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Abstract 

The Industrial Internet of Things (IIoT) stands as a revolutionary force, intertwining physical 

devices, sensors, and industrial systems to usher in advanced automation and data-driven 

decision-making across various sectors. However, this increased connectivity has exposed 

these systems to a growing array of cyber threats. Safeguarding IIoT environments becomes 

crucial to maintain the integrity, availability, and confidentiality of critical industrial processes. 

In response, this research explores the optimization of neural network parameters using 

Genetic Algorithms (GA). The application of GA has led to achieve a remarkable accuracy of 

95% across various attack types. The results demonstrate a high performance in identifying 

complex attack patterns, contributing to the resilience of IIoT systems against emerging cyber 

threats. 

 

Keywords: Industrial Internet of Things (IIoT), Artificial Intelligence (AI), machine learning 

(ML), Genetic Algorithm (GA), Neural Network (NN)  
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1- Introduction 

In recent years, the integration of digital technologies into industrial processes has 

fundamentally transformed the way we perceive and manage industrial systems [1]. This 

convergence of physical machinery with digital infrastructure, commonly referred to as the 

IIoT, holds the promise  of unprecedented levels of efficiency, productivity, and connectivity 

across various industrial sectors [2]. However, alongside these advancements comes the 

looming threat of cyber-attacks targeting critical infrastructure and industrial control systems 

[3]. 

 

As these systems become more interconnected and central to industrial operations, 

they also become attractive targets for sophisticated cyber threats [4]. The complexity and 

scale of these threats underscore the urgent need for robust detection mechanisms capable 

of identifying and mitigating potential attacks. Traditional cybersecurity approaches often fall 

short in effectively addressing the dynamic and evolving nature of cyber-attacks within IIoT 

environments, struggling to keep pace with the increasingly sophisticated tactics employed by 

malicious actors. 

 

This situation calls for innovative strategies that can not only adapt to new threats but 

also respond swiftly and effectively. Beyond the technical realm, the implications of securing 

IIoT systems extend into broader societal and economic dimensions. Safeguarding industrial 

infrastructures from cyber threats is not merely a technical challenge but a critical necessity 

for ensuring operational continuity, protecting sensitive data, and maintaining public safety 

[5]. 

 

This thesis addresses the pressing need for advanced cybersecurity solutions tailored 

to the unique challenges of IIoT environments. Specifically, it proposes the development of an 

advanced machine-learning algorithm designed to detect cyber-attacks targeting industrial 

systems. By leveraging the capabilities of machine learning and utilizing the rich data inherent 

in IIoT networks, this approach aims to enhance the security posture of industrial 

organizations and reduce the risks posed by cyber threats. 
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1.1. Background  

Before delving into the complexities of the IIoT, machine learning (ML), and Intrusion 

Detection Systems (IDS), it's crucial to establish a foundational understanding of the 

interaction between industrial systems and cybersecurity. Industrial environments or 

operational technology (OT), characterized by the integration of physical machinery with 

digital infrastructure, have undergone a deep transformation with the advent of IIoT 

technologies [6]. While IIoT promises enhanced efficiency and connectivity, it also introduces 

new challenges in terms of cybersecurity [7]. As industrial systems become increasingly 

interconnected and reliant on digital technologies, they become more susceptible to cyber 

threats targeting critical infrastructure and control systems. This requires the development of 

advanced cybersecurity solutions tailored specifically to the unique challenges posed by IIoT 

environments. In the subsequent sections, the focus will shift to exploring the fundamental 

concepts of the IIoT, ML, and IDS, highlighting their roles in supporting cybersecurity. 

1.1.1. Industrial Internet of Things (IIoT) 

The Industrial Internet of Things (IIoT) refers to the interconnected network of devices, 

sensors, and systems that are used in industrial and operational environments. IIoT can 

significantly help in collecting, exchanging, and analyzing data to optimize processes, improve 

efficiencies, and enable remote monitoring and control [8]. The adoption of IIoT has grown 

rapidly in recent years, transforming industries such as manufacturing, logistics, energy, and 

transportation into what is known as the Fourth Industrial Revolution (Industry 4.0 or 4IR). 

 

Industry 4.0 refers to the fourth industrial revolution; it is the current and ongoing 

transformation of industries and societies through the integration of advanced digital 

technologies. It is characterized by the convergence of physical, digital, and biological 

technologies, blurring the lines between the physical and virtual worlds [9]. At the heart of 

industry 4.0 are technologies such as artificial intelligence (AI), big data, the IoT which the IIoT 

is derived from, cloud computing, robotics, and other emerging technologies.  

 

These technologies are changing the way businesses operate, driving innovation, and 

creating new opportunities. As an example, in manufacturing, the use of smart factories 

powered by IoT and AI enables autonomous and connected production processes, leading to 
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increased efficiency, reduced costs, and improved quality control. However, along with the 

numerous benefits of IIoT, there has been a parallel rise in cybersecurity threats that pose 

significant risks to the secure and reliable operation of IIoT systems. 

 

As IIoT systems become more interconnected and data-driven, they are vulnerable to 

various cyber threats, including unauthorized access, data breaches, malware attacks, and 

insider threats. These threats can result in the disruption of operations, financial losses, 

damage to reputation, and potential safety hazards. Furthermore, the increasing convergence 

of IT (Information Technology) and OT in IIoT systems has created new attack vectors and 

complexities in securing these systems. The growing reliance on IIoT in critical infrastructure, 

such as power grids, transportation networks, and industrial control systems (ICS), has raised 

concerns about the potential for cyber-attacks to have far-reaching and devastating 

consequences. Cybercriminals, nation-state actors, and other malicious entities are constantly 

evolving their tactics, techniques, and procedures (TTPs) to exploit vulnerabilities in IIoT 

systems, making it imperative for organizations to prioritize robust cybersecurity measures to 

safeguard their IIoT deployments [10]. 

 

Considering these challenges, ensuring the security of IIoT systems has become a 

critical priority for industries and organizations that leverage IIoT technologies. This includes 

implementing strong authentication and access controls, securing device firmware and 

software, encrypting data, implementing intrusion detection and prevention systems (IDPS), 

and having robust incident response plans in place. Furthermore, compliance with relevant 

regulations and industry standards, as well as regular security audits, vulnerability 

assessments, and penetration testing, are essential components of a comprehensive IIoT 

cybersecurity strategy. While the adoption of IIoT offers significant benefits for industrial and 

operational environments, the growth of cybersecurity threats poses significant challenges. 

Organizations must prioritize robust cybersecurity measures to safeguard their IIoT systems 

and protect against evolving threats. With the increasing reliance on IIoT in critical 

infrastructure and industrial processes, the importance of IIoT cybersecurity cannot be 

overstated in ensuring the secure and reliable operation of IIoT systems. 
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1.1.2. Machine Learning 

Machine learning is a subset of AI that involves the use of algorithms and statistical 

models to enable computer systems to learn from and make predictions or decisions based 

on the given data [11]. In the realm of cybersecurity, machine learning can be a powerful tool 

to detect, prevent, and respond to cyber threats more proactively and efficiently.  

 

Machine learning algorithms can be trained on large datasets of cybersecurity-related 

data, such as network traffic, log files, malware samples, and user behaviour to learn patterns, 

anomalies, and indicators of compromise (IOCs). Once trained, these models can be deployed 

in real-time to analyze incoming data and identify potential cyber threats, such as malware, 

viruses, phishing attacks, and intrusions. One of the key applications of machine learning in 

cybersecurity is threat detection [12]. For example, machine learning can be used to identify 

suspicious patterns of network traffic, abnormal user behaviour, or unknown malware 

samples. These models can also adapt and learn from new data, allowing them to evolve and 

improve their detection capabilities over time [13].  

 

Another application of machine learning in cybersecurity is in vulnerability assessment 

and patch management. Machine learning models can analyze system configurations, patch 

histories, and other data to identify vulnerabilities in software or hardware that could be 

exploited by cybercriminals [14]. This information can help organizations prioritize their patch 

management efforts and proactively address potential vulnerabilities before they are 

exploited.  

 

Machine learning techniques can also be used in cybersecurity for threat hunting and 

incident response. By analyzing historical data and patterns of cyber-attacks, machine learning 

models can help identify ongoing or potential cyber threats that may have evaded traditional 

security measures. This can aid in proactive threat-hunting efforts, allowing organizations to 

detect and respond to threats in a more timely and effective manner [15].  

 

Moreover, machine learning can be used to enhance authentication and access control 

mechanisms in cybersecurity. Machine learning models can analyze user behaviour patterns, 
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device characteristics, and other contextual information to detect anomalies or suspicious 

activities that may indicate unauthorized access or compromised accounts. This can help 

organizations detect and prevent unauthorized access or insider threats, enhancing the 

security of their systems and data [16]. 

 

However, it's important to note that machine learning in cybersecurity is not the 

ultimate solution and it has limitations. Machine learning models can produce false positives 

or false negatives and can also be susceptible to adversarial attacks. Therefore, it's crucial to 

continuously evaluate, validate, and update machine learning models to ensure their accuracy 

and effectiveness in the ever-evolving landscape of cybersecurity threats [17]. Machine 

learning has the potential to significantly enhance cybersecurity by enabling proactive threat 

detection, vulnerability assessment, incident response, and access control. By leveraging the 

power of data and algorithms, machine learning can help organizations stay ahead of cyber 

threats and better protect their systems, networks, and data from cyber-attacks [18]. 

 

1.1.3. Intrusion Detection Systems 

Intrusion Detection Systems (IDS), including both Network-based IDS (NIDS) and Host-

based IDS (HIDS), serve as vital components in the complex landscape of cybersecurity, acting 

as guardians against potential threats to network and system integrity [19]. These systems are 

meticulously crafted to address the dynamic and ever-evolving nature of cyber threats. Their 

overarching objective is to provide organizations with an intelligent and automated layer of 

defence, capable of detecting and responding to a multitude of security incidents [20]. 

 

NIDS is a security system that functions as a sentinel overseeing the collective traffic 

coursing through interconnected systems. Employing advanced algorithms, it scrutinizes 

packets of data traversing the network in real-time. By comparing observed patterns against 

predefined signatures indicative of known threats, NIDS detects activities such as port scans, 

denial-of-service attacks, and other malicious behaviours that target network vulnerabilities. 

Its ability to analyze the broader network landscape ensures a comprehensive defence against 

threats targeting the organization's interconnected infrastructure [21]. 
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HIDS focus on the individual hosts or devices within a network. It monitors activities 

on each host, including file integrity, system logs, and system calls. This approach allows HIDS 

to detect anomalies specific to the activities on a particular host, such as unauthorized access 

attempts, unusual file modifications, or suspicious processes. HIDS provides a localized 

perspective, complementing the broader network awareness provided by NIDS [22]. 

 

Both NIDS and HIDS operate by leveraging sophisticated algorithms and rule sets. 

These algorithms are meticulously designed to recognize subtle patterns and anomalies within 

the vast array of network traffic or host activities. By comparing observed data against 

established signatures and behavioural baselines, both NIDS and HIDS can discern activities 

indicative of malicious intent, including deviations from security policies and potential policy 

violations. Furthermore, NIDS and HIDS play pivotal roles in identifying and mitigating security 

policy violations. By scrutinizing activities against predefined rules and policies, they ensure 

that organizations adhere to their established security postures [23]. This capability is 

particularly crucial in maintaining compliance with industry regulations and safeguarding 

sensitive data from unauthorized access or manipulation. The adaptability of NIDS and HIDS 

is another key feature. The detection systems are continually upgraded to keep pace with the 

evolving of cyber threats. They constantly update their knowledge bases, incorporating new 

ads and refining detection mechanisms [24]. This adaptive quality enables NIDS and HIDS to 

stay ahead of emerging threats, making them indispensable assets in an organization's 

cybersecurity arsenal. 

Key features of an IDS are as follows [25], [26], [27], [28], [29], [30], [31], [32]: 

1. Signature-based Detection: Signature-based detection is a fundamental technique 

employed by IDS, involving the comparison of observed data against predefined 

signatures or patterns of known cyber threats. These signatures are essentially 

fingerprints of malicious activities, allowing the IDS to recognize and respond to well-

documented attacks, such as viruses, worms, and specific intrusion methods. 

2. Behaviour-based Detection: Behaviour-based detection takes a more dynamic 

approach by establishing a baseline of normal behaviour for networks or hosts. The 

IDS continuously monitors activities and flags deviations from this established baseline 

as potential security incidents. This method is particularly effective in detecting 
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previously unknown or evolving threats that might not be covered by signature-based 

approaches. 

3. Rule-based Detection: Rule-based detection involves the application of rules and 

algorithms to identify potential threats based on general characteristics of attacks. This 

method allows IDS to adapt to emerging threats by leveraging behavioural analysis and 

situational awareness. Rule detection is especially valuable in scenarios where rigid 

signatures may not capture the full spectrum of attack variations. 

4. Real-time Monitoring: One of the defining features of IDS is its real-time monitoring 

capability. This enables the system to promptly detect and respond to security 

incidents as they unfold. The immediate identification of malicious activities is crucial 

in minimizing the potential impact of cyber threats and fortifying the overall security 

posture of a network or system. 

5. Alerts and Notifications: When an IDS identifies suspicious behaviour, it generates 

alerts or notifications to prompt further investigation or action. These alerts provide 

valuable insights into the nature of the detected incident, allowing cybersecurity 

professionals to assess the severity of the threat and implement appropriate response 

measures. 

6. Logs and Reporting: IDS systems maintain detailed logs of activities, offering a 

comprehensive record of events for retrospective analysis. These logs not only aid in 

understanding the specifics of security incidents but also serve as valuable resources 

for fine-tuning the IDS, refining detection rules, and improving overall security 

strategies. 

 

1.2. Problem Statement 

The rapid adoption of the IIoT has led to a new era of industrial automation and 

efficiency, revolutionizing the way operations are conducted. This transformation, fuelled by 

increased connectivity and the seamless integration of digital technologies, has undoubtedly 

enhanced productivity. However, this very connectivity exposes critical infrastructures to an 

expanding array of sophisticated cyber threats, raising significant concerns about the 

robustness of cybersecurity measures in IIoT systems [33]. The necessity of ensuring the 
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cybersecurity of IIoT systems is crucial, as any compromise in the integrity and reliability of 

industrial operations could have far-reaching consequences [34]. 

 

The convergence of OT and IT in industrial environments creates complex attack 

surfaces, vulnerable to a diverse range of cyber threats. From Distributed Denial of Service 

(DDoS) attacks to data breaches and malware infiltration, the threat landscape confronting 

industrial systems is multifaceted and constantly evolving. Incidents like the Stuxnet and Triton 

attacks serve as stark reminders of the potential consequences of compromised industrial 

security, with the ability to disrupt critical infrastructure and endanger lives [35]. 

 

The integrity and reliability of industrial operations depend on the security of IIoT 

systems. Any compromise in cybersecurity could lead to disruptions in production processes, 

financial losses, reputational damage, and, in extreme cases, pose risks to human safety [36]. 

Thus, ensuring the resilience of IIoT systems against cyber threats is not only a matter of 

operational continuity but also a crucial aspect of safeguarding critical infrastructure and 

maintaining public trust. 

 

2- Literature Review 

2.1. Related work 

This section examines a series of research papers contributing to the growing landscape 

of machine learning applications within IIoT environment. Each of these studies employs 

various methodologies and models to develop robust intrusion detection systems tailored for 

IIoT environments. The cornerstone of these investigations lies in the utilization of a variety of 

algorithms tailored specifically for IIoT IDS, which serve as essential elements for algorithm 

development and evaluation. This shows the importance of using tailored algorithms designed 

for IIoT IDS, providing insights into various techniques used to strengthen the detection 

capabilities to secure the industrial environment from any potential threats or cyberattacks. 

Through an analysis of performance metrics such as Accuracy, Precision, F1 Score, and Recall, 

this section provides insights into the effectiveness of machine learning algorithms and 
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frameworks, from leveraging IIoT datasets, thereby enhancing the security posture of IIoT 

infrastructures. 

 

In [37] authors introduce FMDADM, a multi-layer framework specifically designed to 

detect and mitigate DDoS attacks in SDN-based IoT networks using machine learning 

techniques. The framework operates across different layers, including the data plane, control 

plane, and application plane, to provide comprehensive defence against DDoS attacks. 

FMDADM leverages machine learning algorithms, including SVM, GNB, KNN, BLR, DT, and RF, 

for traffic classification and anomaly detection, enabling accurate identification and 

differentiation between normal and malicious network behaviour. The study utilizes the Edge-

IIoTset dataset, focusing specifically on DDoS attacks for evaluation purposes, achieving 

performance metrics with an accuracy of 99.79%, precision of 99.09%, F1 score of 99.43%, 

and recall of 99.77%. Furthermore, the paper outlines the parameters used for model 

optimization, including the splitting criterion, number of trees, minimum samples per leaf, 

minimum samples per split, and maximum features, with selected values of Gini, 1000, 1, 2, 

and 7. 

 

The [38] authors introduces an architecture based on Mobile Edge Computing (MEC) to 

enhance the security of IoT applications using federated deep learning. The proposed 

architecture aims to address the security challenges in IoT systems by leveraging the 

computational capabilities of MEC servers and the privacy-preserving nature of federated 

learning. By distributing the deep learning model training process across multiple edge 

servers, the architecture ensures that sensitive data remains on the local edge servers, thus 

preserving privacy. The federated deep learning approach allows for collaborative model 

training without the need for centralized data collection, minimizing the risk of data breaches. 

The research achieves notable results with an accuracy of 86%, precision of 95%, F1 score of 

87%, and recall of 87% utilizing the NSL-KDDTest dataset. 

 

 

In [39] authors explore machine learning approaches for detecting and characterizing cyber-

attacks in IoT-enabled cyber-physical systems. It highlights the growing threat landscape and 

the need for effective defence mechanisms in the context of IoT systems. It discusses the 
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challenges and considerations specific to OT environments, including limited resources and 

the need for real-time analysis. The paper used Deep Neural Networks (DNN) combined with 

the Decision Trees algorithm. The proposed solution was tested in an OT environment by using 

the natural gas pipeline dataset. The research achieves notable results with an accuracy of 

97.3%, precision of 97%, F1 score of 90%, and recall of 97%. 

 

In [40] authors present an AI-enabled framework designed for detecting distributed cyber-

attacks in IoT-based smart environments. The proposed framework leverages DNN, SVM RF, 

DT, GB, and NB, to analyze network traffic patterns and identify malicious activities. By 

deploying distributed AI models across IoT devices and gateways, the framework enables real-

time detection and response to cyber-attacks, while minimizing resource consumption and 

latency. It was conducted on the Edge-IIoTset dataset achieving an accuracy of 96%, precision 

of 86%, F1 score of 85%, and recall of 85%. 

 

The [41] authors present a hybrid solution that combines a CNN and LSTM model for 

intrusion detection at the edge of the IIoT systems. The proposed model combines the 

strengths of CNN for spatial feature extraction and LSTM for capturing temporal dependencies 

in the third and fourth network layers. It takes into consideration privacy concerns by 

employing a privacy-aware feature selection algorithm that removes sensitive data before 

analysis. Notably, the study utilizes the IoT-DS2 dataset, which is constructed by combining 

different datasets, including BoT-IoT, IoT-NI, MQTT-IoTIDS2020, MQTTset, and IoT-23, rebuilt 

from PCAP files. The results demonstrate achieving an accuracy of 97.14%, precision of 

82.32%, F1 score of 72.66%, and recall of 74.62%. 

 

In [42] the authors propose an approach to enhance cybersecurity in the context of the 

IIoT. The authors present a hybrid deep learning-based intrusion detection system specifically 

tailored for IIoT environments. By leveraging the power of convolutional neural networks 

(CNN) and long short-term memory (LSTM), the proposed system effectively identifies and 

classifies intrusions in real-time. The hybrid nature of the system combines the strengths of 

both CNN LSTM models to improve detection accuracy and minimize false positives and false 

negatives. Additionally, it provides valuable insights into the hyperparameters such as 100 

epochs, a batch size of 5000, a learning rate of 0.0001, activation functions including Relu and 
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Sigmoid, spatial dropout regularization, and MinMaxScaler normalization which ended up 

with an accuracy of 98.69%.  

 

The [43] authors discuss intrusion detection in the context of IIoT systems. It addresses 

the unique challenges and requirements for intrusion detection in industrial environments, 

where critical infrastructure and OT are interconnected. The paper proposed two methods 

using deep learning to classify IIoT network packets and highlights the importance of real-time 

monitoring and response to mitigate potential threats. It emphasizes the need for a 

comprehensive approach that combines network monitoring, behavioural analysis, and 

machine learning algorithms to effectively detect and respond to intrusions in IIoT systems, 

ultimately enhancing the security and resilience of industrial environments. The proposed 

RNN (Recurrent Neural Network) architecture employs three hidden layers for binary 

classification and four for multi-class. It utilizes 90 hidden nodes for binary and 120 for multi-

class classification, with a consistent learning rate of 0.1. for both. Relu is the activation 

function for binary, while sigmoid is used for multi-class. Both classifications utilize softmax 

for output interpretation, and the Adam optimizer, achieving an accuracy of 99%. 

 

In [44] the authors focus on intrusion detection for IoT applications using federated and 

transfer learning techniques. It highlights the challenges of traditional intrusion detection 

systems in IoT due to limited resources and the distributed nature of IoT devices. The paper 

proposes a federated learning approach where local models are trained on individual IoT 

devices, and then a global model is created by aggregating the knowledge from these local 

models while preserving data privacy. Additionally, transfer learning is employed to adapt the 

global model to new IoT environments with limited labeled data. The study leverage from the 

Edge-IIoTset dataset achieves an accuracy of 98.1%, precision of 99%, F1 score of 99%, and 

recall of 99%. 

 

The [45] authors introduce a one-class classifier based on polynomial interpolation and 

apply it to networking security. The proposed classifier aims to detect anomalies or malicious 

activities in network traffic by learning the normal behaviour of the system using a polynomial 

interpolation model. By capturing the underlying patterns and trends in the data, the classifier 

can distinguish between normal and abnormal network behaviour. Leveraging the Edge-
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IIoTset dataset, the classifier achieves an accuracy of 97.27%, precision of 96.03%, F1 score of 

not given, and recall of 94.82%. Additionally, PCA (Principal Component Analysis) is performed 

with a value of 15. 

 

In [46] the authors present a security model based on LightGBM (Gradient Boosting) and 

transformer architectures to safeguard healthcare systems against cyberattacks and highlight 

the criticality of healthcare systems and the increasing risk of cyber threats. LightGBM is 

employed for anomaly detection, effectively identifying malicious activities within the 

healthcare system. The Transformer architecture, known for its proficiency in sequential data 

analysis, is leveraged for log analysis and generating predictions. Experimental results 

demonstrate the model achieved a precision of 92%, F1 score of 89%, and a recall of 88%, 

although the accuracy is not clear in the paper. 

 

Table 1: Related Work 

Paper Proposed 

solution 

Application/ 

Domain 

Dataset Traffic 

types 

Accuracy Precision F1 Recall  

[34] FMDADM SDN-based IoT 

networks 

Edge-

IIoTset 

1 99.79 99.09 99.43 99.77 

[35] Federated 

Learning 

Architecture 

IoT Applications NSL-

KDDTest 

Not 

Given 

86 95 87 87 

[36] DNN and 

Decision Trees 

IoT-enabled 

cyber-physical 

systems 

Natural 

Gas 

Pipeline 

Dataset 

Not 

Given 

97.3 97 90 97 

[37] Distributed AI 

Framework 

IoT-based smart 

environments 

Edge-

IIoTset 

15 96 86 85 85 

[38] Hybrid CNN-

LSTM Model 

IIoT Systems at 

the edge 

IoT-DS2 23 97.14 82.32 72.66 74.62 

[39] Hybrid Deep 

Learning 

Intrusion 

Detection 

IIoT 

Environments 

Edge-

IIoTset 

15 98.69 Not 

Given 

Not 

Given 

Not 

Given 

[40] Deep Learning 

for IIoT Intrusion 

Detection 

IIoT Systems Edge-

IIoTset 

15 99 Not 

Given 

Not 

Given 

Not 

Given 
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[41] Federated and 

Transfer 

Learning 

IoT Applications Edge-

IIoTset 

15 98.1 99 99 99 

[42] Polynomial 

Interpolation 

One-Class 

Classifier 

Networking 

Security 

Edge-

IIoTset 

15 97.27 96.03 Not 

Given 

94.82 

[43] LightGBM and 

Transformer 

Security Model 

Healthcare 

Systems 

Edge-

IIoTset 

15 Not 

Given 

92 89 88 
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Table 1 summarizes various studies that support the importance of developing 

different techniques and methods to confront cyber-attacks targeting IIoT environments. 

Notably, Edge-IIoTset emerges as a prevalent dataset across multiple studies, indicating its 

significance as a foundational resource for evaluating machine learning solutions. High 

accuracy rates have been observed in these studies, with most achieving above 95%, 

validating the efficacy of the proposed methodologies in detecting and mitigating industrial 

cyber threats. FMDADM solution was able to achieve a remarkable accuracy of 99.79%, 

focusing exclusively on DDoS attacks in SDN-based IoT networks. Furthermore, the diversity 

of applications, ranging from healthcare systems to IoT-enabled cyber-physical systems, 

showcases the broad applicability of these machine-learning solutions across various IIoT 

domains. 

 

2.2. Motivation 

This study is motivated by the wish to acquire and implement innovative techniques that 

can greatly improve cybersecurity in critical sectors. The increasing complexity and 

interconnection of industrial systems call for creative strategies tailored to tackle the distinct 

challenges presented by the IIoT. This research seeks to safeguard critical infrastructure by 

utilizing cutting-edge methods and promoting the security and dependability of industrial 

operations.  

 

Another reason is the challenge of developing successful approaches for a complicated and 

ever-changing setting such as IIoT, where standard cybersecurity techniques frequently prove 

to be ineligible. The complex design of these systems, along with the changing environment 

of cyber threats, requires new tactics that can adjust and detect to possible risks immediately. 

Addressing these challenges offers a great chance to have a significant protection layer for the 

security of critical industrial systems. 
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3- Methodology 

3.1. Dataset 

In the initial stages of this research, different datasets have been explored, focusing on 

datasets about cyber attacks within the IIoT domain. Among the array of datasets considered, 

these datasets have been reviewed in this thesis:  N-BaIoT, Bot-IoT, MQTTset, 

FederatedTon_IoT, X-IIoTD, WUSTL-IIoT-2021, and Edge-IIoTset. After the evaluation as shown 

below in Table 2, the Edge-IIoTset dataset emerged as the preferred choice, primarily due to 

its comprehensive coverage across all the seven layers of the IoT architecture [47] which are 

given later in this section, offers a rich feature set of 61 attributes, and includes 14 attack types 

along with normal traffic. Furthermore, its status as one of the latest datasets to the IIoT 

landscape, along with its widespread adoption can be used as a benchmark in this research. 

 

Table 2: IoT IDS Datasets 

Ref Dataset Year Feature
s 

Layers Devices Attacks IIoT 

[48] N-BaIoT 2018 23 2 9 10 No 

[49] Bot-IoT 2019 46 VM Simulatio
n 

8 No 

[50] MQTTset 2020 33 2 8 5 No 

[51] FederatedTon_Io
T 

2020 31 3 Simulatio
n 

9 No 

[52] X-IIoTD 2021 59 3 Not Given 18 Yes 

[53] WUSTL-IIOT-2021 2021 41 4 5 4 Yes 

[54] Edge-IIoTset 2022 61 7 10 14 Yes 

 

The Edge-IIoTset dataset [54] was designed to simulate realistic cyber security scenarios 

on the IoT and IIoT applications. The dataset is intended to be used for training and evaluating 

machine learning models for cyber security in centralized and federated learning settings. The 

architecture of Edge-IIoTset includes multiple layers: Cloud Computing Layer, Network 

Functions Virtualization Layer, Blockchain Network Layer, Fog Computing Layer, Software-

Defined Networking Layer, Edge Computing Layer, and IoT and IIoT Perception Layer.  
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Table 3: Edge-IIoTset Size 

N Traffic Type Count Percentage 

1 Normal 24301 15.40% 

2 DDoS_UDP 14498 9.19% 

3 DDoS_ICMP 14090 8.93% 

4 Ransomware 10925 6.92% 

5 DDoS_HTTP 10561 6.69% 

6 SQL_injection 10311 6.53% 

7 Uploading 10269 6.51% 

8 DDoS_TCP 10247 6.49% 

9 Backdoor 10195 6.46% 

10 Vulnerability_scanner 10076 6.39% 

11 Port_Scanning 10071 6.38% 

12 XSS 10052 6.37% 

13 Password 9989 6.33% 

14 MITM 1214 0.77% 

15 Fingerprinting 1001 0.63% 

 

Moreover, the Edge-IIoTset collected information from more than ten IoT sensors and 

actuators providing a diverse representation of real-world IoT environments; gathering a total 

of 157,800 network traffic. Covering 14 attack types along with normal traffic to create an 

imbalanced dataset as shown above in Table 3. 

 

Table 4: Edge-IIoTset Attacks And Attacks Category  

Attack Category Attack Type 

Distributed Denial-of-Service (DDoS) TCP SYN flood DDoS 

UDP flood DDoS 

HTTP flood DDoS 

ICMP flood DDoS 

Information Gathering  Port Scanning 

OS Fingerprinting 
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Vulnerability Scanning 

Man-in-the-middle (MITM) DNS Spoofing 

ARP Spoofing 

Injection Cross-site Scripting (XSS) 

SQL Injection 

Uploading 

Malware Backdoor 

Password cracking 

Ransomware 

 

Table 4 presents 15 types of attack covered in the paper of the Edge-IIoTset dataset 

[54], which are categorized into five attack groups. Notably, the reason for conflict between 

the 15 attacks mentioned in the paper and the 14 attacks observed in the dataset is because 

in the dataset the two attacks DNS Spoofing and ARP Spoofing were combined into a single 

MITM attack. 

 

3.1.1. Attack Category 1: Distributed Denial-of-Service (DDoS) 

Distributed Denial-of-Service (DDoS) is a type of cyber-attack where multiple 

compromised computers or devices, often referred to as "botnets," are used to flood a target 

system or network with a massive amount of traffic or requests, overwhelming the target and 

causing it to become unavailable or inaccessible to legitimate users [55]. In a DDoS attack, the 

attacking devices are distributed across various locations, making it difficult to identify and 

block the attack at its source. DDoS attacks typically aim to disrupt the normal operation of a 

website, server, or network by flooding it with traffic or requests beyond its capacity to handle. 

This can result in a temporary or prolonged outage, loss of revenue, damage to reputation, 

and potential financial or operational impacts for the targeted organization. DDoS attacks can 

be launched using various techniques, such as flooding the target with excessive network 

traffic, overwhelming its resources with a high volume of requests, or exploiting vulnerabilities 

in the target's systems or applications. DDoS attacks can also be combined with other types 

of attacks, such as malware infections or social engineering, to further disrupt or compromise 

the target's systems or data. 
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3.1.1.1. Attack 1: TCP SYN flood DDoS 

TCP SYN flood is a type of DDoS attack that targets the TCP (Transmission Control 

Protocol) protocol, which is commonly used for establishing network connections between 

devices. In a TCP SYN flood attack, the attacker floods the target system with many 

synchronization (SYN) packets, which are the initial packets exchanged between devices to 

establish a TCP connection. In a typical TCP handshake process, the client sends a SYN packet 

to the server, the server responds with a synchronization-acknowledgment (SYN-ACK) packet, 

and the client completes the handshake by sending an ACK packet [56]. Once the handshake 

is completed, the TCP connection is established, and data can be exchanged between the 

client and server. However, in a TCP SYN flood attack, the attacker sends a high volume of SYN 

packets to the target system without completing the handshake process by sending the ACK 

packets. This floods the target system's resources, such as the system's TCP connection queue 

or memory, with half-open connections that are waiting for completion, consuming system 

resources and preventing legitimate clients from establishing connections. This can result in a 

denial of service, as the target system becomes overwhelmed and unable to respond to 

legitimate connection requests, causing disruption or unavailability of services. TCP SYN flood 

attacks are effective because they exploit the fundamental design of the TCP handshake 

process, which requires resources to be allocated for each half-open connection. These attacks 

can be challenging to mitigate, as they can be launched from multiple distributed sources, 

making it difficult to identify and block the attack traffic.  

 

3.1.1.2. Attack 2: UDP flood DDoS 

UDP flood is a type of DDoS attack that targets the UDP (User Datagram Protocol) 

protocol, which is a connectionless protocol used for transmitting data over a network. In a 

UDP flood attack, the attacker floods the target system with a high volume of UDP packets, 

overwhelming its resources and causing disruption or unavailability of services. Unlike TCP, 

which establishes a connection before transmitting data, UDP does not establish a connection 

and does not guarantee reliable delivery of packets [57]. This makes UDP flood attacks 

particularly effective, as they can be easily launched by sending a large number of UDP packets 

to the target system without the need for completing any handshake or connection setup 



P a g e  28 | 100 

 

process. In a UDP flood attack, the attacker typically spoofs the source IP addresses of the 

packets, making it difficult to trace the attack back to its source. The target system's resources, 

such as its network bandwidth, processing power, or memory, can become overwhelmed as 

it tries to process the large volume of incoming UDP packets. This can result in a denial of 

service, as legitimate traffic may be unable to reach the target system, causing disruption or 

unavailability of services. UDP flood attacks can target specific UDP-based services or 

applications, such as DNS (Domain Name System) servers, VoIP (Voice over Internet Protocol) 

systems, online gaming servers, or other applications that rely on UDP for data transmission. 

These attacks can also be combined with other types of attacks, such as DNS amplification or 

reflection attacks, where the attacker exploits vulnerabilities in third-party systems to amplify 

the volume of attack traffic directed toward the target system. 

 

3.1.1.3. Attack 3: HTTP flood DDoS 

HTTP flood is a type of DDoS attack that targets web servers and web applications by 

overwhelming them with a high volume of HTTP (Hypertext Transfer Protocol) requests [58]. 

HTTP is the foundation of the World Wide Web and is used for transmitting data between web 

servers and clients, such as web browsers. In an HTTP flood attack, the attacker floods the 

target system with a massive number of HTTP requests, consuming its resources and causing 

disruption or unavailability of web services. HTTP flood attacks are often carried out using 

botnets, which are networks of compromised computers that are controlled remotely by the 

attacker. These botnets can generate a massive amount of HTTP requests from multiple 

sources, making it difficult to identify and block the attack traffic. The HTTP requests in an 

HTTP flood attack can be simple GET requests, which request a web page, or more complex 

POST requests, which send data to the web server. There are several variants of HTTP flood 

attacks, including volumetric HTTP flood attacks, which aim to overwhelm the target system's 

resources with a high volume of HTTP requests, and application-layer HTTP flood attacks, 

which aim to exploit vulnerabilities in web applications or web servers to cause disruption or 

unavailability of services. Application-layer HTTP flood attacks can target specific URLs, 

parameters, or functionalities of web applications, aiming to exhaust server-side resources, 

such as CPU, memory, or database connections, or trigger application-level errors or crashes. 
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3.1.1.4. Attack 4: ICMP flood DDoS 

ICMP flood is a type of DDoS attack that targets the ICMP (Internet Control Message 

Protocol) protocol, which is a network protocol used for sending error messages and 

operational information about network conditions [59]. In an ICMP flood attack, the attacker 

floods the target system with a high volume of ICMP Echo Request (ping) packets, 

overwhelming its resources and causing disruption or unavailability of network services. ICMP 

flood attacks are often carried out using botnets, which are networks of compromised 

computers that are controlled remotely by the attacker. These botnets can generate a massive 

amount of ICMP Echo Request packets from multiple sources, making it difficult to identify 

and block the attack traffic. ICMP flood attacks can generate a large amount of network traffic 

and consume significant network bandwidth and processing power, leading to degradation or 

complete disruption of network services. ICMP flood attacks can be aimed at a specific target, 

such as a particular IP address or network, or they can be used as part of a larger DDoS attack 

targeting multiple systems or services. The attack traffic generated in an ICMP flood attack is 

typically characterized by a high volume of ICMP Echo Request packets, often with spoofed 

source IP addresses, making it challenging to trace the attack back to its source. 

 

3.1.2. Attack Category 2: Information Gathering 

Information-gathering attacks, also known as reconnaissance attacks, are a type of 

cyber-attack that involves gathering information about a target system or network with the 

intention of identifying vulnerabilities, weaknesses, or potential points of entry for further 

attacks [60]. Information-gathering attacks are often the first step in the cyber-attack chain 

and are carried out to gather intelligence and plan subsequent attacks. Information-gathering 

attacks can take various forms and can involve both passive and active techniques. Passive 

information-gathering techniques involve collecting data from publicly available sources, such 

as WHOIS databases, public websites, social media profiles, or online forums, without directly 

interacting with the target system or network. Active information-gathering techniques, on 

the other hand, involve actively probing or scanning the target system or network to collect 

information, such as network topology, open ports, running services, or system 

configurations. Information-gathering attacks can be conducted using automated tools, such 

as port scanners, vulnerability scanners, or reconnaissance frameworks, or manually by skilled 
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attackers who leverage their knowledge and expertise in identifying potential vulnerabilities 

or weaknesses in the target system or network. The information collected during the 

reconnaissance phase can be used to plan and launch subsequent attacks, such as exploitation 

of vulnerabilities, password attacks, or social engineering attacks, with the ultimate goal of 

gaining unauthorized access, stealing sensitive data, or disrupting the target system or 

network. 

 

3.1.2.1. Attack 5: Port Scanning 

Port scanning is a type of cyber-attack that involves probing a target system or network 

to identify open ports, which are network communication endpoints, and determine the 

services or applications that are listening on those ports [61]. Port scanning is commonly used 

as a reconnaissance technique by attackers to gather information about a target system's 

network topology, identify potential vulnerabilities, and plan further attacks. Port scanning 

attacks can be carried out using automated tools or manually by skilled attackers. Automated 

port scanning tools, such as Nmap, are widely available and can scan a range of IP addresses 

or a single host for open ports in a short amount of time. These tools can scan for common 

TCP or UDP ports, such as FTP (File Transfer Protocol), SSH (Secure Shell), HTTP, or DNS 

(Domain Name System), among others. Port scanning attacks can help attackers identify 

potential vulnerabilities in the target system or network, which can then be exploited in 

subsequent attacks to gain unauthorized access, steal sensitive data, or disrupt services. 

 

3.1.2.2. Attack 6: OS Fingerprinting 

OS (Operating System) fingerprinting is a technique used in cybersecurity to determine 

the type or version of the operating system running on a target system or network device. This 

information can be useful for attackers to identify potential vulnerabilities or weaknesses in 

the target system and tailor subsequent attacks accordingly [62]. OS fingerprinting can be 

classified into various types based on the techniques used. One type of OS fingerprinting is 

active fingerprinting, where the attacker sends probes or packets to the target system or 

network device and actively analyzes the responses to determine the operating system. This 

may involve sending specific requests or queries to services or applications running on the 

target system and analyzing the responses or analyzing network traffic patterns. Another type 
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of OS fingerprinting is passive fingerprinting, where the attacker captures and analyzes 

network traffic between the target system and other devices or systems to determine the 

operating system based on patterns or characteristics observed in the traffic. Passive 

fingerprinting does not involve actively sending probes or packets to the target system. There 

is also inference-based fingerprinting, where the attacker uses statistical or machine learning 

techniques to analyze patterns or characteristics in the network traffic or responses from the 

target system to infer the type or version of the operating system. OS fingerprinting attacks 

can provide valuable information to attackers about the target system's operating system, 

which can be used to launch subsequent attacks that are tailored to exploit known 

vulnerabilities or weaknesses in that particular operating system. 

 

3.1.2.3. Attack 7: Vulnerability Scanning 

Vulnerability scanning is a type of cyber-attack that involves systematically scanning a 

target system or network for known vulnerabilities or weaknesses that could be exploited by 

attackers. This type of attack typically involves using automated tools or software to scan for 

vulnerabilities in networks, systems, applications, or services. Vulnerability scanning attacks 

can be performed in different ways. One approach is network vulnerability scanning, where 

the attacker scans the target network for known vulnerabilities in network devices, such as 

routers, switches, and firewalls, or in network protocols, such as TCP/IP or DNS, that could be 

exploited to gain unauthorized access or disrupt network operations. Another approach is 

system vulnerability scanning, where the attacker scans the target system, such as servers, 

workstations, or mobile devices, for known vulnerabilities in the operating system, software 

applications, or services running on the system, that could be exploited to gain unauthorized 

access or compromise the integrity or confidentiality of data. Lastly, application vulnerability 

scanning involves scanning the target applications, such as web applications or databases, for 

known vulnerabilities in the code, configuration, or input validation that could be exploited to 

gain unauthorized access, execute arbitrary code, or steal sensitive information [63]. 

Vulnerability scanning attacks can help attackers identify potential weaknesses in the target 

system or network that can be exploited to gain unauthorized access, steal information, 

disrupt operations, or launch further attacks. 
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3.1.3. Attack Category 3: Man-in-the-middle (MITM) 

Man-in-the-middle (MITM) is a type of cyber-attack where an attacker intercepts 

communication between two parties, such as a client and a server, in order to eavesdrop, 

modify, or inject malicious content into the communication without the knowledge or consent 

of the parties involved. The attacker positions themselves between the legitimate parties and 

can intercept, modify, or redirect the communication in real-time, giving them the ability to 

capture sensitive information, manipulate data, or impersonate one of the parties [64]. MITM 

attacks can occur in various ways, such as passive or active MITM. In a passive MITM attack, 

the attacker simply eavesdrops on the communication between the two parties without 

modifying the content, intercepting, and capturing data transmitted over a network, such as 

passwords or credit card numbers. In an active MITM attack, the attacker not only intercepts 

the communication but also modifies the content or injects malicious content into the 

communication, such as altering data packets, injecting malware, or malicious scripts, or 

redirecting communication to malicious servers or websites. MITM attacks can be executed in 

different contexts, such as in wired or wireless networks, on public Wi-Fi networks, or on 

unsecured or compromised network devices, such as routers or switches. These attacks can 

be used to gain unauthorized access to sensitive information, steal credentials, perform 

fraudulent activities, or launch further attacks, such as session hijacking, data manipulation, 

or eavesdropping on confidential communication. 

 

3.1.3.1. Attack 8: DNS Spoofing 

DNS spoofing is a type of cyber-attack where an attacker falsifies the Domain Name 

System (DNS) resolution process to redirect users to malicious websites or intercept their 

communication. DNS is responsible for translating human-readable domain names, such as 

www.example.com, into IP addresses, which are the numerical addresses that computers use 

to identify each other on the internet [65]. In a DNS spoofing attack, the attacker manipulates 

the DNS resolution process by providing false or misleading information to DNS servers or 

clients. This can involve creating fake DNS responses that contain incorrect IP addresses, 

domain names, or other DNS data, or intercepting legitimate DNS responses and modifying 

them in transit. By doing so, the attacker can redirect users to malicious websites that may 

look legitimate but are designed to steal sensitive information, inject malware, or perform 
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other malicious activities. DNS spoofing attacks can be carried out in various ways, such as by 

poisoning the DNS cache of a DNS server, redirecting DNS queries to malicious DNS servers, 

or manipulating the DNS responses at the network level using techniques like ARP spoofing or 

DNS packet injection. DNS spoofing can have serious consequences, as it can enable attackers 

to intercept sensitive information, perform phishing attacks, launch further attacks, such as 

man-in-the-middle attacks, or gain unauthorized access to systems or networks. 

 

3.1.3.2. Attack 9: ARP Spoofing 

ARP (Address Resolution Protocol) spoofing, also known as ARP poisoning or ARP 

cache poisoning, is a type of cyber-attack where an attacker falsifies the MAC (Media Access 

Control) address associations in the ARP cache of a network device to intercept, modify, or 

redirect network traffic [66]. ARP is a protocol used in local area networks (LANs) to map IP 

addresses to MAC addresses, which are unique hardware addresses associated with network 

devices, such as network interface cards (NICs). When devices need to communicate on a LAN, 

they use ARP to request and store the MAC address of the intended destination device in their 

ARP cache for future reference, avoiding the need to perform repetitive IP-to-MAC address 

resolutions. In an ARP spoofing attack, the attacker sends falsified ARP messages, either 

gratuitous or in response to ARP requests, with forged MAC address associations to the victim 

device or other devices on the same LAN. This causes the victim device or other devices to 

update their ARP caches with incorrect MAC address information, associating the attacker's 

MAC address with the IP addresses of legitimate devices, such as the default gateway or other 

hosts. As a result, network traffic intended for these legitimate devices is redirected to the 

attacker's device, allowing the attacker to intercept, modify, or eavesdrop on the traffic. ARP 

spoofing attacks can be used to launch various types of attacks, such as man-in-the-middle 

attacks, where the attacker can intercept and modify network traffic between two legitimate 

devices, perform session hijacking, inject malicious content, or capture sensitive information. 

ARP spoofing attacks can also be used to conduct reconnaissance, gain unauthorized access 

to systems or networks, or disrupt network communication. 
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3.1.4. Attack Category 4: Injection 

An injection attack is a type of cyber-attack where an attacker inserts malicious code 

or data into an application or system with the intention of executing unauthorized commands, 

manipulating data, or gaining unauthorized access to the system [67]. Injection attacks 

typically target vulnerable points in an application's input validation or parameter handling 

mechanisms to exploit weaknesses and bypass security measures. Injection attacks can occur 

in various forms, such as SQL injection, NoSQL injection, LDAP injection, XML injection, 

command injection, and JavaScript injection, among others. These attacks exploit 

vulnerabilities in applications that allow untrusted data, such as user input or other external 

data, to be included in a query or command without proper validation or sanitization. As a 

result, the malicious code or data is interpreted as legitimate and executed by the application 

or system, allowing the attacker to gain unauthorized access, extract sensitive information, 

modify data, or execute arbitrary commands. Injection attacks can have serious 

consequences, as they can result in data breaches, system compromise, unauthorized access, 

data manipulation, and other malicious activities. 

 

3.1.4.1. Attack 10: Cross-site Scripting (XSS) 

Cross-site Scripting (XSS) is a type of web application vulnerability that allows an 

attacker to inject malicious scripts into web pages viewed by other users. XSS occurs when an 

application fails to properly validate and sanitize user input, allowing malicious scripts to be 

executed within the context of a legitimate website or web application [68]. There are two 

main types of XSS attacks: reflected XSS and stored XSS. In reflected XSS, the malicious script 

is included in a URL or in the parameters of a web form and then reflected back to the user in 

the HTML response. When the user's browser renders the HTML response, the malicious 

script is executed, allowing the attacker to steal sensitive information, manipulate content, or 

perform other malicious actions on the user's behalf. In stored XSS, the malicious script is 

stored in a database or other storage location within the application, and then retrieved and 

displayed to other users when they access the affected page. This allows the attacker to inject 

malicious scripts that persistently affect multiple users, potentially leading to widespread 

damage and data theft. XSS attacks can have serious consequences, including data theft, 
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unauthorized access, cookie stealing, session hijacking, defacement of web pages, and other 

malicious activities. 

 

3.1.4.2. Attack 11: SQL Injection 

SQL Injection is a type of web application vulnerability that allows an attacker to 

manipulate a website's SQL database by injecting malicious SQL queries through user input 

fields or other vulnerable areas of the application. SQL Injection occurs when an application 

fails to properly validate and sanitize user input before using it to construct SQL queries, 

allowing the attacker to modify or execute unintended SQL queries on the database [69]. 

There are several types of SQL Injection attacks that attackers can exploit to manipulate and 

extract data from vulnerable web applications. In-band SQL Injection is a type of attack where 

the attacker injects malicious SQL queries directly into the user input field or other vulnerable 

areas of the application, and the results are returned in the application's response. This type 

of attack is also known as "error-based" or "union-based" SQL Injection. Blind SQL Injection, 

on the other hand, is a type of attack where the attacker does not receive direct feedback 

from the application about the results of the injected SQL queries. Instead, the attacker uses 

techniques such as time delays or Boolean-based queries to infer the results indirectly, 

allowing them to extract data from the database. Out-of-band SQL Injection is another type 

of attack where the attacker does not receive the results of the injected SQL queries through 

the application's response, but rather through a separate communication channel, such as 

email or a separate web service. This type of attack is also known as "out-of-band" or "second-

order" SQL Injection. SQL Injection attacks can have serious consequences, including 

unauthorized access to sensitive data, modification or deletion of data, privilege escalation, 

and other malicious activities. 

 

3.1.4.3. Attack 12: Uploading 

In an uploading attack, the attacker may take advantage of vulnerabilities in a web 

application or other file upload functionality to bypass security measures and upload 

malicious files. Once the malicious files are uploaded, the attacker may be able to execute 

them, potentially gaining unauthorized access, compromising data, or causing other types of 

harm [70]. The specifics of an uploading attack may vary depending on the system or 
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application being targeted, the techniques used by the attacker, and the objectives of the 

attack. Common methods to defend against uploading attacks include implementing proper 

input validation and file upload validation, ensuring secure configuration of file upload 

functionality, restricting access permissions for uploaded files, and regularly monitoring and 

auditing system activity for signs of suspicious behaviour. It's important to note that 

cybersecurity attacks are constantly evolving, and new attack techniques and vulnerabilities 

may arise over time. 

 

3.1.5. Attack Category 5: Malware 

Malware, short for malicious software, refers to any software specifically designed to 

harm, exploit, or compromise the security of computer systems, networks, or devices [71]. 

Malware is a broad category that includes various types of malicious software, such as viruses, 

worms, trojan horses, ransomware, adware, spyware, and other malicious programs. Malware 

can be distributed through various means, including infected email attachments, malicious 

websites, compromised software, social engineering attacks, and other methods. Once 

installed on a victim's system or device, malware can carry out a wide range of malicious 

activities, such as stealing sensitive information, disrupting system operations, modifying or 

deleting data, hijacking system resources, conducting unauthorized activities, or providing 

unauthorized access to remote attackers. Malware is a serious cybersecurity threat that can 

cause significant damage to individuals, organizations, and even entire networks. 

 

3.1.5.1. Attack 13: Backdoor 

A backdoor attack refers to a malicious activity where an unauthorized entry point or 

hidden access point is created in a system or network, allowing an attacker to gain 

unauthorized access and control over the system or network. A backdoor is typically created 

by exploiting vulnerabilities or weaknesses in the system or network, and it provides a secret 

and unauthorized entry point for the attacker to bypass normal authentication and gain 

unauthorized access to the system or network [72]. Backdoor attacks can be carried out 

through various means, including software vulnerabilities, social engineering, malware, or 

other malicious techniques. Once a backdoor is successfully implanted, the attacker can use it 

to gain unauthorized access, execute commands, manipulate data, steal information, disrupt 
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operations, or carry out other malicious activities without being detected. Backdoor attacks 

are considered highly dangerous as they provide unauthorized access to attackers, allowing 

them to maintain control over the compromised system or network for an extended period of 

time. Backdoors can be difficult to detect, as they are typically designed to blend in with 

legitimate system components or activities, making them challenging to identify through 

traditional security measures. 

 

3.1.5.2. Attack 14: Password cracking 

Password cracking attack, also known as password hacking, is a type of cyber-attack in 

which an attacker attempts to gain unauthorized access to a system, network, or account by 

guessing or systematically cracking the passwords used for authentication [73]. Passwords are 

commonly used as a form of authentication to protect access to various resources, such as 

user accounts, databases, applications, and systems. There are several methods that attackers 

may use to carry out password cracking attacks. One method is brute force attack, in which 

the attacker systematically tries every possible combination of characters until the correct 

password is guessed. This method can be time-consuming and resource-intensive, but it can 

be effective if the password is weak or short. Another method is dictionary attack, in which 

the attacker uses a list of known words or commonly used passwords, known as a "dictionary," 

to systematically try each word in the list as a potential password. This method is more 

efficient than brute force as it targets commonly used passwords, but it may not be effective 

against complex or unique passwords. Rainbow table attack is another method, in which the 

attacker uses precomputed tables, known as "rainbow tables," that contain hashes of 

commonly used passwords and their corresponding plaintext values. The attacker compares 

the hashes of the target passwords with the hashes in the rainbow tables to quickly identify 

matches and obtain the plaintext passwords. Hybrid attack is a method in which the attacker 

combines various techniques, such as brute force, dictionary, and rainbow table attacks, to 

increase the chances of success in cracking passwords. Social engineering attack is also a 

method, in which the attacker manipulates or tricks individuals into revealing their passwords 

through techniques such as phishing, pretexting, or other forms of social engineering. 

Password cracking attacks can be highly effective if passwords are weak, easily guessable, or 

improperly stored. 
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3.1.5.3. Attack 15: Ransomware 

Ransomware is a type of malicious software (malware) that encrypts or otherwise 

restricts access to a victim's files or computer system and demands a ransom in exchange for 

restoring access [74]. Ransomware attacks typically involve the use of encryption algorithms 

to lock files, making them inaccessible to the victim without the decryption key held by the 

attacker. Once the files are encrypted, the attacker typically displays a ransom message on the 

victim's screen, providing instructions on how to pay the ransom and obtain the decryption 

key. Ransomware attacks can have severe consequences, as they can cause data loss, disrupt 

business operations, and result in financial and reputational damage. Ransomware can be 

delivered through various methods, including phishing emails, malicious attachments or links, 

drive-by downloads from compromised websites, or via infected USB drives or other 

removable media. There are different types of ransomware, including encrypting ransomware 

that encrypts files, and locker ransomware which restricts access to the victim's system 

without encrypting files. Some ransomware variants also use other techniques such as data 

theft, where the attacker exfiltrates sensitive data from the victim's system before encrypting 

files and threatens to release the data if the ransom is not paid. 

 

3.2. Background Information About Techniques Used 

In the development of a machine learning algorithm, selecting the appropriate 

methods and techniques is crucial as it directly impacts the model's performance [75]. By 

reviewing the existing literature related to the Edge-IIoTset dataset [54], it was observed that 

none of the prior studies employed an optimization algorithm for optimizing the attributes of 

machine learning algorithms. This notable gap in the literature underscores the potential of 

employing an optimization algorithm to solve the issue of finding a good attribute of machine 

learning algorithm components.  

 

In light of this gap in the literature and the necessity for effective optimization 

methods, the utilization of neural networks stands out as a promising approach, considering 

their ability to learn complex patterns from data [76]. However, the performance of neural 

networks heavily relies on selecting appropriate hyperparameters and optimizing model 
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weights. Traditional optimization techniques, such as grid search or random search, are often 

computationally expensive and may not yield optimal solutions in high-dimensional spaces. 

 

To address this challenge, the application of genetic algorithms presents an intriguing 

solution. Genetic algorithms leverage principles inspired by natural selection to efficiently 

search through the solution space and identify optimal or near-optimal solutions [77]. 

Employing genetic algorithms to optimize the weights of neural networks, can leverage the 

ability to efficiently explore the solution space and find solutions that maximize the 

performance of the model. 

 

Therefore, this study proposes the utilization of neural networks as the underlying 

machine learning algorithm for the Edge-IIoTset dataset, coupled with the optimization of 

model weights using genetic algorithms. This approach not only addresses the gap in the 

literature but also offers a novel and effective methodology for enhancing the performance of 

machine learning models in industrial IoT environments. 

 

3.2.1. Neural Network 

A neural network is a computational model inspired by the structure and functionality 

of the human brain. It's a fundamental algorithm in machine learning, particularly in the 

domain of deep learning [76], [78]. The basic architecture consists of interconnected nodes, 

organized into layers, including an input layer, one or more hidden layers, and an output layer 

as shown below in Figure 1.  
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Figure 1: Neural Network Example With Two Hidden Layers 

 

Each connection between nodes is associated with a weight, and the network learns 

by adjusting these weights during the training process. The neural network employs activation 

functions to introduce non-linearities, allowing it to model complex relationships and capture 

intricate patterns within the data. Training a neural network involves optimizing these weights 

through a process known as backpropagation [79]. During backpropagation, the network 

compares its predictions to the actual outcomes, calculates the error, and then adjusts the 

weights to minimize this error. In the context of deep learning, neural networks with multiple 

hidden layers are often referred to as deep neural networks. These deep architectures have 

demonstrated remarkable success in various applications, including image and speech 

recognition, natural language processing, and even playing strategic games [78], [80]. One of 

the strengths of neural networks lies in their ability to automatically learn hierarchical 

representations of data, enabling them to discern intricate features and relationships. The 

adaptability and capacity to learn from vast amounts of data make neural networks a powerful 

tool for solving complex problems across diverse domains in modern machine learning. 
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Neural networks are increasingly employed in the detection of cyber-attacks due to their 

ability to learn complex patterns and anomalies within network data [81]. The neural network 

algorithm proves highly beneficial for the detection of cyber-attacks due to its inherent 

capacity to learn complex patterns, adapt to evolving threats, and provide a sophisticated 

framework for analyzing vast and dynamic datasets. By leveraging deep learning architectures, 

neural networks excel in discerning subtle anomalies and patterns within network traffic, 

enabling the identification of potential cyber-threats with remarkable accuracy. Their ability 

to automatically extract relevant features and hierarchically represent intricate relationships 

within data contributes to a robust cyber defence mechanism. Furthermore, neural networks 

contribute to real-time threat detection, reducing false positives, and enhancing the overall 

cybersecurity posture by providing a proactive and adaptive approach to combating cyber-

threats in today's rapidly evolving digital landscape. The below points illustrate the 

effectiveness of the neural network algorithm in detecting cyber-attacks [82]: 

1. Pattern Recognition: Neural networks excel at recognizing patterns in data, making 

them well-suited for identifying unusual or malicious activities within network traffic. 

By training on normal behaviour, the network can later detect deviations that may 

indicate a cyber-attack. 

2. Anomaly Detection: Neural networks can be trained in an unsupervised manner to 

recognize anomalies. In the context of cybersecurity, deviations from normal network 

behaviour can be flagged as potential cyber threats. Unusual patterns, unexpected 

data flows, or suspicious activities can trigger alerts. 

3. Feature Extraction: Neural networks automatically learn to extract relevant features 

from raw network data. This is particularly valuable in cybersecurity, where identifying 

distinctive features of various types of attacks is essential. The network can learn to 

recognize patterns indicative of specific attack types. 

4. Adaptability to Dynamic Threats: Cyber threats are constantly evolving, requiring 

adaptive detection mechanisms. Neural networks, especially deep learning models, 

can adapt to new attack patterns without explicit reprogramming. This flexibility is 

crucial in the ever-changing landscape of cybersecurity. 

5. Multi-Layered defence: Just as neural networks have multiple hidden layers for 

hierarchical feature extraction, they contribute to a multi-layered defense strategy in 
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cybersecurity. Each layer of the network can focus on detecting specific aspects of 

cyber threats, enhancing overall detection capabilities. 

6. Handling Complex Data: Neural networks can effectively handle the complexity of 

various types of data generated in network traffic, such as packet headers, payloads, 

and temporal patterns. This makes them versatile in detecting sophisticated attacks 

that might involve multiple stages or techniques. 

7. False Positive Reduction: By learning from a diverse set of normal network behaviors, 

neural networks can help reduce false positives in cyber-attack detection. Their ability 

to discern between normal and abnormal patterns contributes to more accurate and 

efficient threat identification. 

 

3.2.2. Genetic Algorithm 

The Genetic Algorithm (GA) operates on a foundational framework that mimics the 

principles of natural selection and genetics, offering a robust approach to solving intricate 

optimization and search challenges [83]. This heuristic optimization algorithm is inspired by 

the enduring process of natural evolution, where adaptation and selection lead to the 

emergence of optimal traits over successive generations. Genetic Algorithms stand out for 

their ability to efficiently explore vast solution spaces, tackle complex optimization challenges, 

and adaptively evolve solutions over successive generations. This versatility has positioned 

GAs as a valuable tool in various domains, ranging from machine learning and optimization 

problems to combinatorial optimization tasks, showcasing their effectiveness in addressing 

diverse real-world problems. 

Components of Genetic Algorithms [84]: 

• Initialization: The algorithm commences by establishing a diverse population of 

potential solutions. This population is often initialized randomly or through predefined 

methods, representing a varied set of potential outcomes. 

• Fitness Evaluation: Each individual in the population undergoes scrutiny through an 

objective function. This function quantifies the fitness of a solution by measuring how 

well it aligns with the predefined optimization criteria. Higher fitness indicates a 

greater likelihood of survival. 
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• Selection: Imitating the evolutionary principle of "survival of the fittest," individuals 

are chosen for reproduction based on their fitness levels. Higher-fitness individuals 

stand a better chance of contributing their genetic material to the next generation. 

• Crossover (Recombination): Pairs of selected individuals engage in crossover, a 

process mirroring genetic recombination in biological reproduction. This exchange of 

genetic information generates offspring endowed with a blend of traits inherited from 

both parents. 

• Mutation: Introducing an element of randomness, a genetic mutation occurs, bringing 

about random changes to the genetic makeup of select individuals. This injects 

diversity into the population, preventing stagnation and encouraging the exploration 

of new solution spaces. 

• Replacement: The existing generation is replaced by the newly generated one, 

comprising offspring resulting from crossover and mutated individuals. This fresh 

cohort is subjected to fitness evaluation, perpetuating the evolutionary cycle. 

• Termination Criteria: The algorithm continually checks for termination criteria, which 

could include a predefined number of generations, attainment of a satisfactory 

solution, or the achievement of a convergence threshold. Termination criteria ensure 

that the algorithm concludes when specific conditions are met. 

• Output: The culmination of the algorithmic process is the extraction of the solution 

that optimally satisfies the defined criteria or fulfills the termination conditions, 

providing a refined and effective outcome. 

 

Genetic algorithms play a crucial role in enhancing the efficacy of cyber-attack detection 

systems by mimicking the principles of natural selection and evolution within the realm of 

computer security. In the context of cybersecurity, a genetic algorithm operates by generating 

a diverse set of potential solutions, represented as strings of binary code, to address the 

evolving nature of cyber threats. These solutions, analogous to individual organisms in nature, 

undergo a process of selection, crossover, and mutation to produce successive generations of 

candidate solutions. By evaluating the fitness of each solution based on its ability to detect 

and respond to specific cyber-attack patterns, the genetic algorithm refines and evolves the 

population over iterations, favouring traits that demonstrate better performance against 
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emerging threats. This adaptive and iterative process allows the genetic algorithm to 

continuously optimize the detection mechanisms, enabling cybersecurity systems to adapt 

dynamically to the ever-changing landscape of cyber threats. 

 

3.2.3. Principal Component Analysis 

Principal Component Analysis (PCA) is a widely employed technique used in the field of 

machine learning and data analysis, known for its ability to reduce the dimensionality of large 

datasets while preserving as much of the original variance as possible [85]. PCA is particularly 

useful when dealing with high-dimensional data, where the presence of many correlated 

features can lead to challenges such as overfitting and computational inefficiency. 

 

The core idea behind PCA is to transform the original set of correlated variables into a new 

set of uncorrelated variables called principal components [86]. These principal components 

are linear combinations of the original variables and are ordered by the amount of variance 

they explain in the data. The first principal component captures the maximum variance, while 

each subsequent component accounts for the remaining variance under the constraint that it 

is orthogonal to the preceding components. 

 

The process of PCA involves the following steps [87]: 

1. Standardization: The data is first standardized, ensuring that each feature contributes 

equally to the analysis by subtracting the mean and scaling to unit variance. 

2. Covariance Matrix Computation: The covariance matrix of the standardized data is 

computed, capturing the relationships between different features. 

3. Eigenvalue Decomposition: The eigenvalues and eigenvectors of the covariance 

matrix are calculated. The eigenvectors represent the directions of the principal 

components, while the eigenvalues indicate the magnitude of variance explained by 

each component. 

4. Selection of Principal Components: The principal components are ranked according 

to their eigenvalues, and a subset of the top components is selected, depending on 

the desired level of dimensionality reduction. 
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5. Projection: The original data is projected onto the selected principal components, 

resulting in a transformed dataset with reduced dimensionality. 

 

PCA offers several advantages in machine learning applications: 

• Dimensionality Reduction: By reducing the number of features, PCA helps mitigate 

the risk of overfitting and enhances the efficiency of machine learning algorithms. 

• Noise Reduction: PCA can filter out noise by discarding components associated with 

low variance, thereby improving the model's performance. 

• Feature Interdependence: PCA eliminates multicollinearity by generating 

uncorrelated principal components, making it easier to interpret the relationships 

within the data. 

 

3.3. Implementation 

The following section will provide a detailed illustration of how the proposed hybrid 

algorithm functions. It will encompass the entire process from data loading to model training 

and evaluation.   

Initially, the section describes the extraction and preprocessing of data from the dataset, 

which includes encoding categorical features and labels and selecting a stratified sample to 

maintain class balance. Then the implementation of a dimension reduction technique using 

PCA to retain 95% of the variance. This is followed by partitioning the data into training and 

testing sets. Subsequently, the creation and configuration of the hybrid algorithm are 

discussed, including the definition of a neural network structure and the application of a 

genetic algorithm for parameter optimization. 

 

3.3.1. Data Preparation and Sampling 

Dealing with industrial devices presents challenges, primarily due to the enormous 

amount of data they generate [88]. Therefore, using a sampling technique is a crucial step to 

enhance the machine learning algorithm efficiency without impacting the accuracy [89]. After 

looking into various sampling techniques, the stratified sampling technique was chosen for 

the Edge-IIoTset dataset due to its inherent class imbalance. This method ensures that each 

attack type is adequately represented in both training and testing sets, preventing bias and 
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promoting model generalization [90]. By preserving the proportional representation of attack 

types, it facilitates balanced model evaluation across different categories as shown below in 

Figure 2, enhancing model efficacy and reliability. 

 

Figure 2: Stratified Sampling 

 

Starting the preprocessing phase by loading the ML-EdgeIIoT-dataset.csv using the 

pd.read_csv function provided by the Pandas library with a “low_memory = False” parameter 

to instruct the system to load the entire dataset into memory at once, ensuring efficient 

processing. 

 

After loading the data, the initial step involved extracting the features, focusing on the 

first 61 columns. Then, these features were converted from categorical variables to numerical 

representations by assigning a unique numerical identifier to each distinct value within the 

features, enabling machine learning algorithms to process them effectively. Similarly, the 

attack categories went for a similar transformation, employing a map function to assign 

numerical values for each attack type for memorization and efficiency. 

 

Lastly, a stratified sample is generated using the train_test_split function from the 

sklearn.model_selection module. This function partitions the dataset into training and testing 

subsets while preserving the distribution of the target variable “Attack_type”. The 

stratification ensures that each subset maintains the same proportion of different attack types 

as the original dataset, thereby preventing bias in the model evaluation process. The size of 

the testing subset has been set to 20% of the original dataset, and the algorithm was trained 

three times using different randomly chosen random states (7, 10, and 42) to ensure varied 

sampling for consistency in the results. 
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Table 5: Dataset Sampling Using The Stratified Method 

N Traffic Type Original Amount Sample Amount Percentage 

1 Normal 24301 4860 15.40% 

2 DDoS_UDP 14498 2899 9.19% 

3 DDoS_ICMP 14090 2818 8.93% 

4 Ransomware 10925 2185 6.92% 

5 DDoS_HTTP 10561 2112 6.69% 

6 SQL_injection 10311 2062 6.53% 

7 Uploading 10269 2053 6.51% 

8 DDoS_TCP 10247 2049 6.49% 

9 Backdoor 10195 2039 6.46% 

10 Vulnerability_scanner 10076 2015 6.39% 

11 Port_Scanning 10071 2014 6.38% 

12 XSS 10052 2010 6.37% 

13 Password 9989 1997 6.33% 

14 MITM 1214 242 0.77% 

15 Fingerprinting 1001 200 0.63% 

 

Table 5 presents the distribution of traffic types in both the original dataset and the 

generated stratified sample. This table illustrates how the stratification process preserves the 

proportions of different attack types in the sample, ensuring a representative subset for model 

training and evaluation. By maintaining consistency in the distribution of attack types, the 

stratified sample mitigates the risk of bias during model assessment. 

 

3.3.2. Feature Selection 

The ML-EdgeIIoT dataset has 63 columns as shown below in Table 7, where the initial 61 

columns represent various features extracted from the IIoT traffic data, and the last two 

represent the attack label and attack type. However, the extensive number of features poses 

challenges in terms of redundancy and importance. Given this scenario, employing a feature 

reduction technique becomes imperative to streamline the dataset and enhance model 

efficiency. 
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Features:  

Table 6: EdgeIIoT Columns 

N Columns 

1 frame.time 

2 ip.src_host 

3 ip.dst_host 

4 arp.dst.proto_ipv4 

5 arp.opcode 

6 arp.hw.size 

7 arp.src.proto_ipv4 

8 icmp.checksum 

9 icmp.seq_le 

10 icmp.transmit_timestamp 

11 icmp.unused 

12 http.file_data 

13 http.content_length 

14 http.request.uri.query 

15 http.request.method 

16 http.referer 

17 http.request.full_uri 

18 http.request.version 

19 http.response 

20 http.tls_port 

21 tcp.ack 

22 tcp.ack_raw 

23 tcp.checksum 

24 tcp.connection.fin 

25 tcp.connection.rst 

26 tcp.connection.syn 

27 tcp.connection.synack 

28 tcp.dstport 
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29 tcp.flags 

30 tcp.flags.ack 

31 tcp.len 

32 tcp.options 

33 tcp.payload 

34 tcp.seq 

35 tcp.srcport 

36 udp.port 

37 udp.stream 

38 udp.time_delta 

39 dns.qry.name 

40 dns.qry.name.len 

41 dns.qry.qu 

42 dns.qry.type 

43 dns.retransmission 

44 dns.retransmit_request 

45 dns.retransmit_request_in 

46 mqtt.conack.flags 

47 mqtt.conflag.cleansess 

48 mqtt.conflags 

49 mqtt.hdrflags 

50 mqtt.len 

51 mqtt.msg_decoded_as 

52 mqtt.msg 

53 mqtt.msgtype 

54 mqtt.proto_len 

55 mqtt.protoname 

56 mqtt.topic 

57 mqtt.topic_len 

58 mqtt.ver 

59 mbtcp.len 
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60 mbtcp.trans_id 

61 mbtcp.unit_id 

62 Attack_label 

63 Attack_type 

 

After conducting extensive research on various dimension reduction techniques, it 

became evident that selecting the most suitable method was crucial for optimizing the ML-

EdgeIIoT dataset. Upon thorough examination and comparison, PCA emerged as the most 

fitting choice for several reasons [87], [91], [92].  

 

Firstly, PCA is adept at identifying and capturing the underlying patterns and correlations 

within high-dimensional data by transforming it into a lower-dimensional space. This 

reduction in dimensionality not only simplifies the dataset but also retains the essential 

information embedded within the features [93]. Moreover, PCA facilitates the extraction of 

orthogonal components, known as principal components, which represent the directions of 

maximum variance in the original feature space. By prioritizing these principal components, 

PCA effectively highlights the most significant sources of variation in the data while minimizing 

information loss.  

 

Additionally, PCA offers interpretability by providing insights into the relative importance 

of each feature in contributing to the variance within the dataset. This attribute enables 

researchers to discern the key drivers influencing the IIoT traffic patterns, thereby facilitating 

better decision-making in feature selection and model development. Furthermore, PCA's 

ability to mitigate multicollinearity among features is particularly advantageous in the ML-

EdgeIIoT dataset, where certain features may exhibit high intercorrelation. By reducing 

multicollinearity, PCA enhances the stability and robustness of subsequent machine-learning 

models, thereby improving their predictive performance [94]. 

 

 As shown in the below Figure, the process begins by computing the mean of each 

feature in the dataset and then centering the data by subtracting the mean from each data 

point. Next, PCA calculates the covariance matrix, which describes the relationships between 
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different features and helps identify patterns in the data. After that, the eigenvalue 

decomposition is performed on the covariance matrix to find its eigenvalues and eigenvectors, 

representing the principal components. These components are sorted based on the 

importance of capturing variance in the data. PCA computes the explained variance ratio for 

each principal component, indicating the proportion of variance explained by each 

component relative to the total variance. Finally, PCA projects the original data onto the 

selected principal components, transforming it into a lower-dimensional space while 

preserving as much information as possible. 

 

 

Figure 3: PCA Steps 

 

To determine the optimal number of Principal Components (PCs) while retaining 

significant information, a threshold of 95% was selected, aligning with established findings 

from various research studies [95], [96], [97]. This choice is supported by the "elbow method," 

as depicted in the accompanying figure, which demonstrates the point where the explained 

variance begins to plateau. This empirical evidence reinforces the selection of 95% as the 

threshold for preserving substantial data integrity. 
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Figure 4: PCA Threshold Selection 

 

By performing PCA on the dataset, its dimensionality has been reduced while preserving 

most of its variance, as shown in the table below, which displays the explained variance ratio 

for each extracted principal component. It shows that the first principal component accounts 

for 25.29% of the total variance in the data, followed by the second component with 18.99%. 

In total, 95% of the dataset's variance can be explained by the first 14 principal components, 

as indicated by the cumulative explained variance ratio. This analysis helps in understanding 

the relative importance of each principal component in representing the original dataset's 

variability. 

 

Table 7: Selected PCA 

Principal Component Explained Variance Ratio 

1 0.2529 

2 0.1899 

3 0.1351 

4 0.0774 

5 0.0655 
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6 0.0461 

7 0.0369 

8 0.0292 

9 0.0269 

10 0.026 

11 0.0206 

12 0.0173 

13 0.0159 

14 0.0115 

 

 The tables in Appendix A present the loadings of original features onto the principal 

components obtained through PCA. Each row corresponds to an original feature, while each 

column represents a principal component. The values in the table indicate the contribution of 

each original feature to each principal component. Positive values signify a positive correlation 

between the original feature and the principal component, while negative values indicate a 

negative correlation. The table allows for the interpretation of the structure and composition 

of each principal component, aiding in understanding the underlying patterns and 

relationships within the data. This comprehensive analysis facilitates dimensionality reduction 

and feature extraction while preserving the most significant information contained in the 

dataset. 

 

3.3.3. Hybrid Algorithm 

The hybrid algorithm of neural network and genetic algorithm starts by creating a class 

called NeuralNetworkGA. The class is composed of thirteen main functions (Initialization, 

Parameter Initialization, Activation Functions (sigmoid and softmax), Forward Propagation, 

Prediction, Population Initialization, Fitness Calculation, Genome Reshaping, Crossover, 

Mutation, and Optimization Loop, and Training. 

 

1. Initialization: 

In the first function of the code, the initialization function serves as the cornerstone 

for initializing the hybrid algorithm of neural network and genetic algorithm 
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parameters. These parameters include the input size, hidden layer sizes, output size, 

population size, elite size, number of generations, mutation rate, learning rate, and 

parameters. 

 

2. Parameter Initialization: 

The parameter initialization process involves the creation of initial weight matrices and 

bias vectors for each layer in the network. function systematically initializes these 

parameters based on the specified network architecture, which includes the input size, 

hidden layer sizes, and output size. The sizes of the weight matrices and bias vectors 

are determined by the dimensions of the layers they connect.   

 

Specifically, for each layer, a weight matrix is initialized with random values drawn from 

a standard normal distribution. The dimensions of this weight matrix correspond to 

the number of units in the previous layer and the current layer. This random 

initialization helps in breaking symmetry, which is essential for effective learning 

during training. Additionally, bias vectors are initialized as zero vectors, with 

dimensions matching the number of units in the current layer. This ensures that each 

neuron has an initial bias, which can be adjusted during training to better fit the data. 

 

The initialized parameters are stored in a dictionary, which maps each parameter 

(weights and biases) to its corresponding layer in the network. These initial parameters 

are crucial as they serve as the starting point for the optimization process. 

Subsequently, the best parameters are set to these initial values, providing a baseline 

from which the network can evolve during training. This methodical initialization lays 

a solid foundation for the network, promoting efficient convergence and enhancing 

the model's ability to learn complex patterns from the data. 

 

3. Activation Functions: 

For activation functions, two primary activation functions have been utilized; the 

sigmoid function and the softmax function. The sigmoid function has been used for 

the hidden layers of neural networks which transforms input values into a range 
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between 0 and 1, introduces non-linearity to the model, while also enabling the 

network to learn and represent intricate patterns in the data.  

 

On the other hand, the softmax function, where used in the output layer for 

classification tasks. It computes the exponential of each input value, normalizes these 

values by the sum of all exponentials, and produces a probability distribution over the 

output classes. This function is particularly useful for multi-class classification 

problems, as it ensures that the output probabilities sum to 100%, facilitating clear 

and interpretable classification decisions. 

 

4. Forward Propagation: 

In forward propagation, the input data is passed through the network to generate 

predictions. In this implementation, forward propagation involves computing the 

activations of each layer sequentially. Starting with the input layer, the input data is 

multiplied by the weights and biases of the first layer. The resulting values are then 

passed through an activation function, such as the sigmoid function for hidden layers 

or the softmax function for the output layer. This process continues layer by layer, with 

each layer's output serving as the input for the next layer. The final output of the 

network is a set of predictions based on the transformed and processed input data. 

This method ensures that the network effectively captures and transforms the input 

features to make accurate predictions. 

 

5. Prediction: 

The prediction process leverages the forward propagation mechanism. The input data 

is passed through the network, layer by layer, where each layer’s output serves as the 

input for the next. Activation functions, such as the sigmoid function for hidden layers 

and the softmax function for the output layer, are applied to transform the data at 

each step. The final layer produces the network’s output, which represents the model’s 

predictions. In classification tasks, the softmax function converts the outputs into 

probability distributions across different classes, and the class with the highest 

probability is selected as the predicted label. 
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6. Population Initialization: 

This function is tasked with generating an initial population of candidate solutions, 

each representing a potential set of parameters for the neural network. At the heart 

of this process lies the random initialization of individuals, where each individual 

encapsulates a distinct combination of weights and biases for the network's layers. The 

size of the population, dictated by the population size parameter, determines the 

number of individuals in the population. Leveraging a uniform distribution with 

specified lower and upper bounds, typically set at -0.3 and 0.3, the function creates a 

diverse set of initial solutions. 

 

7. Fitness Calculation: 

The process of fitness calculation involves assessing the fitness or performance of each 

individual within the population. In the context of this implementation, fitness 

calculation entails evaluating the accuracy or effectiveness of each candidate solution 

in solving the underlying problem. Leveraging the training dataset, each individual's 

set of parameters is utilized to construct a neural network model. Subsequently, the 

model's predictions are compared against the ground truth labels to compute a fitness 

score, often based on a performance metric such as accuracy, precision, or loss 

function value. This fitness score quantifies the ability of the individual to accurately 

capture patterns and relationships within the data. Higher fitness scores indicate 

individuals who produce more desirable outcomes and are thus more likely to 

contribute positively to the evolutionary process. Through iterative evaluation and 

selection based on fitness, the genetic algorithm guides the evolution of the 

population towards increasingly optimal solutions, ultimately enhancing the neural 

network's performance and effectiveness in tackling the target task. 

 

8. Genome Reshaping: 

This process involves transforming the genetic representation of individuals, typically 

encoded as vectors of parameters, to conform to the structure and requirements of 

the optimization algorithm. In the context of this implementation, genome reshaping 

primarily focuses on restructuring the genetic representation to align with the neural 

network's architecture. As each individual in the population encodes parameters 
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corresponding to the network's weights and biases, reshaping entails rearranging 

these parameters into the appropriate format for constructing the network. This may 

involve partitioning the parameter vector into weight matrices and bias vectors 

corresponding to each layer of the network, ensuring consistency with the network's 

architecture. Additionally, reshaping may encompass adjusting the dimensions and 

shapes of parameter matrices to match the specified layer sizes and dimensions. By 

harmonizing the genetic representation with the neural network's structure, genome 

reshaping enables the genetic algorithm to effectively operate on parameter sets, 

facilitating the evolutionary exploration and optimization of the solution space. 

 

9. Crossover: 

This evolutionary mechanism emulates the concept of natural reproduction, where 

genetic material from two parent individuals is exchanged to produce offspring with 

diverse characteristics. In the context of this hybrid neural network framework, 

crossover serves as a mechanism for exploring the solution space by recombining 

parameters encoded within individuals' genomes. During crossover, pairs of parent 

individuals are selected based on their fitness or performance, typically favoring 

individuals with higher fitness scores. Subsequently, genetic material, represented as 

parameter vectors encoding weights and biases for the neural network, is exchanged 

between the selected parents to generate offspring individuals. 

 

10. Mutation: 

The mutation functions begin by generating a binary mutation mask, wherein each 

element's probability of being mutated is determined by the specified mutation rate. 

Subsequently, random mutation changes are introduced within a predefined range, 

symmetrically distributed around zero. These mutation changes are then applied to 

the offspring individuals, selectively based on the mutation mask, effectively 

perturbing their genetic material. Finally, the mutated offspring, incorporating both 

stochastic changes and genetic inheritance from the parents, are returned as the 

output of the mutation process. This adaptive mutation mechanism fosters population 

diversity, enabling exploration of the solution space by introducing controlled 

stochastic variations to the offspring's genetic makeup. 
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11. Optimization Loop: 

The "optimize" function orchestrates the optimization process that drives the genetic 

algorithm integrated with the neural network model. The initial step involves 

generating a population of potential solutions through the population initialization 

function. Among these solutions, the genetic representation of the current best-

performing model parameters, referred to as the "best genome," is reshaped into a 

genome-like vector and incorporated into the initial population, thus ensuring that the 

best-known solution is always part of the evolutionary process. 

 

The optimization proceeds over a series of generations, each iteratively refining the 

population. During each generation, the function evaluates the fitness of each 

individual within the population by assessing their performance on the provided 

training dataset. This evaluation is based on fitness scores, which reflect the accuracy 

of each individual's predictions compared to the actual outcomes. 

 

Key steps in each generation include: 

1. Evaluation of Fitness: The fitness scores for all individuals in the population are 

computed, ranking the individuals based on their accuracy. 

2. Selection of Elites: The top-performing individuals, or elites, are identified. These 

elite individuals, determined by the highest fitness scores, are retained for the 

subsequent generation to ensure that the best solutions are not lost during the 

evolutionary process. 

3. Tracking the Best Solution: The algorithm continuously monitors the individual 

with the highest accuracy across all generations. If an individual's accuracy 

surpasses the current best accuracy, the model's parameters are updated to reflect 

this new optimal solution. 

4. Generation of New Individuals: New candidate solutions are generated through 

two primary genetic operations: 

• Crossover: This operation allows for the recombination of genetic material 

from pairs of elite individuals, promoting the exploration of new potential 

solutions by combining successful traits from different elites. 
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• Adaptive Mutation: This process introduces controlled random changes to 

the offspring, enhancing the algorithm's ability to explore the solution 

space and avoid local optima. 

 

The newly generated individuals from crossover and mutation are then combined with 

the elite individuals to form the next generation's population. This ensures that the 

population continually evolves and explores new regions of the solution space, while 

retaining the best solutions discovered so far. 

 

At each generation, the algorithm outputs the best accuracy achieved, providing 

insight into the progression of the optimization process. This iterative approach of 

evaluation, selection, crossover, and mutation leads to the refinement and evolution 

of the population towards an optimal solution for the given task. 

 

Upon completion of the specified number of generations, the function returns the best 

parameters identified throughout the optimization process. These parameters 

represent the most accurate and robust configuration of the neural network model for 

the target task, derived through the synergistic application of genetic algorithm 

principles and neural network learning. 
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Figure 5: Optimization Loop 

 

Several computationally intensive steps shape the time complexity of the "optimize" 

function in the genetic algorithm integrated with the neural network model. The initial 

population generation, which involves creating potential solutions, has a complexity of 

O(P×N), where P is the population size and N is the number of model parameters. Each 

generation evaluates individuals' fitness by training the neural network on a dataset of size M, 

resulting in a complexity of O(P×M×N) per generation. The selection of elite individuals 

requires sorting the population, adding a complexity of O(P log P). Generating new individuals 

through crossover and adaptive mutation contributes an additional O(P×N) per generation. 

The process of tracking the best solution adds a further O(P) complexity. Summing these 
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complexities across all generations G, the overall time complexity of the optimization loop is 

𝑂(𝐺 × (𝑃 × 𝑀 × 𝑁 + 𝑃 log 𝑃 + 𝑃 × 𝑁)). This high complexity underscores the significant 

computational resources required to achieve an optimized solution, particularly in scenarios 

involving large populations, extensive parameter sets, and multiple generations. 

 

Training: 

The train function is responsible for training the neural network model, incorporating both 

traditional backpropagation and GA optimization to refine the model's parameters. The 

function takes the following steps: 

1. One-Hot Encoding of Labels: 

The function begins by encoding the target labels (train and test) into one-hot 

format. This encoding is necessary for the network to compute the loss during 

training, especially when dealing with multi-class classification problems. 

2. Training Loop (Epochs): 

For each epoch in the training loop: 

• Forward Propagation and Loss Calculation: During forward propagation, the 

model processes the training data using the forward propagation method to 

compute predicted probabilities for each class, which are stored in the cache. 

The loss for the training data is then calculated using cross-entropy loss, 

focusing on the probabilities of the true labels. To evaluate performance, the 

accuracy of the training set is computed by comparing the predicted classes 

from the output layer with the actual labels using the accuracy score metric. 

• Backpropagation: The backward propagation method is called to update the 

model's parameters based on the computed gradients. This step fine-tunes the 

parameters through traditional backpropagation before applying GA 

optimization. 

• Tracking the Best Model: If the current training accuracy exceeds the best 

accuracy, the model updates the best accuracy and best loss. The parameters 

dictionary is also updated to store the current best model parameters. 

• Genetic Algorithm Optimization: After backpropagation, the optimize method 

is invoked to further optimize the parameters using a genetic algorithm. This 
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step introduces a global search mechanism, potentially finding better solutions 

that might be missed by gradient-based optimization alone. 

• Prediction and Evaluation: The model makes predictions on both the training 

and testing sets using the predict method. The training and testing accuracy is 

then calculated by comparing the predictions with the true labels. These 

accuracy scores provide insight into the model's performance on both seen 

(training) and unseen (testing) data. 

 

 

3.3.4. Algorithm Parameters 

The parameters for both the neural network (NN) and the GA are defined. These 

parameters are crucial for configuring the architecture and behavior of the algorithms used in 

the model. The neural network parameters consist of (Input, Hidden layers, Neurons, Output, 

and Learning rate). On the other hand, the genetic algorithm parameters consist of (Genome, 

Population, Elite, Mutation, and Generation). 

 

Neural Network Parameters:  

1- Input Size: The input size has been selected based on the number of features after 

applying the PCA which is 14.  

2- Hidden Layers: The number of hidden layers was selected based on the following 

experimentation. The algorithm was trained 14 times, each time increasing the 

number of hidden layers and running for 1000 epochs. After thorough analysis, it was 

observed that all trials followed the same trend as shown in the below figure. 
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Figure 6: Selecting Number of Hidden Layers 1 

 

After conducting the initial experimentation, the process was repeated 10 times, with 

the performance of the model evaluated each time. For each trial, the average 

performance for different numbers of hidden layers was calculated. Subsequently, the 

configuration with two hidden layers, which provided the best average performance, 

was selected as illustrated in the figure below and highlighted in bold in the 

accompanying table. 

 

0 100 200 300 400 500 600 700 800 900

1 0.036359 0.048598 0.06246 0.061114 0.061866 0.135615 0.159379 0.228176 0.237682 0.258555

2 0.020873 0.080561 0.09874 0.112761 0.117079 0.11791 0.170509 0.187262 0.189282 0.245524

3 0.110741 0.117197 0.111613 0.137753 0.156012 0.158428 0.161082 0.163498 0.168013 0.195382

4 0.142071 0.095136 0.079808 0.089393 0.096958 0.097117 0.105394 0.127693 0.140882 0.292221

5 0.07858 0.090502 0.100166 0.103929 0.109672 0.191183 0.216453 0.220928 0.227067 0.222394

6 0.042538 0.058698 0.115257 0.164488 0.193877 0.202907 0.221285 0.277646 0.285013 0.348424

7 0.078422 0.077788 0.091017 0.148843 0.178549 0.181678 0.192768 0.197798 0.208294 0.23285

8 0.068322 0.083333 0.101117 0.136763 0.140051 0.177796 0.19257 0.250911 0.284221 0.282517

9 0.023685 0.031725 0.039132 0.050499 0.052915 0.126505 0.19661 0.211145 0.21471 0.219701

10 0.007129 0.006773 0.011209 0.072402 0.091849 0.094344 0.108563 0.114068 0.119851 0.160211

11 0.055212 0.062183 0.084799 0.093631 0.153992 0.167142 0.214908 0.22073 0.242237 0.246396

12 0.06456 0.083096 0.110266 0.134228 0.159973 0.179262 0.187104 0.203422 0.278042 0.329808

13 0.048598 0.039132 0.0625 0.061153 0.066104 0.072481 0.094819 0.099453 0.113514 0.117277

14 0.068401 0.121 0.172212 0.201442 0.214869 0.250158 0.241881 0.284933 0.296142 0.29943
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Figure 7: Selecting Number of Hidden Layers 2 

 

Table 8: Best Number of Hidden Layers 

Hidden 

Layers 

Round 

1 

Round 

2 

Round 

3 

Round 

4 

Round 

5 

Round 

6 

Round 

7 

Round 

8 

Round 

9 

Round 

10 

Averag

e 

1 0.316

7 

0.292

9 

0.221

4 

0.360

8 

0.198

2 

0.356

1 

0.338

8 

0.231

6 

0.205

6 

0.199 0.2721

1 

2 0.279

9 

0.342

4 

0.256 0.348

2 

0.198

7 

0.255

8 

0.395

8 

0.292

9 

0.261

6 

0.296

1 

0.2927

4 

3 0.216

8 

0.180

6 

0.163

9 

0.198

7 

0.228

6 

0.402

9 

0.160

5 

0.356

4 

0.301

3 

0.267

5 

0.2477

2 

4 0.258

8 

0.266

3 

0.246

4 

0.294

7 

0.245

8 

0.297

8 

0.262

3 

0.228

8 

0.295

2 

0.290

6 

0.2686

7 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Round 1 0.317 0.28 0.217 0.259 0.358 0.265 0.334 0.228 0.267 0.28 0.245 0.316 0.26 0.348 0.356

Round 2 0.293 0.342 0.181 0.266 0.341 0.101 0.225 0.332 0.229 0.21 0.204 0.37 0.187 0.244 0.32

Round 3 0.221 0.256 0.164 0.246 0.176 0.309 0.252 0.302 0.289 0.327 0.151 0.267 0.281 0.215 0.24

Round 4 0.361 0.348 0.199 0.295 0.256 0.264 0.16 0.329 0.234 0.257 0.253 0.358 0.253 0.193 0.365

Round 5 0.198 0.199 0.229 0.246 0.14 0.253 0.394 0.274 0.272 0.309 0.381 0.221 0.274 0.309 0.248

Round 6 0.356 0.256 0.403 0.298 0.236 0.264 0.222 0.38 0.328 0.303 0.245 0.206 0.258 0.225 0.291

Round 7 0.339 0.396 0.161 0.262 0.282 0.316 0.133 0.092 0.375 0.407 0.358 0.293 0.385 0.192 0.296

Round 8 0.232 0.293 0.356 0.229 0.227 0.269 0.166 0.318 0.25 0.26 0.235 0.144 0.306 0.187 0.116

Round 9 0.206 0.262 0.301 0.295 0.215 0.321 0.203 0.411 0.283 0.143 0.254 0.231 0.268 0.146 0.24

Round 10 0.199 0.296 0.268 0.291 0.159 0.188 0.222 0.22 0.387 0.194 0.231 0.177 0.21 0.287 0.303
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5 0.357

5 

0.341

1 

0.176

1 

0.255

9 

0.140

1 

0.236

3 

0.281

8 

0.226

8 

0.214

9 

0.159

2 

0.2389

7 

6 0.264

8 

0.101

2 

0.308

7 

0.263

7 

0.252

9 

0.264

3 

0.316

1 

0.268

9 

0.320

7 

0.187

9 

0.2549

2 

7 0.333

5 

0.225 0.251

7 

0.160

1 

0.394

4 

0.221

8 

0.133

1 

0.165

6 

0.203

1 

0.221

8 

0.2310

1 

8 0.227

8 

0.332 0.301

5 

0.329

4 

0.274

2 

0.379

7 

0.091

6 

0.318

3 

0.410

6 

0.220

3 

0.2885

4 

9 0.267

3 

0.228

7 

0.289 0.234

1 

0.271

5 

0.328

1 

0.375

4 

0.249

6 

0.283

2 

0.386

8 

0.2913

7 

10 0.279

9 

0.210

2 

0.326

7 

0.256

9 

0.308

8 

0.303 0.407

3 

0.259

6 

0.142

8 

0.194

2 

0.2689

4 

11 0.245 0.203

7 

0.150

7 

0.252

8 

0.381

1 

0.245

1 

0.357

8 

0.235

3 

0.254 0.231

2 

0.2556

7 

12 0.315

7 

0.369

8 

0.266

6 

0.358 0.220

7 

0.206

4 

0.292

8 

0.143

8 

0.230

9 

0.176

7 

0.2581

4 

13 0.260

1 

0.187

1 

0.280

6 

0.253

4 

0.274 0.257

7 

0.385

3 

0.305

6 

0.267

9 

0.209

5 

0.2681

2 

14 0.348 0.244

4 

0.215

1 

0.192

7 

0.308

9 

0.224

8 

0.192 0.186

9 

0.146

2 

0.286

8 

0.2345

8 

15 0.355

9 

0.320

2 

0.240

3 

0.365 0.248

3 

0.291

2 

0.296

1 

0.116

1 

0.240

4 

0.302

6 

0.2776

1 

 

3- Neurons Layers: Determining the optimal number of neurons in hidden layers remains 

a challenge in neural network design, as there is no definitive solution applicable to all 

scenarios. Various studies in the field of neural networks acknowledge this challenge 

and propose heuristic methods for selecting the number of neurons [98], [99], [100], 

[101]. The heuristic method employed in this study involves setting the number of 

neurons in the first hidden layer to two-thirds of the total number of input and output 

neurons, followed by using the full size for the second hidden layer. Specifically, for an 
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input size of 14 neurons and an output size of 15 neurons, the hidden layers were 

configured with 19 neurons in the first layer and 29 neurons in the second layer. 

4- Learning rate: The learning rate has been set to 0.1 based on several related papers 

where the authors always select 0.1 as a default initial step for their proposal [102], 

[103], [104]. 

5- Output Size: has been selected based on the number of classes which is 15. 

6- Epochs: has been set to 1000, considering the computational power. 

 

Genetic Algorithm Parameters:  

1- Genome Size: The genome size was determined to be 1,315. This value reflects the 

total number of weights and biases in the neural network and was calculated by 

summing all the parameters between the input layer, the hidden layers, and the output 

layer. Specifically, the network architecture includes an input layer with 14 neurons, 

two hidden layers with 19 and 29 neurons respectively, and an output layer with 15 

neurons. The genome size calculation takes into account the connections and biases 

from the input layer to the first hidden layer, between the hidden layers, and from the 

last hidden layer to the output layer. This comprehensive calculation ensures that the 

genome fully encapsulates the neural network’s structure, allowing the genetic 

algorithm to effectively optimize all parameters. The chosen value of 1,315 strikes a 

balance between adequately representing the network's complexity and maintaining 

manageable computational demands, thereby facilitating efficient and effective 

training. 

2- Population Size: The population size is a critical parameter in genetic algorithms as it 

determines the number of candidate solutions available in each generation [105]. To 

determine the optimal population size for this study, an experiment was conducted by 

varying the population size from 10% to 100% of the genome size in 10% increments. 

The population sizes tested ranged from 131 to 1,315, and the corresponding test 

accuracies were recorded to assess selecting the best population size. 
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Figure 8: Population Size Experiment 

 

Table 9: Population Size Experiment 

Population Size Test Accuracy 

131 0.504753 

263 0.543251 

394 0.474968 

526 0.586027 

657 0.55846 

789 0.503802 

920 0.53121 

1052 0.472275 

1183 0.52446 

1315 0.50206 

 

The above table illustrates how test accuracy varies with different population sizes. 

Notably, all the results hover around 50%. Even though the highest test accuracy of 

0.586027 was achieved with a population size of 526, the population size has been set 

to 1315 since all the test results are in the same range. Additionally, increasing the 

population size allows for more extensive exploration, potentially leading to better 

overall optimization. 
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3- Elite Size: The elite size, which determines the proportion of the top-performing 

individuals retained for the next generation, was set to 20% of the population size. For 

a population size of 1315, this corresponds to 263 individuals. The selection of 20% as 

the elite size is aimed at maintaining a balance between preserving the best solutions 

and introducing new genetic material into the population. By retaining the top 20%, 

the algorithm ensures that high-quality solutions are carried forward, providing a 

stable foundation for further optimization while still allowing for a significant degree 

of exploration and variation among the rest of the population. 

4- Mutation Rate: The mutation rate was set to 0.3, which means that 30% of the genes 

in each individual have a chance of being altered during each generation. Mutation 

introduces random variations in the population, which is crucial for maintaining 

genetic diversity and allowing the algorithm to explore new areas of the solution space 

that might not be reached through crossover alone. 

5- Number of Generations: In this study, 1,000 generations were found to be a suitable 

balance, allowing enough evolutionary cycles to optimize the neural network 

parameters effectively without excessive computational burden. This extensive 

evolutionary process helps to ensure that the algorithm thoroughly explores the 

solution space and converges towards a highly accurate and reliable set of parameters 

for the neural network. 

 

4- Results and Analysis 

The Results and Analysis section marks the effectiveness of the developed hybrid 

algorithm for cyber-attack detection in the IIoT landscape. This comprehensive evaluation, 

aims to unveil insights derived from applying the GA optimization strategy, shedding light on 

the performance of the developed model. The analytical journey involves a detailed review of 

the classification report, confusion matrix, and ROC curve metrics for all types of cyber-attacks 

and normal traffic. 

 

After implementing the algorithm detailed in Section 3.3 (Implementation), the neural 

network was configured with the parameters listed in the table below. These parameters 

reflect the final state of the neural network architecture. 
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Table 10: The Final Neural Network Architecture 

Parameter Name  Parameter Shape Number of Parameters 

Weight 1 (14, 19) 266 

Bias 1 (1, 19) 19 

Weight 2 (19, 29) 551 

Bias 2 (1, 29) 29 

Weight 3 (29, 15) 435 

Bias 3 (1, 15) 15 

 

Moreover, to ensure the robustness and reliability of the results, the algorithm was trained 

three times with different stratified sampling training datasets. This method was employed to 

generate varied samples in each run, thereby reducing the potential impact of any single 

random initialization on the results.  This iterative approach was employed to verify the 

consistency of the outcomes and to confirm that the results were not a product of random 

variation or overfitting. 

 

4.1. Classification Metrics  

In the context of evaluating classification models, it is essential to understand key metrics 

derived from a confusion matrix. A confusion matrix is a table used to describe the 

performance of a classification model by comparing the predicted labels with the true labels. 

It includes four main metrics [106]: 

Table 11: Confusion Matrix Description 

Metrics Description 

True Positive (TP) An instance where both predicted and actual values are positive 

False Positive (FP) An instance where the predicted value is positive, but the actual 

value is negative 

False Negative (FN) An instance where the predicted value is negative, but the actual 

value is positive 

True Negative (TN) An instance where both the predicted and actual values are 

negative 



P a g e  70 | 100 

 

 

 

 

 

Based on these, several classification metrics are commonly used to evaluate the model’s 

performance [106], [107], [108]: 

Precision measures the accuracy of positive predictions. It is defined as the ratio of true 

positive predictions to the total number of positive predictions made by the model. A high 

precision indicates when the model predicts a positive class, it is likely to be correct. The 

formula for precision is: 

Precision =
TP

TP + FP
 

 

Recall also known as sensitivity or true positive rate, it assesses the model's ability to 

capture all relevant positive instances. It is the ratio of true positive predictions to the total 

number of actual positive instances in the dataset. High recall signifies that the model is 

effective in identifying most of the positive instances. The formula for the recall is: 

Recall =
TP

TP + FN
 

 

F1-Score provides a balanced measure of a model’s performance by combining precision 

and recall into a single metric. It is particularly useful when there is an imbalance between 

positive and negative classes. The F1-Score is the harmonic mean of precision and recall. The 

formula for F1-Score is: 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 

 

Accuracy measures the overall correctness of the model’s predictions. It is the ratio of 

correctly predicted instances (both true positives and true negatives) to the total number of 

instances. Accuracy is a general measure of model performance, but it can be misleading if 

the classes are imbalanced. The formula for accuracy is: 

Accuracy =
TP + TN

Total Number of Instances
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Support refers to the number of actual occurrences of each class in the dataset. It is used 

to provide context to the precision, recall, and F1-Score metrics by showing the distribution 

of true instances across different classes. 

 

The following tables present the detailed classification reports for three different stratified 

sampling training datasets. These tables highlight the model's performance in various attack 

types and normal traffic to evaluate the model’s effectiveness, key classification metrics, 

including precision, recall, F1-score, support, and accuracy, were utilized. 

 

Table 12: Classification Report – First Run 

Class Precision Recall F1-score Support 

Backdoor 0.96 0.88 0.92 411 

DDoS_HTTP 1 0.99 0.99 416 

DDoS_ICMP 0.99 1 0.99 579 

DDoS_TCP 1 1 1 416 

DDoS_UDP 1 0.99 1 550 

Fingerprinting 0 0 0 38 

MITM 0 0 0 49 

Normal 0.99 1 0.99 1003 

Password 0.99 0.96 0.97 387 

Port_Scanning 0.99 1 0.99 365 

Ransomware 0.85 1 0.92 492 

SQL_injection 0.99 0.67 0.8 414 

Uploading 0.74 0.99 0.85 400 

Vulnerability_scanner 0.94 0.97 0.95 386 

XSS 0.87 0.92 0.9 406 

Accuracy   0.94 6312 
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Table 13: Classification Report – Second Run 

Class Precision Recall F1-score Support 

Backdoor 0.96 0.88 0.92 411 

DDoS_HTTP 1 0.99 0.99 416 

DDoS_ICMP 1 1 1 579 

DDoS_TCP 1 1 1 416 

DDoS_UDP 1 1 1 550 

Fingerprinting 0 0 0 38 

MITM 0 0 0 49 

Normal 0.99 1 1 1003 

Password 0.99 0.98 0.98 387 

Port_Scanning 0.99 1 0.99 365 

Ransomware 0.85 1 0.92 492 

SQL_injection 0.99 0.67 0.8 414 

Uploading 0.74 0.99 0.85 400 

Vulnerability_scanner 0.96 0.97 0.96 386 

XSS 0.87 0.92 0.9 406 

Accuracy   0.95 6312 

 

Table 14: Classification Report – Third Run 

Class Precision Recall F1-score Support 

Backdoor 0.95 0.87 0.91 411 

DDoS_HTTP 1 0.99 1 416 

DDoS_ICMP 1 1 1 579 

DDoS_TCP 1 1 1 416 

DDoS_UDP 1 1 1 550 

Fingerprinting 0 0 0 38 

MITM 0 0 0 49 

Normal 0.99 1 1 1003 

Password 0.99 0.97 0.98 387 

Port_Scanning 1 1 1 365 
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Ransomware 0.46 1 0.63 492 

SQL_injection 0.99 0.69 0.81 414 

Uploading 0.80 0.34 0.47 400 

Vulnerability_scanner 0.97 0.92 0.94 386 

XSS 0.82 0.94 0.87 406 

Accuracy   0.90 6312 

 

The following analysis presents an overview of the algorithm's performance in classifying 

various cyber-attack types and normal network traffic, based on three different runs. Precision 

metrics reflect the accuracy of positive predictions, with notable performances observed in 

several attack categories: 

• DDoS ICMP, DDoS TCP, and DDoS UDP attacks demonstrated perfect precision and 

recall across all runs, indicating flawless detection capabilities. This suggests that the 

algorithm is highly effective in identifying these specific types of DDoS attacks. 

• DDoS HTTP also exhibited near-perfect precision and recall, reinforcing the algorithm's 

robustness in detecting this attack vector. 

• Normal traffic consistently achieved high precision and recall, confirming the model's 

strong ability to distinguish benign traffic from malicious activities. 

Conversely, certain classes, such as Fingerprinting and MITM, consistently showed a lack of 

detection capability, reflected in zero precision, recall, and F1-scores. This indicates that the 

algorithm struggled to identify these attack types across all runs. 

Ransomware exhibited varied performance. While its recall was high (1.00), its precision was 

lower especially in the third run, leading to a lower F1-score overall. This variation suggests 

challenges in achieving a balance between detecting and correctly classifying ransomware 

instances. 

SQL Injection showed high precision (0.99) but lower recall with in all runs achieving the 

highest (0.69) in the third run, indicating that while the algorithm is effective at identifying 

SQL injection attacks when they are detected, it may miss a significant portion of such 

instances. 

Uploading also demonstrated varied results, with lower recall in some runs, which might 

reflect challenges in detecting all instances of this attack type. 
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Overall, the algorithm achieved an accuracy of approximately 90-95% across the three runs, 

indicating strong performance. The weighted metrics further validate the model's 

effectiveness, with weighted average precision, recall, and F1-score ranging from 0.80 to 0.94, 

showcasing a balanced performance across the diverse class distribution. These results 

highlight the model's overall capability in classifying cyber-attacks, though certain areas, such 

as Fingerprinting and MITM detection, warrant further improvement. 

 

Table 15: Classification Results - Average 

Class Precision  Recall  F1-score  Support  

Backdoor 0.956667 0.876667 0.916667 411 

DDoS_HTTP 1 0.99 0.993333 416 

DDoS_ICMP 0.996667 1 0.996667 579 

DDoS_TCP 1 1 1 416 

DDoS_UDP 1 0.996667 1 550 

Fingerprinting 0 0 0 38 

MITM 0 0 0 49 

Normal 0.99 1 0.996667 1003 

Password 0.99 0.97 0.976667 387 

Port_Scanning 0.993333 1 0.993333 365 

Ransomware 0.72 1 0.823333 492 

SQL_injection 0.99 0.676667 0.803333 414 

Uploading 0.76 0.773333 0.723333 400 

Vulnerability_scanner 0.956667 0.953333 0.95 386 

XSS 0.853333 0.926667 0.89 406 

Accuracy   0.93 6312 

  



P a g e  75 | 100 

 

 

 

4.2. Confusion Matrix 

The confusion matrix provides a detailed breakdown of the algorithm’s performance by 

illustrating the true positives, false positives, true negatives, and false negatives for each class. 

In this matrix, the rows represent the actual classes, while the columns represent the 

predicted classes. Each cell in the matrix shows the number of instances for the corresponding 

actual and predicted class pair. 

 

 

Figure 9: Confusion Matrix – First Run 
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Figure 10: Confusion Matrix – Second Run 
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Figure 11: Confusion Matrix – Third Run 

 

The confusion matrices presented in the figures above illustrate the performance of the 

classification model across different categories of cyber-attacks and normal traffic. 

General Observations Across Runs: 

1. Consistency in Classification: 

o Ransomware, DDoS_TCP, DDoS_UDP, DDoS_ICMP, and Normal traffic 

consistently show high accuracy across all three runs, indicating that the 

algorithm reliably detects these classes, regardless of the random state used. 

o The true positive rates for these categories are consistently high, showing the 

robustness of the model in identifying these types of traffic. 

2. Variability in Certain Categories: 

o SQL Injection, Uploading, and XSS show variability across different random 

states. For instance, the classification accuracy for SQL Injection improves in 
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the third run compared to the first two runs, suggesting that the model's 

performance in these categories is sensitive to the initial conditions set by the 

random state. 

o Uploading and XSS continue to show some level of misclassification in all runs, 

though with varying degrees of accuracy. 

3. Impact of Random State: 

o The differences in the confusion matrices suggest that while the algorithm's 

overall performance is stable, the choice of random state can influence its 

effectiveness in distinguishing between more challenging categories, such as 

SQL Injection and Uploading. 

o For example, in the run with the second run, the model's accuracy in classifying 

Normal traffic increases, whereas, with the first run, there is a slight drop in the 

accuracy of certain categories. 

 

The results from the three runs indicate that while the algorithm is generally robust, its 

performance can be influenced by the random state, particularly in more challenging 

categories. This suggests that further optimization, possibly by incorporating an ensemble 

approach or fine-tuning hyperparameters, could help to mitigate the variability and improve 

the overall accuracy of the model across all attack categories. This discussion highlights the 

importance of considering random state variability in model evaluation, especially when 

dealing with complex, multi-class classification tasks like cyber-attack detection. 

 

4.3. ROC Curve 

The Receiver Operating Characteristic (ROC) curve is a graphical representation 

commonly used to evaluate the performance of the classification model [109]. It illustrates 

the trade-off between the recall and the false positive rate as the discrimination threshold for 

classifying positive instances is varied.  

 

The ROC curve is created by plotting the True Positive Rate (TPR), also known as sensitivity; 

same as the recall from the confusion matrix, against the False Positive Rate (FPR) at various 

threshold settings. Each point on the curve represents a pair of TPR and FPR values 
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corresponding to a specific decision threshold. A model with strong predictive performance 

will have a ROC curve that closely hugs the upper-left corner of the plot, indicating high 

sensitivity (few false negatives) and a low false positive rate [110]. The formula for FPR is: 

FPR =
FP

FP + TN
 

 

In addition to the ROC curve, the area under the ROC curve (AUC-ROC) is often calculated. 

AUC-ROC provides a single value summarizing the model's performance. A higher AUC-ROC 

value (closer to 1) suggests a better overall discriminatory ability of the model across different 

threshold settings. 

 

 

Figure 12: ROC Curve – First Run 
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Figure 13: ROC Curve – Second Run 
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Figure 14: ROC Curve - Third Run 

 

Notably, most classes consistently exhibit outstanding AUC values close to 1.0 across all 

runs, indicating robust and near-perfect discrimination capabilities. The DDoS_HTTP, 

DDoS_TCP, DDoS_UDP, DDoS_ICMP, Password, Port_Scanning, Vulnerability_scanner, 

Backdoor, and Normal classes consistently achieve an AUC of 1.00 in each run. This 

consistency underscores the classifier's exceptional performance in distinguishing these types 

of network traffic. 

 

However, some classes show slight variability in AUC values across the different runs, 

though they remain high. The MITM (Man-in-the-Middle) and Fingerprinting classes, for 

instance, have AUC values ranging from 0.93 to 0.96. Similarly, the Ransomware, Uploading, 

SQL_injection, and XSS classes display AUC values between 0.96 and 0.99 across the runs. 

While these values are strong and suggest that the model generally discriminates well 
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between these attack types and others, the slight fluctuations indicate potential areas for 

further model refinement to achieve more consistent performance. 

 

5- Challenges and Limitations 

5.1. Computational Constraints 

The integration of genetic algorithms (GA) to optimize neural network parameters, such 

as weights and biases, presents significant computational challenges. The following points 

highlight these constraints: 

 

Genetic algorithms inherently require the evaluation of multiple candidate solutions 

across numerous generations to converge on an optimal or near-optimal solution. This process 

involves repeated training and evaluation of neural networks, which is computationally 

intensive. Each candidate solution represents a unique set of neural network parameters. The 

demand for computational resources such as CPUs, GPUs, and memory is significantly 

heightened. This can lead to long training times and the need for high-performance computing 

infrastructure. 

 

The search space for neural network parameters is vast, especially when optimizing both 

weights and biases for multiple layers. In particular, having a moderately sized neural network 

with two hidden layers with 19 and 29 neurons results in more than a thousand parameters. 

The genetic algorithm must explore this high-dimensional space, which can lead to a 

combinatorial explosion in the number of evaluations needed to find optimal solutions. 

 

The iterative nature of genetic algorithms, coupled with the need to evaluate a population 

of solutions in each generation, results in high time complexity. As the number of generations 

and population size increase, the time required to complete the optimization process grows 

substantially. This is particularly challenging when the neural network models are complex 

and the training datasets are large. 
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5.2. Dataset Size and Complexity 

The foundational cornerstone of this research lies in the exploration of a substantial and 

intricate dataset. Comprising a vast array of 63 columns and an expansive 157,801 rows, the 

dataset encapsulates a rich diversity of data types and attributes. Each column serves as a 

unique dimension, providing a comprehensive perspective on the intricate landscape of cyber 

activities within the IIoT. The varied characteristics of data in cyber-physical systems require 

effective strategies to optimize performance across multiple dimensions. Additionally, the 

large volume of data demands careful consideration of computational efficiency and resource 

management. This highlights the importance of using optimization algorithms that can tackle 

these challenges while operating within the limits of available time and computational 

resources. 

 

5.3. Algorithm Fine-Tuning 

Optimizing algorithms like GA requires careful attention to the sensitivity of their tuning 

process. GA relies on several key parameters such as population size, mutation rate, crossover 

rate, and the number of generations, that affect their performance significantly. Fine-tuning 

these parameters is a critical step, as even small adjustments can have a major impact on the 

results. The challenge lies in finding the best balance, where the parameters work together 

effectively within the complexities of the dataset and the structure of the neural network. 

 

For example, the population size and mutation rate play crucial roles in how well the GA 

can explore potential solutions and avoid getting stuck in suboptimal ones. Adjusting these 

parameters helps ensure that the algorithm thoroughly searches the solution space while 

maintaining the efficiency needed to find high-quality answers. Moreover, the components of 

the neural network architecture, such as the number of layers and neurons, add another layer 

of complexity and challenge to the tuning process. The GA needs to be carefully adapted to 

meet the specific needs of the neural network, requiring an in-depth understanding of both 

the GA and the neural network to achieve the best possible outcomes. 
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6- Future Work 

Future research will focus on optimizing and fine-tuning neural network parameters to 

achieve higher accuracy in cyber-attack detection within the IIoT landscape. Efforts will 

explore advanced techniques for parameter selection, leveraging state-of-the-art 

methodologies to identify configurations that maximize detection efficacy. 

 

Additionally, there will be a concerted effort to enhance training efficiency, aiming to 

accelerate convergence rates and reduce computational overhead. Novel approaches will be 

investigated to enable rapid deployment and adaptation of models in dynamic IIoT 

environments. 

 

Furthermore, exploring new algorithms and optimization strategies holds promise for 

pushing current capabilities further. Integration of cutting-edge techniques such as meta-

learning or adaptive learning rate methods could offer substantial improvements in both 

accuracy and efficiency, advancing robust cyber-attack detection systems.  
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8- Appendices 

Appendix A: PCA Detailed Results 

Table 16: PCA Detailed Results Part 1 

Original Features PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 PCA 6 PCA 7 

frame.time 0.09349 -

0.601528 

0.455655 -

0.001028 

0.283592 -0.14476 0.205268 

ip.src_host -

0.288125 

-

0.054439 

0.631606 -

0.086858 

-

0.090714 

0.159032 -

0.392949 

ip.dst_host -

0.082474 

0.024128 0.070564 -0.03284 -

0.023545 

-0.05489 0.678382 

arp.dst.proto_ipv4 -

0.001874 

0.001061 -

0.000654 

0.000566 -

0.000381 

-

0.001127 

0.002499 

arp.opcode -

0.000009 

0.000009 -

0.000007 

0.000003 -

0.000007 

-

0.000002 

0.000005 

arp.hw.size -

0.000022 

0.00002 -

0.000016 

0.000006 -

0.000015 

-

0.000005 

0.000014 

arp.src.proto_ipv4 -

0.000004 

0.000006 -

0.000003 

0 -

0.000004 

0 0.000003 

icmp.checksum -

0.113223 

-

0.031427 

0.256162 -

0.034927 

0.027714 0.048614 0.055483 

icmp.seq_le -0.13159 -

0.025707 

0.277205 -

0.031764 

0.009458 0.060086 0.094638 

icmp.transmit_timestam

p 

-

0.000004 

0.000005 -

0.000005 

0.000001 -

0.000005 

0.000001 -

0.000002 

icmp.unused 0 0 0 0 0 0 0 

http.file_data 0.104203 0.0336 0.060824 0.220581 -0.01252 0.120201 0.023399 

http.content_length 0.043852 0.014057 0.026088 0.092417 -

0.005064 

0.048026 0.010308 

http.request.uri.query 0.023285 0.004299 0.008177 0.059065 -

0.009384 

0.052921 -0.01636 
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http.request.method 0.01507 0.003428 0.005103 0.032774 0.00079 0.047502 -

0.000347 

http.referer 0.004761 0.000251 0.002669 0.007421 0.004095 0.016301 0.003933 

http.request.full_uri 0.068738 0.010394 0.027384 0.152034 -

0.007108 

0.165348 -

0.020031 

http.request.version 0.013011 0.003785 0.002441 0.030275 -

0.003162 

0.043865 -

0.004453 

http.response 0.000004 0.000003 0.000003 0.000008 -

0.000001 

0.000003 0.000004 

http.tls_port 0 0 0 0 0 0 0 

tcp.ack 0.213616 0.064719 0.109048 0.065568 -

0.135692 

-

0.689572 

-

0.336201 

tcp.ack_raw 0.59776 -

0.071656 

0.111988 -

0.321375 

-

0.021057 

-

0.144321 

0.109771 

tcp.checksum 0.293137 0.011654 -

0.005474 

-

0.236578 

0.081432 0.066374 -

0.122318 

tcp.connection.fin 0.000002 0 -

0.000001 

-

0.000004 

0.000002 0 -

0.000001 

tcp.connection.rst -

0.000002 

0.000003 -

0.000004 

-

0.000013 

-

0.000003 

-

0.000001 

0.000016 

tcp.connection.syn -

0.000002 

0.000003 -

0.000005 

-

0.000004 

-

0.000004 

0 -

0.000026 

tcp.connection.synack 0.000001 0.000001 -

0.000001 

-

0.000002 

0.000006 0.000003 0 

tcp.dstport 0.172817 -

0.047558 

-

0.042703 

-

0.386209 

0.008966 0.075748 0.172139 

tcp.flags 0.008303 -

0.002146 

-0.00729 -

0.016343 

0.00206 0.009481 -

0.003584 

tcp.flags.ack 0.000025 0.000016 -

0.000007 

-

0.000009 

0.000002 0.000004 0.000016 



P a g e  95 | 100 

 

tcp.len 0.094585 0.007401 0.05058 0.127448 -

0.145505 

0.039899 0.05854 

tcp.options 0.330313 0.173074 0.060394 0.339346 0.717661 0.241244 -

0.113692 

tcp.payload 0.344172 -

0.020949 

0.176447 0.395522 -

0.512367 

0.326837 0.106963 

tcp.seq 0.222637 0.031478 0.122895 0.317885 -

0.190451 

-

0.195169 

0.004575 

tcp.srcport 0.105532 -

0.638266 

-0.32863 -

0.092994 

-

0.125443 

0.290122 -

0.314327 

udp.port -0.00025 -

0.000091 

0.000027 0.000274 0.000183 -

0.000496 

0.000816 

udp.stream -

0.182301 

-

0.422287 

-

0.230841 

0.435289 0.094477 -

0.281133 

0.112511 

udp.time_delta -

0.000107 

-

0.000049 

0.000041 0.000128 0.000058 -

0.000188 

0.000256 

dns.qry.name -

0.035222 

0.015753 0.024667 0.01062 -

0.038972 

0.011113 0.100545 

dns.qry.name.len -

0.000463 

-

0.000162 

0.00006 0.000491 0.000317 -

0.000892 

0.001578 

dns.qry.qu -

0.000002 

0.000003 -

0.000003 

0.000001 -

0.000003 

0.000001 -

0.000001 

dns.qry.type 0 0 0 0 0 0 0 

dns.retransmission -

0.000052 

-

0.000019 

0.000007 0.000058 0.000034 -

0.000101 

0.000187 

dns.retransmit_request 0 0 0 0 0 0 0 

dns.retransmit_request_i

n 

0 0 0 0 0 0 0 

mqtt.conack.flags 0.018089 -

0.022203 

0.000869 -

0.020945 

-

0.051353 

0.056426 0.022254 
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mqtt.conflag.cleansess 0.000001 -

0.000001 

0 -

0.000001 

-

0.000002 

0.000002 0.000002 

mqtt.conflags 0.000025 -

0.000025 

0.000005 -0.00003 -0.00007 0.00007 0.000054 

mqtt.hdrflags 0.008721 -

0.008515 

0.001879 -0.01024 -

0.028157 

0.024738 0.019568 

mqtt.len 0.00755 -

0.007255 

0.001718 -

0.009033 

-

0.024955 

0.021957 0.017999 

mqtt.msg_decoded_as 0 0 0 0 0 0 0 

mqtt.msg 0.02363 -

0.022686 

0.005413 -

0.028198 

-

0.078087 

0.068688 0.056356 

mqtt.msgtype 0.022038 -

0.021158 

0.004874 -

0.024225 

-

0.068421 

0.055407 0.045045 

mqtt.proto_len 0.002182 -

0.002159 

0.000429 -

0.002619 

-

0.006031 

0.006016 0.004672 

mqtt.protoname 0.01801 -

0.017823 

0.003538 -

0.021619 

-

0.049783 

0.049662 0.038566 

mqtt.topic 0.022327 -

0.021433 

0.005094 -

0.026716 

-

0.073829 

0.06491 0.053311 

mqtt.topic_len 0.000139 -

0.000133 

0.000032 -

0.000166 

-

0.000458 

0.000403 0.000331 

mqtt.ver 0.002182 -

0.002159 

0.000429 -

0.002619 

-

0.006031 

0.006016 0.004672 

mbtcp.len 0 0 0 0 0 0 0 

mbtcp.trans_id 0 0 0 0 0 0 0 

mbtcp.unit_id 0 0 0 0 0 0 0 

 

Table 17: PCA Detailed Results Part 2 

Original Features PCA 8 PCA 9 PCA 10 PCA 11 PCA 12 PCA 13 PCA 14 
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frame.time -

0.109273 

0.229408 0.123213 -

0.240094 

-

0.023835 

0.073326 -

0.053409 

ip.src_host 0.076235 -

0.184497 

-

0.011344 

0.364831 0.061332 -

0.138153 

0.018703 

ip.dst_host 0.400821 -0.34236 -

0.264281 

-

0.049395 

-

0.116473 

0.013169 -

0.081112 

arp.dst.proto_ipv4 -

0.005071 

0.006483 0.001857 -

0.008145 

0.001102 0.005309 -

0.001566 

arp.opcode -0.00002 0.00002 0.000003 -

0.000024 

0.000007 0.000019 -

0.000002 

arp.hw.size -

0.000047 

0.000051 0.000009 -

0.000061 

0.000015 0.000047 -

0.000006 

arp.src.proto_ipv4 -

0.000012 

0.000013 0.000001 -

0.000017 

0.000003 0.000012 -

0.000002 

icmp.checksum 0.008603 0.054267 -

0.045558 

-

0.272831 

-

0.066584 

0.105469 -

0.039509 

icmp.seq_le 0.1188 -

0.101931 

-

0.113177 

-

0.034367 

-

0.062691 

-

0.044798 

0.136446 

icmp.transmit_timestam

p 

-

0.000005 

0.000002 -

0.000002 

-

0.000002 

0.000003 0.000004 0.000002 

icmp.unused 0 0 0 0 0 0 0 

http.file_data 0.00495 -

0.280372 

0.264995 -

0.275423 

0.288071 -

0.185544 

0.172085 

http.content_length 0.00158 -

0.116725 

0.112409 -

0.114126 

0.117077 -0.08057 0.068622 

http.request.uri.query 0.023404 -

0.107005 

0.034082 -

0.132078 

0.158583 -

0.011031 

0.181516 

http.request.method 0.006406 -

0.051755 

0.022752 -

0.045184 

0.088927 0.051203 0.045132 
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http.referer -

0.001457 

-

0.010272 

0.006055 -

0.000464 

0.024928 0.036019 -

0.005095 

http.request.full_uri 0.045153 -

0.236556 

0.083239 -

0.244879 

0.360183 0.104704 0.278258 

http.request.version 0.009066 -

0.048993 

0.019052 -

0.047565 

0.075264 0.03485 0.046818 

http.response -

0.000003 

-

0.000007 

0.000016 -

0.000003 

0 -

0.000012 

-0.00001 

http.tls_port 0 0 0 0 0 0 0 

tcp.ack 0.098291 -

0.397597 

0.079901 -

0.211068 

-

0.296719 

0.048602 -0.09157 

tcp.ack_raw -

0.219153 

-0.13584 -

0.204825 

0.349052 0.392331 0.21774 0.069759 

tcp.checksum 0.777338 0.283389 0.369753 0.054505 0.049362 0.040698 0.005676 

tcp.connection.fin -

0.000002 

0.000004 -

0.000007 

0.000004 0.000001 -

0.000004 

0.000007 

tcp.connection.rst 0.000003 0.000011 0.000011 -

0.000007 

0.000015 -

0.000011 

0.000006 

tcp.connection.syn 0.000015 -

0.000013 

-

0.000001 

-

0.000013 

-

0.000026 

0.000009 -

0.000024 

tcp.connection.synack -

0.000002 

0 -

0.000002 

0.000005 0.000001 0.000001 0 

tcp.dstport -

0.230159 

-

0.138883 

0.338588 0.004613 -0.23012 -

0.681746 

0.031493 

tcp.flags 0.002173 0.023895 -

0.015039 

-

0.015478 

-

0.014479 

-

0.033947 

0.015258 

tcp.flags.ack -

0.000021 

0.000008 -

0.000007 

0.000021 0.000028 -

0.000003 

0.000022 

tcp.len -

0.026685 

-

0.005948 

0.125702 -

0.043789 

-

0.049018 

-

0.024778 

-

0.003766 
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tcp.options -

0.006796 

-

0.157035 

-

0.137815 

0.122953 -0.28625 -

0.035903 

-0.06644 

tcp.payload -

0.040479 

0.026679 0.147335 0.092879 -

0.175037 

0.086282 -

0.352517 

tcp.seq 0.109158 0.438959 -

0.421555 

-

0.008274 

0.003534 -

0.452967 

0.347136 

tcp.srcport 0.152748 -

0.228311 

-

0.364096 

-

0.151222 

-

0.138899 

-

0.059618 

0.006058 

udp.port -

0.000442 

0.000691 0.000674 -0.00005 0.000346 0.000297 -0.00005 

udp.stream 0.057621 -

0.066082 

0.301447 0.458536 0.129013 -0.06168 0.034845 

udp.time_delta -

0.000053 

0.000071 0.000271 0.000453 0.000207 -

0.000096 

0.000076 

dns.qry.name 0.191771 -

0.257797 

-

0.108752 

0.326803 0.003793 -

0.150704 

0.062791 

dns.qry.name.len -

0.000633 

0.001009 0.001092 0.0003 0.000622 0.000285 0.000057 

dns.qry.qu -

0.000003 

0.000001 -

0.000001 

-

0.000001 

0.000002 0.000002 0.000001 

dns.qry.type 0 0 0 0 0 0 0 

dns.retransmission -0.00004 0.000068 0.000109 0.000114 0.000074 -

0.000011 

0.000031 

dns.retransmit_request 0 0 0 0 0 0 0 

dns.retransmit_request_i

n 

0 0 0 0 0 0 0 

mqtt.conack.flags -

0.021611 

0.001259 0.002128 0.022537 0.015765 0.046684 -0.26659 

mqtt.conflag.cleansess -

0.000002 

0 0.000002 0.000001 0 -

0.000001 

-

0.000013 
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mqtt.conflags -0.00005 0.000009 0.000061 0.00004 0.000008 -

0.000018 

-

0.000356 

mqtt.hdrflags -

0.021041 

-

0.001797 

0.038833 0.031782 -

0.101564 

0.076454 0.12008 

mqtt.len -

0.019568 

-0.00244 0.038392 0.030326 -

0.100925 

0.076053 0.129955 

mqtt.msg_decoded_as 0 0 0 0 0 0 0 

mqtt.msg -

0.061177 

-

0.007619 

0.120421 0.095074 -

0.316696 

0.238572 0.40862 

mqtt.msgtype -

0.047563 

0.001861 0.079412 0.069748 -

0.220558 

0.146162 0.259025 

mqtt.proto_len -

0.004333 

0.000792 0.005238 0.003458 0.000658 -0.00158 -

0.030702 

mqtt.protoname -

0.035768 

0.006541 0.043233 0.028545 0.005427 -

0.013046 

-

0.253433 

mqtt.topic -

0.057968 

-

0.007247 

0.113908 0.089889 -0.29956 0.225492 0.386809 

mqtt.topic_len -0.00036 -

0.000045 

0.000707 0.000558 -0.00186 0.0014 0.002402 

mqtt.ver -

0.004333 

0.000792 0.005238 0.003458 0.000658 -0.00158 -

0.030702 

mbtcp.len 0 0 0 0 0 0 0 

mbtcp.trans_id 0 0 0 0 0 0 0 

mbtcp.unit_id 0 0 0 0 0 0 0 
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