
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2024

Optimizing Neural Networks for IIoT Attack Detection Optimizing Neural Networks for IIoT Attack Detection

Hamad Alblooshi
hha7620@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Alblooshi, Hamad, "Optimizing Neural Networks for IIoT Attack Detection" (2024). Thesis. Rochester
Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11923&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11923?utm_source=repository.rit.edu%2Ftheses%2F11923&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

P a g e 1 | 100

Rochester Institute of Technology

Optimizing Neural Networks for IIoT Attack Detection

By

Hamad Alblooshi

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree in

Master of Science in Cybersecurity

Department of Computing Sciences

Supervised by

Dr. Kevser Ovaz Akpinar

Department of Electrical Engineering and Computing Sciences

Rochester Institute of Technology

Dubai

2024

P a g e 2 | 100

Acknowledgments

I would like to express my deepest appreciation and gratitude to Dr. Kevser Ovaz Akpinar for

her endless support and assistance throughout my journey in completing this thesis. Her

guidance, insightful feedback, constructive criticism, and encouragement have been

instrumental in shaping this work, which has significantly improved the quality of this thesis.

Moreover, to extend my appreciation and gratitude to Dr. Wesam Almobaideen, Dr. Ali Assi,

and Dr. Huda Saadeh for their invaluable feedback and insightful suggestions, which

profoundly enriched this research and were crucial to its success.

P a g e 3 | 100

Abstract

The Industrial Internet of Things (IIoT) stands as a revolutionary force, intertwining physical

devices, sensors, and industrial systems to usher in advanced automation and data-driven

decision-making across various sectors. However, this increased connectivity has exposed

these systems to a growing array of cyber threats. Safeguarding IIoT environments becomes

crucial to maintain the integrity, availability, and confidentiality of critical industrial processes.

In response, this research explores the optimization of neural network parameters using

Genetic Algorithms (GA). The application of GA has led to achieve a remarkable accuracy of

95% across various attack types. The results demonstrate a high performance in identifying

complex attack patterns, contributing to the resilience of IIoT systems against emerging cyber

threats.

Keywords: Industrial Internet of Things (IIoT), Artificial Intelligence (AI), machine learning

(ML), Genetic Algorithm (GA), Neural Network (NN)

P a g e 4 | 100

Table of Contents

Table of Contents

Acknowledgments .. 2

Abstract .. 3

Table of Contents ... 4

List of Figures ... 6

List of Tables ... 7

List of Abbreviations .. 8

1- Introduction .. 10

1.1. Background .. 11

1.1.1. Industrial Internet of Things (IIoT) ... 11

1.1.2. Machine Learning .. 13

1.1.3. Intrusion Detection Systems .. 14

1.2. Problem Statement .. 16

2- Literature Review .. 17

2.1. Related work .. 17

2.2. Motivation .. 23

3- Methodology .. 24

3.1. Dataset ... 24

3.1.1. Attack Category 1: Distributed Denial-of-Service (DDoS) 26

3.1.2. Attack Category 2: Information Gathering ... 29

3.1.3. Attack Category 3: Man-in-the-middle (MITM) ... 32

3.1.4. Attack Category 4: Injection ... 34

3.1.5. Attack Category 5: Malware ... 36

3.2. Background Information About Techniques Used ... 38

P a g e 5 | 100

3.2.1. Neural Network .. 39

3.2.2. Genetic Algorithm .. 42

3.2.3. Principal Component Analysis ... 44

3.3. Implementation ... 45

3.3.1. Data Preparation and Sampling ... 45

3.3.2. Feature Selection ... 47

3.3.3. Hybrid Algorithm .. 53

3.3.4. Algorithm Parameters .. 62

4- Results and Analysis .. 68

4.1. Classification Metrics ... 69

4.2. Confusion Matrix .. 75

4.3. ROC Curve .. 78

5- Challenges and Limitations ... 82

5.1. Computational Constraints .. 82

5.2. Dataset Size and Complexity .. 83

5.3. Algorithm Fine-Tuning .. 83

6- Future Work .. 84

7- References .. 85

8- Appendices ... 93

P a g e 6 | 100

List of Figures

Figure 1: Neural Network Example With Two Hidden Layers .. 40

Figure 2: Stratified Sampling .. 46

Figure 3: PCA Steps .. 51

Figure 4: PCA Threshold Selection ... 52

Figure 5: Optimization Loop ... 60

Figure 6: Selecting Number of Hidden Layers 1 ... 63

Figure 7: Selecting Number of Hidden Layers 2 ... 64

Figure 8: Population Size Experiment .. 67

Figure 9: Confusion Matrix – First Run ... 75

Figure 10: Confusion Matrix – Second Run .. 76

Figure 11: Confusion Matrix – Third Run ... 77

Figure 12: ROC Curve – First Run ... 79

Figure 13: ROC Curve – Second Run .. 80

Figure 14: ROC Curve - Third Run... 81

P a g e 7 | 100

List of Tables

Table 1: Related Work .. 21

Table 2: IoT IDS Datasets .. 24

Table 3: Edge-IIoTset Size ... 25

Table 4: Edge-IIoTset Attacks And Attacks Category .. 25

Table 5: Dataset Sampling Using The Stratified Method ... 47

Table 6: EdgeIIoT Columns ... 48

Table 7: Selected PCA ... 52

Table 10: Best Number of Hidden Layers ... 64

Table 11: Population Size Experiment .. 67

Table 12: The Final Neural Network Architecture .. 69

Table 13: Confusion Matrix Description ... 69

Table 14: Classification Report – First Run ... 71

Table 15: Classification Report – Second Run .. 72

Table 16: Classification Report – Third Run ... 72

Table 17: Classification Results - Average .. 74

Table 8: PCA Detailed Results Part 1 .. 93

Table 9: PCA Detailed Results Part 2 .. 96

P a g e 8 | 100

List of Abbreviations

Abbreviations Definition

ABC Artificial Bee Colony Algorithm

AI Artificial Intelligence

BLR Binomial Logistic Regression

CNN Convolutional Neural Network

DBF Deep Belief Network

DDoS Distributed Denial-of-Service

DNN Deep Neural Network

DT Decision Tree

FL Federated Learning

GA Genetic Algorithm

GB Gradient Boosting

GNB Gaussian Naive Bayes

HIDS Host Intrusion Detection System

ICS Industrial Control Systems

IDPS Intrusion Detection and Prevention Systems

IDS Intrusion Detection System

IDS Intrusion Detection System

IIoT Industrial Internet of Things

Industry 4.0 or 4IR Fourth Industrial Revolution

IOC Indicators of Compromise

IoT Internet of Things

IT Information Technology

KNN K-Nearest Neighbours

LSTM Long Short-Term Memory

MEC Mobile Edge Computing

NB Naive Bayes

NIA Nature-Inspired Algorithms

NIDS Network Intrusion Detection System

P a g e 9 | 100

NN Neural Network

OT Operational Technology

ReLU Rectified Linear Unit

RF Random forest

RNN Recurrent Neural Network

SDN Software-Defined Networking

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TL Transfer Learning

TTP Tactics, Techniques, and Procedures

P a g e 10 | 100

1- Introduction

In recent years, the integration of digital technologies into industrial processes has

fundamentally transformed the way we perceive and manage industrial systems [1]. This

convergence of physical machinery with digital infrastructure, commonly referred to as the

IIoT, holds the promise of unprecedented levels of efficiency, productivity, and connectivity

across various industrial sectors [2]. However, alongside these advancements comes the

looming threat of cyber-attacks targeting critical infrastructure and industrial control systems

[3].

As these systems become more interconnected and central to industrial operations,

they also become attractive targets for sophisticated cyber threats [4]. The complexity and

scale of these threats underscore the urgent need for robust detection mechanisms capable

of identifying and mitigating potential attacks. Traditional cybersecurity approaches often fall

short in effectively addressing the dynamic and evolving nature of cyber-attacks within IIoT

environments, struggling to keep pace with the increasingly sophisticated tactics employed by

malicious actors.

This situation calls for innovative strategies that can not only adapt to new threats but

also respond swiftly and effectively. Beyond the technical realm, the implications of securing

IIoT systems extend into broader societal and economic dimensions. Safeguarding industrial

infrastructures from cyber threats is not merely a technical challenge but a critical necessity

for ensuring operational continuity, protecting sensitive data, and maintaining public safety

[5].

This thesis addresses the pressing need for advanced cybersecurity solutions tailored

to the unique challenges of IIoT environments. Specifically, it proposes the development of an

advanced machine-learning algorithm designed to detect cyber-attacks targeting industrial

systems. By leveraging the capabilities of machine learning and utilizing the rich data inherent

in IIoT networks, this approach aims to enhance the security posture of industrial

organizations and reduce the risks posed by cyber threats.

P a g e 11 | 100

1.1. Background

Before delving into the complexities of the IIoT, machine learning (ML), and Intrusion

Detection Systems (IDS), it's crucial to establish a foundational understanding of the

interaction between industrial systems and cybersecurity. Industrial environments or

operational technology (OT), characterized by the integration of physical machinery with

digital infrastructure, have undergone a deep transformation with the advent of IIoT

technologies [6]. While IIoT promises enhanced efficiency and connectivity, it also introduces

new challenges in terms of cybersecurity [7]. As industrial systems become increasingly

interconnected and reliant on digital technologies, they become more susceptible to cyber

threats targeting critical infrastructure and control systems. This requires the development of

advanced cybersecurity solutions tailored specifically to the unique challenges posed by IIoT

environments. In the subsequent sections, the focus will shift to exploring the fundamental

concepts of the IIoT, ML, and IDS, highlighting their roles in supporting cybersecurity.

1.1.1. Industrial Internet of Things (IIoT)

The Industrial Internet of Things (IIoT) refers to the interconnected network of devices,

sensors, and systems that are used in industrial and operational environments. IIoT can

significantly help in collecting, exchanging, and analyzing data to optimize processes, improve

efficiencies, and enable remote monitoring and control [8]. The adoption of IIoT has grown

rapidly in recent years, transforming industries such as manufacturing, logistics, energy, and

transportation into what is known as the Fourth Industrial Revolution (Industry 4.0 or 4IR).

Industry 4.0 refers to the fourth industrial revolution; it is the current and ongoing

transformation of industries and societies through the integration of advanced digital

technologies. It is characterized by the convergence of physical, digital, and biological

technologies, blurring the lines between the physical and virtual worlds [9]. At the heart of

industry 4.0 are technologies such as artificial intelligence (AI), big data, the IoT which the IIoT

is derived from, cloud computing, robotics, and other emerging technologies.

These technologies are changing the way businesses operate, driving innovation, and

creating new opportunities. As an example, in manufacturing, the use of smart factories

powered by IoT and AI enables autonomous and connected production processes, leading to

P a g e 12 | 100

increased efficiency, reduced costs, and improved quality control. However, along with the

numerous benefits of IIoT, there has been a parallel rise in cybersecurity threats that pose

significant risks to the secure and reliable operation of IIoT systems.

As IIoT systems become more interconnected and data-driven, they are vulnerable to

various cyber threats, including unauthorized access, data breaches, malware attacks, and

insider threats. These threats can result in the disruption of operations, financial losses,

damage to reputation, and potential safety hazards. Furthermore, the increasing convergence

of IT (Information Technology) and OT in IIoT systems has created new attack vectors and

complexities in securing these systems. The growing reliance on IIoT in critical infrastructure,

such as power grids, transportation networks, and industrial control systems (ICS), has raised

concerns about the potential for cyber-attacks to have far-reaching and devastating

consequences. Cybercriminals, nation-state actors, and other malicious entities are constantly

evolving their tactics, techniques, and procedures (TTPs) to exploit vulnerabilities in IIoT

systems, making it imperative for organizations to prioritize robust cybersecurity measures to

safeguard their IIoT deployments [10].

Considering these challenges, ensuring the security of IIoT systems has become a

critical priority for industries and organizations that leverage IIoT technologies. This includes

implementing strong authentication and access controls, securing device firmware and

software, encrypting data, implementing intrusion detection and prevention systems (IDPS),

and having robust incident response plans in place. Furthermore, compliance with relevant

regulations and industry standards, as well as regular security audits, vulnerability

assessments, and penetration testing, are essential components of a comprehensive IIoT

cybersecurity strategy. While the adoption of IIoT offers significant benefits for industrial and

operational environments, the growth of cybersecurity threats poses significant challenges.

Organizations must prioritize robust cybersecurity measures to safeguard their IIoT systems

and protect against evolving threats. With the increasing reliance on IIoT in critical

infrastructure and industrial processes, the importance of IIoT cybersecurity cannot be

overstated in ensuring the secure and reliable operation of IIoT systems.

P a g e 13 | 100

1.1.2. Machine Learning

Machine learning is a subset of AI that involves the use of algorithms and statistical

models to enable computer systems to learn from and make predictions or decisions based

on the given data [11]. In the realm of cybersecurity, machine learning can be a powerful tool

to detect, prevent, and respond to cyber threats more proactively and efficiently.

Machine learning algorithms can be trained on large datasets of cybersecurity-related

data, such as network traffic, log files, malware samples, and user behaviour to learn patterns,

anomalies, and indicators of compromise (IOCs). Once trained, these models can be deployed

in real-time to analyze incoming data and identify potential cyber threats, such as malware,

viruses, phishing attacks, and intrusions. One of the key applications of machine learning in

cybersecurity is threat detection [12]. For example, machine learning can be used to identify

suspicious patterns of network traffic, abnormal user behaviour, or unknown malware

samples. These models can also adapt and learn from new data, allowing them to evolve and

improve their detection capabilities over time [13].

Another application of machine learning in cybersecurity is in vulnerability assessment

and patch management. Machine learning models can analyze system configurations, patch

histories, and other data to identify vulnerabilities in software or hardware that could be

exploited by cybercriminals [14]. This information can help organizations prioritize their patch

management efforts and proactively address potential vulnerabilities before they are

exploited.

Machine learning techniques can also be used in cybersecurity for threat hunting and

incident response. By analyzing historical data and patterns of cyber-attacks, machine learning

models can help identify ongoing or potential cyber threats that may have evaded traditional

security measures. This can aid in proactive threat-hunting efforts, allowing organizations to

detect and respond to threats in a more timely and effective manner [15].

Moreover, machine learning can be used to enhance authentication and access control

mechanisms in cybersecurity. Machine learning models can analyze user behaviour patterns,

P a g e 14 | 100

device characteristics, and other contextual information to detect anomalies or suspicious

activities that may indicate unauthorized access or compromised accounts. This can help

organizations detect and prevent unauthorized access or insider threats, enhancing the

security of their systems and data [16].

However, it's important to note that machine learning in cybersecurity is not the

ultimate solution and it has limitations. Machine learning models can produce false positives

or false negatives and can also be susceptible to adversarial attacks. Therefore, it's crucial to

continuously evaluate, validate, and update machine learning models to ensure their accuracy

and effectiveness in the ever-evolving landscape of cybersecurity threats [17]. Machine

learning has the potential to significantly enhance cybersecurity by enabling proactive threat

detection, vulnerability assessment, incident response, and access control. By leveraging the

power of data and algorithms, machine learning can help organizations stay ahead of cyber

threats and better protect their systems, networks, and data from cyber-attacks [18].

1.1.3. Intrusion Detection Systems

Intrusion Detection Systems (IDS), including both Network-based IDS (NIDS) and Host-

based IDS (HIDS), serve as vital components in the complex landscape of cybersecurity, acting

as guardians against potential threats to network and system integrity [19]. These systems are

meticulously crafted to address the dynamic and ever-evolving nature of cyber threats. Their

overarching objective is to provide organizations with an intelligent and automated layer of

defence, capable of detecting and responding to a multitude of security incidents [20].

NIDS is a security system that functions as a sentinel overseeing the collective traffic

coursing through interconnected systems. Employing advanced algorithms, it scrutinizes

packets of data traversing the network in real-time. By comparing observed patterns against

predefined signatures indicative of known threats, NIDS detects activities such as port scans,

denial-of-service attacks, and other malicious behaviours that target network vulnerabilities.

Its ability to analyze the broader network landscape ensures a comprehensive defence against

threats targeting the organization's interconnected infrastructure [21].

P a g e 15 | 100

HIDS focus on the individual hosts or devices within a network. It monitors activities

on each host, including file integrity, system logs, and system calls. This approach allows HIDS

to detect anomalies specific to the activities on a particular host, such as unauthorized access

attempts, unusual file modifications, or suspicious processes. HIDS provides a localized

perspective, complementing the broader network awareness provided by NIDS [22].

Both NIDS and HIDS operate by leveraging sophisticated algorithms and rule sets.

These algorithms are meticulously designed to recognize subtle patterns and anomalies within

the vast array of network traffic or host activities. By comparing observed data against

established signatures and behavioural baselines, both NIDS and HIDS can discern activities

indicative of malicious intent, including deviations from security policies and potential policy

violations. Furthermore, NIDS and HIDS play pivotal roles in identifying and mitigating security

policy violations. By scrutinizing activities against predefined rules and policies, they ensure

that organizations adhere to their established security postures [23]. This capability is

particularly crucial in maintaining compliance with industry regulations and safeguarding

sensitive data from unauthorized access or manipulation. The adaptability of NIDS and HIDS

is another key feature. The detection systems are continually upgraded to keep pace with the

evolving of cyber threats. They constantly update their knowledge bases, incorporating new

ads and refining detection mechanisms [24]. This adaptive quality enables NIDS and HIDS to

stay ahead of emerging threats, making them indispensable assets in an organization's

cybersecurity arsenal.

Key features of an IDS are as follows [25], [26], [27], [28], [29], [30], [31], [32]:

1. Signature-based Detection: Signature-based detection is a fundamental technique

employed by IDS, involving the comparison of observed data against predefined

signatures or patterns of known cyber threats. These signatures are essentially

fingerprints of malicious activities, allowing the IDS to recognize and respond to well-

documented attacks, such as viruses, worms, and specific intrusion methods.

2. Behaviour-based Detection: Behaviour-based detection takes a more dynamic

approach by establishing a baseline of normal behaviour for networks or hosts. The

IDS continuously monitors activities and flags deviations from this established baseline

as potential security incidents. This method is particularly effective in detecting

P a g e 16 | 100

previously unknown or evolving threats that might not be covered by signature-based

approaches.

3. Rule-based Detection: Rule-based detection involves the application of rules and

algorithms to identify potential threats based on general characteristics of attacks. This

method allows IDS to adapt to emerging threats by leveraging behavioural analysis and

situational awareness. Rule detection is especially valuable in scenarios where rigid

signatures may not capture the full spectrum of attack variations.

4. Real-time Monitoring: One of the defining features of IDS is its real-time monitoring

capability. This enables the system to promptly detect and respond to security

incidents as they unfold. The immediate identification of malicious activities is crucial

in minimizing the potential impact of cyber threats and fortifying the overall security

posture of a network or system.

5. Alerts and Notifications: When an IDS identifies suspicious behaviour, it generates

alerts or notifications to prompt further investigation or action. These alerts provide

valuable insights into the nature of the detected incident, allowing cybersecurity

professionals to assess the severity of the threat and implement appropriate response

measures.

6. Logs and Reporting: IDS systems maintain detailed logs of activities, offering a

comprehensive record of events for retrospective analysis. These logs not only aid in

understanding the specifics of security incidents but also serve as valuable resources

for fine-tuning the IDS, refining detection rules, and improving overall security

strategies.

1.2. Problem Statement

The rapid adoption of the IIoT has led to a new era of industrial automation and

efficiency, revolutionizing the way operations are conducted. This transformation, fuelled by

increased connectivity and the seamless integration of digital technologies, has undoubtedly

enhanced productivity. However, this very connectivity exposes critical infrastructures to an

expanding array of sophisticated cyber threats, raising significant concerns about the

robustness of cybersecurity measures in IIoT systems [33]. The necessity of ensuring the

P a g e 17 | 100

cybersecurity of IIoT systems is crucial, as any compromise in the integrity and reliability of

industrial operations could have far-reaching consequences [34].

The convergence of OT and IT in industrial environments creates complex attack

surfaces, vulnerable to a diverse range of cyber threats. From Distributed Denial of Service

(DDoS) attacks to data breaches and malware infiltration, the threat landscape confronting

industrial systems is multifaceted and constantly evolving. Incidents like the Stuxnet and Triton

attacks serve as stark reminders of the potential consequences of compromised industrial

security, with the ability to disrupt critical infrastructure and endanger lives [35].

The integrity and reliability of industrial operations depend on the security of IIoT

systems. Any compromise in cybersecurity could lead to disruptions in production processes,

financial losses, reputational damage, and, in extreme cases, pose risks to human safety [36].

Thus, ensuring the resilience of IIoT systems against cyber threats is not only a matter of

operational continuity but also a crucial aspect of safeguarding critical infrastructure and

maintaining public trust.

2- Literature Review

2.1. Related work

This section examines a series of research papers contributing to the growing landscape

of machine learning applications within IIoT environment. Each of these studies employs

various methodologies and models to develop robust intrusion detection systems tailored for

IIoT environments. The cornerstone of these investigations lies in the utilization of a variety of

algorithms tailored specifically for IIoT IDS, which serve as essential elements for algorithm

development and evaluation. This shows the importance of using tailored algorithms designed

for IIoT IDS, providing insights into various techniques used to strengthen the detection

capabilities to secure the industrial environment from any potential threats or cyberattacks.

Through an analysis of performance metrics such as Accuracy, Precision, F1 Score, and Recall,

this section provides insights into the effectiveness of machine learning algorithms and

P a g e 18 | 100

frameworks, from leveraging IIoT datasets, thereby enhancing the security posture of IIoT

infrastructures.

In [37] authors introduce FMDADM, a multi-layer framework specifically designed to

detect and mitigate DDoS attacks in SDN-based IoT networks using machine learning

techniques. The framework operates across different layers, including the data plane, control

plane, and application plane, to provide comprehensive defence against DDoS attacks.

FMDADM leverages machine learning algorithms, including SVM, GNB, KNN, BLR, DT, and RF,

for traffic classification and anomaly detection, enabling accurate identification and

differentiation between normal and malicious network behaviour. The study utilizes the Edge-

IIoTset dataset, focusing specifically on DDoS attacks for evaluation purposes, achieving

performance metrics with an accuracy of 99.79%, precision of 99.09%, F1 score of 99.43%,

and recall of 99.77%. Furthermore, the paper outlines the parameters used for model

optimization, including the splitting criterion, number of trees, minimum samples per leaf,

minimum samples per split, and maximum features, with selected values of Gini, 1000, 1, 2,

and 7.

The [38] authors introduces an architecture based on Mobile Edge Computing (MEC) to

enhance the security of IoT applications using federated deep learning. The proposed

architecture aims to address the security challenges in IoT systems by leveraging the

computational capabilities of MEC servers and the privacy-preserving nature of federated

learning. By distributing the deep learning model training process across multiple edge

servers, the architecture ensures that sensitive data remains on the local edge servers, thus

preserving privacy. The federated deep learning approach allows for collaborative model

training without the need for centralized data collection, minimizing the risk of data breaches.

The research achieves notable results with an accuracy of 86%, precision of 95%, F1 score of

87%, and recall of 87% utilizing the NSL-KDDTest dataset.

In [39] authors explore machine learning approaches for detecting and characterizing cyber-

attacks in IoT-enabled cyber-physical systems. It highlights the growing threat landscape and

the need for effective defence mechanisms in the context of IoT systems. It discusses the

P a g e 19 | 100

challenges and considerations specific to OT environments, including limited resources and

the need for real-time analysis. The paper used Deep Neural Networks (DNN) combined with

the Decision Trees algorithm. The proposed solution was tested in an OT environment by using

the natural gas pipeline dataset. The research achieves notable results with an accuracy of

97.3%, precision of 97%, F1 score of 90%, and recall of 97%.

In [40] authors present an AI-enabled framework designed for detecting distributed cyber-

attacks in IoT-based smart environments. The proposed framework leverages DNN, SVM RF,

DT, GB, and NB, to analyze network traffic patterns and identify malicious activities. By

deploying distributed AI models across IoT devices and gateways, the framework enables real-

time detection and response to cyber-attacks, while minimizing resource consumption and

latency. It was conducted on the Edge-IIoTset dataset achieving an accuracy of 96%, precision

of 86%, F1 score of 85%, and recall of 85%.

The [41] authors present a hybrid solution that combines a CNN and LSTM model for

intrusion detection at the edge of the IIoT systems. The proposed model combines the

strengths of CNN for spatial feature extraction and LSTM for capturing temporal dependencies

in the third and fourth network layers. It takes into consideration privacy concerns by

employing a privacy-aware feature selection algorithm that removes sensitive data before

analysis. Notably, the study utilizes the IoT-DS2 dataset, which is constructed by combining

different datasets, including BoT-IoT, IoT-NI, MQTT-IoTIDS2020, MQTTset, and IoT-23, rebuilt

from PCAP files. The results demonstrate achieving an accuracy of 97.14%, precision of

82.32%, F1 score of 72.66%, and recall of 74.62%.

In [42] the authors propose an approach to enhance cybersecurity in the context of the

IIoT. The authors present a hybrid deep learning-based intrusion detection system specifically

tailored for IIoT environments. By leveraging the power of convolutional neural networks

(CNN) and long short-term memory (LSTM), the proposed system effectively identifies and

classifies intrusions in real-time. The hybrid nature of the system combines the strengths of

both CNN LSTM models to improve detection accuracy and minimize false positives and false

negatives. Additionally, it provides valuable insights into the hyperparameters such as 100

epochs, a batch size of 5000, a learning rate of 0.0001, activation functions including Relu and

P a g e 20 | 100

Sigmoid, spatial dropout regularization, and MinMaxScaler normalization which ended up

with an accuracy of 98.69%.

The [43] authors discuss intrusion detection in the context of IIoT systems. It addresses

the unique challenges and requirements for intrusion detection in industrial environments,

where critical infrastructure and OT are interconnected. The paper proposed two methods

using deep learning to classify IIoT network packets and highlights the importance of real-time

monitoring and response to mitigate potential threats. It emphasizes the need for a

comprehensive approach that combines network monitoring, behavioural analysis, and

machine learning algorithms to effectively detect and respond to intrusions in IIoT systems,

ultimately enhancing the security and resilience of industrial environments. The proposed

RNN (Recurrent Neural Network) architecture employs three hidden layers for binary

classification and four for multi-class. It utilizes 90 hidden nodes for binary and 120 for multi-

class classification, with a consistent learning rate of 0.1. for both. Relu is the activation

function for binary, while sigmoid is used for multi-class. Both classifications utilize softmax

for output interpretation, and the Adam optimizer, achieving an accuracy of 99%.

In [44] the authors focus on intrusion detection for IoT applications using federated and

transfer learning techniques. It highlights the challenges of traditional intrusion detection

systems in IoT due to limited resources and the distributed nature of IoT devices. The paper

proposes a federated learning approach where local models are trained on individual IoT

devices, and then a global model is created by aggregating the knowledge from these local

models while preserving data privacy. Additionally, transfer learning is employed to adapt the

global model to new IoT environments with limited labeled data. The study leverage from the

Edge-IIoTset dataset achieves an accuracy of 98.1%, precision of 99%, F1 score of 99%, and

recall of 99%.

The [45] authors introduce a one-class classifier based on polynomial interpolation and

apply it to networking security. The proposed classifier aims to detect anomalies or malicious

activities in network traffic by learning the normal behaviour of the system using a polynomial

interpolation model. By capturing the underlying patterns and trends in the data, the classifier

can distinguish between normal and abnormal network behaviour. Leveraging the Edge-

P a g e 21 | 100

IIoTset dataset, the classifier achieves an accuracy of 97.27%, precision of 96.03%, F1 score of

not given, and recall of 94.82%. Additionally, PCA (Principal Component Analysis) is performed

with a value of 15.

In [46] the authors present a security model based on LightGBM (Gradient Boosting) and

transformer architectures to safeguard healthcare systems against cyberattacks and highlight

the criticality of healthcare systems and the increasing risk of cyber threats. LightGBM is

employed for anomaly detection, effectively identifying malicious activities within the

healthcare system. The Transformer architecture, known for its proficiency in sequential data

analysis, is leveraged for log analysis and generating predictions. Experimental results

demonstrate the model achieved a precision of 92%, F1 score of 89%, and a recall of 88%,

although the accuracy is not clear in the paper.

Table 1: Related Work

Paper Proposed

solution

Application/

Domain

Dataset Traffic

types

Accuracy Precision F1 Recall

[34] FMDADM SDN-based IoT

networks

Edge-

IIoTset

1 99.79 99.09 99.43 99.77

[35] Federated

Learning

Architecture

IoT Applications NSL-

KDDTest

Not

Given

86 95 87 87

[36] DNN and

Decision Trees

IoT-enabled

cyber-physical

systems

Natural

Gas

Pipeline

Dataset

Not

Given

97.3 97 90 97

[37] Distributed AI

Framework

IoT-based smart

environments

Edge-

IIoTset

15 96 86 85 85

[38] Hybrid CNN-

LSTM Model

IIoT Systems at

the edge

IoT-DS2 23 97.14 82.32 72.66 74.62

[39] Hybrid Deep

Learning

Intrusion

Detection

IIoT

Environments

Edge-

IIoTset

15 98.69 Not

Given

Not

Given

Not

Given

[40] Deep Learning

for IIoT Intrusion

Detection

IIoT Systems Edge-

IIoTset

15 99 Not

Given

Not

Given

Not

Given

P a g e 22 | 100

[41] Federated and

Transfer

Learning

IoT Applications Edge-

IIoTset

15 98.1 99 99 99

[42] Polynomial

Interpolation

One-Class

Classifier

Networking

Security

Edge-

IIoTset

15 97.27 96.03 Not

Given

94.82

[43] LightGBM and

Transformer

Security Model

Healthcare

Systems

Edge-

IIoTset

15 Not

Given

92 89 88

P a g e 23 | 100

Table 1 summarizes various studies that support the importance of developing

different techniques and methods to confront cyber-attacks targeting IIoT environments.

Notably, Edge-IIoTset emerges as a prevalent dataset across multiple studies, indicating its

significance as a foundational resource for evaluating machine learning solutions. High

accuracy rates have been observed in these studies, with most achieving above 95%,

validating the efficacy of the proposed methodologies in detecting and mitigating industrial

cyber threats. FMDADM solution was able to achieve a remarkable accuracy of 99.79%,

focusing exclusively on DDoS attacks in SDN-based IoT networks. Furthermore, the diversity

of applications, ranging from healthcare systems to IoT-enabled cyber-physical systems,

showcases the broad applicability of these machine-learning solutions across various IIoT

domains.

2.2. Motivation

This study is motivated by the wish to acquire and implement innovative techniques that

can greatly improve cybersecurity in critical sectors. The increasing complexity and

interconnection of industrial systems call for creative strategies tailored to tackle the distinct

challenges presented by the IIoT. This research seeks to safeguard critical infrastructure by

utilizing cutting-edge methods and promoting the security and dependability of industrial

operations.

Another reason is the challenge of developing successful approaches for a complicated and

ever-changing setting such as IIoT, where standard cybersecurity techniques frequently prove

to be ineligible. The complex design of these systems, along with the changing environment

of cyber threats, requires new tactics that can adjust and detect to possible risks immediately.

Addressing these challenges offers a great chance to have a significant protection layer for the

security of critical industrial systems.

P a g e 24 | 100

3- Methodology

3.1. Dataset

In the initial stages of this research, different datasets have been explored, focusing on

datasets about cyber attacks within the IIoT domain. Among the array of datasets considered,

these datasets have been reviewed in this thesis: N-BaIoT, Bot-IoT, MQTTset,

FederatedTon_IoT, X-IIoTD, WUSTL-IIoT-2021, and Edge-IIoTset. After the evaluation as shown

below in Table 2, the Edge-IIoTset dataset emerged as the preferred choice, primarily due to

its comprehensive coverage across all the seven layers of the IoT architecture [47] which are

given later in this section, offers a rich feature set of 61 attributes, and includes 14 attack types

along with normal traffic. Furthermore, its status as one of the latest datasets to the IIoT

landscape, along with its widespread adoption can be used as a benchmark in this research.

Table 2: IoT IDS Datasets

Ref Dataset Year Feature
s

Layers Devices Attacks IIoT

[48] N-BaIoT 2018 23 2 9 10 No

[49] Bot-IoT 2019 46 VM Simulatio
n

8 No

[50] MQTTset 2020 33 2 8 5 No

[51] FederatedTon_Io
T

2020 31 3 Simulatio
n

9 No

[52] X-IIoTD 2021 59 3 Not Given 18 Yes

[53] WUSTL-IIOT-2021 2021 41 4 5 4 Yes

[54] Edge-IIoTset 2022 61 7 10 14 Yes

The Edge-IIoTset dataset [54] was designed to simulate realistic cyber security scenarios

on the IoT and IIoT applications. The dataset is intended to be used for training and evaluating

machine learning models for cyber security in centralized and federated learning settings. The

architecture of Edge-IIoTset includes multiple layers: Cloud Computing Layer, Network

Functions Virtualization Layer, Blockchain Network Layer, Fog Computing Layer, Software-

Defined Networking Layer, Edge Computing Layer, and IoT and IIoT Perception Layer.

P a g e 25 | 100

Table 3: Edge-IIoTset Size

N Traffic Type Count Percentage

1 Normal 24301 15.40%

2 DDoS_UDP 14498 9.19%

3 DDoS_ICMP 14090 8.93%

4 Ransomware 10925 6.92%

5 DDoS_HTTP 10561 6.69%

6 SQL_injection 10311 6.53%

7 Uploading 10269 6.51%

8 DDoS_TCP 10247 6.49%

9 Backdoor 10195 6.46%

10 Vulnerability_scanner 10076 6.39%

11 Port_Scanning 10071 6.38%

12 XSS 10052 6.37%

13 Password 9989 6.33%

14 MITM 1214 0.77%

15 Fingerprinting 1001 0.63%

Moreover, the Edge-IIoTset collected information from more than ten IoT sensors and

actuators providing a diverse representation of real-world IoT environments; gathering a total

of 157,800 network traffic. Covering 14 attack types along with normal traffic to create an

imbalanced dataset as shown above in Table 3.

Table 4: Edge-IIoTset Attacks And Attacks Category

Attack Category Attack Type

Distributed Denial-of-Service (DDoS) TCP SYN flood DDoS

UDP flood DDoS

HTTP flood DDoS

ICMP flood DDoS

Information Gathering Port Scanning

OS Fingerprinting

P a g e 26 | 100

Vulnerability Scanning

Man-in-the-middle (MITM) DNS Spoofing

ARP Spoofing

Injection Cross-site Scripting (XSS)

SQL Injection

Uploading

Malware Backdoor

Password cracking

Ransomware

Table 4 presents 15 types of attack covered in the paper of the Edge-IIoTset dataset

[54], which are categorized into five attack groups. Notably, the reason for conflict between

the 15 attacks mentioned in the paper and the 14 attacks observed in the dataset is because

in the dataset the two attacks DNS Spoofing and ARP Spoofing were combined into a single

MITM attack.

3.1.1. Attack Category 1: Distributed Denial-of-Service (DDoS)

Distributed Denial-of-Service (DDoS) is a type of cyber-attack where multiple

compromised computers or devices, often referred to as "botnets," are used to flood a target

system or network with a massive amount of traffic or requests, overwhelming the target and

causing it to become unavailable or inaccessible to legitimate users [55]. In a DDoS attack, the

attacking devices are distributed across various locations, making it difficult to identify and

block the attack at its source. DDoS attacks typically aim to disrupt the normal operation of a

website, server, or network by flooding it with traffic or requests beyond its capacity to handle.

This can result in a temporary or prolonged outage, loss of revenue, damage to reputation,

and potential financial or operational impacts for the targeted organization. DDoS attacks can

be launched using various techniques, such as flooding the target with excessive network

traffic, overwhelming its resources with a high volume of requests, or exploiting vulnerabilities

in the target's systems or applications. DDoS attacks can also be combined with other types

of attacks, such as malware infections or social engineering, to further disrupt or compromise

the target's systems or data.

P a g e 27 | 100

3.1.1.1. Attack 1: TCP SYN flood DDoS

TCP SYN flood is a type of DDoS attack that targets the TCP (Transmission Control

Protocol) protocol, which is commonly used for establishing network connections between

devices. In a TCP SYN flood attack, the attacker floods the target system with many

synchronization (SYN) packets, which are the initial packets exchanged between devices to

establish a TCP connection. In a typical TCP handshake process, the client sends a SYN packet

to the server, the server responds with a synchronization-acknowledgment (SYN-ACK) packet,

and the client completes the handshake by sending an ACK packet [56]. Once the handshake

is completed, the TCP connection is established, and data can be exchanged between the

client and server. However, in a TCP SYN flood attack, the attacker sends a high volume of SYN

packets to the target system without completing the handshake process by sending the ACK

packets. This floods the target system's resources, such as the system's TCP connection queue

or memory, with half-open connections that are waiting for completion, consuming system

resources and preventing legitimate clients from establishing connections. This can result in a

denial of service, as the target system becomes overwhelmed and unable to respond to

legitimate connection requests, causing disruption or unavailability of services. TCP SYN flood

attacks are effective because they exploit the fundamental design of the TCP handshake

process, which requires resources to be allocated for each half-open connection. These attacks

can be challenging to mitigate, as they can be launched from multiple distributed sources,

making it difficult to identify and block the attack traffic.

3.1.1.2. Attack 2: UDP flood DDoS

UDP flood is a type of DDoS attack that targets the UDP (User Datagram Protocol)

protocol, which is a connectionless protocol used for transmitting data over a network. In a

UDP flood attack, the attacker floods the target system with a high volume of UDP packets,

overwhelming its resources and causing disruption or unavailability of services. Unlike TCP,

which establishes a connection before transmitting data, UDP does not establish a connection

and does not guarantee reliable delivery of packets [57]. This makes UDP flood attacks

particularly effective, as they can be easily launched by sending a large number of UDP packets

to the target system without the need for completing any handshake or connection setup

P a g e 28 | 100

process. In a UDP flood attack, the attacker typically spoofs the source IP addresses of the

packets, making it difficult to trace the attack back to its source. The target system's resources,

such as its network bandwidth, processing power, or memory, can become overwhelmed as

it tries to process the large volume of incoming UDP packets. This can result in a denial of

service, as legitimate traffic may be unable to reach the target system, causing disruption or

unavailability of services. UDP flood attacks can target specific UDP-based services or

applications, such as DNS (Domain Name System) servers, VoIP (Voice over Internet Protocol)

systems, online gaming servers, or other applications that rely on UDP for data transmission.

These attacks can also be combined with other types of attacks, such as DNS amplification or

reflection attacks, where the attacker exploits vulnerabilities in third-party systems to amplify

the volume of attack traffic directed toward the target system.

3.1.1.3. Attack 3: HTTP flood DDoS

HTTP flood is a type of DDoS attack that targets web servers and web applications by

overwhelming them with a high volume of HTTP (Hypertext Transfer Protocol) requests [58].

HTTP is the foundation of the World Wide Web and is used for transmitting data between web

servers and clients, such as web browsers. In an HTTP flood attack, the attacker floods the

target system with a massive number of HTTP requests, consuming its resources and causing

disruption or unavailability of web services. HTTP flood attacks are often carried out using

botnets, which are networks of compromised computers that are controlled remotely by the

attacker. These botnets can generate a massive amount of HTTP requests from multiple

sources, making it difficult to identify and block the attack traffic. The HTTP requests in an

HTTP flood attack can be simple GET requests, which request a web page, or more complex

POST requests, which send data to the web server. There are several variants of HTTP flood

attacks, including volumetric HTTP flood attacks, which aim to overwhelm the target system's

resources with a high volume of HTTP requests, and application-layer HTTP flood attacks,

which aim to exploit vulnerabilities in web applications or web servers to cause disruption or

unavailability of services. Application-layer HTTP flood attacks can target specific URLs,

parameters, or functionalities of web applications, aiming to exhaust server-side resources,

such as CPU, memory, or database connections, or trigger application-level errors or crashes.

P a g e 29 | 100

3.1.1.4. Attack 4: ICMP flood DDoS

ICMP flood is a type of DDoS attack that targets the ICMP (Internet Control Message

Protocol) protocol, which is a network protocol used for sending error messages and

operational information about network conditions [59]. In an ICMP flood attack, the attacker

floods the target system with a high volume of ICMP Echo Request (ping) packets,

overwhelming its resources and causing disruption or unavailability of network services. ICMP

flood attacks are often carried out using botnets, which are networks of compromised

computers that are controlled remotely by the attacker. These botnets can generate a massive

amount of ICMP Echo Request packets from multiple sources, making it difficult to identify

and block the attack traffic. ICMP flood attacks can generate a large amount of network traffic

and consume significant network bandwidth and processing power, leading to degradation or

complete disruption of network services. ICMP flood attacks can be aimed at a specific target,

such as a particular IP address or network, or they can be used as part of a larger DDoS attack

targeting multiple systems or services. The attack traffic generated in an ICMP flood attack is

typically characterized by a high volume of ICMP Echo Request packets, often with spoofed

source IP addresses, making it challenging to trace the attack back to its source.

3.1.2. Attack Category 2: Information Gathering

Information-gathering attacks, also known as reconnaissance attacks, are a type of

cyber-attack that involves gathering information about a target system or network with the

intention of identifying vulnerabilities, weaknesses, or potential points of entry for further

attacks [60]. Information-gathering attacks are often the first step in the cyber-attack chain

and are carried out to gather intelligence and plan subsequent attacks. Information-gathering

attacks can take various forms and can involve both passive and active techniques. Passive

information-gathering techniques involve collecting data from publicly available sources, such

as WHOIS databases, public websites, social media profiles, or online forums, without directly

interacting with the target system or network. Active information-gathering techniques, on

the other hand, involve actively probing or scanning the target system or network to collect

information, such as network topology, open ports, running services, or system

configurations. Information-gathering attacks can be conducted using automated tools, such

as port scanners, vulnerability scanners, or reconnaissance frameworks, or manually by skilled

P a g e 30 | 100

attackers who leverage their knowledge and expertise in identifying potential vulnerabilities

or weaknesses in the target system or network. The information collected during the

reconnaissance phase can be used to plan and launch subsequent attacks, such as exploitation

of vulnerabilities, password attacks, or social engineering attacks, with the ultimate goal of

gaining unauthorized access, stealing sensitive data, or disrupting the target system or

network.

3.1.2.1. Attack 5: Port Scanning

Port scanning is a type of cyber-attack that involves probing a target system or network

to identify open ports, which are network communication endpoints, and determine the

services or applications that are listening on those ports [61]. Port scanning is commonly used

as a reconnaissance technique by attackers to gather information about a target system's

network topology, identify potential vulnerabilities, and plan further attacks. Port scanning

attacks can be carried out using automated tools or manually by skilled attackers. Automated

port scanning tools, such as Nmap, are widely available and can scan a range of IP addresses

or a single host for open ports in a short amount of time. These tools can scan for common

TCP or UDP ports, such as FTP (File Transfer Protocol), SSH (Secure Shell), HTTP, or DNS

(Domain Name System), among others. Port scanning attacks can help attackers identify

potential vulnerabilities in the target system or network, which can then be exploited in

subsequent attacks to gain unauthorized access, steal sensitive data, or disrupt services.

3.1.2.2. Attack 6: OS Fingerprinting

OS (Operating System) fingerprinting is a technique used in cybersecurity to determine

the type or version of the operating system running on a target system or network device. This

information can be useful for attackers to identify potential vulnerabilities or weaknesses in

the target system and tailor subsequent attacks accordingly [62]. OS fingerprinting can be

classified into various types based on the techniques used. One type of OS fingerprinting is

active fingerprinting, where the attacker sends probes or packets to the target system or

network device and actively analyzes the responses to determine the operating system. This

may involve sending specific requests or queries to services or applications running on the

target system and analyzing the responses or analyzing network traffic patterns. Another type

P a g e 31 | 100

of OS fingerprinting is passive fingerprinting, where the attacker captures and analyzes

network traffic between the target system and other devices or systems to determine the

operating system based on patterns or characteristics observed in the traffic. Passive

fingerprinting does not involve actively sending probes or packets to the target system. There

is also inference-based fingerprinting, where the attacker uses statistical or machine learning

techniques to analyze patterns or characteristics in the network traffic or responses from the

target system to infer the type or version of the operating system. OS fingerprinting attacks

can provide valuable information to attackers about the target system's operating system,

which can be used to launch subsequent attacks that are tailored to exploit known

vulnerabilities or weaknesses in that particular operating system.

3.1.2.3. Attack 7: Vulnerability Scanning

Vulnerability scanning is a type of cyber-attack that involves systematically scanning a

target system or network for known vulnerabilities or weaknesses that could be exploited by

attackers. This type of attack typically involves using automated tools or software to scan for

vulnerabilities in networks, systems, applications, or services. Vulnerability scanning attacks

can be performed in different ways. One approach is network vulnerability scanning, where

the attacker scans the target network for known vulnerabilities in network devices, such as

routers, switches, and firewalls, or in network protocols, such as TCP/IP or DNS, that could be

exploited to gain unauthorized access or disrupt network operations. Another approach is

system vulnerability scanning, where the attacker scans the target system, such as servers,

workstations, or mobile devices, for known vulnerabilities in the operating system, software

applications, or services running on the system, that could be exploited to gain unauthorized

access or compromise the integrity or confidentiality of data. Lastly, application vulnerability

scanning involves scanning the target applications, such as web applications or databases, for

known vulnerabilities in the code, configuration, or input validation that could be exploited to

gain unauthorized access, execute arbitrary code, or steal sensitive information [63].

Vulnerability scanning attacks can help attackers identify potential weaknesses in the target

system or network that can be exploited to gain unauthorized access, steal information,

disrupt operations, or launch further attacks.

P a g e 32 | 100

3.1.3. Attack Category 3: Man-in-the-middle (MITM)

Man-in-the-middle (MITM) is a type of cyber-attack where an attacker intercepts

communication between two parties, such as a client and a server, in order to eavesdrop,

modify, or inject malicious content into the communication without the knowledge or consent

of the parties involved. The attacker positions themselves between the legitimate parties and

can intercept, modify, or redirect the communication in real-time, giving them the ability to

capture sensitive information, manipulate data, or impersonate one of the parties [64]. MITM

attacks can occur in various ways, such as passive or active MITM. In a passive MITM attack,

the attacker simply eavesdrops on the communication between the two parties without

modifying the content, intercepting, and capturing data transmitted over a network, such as

passwords or credit card numbers. In an active MITM attack, the attacker not only intercepts

the communication but also modifies the content or injects malicious content into the

communication, such as altering data packets, injecting malware, or malicious scripts, or

redirecting communication to malicious servers or websites. MITM attacks can be executed in

different contexts, such as in wired or wireless networks, on public Wi-Fi networks, or on

unsecured or compromised network devices, such as routers or switches. These attacks can

be used to gain unauthorized access to sensitive information, steal credentials, perform

fraudulent activities, or launch further attacks, such as session hijacking, data manipulation,

or eavesdropping on confidential communication.

3.1.3.1. Attack 8: DNS Spoofing

DNS spoofing is a type of cyber-attack where an attacker falsifies the Domain Name

System (DNS) resolution process to redirect users to malicious websites or intercept their

communication. DNS is responsible for translating human-readable domain names, such as

www.example.com, into IP addresses, which are the numerical addresses that computers use

to identify each other on the internet [65]. In a DNS spoofing attack, the attacker manipulates

the DNS resolution process by providing false or misleading information to DNS servers or

clients. This can involve creating fake DNS responses that contain incorrect IP addresses,

domain names, or other DNS data, or intercepting legitimate DNS responses and modifying

them in transit. By doing so, the attacker can redirect users to malicious websites that may

look legitimate but are designed to steal sensitive information, inject malware, or perform

P a g e 33 | 100

other malicious activities. DNS spoofing attacks can be carried out in various ways, such as by

poisoning the DNS cache of a DNS server, redirecting DNS queries to malicious DNS servers,

or manipulating the DNS responses at the network level using techniques like ARP spoofing or

DNS packet injection. DNS spoofing can have serious consequences, as it can enable attackers

to intercept sensitive information, perform phishing attacks, launch further attacks, such as

man-in-the-middle attacks, or gain unauthorized access to systems or networks.

3.1.3.2. Attack 9: ARP Spoofing

ARP (Address Resolution Protocol) spoofing, also known as ARP poisoning or ARP

cache poisoning, is a type of cyber-attack where an attacker falsifies the MAC (Media Access

Control) address associations in the ARP cache of a network device to intercept, modify, or

redirect network traffic [66]. ARP is a protocol used in local area networks (LANs) to map IP

addresses to MAC addresses, which are unique hardware addresses associated with network

devices, such as network interface cards (NICs). When devices need to communicate on a LAN,

they use ARP to request and store the MAC address of the intended destination device in their

ARP cache for future reference, avoiding the need to perform repetitive IP-to-MAC address

resolutions. In an ARP spoofing attack, the attacker sends falsified ARP messages, either

gratuitous or in response to ARP requests, with forged MAC address associations to the victim

device or other devices on the same LAN. This causes the victim device or other devices to

update their ARP caches with incorrect MAC address information, associating the attacker's

MAC address with the IP addresses of legitimate devices, such as the default gateway or other

hosts. As a result, network traffic intended for these legitimate devices is redirected to the

attacker's device, allowing the attacker to intercept, modify, or eavesdrop on the traffic. ARP

spoofing attacks can be used to launch various types of attacks, such as man-in-the-middle

attacks, where the attacker can intercept and modify network traffic between two legitimate

devices, perform session hijacking, inject malicious content, or capture sensitive information.

ARP spoofing attacks can also be used to conduct reconnaissance, gain unauthorized access

to systems or networks, or disrupt network communication.

P a g e 34 | 100

3.1.4. Attack Category 4: Injection

An injection attack is a type of cyber-attack where an attacker inserts malicious code

or data into an application or system with the intention of executing unauthorized commands,

manipulating data, or gaining unauthorized access to the system [67]. Injection attacks

typically target vulnerable points in an application's input validation or parameter handling

mechanisms to exploit weaknesses and bypass security measures. Injection attacks can occur

in various forms, such as SQL injection, NoSQL injection, LDAP injection, XML injection,

command injection, and JavaScript injection, among others. These attacks exploit

vulnerabilities in applications that allow untrusted data, such as user input or other external

data, to be included in a query or command without proper validation or sanitization. As a

result, the malicious code or data is interpreted as legitimate and executed by the application

or system, allowing the attacker to gain unauthorized access, extract sensitive information,

modify data, or execute arbitrary commands. Injection attacks can have serious

consequences, as they can result in data breaches, system compromise, unauthorized access,

data manipulation, and other malicious activities.

3.1.4.1. Attack 10: Cross-site Scripting (XSS)

Cross-site Scripting (XSS) is a type of web application vulnerability that allows an

attacker to inject malicious scripts into web pages viewed by other users. XSS occurs when an

application fails to properly validate and sanitize user input, allowing malicious scripts to be

executed within the context of a legitimate website or web application [68]. There are two

main types of XSS attacks: reflected XSS and stored XSS. In reflected XSS, the malicious script

is included in a URL or in the parameters of a web form and then reflected back to the user in

the HTML response. When the user's browser renders the HTML response, the malicious

script is executed, allowing the attacker to steal sensitive information, manipulate content, or

perform other malicious actions on the user's behalf. In stored XSS, the malicious script is

stored in a database or other storage location within the application, and then retrieved and

displayed to other users when they access the affected page. This allows the attacker to inject

malicious scripts that persistently affect multiple users, potentially leading to widespread

damage and data theft. XSS attacks can have serious consequences, including data theft,

P a g e 35 | 100

unauthorized access, cookie stealing, session hijacking, defacement of web pages, and other

malicious activities.

3.1.4.2. Attack 11: SQL Injection

SQL Injection is a type of web application vulnerability that allows an attacker to

manipulate a website's SQL database by injecting malicious SQL queries through user input

fields or other vulnerable areas of the application. SQL Injection occurs when an application

fails to properly validate and sanitize user input before using it to construct SQL queries,

allowing the attacker to modify or execute unintended SQL queries on the database [69].

There are several types of SQL Injection attacks that attackers can exploit to manipulate and

extract data from vulnerable web applications. In-band SQL Injection is a type of attack where

the attacker injects malicious SQL queries directly into the user input field or other vulnerable

areas of the application, and the results are returned in the application's response. This type

of attack is also known as "error-based" or "union-based" SQL Injection. Blind SQL Injection,

on the other hand, is a type of attack where the attacker does not receive direct feedback

from the application about the results of the injected SQL queries. Instead, the attacker uses

techniques such as time delays or Boolean-based queries to infer the results indirectly,

allowing them to extract data from the database. Out-of-band SQL Injection is another type

of attack where the attacker does not receive the results of the injected SQL queries through

the application's response, but rather through a separate communication channel, such as

email or a separate web service. This type of attack is also known as "out-of-band" or "second-

order" SQL Injection. SQL Injection attacks can have serious consequences, including

unauthorized access to sensitive data, modification or deletion of data, privilege escalation,

and other malicious activities.

3.1.4.3. Attack 12: Uploading

In an uploading attack, the attacker may take advantage of vulnerabilities in a web

application or other file upload functionality to bypass security measures and upload

malicious files. Once the malicious files are uploaded, the attacker may be able to execute

them, potentially gaining unauthorized access, compromising data, or causing other types of

harm [70]. The specifics of an uploading attack may vary depending on the system or

P a g e 36 | 100

application being targeted, the techniques used by the attacker, and the objectives of the

attack. Common methods to defend against uploading attacks include implementing proper

input validation and file upload validation, ensuring secure configuration of file upload

functionality, restricting access permissions for uploaded files, and regularly monitoring and

auditing system activity for signs of suspicious behaviour. It's important to note that

cybersecurity attacks are constantly evolving, and new attack techniques and vulnerabilities

may arise over time.

3.1.5. Attack Category 5: Malware

Malware, short for malicious software, refers to any software specifically designed to

harm, exploit, or compromise the security of computer systems, networks, or devices [71].

Malware is a broad category that includes various types of malicious software, such as viruses,

worms, trojan horses, ransomware, adware, spyware, and other malicious programs. Malware

can be distributed through various means, including infected email attachments, malicious

websites, compromised software, social engineering attacks, and other methods. Once

installed on a victim's system or device, malware can carry out a wide range of malicious

activities, such as stealing sensitive information, disrupting system operations, modifying or

deleting data, hijacking system resources, conducting unauthorized activities, or providing

unauthorized access to remote attackers. Malware is a serious cybersecurity threat that can

cause significant damage to individuals, organizations, and even entire networks.

3.1.5.1. Attack 13: Backdoor

A backdoor attack refers to a malicious activity where an unauthorized entry point or

hidden access point is created in a system or network, allowing an attacker to gain

unauthorized access and control over the system or network. A backdoor is typically created

by exploiting vulnerabilities or weaknesses in the system or network, and it provides a secret

and unauthorized entry point for the attacker to bypass normal authentication and gain

unauthorized access to the system or network [72]. Backdoor attacks can be carried out

through various means, including software vulnerabilities, social engineering, malware, or

other malicious techniques. Once a backdoor is successfully implanted, the attacker can use it

to gain unauthorized access, execute commands, manipulate data, steal information, disrupt

P a g e 37 | 100

operations, or carry out other malicious activities without being detected. Backdoor attacks

are considered highly dangerous as they provide unauthorized access to attackers, allowing

them to maintain control over the compromised system or network for an extended period of

time. Backdoors can be difficult to detect, as they are typically designed to blend in with

legitimate system components or activities, making them challenging to identify through

traditional security measures.

3.1.5.2. Attack 14: Password cracking

Password cracking attack, also known as password hacking, is a type of cyber-attack in

which an attacker attempts to gain unauthorized access to a system, network, or account by

guessing or systematically cracking the passwords used for authentication [73]. Passwords are

commonly used as a form of authentication to protect access to various resources, such as

user accounts, databases, applications, and systems. There are several methods that attackers

may use to carry out password cracking attacks. One method is brute force attack, in which

the attacker systematically tries every possible combination of characters until the correct

password is guessed. This method can be time-consuming and resource-intensive, but it can

be effective if the password is weak or short. Another method is dictionary attack, in which

the attacker uses a list of known words or commonly used passwords, known as a "dictionary,"

to systematically try each word in the list as a potential password. This method is more

efficient than brute force as it targets commonly used passwords, but it may not be effective

against complex or unique passwords. Rainbow table attack is another method, in which the

attacker uses precomputed tables, known as "rainbow tables," that contain hashes of

commonly used passwords and their corresponding plaintext values. The attacker compares

the hashes of the target passwords with the hashes in the rainbow tables to quickly identify

matches and obtain the plaintext passwords. Hybrid attack is a method in which the attacker

combines various techniques, such as brute force, dictionary, and rainbow table attacks, to

increase the chances of success in cracking passwords. Social engineering attack is also a

method, in which the attacker manipulates or tricks individuals into revealing their passwords

through techniques such as phishing, pretexting, or other forms of social engineering.

Password cracking attacks can be highly effective if passwords are weak, easily guessable, or

improperly stored.

P a g e 38 | 100

3.1.5.3. Attack 15: Ransomware

Ransomware is a type of malicious software (malware) that encrypts or otherwise

restricts access to a victim's files or computer system and demands a ransom in exchange for

restoring access [74]. Ransomware attacks typically involve the use of encryption algorithms

to lock files, making them inaccessible to the victim without the decryption key held by the

attacker. Once the files are encrypted, the attacker typically displays a ransom message on the

victim's screen, providing instructions on how to pay the ransom and obtain the decryption

key. Ransomware attacks can have severe consequences, as they can cause data loss, disrupt

business operations, and result in financial and reputational damage. Ransomware can be

delivered through various methods, including phishing emails, malicious attachments or links,

drive-by downloads from compromised websites, or via infected USB drives or other

removable media. There are different types of ransomware, including encrypting ransomware

that encrypts files, and locker ransomware which restricts access to the victim's system

without encrypting files. Some ransomware variants also use other techniques such as data

theft, where the attacker exfiltrates sensitive data from the victim's system before encrypting

files and threatens to release the data if the ransom is not paid.

3.2. Background Information About Techniques Used

In the development of a machine learning algorithm, selecting the appropriate

methods and techniques is crucial as it directly impacts the model's performance [75]. By

reviewing the existing literature related to the Edge-IIoTset dataset [54], it was observed that

none of the prior studies employed an optimization algorithm for optimizing the attributes of

machine learning algorithms. This notable gap in the literature underscores the potential of

employing an optimization algorithm to solve the issue of finding a good attribute of machine

learning algorithm components.

In light of this gap in the literature and the necessity for effective optimization

methods, the utilization of neural networks stands out as a promising approach, considering

their ability to learn complex patterns from data [76]. However, the performance of neural

networks heavily relies on selecting appropriate hyperparameters and optimizing model

P a g e 39 | 100

weights. Traditional optimization techniques, such as grid search or random search, are often

computationally expensive and may not yield optimal solutions in high-dimensional spaces.

To address this challenge, the application of genetic algorithms presents an intriguing

solution. Genetic algorithms leverage principles inspired by natural selection to efficiently

search through the solution space and identify optimal or near-optimal solutions [77].

Employing genetic algorithms to optimize the weights of neural networks, can leverage the

ability to efficiently explore the solution space and find solutions that maximize the

performance of the model.

Therefore, this study proposes the utilization of neural networks as the underlying

machine learning algorithm for the Edge-IIoTset dataset, coupled with the optimization of

model weights using genetic algorithms. This approach not only addresses the gap in the

literature but also offers a novel and effective methodology for enhancing the performance of

machine learning models in industrial IoT environments.

3.2.1. Neural Network

A neural network is a computational model inspired by the structure and functionality

of the human brain. It's a fundamental algorithm in machine learning, particularly in the

domain of deep learning [76], [78]. The basic architecture consists of interconnected nodes,

organized into layers, including an input layer, one or more hidden layers, and an output layer

as shown below in Figure 1.

P a g e 40 | 100

Figure 1: Neural Network Example With Two Hidden Layers

Each connection between nodes is associated with a weight, and the network learns

by adjusting these weights during the training process. The neural network employs activation

functions to introduce non-linearities, allowing it to model complex relationships and capture

intricate patterns within the data. Training a neural network involves optimizing these weights

through a process known as backpropagation [79]. During backpropagation, the network

compares its predictions to the actual outcomes, calculates the error, and then adjusts the

weights to minimize this error. In the context of deep learning, neural networks with multiple

hidden layers are often referred to as deep neural networks. These deep architectures have

demonstrated remarkable success in various applications, including image and speech

recognition, natural language processing, and even playing strategic games [78], [80]. One of

the strengths of neural networks lies in their ability to automatically learn hierarchical

representations of data, enabling them to discern intricate features and relationships. The

adaptability and capacity to learn from vast amounts of data make neural networks a powerful

tool for solving complex problems across diverse domains in modern machine learning.

P a g e 41 | 100

Neural networks are increasingly employed in the detection of cyber-attacks due to their

ability to learn complex patterns and anomalies within network data [81]. The neural network

algorithm proves highly beneficial for the detection of cyber-attacks due to its inherent

capacity to learn complex patterns, adapt to evolving threats, and provide a sophisticated

framework for analyzing vast and dynamic datasets. By leveraging deep learning architectures,

neural networks excel in discerning subtle anomalies and patterns within network traffic,

enabling the identification of potential cyber-threats with remarkable accuracy. Their ability

to automatically extract relevant features and hierarchically represent intricate relationships

within data contributes to a robust cyber defence mechanism. Furthermore, neural networks

contribute to real-time threat detection, reducing false positives, and enhancing the overall

cybersecurity posture by providing a proactive and adaptive approach to combating cyber-

threats in today's rapidly evolving digital landscape. The below points illustrate the

effectiveness of the neural network algorithm in detecting cyber-attacks [82]:

1. Pattern Recognition: Neural networks excel at recognizing patterns in data, making

them well-suited for identifying unusual or malicious activities within network traffic.

By training on normal behaviour, the network can later detect deviations that may

indicate a cyber-attack.

2. Anomaly Detection: Neural networks can be trained in an unsupervised manner to

recognize anomalies. In the context of cybersecurity, deviations from normal network

behaviour can be flagged as potential cyber threats. Unusual patterns, unexpected

data flows, or suspicious activities can trigger alerts.

3. Feature Extraction: Neural networks automatically learn to extract relevant features

from raw network data. This is particularly valuable in cybersecurity, where identifying

distinctive features of various types of attacks is essential. The network can learn to

recognize patterns indicative of specific attack types.

4. Adaptability to Dynamic Threats: Cyber threats are constantly evolving, requiring

adaptive detection mechanisms. Neural networks, especially deep learning models,

can adapt to new attack patterns without explicit reprogramming. This flexibility is

crucial in the ever-changing landscape of cybersecurity.

5. Multi-Layered defence: Just as neural networks have multiple hidden layers for

hierarchical feature extraction, they contribute to a multi-layered defense strategy in

P a g e 42 | 100

cybersecurity. Each layer of the network can focus on detecting specific aspects of

cyber threats, enhancing overall detection capabilities.

6. Handling Complex Data: Neural networks can effectively handle the complexity of

various types of data generated in network traffic, such as packet headers, payloads,

and temporal patterns. This makes them versatile in detecting sophisticated attacks

that might involve multiple stages or techniques.

7. False Positive Reduction: By learning from a diverse set of normal network behaviors,

neural networks can help reduce false positives in cyber-attack detection. Their ability

to discern between normal and abnormal patterns contributes to more accurate and

efficient threat identification.

3.2.2. Genetic Algorithm

The Genetic Algorithm (GA) operates on a foundational framework that mimics the

principles of natural selection and genetics, offering a robust approach to solving intricate

optimization and search challenges [83]. This heuristic optimization algorithm is inspired by

the enduring process of natural evolution, where adaptation and selection lead to the

emergence of optimal traits over successive generations. Genetic Algorithms stand out for

their ability to efficiently explore vast solution spaces, tackle complex optimization challenges,

and adaptively evolve solutions over successive generations. This versatility has positioned

GAs as a valuable tool in various domains, ranging from machine learning and optimization

problems to combinatorial optimization tasks, showcasing their effectiveness in addressing

diverse real-world problems.

Components of Genetic Algorithms [84]:

• Initialization: The algorithm commences by establishing a diverse population of

potential solutions. This population is often initialized randomly or through predefined

methods, representing a varied set of potential outcomes.

• Fitness Evaluation: Each individual in the population undergoes scrutiny through an

objective function. This function quantifies the fitness of a solution by measuring how

well it aligns with the predefined optimization criteria. Higher fitness indicates a

greater likelihood of survival.

P a g e 43 | 100

• Selection: Imitating the evolutionary principle of "survival of the fittest," individuals

are chosen for reproduction based on their fitness levels. Higher-fitness individuals

stand a better chance of contributing their genetic material to the next generation.

• Crossover (Recombination): Pairs of selected individuals engage in crossover, a

process mirroring genetic recombination in biological reproduction. This exchange of

genetic information generates offspring endowed with a blend of traits inherited from

both parents.

• Mutation: Introducing an element of randomness, a genetic mutation occurs, bringing

about random changes to the genetic makeup of select individuals. This injects

diversity into the population, preventing stagnation and encouraging the exploration

of new solution spaces.

• Replacement: The existing generation is replaced by the newly generated one,

comprising offspring resulting from crossover and mutated individuals. This fresh

cohort is subjected to fitness evaluation, perpetuating the evolutionary cycle.

• Termination Criteria: The algorithm continually checks for termination criteria, which

could include a predefined number of generations, attainment of a satisfactory

solution, or the achievement of a convergence threshold. Termination criteria ensure

that the algorithm concludes when specific conditions are met.

• Output: The culmination of the algorithmic process is the extraction of the solution

that optimally satisfies the defined criteria or fulfills the termination conditions,

providing a refined and effective outcome.

Genetic algorithms play a crucial role in enhancing the efficacy of cyber-attack detection

systems by mimicking the principles of natural selection and evolution within the realm of

computer security. In the context of cybersecurity, a genetic algorithm operates by generating

a diverse set of potential solutions, represented as strings of binary code, to address the

evolving nature of cyber threats. These solutions, analogous to individual organisms in nature,

undergo a process of selection, crossover, and mutation to produce successive generations of

candidate solutions. By evaluating the fitness of each solution based on its ability to detect

and respond to specific cyber-attack patterns, the genetic algorithm refines and evolves the

population over iterations, favouring traits that demonstrate better performance against

P a g e 44 | 100

emerging threats. This adaptive and iterative process allows the genetic algorithm to

continuously optimize the detection mechanisms, enabling cybersecurity systems to adapt

dynamically to the ever-changing landscape of cyber threats.

3.2.3. Principal Component Analysis

Principal Component Analysis (PCA) is a widely employed technique used in the field of

machine learning and data analysis, known for its ability to reduce the dimensionality of large

datasets while preserving as much of the original variance as possible [85]. PCA is particularly

useful when dealing with high-dimensional data, where the presence of many correlated

features can lead to challenges such as overfitting and computational inefficiency.

The core idea behind PCA is to transform the original set of correlated variables into a new

set of uncorrelated variables called principal components [86]. These principal components

are linear combinations of the original variables and are ordered by the amount of variance

they explain in the data. The first principal component captures the maximum variance, while

each subsequent component accounts for the remaining variance under the constraint that it

is orthogonal to the preceding components.

The process of PCA involves the following steps [87]:

1. Standardization: The data is first standardized, ensuring that each feature contributes

equally to the analysis by subtracting the mean and scaling to unit variance.

2. Covariance Matrix Computation: The covariance matrix of the standardized data is

computed, capturing the relationships between different features.

3. Eigenvalue Decomposition: The eigenvalues and eigenvectors of the covariance

matrix are calculated. The eigenvectors represent the directions of the principal

components, while the eigenvalues indicate the magnitude of variance explained by

each component.

4. Selection of Principal Components: The principal components are ranked according

to their eigenvalues, and a subset of the top components is selected, depending on

the desired level of dimensionality reduction.

P a g e 45 | 100

5. Projection: The original data is projected onto the selected principal components,

resulting in a transformed dataset with reduced dimensionality.

PCA offers several advantages in machine learning applications:

• Dimensionality Reduction: By reducing the number of features, PCA helps mitigate

the risk of overfitting and enhances the efficiency of machine learning algorithms.

• Noise Reduction: PCA can filter out noise by discarding components associated with

low variance, thereby improving the model's performance.

• Feature Interdependence: PCA eliminates multicollinearity by generating

uncorrelated principal components, making it easier to interpret the relationships

within the data.

3.3. Implementation

The following section will provide a detailed illustration of how the proposed hybrid

algorithm functions. It will encompass the entire process from data loading to model training

and evaluation.

Initially, the section describes the extraction and preprocessing of data from the dataset,

which includes encoding categorical features and labels and selecting a stratified sample to

maintain class balance. Then the implementation of a dimension reduction technique using

PCA to retain 95% of the variance. This is followed by partitioning the data into training and

testing sets. Subsequently, the creation and configuration of the hybrid algorithm are

discussed, including the definition of a neural network structure and the application of a

genetic algorithm for parameter optimization.

3.3.1. Data Preparation and Sampling

Dealing with industrial devices presents challenges, primarily due to the enormous

amount of data they generate [88]. Therefore, using a sampling technique is a crucial step to

enhance the machine learning algorithm efficiency without impacting the accuracy [89]. After

looking into various sampling techniques, the stratified sampling technique was chosen for

the Edge-IIoTset dataset due to its inherent class imbalance. This method ensures that each

attack type is adequately represented in both training and testing sets, preventing bias and

P a g e 46 | 100

promoting model generalization [90]. By preserving the proportional representation of attack

types, it facilitates balanced model evaluation across different categories as shown below in

Figure 2, enhancing model efficacy and reliability.

Figure 2: Stratified Sampling

Starting the preprocessing phase by loading the ML-EdgeIIoT-dataset.csv using the

pd.read_csv function provided by the Pandas library with a “low_memory = False” parameter

to instruct the system to load the entire dataset into memory at once, ensuring efficient

processing.

After loading the data, the initial step involved extracting the features, focusing on the

first 61 columns. Then, these features were converted from categorical variables to numerical

representations by assigning a unique numerical identifier to each distinct value within the

features, enabling machine learning algorithms to process them effectively. Similarly, the

attack categories went for a similar transformation, employing a map function to assign

numerical values for each attack type for memorization and efficiency.

Lastly, a stratified sample is generated using the train_test_split function from the

sklearn.model_selection module. This function partitions the dataset into training and testing

subsets while preserving the distribution of the target variable “Attack_type”. The

stratification ensures that each subset maintains the same proportion of different attack types

as the original dataset, thereby preventing bias in the model evaluation process. The size of

the testing subset has been set to 20% of the original dataset, and the algorithm was trained

three times using different randomly chosen random states (7, 10, and 42) to ensure varied

sampling for consistency in the results.

P a g e 47 | 100

Table 5: Dataset Sampling Using The Stratified Method

N Traffic Type Original Amount Sample Amount Percentage

1 Normal 24301 4860 15.40%

2 DDoS_UDP 14498 2899 9.19%

3 DDoS_ICMP 14090 2818 8.93%

4 Ransomware 10925 2185 6.92%

5 DDoS_HTTP 10561 2112 6.69%

6 SQL_injection 10311 2062 6.53%

7 Uploading 10269 2053 6.51%

8 DDoS_TCP 10247 2049 6.49%

9 Backdoor 10195 2039 6.46%

10 Vulnerability_scanner 10076 2015 6.39%

11 Port_Scanning 10071 2014 6.38%

12 XSS 10052 2010 6.37%

13 Password 9989 1997 6.33%

14 MITM 1214 242 0.77%

15 Fingerprinting 1001 200 0.63%

Table 5 presents the distribution of traffic types in both the original dataset and the

generated stratified sample. This table illustrates how the stratification process preserves the

proportions of different attack types in the sample, ensuring a representative subset for model

training and evaluation. By maintaining consistency in the distribution of attack types, the

stratified sample mitigates the risk of bias during model assessment.

3.3.2. Feature Selection

The ML-EdgeIIoT dataset has 63 columns as shown below in Table 7, where the initial 61

columns represent various features extracted from the IIoT traffic data, and the last two

represent the attack label and attack type. However, the extensive number of features poses

challenges in terms of redundancy and importance. Given this scenario, employing a feature

reduction technique becomes imperative to streamline the dataset and enhance model

efficiency.

P a g e 48 | 100

Features:

Table 6: EdgeIIoT Columns

N Columns

1 frame.time

2 ip.src_host

3 ip.dst_host

4 arp.dst.proto_ipv4

5 arp.opcode

6 arp.hw.size

7 arp.src.proto_ipv4

8 icmp.checksum

9 icmp.seq_le

10 icmp.transmit_timestamp

11 icmp.unused

12 http.file_data

13 http.content_length

14 http.request.uri.query

15 http.request.method

16 http.referer

17 http.request.full_uri

18 http.request.version

19 http.response

20 http.tls_port

21 tcp.ack

22 tcp.ack_raw

23 tcp.checksum

24 tcp.connection.fin

25 tcp.connection.rst

26 tcp.connection.syn

27 tcp.connection.synack

28 tcp.dstport

P a g e 49 | 100

29 tcp.flags

30 tcp.flags.ack

31 tcp.len

32 tcp.options

33 tcp.payload

34 tcp.seq

35 tcp.srcport

36 udp.port

37 udp.stream

38 udp.time_delta

39 dns.qry.name

40 dns.qry.name.len

41 dns.qry.qu

42 dns.qry.type

43 dns.retransmission

44 dns.retransmit_request

45 dns.retransmit_request_in

46 mqtt.conack.flags

47 mqtt.conflag.cleansess

48 mqtt.conflags

49 mqtt.hdrflags

50 mqtt.len

51 mqtt.msg_decoded_as

52 mqtt.msg

53 mqtt.msgtype

54 mqtt.proto_len

55 mqtt.protoname

56 mqtt.topic

57 mqtt.topic_len

58 mqtt.ver

59 mbtcp.len

P a g e 50 | 100

60 mbtcp.trans_id

61 mbtcp.unit_id

62 Attack_label

63 Attack_type

After conducting extensive research on various dimension reduction techniques, it

became evident that selecting the most suitable method was crucial for optimizing the ML-

EdgeIIoT dataset. Upon thorough examination and comparison, PCA emerged as the most

fitting choice for several reasons [87], [91], [92].

Firstly, PCA is adept at identifying and capturing the underlying patterns and correlations

within high-dimensional data by transforming it into a lower-dimensional space. This

reduction in dimensionality not only simplifies the dataset but also retains the essential

information embedded within the features [93]. Moreover, PCA facilitates the extraction of

orthogonal components, known as principal components, which represent the directions of

maximum variance in the original feature space. By prioritizing these principal components,

PCA effectively highlights the most significant sources of variation in the data while minimizing

information loss.

Additionally, PCA offers interpretability by providing insights into the relative importance

of each feature in contributing to the variance within the dataset. This attribute enables

researchers to discern the key drivers influencing the IIoT traffic patterns, thereby facilitating

better decision-making in feature selection and model development. Furthermore, PCA's

ability to mitigate multicollinearity among features is particularly advantageous in the ML-

EdgeIIoT dataset, where certain features may exhibit high intercorrelation. By reducing

multicollinearity, PCA enhances the stability and robustness of subsequent machine-learning

models, thereby improving their predictive performance [94].

 As shown in the below Figure, the process begins by computing the mean of each

feature in the dataset and then centering the data by subtracting the mean from each data

point. Next, PCA calculates the covariance matrix, which describes the relationships between

P a g e 51 | 100

different features and helps identify patterns in the data. After that, the eigenvalue

decomposition is performed on the covariance matrix to find its eigenvalues and eigenvectors,

representing the principal components. These components are sorted based on the

importance of capturing variance in the data. PCA computes the explained variance ratio for

each principal component, indicating the proportion of variance explained by each

component relative to the total variance. Finally, PCA projects the original data onto the

selected principal components, transforming it into a lower-dimensional space while

preserving as much information as possible.

Figure 3: PCA Steps

To determine the optimal number of Principal Components (PCs) while retaining

significant information, a threshold of 95% was selected, aligning with established findings

from various research studies [95], [96], [97]. This choice is supported by the "elbow method,"

as depicted in the accompanying figure, which demonstrates the point where the explained

variance begins to plateau. This empirical evidence reinforces the selection of 95% as the

threshold for preserving substantial data integrity.

P a g e 52 | 100

Figure 4: PCA Threshold Selection

By performing PCA on the dataset, its dimensionality has been reduced while preserving

most of its variance, as shown in the table below, which displays the explained variance ratio

for each extracted principal component. It shows that the first principal component accounts

for 25.29% of the total variance in the data, followed by the second component with 18.99%.

In total, 95% of the dataset's variance can be explained by the first 14 principal components,

as indicated by the cumulative explained variance ratio. This analysis helps in understanding

the relative importance of each principal component in representing the original dataset's

variability.

Table 7: Selected PCA

Principal Component Explained Variance Ratio

1 0.2529

2 0.1899

3 0.1351

4 0.0774

5 0.0655

P a g e 53 | 100

6 0.0461

7 0.0369

8 0.0292

9 0.0269

10 0.026

11 0.0206

12 0.0173

13 0.0159

14 0.0115

 The tables in Appendix A present the loadings of original features onto the principal

components obtained through PCA. Each row corresponds to an original feature, while each

column represents a principal component. The values in the table indicate the contribution of

each original feature to each principal component. Positive values signify a positive correlation

between the original feature and the principal component, while negative values indicate a

negative correlation. The table allows for the interpretation of the structure and composition

of each principal component, aiding in understanding the underlying patterns and

relationships within the data. This comprehensive analysis facilitates dimensionality reduction

and feature extraction while preserving the most significant information contained in the

dataset.

3.3.3. Hybrid Algorithm

The hybrid algorithm of neural network and genetic algorithm starts by creating a class

called NeuralNetworkGA. The class is composed of thirteen main functions (Initialization,

Parameter Initialization, Activation Functions (sigmoid and softmax), Forward Propagation,

Prediction, Population Initialization, Fitness Calculation, Genome Reshaping, Crossover,

Mutation, and Optimization Loop, and Training.

1. Initialization:

In the first function of the code, the initialization function serves as the cornerstone

for initializing the hybrid algorithm of neural network and genetic algorithm

P a g e 54 | 100

parameters. These parameters include the input size, hidden layer sizes, output size,

population size, elite size, number of generations, mutation rate, learning rate, and

parameters.

2. Parameter Initialization:

The parameter initialization process involves the creation of initial weight matrices and

bias vectors for each layer in the network. function systematically initializes these

parameters based on the specified network architecture, which includes the input size,

hidden layer sizes, and output size. The sizes of the weight matrices and bias vectors

are determined by the dimensions of the layers they connect.

Specifically, for each layer, a weight matrix is initialized with random values drawn from

a standard normal distribution. The dimensions of this weight matrix correspond to

the number of units in the previous layer and the current layer. This random

initialization helps in breaking symmetry, which is essential for effective learning

during training. Additionally, bias vectors are initialized as zero vectors, with

dimensions matching the number of units in the current layer. This ensures that each

neuron has an initial bias, which can be adjusted during training to better fit the data.

The initialized parameters are stored in a dictionary, which maps each parameter

(weights and biases) to its corresponding layer in the network. These initial parameters

are crucial as they serve as the starting point for the optimization process.

Subsequently, the best parameters are set to these initial values, providing a baseline

from which the network can evolve during training. This methodical initialization lays

a solid foundation for the network, promoting efficient convergence and enhancing

the model's ability to learn complex patterns from the data.

3. Activation Functions:

For activation functions, two primary activation functions have been utilized; the

sigmoid function and the softmax function. The sigmoid function has been used for

the hidden layers of neural networks which transforms input values into a range

P a g e 55 | 100

between 0 and 1, introduces non-linearity to the model, while also enabling the

network to learn and represent intricate patterns in the data.

On the other hand, the softmax function, where used in the output layer for

classification tasks. It computes the exponential of each input value, normalizes these

values by the sum of all exponentials, and produces a probability distribution over the

output classes. This function is particularly useful for multi-class classification

problems, as it ensures that the output probabilities sum to 100%, facilitating clear

and interpretable classification decisions.

4. Forward Propagation:

In forward propagation, the input data is passed through the network to generate

predictions. In this implementation, forward propagation involves computing the

activations of each layer sequentially. Starting with the input layer, the input data is

multiplied by the weights and biases of the first layer. The resulting values are then

passed through an activation function, such as the sigmoid function for hidden layers

or the softmax function for the output layer. This process continues layer by layer, with

each layer's output serving as the input for the next layer. The final output of the

network is a set of predictions based on the transformed and processed input data.

This method ensures that the network effectively captures and transforms the input

features to make accurate predictions.

5. Prediction:

The prediction process leverages the forward propagation mechanism. The input data

is passed through the network, layer by layer, where each layer’s output serves as the

input for the next. Activation functions, such as the sigmoid function for hidden layers

and the softmax function for the output layer, are applied to transform the data at

each step. The final layer produces the network’s output, which represents the model’s

predictions. In classification tasks, the softmax function converts the outputs into

probability distributions across different classes, and the class with the highest

probability is selected as the predicted label.

P a g e 56 | 100

6. Population Initialization:

This function is tasked with generating an initial population of candidate solutions,

each representing a potential set of parameters for the neural network. At the heart

of this process lies the random initialization of individuals, where each individual

encapsulates a distinct combination of weights and biases for the network's layers. The

size of the population, dictated by the population size parameter, determines the

number of individuals in the population. Leveraging a uniform distribution with

specified lower and upper bounds, typically set at -0.3 and 0.3, the function creates a

diverse set of initial solutions.

7. Fitness Calculation:

The process of fitness calculation involves assessing the fitness or performance of each

individual within the population. In the context of this implementation, fitness

calculation entails evaluating the accuracy or effectiveness of each candidate solution

in solving the underlying problem. Leveraging the training dataset, each individual's

set of parameters is utilized to construct a neural network model. Subsequently, the

model's predictions are compared against the ground truth labels to compute a fitness

score, often based on a performance metric such as accuracy, precision, or loss

function value. This fitness score quantifies the ability of the individual to accurately

capture patterns and relationships within the data. Higher fitness scores indicate

individuals who produce more desirable outcomes and are thus more likely to

contribute positively to the evolutionary process. Through iterative evaluation and

selection based on fitness, the genetic algorithm guides the evolution of the

population towards increasingly optimal solutions, ultimately enhancing the neural

network's performance and effectiveness in tackling the target task.

8. Genome Reshaping:

This process involves transforming the genetic representation of individuals, typically

encoded as vectors of parameters, to conform to the structure and requirements of

the optimization algorithm. In the context of this implementation, genome reshaping

primarily focuses on restructuring the genetic representation to align with the neural

network's architecture. As each individual in the population encodes parameters

P a g e 57 | 100

corresponding to the network's weights and biases, reshaping entails rearranging

these parameters into the appropriate format for constructing the network. This may

involve partitioning the parameter vector into weight matrices and bias vectors

corresponding to each layer of the network, ensuring consistency with the network's

architecture. Additionally, reshaping may encompass adjusting the dimensions and

shapes of parameter matrices to match the specified layer sizes and dimensions. By

harmonizing the genetic representation with the neural network's structure, genome

reshaping enables the genetic algorithm to effectively operate on parameter sets,

facilitating the evolutionary exploration and optimization of the solution space.

9. Crossover:

This evolutionary mechanism emulates the concept of natural reproduction, where

genetic material from two parent individuals is exchanged to produce offspring with

diverse characteristics. In the context of this hybrid neural network framework,

crossover serves as a mechanism for exploring the solution space by recombining

parameters encoded within individuals' genomes. During crossover, pairs of parent

individuals are selected based on their fitness or performance, typically favoring

individuals with higher fitness scores. Subsequently, genetic material, represented as

parameter vectors encoding weights and biases for the neural network, is exchanged

between the selected parents to generate offspring individuals.

10. Mutation:

The mutation functions begin by generating a binary mutation mask, wherein each

element's probability of being mutated is determined by the specified mutation rate.

Subsequently, random mutation changes are introduced within a predefined range,

symmetrically distributed around zero. These mutation changes are then applied to

the offspring individuals, selectively based on the mutation mask, effectively

perturbing their genetic material. Finally, the mutated offspring, incorporating both

stochastic changes and genetic inheritance from the parents, are returned as the

output of the mutation process. This adaptive mutation mechanism fosters population

diversity, enabling exploration of the solution space by introducing controlled

stochastic variations to the offspring's genetic makeup.

P a g e 58 | 100

11. Optimization Loop:

The "optimize" function orchestrates the optimization process that drives the genetic

algorithm integrated with the neural network model. The initial step involves

generating a population of potential solutions through the population initialization

function. Among these solutions, the genetic representation of the current best-

performing model parameters, referred to as the "best genome," is reshaped into a

genome-like vector and incorporated into the initial population, thus ensuring that the

best-known solution is always part of the evolutionary process.

The optimization proceeds over a series of generations, each iteratively refining the

population. During each generation, the function evaluates the fitness of each

individual within the population by assessing their performance on the provided

training dataset. This evaluation is based on fitness scores, which reflect the accuracy

of each individual's predictions compared to the actual outcomes.

Key steps in each generation include:

1. Evaluation of Fitness: The fitness scores for all individuals in the population are

computed, ranking the individuals based on their accuracy.

2. Selection of Elites: The top-performing individuals, or elites, are identified. These

elite individuals, determined by the highest fitness scores, are retained for the

subsequent generation to ensure that the best solutions are not lost during the

evolutionary process.

3. Tracking the Best Solution: The algorithm continuously monitors the individual

with the highest accuracy across all generations. If an individual's accuracy

surpasses the current best accuracy, the model's parameters are updated to reflect

this new optimal solution.

4. Generation of New Individuals: New candidate solutions are generated through

two primary genetic operations:

• Crossover: This operation allows for the recombination of genetic material

from pairs of elite individuals, promoting the exploration of new potential

solutions by combining successful traits from different elites.

P a g e 59 | 100

• Adaptive Mutation: This process introduces controlled random changes to

the offspring, enhancing the algorithm's ability to explore the solution

space and avoid local optima.

The newly generated individuals from crossover and mutation are then combined with

the elite individuals to form the next generation's population. This ensures that the

population continually evolves and explores new regions of the solution space, while

retaining the best solutions discovered so far.

At each generation, the algorithm outputs the best accuracy achieved, providing

insight into the progression of the optimization process. This iterative approach of

evaluation, selection, crossover, and mutation leads to the refinement and evolution

of the population towards an optimal solution for the given task.

Upon completion of the specified number of generations, the function returns the best

parameters identified throughout the optimization process. These parameters

represent the most accurate and robust configuration of the neural network model for

the target task, derived through the synergistic application of genetic algorithm

principles and neural network learning.

P a g e 60 | 100

Figure 5: Optimization Loop

Several computationally intensive steps shape the time complexity of the "optimize"

function in the genetic algorithm integrated with the neural network model. The initial

population generation, which involves creating potential solutions, has a complexity of

O(P×N), where P is the population size and N is the number of model parameters. Each

generation evaluates individuals' fitness by training the neural network on a dataset of size M,

resulting in a complexity of O(P×M×N) per generation. The selection of elite individuals

requires sorting the population, adding a complexity of O(P log P). Generating new individuals

through crossover and adaptive mutation contributes an additional O(P×N) per generation.

The process of tracking the best solution adds a further O(P) complexity. Summing these

P a g e 61 | 100

complexities across all generations G, the overall time complexity of the optimization loop is

𝑂(𝐺 × (𝑃 × 𝑀 × 𝑁 + 𝑃 log 𝑃 + 𝑃 × 𝑁)). This high complexity underscores the significant

computational resources required to achieve an optimized solution, particularly in scenarios

involving large populations, extensive parameter sets, and multiple generations.

Training:

The train function is responsible for training the neural network model, incorporating both

traditional backpropagation and GA optimization to refine the model's parameters. The

function takes the following steps:

1. One-Hot Encoding of Labels:

The function begins by encoding the target labels (train and test) into one-hot

format. This encoding is necessary for the network to compute the loss during

training, especially when dealing with multi-class classification problems.

2. Training Loop (Epochs):

For each epoch in the training loop:

• Forward Propagation and Loss Calculation: During forward propagation, the

model processes the training data using the forward propagation method to

compute predicted probabilities for each class, which are stored in the cache.

The loss for the training data is then calculated using cross-entropy loss,

focusing on the probabilities of the true labels. To evaluate performance, the

accuracy of the training set is computed by comparing the predicted classes

from the output layer with the actual labels using the accuracy score metric.

• Backpropagation: The backward propagation method is called to update the

model's parameters based on the computed gradients. This step fine-tunes the

parameters through traditional backpropagation before applying GA

optimization.

• Tracking the Best Model: If the current training accuracy exceeds the best

accuracy, the model updates the best accuracy and best loss. The parameters

dictionary is also updated to store the current best model parameters.

• Genetic Algorithm Optimization: After backpropagation, the optimize method

is invoked to further optimize the parameters using a genetic algorithm. This

P a g e 62 | 100

step introduces a global search mechanism, potentially finding better solutions

that might be missed by gradient-based optimization alone.

• Prediction and Evaluation: The model makes predictions on both the training

and testing sets using the predict method. The training and testing accuracy is

then calculated by comparing the predictions with the true labels. These

accuracy scores provide insight into the model's performance on both seen

(training) and unseen (testing) data.

3.3.4. Algorithm Parameters

The parameters for both the neural network (NN) and the GA are defined. These

parameters are crucial for configuring the architecture and behavior of the algorithms used in

the model. The neural network parameters consist of (Input, Hidden layers, Neurons, Output,

and Learning rate). On the other hand, the genetic algorithm parameters consist of (Genome,

Population, Elite, Mutation, and Generation).

Neural Network Parameters:

1- Input Size: The input size has been selected based on the number of features after

applying the PCA which is 14.

2- Hidden Layers: The number of hidden layers was selected based on the following

experimentation. The algorithm was trained 14 times, each time increasing the

number of hidden layers and running for 1000 epochs. After thorough analysis, it was

observed that all trials followed the same trend as shown in the below figure.

P a g e 63 | 100

Figure 6: Selecting Number of Hidden Layers 1

After conducting the initial experimentation, the process was repeated 10 times, with

the performance of the model evaluated each time. For each trial, the average

performance for different numbers of hidden layers was calculated. Subsequently, the

configuration with two hidden layers, which provided the best average performance,

was selected as illustrated in the figure below and highlighted in bold in the

accompanying table.

0 100 200 300 400 500 600 700 800 900

1 0.036359 0.048598 0.06246 0.061114 0.061866 0.135615 0.159379 0.228176 0.237682 0.258555

2 0.020873 0.080561 0.09874 0.112761 0.117079 0.11791 0.170509 0.187262 0.189282 0.245524

3 0.110741 0.117197 0.111613 0.137753 0.156012 0.158428 0.161082 0.163498 0.168013 0.195382

4 0.142071 0.095136 0.079808 0.089393 0.096958 0.097117 0.105394 0.127693 0.140882 0.292221

5 0.07858 0.090502 0.100166 0.103929 0.109672 0.191183 0.216453 0.220928 0.227067 0.222394

6 0.042538 0.058698 0.115257 0.164488 0.193877 0.202907 0.221285 0.277646 0.285013 0.348424

7 0.078422 0.077788 0.091017 0.148843 0.178549 0.181678 0.192768 0.197798 0.208294 0.23285

8 0.068322 0.083333 0.101117 0.136763 0.140051 0.177796 0.19257 0.250911 0.284221 0.282517

9 0.023685 0.031725 0.039132 0.050499 0.052915 0.126505 0.19661 0.211145 0.21471 0.219701

10 0.007129 0.006773 0.011209 0.072402 0.091849 0.094344 0.108563 0.114068 0.119851 0.160211

11 0.055212 0.062183 0.084799 0.093631 0.153992 0.167142 0.214908 0.22073 0.242237 0.246396

12 0.06456 0.083096 0.110266 0.134228 0.159973 0.179262 0.187104 0.203422 0.278042 0.329808

13 0.048598 0.039132 0.0625 0.061153 0.066104 0.072481 0.094819 0.099453 0.113514 0.117277

14 0.068401 0.121 0.172212 0.201442 0.214869 0.250158 0.241881 0.284933 0.296142 0.29943

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ac

cu
ra

cy

Accuracies in each epochs

Selecting Number of Hidden Layers

P a g e 64 | 100

Figure 7: Selecting Number of Hidden Layers 2

Table 8: Best Number of Hidden Layers

Hidden

Layers

Round

1

Round

2

Round

3

Round

4

Round

5

Round

6

Round

7

Round

8

Round

9

Round

10

Averag

e

1 0.316

7

0.292

9

0.221

4

0.360

8

0.198

2

0.356

1

0.338

8

0.231

6

0.205

6

0.199 0.2721

1

2 0.279

9

0.342

4

0.256 0.348

2

0.198

7

0.255

8

0.395

8

0.292

9

0.261

6

0.296

1

0.2927

4

3 0.216

8

0.180

6

0.163

9

0.198

7

0.228

6

0.402

9

0.160

5

0.356

4

0.301

3

0.267

5

0.2477

2

4 0.258

8

0.266

3

0.246

4

0.294

7

0.245

8

0.297

8

0.262

3

0.228

8

0.295

2

0.290

6

0.2686

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Round 1 0.317 0.28 0.217 0.259 0.358 0.265 0.334 0.228 0.267 0.28 0.245 0.316 0.26 0.348 0.356

Round 2 0.293 0.342 0.181 0.266 0.341 0.101 0.225 0.332 0.229 0.21 0.204 0.37 0.187 0.244 0.32

Round 3 0.221 0.256 0.164 0.246 0.176 0.309 0.252 0.302 0.289 0.327 0.151 0.267 0.281 0.215 0.24

Round 4 0.361 0.348 0.199 0.295 0.256 0.264 0.16 0.329 0.234 0.257 0.253 0.358 0.253 0.193 0.365

Round 5 0.198 0.199 0.229 0.246 0.14 0.253 0.394 0.274 0.272 0.309 0.381 0.221 0.274 0.309 0.248

Round 6 0.356 0.256 0.403 0.298 0.236 0.264 0.222 0.38 0.328 0.303 0.245 0.206 0.258 0.225 0.291

Round 7 0.339 0.396 0.161 0.262 0.282 0.316 0.133 0.092 0.375 0.407 0.358 0.293 0.385 0.192 0.296

Round 8 0.232 0.293 0.356 0.229 0.227 0.269 0.166 0.318 0.25 0.26 0.235 0.144 0.306 0.187 0.116

Round 9 0.206 0.262 0.301 0.295 0.215 0.321 0.203 0.411 0.283 0.143 0.254 0.231 0.268 0.146 0.24

Round 10 0.199 0.296 0.268 0.291 0.159 0.188 0.222 0.22 0.387 0.194 0.231 0.177 0.21 0.287 0.303

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Ac
cu

ra
cy

Trial Round

Selecting Number of Hidden Layers

Round 1 Round 2 Round 3 Round 4 Round 5

Round 6 Round 7 Round 8 Round 9 Round 10

P a g e 65 | 100

5 0.357

5

0.341

1

0.176

1

0.255

9

0.140

1

0.236

3

0.281

8

0.226

8

0.214

9

0.159

2

0.2389

7

6 0.264

8

0.101

2

0.308

7

0.263

7

0.252

9

0.264

3

0.316

1

0.268

9

0.320

7

0.187

9

0.2549

2

7 0.333

5

0.225 0.251

7

0.160

1

0.394

4

0.221

8

0.133

1

0.165

6

0.203

1

0.221

8

0.2310

1

8 0.227

8

0.332 0.301

5

0.329

4

0.274

2

0.379

7

0.091

6

0.318

3

0.410

6

0.220

3

0.2885

4

9 0.267

3

0.228

7

0.289 0.234

1

0.271

5

0.328

1

0.375

4

0.249

6

0.283

2

0.386

8

0.2913

7

10 0.279

9

0.210

2

0.326

7

0.256

9

0.308

8

0.303 0.407

3

0.259

6

0.142

8

0.194

2

0.2689

4

11 0.245 0.203

7

0.150

7

0.252

8

0.381

1

0.245

1

0.357

8

0.235

3

0.254 0.231

2

0.2556

7

12 0.315

7

0.369

8

0.266

6

0.358 0.220

7

0.206

4

0.292

8

0.143

8

0.230

9

0.176

7

0.2581

4

13 0.260

1

0.187

1

0.280

6

0.253

4

0.274 0.257

7

0.385

3

0.305

6

0.267

9

0.209

5

0.2681

2

14 0.348 0.244

4

0.215

1

0.192

7

0.308

9

0.224

8

0.192 0.186

9

0.146

2

0.286

8

0.2345

8

15 0.355

9

0.320

2

0.240

3

0.365 0.248

3

0.291

2

0.296

1

0.116

1

0.240

4

0.302

6

0.2776

1

3- Neurons Layers: Determining the optimal number of neurons in hidden layers remains

a challenge in neural network design, as there is no definitive solution applicable to all

scenarios. Various studies in the field of neural networks acknowledge this challenge

and propose heuristic methods for selecting the number of neurons [98], [99], [100],

[101]. The heuristic method employed in this study involves setting the number of

neurons in the first hidden layer to two-thirds of the total number of input and output

neurons, followed by using the full size for the second hidden layer. Specifically, for an

P a g e 66 | 100

input size of 14 neurons and an output size of 15 neurons, the hidden layers were

configured with 19 neurons in the first layer and 29 neurons in the second layer.

4- Learning rate: The learning rate has been set to 0.1 based on several related papers

where the authors always select 0.1 as a default initial step for their proposal [102],

[103], [104].

5- Output Size: has been selected based on the number of classes which is 15.

6- Epochs: has been set to 1000, considering the computational power.

Genetic Algorithm Parameters:

1- Genome Size: The genome size was determined to be 1,315. This value reflects the

total number of weights and biases in the neural network and was calculated by

summing all the parameters between the input layer, the hidden layers, and the output

layer. Specifically, the network architecture includes an input layer with 14 neurons,

two hidden layers with 19 and 29 neurons respectively, and an output layer with 15

neurons. The genome size calculation takes into account the connections and biases

from the input layer to the first hidden layer, between the hidden layers, and from the

last hidden layer to the output layer. This comprehensive calculation ensures that the

genome fully encapsulates the neural network’s structure, allowing the genetic

algorithm to effectively optimize all parameters. The chosen value of 1,315 strikes a

balance between adequately representing the network's complexity and maintaining

manageable computational demands, thereby facilitating efficient and effective

training.

2- Population Size: The population size is a critical parameter in genetic algorithms as it

determines the number of candidate solutions available in each generation [105]. To

determine the optimal population size for this study, an experiment was conducted by

varying the population size from 10% to 100% of the genome size in 10% increments.

The population sizes tested ranged from 131 to 1,315, and the corresponding test

accuracies were recorded to assess selecting the best population size.

P a g e 67 | 100

Figure 8: Population Size Experiment

Table 9: Population Size Experiment

Population Size Test Accuracy

131 0.504753

263 0.543251

394 0.474968

526 0.586027

657 0.55846

789 0.503802

920 0.53121

1052 0.472275

1183 0.52446

1315 0.50206

The above table illustrates how test accuracy varies with different population sizes.

Notably, all the results hover around 50%. Even though the highest test accuracy of

0.586027 was achieved with a population size of 526, the population size has been set

to 1315 since all the test results are in the same range. Additionally, increasing the

population size allows for more extensive exploration, potentially leading to better

overall optimization.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 131 262 393 524 655 786 917 1048 1179 1310 1441

Population Size experiment

P a g e 68 | 100

3- Elite Size: The elite size, which determines the proportion of the top-performing

individuals retained for the next generation, was set to 20% of the population size. For

a population size of 1315, this corresponds to 263 individuals. The selection of 20% as

the elite size is aimed at maintaining a balance between preserving the best solutions

and introducing new genetic material into the population. By retaining the top 20%,

the algorithm ensures that high-quality solutions are carried forward, providing a

stable foundation for further optimization while still allowing for a significant degree

of exploration and variation among the rest of the population.

4- Mutation Rate: The mutation rate was set to 0.3, which means that 30% of the genes

in each individual have a chance of being altered during each generation. Mutation

introduces random variations in the population, which is crucial for maintaining

genetic diversity and allowing the algorithm to explore new areas of the solution space

that might not be reached through crossover alone.

5- Number of Generations: In this study, 1,000 generations were found to be a suitable

balance, allowing enough evolutionary cycles to optimize the neural network

parameters effectively without excessive computational burden. This extensive

evolutionary process helps to ensure that the algorithm thoroughly explores the

solution space and converges towards a highly accurate and reliable set of parameters

for the neural network.

4- Results and Analysis

The Results and Analysis section marks the effectiveness of the developed hybrid

algorithm for cyber-attack detection in the IIoT landscape. This comprehensive evaluation,

aims to unveil insights derived from applying the GA optimization strategy, shedding light on

the performance of the developed model. The analytical journey involves a detailed review of

the classification report, confusion matrix, and ROC curve metrics for all types of cyber-attacks

and normal traffic.

After implementing the algorithm detailed in Section 3.3 (Implementation), the neural

network was configured with the parameters listed in the table below. These parameters

reflect the final state of the neural network architecture.

P a g e 69 | 100

Table 10: The Final Neural Network Architecture

Parameter Name Parameter Shape Number of Parameters

Weight 1 (14, 19) 266

Bias 1 (1, 19) 19

Weight 2 (19, 29) 551

Bias 2 (1, 29) 29

Weight 3 (29, 15) 435

Bias 3 (1, 15) 15

Moreover, to ensure the robustness and reliability of the results, the algorithm was trained

three times with different stratified sampling training datasets. This method was employed to

generate varied samples in each run, thereby reducing the potential impact of any single

random initialization on the results. This iterative approach was employed to verify the

consistency of the outcomes and to confirm that the results were not a product of random

variation or overfitting.

4.1. Classification Metrics

In the context of evaluating classification models, it is essential to understand key metrics

derived from a confusion matrix. A confusion matrix is a table used to describe the

performance of a classification model by comparing the predicted labels with the true labels.

It includes four main metrics [106]:

Table 11: Confusion Matrix Description

Metrics Description

True Positive (TP) An instance where both predicted and actual values are positive

False Positive (FP) An instance where the predicted value is positive, but the actual

value is negative

False Negative (FN) An instance where the predicted value is negative, but the actual

value is positive

True Negative (TN) An instance where both the predicted and actual values are

negative

P a g e 70 | 100

Based on these, several classification metrics are commonly used to evaluate the model’s

performance [106], [107], [108]:

Precision measures the accuracy of positive predictions. It is defined as the ratio of true

positive predictions to the total number of positive predictions made by the model. A high

precision indicates when the model predicts a positive class, it is likely to be correct. The

formula for precision is:

Precision =
TP

TP + FP

Recall also known as sensitivity or true positive rate, it assesses the model's ability to

capture all relevant positive instances. It is the ratio of true positive predictions to the total

number of actual positive instances in the dataset. High recall signifies that the model is

effective in identifying most of the positive instances. The formula for the recall is:

Recall =
TP

TP + FN

F1-Score provides a balanced measure of a model’s performance by combining precision

and recall into a single metric. It is particularly useful when there is an imbalance between

positive and negative classes. The F1-Score is the harmonic mean of precision and recall. The

formula for F1-Score is:

F1-Score = 2 ×
Precision × Recall

Precision + Recall

Accuracy measures the overall correctness of the model’s predictions. It is the ratio of

correctly predicted instances (both true positives and true negatives) to the total number of

instances. Accuracy is a general measure of model performance, but it can be misleading if

the classes are imbalanced. The formula for accuracy is:

Accuracy =
TP + TN

Total Number of Instances

P a g e 71 | 100

Support refers to the number of actual occurrences of each class in the dataset. It is used

to provide context to the precision, recall, and F1-Score metrics by showing the distribution

of true instances across different classes.

The following tables present the detailed classification reports for three different stratified

sampling training datasets. These tables highlight the model's performance in various attack

types and normal traffic to evaluate the model’s effectiveness, key classification metrics,

including precision, recall, F1-score, support, and accuracy, were utilized.

Table 12: Classification Report – First Run

Class Precision Recall F1-score Support

Backdoor 0.96 0.88 0.92 411

DDoS_HTTP 1 0.99 0.99 416

DDoS_ICMP 0.99 1 0.99 579

DDoS_TCP 1 1 1 416

DDoS_UDP 1 0.99 1 550

Fingerprinting 0 0 0 38

MITM 0 0 0 49

Normal 0.99 1 0.99 1003

Password 0.99 0.96 0.97 387

Port_Scanning 0.99 1 0.99 365

Ransomware 0.85 1 0.92 492

SQL_injection 0.99 0.67 0.8 414

Uploading 0.74 0.99 0.85 400

Vulnerability_scanner 0.94 0.97 0.95 386

XSS 0.87 0.92 0.9 406

Accuracy 0.94 6312

P a g e 72 | 100

Table 13: Classification Report – Second Run

Class Precision Recall F1-score Support

Backdoor 0.96 0.88 0.92 411

DDoS_HTTP 1 0.99 0.99 416

DDoS_ICMP 1 1 1 579

DDoS_TCP 1 1 1 416

DDoS_UDP 1 1 1 550

Fingerprinting 0 0 0 38

MITM 0 0 0 49

Normal 0.99 1 1 1003

Password 0.99 0.98 0.98 387

Port_Scanning 0.99 1 0.99 365

Ransomware 0.85 1 0.92 492

SQL_injection 0.99 0.67 0.8 414

Uploading 0.74 0.99 0.85 400

Vulnerability_scanner 0.96 0.97 0.96 386

XSS 0.87 0.92 0.9 406

Accuracy 0.95 6312

Table 14: Classification Report – Third Run

Class Precision Recall F1-score Support

Backdoor 0.95 0.87 0.91 411

DDoS_HTTP 1 0.99 1 416

DDoS_ICMP 1 1 1 579

DDoS_TCP 1 1 1 416

DDoS_UDP 1 1 1 550

Fingerprinting 0 0 0 38

MITM 0 0 0 49

Normal 0.99 1 1 1003

Password 0.99 0.97 0.98 387

Port_Scanning 1 1 1 365

P a g e 73 | 100

Ransomware 0.46 1 0.63 492

SQL_injection 0.99 0.69 0.81 414

Uploading 0.80 0.34 0.47 400

Vulnerability_scanner 0.97 0.92 0.94 386

XSS 0.82 0.94 0.87 406

Accuracy 0.90 6312

The following analysis presents an overview of the algorithm's performance in classifying

various cyber-attack types and normal network traffic, based on three different runs. Precision

metrics reflect the accuracy of positive predictions, with notable performances observed in

several attack categories:

• DDoS ICMP, DDoS TCP, and DDoS UDP attacks demonstrated perfect precision and

recall across all runs, indicating flawless detection capabilities. This suggests that the

algorithm is highly effective in identifying these specific types of DDoS attacks.

• DDoS HTTP also exhibited near-perfect precision and recall, reinforcing the algorithm's

robustness in detecting this attack vector.

• Normal traffic consistently achieved high precision and recall, confirming the model's

strong ability to distinguish benign traffic from malicious activities.

Conversely, certain classes, such as Fingerprinting and MITM, consistently showed a lack of

detection capability, reflected in zero precision, recall, and F1-scores. This indicates that the

algorithm struggled to identify these attack types across all runs.

Ransomware exhibited varied performance. While its recall was high (1.00), its precision was

lower especially in the third run, leading to a lower F1-score overall. This variation suggests

challenges in achieving a balance between detecting and correctly classifying ransomware

instances.

SQL Injection showed high precision (0.99) but lower recall with in all runs achieving the

highest (0.69) in the third run, indicating that while the algorithm is effective at identifying

SQL injection attacks when they are detected, it may miss a significant portion of such

instances.

Uploading also demonstrated varied results, with lower recall in some runs, which might

reflect challenges in detecting all instances of this attack type.

P a g e 74 | 100

Overall, the algorithm achieved an accuracy of approximately 90-95% across the three runs,

indicating strong performance. The weighted metrics further validate the model's

effectiveness, with weighted average precision, recall, and F1-score ranging from 0.80 to 0.94,

showcasing a balanced performance across the diverse class distribution. These results

highlight the model's overall capability in classifying cyber-attacks, though certain areas, such

as Fingerprinting and MITM detection, warrant further improvement.

Table 15: Classification Results - Average

Class Precision Recall F1-score Support

Backdoor 0.956667 0.876667 0.916667 411

DDoS_HTTP 1 0.99 0.993333 416

DDoS_ICMP 0.996667 1 0.996667 579

DDoS_TCP 1 1 1 416

DDoS_UDP 1 0.996667 1 550

Fingerprinting 0 0 0 38

MITM 0 0 0 49

Normal 0.99 1 0.996667 1003

Password 0.99 0.97 0.976667 387

Port_Scanning 0.993333 1 0.993333 365

Ransomware 0.72 1 0.823333 492

SQL_injection 0.99 0.676667 0.803333 414

Uploading 0.76 0.773333 0.723333 400

Vulnerability_scanner 0.956667 0.953333 0.95 386

XSS 0.853333 0.926667 0.89 406

Accuracy 0.93 6312

P a g e 75 | 100

4.2. Confusion Matrix

The confusion matrix provides a detailed breakdown of the algorithm’s performance by

illustrating the true positives, false positives, true negatives, and false negatives for each class.

In this matrix, the rows represent the actual classes, while the columns represent the

predicted classes. Each cell in the matrix shows the number of instances for the corresponding

actual and predicted class pair.

Figure 9: Confusion Matrix – First Run

P a g e 76 | 100

Figure 10: Confusion Matrix – Second Run

P a g e 77 | 100

Figure 11: Confusion Matrix – Third Run

The confusion matrices presented in the figures above illustrate the performance of the

classification model across different categories of cyber-attacks and normal traffic.

General Observations Across Runs:

1. Consistency in Classification:

o Ransomware, DDoS_TCP, DDoS_UDP, DDoS_ICMP, and Normal traffic

consistently show high accuracy across all three runs, indicating that the

algorithm reliably detects these classes, regardless of the random state used.

o The true positive rates for these categories are consistently high, showing the

robustness of the model in identifying these types of traffic.

2. Variability in Certain Categories:

o SQL Injection, Uploading, and XSS show variability across different random

states. For instance, the classification accuracy for SQL Injection improves in

P a g e 78 | 100

the third run compared to the first two runs, suggesting that the model's

performance in these categories is sensitive to the initial conditions set by the

random state.

o Uploading and XSS continue to show some level of misclassification in all runs,

though with varying degrees of accuracy.

3. Impact of Random State:

o The differences in the confusion matrices suggest that while the algorithm's

overall performance is stable, the choice of random state can influence its

effectiveness in distinguishing between more challenging categories, such as

SQL Injection and Uploading.

o For example, in the run with the second run, the model's accuracy in classifying

Normal traffic increases, whereas, with the first run, there is a slight drop in the

accuracy of certain categories.

The results from the three runs indicate that while the algorithm is generally robust, its

performance can be influenced by the random state, particularly in more challenging

categories. This suggests that further optimization, possibly by incorporating an ensemble

approach or fine-tuning hyperparameters, could help to mitigate the variability and improve

the overall accuracy of the model across all attack categories. This discussion highlights the

importance of considering random state variability in model evaluation, especially when

dealing with complex, multi-class classification tasks like cyber-attack detection.

4.3. ROC Curve

The Receiver Operating Characteristic (ROC) curve is a graphical representation

commonly used to evaluate the performance of the classification model [109]. It illustrates

the trade-off between the recall and the false positive rate as the discrimination threshold for

classifying positive instances is varied.

The ROC curve is created by plotting the True Positive Rate (TPR), also known as sensitivity;

same as the recall from the confusion matrix, against the False Positive Rate (FPR) at various

threshold settings. Each point on the curve represents a pair of TPR and FPR values

P a g e 79 | 100

corresponding to a specific decision threshold. A model with strong predictive performance

will have a ROC curve that closely hugs the upper-left corner of the plot, indicating high

sensitivity (few false negatives) and a low false positive rate [110]. The formula for FPR is:

FPR =
FP

FP + TN

In addition to the ROC curve, the area under the ROC curve (AUC-ROC) is often calculated.

AUC-ROC provides a single value summarizing the model's performance. A higher AUC-ROC

value (closer to 1) suggests a better overall discriminatory ability of the model across different

threshold settings.

Figure 12: ROC Curve – First Run

P a g e 80 | 100

Figure 13: ROC Curve – Second Run

P a g e 81 | 100

Figure 14: ROC Curve - Third Run

Notably, most classes consistently exhibit outstanding AUC values close to 1.0 across all

runs, indicating robust and near-perfect discrimination capabilities. The DDoS_HTTP,

DDoS_TCP, DDoS_UDP, DDoS_ICMP, Password, Port_Scanning, Vulnerability_scanner,

Backdoor, and Normal classes consistently achieve an AUC of 1.00 in each run. This

consistency underscores the classifier's exceptional performance in distinguishing these types

of network traffic.

However, some classes show slight variability in AUC values across the different runs,

though they remain high. The MITM (Man-in-the-Middle) and Fingerprinting classes, for

instance, have AUC values ranging from 0.93 to 0.96. Similarly, the Ransomware, Uploading,

SQL_injection, and XSS classes display AUC values between 0.96 and 0.99 across the runs.

While these values are strong and suggest that the model generally discriminates well

P a g e 82 | 100

between these attack types and others, the slight fluctuations indicate potential areas for

further model refinement to achieve more consistent performance.

5- Challenges and Limitations

5.1. Computational Constraints

The integration of genetic algorithms (GA) to optimize neural network parameters, such

as weights and biases, presents significant computational challenges. The following points

highlight these constraints:

Genetic algorithms inherently require the evaluation of multiple candidate solutions

across numerous generations to converge on an optimal or near-optimal solution. This process

involves repeated training and evaluation of neural networks, which is computationally

intensive. Each candidate solution represents a unique set of neural network parameters. The

demand for computational resources such as CPUs, GPUs, and memory is significantly

heightened. This can lead to long training times and the need for high-performance computing

infrastructure.

The search space for neural network parameters is vast, especially when optimizing both

weights and biases for multiple layers. In particular, having a moderately sized neural network

with two hidden layers with 19 and 29 neurons results in more than a thousand parameters.

The genetic algorithm must explore this high-dimensional space, which can lead to a

combinatorial explosion in the number of evaluations needed to find optimal solutions.

The iterative nature of genetic algorithms, coupled with the need to evaluate a population

of solutions in each generation, results in high time complexity. As the number of generations

and population size increase, the time required to complete the optimization process grows

substantially. This is particularly challenging when the neural network models are complex

and the training datasets are large.

P a g e 83 | 100

5.2. Dataset Size and Complexity

The foundational cornerstone of this research lies in the exploration of a substantial and

intricate dataset. Comprising a vast array of 63 columns and an expansive 157,801 rows, the

dataset encapsulates a rich diversity of data types and attributes. Each column serves as a

unique dimension, providing a comprehensive perspective on the intricate landscape of cyber

activities within the IIoT. The varied characteristics of data in cyber-physical systems require

effective strategies to optimize performance across multiple dimensions. Additionally, the

large volume of data demands careful consideration of computational efficiency and resource

management. This highlights the importance of using optimization algorithms that can tackle

these challenges while operating within the limits of available time and computational

resources.

5.3. Algorithm Fine-Tuning

Optimizing algorithms like GA requires careful attention to the sensitivity of their tuning

process. GA relies on several key parameters such as population size, mutation rate, crossover

rate, and the number of generations, that affect their performance significantly. Fine-tuning

these parameters is a critical step, as even small adjustments can have a major impact on the

results. The challenge lies in finding the best balance, where the parameters work together

effectively within the complexities of the dataset and the structure of the neural network.

For example, the population size and mutation rate play crucial roles in how well the GA

can explore potential solutions and avoid getting stuck in suboptimal ones. Adjusting these

parameters helps ensure that the algorithm thoroughly searches the solution space while

maintaining the efficiency needed to find high-quality answers. Moreover, the components of

the neural network architecture, such as the number of layers and neurons, add another layer

of complexity and challenge to the tuning process. The GA needs to be carefully adapted to

meet the specific needs of the neural network, requiring an in-depth understanding of both

the GA and the neural network to achieve the best possible outcomes.

P a g e 84 | 100

6- Future Work

Future research will focus on optimizing and fine-tuning neural network parameters to

achieve higher accuracy in cyber-attack detection within the IIoT landscape. Efforts will

explore advanced techniques for parameter selection, leveraging state-of-the-art

methodologies to identify configurations that maximize detection efficacy.

Additionally, there will be a concerted effort to enhance training efficiency, aiming to

accelerate convergence rates and reduce computational overhead. Novel approaches will be

investigated to enable rapid deployment and adaptation of models in dynamic IIoT

environments.

Furthermore, exploring new algorithms and optimization strategies holds promise for

pushing current capabilities further. Integration of cutting-edge techniques such as meta-

learning or adaptive learning rate methods could offer substantial improvements in both

accuracy and efficiency, advancing robust cyber-attack detection systems.

P a g e 85 | 100

7- References

[1] H. ElMaraghy, L. Monostori, G. Schuh, and W. ElMaraghy, “Evolution and future of

manufacturing systems,” CIRP Annals, vol. 70, no. 2, pp. 635–658, Jan. 2021, doi:

10.1016/j.cirp.2021.05.008.

[2] M. Barrère, C. Hankin, N. Nicolaou, D. G. Eliades, and T. Parisini, “Measuring cyber-physical

security in industrial control systems via minimum-effort attack strategies,” Journal of

Information Security and Applications, vol. 52, Jun. 2020, doi: 10.1016/j.jisa.2020.102471.

[3] H. Kayan, M. Nunes, O. Rana, P. Burnap, and C. Perera, “Cybersecurity of Industrial Cyber-

Physical Systems: A Review,” Jan. 2021, [Online]. Available: http://arxiv.org/abs/2101.03564

[4] A. M. Alnajim, S. Habib, M. Islam, S. M. Thwin, and F. Alotaibi, “A Comprehensive Survey of

Cybersecurity Threats, Attacks, and Effective Countermeasures in Industrial Internet of

Things,” Dec. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi:

10.3390/technologies11060161.

[5] M. N. Hoda, Bharati Vidyapeeth’s Institute of Computers Applications and Management Delhi,

and Institute of Electrical and Electronics Engineers Delhi Section, Proceedings of the 17th

INDIACom; 2023 10th International Conference on Computing for Sustainable Global

Development (15th-17th March, 2023) INDIACom-2023.

[6] K. Stouffer, “Guide to Operational Technology (OT) Security,” 2023. doi: 10.6028/NIST.SP.800-

82r3.

[7] T. S. Fun and A. Samsudin, “Recent technologies, security countermeasure and ongoing

challenges of industrial internet of things (Iiot): A survey,” Oct. 01, 2021, MDPI. doi:

10.3390/s21196647.

[8] P. K. Malik et al., “Industrial Internet of Things and its Applications in Industry 4.0: State of The

Art,” Comput Commun, vol. 166, pp. 125–139, Jan. 2021, doi:

10.1016/j.comcom.2020.11.016.

[9] M. Javaid, A. Haleem, R. P. Singh, R. Suman, and E. S. Gonzalez, “Understanding the adoption

of Industry 4.0 technologies in improving environmental sustainability,” Sustainable

Operations and Computers, vol. 3, pp. 203–217, Jan. 2022, doi: 10.1016/j.susoc.2022.01.008.

[10] S. Mubarak et al., “Industrial datasets with ICS testbed and attack detection using machine

learning techniques,” Intelligent Automation and Soft Computing, vol. 31, no. 3, pp. 1345–

1360, 2022, doi: 10.32604/IASC.2022.020801.

[11] J. G. Greener, S. M. Kandathil, L. Moffat, and D. T. Jones, “A guide to machine learning for

biologists.”

[12] W. Jiang, “Machine Learning Methods to Detect Voltage Glitch Attacks on IoT/IIoT

Infrastructures,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/6044071.

[13] V. Shah, “Revista Española de Documentación Científica Machine Learning Algorithms for

Cybersecurity: Detecting and Preventing Threats”, doi: 10.5281/zenodo.10779509.

P a g e 86 | 100

[14] P. Anand, Y. Singh, A. Selwal, M. Alazab, S. Tanwar, and N. Kumar, “IoT vulnerability

assessment for sustainable computing: Threats, current solutions, and open challenges,” IEEE

Access, vol. 8, pp. 168825–168853, 2020, doi: 10.1109/ACCESS.2020.3022842.

[15] I. A. Mohammed, “The Interaction Between Artificial Intelligence and Identity & Access

Management: An Empirical study,” 2015. [Online]. Available: www.ijcrt.org

[16] N. Sun et al., “Cyber Threat Intelligence Mining for Proactive Cybersecurity Defense: A Survey

and New Perspectives,” IEEE Communications Surveys and Tutorials, vol. 25, no. 3, pp. 1748–

1774, 2023, doi: 10.1109/COMST.2023.3273282.

[17] K. Shaukat et al., “Performance comparison and current challenges of using machine learning

techniques in cybersecurity,” May 01, 2020, MDPI AG. doi: 10.3390/en13102509.

[18] G. Apruzzese et al., “The Role of Machine Learning in Cybersecurity,” Digital Threats: Research

and Practice, vol. 4, no. 1, Mar. 2023, doi: 10.1145/3545574.

[19] J. Liu, K. Xiao, L. Luo, Y. Li, and L. Chen, “An intrusion detection system integrating network-

level intrusion detection and host-level intrusion detection,” in Proceedings - 2020 IEEE 20th

International Conference on Software Quality, Reliability, and Security, QRS 2020, Institute of

Electrical and Electronics Engineers Inc., Dec. 2020, pp. 122–129. doi:

10.1109/QRS51102.2020.00028.

[20] M. Aljanabi, M. A. Ismail, and A. H. Ali, “Intrusion detection systems, issues, challenges, and

needs,” International Journal of Computational Intelligence Systems, vol. 14, no. 1, pp. 560–

571, 2021, doi: 10.2991/ijcis.d.210105.001.

[21] S. Kumar, S. Gupta, and S. Arora, “Research Trends in Network-Based Intrusion Detection

Systems: A Review,” 2021, Institute of Electrical and Electronics Engineers Inc. doi:

10.1109/ACCESS.2021.3129775.

[22] D. Park, S. Kim, H. Kwon, D. Shin, and D. Shin, “Host-Based Intrusion Detection Model Using

Siamese Network,” IEEE Access, vol. 9, pp. 76614–76623, 2021, doi:

10.1109/ACCESS.2021.3082160.

[23] Q. Liu, V. Hagenmeyer, and H. B. Keller, “A Review of Rule Learning-Based Intrusion Detection

Systems and Their Prospects in Smart Grids,” 2021, Institute of Electrical and Electronics

Engineers Inc. doi: 10.1109/ACCESS.2021.3071263.

[24] A. Thakkar and R. Lohiya, “A Review of the Advancement in Intrusion Detection Datasets,” in

Procedia Computer Science, Elsevier B.V., 2020, pp. 636–645. doi:

10.1016/j.procs.2020.03.330.

[25] J. Díaz-Verdejo, J. Muñoz-Calle, A. E. Alonso, R. E. Alonso, and G. Madinabeitia, “On the

Detection Capabilities of Signature-Based Intrusion Detection Systems in the Context of Web

Attacks,” Applied Sciences (Switzerland), vol. 12, no. 2, Jan. 2022, doi: 10.3390/app12020852.

[26] M. Antunes, L. Oliveira, A. Seguro, J. Veríssimo, R. Salgado, and T. Murteira, “Benchmarking

Deep Learning Methods for Behaviour-Based Network Intrusion Detection,” Informatics, vol.

9, no. 1, Mar. 2022, doi: 10.3390/informatics9010029.

[27] H. Asad and I. Gashi, “Dynamical analysis of diversity in rule-based open source network

intrusion detection systems,” Empir Softw Eng, vol. 27, no. 1, Jan. 2022, doi: 10.1007/s10664-

021-10046-w.

P a g e 87 | 100

[28] S. P. Thirimanne, L. Jayawardana, L. Yasakethu, P. Liyanaarachchi, and C. Hewage, “Deep

Neural Network Based Real-Time Intrusion Detection System,” SN Comput Sci, vol. 3, no. 2,

Mar. 2022, doi: 10.1007/s42979-022-01031-1.

[29] N. Sharma, A. Chakrabarti, and V. E. Balas, “Advances in Intelligent Systems and Computing

1042.” [Online]. Available: http://www.springer.com/series/11156

[30] S. Thapa and A. Mailewa, “EasyChair Preprint The Role of Intrusion Detection/Prevention

Systems in Modern Computer Networks: A Review,” 2020.

[31] J. M. Kizza, Guide to Computer Network Security. in Texts in Computer Science. Cham:

Springer International Publishing, 2024. doi: 10.1007/978-3-031-47549-8.

[32] S. A. Varghese, A. D. Ghadim, A. Balador, Z. Alimadadi, and P. Papadimitratos, “Digital Twin-

based Intrusion Detection for Industrial Control Systems,” Jul. 2022, doi:

10.1109/PerComWorkshops53856.2022.9767492.

[33] M. Humayun, N. Z. Jhanjhi, M. N. Talib, M. H. Shah, and G. Sussendran, “Industry 4.0 and

Cyber Security Issues and Challenges,” 2021.

[34] R. J. Raimundo and A. T. Rosário, “Cybersecurity in the Internet of Things in Industrial

Management,” Feb. 01, 2022, MDPI. doi: 10.3390/app12031598.

[35] M. Culler, “Cyber Threat Landscape for Distribution Systems,” 2022.

[36] E. Izycki and E. W. Vianna, “Critical Infrastructure: A Battlefield for Cyber Warfare?”, doi:

10.34190/IWS.21.011.

[37] W. I. Khedr, A. E. Gouda, and E. R. Mohamed, “FMDADM: A Multi-Layer DDoS Attack

Detection and Mitigation Framework Using Machine Learning for Stateful SDN-Based IoT

Networks,” IEEE Access, 2023, doi: 10.1109/ACCESS.2023.3260256.

[38] Z. A. El Houda, B. Brik, A. Ksentini, and L. Khoukhi, “A MEC-Based Architecture to Secure IoT

Applications using Federated Deep Learning,” IEEE Internet of Things Magazine, vol. 6, no. 1,

pp. 60–63, Mar. 2023, doi: 10.1109/iotm.001.2100238.

[39] S. Kantimahanthi, J. V.D. Prasad, S. Chanamolu, and K. Kommaraju, “Machine Learning

Approaches in Cyber Attack Detection and Characterization in IoT enabled Cyber-Physical

Systems,” in IDCIoT 2023 - International Conference on Intelligent Data Communication

Technologies and Internet of Things, Proceedings, Institute of Electrical and Electronics

Engineers Inc., 2023, pp. 136–142. doi: 10.1109/IDCIoT56793.2023.10053545.

[40] G. P. Bhandari, A. Lyth, A. Shalaginov, and T. M. Gronli, “Artificial Intelligence Enabled

Middleware for Distributed Cyberattacks Detection in IoT-based Smart Environments,” in

Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022, Institute of

Electrical and Electronics Engineers Inc., 2022, pp. 3023–3032. doi:

10.1109/BigData55660.2022.10020531.

[41] E. M. De Elias et al., “A Hybrid CNN-LSTM Model for IIoT Edge Privacy-Aware Intrusion

Detection,” in 2022 IEEE Latin-American Conference on Communications, LATINCOM 2022,

Institute of Electrical and Electronics Engineers Inc., 2022. doi:

10.1109/LATINCOM56090.2022.10000468.

P a g e 88 | 100

[42] A. Khacha, R. Saadouni, Y. Harbi, and Z. Aliouat, “Hybrid Deep Learning-based Intrusion

Detection System for Industrial Internet of Things,” in ISIA 2022 - International Symposium on

Informatics and its Applications, Proceedings, Institute of Electrical and Electronics Engineers

Inc., 2022. doi: 10.1109/ISIA55826.2022.9993487.

[43] O. Cheikhrouhou, O. Ben Fredj, N. Atitallah, and S. Hellal, “Intrusion Detection in Industrial

IoT,” in Proceedings of the 2022 15th IEEE International Conference on Security of Information

and Networks, SIN 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi:

10.1109/SIN56466.2022.9970535.

[44] Y. Otoum, V. Chamola, and A. Nayak, “Federated and Transfer Learning-Empowered Intrusion

Detection for IoT Applications,” IEEE Internet of Things Magazine, vol. 5, no. 3, pp. 50–54,

Nov. 2022, doi: 10.1109/iotm.001.2200048.

[45] P. Dini et al., “Design and Testing Novel One-Class Classifier Based on Polynomial Interpolation

with Application to Networking Security,” IEEE Access, vol. 10, pp. 67910–67924, 2022, doi:

10.1109/ACCESS.2022.3186026.

[46] A. Ghourabi, “A Security Model Based on LightGBM and Transformer to Protect Healthcare

Systems From Cyberattacks,” IEEE Access, vol. 10, pp. 48890–48903, 2022, doi:

10.1109/ACCESS.2022.3172432.

[47] M. G. dos Santos, D. Ameyed, F. Petrillo, F. Jaafar, and M. Cheriet, “Internet of Things

Architectures: A Comparative Study,” Apr. 2020, [Online]. Available:

http://arxiv.org/abs/2004.12936

[48] D. Breitenbacher and Y. Elovici, “N-BaIoT-Network-Based Detection of IoT Botnet Attacks

Using Deep Autoencoders.” [Online]. Available: http://archive.ics.uci.edu/ml/datasets/detec-

[49] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the Development of

Realistic Botnet Dataset in the Internet of Things for Network Forensic Analytics: Bot-IoT

Dataset,” Nov. 2018, [Online]. Available: http://arxiv.org/abs/1811.00701

[50] I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso, “Mqttset, a new dataset for

machine learning techniques on mqtt,” Sensors (Switzerland), vol. 20, no. 22, pp. 1–17, Nov.

2020, doi: 10.3390/s20226578.

[51] N. Moustafa, M. Keshk, E. Debie, and H. Janicke, “Federated TON IoT Windows Datasets for

Evaluating AI-based Security Applications”, doi:

10.1109/TrustCom50675.2020.00114/20/$31.00.

[52] M. Al-Hawawreh, E. Sitnikova, and N. Aboutorab, “X-IIoTID: A Connectivity-Agnostic and

Device-Agnostic Intrusion Data Set for Industrial Internet of Things,” IEEE Internet Things J,

vol. 9, no. 5, pp. 3962–3977, Mar. 2022, doi: 10.1109/JIOT.2021.3102056.

[53] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain, “Machine Learning-Based

Network Vulnerability Analysis of Industrial Internet of Things,” IEEE Internet Things J, vol. 6,

no. 4, pp. 6822–6834, Aug. 2019, doi: 10.1109/JIOT.2019.2912022.

[54] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-IIoTset: A New

Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized

and Federated Learning,” IEEE Access, vol. 10, pp. 40281–40306, 2022, doi:

10.1109/ACCESS.2022.3165809.

P a g e 89 | 100

[55] A. B. de Neira, B. Kantarci, and M. Nogueira, “Distributed denial of service attack prediction:

Challenges, open issues and opportunities,” Feb. 01, 2023, Elsevier B.V. doi:

10.1016/j.comnet.2022.109553.

[56] V. Nagaraju, A. Raaza, V. Rajendran, and D. Ravikumar, “Deep learning binary fruit fly

algorithm for identifying SYN flood attack from TCP/IP,” Mater Today Proc, vol. 80, pp. 3086–

3091, Jan. 2023, doi: 10.1016/j.matpr.2021.07.171.

[57] Y. Wang, J. Ding, T. Zhang, Y. Xiao, and X. Hei, “From Replay to Regeneration: Recovery of UDP

Flood Network Attack Scenario Based on SDN,” Mathematics, vol. 11, no. 8, Apr. 2023, doi:

10.3390/math11081897.

[58] P. Razumov, K. Lyashenko, L. Cherckesova, E. Revyakina, I. Yengibaryan, and A. Revyakin,

“Development of a system for protecting against DDoS attacks at the L7 level of the OSI model

- HTTP Flood,” in E3S Web of Conferences, EDP Sciences, Jul. 2023. doi:

10.1051/e3sconf/202340203008.

[59] R. Anusuya, C. Prathima, M. Ramkumar Prabhu, and J. R. Arun Kumar, “Detection of TCP, UDP

and ICMP DDOS attacks in SDN Using Machine Learning approach,” 2023.

[60] X. Etxezarreta, I. Garitano, M. Iturbe, and U. Zurutuza, “Low delay network attributes

randomization to proactively mitigate reconnaissance attacks in industrial control systems,”

Wireless Networks, 2023, doi: 10.1007/s11276-022-03212-5.

[61] J. M. Pittman, “Machine Learning and Port Scans: A Systematic Review,” Jan. 2023, [Online].

Available: http://arxiv.org/abs/2301.13581

[62] M. Laštovička, M. Husák, P. Velan, T. Jirsík, and P. Čeleda, “Passive operating system

fingerprinting revisited: Evaluation and current challenges,” Computer Networks, vol. 229, Jun.

2023, doi: 10.1016/j.comnet.2023.109782.

[63] C. Kalaani, “OWASP ZAP vs Snort for SQLi Vulnerability Scanning,” 2023. [Online]. Available:

https://digitalcommons.georgiasouthern.edu/etd

[64] U. O. Obonna et al., “Detection of Man-in-the-Middle (MitM) Cyber-Attacks in Oil and Gas

Process Control Networks Using Machine Learning Algorithms,” Future Internet, vol. 15, no. 8,

Aug. 2023, doi: 10.3390/fi15080280.

[65] E. Blancaflor, R. Ambayon, E. S. Gran, D. D. Medallo, and R. J. Ramirez, “Exploitation

Simulation of DNS Spoofing and Ransomware In a Virtualized Android Device,” in ACM

International Conference Proceeding Series, Association for Computing Machinery, Mar. 2023,

pp. 213–219. doi: 10.1145/3592307.3592341.

[66] F. Mvah, V. Kengne Tchendji, C. Tayou Djamegni, A. H. Anwar, D. K. Tosh, and C. Kamhoua,

“GaTeBaSep: game theory-based security protocol against ARP spoofing attacks in software-

defined networks,” Int J Inf Secur, 2023, doi: 10.1007/s10207-023-00749-0.

[67] A. A. Habib, M. K. Hasan, A. Alkhayyat, S. Islam, R. Sharma, and L. M. Alkwai, “False data

injection attack in smart grid cyber physical system: Issues, challenges, and future direction,”

Computers and Electrical Engineering, vol. 107, Apr. 2023, doi:

10.1016/j.compeleceng.2023.108638.

P a g e 90 | 100

[68] J. Kaur, U. Garg, and G. Bathla, “Detection of cross-site scripting (XSS) attacks using machine

learning techniques: a review,” Artif Intell Rev, vol. 56, no. 11, pp. 12725–12769, Nov. 2023,

doi: 10.1007/s10462-023-10433-3.

[69] R. Pedro, D. Castro, P. Carreira, and N. Santos, “From Prompt Injections to SQL Injection

Attacks: How Protected is Your LLM-Integrated Web Application?,” Aug. 2023, [Online].

Available: http://arxiv.org/abs/2308.01990

[70] R. Al-Khannak and S. S. Nehal, “Penetration Testing for the Cloud-Based Web Application,”

WSEAS TRANSACTIONS ON COMPUTERS, vol. 22, pp. 104–113, Aug. 2023, doi:

10.37394/23205.2023.22.13.

[71] A. Amira, A. Derhab, E. B. Karbab, and O. Nouali, “A Survey of Malware Analysis Using

Community Detection Algorithms,” ACM Comput Surv, vol. 56, no. 2, Sep. 2023, doi:

10.1145/3610223.

[72] N. Kandpal, M. Jagielski, F. Tramèr, and N. Carlini, “Backdoor Attacks for In-Context Learning

with Language Models,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.14692

[73] I. Alkhwaja et al., “Password Cracking with Brute Force Algorithm and Dictionary Attack Using

Parallel Programming,” Applied Sciences (Switzerland), vol. 13, no. 10, May 2023, doi:

10.3390/app13105979.

[74] C. Dameff et al., “Ransomware Attack Associated With Disruptions at Adjacent Emergency

Departments in the US,” JAMA Netw Open, vol. 6, no. 5, p. e2312270, May 2023, doi:

10.1001/jamanetworkopen.2023.12270.

[75] A. Subasi, Practical Machine Learning for Data Analysis Using Python. Elsevier, 2020. doi:

10.1016/B978-0-12-821379-7.00008-4.

[76] D. Alexander TEDJOPUMOMO et al., “A survey on modern deep neural network for traffic

prediction: A survey on modern deep neural network for traffic prediction: Trends, methods

and challenges Trends, methods and challenges Citation Citation A survey on modern deep

neural network for traffic prediction: Trends, methods and challenges A Survey on Modern

Deep Neural Network for Traffic Prediction: Trends, Methods and Challenges,” 2022. [Online].

Available: https://ink.library.smu.edu.sg/sis_research/5995

[77] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and

future,” Multimed Tools Appl, vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-

020-10139-6.

[78] M. Alam, M. D. Samad, L. Vidyaratne, A. Glandon, and K. M. Iftekharuddin, “Survey on Deep

Neural Networks in Speech and Vision Systems,” Neurocomputing, vol. 417, pp. 302–321, Dec.

2020, doi: 10.1016/j.neucom.2020.07.053.

[79] S. M. Kasongo, “A deep learning technique for intrusion detection system using a Recurrent

Neural Networks based framework,” Comput Commun, vol. 199, pp. 113–125, Feb. 2023, doi:

10.1016/j.comcom.2022.12.010.

[80] X. Xiang and S. Foo, “Recent Advances in Deep Reinforcement Learning Applications for

Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—

Fundamentals and Applications in Games, Robotics and Natural Language Processing,” Sep.

01, 2021, MDPI. doi: 10.3390/make3030029.

P a g e 91 | 100

[81] S. Dalal et al., “Extremely boosted neural network for more accurate multi-stage Cyber attack

prediction in cloud computing environment,” Journal of Cloud Computing, vol. 12, no. 1, Dec.

2023, doi: 10.1186/s13677-022-00356-9.

[82] M. Aljabri et al., “Intelligent techniques for detecting network attacks: Review and research

directions,” Nov. 01, 2021, MDPI. doi: 10.3390/s21217070.

[83] Mitsuo Gen and Lin Lin, “Genetic Algorithms and Their Applications,” 2023.

[84] M. Mosayebi and M. Sodhi, “Tuning genetic algorithm parameters using design of

experiments,” in GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary

Computation Conference Companion, Association for Computing Machinery, Inc, Jul. 2020, pp.

1937–1944. doi: 10.1145/3377929.3398136.

[85] M. Greenacre et al., “Economics Working Paper Series Principal component analysis Principal

Component Analysis,” 2023.

[86] F. L. Gewers et al., “Principal Component Analysis: A Natural Approach to Data Exploration,”

Apr. 2018, doi: 10.1145/3447755.

[87] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A Comprehensive Review of

Dimensionality Reduction Techniques for Feature Selection and Feature Extraction,” Journal of

Applied Science and Technology Trends, vol. 1, no. 1, pp. 56–70, May 2020, doi:

10.38094/jastt1224.

[88] C. Giannelli and M. Picone, “Editorial ‘Industrial IoT as IT and OT Convergence: Challenges and

Opportunities,’” Mar. 01, 2022, MDPI. doi: 10.3390/iot3010014.

[89] F. E. Botchey, Z. Qin, K. Hughes-Lartey, and K. E. Ampomah, “Predicting Fraud in Mobile

Money Transactions using Machine Learning: The Effects of Sampling Techniques on the

Imbalanced Dataset,” Informatica (Slovenia), vol. 45, no. 7, pp. 45–56, 2021, doi:

10.31449/inf.v45i7.3179.

[90] M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K. Sadatdiynov, “A survey of data

partitioning and sampling methods to support big data analysis,” Jun. 01, 2020, Tsinghua

University Press. doi: 10.26599/BDMA.2019.9020015.

[91] G. T. Reddy et al., “Analysis of Dimensionality Reduction Techniques on Big Data,” IEEE Access,

vol. 8, pp. 54776–54788, 2020, doi: 10.1109/ACCESS.2020.2980942.

[92] W. Jia, M. Sun, J. Lian, and S. Hou, “Feature dimensionality reduction: a review,” Complex and

Intelligent Systems, vol. 8, no. 3, pp. 2663–2693, Jun. 2022, doi: 10.1007/s40747-021-00637-x.

[93] B. M. S. Hasan and A. M. Abdulazeez, “A Review of Principal Component Analysis Algorithm

for Dimensionality Reduction,” Journal of Soft Computing and Data Mining, vol. 2, no. 1, pp.

20–30, Apr. 2021, doi: 10.30880/jscdm.2021.02.01.003.

[94] J. Bharadiya and J. P. Bharadiya, “A Tutorial on Principal Component Analysis for

Dimensionality Reduction in Machine Learning,” Article in International Journal of Innovative

Research in Science Engineering and Technology, vol. 8, no. 5, 2023, doi:

10.5281/zenodo.8002436.

[95] V. S. Konduri, T. J. Vandal, S. Ganguly, and A. R. Ganguly, “Data Science for Weather Impacts on

Crop Yield,” Front Sustain Food Syst, vol. 4, May 2020, doi: 10.3389/fsufs.2020.00052.

P a g e 92 | 100

[96] baeldung and Michal Aibin, “How Many Principal Components to Take in PCA?,”

https://www.baeldung.com/cs/pca.

[97] C. Richter, K. Mcguinness, L. Gualano, N. E. O’connor, and K. Moran, “Identification of an

optimal principal components analysis threshold to describe jump height accurately using

vertical ground reaction forces.”

[98] M. G. M. Abdolrasol et al., “Artificial neural networks based optimization techniques: A

review,” Nov. 01, 2021, MDPI. doi: 10.3390/electronics10212689.

[99] C. Ciancio, G. Ambrogio, F. Gagliardi, and R. Musmanno, “Heuristic techniques to optimize

neural network architecture in manufacturing applications,” Neural Comput Appl, vol. 27, no.

7, pp. 2001–2015, Oct. 2016, doi: 10.1007/s00521-015-1994-9.

[100] M. Abd Elaziz et al., “Advanced metaheuristic optimization techniques in applications of deep

neural networks: a review,” Nov. 01, 2021, Springer Science and Business Media Deutschland

GmbH. doi: 10.1007/s00521-021-05960-5.

[101] P. Ferber, M. Helmert, and J. Hoffmann, “Neural network heuristics for classical planning: A

study of hyperparameter space,” in Frontiers in Artificial Intelligence and Applications, IOS

Press BV, Aug. 2020, pp. 2346–2353. doi: 10.3233/FAIA200364.

[102] Y. Zhou, T. Pang, K. Liu, C. H. Martin, M. W. Mahoney, and Y. Yang, “Temperature Balancing,

Layer-wise Weight Analysis, and Neural Network Training.”

[103] D. Singh Kalra and M. Barkeshli, “Phase diagram of early training dynamics in deep networks:

effect of the learning rate, depth, and width.”

[104] X. Yuan, P. Savarese, and M. Maire, “Accelerated Training via Incrementally Growing Neural

Networks using Variance Transfer and Learning Rate Adaptation.”

[105] Olympia Roeva, Stefka Fidanova, and Marcin Paprzycki, Influence of the Population Size on the

Genetic Algorithm Performance in Case of Cultivation Process Modelling.

[106] D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two SVM models through different

metrics based on the confusion matrix,” Comput Oper Res, vol. 152, Apr. 2023, doi:

10.1016/j.cor.2022.106131.

[107] D. Fourure, M. U. Javaid, N. Posocco, and S. Tihon, “Anomaly Detection: How to Artificially

Increase your F1-Score with a Biased Evaluation Protocol,” Jun. 2021, [Online]. Available:

http://arxiv.org/abs/2106.16020

[108] M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access,

vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.

[109] F. S. Nahm, “Receiver operating characteristic curve: overview and practical use for clinicians,”

Korean J Anesthesiol, vol. 75, no. 1, pp. 25–36, Feb. 2022, doi: 10.4097/kja.21209.

[110] P. Qiu, Z. Xia, and L. You, “Process Monitoring ROC Curve for Evaluating Dynamic Screening

Methods,” Technometrics, vol. 62, no. 2, pp. 236–248, Apr. 2020, doi:

10.1080/00401706.2019.1604434.

P a g e 93 | 100

8- Appendices

Appendix A: PCA Detailed Results

Table 16: PCA Detailed Results Part 1

Original Features PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 PCA 6 PCA 7

frame.time 0.09349 -

0.601528

0.455655 -

0.001028

0.283592 -0.14476 0.205268

ip.src_host -

0.288125

-

0.054439

0.631606 -

0.086858

-

0.090714

0.159032 -

0.392949

ip.dst_host -

0.082474

0.024128 0.070564 -0.03284 -

0.023545

-0.05489 0.678382

arp.dst.proto_ipv4 -

0.001874

0.001061 -

0.000654

0.000566 -

0.000381

-

0.001127

0.002499

arp.opcode -

0.000009

0.000009 -

0.000007

0.000003 -

0.000007

-

0.000002

0.000005

arp.hw.size -

0.000022

0.00002 -

0.000016

0.000006 -

0.000015

-

0.000005

0.000014

arp.src.proto_ipv4 -

0.000004

0.000006 -

0.000003

0 -

0.000004

0 0.000003

icmp.checksum -

0.113223

-

0.031427

0.256162 -

0.034927

0.027714 0.048614 0.055483

icmp.seq_le -0.13159 -

0.025707

0.277205 -

0.031764

0.009458 0.060086 0.094638

icmp.transmit_timestam

p

-

0.000004

0.000005 -

0.000005

0.000001 -

0.000005

0.000001 -

0.000002

icmp.unused 0 0 0 0 0 0 0

http.file_data 0.104203 0.0336 0.060824 0.220581 -0.01252 0.120201 0.023399

http.content_length 0.043852 0.014057 0.026088 0.092417 -

0.005064

0.048026 0.010308

http.request.uri.query 0.023285 0.004299 0.008177 0.059065 -

0.009384

0.052921 -0.01636

P a g e 94 | 100

http.request.method 0.01507 0.003428 0.005103 0.032774 0.00079 0.047502 -

0.000347

http.referer 0.004761 0.000251 0.002669 0.007421 0.004095 0.016301 0.003933

http.request.full_uri 0.068738 0.010394 0.027384 0.152034 -

0.007108

0.165348 -

0.020031

http.request.version 0.013011 0.003785 0.002441 0.030275 -

0.003162

0.043865 -

0.004453

http.response 0.000004 0.000003 0.000003 0.000008 -

0.000001

0.000003 0.000004

http.tls_port 0 0 0 0 0 0 0

tcp.ack 0.213616 0.064719 0.109048 0.065568 -

0.135692

-

0.689572

-

0.336201

tcp.ack_raw 0.59776 -

0.071656

0.111988 -

0.321375

-

0.021057

-

0.144321

0.109771

tcp.checksum 0.293137 0.011654 -

0.005474

-

0.236578

0.081432 0.066374 -

0.122318

tcp.connection.fin 0.000002 0 -

0.000001

-

0.000004

0.000002 0 -

0.000001

tcp.connection.rst -

0.000002

0.000003 -

0.000004

-

0.000013

-

0.000003

-

0.000001

0.000016

tcp.connection.syn -

0.000002

0.000003 -

0.000005

-

0.000004

-

0.000004

0 -

0.000026

tcp.connection.synack 0.000001 0.000001 -

0.000001

-

0.000002

0.000006 0.000003 0

tcp.dstport 0.172817 -

0.047558

-

0.042703

-

0.386209

0.008966 0.075748 0.172139

tcp.flags 0.008303 -

0.002146

-0.00729 -

0.016343

0.00206 0.009481 -

0.003584

tcp.flags.ack 0.000025 0.000016 -

0.000007

-

0.000009

0.000002 0.000004 0.000016

P a g e 95 | 100

tcp.len 0.094585 0.007401 0.05058 0.127448 -

0.145505

0.039899 0.05854

tcp.options 0.330313 0.173074 0.060394 0.339346 0.717661 0.241244 -

0.113692

tcp.payload 0.344172 -

0.020949

0.176447 0.395522 -

0.512367

0.326837 0.106963

tcp.seq 0.222637 0.031478 0.122895 0.317885 -

0.190451

-

0.195169

0.004575

tcp.srcport 0.105532 -

0.638266

-0.32863 -

0.092994

-

0.125443

0.290122 -

0.314327

udp.port -0.00025 -

0.000091

0.000027 0.000274 0.000183 -

0.000496

0.000816

udp.stream -

0.182301

-

0.422287

-

0.230841

0.435289 0.094477 -

0.281133

0.112511

udp.time_delta -

0.000107

-

0.000049

0.000041 0.000128 0.000058 -

0.000188

0.000256

dns.qry.name -

0.035222

0.015753 0.024667 0.01062 -

0.038972

0.011113 0.100545

dns.qry.name.len -

0.000463

-

0.000162

0.00006 0.000491 0.000317 -

0.000892

0.001578

dns.qry.qu -

0.000002

0.000003 -

0.000003

0.000001 -

0.000003

0.000001 -

0.000001

dns.qry.type 0 0 0 0 0 0 0

dns.retransmission -

0.000052

-

0.000019

0.000007 0.000058 0.000034 -

0.000101

0.000187

dns.retransmit_request 0 0 0 0 0 0 0

dns.retransmit_request_i

n

0 0 0 0 0 0 0

mqtt.conack.flags 0.018089 -

0.022203

0.000869 -

0.020945

-

0.051353

0.056426 0.022254

P a g e 96 | 100

mqtt.conflag.cleansess 0.000001 -

0.000001

0 -

0.000001

-

0.000002

0.000002 0.000002

mqtt.conflags 0.000025 -

0.000025

0.000005 -0.00003 -0.00007 0.00007 0.000054

mqtt.hdrflags 0.008721 -

0.008515

0.001879 -0.01024 -

0.028157

0.024738 0.019568

mqtt.len 0.00755 -

0.007255

0.001718 -

0.009033

-

0.024955

0.021957 0.017999

mqtt.msg_decoded_as 0 0 0 0 0 0 0

mqtt.msg 0.02363 -

0.022686

0.005413 -

0.028198

-

0.078087

0.068688 0.056356

mqtt.msgtype 0.022038 -

0.021158

0.004874 -

0.024225

-

0.068421

0.055407 0.045045

mqtt.proto_len 0.002182 -

0.002159

0.000429 -

0.002619

-

0.006031

0.006016 0.004672

mqtt.protoname 0.01801 -

0.017823

0.003538 -

0.021619

-

0.049783

0.049662 0.038566

mqtt.topic 0.022327 -

0.021433

0.005094 -

0.026716

-

0.073829

0.06491 0.053311

mqtt.topic_len 0.000139 -

0.000133

0.000032 -

0.000166

-

0.000458

0.000403 0.000331

mqtt.ver 0.002182 -

0.002159

0.000429 -

0.002619

-

0.006031

0.006016 0.004672

mbtcp.len 0 0 0 0 0 0 0

mbtcp.trans_id 0 0 0 0 0 0 0

mbtcp.unit_id 0 0 0 0 0 0 0

Table 17: PCA Detailed Results Part 2

Original Features PCA 8 PCA 9 PCA 10 PCA 11 PCA 12 PCA 13 PCA 14

P a g e 97 | 100

frame.time -

0.109273

0.229408 0.123213 -

0.240094

-

0.023835

0.073326 -

0.053409

ip.src_host 0.076235 -

0.184497

-

0.011344

0.364831 0.061332 -

0.138153

0.018703

ip.dst_host 0.400821 -0.34236 -

0.264281

-

0.049395

-

0.116473

0.013169 -

0.081112

arp.dst.proto_ipv4 -

0.005071

0.006483 0.001857 -

0.008145

0.001102 0.005309 -

0.001566

arp.opcode -0.00002 0.00002 0.000003 -

0.000024

0.000007 0.000019 -

0.000002

arp.hw.size -

0.000047

0.000051 0.000009 -

0.000061

0.000015 0.000047 -

0.000006

arp.src.proto_ipv4 -

0.000012

0.000013 0.000001 -

0.000017

0.000003 0.000012 -

0.000002

icmp.checksum 0.008603 0.054267 -

0.045558

-

0.272831

-

0.066584

0.105469 -

0.039509

icmp.seq_le 0.1188 -

0.101931

-

0.113177

-

0.034367

-

0.062691

-

0.044798

0.136446

icmp.transmit_timestam

p

-

0.000005

0.000002 -

0.000002

-

0.000002

0.000003 0.000004 0.000002

icmp.unused 0 0 0 0 0 0 0

http.file_data 0.00495 -

0.280372

0.264995 -

0.275423

0.288071 -

0.185544

0.172085

http.content_length 0.00158 -

0.116725

0.112409 -

0.114126

0.117077 -0.08057 0.068622

http.request.uri.query 0.023404 -

0.107005

0.034082 -

0.132078

0.158583 -

0.011031

0.181516

http.request.method 0.006406 -

0.051755

0.022752 -

0.045184

0.088927 0.051203 0.045132

P a g e 98 | 100

http.referer -

0.001457

-

0.010272

0.006055 -

0.000464

0.024928 0.036019 -

0.005095

http.request.full_uri 0.045153 -

0.236556

0.083239 -

0.244879

0.360183 0.104704 0.278258

http.request.version 0.009066 -

0.048993

0.019052 -

0.047565

0.075264 0.03485 0.046818

http.response -

0.000003

-

0.000007

0.000016 -

0.000003

0 -

0.000012

-0.00001

http.tls_port 0 0 0 0 0 0 0

tcp.ack 0.098291 -

0.397597

0.079901 -

0.211068

-

0.296719

0.048602 -0.09157

tcp.ack_raw -

0.219153

-0.13584 -

0.204825

0.349052 0.392331 0.21774 0.069759

tcp.checksum 0.777338 0.283389 0.369753 0.054505 0.049362 0.040698 0.005676

tcp.connection.fin -

0.000002

0.000004 -

0.000007

0.000004 0.000001 -

0.000004

0.000007

tcp.connection.rst 0.000003 0.000011 0.000011 -

0.000007

0.000015 -

0.000011

0.000006

tcp.connection.syn 0.000015 -

0.000013

-

0.000001

-

0.000013

-

0.000026

0.000009 -

0.000024

tcp.connection.synack -

0.000002

0 -

0.000002

0.000005 0.000001 0.000001 0

tcp.dstport -

0.230159

-

0.138883

0.338588 0.004613 -0.23012 -

0.681746

0.031493

tcp.flags 0.002173 0.023895 -

0.015039

-

0.015478

-

0.014479

-

0.033947

0.015258

tcp.flags.ack -

0.000021

0.000008 -

0.000007

0.000021 0.000028 -

0.000003

0.000022

tcp.len -

0.026685

-

0.005948

0.125702 -

0.043789

-

0.049018

-

0.024778

-

0.003766

P a g e 99 | 100

tcp.options -

0.006796

-

0.157035

-

0.137815

0.122953 -0.28625 -

0.035903

-0.06644

tcp.payload -

0.040479

0.026679 0.147335 0.092879 -

0.175037

0.086282 -

0.352517

tcp.seq 0.109158 0.438959 -

0.421555

-

0.008274

0.003534 -

0.452967

0.347136

tcp.srcport 0.152748 -

0.228311

-

0.364096

-

0.151222

-

0.138899

-

0.059618

0.006058

udp.port -

0.000442

0.000691 0.000674 -0.00005 0.000346 0.000297 -0.00005

udp.stream 0.057621 -

0.066082

0.301447 0.458536 0.129013 -0.06168 0.034845

udp.time_delta -

0.000053

0.000071 0.000271 0.000453 0.000207 -

0.000096

0.000076

dns.qry.name 0.191771 -

0.257797

-

0.108752

0.326803 0.003793 -

0.150704

0.062791

dns.qry.name.len -

0.000633

0.001009 0.001092 0.0003 0.000622 0.000285 0.000057

dns.qry.qu -

0.000003

0.000001 -

0.000001

-

0.000001

0.000002 0.000002 0.000001

dns.qry.type 0 0 0 0 0 0 0

dns.retransmission -0.00004 0.000068 0.000109 0.000114 0.000074 -

0.000011

0.000031

dns.retransmit_request 0 0 0 0 0 0 0

dns.retransmit_request_i

n

0 0 0 0 0 0 0

mqtt.conack.flags -

0.021611

0.001259 0.002128 0.022537 0.015765 0.046684 -0.26659

mqtt.conflag.cleansess -

0.000002

0 0.000002 0.000001 0 -

0.000001

-

0.000013

P a g e 100 | 100

mqtt.conflags -0.00005 0.000009 0.000061 0.00004 0.000008 -

0.000018

-

0.000356

mqtt.hdrflags -

0.021041

-

0.001797

0.038833 0.031782 -

0.101564

0.076454 0.12008

mqtt.len -

0.019568

-0.00244 0.038392 0.030326 -

0.100925

0.076053 0.129955

mqtt.msg_decoded_as 0 0 0 0 0 0 0

mqtt.msg -

0.061177

-

0.007619

0.120421 0.095074 -

0.316696

0.238572 0.40862

mqtt.msgtype -

0.047563

0.001861 0.079412 0.069748 -

0.220558

0.146162 0.259025

mqtt.proto_len -

0.004333

0.000792 0.005238 0.003458 0.000658 -0.00158 -

0.030702

mqtt.protoname -

0.035768

0.006541 0.043233 0.028545 0.005427 -

0.013046

-

0.253433

mqtt.topic -

0.057968

-

0.007247

0.113908 0.089889 -0.29956 0.225492 0.386809

mqtt.topic_len -0.00036 -

0.000045

0.000707 0.000558 -0.00186 0.0014 0.002402

mqtt.ver -

0.004333

0.000792 0.005238 0.003458 0.000658 -0.00158 -

0.030702

mbtcp.len 0 0 0 0 0 0 0

mbtcp.trans_id 0 0 0 0 0 0 0

mbtcp.unit_id 0 0 0 0 0 0 0

	Optimizing Neural Networks for IIoT Attack Detection
	Recommended Citation

	tmp.1730293837.pdf.6HUhH

