are typically indirect or rely on chains of inference [14]. NS mass distributions are

currently a significant topic of research due to the their uncertain nature and difficulties in

detection.

1.2.2 TOV equation: derivation and solutions

The Tolman-Oppenheimer-Volkoff (TOV) equation is a differential equation that describes the

structure of a spherically symmetric, non-rotating star in general relativity. It may be derived

from the Einstein field equations for a perfect fluid and models the interior of a NS.

The derivation [15], typically starts with a symmetric vacuum spacetime outside of a star

in spherical coordinates.

Chapter 1. Introduction: BNS initial data and light bending 5



Chapter 1. Introduction: BNS initial data and light bending

gµν =



−(1− 2GM
rc2

)c2 0 0 0

0 (1− 2GM
rc2

)−1 0 0

0 0 r2 0

0 0 0 r2 sin(θ)2


(1.2.2)

which is equivalent to the following line element

ds2 = gµνdx
µdxν = −

(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2(dθ2 + sin2 θdϕ2)(1.2.3)

Following the standard conventions of the relativity community, we will assume for the

remainder of this thesis that units are chosen such that c = 1, unless otherwise specified.

Under that choice, the line element of a spherically symmetric object takes the form

ds2 = gµνdx
µdxν = −

(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2) (1.2.4)

Covariant derivatives in general relativity, indicated by ∇, are calculated by defining the

Christoffel symbols Γ as a way to connect different points in spacetime. When applied to a

tensor with one contravariant and one covariant index, for instance, we have as a generalization

of a partial derivative that

∇µT
α
β = ∂uT

α
β + Γα

σµT
σ
β − Γσ

µβT
α
σ (1.2.5)

Γµ
αβ =

1

2
gµν [gαν,β + gβν,α − gαβ,ν ] . (1.2.6)

In this case, the comma denotes differentiation with respect to the coordinate xµ so that

fµ = ∂f
∂xµ . The Christoffel symbols are used to construct the Ricci tensor

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βαΓ
β
αν , (1.2.7)

6 1.2. Compact objects



1.2. Compact objects

which serves as a measure of the curvature of spacetime.

Assuming a static, spherically symmetric perfect fluid configuration for our NS, the result-

ing line element is then

ds2 = exp (−2Φ(r)) dt2 +

(
1− 2m(r)

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(1.2.8)

Now consider a perfect fluid with total energy density e, isotropic pressure P , and four-

velocity uµ =
〈

dt
dτ ,

dr
dτ ,

dθ
dτ ,

dϕ
dτ

〉
. The stress energy tensor would then be equal to

Tµν = (e+ P )uµuν + Pgµν (1.2.9)

The total energy density, e, consists of both the rest mass density of the fluid, ρ, and the

internal energy, ρϵ, where ϵ is the specific internal energy density, which in this case represents

the thermal motion of the constituent fluid particles, and is given by e = ρ(1+ϵ). For simplicity

we may drop the factors of c, knowing we may recover them if needed based on dimensional

analysis. Finally, we define the specific enthalpy, h, or enthalpy per unit mass, as

h =
e+ P

ρ
. (1.2.10)

The derivation of the TOV equation can begin with the nonzero Christoffel symbols. In

what follows, primes indicate radial derivatives, i.e., m′ ≡ dm(r)
dr .

Γt
tr = Φ′ (1.2.11)

Γr
tt = = Φ′ exp(2Φ)

(
1− 2m

r

)
(1.2.12)

Γr
rr =

rm′ −m

r2 − 2rm
(1.2.13)

Γθ
rθ = Γϕ

rϕ =
1

r
(1.2.14)

Γr
θθ = csc2 θΓr

ϕϕ = 2m− r (1.2.15)

Γθ
ϕϕ = − csc2 θ (1.2.16)

Γϕ
θϕ = − sin(θ) cos(θ) (1.2.17)

Chapter 1. Introduction: BNS initial data and light bending 7
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From Equation (1.2.7), the independent non-zero components of the Ricci tensor are

Rtt = exp(2Φ)(Φ′′ +Φ′2)

(
1− 2m

r

)
+Φ′

(
2r − 3m− rm′

r2

)
(1.2.18)

Rrr =

(
1− 2m

r

−1
)(

(rm′ −m)(2 + rΦ′)

r3

)
− Φ′′ − [Φ′]2 (1.2.19)

Rθθ = csc(θ)2Rϕϕ = (2m− r)Φ′ +m′ +
m

r
(1.2.20)

Therefore the Ricci scalar is

R = gµνRµν = 2

[
2m′

r2
+

2m′

r2
+Φ′(3m− 2r + rm′)−

(
1− 2m

r

)
(Φ′′ +Φ′2)

]
(1.2.21)

If one ignores the cosmological constant term (which is irrelevant for our work here on

compact objects), the Einstein equations take the form

Gµν = Rµν −
gµνR

2
= 8πTµν (1.2.22)

where in the Eulerian rest frame,

Ttt = exp(2Φ)e (1.2.23)

so the ‘time-time’ component of the equation gives

Gtt =
2m′ exp(2Φ)

r2
= 8π exp(2Φ)e (1.2.24)

or, equivalently,

dm

dr
= 4πr2e (1.2.25)
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For the radial component of Einstein’s equations, we have

Trr =

(
1− 2m

r

)−1

P (1.2.26)

Grr =
2

r

(
Φ′ − m

1− 2m/r

)
=

8πP

1− 2m/r
(1.2.27)

dϕ

dr
=

m+ 4πr3P

r(r − 2m)
(1.2.28)

Finally, we need a differential equation for the pressure. The most straightforward way to

derive this is to use conservation of energy to argue that the divergence of the stress-energy

tensor vanishes. The radial component is sufficient in what follows. If

Tµν = diag

(
exp(−2Φ)e,

(
1− 2m

r

)
P, r−2P, r−2 csc2 θP

)
(1.2.29)

then we have

0 = ∇νT
rν =

∂T rν

∂xν
+ T σνΓr

σν + T rσΓν
σν (1.2.30)

=
∂T rr

∂r
+ T ttΓr

tt + T θθΓr
θθ + T ϕϕΓrϕϕ+ T rrΓν

rν (1.2.31)

=

(
1− 2m

r

)
(P ′ + (P + e)Φ′) (1.2.32)

and thus dP
dr = −(e+ P )dΦdr . The TOV equations may be summarized as

dm

dr
= 4πr2e (1.2.33)

dP

dr
= −(e+ P )

m+ 4πr3P

r(r − 2m)
(1.2.34)

dΦ

dr
= − 1

e+ P

dP

dr
(1.2.35)

These equations may be closed by specifying an equation of state (EOS) linking how e and

P depend on the density ρ. We note, though, that the definition of the quantity ρ is used

inconsistently throughout the NS literature. Derivations of the TOV equation typically as-

Chapter 1. Introduction: BNS initial data and light bending 9
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sume that ρ is the gravitational energy density, including both baryonic and internal energy

contributions, whereas in the relativity community, it typically refers to only the baryonic

mass density contribution. Here, we adopt this latter convention throughout. This does have

practical consequences at times, as for polytropic EOS, discussed below, one must specify

which density applies if the pressure is given as a power-law in terms of the density ρ.

1.2.3 Neutron star equation of state

Very little is known in detail about the EOS of NS matter, given the difficulties in experi-

mentally reproducing the extremely large densities present in their interiors (∼ 1015g/cm3).

In principle, the EOS can be inferred from observations, particularly those of NS masses and

radii, but in practice it is difficult to determine both of these simultaneously [16]. At present,

this remains perhaps the greatest uncertainty in the physics of NSs, and represents one of the

most interesting theoretical and observational challenges astronomers studying these systems

face.

NS EOS models are typically described as being “soft” or “stiff”; soft equations of state

produce smaller changes in pressure for a given change in density and stiff equations of state

much larger changes. Unsurprisingly, soft equations of state are much easier to compress due

to their smaller pressure changes. Not only are there observational constraints on mass and

radius, but there are constraints on soft and stiff equations of state. One immediate constraint

on EOS models is related to causality, dP/dρ = c2s ≤ 1, which demands the sound velocity cs

to be smaller than the speed of light. In practice, softer low-density equations of state cannot

be easily combined with stiff high-density ones, because dP/dρ grows more rapidly than would

be physically reasonable, resulting in pressure-density curves with nearly infinite slopes. The

low and high density equations of state effectively constrain each other [16].

The saturation density is the point where adding more nucleons does not significantly

increase the binding energy per nucleon or the overall density. For individual nuclei, the

saturation density is close to the density of heavy nuclei. Since they are so close, laboratory

experiments can infer the properties of nuclear matter for nuclei. The problem with NSs is

10 1.2. Compact objects
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they are so much larger than heavy nuclei that we can not make the same assumptions about

their properties like we can with heavy nuclei in lab experiments. The increase in size from

a single nucleus to a NS creates more uncertainties and complications that can drastically

change the radius of the NSs by a matter of kilometers. Since the pressure of nuclear matter

is so large, even minor corrections from various particle interactions will change the predicted

properties of NSs dramatically [16].

Due to its complexity, the NS EOS is often modeled as a polytrope of the form P = κργ .

Here κ is a constant that can be approximated based on the desired properties of the NS

mass-radius relation, and γ is the adiabatic index that determines how the pressure scales with

density. Fixing the central enthalpy and adiabatic index, and increasing the overall pressure

scale creates a variety of NSs with increasing mass and radius for a given compactness C ≡ GM
Rc2

[9]. This method is often used in simulations to create sequences of NS models because it allows

for a quick production of a range of models with varying physical parameters.

1.2.4 Binary neutron star: formation and mergers

Figure 1.1 shows different outcomes for a binary star system where each star has the potential

to become a NS. Recycled pulsars are out of the scope of this thesis, but they occur when a

pulsar’s rotation begins to speed up again due to accretion [8].

Stars are often found in binary systems, and NSs are no exception. When both stars in

the system are massive enough, around 8-25 solar masses, we expect both to produce a Type

Ib, Ic, or II supernova eventually. In these cases, the more massive star evolves faster and will

eventually leave behind what will become the heavier compact object [17]. This may cause

the system to unbind, depending on the mass loss from the system and the kick imparted to

the primary during the explosion. If it does not, then the system will remain a binary, with

one NS component orbiting either a main sequence or post-main sequence companion. The

strong gravity of the NS may cause some mass transfer from the other star once the secondary

expands during the post-main sequence giant phases. This mass transfer is important because

the accretion onto the NS occurs over a long period of time, which allows it to generate energy

Chapter 1. Introduction: BNS initial data and light bending 11
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Figure 1.1: Binary NS formation. This thesis focuses on the route that starts as a primary
and secondary star, then goes down the path to Roche Lobe overflow, then to a high-mass
system and ends as a double NS binary [1].
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and emit x-ray emission, while also stripping the other star of material [18]; such systems are

known as high-mass x-ray binaries (HMXBs). This x-ray emission makes it easier to detect and

learn more about the life cycle of a binary system that ends as two NSs. For systems that are

sufficiently close, according to population synthesis calculations for merging NS-NS, the first-

born compact object goes through a common-envelope with the second star [17]. This causes

dynamical friction to reduce the orbital separation by several orders of magnitude. The large

energy release due to friction and accretion during this spiral-in process is expected to cause

the hydrogen-rich envelope of the giant to be expelled such that a very close binary remains,

consisting of the helium core of the giant together with the neutron star [19]. Depending on

the separation distance from the NS, mass transfer can still occur in this phase [18]. If the

helium star still has sufficient mass, it will eventually explode as a supernova, and then second

NS in the system is born; the secondary will be a NS without a history of accretion and is

therefore expected to resemble the “normal” strong magnetic field single radio pulsars [19].

Binary NS systems are somewhat rare in nature but are of interest to astronomers due to the

fact that they can produce gravitational waves.

Gravitational waves are produced when massive objects accelerate, and are strongest for

high-density objects moving at relativistic speeds in relativistic gravitational potentials. The

first time gravitational waves were detected happened in 2015, when a signal was seen by the

two detectors from LIGO, in Hanford, WA and Livingston, LA. GW150914 was a BH binary

system, at a distance of approximately 410Mpc from earth. The gravitational waves were

produced by the merger of this system, with initial masses of 36 solar masses and 29 solar

masses, respectively. LIGO detected the signals over a frequency range spanning 35 - 250 Hz,

and at a strain amplitude of

hs ≈ 1.0× 10−21

over interferometric detector arms of length L≈ 4× 103m [20]. This detection of gravitational

waves is more evidence for GR because it directly involves the curvature of spacetime, in

accordance with the predictions of the Einstein field equations. Over the past decade, LIGO
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has now detected 90 sources [21]. The detection of gravitational waves is now well underway

and will continue to be a large area of research in the future.

When a binary system of NS is formed, they will begin to spiral inward due to their extreme

gravity. Eventually, they will form either a much more massive NS, or much more likely, a

BH. During the inspiral, they will release gravitational waves because they are losing orbital

energy.

1.3 Black holes

BHs are the densest known objects in the universe and originate from stars with masses of

approximately 25M⊙ or more. When these stars collapse, they have enough mass to compress

them further than the nuclear pressure that a NS could support, creating a BH. NSs that are

too compact or accrete matter from a companion can even collapse into BHs as well. They are

a singularity whose event horizon is outside of its own radius, causing any object that crosses

the event horizon to be trapped inside the BH forever [6].

Like NSs, BHs can also be found in binary systems with other BHs or even NSs. These

binary systems are inspiring the next generation of gravitational wave detectors due to the

fact that their mergers produce gravitational waves. Many complex simulations and codes

have been created to model the mergers of BHs and or NSs, as well as the interactions of these

compact objects.

BHs that accrete matter often have a spin associated with them due to the angular mo-

mentum of the accretion disk. If an object is moving in the direction of the BH’s spin, it will

have a prograde orbit and curve towards the black hole. If the object is moving in the opposite

direction of the spin, it will have a retrograde orbit and slightly curve away due to the fact

that the BH’s spin and gravity are trying to change the direction of the object. This affect is

called frame dragging and can lead to a large and fast spinning accretion disk [6].

In addition to gravitation fields, both electric and magnetic fields exist intrinsically from

BHs. Although one might not expect that astrophysical BHs have a large residue elec-

tric charge, some accretion scenarios were proposed to investigate the possibility of spin-
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ning charged BHs. Moreover, theoretical considerations, together with recent observations

of structures near Sgr A*, indicate possible presence of a small electric charge of the central

supermassive BH [4]. The spin and charge of a BH can be used to define different types of

BHs mathematically. A BH with spin and no charge is a Kerr BH and a BH with spin and

charge is a Kerr-Newman BH. The Kerr metric and Kerr-Newman metric are

ds2 = −
(
1− 2Mr

Σ

)
dt2 − 4aMr

Σ
sin(θ)2dtdϕ

+
(r2 + a2)2 − a2∆sin(θ)2

Σ
sin(θ)2dϕ2 +

Σ

∆
dr2 +Σdθ2[22]

(1.3.36)

ds2 = −∆

Σ
(dt− a sin(θ)2dϕ)2 +

sin(θ)2

Σ

[
(r2 + a2)dϕ− adt

]2
+

Σ

∆
dr2 +Σdθ2[4] (1.3.37)

where Σ = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2 +Q2. Here Q is charge and a is spin. Note

that Q = 0 for Kerr BHs.

1.4 Geodesic equations for photons

Geodesics are essentially straight lines as they exist on a curved surface. Photons follow

null geodesics: null because their spacetime interval is zero and they have no proper time.

The events located inside the light-cone are time-like with respect to A and can be causally

related. The events located outside the light-cone are space-like with respect to A, and hence

causally disconnected from it because they could not travel to A in time to be causally related

[23]. Fig 1.2 shows this boundary between space-like and time-like. Einstein’s theory of

General Relativity predicted the curvature of a photon’s path in the presence of gravitating

matter, and years later it was able to be demonstrated through a variety of experiments. Any

massive object will curve spacetime around it so much that a photon travelling near that

object will follow a curved geodesic, though the effect is most significant for compact objects
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with relativistic gravitational potentials, particularly NSs and BHs. This has, e.g., allowed

astronomers to see lensed bright sources behind galaxies because the galaxy’s gravitation bent

the path of the photon emitted from the bright source.
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Figure 1.2: Light cone relative to A. Here time is the vertical axis
and two dimensions of space are represented by the horizontal plane. Event B is in the

causal future of A while event C is causally disconnected from A since it is outside of A’s
light-cone [23].

BHs have such strong gravity that if a photon is travelling tangentially to a BH, geodesics

can bend by large angles around the BH before photons escape to infinity. If a photon is

travelling in the right direction and sufficiently close, it can even fall into the BH, or spin

around it forever and never escape because its gravity is so strong. The orbits of photons

are affected by the spin of the BH and whether they are traveling in a prograde or retrograde

direction with respect to it. Because of so-called “frame dragging” or gravito-magentism effects,

prograde orbits are typically more stable against infall than retrograde ones.

Chapter 1. Introduction: BNS initial data and light bending 17



Chapter 1. Introduction: BNS initial data and light bending

18 1.4. Geodesic equations for photons



Chapter 2

Numerical Techniques

All of the work in this thesis is based on numerical codes used to study binary NS systems

and BH geodesics, respectively.

For binary NS systems, there is a multi-step process required to generate quasi-equilibrium

binary configurations. We begin with the simplest step: generating equilibrium isolated NS

models describing spherically symmetric, non-rotating NSs. This is done by approximating

the equation of state by running the TOV code. The values from the TOV code will then be

used to initialize the binary system by creating both stars and placing them in spacetime at

their respective coordinates. The initial system will be read by the main code, Lorene, to relax

the binary system towards equilibrium at fixed separations and then moves the stars inward.

2.1 Single NS parameter space

Given the uncertainties in the true physics of NS EOS, we must approximate it in all cases;

often in the field, one approximates the pressure-density relationship as a power law to pa-

rameterize this uncertainty. One benefit of this approach is that it does allow one to use

dimensional arguments to scale either the NS mass and radius, or alternately the parameters

of the EOS model itself, to generalize from one model to similar ones.

To generate the physical parameters describing isolated NSs that will then be placed in

a binary configuration, we use a code that approximates a solution to the TOV equations,
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Eqs. (1.2.33),(1.2.34), (1.2.35), which allows us to specify the value of γ in the polytropic

EOS P = κργ , as well as the NS mass and radius (and thus the dimensionless compactness

C ≡ GM/(Rc2). The code first estimates the proper central enthalpy value and density, and

uses this to generate a model whose total mass and radius are measured and whose compactness

is then compared to the desired value. The surface is where the density goes to zero, and we

linearly extrapolate in the proper power of the density (ργ−1) to measure this location to high

accuracy. Based on dimensional arguments, the TOV equation at the surface implies for a

polytrope that

dP

dr
∝ d

dr
ργ ∝ ρ ⇒ d

dr
ργ−1 ∝ const.

The code then uses the shooting method to revise the central enthalpy to produce the

desired compactness. If the compactness is too high based on the error threshold, then it will

lower the pressure at fixed desnity via the parameter κ, and if the compactness is too low, it

will increase it. This iteration typically converges quickly to the desired compactness. Once

this is found, parameters may be rescaled so that all dimensionless quantities, particularly

P/(ρc2) and GM/(Rc2) remain fixed, but the mass and radius both take on their appropriate

values.

This method also allows us to input artificially high radii or artificially small masses into

the TOV code, for use in the Lorene code, which is typically more stable at the start of a

quasi-equilibrium convergence calculation for lower-compactness systems.

2.1.1 TOV models for polytropes

For a given value of γ, polytropic NS models form a 1-parameter sequence, either in terms of

the central enthalpy or the compactness, whose configurations may be rescaled to reproduce

the desired physical values.

Indeed, for a configuration with a given compactness, one may produce a rescaling of the
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mass and radius such that

M → αM ; R → αR (2.1.1)

by modifying the equation of state and central density such that

ρ → α−2ρ; κ → α2γ−2κ (2.1.2)

which has the effect of modifying the pressure P → α−2P while leaving the dimensionless

quantities GM/(Rc2) and P/(ρc2) invariant at a given reference location.

Based on these considerations, we choose as our reference model a NS configuration with

a gravitational mass of 1.4M⊙ and a radius of 14km, and thus a compactness of C = 0.148.

We can then vary the central density for each model while holding κ fixed to produce a

mass-radius relation for the given EOS. Note that while configurations with extremely high

central densities may be reached, NS models are known to be unstable to radial oscillations

once the maximum mass is reached, and thus all models past that point are unphysical [6].

The maximum mass contains the last stable model for a NS [24]. Next, we use the Lorene

code to generate binaries.

2.2 The Lorene code

The Lorene code is a free, publicly available set of routines in C++ that solve partial differ-

ential equations through multi-domain spectral methods, designed in particular to calculate

quasi-equilibrium fluid configurations for NSs in binaries and the metric tensor of spacetime in

general for both NS and BH systems [2]. Spectral methods involve representing functions as a

sum of basis functions, typically built upon an orthogonal expansion. This has the advantage

of high accuracy combined with efficiency, but includes the drawback that spectral methods

cannot deal with sharp edges or discontinuities very well because of Gibbs’ phenomenon [25].

Since the equations involve fluid configurations, and are therefore non-linear, discontinuities

or other non-smooth behavior is unavoidable, especially at the surfaces of NSs as well as any
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other locations in which the equation of state is not smooth with respect to the density. Dis-

crete operators based on Taylor expansions, assuming smoothness of the solution, are going to

fail near these regions and will produce less accurate solutions, often with artificial oscillations.

[26]. To try to minimize this issue, Lorene breaks space into a set of nested radial domains,

using a Chebyshev expansion in radius. In the center of each object, symmetry conditions are

imposed to ensure that all allowed modes are smooth at the origin. The multidomain spectral

method allows the physical discontinuity represented by the NS surface to be located at the

boundary between the two innermost domains, so that all the fields considered are smooth in

their respective domains and Gibbs phenomenon is minimized overall [27]. In the outermost

domain, a coordinate transformation is used, ξ = 2R
1−x , where R is the radius of the innermost

boundary of the compactified external domain, to allow the entire exterior to be mapped to

a finite range of the radial coordinate ξ [2]. The grid that Lorene uses consists of Chebyshev

nodes in the radial direction such that the ξ′s of the grid are N + 1 zeros of the Chebyshev

polynomial of degree N + 1, an optimal choice known as a Chebyshev Gauss Grid [28]. For

smooth solutions, this allows for spectral convergence, exponential decreases in overall error

with respect to the number of modes employed, and even for non-smooth sources leads to

very small numerical inaccuracies for reasonable numbers of coefficients. Because of the com-

pactification, spatial infinity is the only location at which the code imposes exact boundary

conditions (flat spacetime). In the angular directions for each domain, spherical harmonic

expansions are implemented. This, along with Chebyshev polynomials in the radial direction,

Legendre polynomials are used in the θ-direction and Fourier series are used in the ϕ-direction

[2].

Overall, the method is extremely accurate. If the source terms for the elliptic equations

to be solved decay as r−k, the error of the numerical solution is shown to decrease at least as

N−2(̇k−2), where N is the number of Chebyshev coefficients [27].

Here, we summarize the important concepts used in [2] to run quasiequilibrium relativistic

binary NS simulations.

Before Lorene can simulate a binary NS system, it needs an initial system as input. This
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Figure 2.1: Lorene’s grid is divided into sections. The innermost domain contains the NS
which is then further divided into multiple shells. The outer domain seen in the figure starts
at the surface of the NS and contains the non-compactified region of space just outside of the
star. The last domain extends out to infinity and is not shown [2].

initial system consists of two NSs in spacetime. It requires the output of the TOV code, κ, γ

and enthalpy, along with an initial separation distance and the number of domains in the θ, ϕ

and radial directions. All of this information is then used to place the two NSs in spacetime

with their equation of state, number of domains and the proper separation distance between

them. At this time, the two stars have no effect on each other and have been simply placed

near each other in spacetime. The main code of Lorene will then use this information from

the initialization to create the binary system.

After the initialization, we relax the two NSs at equilibrium at a given separation using

a relaxation factor multiplied by the enthalpy field and each auto-potential from the current

and previous iteration [2]. Lorene also assumes the fluid is either rigidly rotating (corotating,

tidally locked) or irrotational, and that the spatial 3-metric is conformally flat, i.e., flat up to

a single overall scaling term known as the conformal factor. These assumptions allow for the

elliptic equation of velocity potential to be solved and for the simulation of binary NSs.

2.3 Binary Neutron Star Evolution Codes

Many groups across the field have developed techniques to simulate binary NS systems. There

are essentially two different parts to the problem. The first is to construct accurate binary NS

initial data at a fixed moment in time, as opposed to dynamically evolving the gravitational
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fields. This greatly simplifies the field equations [29]. Second, one must then dynamically

evolve these initial data using the field equations for the spacetime metric and matter. Such

calculations were first performed in full GR by Shibata and Uryu, who implemented a gamma-

law EOS with γ = 2. This allowed them to evolve the equations of relativistic hydrodynamics,

and Einstein’s equations in what has become known as the BSSN formulation (Baumgarte-

Shapiro-Shibata-Nakamura) [29].

One of the most widely used code within the numerical relativity community is the

Einstein Toolkit, a collection of free, publicly available codes used for running relativistic

astrophysical simulations, often involving magnetohydrodynamics. Although Lorene predates

the Einstein toolkit, it can be used to initiate dynamical systems with the Einstein toolkit.

Lorene has a complex three dimensional mesh grid for high accuracy simulations. The

number of domains inside and outside of the star is also set by the user to allow for a desired

level of accuracy. The user can then set the number of points in each domain and in the theta

and phi directions to increase or decrease resolution as needed. The three dimensional grid

also decreases in resolution far away from the two stars. This is to save computation power

for the simulation.

2.4 Techniques for calculating photon geodesics

For geodesics, we summarize the steps used in [4] to generate the coupled differential equations

for the path of a photon. The null-like geodesic equation can be reduced from an elliptic

integral to coupled differential equations. This is done by defining the four-velocity uµ = dxµ

dσ

in terms of an affine parameter, σ, since the metric of a Kerr Newman BH is independent

of t and ϕ. This allows for the equations to be solved step by step instead of solving the

computationally intensive elliptical equations for the entire path of the photon.

The simplified equations describing photon geodesics involve four coupled ordinary differen-

tial equations, for radius, θ, ϕ, and time, respectively, when expressed in spherical coordinates.

For a Kerr-Newman BH of mass M , with dimensionless spin a ≡ J/M2 and dimensionless

charge Q, the equations are given for a photon of a given conserved energy E, azimuthal an-
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gular momentum L, and Carter constant C (a relativistic generalization of the non-azimuthal

angular momentum; see [4]) by:

dr

dσ
=

√
(r2 + a2 − aλ)2 − (r2 − 2Mr + a2 +Q2)(η + (λ− a)2) (2.4.3)

dθ

dσ
= −

√
η + a2 cos(θ)2 − λ2 cot(θ)2 (2.4.4)

dϕ

dσ
=

a

(r2 − 2Mr + a2 +Q2)
(r2 + a2 − aλ) +

λ

sin(θ)2
− a (2.4.5)

dt

dσ
=

r2 + a2

(r2 − 2Mr + a2 +Q2)
(r2 + a2 − aλ) + a(λ− a sin(θ)2) (2.4.6)

where λ = L
E and η = C

E2 . Here, σ is an affine parameter used to scale all four equations in

the absence of a measure of proper distance for the photon’s path. These equations allow for

the evolution of a geodesic equation for light bending around a BH.

Our RK4 scheme advances all four equations simultaneously in Cartesian coordinates, and

then stores the output for each variable in spherical coordinates to graph the photon’s path.

The Cartesian conversion was due to the fact that spherical equations violate the assumptions

of uniqueness of solutions. This means that using spherical coordinates causes Eq. (2.4.3) to

always equal zero, so the photon follows a circular path. The Cartesian conversions are shown

below.

dx = dr sin θ cosϕ+ rdθ cos θ cosϕ− rdϕ sin θ sinϕ (2.4.7)

dy = dr sin θ sinϕ+ rdθ cos θ sinϕ+ rdϕ sin θ cosϕ (2.4.8)

dz = dr cos θ − rdθ sin θ (2.4.9)

In these calculations, r =
√
x2 + y2 + z2, θ = arccos z

r , and ϕ = arctan y
x . Setting r, θ and ϕ

equal to spherical coordinates allowed us to convert from dr, dθ and dϕ to dx, dy and dz while

avoiding the issues of Eq. (2.4.3) at the first step. We did not alter dt
dσ because it was not

used in our calculations. Since it is nearly impossible to observe the correct path of a photon,

we can not use observations to help confirm our code. Therefore, we implemented validation

checks along the way to ensure the code is working properly. The first is setting the mass of
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the BH equal to zero (this means there is no BH) and checking to see that the photon’s path

is a straight line. Next, as we’re using RK4, halving the step size should yield results that are

16 times more accurate prior to numerical saturation. We continuously halved the step size

to see if the error was 16 times smaller than the previous step.
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We modified our TOV code so that it can modify the central density by varying factors (both

larger and smaller) to output multiple NS models given initial reference mass and radius values.

This allows us to consider a full sequence of models for a given EOS, up to and beyond the

maximum mass marking the stability limit. In Fig. 3.1, we show gravitational mass vs. radius

for different γ values. The compactness at each maximum gravitational mass for different γ

values is shown in Fig. 3.2, while Fig. 3.3 shows the maximum compactness for different γ

values. Fig 3.4 shows the baryonic mass vs. radius for different γ values.

It is clear to see from Figs. 3.1 and 3.4 that the gravitational mass is slightly smaller than

the baryonic mass for our NS models. This is because the gravitational mass subtracts the

binding energy from the baryonic mass [30]. This comes from the fact that energy is lost when

particles are bound together.

In Fig. 3.2 We can then see the compactness where the gravitational mass is maximized.

That is the true stability limit of the NS model. The compactness values here initially increase

rapidly but start to level off as they approach the maximum compactness of any possible NS.

In Fig. 3.3 we can see that the maximum compactness for each γ value is very close to

those in Fig. 3.2 where the compactness is calculated at the maximum gravitational mass. The

reason they differ slightly, especially for lower γ values is because there are so many nonphysical

models, these are models that mathematically exist but would not exist in nature. NSs with
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Figure 3.1: TOV gravitational mass and radius relationships for different γ values with initial
data 1.4M⊙ and 14km radius. The dashed lines correspond to unstable models and the dot
corresponds to the last stable model which contains the maximum gravitational mass for its
γ value.

nearly zero mass are nonphysical because no massive star could lose that much mass and still

be a NS. The low γ values have lower compactness values because they have a large decrease

in radius while the mass hardly changes, while higher γ values have a decrease in both mass

and radius, causing the larger difference in maximum compactness for smaller values of γ.

It’s also worth noting that for γ ≲ 2.25 , we have an inverse relationship between mass and

radius, which is true of Newtonian Lane-Emden solutions for γ < 2, with non-linear effects of

relativistic gravitation accounting for the different cutoffs. For Newtonian models, values of γ

greater than two lead to increasing mass for increasing radius, but in relativity, models with

γ = 2.25 take on the role of having very little change in radius for widely varying masses at

low mass, and every model considered has the inverse relationship at the highest masses.

For smaller γ values, those less than two, the radius changes considerably while the mass

stays nearly constant. The opposite starts to happen when γ is greater than two, the radius

hardly changes while the mass changes drastically. Interestingly, larger γ values can produce
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Figure 3.2: Compactness values at each maximum gravitational mass for Fig. 3.1 for different
γ values.
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Figure 3.3: maximum compactness at each γ value for Fig. 3.1, including unstable models.
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Figure 3.4: TOV baryonic mass and radius relationships for different γ values with initial data
1.4M⊙ and 14km radius. conventions are as in Fig. 3.1.

two different masses with different central densities for a single radius, although one of those

(the dashed curve) is not a physical model, just a mathematical result of the solution to

the simplified TOV equation. The maximum compactness graph shows that the maximum

compactness increases monotonically, but with decreasing slope as γ increases, reaching the

limit for the largest γ value considered.

3.1 BNS initial data via Lorene

3.1.1 Description of our routines, initial data generation and dynamical

simulations of binary NS systems

Our working version of the Lorene code was developed by RIT AST PhD student Tanmayee

Gupte working with Prof. Joshua Faber. Her work, [3], allowed Lorene to perform much more

stably for simulations involving NSs with unequal mass ratios by fixing internal numerical

root-finding routines that otherwise produce spurious errors, along with developing routines
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to adjust NS masses and binary separations so that models are initially relaxed at lower masses

and larger separations, the most stable region of parameter space for the code, and then slowly

evolved to the desired final configuration in as stable a manner as possible.

Generating binary configurations in Lorene involves two different routines. The first part

of the code computes solutions to the TOV equation, based on a specified EOS and central

enthalpy for each star. A built-in TOV code generates a model for the structure of each

NS, assuming spherical symmetry (and no rotation). Users may specify the pressure-density

relation in a number of ways, with options including using power-laws (polytropes), piecewise

polytropes, or tabulated models.

In this work, we focus on polytropes. To determine the correct central enthalpies corre-

sponding to a NS of a given mass, radius, and EOS, we use our own TOV code implementation

to determine the appropriate values to pass to Lorene. For tabulated and piecewise equations

of state, neither of which typically have any free parameters to choose to describe the pressure-

density relationship, one can change the central density and seek out a desired mass or radius

but not both. For polytropes with a given adiabatic index γ, one is free to choose the polytropic

constant κ to yield a desired mass and radius, found by searching for the central enthalpy that

reproduces such a configuration (or, equivalently, central density given the monotonic depen-

dence of one on the other). Our TOV code computes all the values needed for Lorene’s initial

run, which, along with a set of grid-sizes and other Lorene-specific relaxation and convergence

parameters, allow for the initial Lorene step to be performed. With these details specified,

Lorene first generates two isolated TOV configurations, and places them in a binary system

without solving for any terms involving tidal interactions. The user must specify the values of

κ and γ for the polytropic EOS, along with the central enthalpies for each NS. We use our

own TOV code to ensure that these enthalpies correspond to the desired masses for both NS.

The distance between the stars is also specified at this stage, as is the number of collocation

points in Lorene’s 3-dimensional nested grid structure.

The second stage of the Lorene code takes these superimposed TOV solutions and relaxes

them using a relaxation factor multiplied by the enthalpy field and each auto-potential from the

Chapter 3. BNS Initial Data 31



Chapter 3. BNS Initial Data

current and previous iteration [2], solving for all metric fields self-consistently including tidal

interactions. This stage requires the information about the grid, along with a file containing

various initial conditions for each star, convergence error thresholds, the number of iterations to

perform various tasks, and the relaxation parameters applied as the code moves from iteration

to iteration. Lorene reads in all of this information at the beginning of the routine to launch

the relaxation code.

3.1.2 Summary of parameter space

In this work, we varied the input physical parameters describing our NS into Lorene to see how

the code behaves for different γ values, NS masses and radii, and binary separation distances.

This was done to document when the code behaves normally and reaches a convergent solution,

when it finishes running but diverges, with errors increasing drastically by the end of what

should be a relaxation run, and when the code crashed and did not run to completion at all.

We considered NS models with γ values ranging from 5
3 to 3, and NS masses between 1.4 and

1.8M⊙. Changing these values can have large effects on the output of the code, and whether

it will run to completion or crash. We also tested different separation distances to see how the

code performed and to see how binary NS tidal interactions incorporated from one distance

to another affect the stability of the relaxation routines.

In what follows, we distinguish between the gravitational mass, which incorporates all of

the mass-energy in the NS, including all potential energy effects, and the baryon mass, a sum

over the mass of all the particles in the NS. For a non-relativistic object these would be almost

exactly equal, but since NSs have non-Newtonian gravitational field strengths, with densities

that cause significant bending of space in their vicinity, these values will differ by appreciable

amounts.

We have found through our simulations that the Lorene code will crash if the initial baryon

masses are too high, so we have to start them at a lower value and then gradually increase

the mass of each NS once a relaxed configuration is determined at lower mass. In doing so, we

effectively allow the NSs to start interacting with each other gradually, enhancing the stability
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of the iterative scheme.

Lorene uses many iterations to update the mass of the two stars, generally several hundred

steps per relaxation calculation. On an ongoing basis, it solves for the spacetime metric field

configurations, the enthalpy and velocity state of the matter, and then modifies the zero-point

of the enthalpy every few timesteps (this is a user-specified parameter) so that the baryonic

mass of the NS is equal to a specified value. After the code has created a stable binary system

with the appropriate masses at a given radius, it can then decrease the separation distance

and re-solve for the new closer equilibrium configuration.

We have found that if we simply move the stars closer together, the code is unstable for

higher-mass configurations, and will often either crash or diverge. If instead we take a lower-

mass configuration at the previous separation, move it inward, and again allow the masses

to gradually increase, results are often significantly more likely to converge. A big issue with

the code is the instability of the relaxation routines for small γ values. Lorene has extreme

difficulty creating configurations for anything with γ ≲ 5/3, and often crashes for γ ≲ 2,

especially with a higher difference in mass between the two stars.

To better understand the behavior of the code and to try and get it to work for as wide a

range of parameter space as possible, we investigated whether relaxation sequences converge

for varying input values such as the error threshold and total number of iterations, by running

many tests while changing these values to see when the code crashed and when it was successful.

The code converges and terminates the calculation when the total relative change in enthalpy

summed over all gridpoints in the star, defined as the sum of the pointwise enthalpy differences

divided by the pointwise sum over all enthalpy values,

∑
|HJ(xi)−HJ−1(xi)|
|
∑

HJ−1(xi)|
(3.1.1)

where “J” is the step and the summation is over all gridpoint values, is less than a given

tolerance over the course of one iteration to the next. Since enthalpy is a function of mass

and is used to set the configuration of the star, it is used to check convergence [2]. As the

NSs start to stabilize, the change in enthalpy from one iteration to the next should decrease
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because large differences in mass cause the code to crash, so it’s important that the change in

enthalpy becomes very small. After testing, we found that a good threshold for the change in

enthalpy is 10−7.

Checking the error that was produced at each separation distance gave a good understand-

ing of how the code performed, along with the ability to see the changing separation distance

and growing tidal deformations of the stars due to their interactions. It also showed how the

code struggles to handle stars with different masses, particularly for configurations with com-

ponents of 1.4 to 1.8M⊙, respectively, the most unequal-mass configurations we considered.

Although each star in the binary system had the same EOS (or, equivalently, identical values

of κ ), changing the NS masses and separation distances still produced significantly different

results.

Figs. 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10 show when Lorene crashes and what initial γ and

mass values cause the code to crash or diverge and produce inaccurate results. In Fig. 3.5,

only the smaller γ values and high mass ratios caused the code to diverge, meaning it could

not get below the change in enthalpy of 10−7. This corresponds to the yellow color. The green

color corresponds to successful simulations where the change in enthalpy was below 10−7 on

the last iteration. The red color means the code could not start running due to the fact that

the previous separation distance diverged. As the separation distance decreases, Figs. 3.6 and

3.7 show that the trend of low γ values and high mass ratios continue to cause the code to

crash or diverge. One reason for this behavior is the fact that Lorene is an iterative process

that relies on many approximations, including the TOV simplification. These approximations

have some small error contained in them and this error can get magnified over iterations. This

is easy to see in Figs. 3.5 and 3.10. Both of these graphs are at the same separation distance,

but Fig. 3.10 has significantly less successful runs that Fig. 3.5 since the errors in Fig. 3.10

have had time to accumulate over iterations.

Figs. 3.8, 3.9, and 3.10 also show that small γ values and high mass ratios cause the

code to crash and diverge. This is due to the fact that smaller γ values create more compact

neutron stars and more compact stars can be unstable. Lorene struggles to simulate stars that
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Figure 3.5: Lorene success rate with an initial separation of 45km. The colors correspond
to the success of Lorene. Green means the code converged and passed below the change in
enthalpy, yellow means the code diverged, it finished running but could not get below the
change in enthalpy and red means the code could not even start running. This happens when
the previous separation distance diverges. The horizontal axis represents different gamma
values used in the TOV code and the vertical axis shows the mass ratio of the binary system.

are unstable or close to the point of instability. High mass ratios further contribute to this

problem since more massive stars are more likely to be unstable or close to the stability point.

Figs. 3.11, 3.12 and 3.13 show the extrinsic curvature of the binary NS system, KijKij ,

both with masses of 1.4M⊙, an initial separation distance of 50km and an EOS with γ = 2 in

the x−y plane. Here the x-axis represents the binary axis of the system and the instantaneous

momenta for each NS lies in the y-direction. The extrinsic curvature Kij is essentially the

partial time derivative of the spatial metric along the normal vector. The breakdown of

Lorene’s spectral expansion for the NS fields is clear to see in the last plot, in which the

separation distance goes down to 45km. The extrinsic curvature is no longer smooth like the

two previous versions and appears to have a significant quantity of high-frequency noise. This

sudden change in curvature over a distance of 2.5km combined with its non-smooth behavior

show signs that the convergence routines used by the code are breaking down.

Figs. 3.14, 3.15 and 3.16 show the Baryon density isocontours in the x− y plane for a NS

binary with the same binary NS components as Fig. 3.11, The first graph has a separation

distance of 50km, the second is 47.5km and the last is 45km. The breakdown of the code is
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Figure 3.6: Lorene success rate with an initial separation of 45km. Now the separation distance
has decreased to 42.5km. conventions are as in Fig. 3.5.

Figure 3.7: Lorene success rate with an initial separation of 45km. Now the separation distance
has decreased to 40km. conventions are as in Fig. 3.5.
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Figure 3.8: Lorene success rate with an initial separation of 50km. conventions are as in Fig.
3.5.

Figure 3.9: Lorene success rate with an initial separation of 50km. Now the separation distance
has decreased to 47.5km. conventions are as in Fig. 3.5.
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Figure 3.10: Lorene success rate with an initial separation of 50km. Now the separation
distance has decreased to 45km. conventions are as in Fig. 3.5.

clear to see at 45km where the isocontours are non-smooth. This is due to the fact that the

spectral expansion in the θ-direction is no longer accurate, due to the presence of substantial

contributions of high-frequency components.

Figs. 3.17, 3.18, 3.19 show the shift vector in the x − y plane for a NS binary with the

same binary NS components as Fig. 3.11. The shift vectors shows, relative to the normal

vector, how the spatial coordinates evolve in time. Although the directions of the shift vectors

do not seem to diverge or change substantially by the end, the shape of the NS still indicates

that the code has become wildly inaccurate. One reason why the vectors appear to be fairly

consistent is that the velocity model is specified, and thus the shift vector is less susceptible

to high-frequency noise, whereas the extrinsic curvature, defined in terms of derivatives of

the shift vector, preferentially amplifies the small-amplitude but high-frequency components

present in the data [2].

Figs. 3.20, 3.21, 3.22, 3.23, 3.24, 3.25 show the enthalpy isocontours in the x− z and x− y

planes for a NS binary with the same binary NS components as Fig. 3.11. The last plot shows

that the majority of the error is in the ϕ-direction, with the θ-direction (shown at z = 0)
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Figure 3.11: Extrinsic curvature KijKij isocontours at 50km for a binary NS system with
both NS having masses of 1.4M⊙ and a NS EOS with γ = 2 shown in the x−y plane. The NS
surface is shown as a heavy solid line. Lorene grid domain boundaries are shown as dashed
green curves, and surround each NS, with both sets extending throughout all space.
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Figure 3.12: Extrinsic curvature isocontours at 47.5km in the x− y plane, for a binary system
with NS components equivalent to those in Fig. 3.11

.

Figure 3.13: Extrinsic curvature isocontours at 45km in the x− y plane, for a binary system
with NS components equivalent to those in Fig. 3.11.
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Figure 3.14: Baryon density isocontours at 50km in the x− y plane, for a binary system with
NS components equivalent to those in Fig. 3.11

Figure 3.15: Baryon density isocontours at 47.5km in the x − y plane, for a binary system
with NS components equivalent to those in Fig. 3.11.
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Figure 3.16: Baryon density isocontours at 45km in the x− y plane, for a binary system with
NS components equivalent to those in Fig. 3.11.

Figure 3.17: Shift vector at 50km in the x− y plane, for a binary system with NS components
equivalent to those in Fig. 3.11.
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Figure 3.18: Shift vector at 47.5km in the x−y plane, for a binary system with NS components
equivalent to those in Fig. 3.11.

Figure 3.19: Shift vector at 45km in the x− y plane, for a binary system with NS components
equivalent to those in Fig. 3.11.
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Figure 3.20: Enthalpy isocontours in the
x − z plane at 50km, for a binary system
with NS components equivalent to those in
Fig. 3.11.

Figure 3.21: Enthalpy isocontours in the
x − y plane at 50km, for a binary system
with NS components equivalent to those in
Fig. 3.11.

yielding smoother results when compared to sections taken in the x−z plane. The ϕ-direction

errors are likely so large that they are in some sense the cause of some error in the θ-direction

as well. The error is caused by large terms in the high-frequency Fourier series expansion of

the surface equation. The extreme oscillations in these terms are distorting the surface of the

NSs, which effects every part of the equilibrium-finding routines that follow. The θ-direction

also has some clear error, but at a noticeably smaller level.

Even though technically the code converged for a model with an EOS with γ = 2, equal

NS masses of 1.4M⊙, and an initial separation distance of 50km, with an iteration-to-iteration

change in enthalpy value below the threshold, these inaccurate results are consistent with a

run that failed to converge to a valid physical solution, Figs. 3.26 and 3.27, with a γ value

of 2.25, equal masses of 1.4M⊙ and an initial separation distance of 45km. The inaccurate

results of Figs. 3.26 and 3.27 occurred when the separation distance decreased to 40km.

Lorene’s initial accuracy is very high, but it is not perfect. In modeling the surface shapes of

NSs, the code eventually allows for significant amplitudes in the modes describing the surface,

where the enthalpy goes to zero. These approximations can eventually lead to significant errors

when they begin to act as source terms for the field equations.
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Figure 3.22: Enthalpy isocontours in the
x− z plane at 47.5km, for a binary system
with NS components equivalent to those in
Fig. 3.11.

Figure 3.23: Enthalpy isocontours in the
x−y plane at 47.5km, for a binary system
with NS components equivalent to those in
Fig. 3.11.

Figure 3.24: Enthalpy isocontours in the
x − z plane at 45km, for a binary system
with NS components equivalent to those in
Fig. 3.11.

Figure 3.25: Enthalpy isocontours in the
x − y plane at 45km, for a binary system
with NS components equivalent to those in
Fig. 3.11.
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Figure 3.26: Inaccurate enthalpy isocon-
tours in the x − z plane at 40km, causing
the code diverge. for a binary NS system
with both NS having masses of 1.4M⊙, an
EOS with γ = 2.25 and an initial separa-
tion distance of 45km.

Figure 3.27: Inaccurate enthalpy isocon-
tours in the x− y plane at 40km, causing
the code diverge. for a binary NS system
with both NS having masses of 1.4M⊙, an
EOS with γ = 2.25 and an initial separa-
tion distance of 45km.

Moreover, our runs are more stable at a given separation if that separation is used as an

initial distance for the code, rather than serving as the second or third model in a sequence

of increasingly close binary configurations. Apparently, the reason that an initial separation

distance of 45km produced more successful runs than the third iteration of runs with an initial

distance of 50km (now at 45km) is likely due to the fact that each successful iteration of

Lorene is built off of the previous one, with errors accumulating rather than being properly

relaxed away. If the previous iteration has high-frequency noise present at all, the new one will

not be as accurate as the previous because it will compound the errors already present in the

previous steps. Possible underdamping in the relaxation scheme can produce overshooting of

the metric fields as the stars settle into their new equilibrium configuration [3]. This limits the

overall ability of the code to generate sequences as the separation distance for a given binary

is decreased.
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BH light deflection

4.1 Light deflection in black hole spacetimes

Previous work by the RIT group has focused on developing approximate techniques for cal-

culating the deflection of photon trajectories in the equatorial plane of Kerr BHs, including

both the total deflection [5] and the full trajectory in space [31]. Here, we take the full 4-

dimensional spacetime geodesic equations for Kerr-Newman BHs [4], i.e., BHs with arbitrary

spin and charge, and consider the effects of BH gravity on photons not necessarily confined to

the equatorial plane.

4.2 Non-equatorial geodesics

In this thesis, we consider primarily Kerr BHs, with charge set to zero. We note this is the

physically realistic case, with electric charge largely considered in the literature for mathemat-

ical rather than practical interest. To simplify the models being considered, we begin evolving

photon trajectories from a point located in the equatorial plane (θ = π/2), defining this to be

ϕ = 0 in the azimuthal direction. In previous works, the photon direction was chosen to lie

in the equatorial plane as well; here we can compare that case for our simulations to results

obtained in previous papers [4, 5, 31].
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4.3 Light deflection: results

While our evolution code for the photon geodesic trajectories is a fourth-order RK4 scheme, we

see different convergence behaviors for some particular cases. In particular, We see fourth order

convergence with RK4 for any initial direction ϕ that is not tangential to the BH, ϕ ̸= π/2,

with first order convergence for that particular case, ϕ = π/2.

The reason is simple, if somewhat complicated to avoid. For photons that start off with

no initial radial velocity, there is a singularity in the right hand side of Eq. (2.4.3) ( dr
dσ ), which

involves the square root of a function with linear radial dependence. As such a term is not

smooth, nor even singly differentiable, convergence drops to first order for simulations begun

on these trajectories (formally speaking, the RHS terms are not Lipschitz continuous in that

case). We have confirmed first-order convergence for runs begun with ϕ = π/2, and fourth-

order convergence for photon trajectories with all other initial directions. In either case, we

mau use Richardson extrapolation to yield high-accuracy results, so long as we incorporate

the correct convergence order into the formula.

We found that evolving the path in spherical coordinates was also problematic for this par-

ticular case. Indeed, having dr
dσ initially zero violates the assumptions about unique solutions

for differential equations (DEs), since the derivative of the right hand side of the DE with

respect to radius is not smooth under these conditions. To solve this problem, we evaluated

all derivatives in spherical coordinates, and converted these into Cartesian displacements for

the photon’s path using Eqs. (2.4.7)- (2.4.9), converting the new positions back to spherical

coordinates again to evaluate the RHS of Eqs. (2.4.3) - (2.4.6) at every step. The use of

Cartesian calculations did not change the first order behavior when ϕ was aimed tangentially

to the BH.

An error analysis was conducted to determine the accuracy of the code in each dimension.

We began with an initial step size of 2× 10−8 and continuously halved the step size. We then

calculated the absolute value of the difference between the original step size and half the step

size, half the step size and a quarter, and so on. The first curve (original step size minus half

the step size, εi) should be 16 times larger than the next curve (εi+1) since RK4 is fourth
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Figure 4.1: Photon’s path in the equatorial plane (left) and vertical plane (right) at an initial
distance of 10 times the BH’s, radius with no spin. The photon’s initial direction is ϕ = π

4
and θ = π

4

order accurate, limh→0
εi

εi+1
= 2n, n = convergence order and h = step size. This is why the

radial, phi and theta convergence plots of Figs. 4.2 - 4.4 have curves that are approximately

equal to 16. The sharp spikes that appear in the convergence plots of Figs. 4.2 - 4.4 around

σ = 0.08 result from a zero-crossing in the leading order-error term, the location of which

itself converges at fourth-order. While the typical assumptions about the scales of the error

terms at various orders do not hold instantaneously, we see results completely consistent with

fourth-order convergence throughout the duration of the evolution plotted.

Figs. 4.5-4.7 show the change in the final phi direction over different initial theta directions.

These are used to analyze the effects of spin on a photon’s path outside of the equatorial plane.

Noting that we have symmetry for photons whose trajectories lie above or below the equatorial

plane, the final phi direction can be approximated with an expansion series involving only even

powers of the initial theta direction, θ.

ϕf (θ) ≈ ϕf

(
θ =

π

2

)
+ κ

(
θ − π

2

)2
+ β

(
θ − π

2

)4
+ ... (4.3.1)
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Figure 4.2: Differences in radius, as a function of the affine parameter σ that serves as a proxy
for path length (see Eq. 2.4.3), between models computed using varying stepsizes (left). Initial
data is the same as in Fig. 4.1. A calculation of radial convergence (right) was obtained from
dividing by the photon’s path over different step sizes. A value of 16 is expected for fourth-
order convergence. The spike present around σ ∼ 0.08 results from a sign change in the
lowest-order error term, with the expected fourth-order convergence observed both before and
after the crossing.
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Figure 4.3: A calculation of differences in theta values over smaller step sizes (left). Initial
data is the same as in Fig. 4.1. A calculation of radial convergence (right) was obtained
from dividing by the photon’s path over different step sizes. A value of 16 is expected for
fourth-order convergence. The spike present around σ ∼ 0.08 results from a sign change in
the lowest-order error term, with the expected fourth-order convergence observed both before
and after the crossing.
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Figure 4.4: A calculation of differences in phi values over smaller step sizes (left). Initial
data is the same as in Fig. 4.1. A calculation of radial convergence (right) was obtained
from dividing by the photon’s path over different step sizes. A value of 16 is expected for
fourth-order convergence. The spike present around σ ∼ 0.08 results from a sign change in
the lowest-order error term, with the expected fourth-order convergence observed both before
and after the crossing.

Here, κ and β are constants, whose value can be approximated from numerical runs, and

the zeroth order term, ϕf

(
θ = π

2

)
, can be determined from our numerical simulations directly.

To find the values of κ and β, We plotted Eq. (4.3.2) against (θ− π
2 )

2 and calculated a linear

fit. The line of best fit is plotted to show the second order coefficient and y-intercept, κ, and

the fourth order coefficient and slope, β. Each plot has a different initial radius and the larger

radii have smaller slopes for their best fit lines. This is due to the fact that the black hole’s

gravity has less of an effect at larger distances.

ϕf (θ)− ϕf

(
θ = π

2

)(
θ − π

2

)2 = κ+ β
(
θ − π

2

)2
(4.3.2)

Table 4.1 shows the slope, β, and y-intercept, κ, of the final phi directions over different

initial theta directions. Displaying multiple plots over different initial radii allows us to exam-

ine how the final bending angle behavior changes as initial radius changes. In Figs. 4.5-4.7,

we found that the β and κ values fall off roughly proportionally to 1
r0

, where r0 is the initial

radius. This makes sense because larger initial separations from the black hole should have

Chapter 4. BH light deflection 51



Chapter 4. BH light deflection

less directional bending. It is also clear to see the BH’s spin affecting the bending angle co-

efficients, κ and β. Retrograde trajectories have larger bending angle coefficients than orbits

with no spin and prograde trajectories having the smallest coefficients.

The κ and β dependence on spin at a fixed r0 was also examined in figure 4.8. From

our results, we see the expected roughly linear dependence of the light bending parameter β

on the BH spin. There are no symmetries or other special cases present, so the lowest-order

variations occur at first-order. The dependence on spin is as expected, if counterintuitive:

positive spins (prograde trajectories) yield smaller azimuthal bending angles, whereas negative

spins (retrograde trajectories) yield larger ones. As we expected, κ is not symmetric about

a = 0 since there are no symmetries present. κ surprisingly also has a quadratic dependence

on spin that increases until about a = −0.6 and then starts to decrease. The explanation for

this quadratic dependence is not known and should be further investigated in the future.

The key insight is that all frame-dragging effects occur in the tangential direction, with

prograde photons being given boosts in the forward direction, leading to reduced interaction

time in the potential well of the black hole, and vice versa. Here, prograde frame-dragging

essentially boosts the photon more rapidly out of the potential well, and retrograde frame-

dragging slows down the interaction, leading to a longer interaction during the pericenter

passage.

a=-0.5
r0 β κ

9.5 0.0618 0.1347
10 0.0576 0.1260

10.5 0.0540 0.1184
11 0.0508 0.1117

11.5 0.0500 0.1074
12 0.0455 0.1003

a=0
r0 β κ

9.5 0.0587 0.1240
10 0.0557 0.1245

10.5 0.0524 0.1171
11 0.0494 0.1105

11.5 0.0468 0.1045
12 0.0445 0.0994

a=0.5
r0 β κ

9.5 0.0569 0.1279
10 0.0535 0.1203

10.5 0.0506 0.1136
11 0.0479 0.1076

11.5 0.0454 0.1021
12 0.0433 0.0972

Table 4.1: The β values represent the slope of the linear fit used to model the final phi
direction over different initial theta directions, while the κ values represent the y-intercepts of
those linear fits. The calculations were performed for different initial radii starting at 9.5 and
ending at 12, and for different spin values.
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Figure 4.5: The final phi directions plotted over different initial theta directions where spin is
set to 0. Each plot contains a linear fit for a set initial radius (r0). The bottom figure shows
how the slope (β) and y-intercept (κ) of each linear fit change over initial radius and how they
decrease proportionally to 1

r0
.
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Figure 4.6: The final phi directions plotted over different initial theta directions where spin
is set to -0.5. Each plot contains a linear fit for a set initial radius (r0). The bottom figure
shows how the slope (β) and y-intercept (κ) of each linear fit change over initial radius and
how they decrease proportionally to 1

r0
.
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Figure 4.7: The final phi directions plotted over different initial theta directions where spin is
set to 0.5. Each plot contains a linear fit for a set initial radius (r0). The bottom figure shows
how the slope (β) and y-intercept (κ) of each linear fit change over initial radius and how they
decrease proportionally to 1

r0
.
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Figure 4.8: The κ and β dependence over different spin values where r0 = 12. β is roughly
linear over the full range while κ seems to show roughly quadratic behavior and the explanation
for this is not currently present.
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Chapter 5

Conclusion

5.1 Conclusion

Since compact objects are often hard to observe or even detect, many astrophysicists rely on

powerful simulations to test theories about their properties. The study of compact objects will

be of great interest in the future due to their ability to produce gravitational waves. Increased

observations and gravitational wave detectors in the future will allow astrophysicists to further

study compact objects to fully understand them.

In this thesis we varied the central density of NS in the TOV code to generate initial data.

Then used that initial data to find out what values for things such as γ, mass and κ cause

Lorene to crash, and even showed that some configurations can get below the error threshold

and still have results comparable to those that diverged and were above the error threshold.

Moving forward, while Lorene remains an interesting candidate code for generating ad-

ditional relativistic binary initial data, in particular for the still poorly explored phase-space

of neutron star-black hole binaries, the complicated nature of its convergence behavior may

tilt the balance toward the use of other codes now publicly available within the numerical

relativity community.

For the BH light bending simulation, we investigated the bending of a photon’s path

around a black hole and showed that something as simple as RK4 can have accuracy issues

when aiming the photon tangentially. We did the first systematic exploration out of the
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equatorial plane and found roughly the expected radial dependence on the bending angle, but

there is evidence that the spin dependence for the lowest order behavior in inclination angle

may be non-trivial and possibly non-monotonic at high spin.

5.2 Future Work

A deep investigation into the error threshold of Lorene is necessary to understand why it allows

some inaccurate values to get below a user specified threshold. Testing Lorene on more initial

data is recommended because it may help find the cause of this problem.

Future work can also be done on the light bending calculation by testing the effect of

charge on the photon’s path. More work is necessary to explore the κ and β dependence on

spin by testing their behavior over more r0 values as well as testing more extreme spin values.

A deeper investigation into the κ dependence over different spin values should be explored in

future works to understand the quadratic behavior and provide further code validation if the

same dependencies are found.
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