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Abstract 

 

Freeform optics enables enhanced system performance and packaging due to the high degrees of 

design freedom they provide, but characterizing these optics remains challenging. Phase 

measurement of an optical wave is essential in the metrology of optical components, adaptive 

optics, and laser beam quality assessment.  The Shack-Hartman Wavefront Sensors are limited by 

their dynamic range and resolution due to lenslet operation. Interferometric-method-based 

adaptive nulling requires high-performance wavefront sensor, and coordinate-scanning-based 

measurements are time consuming. We investigate and develop an Optical Differentiation 

Wavefront Sensor (ODWS) based on binary pixelated filter that enables high dynamic range, high 

resolution freeform metrology. Analysis of experimental results and comparison with commercial 

metrology show that phase plates with different magnitude of wavefront slopes can be accurately 

characterized. We created an ODWS design that reduced the footprint by five times compared to 

typical 4𝑓 arrangement for the same effective focal length. We further investigated the system 

alignment tolerance. We report on the theoretical and experimental demonstration of an ODWS 

based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and 

tested a convolutional neural network that reconstructs spatial phase map from nonlinear filter 

based ODWS images where an analytic solution is not available.  It shows accurate retrieval 

(~0.05λ root mean square error) over different magnitude of wavefronts and on random shaped 

wavefronts. This work paves the way for realizing simultaneous sensitive, high dynamic range and 

high-resolution wavefront sensing. 
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Chapter 1 Introduction 

1.1 Overview of metrology techniques 

Wavefront measurement is one of the key requirements in many areas of optics and, with 

applications such as metrology, astronomy, and laser engineering. The wavefront of an optical 

field is defined as the locus of points having the same phase. In metrology, the form of an optical 

component can be characterized by measuring the wavefront change it induces. Wavefront 

measurements in optical engineering allow for better fabrication and integration of optical 

components, and improvements in metrology are generally required to permit improvements in 

fabrication. This is particularly true for freeform optical components which simultaneously require 

high dynamic range and high-resolution measurements.  

Freeform components are based on optical surfaces that have no rotational or translational 

symmetry which allows mitigating aberrations and compact packaging. Freeform optical 

components enable compact and high-performance imaging systems [1–3]. It finds applications in 

fields such as wide field-of-view telescopes, augmented and virtual reality, illumination, and 

medical technologies. Figure 1.1(a) shows a long wave infrared (LWIR) imaging system design 

with 3 freeform mirrors and from Fig. 1.1(b), it can achieve diffraction limited performance (0.01λ 

RMS wavefront error) over 10° field of view [4]. The manufacturing quality of freeform optics 

depends on the capabilities of the available metrology tools, but characterizing these optics 

remains challenging [5,6]. 
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Figure 1.1 (a) Layout of an LWIR imaging system optimized with freeform surfaces and (b) the RMS wavefront 

error of the optimized system. Figure credit [4]. 

There are a multitude of techniques to obtain quantitative phase information [7]. 

Interferometry converts phase information into a fluence modulation that can be measured with a 

square-law photodetector. Interferometers that use a reference wave, e.g., Fizeau interferometers, 

are the workhorses of optical testing, but they are typically limited to operation close to null testing 

and weak aspheres. Typical interferometric nulling components such as computer-generated 

holograms are part-specific, alignment sensitive, and expensive. Adaptive interferometric null test 

using deformable mirror and Spatial Light Modulator (SLM) have been reported for freeform 

metrology [8,9]. Figure 1.2 shows the layout of a SLM based null test where the SLM serves as 

the adaptive nulling component to measure the freeform Surface Under Test (SUT) 

interferometrically [9]. Here the nulling wavefront generated by the SLM still needs to be precisely 

characterized with a high-performance wavefront sensor.  
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Figure 1.2 Schematic of a null test. The SLM serves as adaptive nulling component to measure the surface under test 

interferometrically. Figure credit [9]. 

Shack-Hartmann wavefront sensors (SHWS) measure the wavefront slopes obtained by 

determining the centroid displacement of far-field spots generated by an array of microlenses. 

Figure 1.3 illustrates this principle. The integration of the slopes produces the wavefront map. 

 

Figure 1.3 A Schematic showing the principle of SHWS. The shifts in the positions of the focused spots from each 

lens array determine the local wavefront tilts. Figure credit [10]. 

The inability to correctly identify the spots generated by the different microlenses limits 

the dynamic range of SHWS when these spots are significantly displaced by high wavefront slopes 

[11]. Dynamic range extension of SHWS based on the use of liquid crystals to switch the lenslets 

on and off has the disadvantages of light absorption, scattering and potential calibration issues 

[12,13]. A holographic SHWS that uses cross-correlation peak-displacement detection requires 

high-processing power and long processing time [14]. Sorting and phase unwrapping-based SHWS 
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methods are limited by maximum wavefront curvature [15,16], although not by the wavefront 

slope. Subaperture wavefront stitching with SHWS has been investigated to overcome the dynamic 

range issue [17, 18]. Other emerging techniques applied to freeform optical components include 

tilted wave interferometry [19] and low-coherence interferometry [20-22]. Although deflectometry 

can characterize complex shapes, it is prone to calibration errors [23, 24]. Optical profilometers 

based on the point-cloud method can measure large size optics with high slopes [25], but the 

measurement time increases with resolution and size of the optics. There is still significant gain in 

exploring and demonstrating new wavefront-sensing technologies because of the increasing role 

of freeform optics and the associated metrology challenges. 

1.2 Motivation and Outline of the Dissertation 

This project develops an alternative wavefront sensing methodology known as the Optical 

Differentiation Wavefront Sensor (ODWS). Sprague and Thompson showed that a large variation 

phase object can be visualized in an image having an irradiance that is directly proportional to the 

object phase [26]. Bortz pioneered the general implementation of an ODWS based on a rotating 

amplitude filter in a coherent processing setup [27]. In ODWS, the far-field of the test wave is 

modulated by an amplitude filter, and the resulting near-field fluence distribution is processed to 

yield the wavefront gradient in one direction. Two gradients in non-parallel directions, with 

orthogonal directions being a natural choice, are used to reconstruct the wavefront of the test wave 

[27-29]. The ODWS is potentially advantageous, in particular, in terms of adjustable high dynamic 

range, resolution, signal-to-noise ratio and achromaticity [28,29]. ODWS demonstrations in the 

literature based on different implementations of the amplitude filter mostly present simulations or 

the qualitative detection of phase variations [27-33]. 
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 Prior work synergistic with this project which was contributed by our team includes: 

creating and validating a 4𝑓-ODWS model, designing, and fabricating the amplitude filter, 

defining and evaluating parameters on ODWS performance, and measuring a rotationally 

symmetric lens [34]. 

 Chapter 2 presents the theory of the ODWS principle and the wavefront reconstruction. 

The design of the amplitude filter based on binary pixelation is described and the impact of the 

pixel sizes are considered. The ODWS dynamic range and sensitivity are qualitatively discussed. 

Prior results on impact of focal length and pupil size are summarized. Chapter 3 presents the 

ODWS experimental setup, design baseline, and performance evaluation in freeform optics 

measurements for the first time to our knowledge. The effect of photodetection noise and non-ideal 

filter transmission profiles are studied. Chapter 4 details analytical derivation of a novel 

implementation of ODWS using telephoto lens for footprint reduction. Experimental results are 

presented, and alignment tolerance is investigated for instrumentation. Chapter 5 explores a 

Convolutional Neural Network (CNN) to reconstruct wavefronts from ODWS fluence 

measurements obtained with nonlinear filter transmission, potentially providing simultaneous high 

dynamic range and sensitivity. Simulation and experimental methods, and respective CNN 

training, testing results are presented. Chapter 6 presents simulation of a basic wavefront stitching 

algorithm. Finally, Chapter 7 summarizes our conclusion.
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Chapter 2 Concept of Optical Differentiation Wavefront Sensor and Prior Work 

2.1 ODWS concept and equation using 4f system 

The concept of optical differentiation is based upon the idea that the first derivative of a function 

is obtained when its Fourier transform is multiplied by a linear function and an inverse Fourier 

transform of the product is taken. It is expressed as follows: 

𝜕𝑢(𝑥,𝑦)

𝜕(𝑥)
= ∬ 𝑗2𝜋𝜉𝑈(𝜉, 𝜂)𝑒𝑗2𝜋(𝑥𝜉+𝑦𝜂) 𝑑𝜉𝑑𝜂,

∞

−∞
        (2.1) 

where 𝑢(𝑥, 𝑦) and 𝑈(𝜉, 𝜂) are Fourier transform pairs. For determination of the optical phase 

φ(x,y) in the near field, the ODWS relies on amplitude modulation in the far field of the optical 

wave under test, for example with a 4f optical system (Fig. 2.1). 

 

Figure 2.1 Principle of an ODWS, based on a 4f optical system. 

Let 𝑢1(𝑥1,  𝑦1) represent the field of the test object at the input plane. This field is Fourier 

transformed by the first lens to the far-field as 

 𝑢2(𝑥2, 𝑦2) =
1

𝑗λ𝑓
𝑈1(ξ, η) =

1

𝑗λ𝑓
∬ 𝑢1(𝑥1, 𝑦1)𝑒

{𝑗
π

λ𝑓
[−2(𝑥1𝑥2+𝑦1𝑦2)]}

 𝑑𝑥1𝑑𝑦1
∞

−∞
, (2.2) 

where (ξ,η) are the spatial frequencies defined as ξ =
𝑥2

λ𝐵
 𝑎𝑛𝑑 η =

𝑦2

λ𝐵
. 𝑈1(ξ, η) is the Fourier 

transform of input field. Note that the far-field filters can be linear or nonlinear. For the nonlinear 

filter, there is no closed form solution to retrieve the wavefront, and the deep learning based 
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solution is described in Chapter 5. We hereby describe the derivation for analytical solution for 

the former. The far-field is modulated by an amplitude of linear amplitude transmission (Eq. 2.3),  

𝑡 =
𝑥2

𝑊
+

1

2
,              (2.3) 

W is the width of the filter. The second lens performs another Fourier transform of the modulated 

far-field to the detector plane, where the field can be written as: 

𝑢3(𝑥3, 𝑦3) =
1

(𝑗𝜆𝑓)
∬ (

𝑥2

𝑊
+

1

2
)

1

𝑗λ𝑓
𝑈1(𝜉, 𝜂)𝑒

{𝑗
𝜋

𝜆𝑓
[−2(𝑥2𝑥3+𝑦2𝑦3)]}

 𝑑𝑥2𝑑𝑦2
∞

−∞
,  (2.4) 

where the limits of the integration to ∞ is valid as long as the far-field 𝑈1(𝜉, 𝜂) is contained within 

the filter width. Now using the differentiation property of Eq. (2.1), we can write Eq. (2.4) as: 

𝑢3(𝑥3, 𝑦3) =
𝑗𝜆𝑓

2𝜋𝑊
[

𝜕𝑢1(−𝑥3,−𝑦3)

𝜕(−𝑥3)
−

1

2
𝑢1(−𝑥3, −𝑦3)]   (2.5) 

Now writing the input field in terms of its amplitude and phase as 

𝑢1(𝑥1, 𝑦1) = 𝐴(𝑥1, 𝑦1)𝑒𝑗𝜑(𝑥1,𝑦1),    (2.6) 

Eq. (2.5) can be written as, 

𝑢3(𝑥3, 𝑦3) = 𝑒𝑗𝜑(−𝑥3,−𝑦3) [
𝑗𝜆𝑓

2𝜋𝑊
(

𝜕𝐴(−𝑥3,−𝑦3)

𝜕(−𝑥3)
+ 𝑗

𝜕𝜑(−𝑥3,−𝑦3)

𝜕(−𝑥3)
𝐴(−𝑥3, −𝑦3)) −

1

2
𝐴(−𝑥3, −𝑦3)](2.7) 

We define fluence as the optical energy delivered per unit area on the detector and obtained as the 

time integrated value of the optical intensity. The fluences are obtained by normalizing the 

measured intensity using the respective integration or exposure times (order of few milli-seconds) 

for different filter orientations. The detection fluence is then,  

𝐹𝑥(𝑥3, 𝑦3) = 𝑢3𝑢3
∗ =

𝜆2𝑓2

4𝜋2𝑊2 𝐴2(−𝑥3, −𝑦3) (
𝜕𝜑(−𝑥3,−𝑦3)

𝜕(−𝑥3)
)

2

+
𝜆𝑓

2𝜋𝑊
𝐴2(−𝑥3, −𝑦3)

𝜕𝜑(−𝑥3,−𝑦3)

𝜕(−𝑥3)
+

𝜆2𝑓2

4𝜋2𝑊2 (
𝜕𝐴(−𝑥3,−𝑦3)

𝜕(−𝑥3)
)

2

+
1

4
𝐴2(−𝑥3, −𝑦3)                                                   (2.8) 

 If there was no far-field amplitude modulation, i.e., 𝑡 = 1 in Eq. (2.3), then the 

corresponding fluence will be: 
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𝐹0(𝑥3, 𝑦3) = 𝐴2(−𝑥3, −𝑦3)           (2.9) 

Now we make an approximation that the input field amplitude is constant i.e., 𝐴(𝑥1, 𝑦1) ≈ 𝐴0 and 

that 
𝜕𝐴(𝑥1,𝑦1)

𝜕(𝑥1)
= 0. Using this approximation and Eq. (2.9) in Eq. (2.8), we obtain: 

𝐹𝑥(𝑥3,𝑦3)

𝐹0(𝑥3,𝑦3)
= [

𝜆𝑓

2𝜋𝑊

𝜕𝜑(−𝑥3,−𝑦3)

𝜕(−𝑥3)
+

1

2
]

2

,    (2.10) 

From Eq. (2.10), the wavefront gradient along 𝑥-direction is thus, 

𝜕𝜑(−𝑥3,−𝑦3)

𝜕(−𝑥3)
=

𝜋𝑊

𝜆𝑓
(2√

𝐹𝑥

𝐹0
− 1)       (2.11) 

The negative sign in coordinates simply means the spatial inversion of the field with respect 

to that at the input. The orthogonal phase slope is obtained after 90-degree rotation of the same 

filter to induce a transmission gradient oriented along y-direction, leading to the fluence 

distribution Fy and the slope, 

  
𝜕𝜑(−𝑥3,−𝑦3)

𝜕(−𝑦3)
=

𝜋𝑊

𝜆𝑓
(2√

𝐹𝑦

𝐹0
− 1)                      (2.12)  

Reconstruction of the phase 𝜑 from the phase gradients given by Eqs. (2.11) and (2.12) is 

equivalent to reconstructing the phase from SHWS data. The ODWS is advantageous because 

slope data are available at every pixel of the detected experimental trace, while slope data are 

intrinsically averaged over each lenslet in a SHWS. 

2.2 Wavefront reconstruction algorithm  

In this work, the wavefront is reconstructed from the two orthogonal wavefront slope 

measurements of dimensions 𝑁 × 𝑁 by applying the Southwell iterative procedure [35,36]. The 

Southwell algorithm uses a least square algorithm and thus reduces the impact of noise compared 

to direct local slope integration [36]. It uses global optimization to reconstruct the best fit 

wavefront compared to local slope integration. We briefly describe Southwell procedure below. 
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Figure 2.2 Nine adjacent grid points for the ODWS wavefront slope geometry. 𝑆𝑥 and 𝑆𝑦 represent horizontal and 

vertical slope vectors. 

Figure 2.2 shows the nine grid points denoted by row index and a column index, ranging 

from 𝑖 − 1 to 𝑖 + 1 and 𝑗 − 1 to 𝑗 + 1, respectively. This indexing spans from the top left corner 

to the bottom right corner. In the Southwell algorithm, the average slope either horizontally or 

vertically at an intermediary point between two neighboring grid points in the respective direction 

is described in relation to the disparity in wavefront phase at the two adjacent grid points in the 

same direction. If the phase, horizontal slope, and vertical slope at the position (𝑖, 𝑗) are 

represented as 𝜑𝑖,𝑗 , 𝑆𝑥
𝑖,𝑗 , 𝑆𝑦

𝑖,𝑗 respectively, at the position (𝑖, 𝑗), the Southwell algorithm can be 

expressed as follows: 

𝑆𝑥
𝑖,𝑗−1 + 𝑆𝑥

𝑖,𝑗

2
=

𝜑𝑖,𝑗 − 𝜑𝑖,𝑗−1

ℎ
 

𝑆𝑥
𝑖,𝑗+1 + 𝑆𝑥

𝑖,𝑗

2
=

𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗

ℎ
 

𝑆𝑦
𝑖−1,𝑗 + 𝑆𝑦

𝑖,𝑗

2
=

𝜑𝑖,𝑗 − 𝜑𝑖−1,𝑗

ℎ
 

 
𝑆𝑦

𝑖+1,𝑗 + 𝑆𝑦
𝑖,𝑗

2
=

𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗

ℎ
                                                 (2.13) 

where ℎ is the distance between two adjacent grid points in horizontal or vertical direction. Upon 

solving Eq. (2.13) we can obtain: 
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𝜑𝑖,𝑗 =
𝜑𝑖−1,𝑗+𝜑𝑖,𝑗−1+𝜑𝑖+1,𝑗+𝜑𝑖,𝑗+1

4
+

ℎ

8
[(𝑆𝑥

𝑖,𝑗−1 + 𝑆𝑥
𝑖,𝑗) − (𝑆𝑥

𝑖,𝑗+1 + 𝑆𝑥
𝑖,𝑗) + (𝑆𝑦

𝑖−1,𝑗 + 𝑆𝑦
𝑖,𝑗) −

(𝑆𝑦
𝑖−1,𝑗 + 𝑆𝑦

𝑖,𝑗)]            (2.14) 

 Equation (2.14) can be rewritten in general form as: 

𝜑𝑖,𝑗 = 𝜑𝑖,𝑗̅̅ ̅̅ ̅ + 𝑏𝑖,𝑗 𝑔𝑖,𝑗⁄       (2.15) 

where 𝜑𝑖,𝑗̅̅ ̅̅ ̅ is the mean nearest neighbor phase, 𝑏𝑖,𝑗 is a constant depending on the slope 

measurements, and 𝑔𝑖,𝑗 is either 4, 3 or 2 depending on whether the phase point 𝜑𝑖,𝑗 is an interior 

point, an edge, or a corner respectively. Equation (2.15) is solved iteratively. The calculation of 

the right-hand side of Eq. (2.15) involves the utilization of current values for the 𝜑's, which may 

be initiated as zeros. The resultant output then serves as an improved estimation. At the 𝑚th 

iteration, this is represented as: 

      𝜑𝑖,𝑗
(𝑚+1)

= 𝜑𝑖,𝑗̅̅ ̅̅ ̅
(𝑚)

+ 𝑏𝑖,𝑗 𝑔𝑖,𝑗⁄       (2.16) 

 The successive over-relaxation (SOR) iterative technique is used in which a phase point is 

updated based on the value of the previous iteration at that point. Equation (2.16) can be modified 

as: 

𝜑𝑖,𝑗
(𝑚+1)

= 𝜑𝑖,𝑗
(𝑚)

+ 𝜔 [𝜑𝑖,𝑗̅̅ ̅̅ ̅
(𝑚)

+ 𝑏𝑖,𝑗 𝑔𝑖,𝑗⁄ − 𝜑𝑖,𝑗
(𝑚)

]   (2.17) 

where 𝜔 is a relaxation parameter which optimal value is given as [36]: 

𝜔 =
2

1+sin[𝜋 (𝑁+1)⁄ ]
      (2.18) 

We note that any algorithm developed for wavefront reconstruction from wavefront slopes, 

e.g., for Shack-Hartmann wavefront sensors, can be used, including modal reconstruction. One 

example of modal reconstruction is wavefront decomposition on an orthogonal basis of Zernike 

polynomials. The Southwell procedure was found to give excellent reconstruction on simulated 

and experimental data, below 0.05λ (λ = 633nm) RMS error [34]. It can operate on arbitrarily 
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shaped apertures and does not require the wavefront to be expandable on a particular basis, which 

allows for application to the widest range of wavefront metrology applications (note for example 

that the freeform phase plates used in the experimental demonstration (see Chapter-3) have a 

manufacturing artifact that is poorly fitted by the low-order modes). 

2.3 Filter implementations 

Despite the potential advantages of ODWS, it is not widely used mainly because of difficulty in 

practical realization of well-controlled transmission filter. Already published ODWS 

demonstrations include the use of a liquid crystal SLM [37-39], spatially varying optical activity 

[40,41] and holographic film [42]. A programmable amplitude filter can be created by placing an 

SLM between two polarizers. The transmission will vary based on the pixel signal applied and the 

wavelength due to the wavelength-dependent phase retardation. SLM-based filters are both 

wavelength and polarization dependent and may have undesirable diffraction orders. Spatially 

varying optical activity method such as placing polarization rotator between two Wollaston prisms 

requires fabrication of a custom optical component and is wavelength-sensitive. Holographic film 

might not have the optical quality required for accurate wavefront reconstruction. 

2.4 Binary pixelated filter concept  

In the ODWS configuration (Fig. 2.1), consider 𝐸(𝑥, 𝑦) to be the input field, and 𝑠(𝑢, 𝑣) to be the 

transmission of binary pixelated mask where 𝑠 is either 0 or 1. The electric field just after the mask 

is 𝐸̃(𝑢, 𝑣) × 𝑠(𝑢, 𝑣), where 𝐸̃ is the Fourier transform of the input field 𝐸. The resulting field in 

the image plane is then another Fourier transform of the modulated field which can be written 

using convolution theorem as 𝐸(𝑥, 𝑦)⨂𝑠̃(𝑥, 𝑦), which is convolution (denoted as ⨂) of the input 

field with the Fourier transform of the binary mask. If 𝑡 is the ideal continuous transmission mask, 
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then designing of the pixelated mask requires minimizing the error 𝐸⨂(𝑠̃ − 𝑡̃) over the output 

aperture. Now minimizing the error (𝑠̃ − 𝑡̃) in RMS sense is equivalent to the case of minimizing 

the transmission error (𝑠 − 𝑡) when the filter is in near field configuration [43]. The latter case of 

filter in near field is a beam shaping configuration for which the binary pixelated filter design has 

been studied [43,44]. 

 We have realized the binary pixelated transmission mask using the error diffusion 

algorithm [44]. Figure 2.3 illustrates the method. Error diffusion follows a sequential processing 

of mask pixels, typically from top to bottom and left to right. Fig. 2.3(a) demonstrates the 

representation of the target transmission of the shaper, 𝑡(𝑚, 𝑛), while Fig. 2.3(b) depicts the design 

of the binary shaper. In the latter, processed pixels with transmission 𝑠(𝑚, 𝑛) are binary (0 or 1), 

displayed in black or white, whereas unprocessed pixels are shown in gray. As the target 

transmission spans from 0 to 1 and the shaper transmission is binary, assigning each pixel value in 

the binary mask induces a transmission error. 

In the error diffusion process, the binary value of 𝑠(𝑚, 𝑛) depends on the target shaper 

transmission 𝑡(𝑚, 𝑛) and the values of the transmission error at previously processed pixels. 

Initially, 𝑡(𝑚, 𝑛) is initialized as the square root of 𝐼(𝑚, 𝑛), where I is the sampled representation 

of the target intensity of the coherent beam. Referring to the flowchart in Fig. 2.3(c), the 

assignment of the transmission, 𝑠(𝑚, 𝑛), is determined by comparing the target shaper 

transmission to 0.5. If the target transmission is less than 0.5, 𝑠(𝑚, 𝑛) is set to 0, and if the 

transmission is greater than 0.5, 𝑠(𝑚, 𝑛) is set to 1. 

The resulting error is spread to unprocessed neighboring pixels to bias the binary choice 

for these pixels and locally compensate for the transmission error. This is achieved by adding a 

fraction of the error 𝑒(𝑚, 𝑛) = 𝑠(𝑚, 𝑛) − 𝑡(𝑚, 𝑛) to the target transmission for these pixels, as 
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indicated by white arrows in Fig. 2.4(a). The target transmission, 𝑡(𝑚 + 𝑎, 𝑛 + 𝑏), is then updated 

to 𝑡(𝑚 + 𝑎, 𝑛 + 𝑏) + 𝑐(𝑎, 𝑏) × 𝑒(𝑚, 𝑛) for the chosen set of integers a and b. Here only the four 

neighboring pixels at coordinates (m +1, n −1), (m+1, n), (m +1, n +1) and (m, n+1) are used in the 

four-weight error diffusion process. Function c is defined with values 𝑐 (1, −1)  = −3/16, 

𝑐(1,0) = −5/16, 𝑐(1,1) = −1/16, and 𝑐(0,1) = −7/16. The algorithm then continues with the 

subsequent pixel as per the lexicographical order as per Fig. 2.3(b). 

 

Figure 2.3 The error diffusion algorithm, (a) Example target beam shaper transmission; (b) Corresponding binary 

shaper in design; (c) Flowchart of the design process. Figure credit [44]. 

In the recent work of our Group [34], we have used spatially dithered distributions of 

transparent and opaque pixels to synthesize the transmission profile of an ODWS filter. Figure 2.4 

shows a design example of a binary pixelated linear amplitude filter. These components are 
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achromatic and can be fabricated at large aperture and low cost by commercial lithography of a 

metal layer deposited on a glass substrate. 

 

Figure 2.4 Design example of binary pixelated linear amplitude filter. 

2.5 Dynamic range and sensitivity 

Dynamic range is defined as the range of the wavefront slopes that can be measured. The ODWS 

solution in the Section 2.1 requires the far-field of the input field to be contained in the filter which 

ranges from −𝑊/2 to 𝑊/2. From Eqs. (2.11) and (2.12), the dynamic range is, DR = 2𝜋𝑊/(𝜆𝑓).  

Thus the DR is directly proportional to the filter width and inversely proportional to the focal 

length for a given wavelength. Implementation of larger filter width can be enabled by the binary 

pixelated transmission using metal-on-glass lithography technique. Decreasing the focal length is 

feasible in the case of ideal continuous filter, but for binary pixelated filter the wavefront retrieval 

accuracy depends on ratio of the far-field size and pixel size and is thus limited. 

From Eqs. (2.11) and (2.12), the difference in fluence images, with and without the filter 

(Fx, or Fy, and F0), gets reduced with increasing filter width for a given wavefront slope. Thus, 

when detection noise is present, the measurement of small phase variations will be corrupted by a 

large filter width, leading to the decrease in sensitivity. Therefore, there is a tradeoff between 
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dynamic range and sensitivity. This trade off can be reduced by non-linear filter transmission 

profile, providing advantage over SHWS. 

2.6 Filter pixel size considerations 

The spatial dithering algorithm based pixelated filter creates noise that is concentrated at higher 

frequencies and lacks density at the zero spatial frequency [44]. Since a binary pixelated filter is 

employed in the far field of the ODWS, the noise from the filter becomes visible in the detection 

plane. This leads to a decrease in the accuracy of the ODWS compared to an ideal ODWS that has 

a continuous filter, as the filter noise disrupts the precise measurement of fluences Fx, and Fy. 

 Performance simulations of binary pixelated filter ODWS were done with test wavefronts 

and were compared with that of an ideal filter ODWS [34]. The system consists of a 4f line with 

using lenses with a focal length 𝑓 = 1 meter, 𝜆 = 633nm, the filter width is set at 1 cm (𝑊 =

1cm), and a 1-cm pupil diameter. The dynamic range is 100 rad/mm. Figure 2.5 illustrates the 

simulated fluence Fy in the detection plane using a logarithmic scale for a flat input wavefront. It 

displays data for both a continuous filter and binary pixelated filters with pixel sizes of 10 μm, 5 

μm, and 2.5 μm. The presence of noise generated from the binary pixels is evident. The high-

frequency noise from pixelation and binarization is pushed away from the optical axis as the pixel 

size decreases, i.e., away from the camera’s field of view, resulting in accurate implementation of 

the amplitude filter. 
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Figure 2.5 Fluence in image plane plotted on a logarithmic scale for (a) continuous filter; (b), (c), and (d) binary 

pixelated filters with pixel sizes 10 μm, 5 μm, and 2.5 μm respectively.  Figure credit [34]. 

 The smallest far-field size for a given input pupil size 𝑆 is approximately 𝜆𝑓 𝑆⁄ . 

Consequently, to ensure performance comparable to that of an ideal ODWS, it is necessary for the 

pixel size to be much smaller than 𝜆𝑓 𝑆⁄  for a binary pixelated filter. Performance for input 

wavefront of profile 𝜑(𝑥, 𝑦)  =  𝜑0 cos(2𝜋 (𝑥 + 𝑦) 𝑝⁄ ) was simulated which has the slopes in the 

limit [−2𝜋𝜑0 𝑝⁄ , 2𝜋𝜑0 𝑝⁄ ] [34]. For 𝑝 = 1 mm a decrease in performance is anticipated due to 

finite dynamic range when 𝜑0 reaches approximately 8 radians. The findings are presented in Figs. 

2.6(a) and 2.6(b). The ideal ODWS exhibits excellent performance, with RMS and peak errors 

below λ/100 across the modulation amplitude range from 0 to 2π. The errors for different binary 

pixelation variations remain relatively consistent over the 𝜑0 range of 0 to 2π. The error appears 

to be directly proportional to the size of the pixel. The performance decrease at 𝜑0=8 rad is 

observed due to the dynamic range limit. 

 

Figure 2.6 (a) RMS and (b) peak errors vs. the amplitude of phase modulation for continuous and different pixelated 

filters.  Figure credit [34]. 
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2.7 Effect of pupil size and focal length 

Enlarging the pupil size results in the reduction in the far field feature size for a given focal length. 

This reduction in detail impacts the accuracy of measurements when utilizing a binary pixelated 

filter of a given pixel size. Figure 2.7(a) shows the RMS error in relation to the amplitude of a 

sinusoidal wave with a 1-mm period across a 2-cm pupil. Decrease in accuracy of about a factor 

of two is observed for the 2-cm pupil compared to the case of 1-cm pupil (in Fig. 2.6(a)). The error 

increases sharply as 𝜑0 approaches 8 radians due to the dynamic range limit which is independent 

of the pupil size. For measuring larger pupils, the subaperture stitching method can be employed 

and is discussed in Chapter-6. 

 

Figure 2.7 RMS errors vs. the amplitude of phase modulation for continuous and different pixelated filters (a) for a 

2-cm-diameter pupil and f=1m, (b) for a 1-cm-diameter pupil and f=0.5m. Figure credit [34]. 

 The dynamic range of ODWS varies inversely with the focal length, and a decrease in the 

focal length permits the far-field filter to accommodate a broader range of wavefront slopes. 

However, the drawback of a shorter focal length is the reduction in the scale of the features in the 

far field, leading to decreased accuracy in reconstruction. Figures 2.7(b) illustrates this 

consequence for a halving of the focal length for the 1-mm-period sinewave wavefront profiles. 

Beyond the amplitude value 𝜑0 = 8 radians, no decline in accuracy is observed, indicating a larger 
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dynamic range. However, the reconstruction errors are approximately twice than those of the 1-

meter lens setup (in Fig. 2.6(a)). 
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Chapter 3 Demonstration of an ODWS in a 4f configuration for freeform metrology 

This chapter presents the experimental setup, design baseline, and performance evaluation in 

freeform phase plate measurements. We also evaluate the effect of photodetection noise and non-

ideal filter transmission profiles in simulation. 

3.1 Integrate an in-situ testbed 

We integrated a setup as shown in Fig. 3.1. A 20-mm collimated laser beam (λ = 633 nm) 

propagates through a test phase plate. The image-relay system (focal lengths of 750 mm and 125 

mm) down-collimates the beam by a factor of 6.1. The field is Fourier transformed by the first lens 

of a 4f system (f = 1 m) to a Fourier plane where the gradient transmission filter is located. After 

amplitude modulation, the field is Fourier transformed back by the second lens and the resulting 

fluence is finally detected by a CCD camera. It is noted that, down collimation does not change 

the Peak-To-Valley (PV), nor Root Mean Square (RMS) of the wavefront. However, the wavefront 

slope increases proportionally to the down-collimation factor. The spatial resolution of the ODWS 

measurement at the phase plate location is 26.7 µm, corresponding to the camera pixel resolution 

of 4.4 µm. The camera has an 8-bit analog-to-digital converter. 
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Figure 3.1 ODWS system layout. 

Spatially dithered amplitude filters with field transmission changing linearly between 0 and 

1 over the width W = 10 mm were designed using the standard four-weight error diffusion 

algorithm (see Section 2.4). Although filters with pixels size ranging from 2.5 µm to 10 µm have 

been manufactured and tested, the experimental results presented in this work were obtained with 

the 2.5-µm filter because the ODWS accuracy increases with decreasing pixel size of binary filter 

(Fig. 2.6). Although the 2.5-µm filter has the highest nonlinearity relative to the ideal ODWS-filter 

profile (see Section 3.5), it was experimentally found that it yields better retrieval in practice 

because of lower pixelation noise. The slope dynamic range at ODWS object plane is ~16 

waves/mm, corresponding to ~20 µm/mm surface slope at 633-nm wavelength. The bias point in 

our experiment is the center of the filter, hence the range of wavefront slopes that can be measured 

at the conjugate of phase plate is [-8, +8] waves/mm. The corresponding dynamic range at the 

phase plate location is [-2.3, +2.3] waves/mm. 

3.2 Establish reference measurements for the phase plates to be tested 

To assess the performance of the ODWS, we have characterized one rotationally symmetric phase 

plate and three freeform phase plates. The freeform phase plates (thereafter referenced to as #1, 

#2, and #3) were designed to have horizontal coma of different amplitude over a 20-mm aperture 
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to investigate the ODWS performance over a range of wavefront slopes. Due to manufacturing 

error, they contain power and other aberrations. The corresponding range of wavefront slopes at 

the conjugate plane of phase plates in waves/mm are [-3.4, 1.9], [-11.1, 3.7] and [-5.5, 19.3]. The 

wavefront slopes of the first two phase plates are either within or slightly exceeding the ODWS 

design baseline and that of third phase plate is higher than the design baseline. 

The four phase plates were fabricated with UltraForm [45] at OptiPro Systems. These parts 

were characterized by an UltraSurf (at OptiPro Systems) metrology system [46]. Figure 3.2(a) 

shows an UltraSurf system. It is a computer-controlled, non-contact coordinate measuring machine 

equipped with five air-bearing axes, linear motors, high-resolution feedback, and a non-contact 

probe. The measuring probe scans over the optical surface normal to it. This perpendicularity is 

maintained by adhering to the programmed nominal shape into the machine. UltraSurf can rotate 

the sensor ±130° from the vertical to allow measurement of steep slopes. High-resolution scanning 

allows for the examination of surface texture in small areas. The ability to measure large areas 

with steep slopes and high departure makes it possible to characterize various freeform shapes. 

The measurement generates a three dimensional point cloud which is compared against the 

nominal shape. The probe used for the thickness measurements of the phase plates in this work 

uses low-coherence interferometry (LCI) to gauge the thickness of multiple layers at a singular 

point, shown in Fig. 3.2(b). 

Figure 3.3(a) shows the typical arrangement for low-coherence interferometry [47]. The 

light from a low-coherence source is split into the sample arm and the reference arm through the 

fiber coupler. The light reflected from both the sample and reference arms is then recombined in 

the fiber coupler and is redirected toward the detector. Optical interference occurs when the optical 

path lengths of the beams reflected by the sample reflector and the reference mirror differ by less 
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than the finite coherence length of the source. When measuring a single reflector, the reference 

mirror is scanned. Figure 3.3(b) shows the typical signal obtained which constitutes constructive 

and destructive interferences. The pattern is modulated by an envelope related to the coherence 

function of the source. If the sample has spaced reflectors (like phase plates), a specific envelope 

function is registered for each reflector. The precise position of each reflector can be identified by 

the exact location of the maximum point on the envelope function. 

 

Figure 3.2 (a) UltraSurf, featuring labeled axes, has the probe attached to the B-Z axes, while the part is mounted to 

the X-Y-C axes, (b) Operation of the LCI probe. Figure credit [46].         

 

Figure 3.3 (a) Typical LCI configuration with fiber-based system, (b) Interference signal from a single reflector. 

Figure credit [47]. 
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 Characterizing the accuracy of measured figure error on UltraSurf is challenging in a 

generalized manner due to the multi-axis nature of the system. Different geometries will have 

different levels of uncertainty. UltraSurf qualified flat and sphere to 0.1λ (He-Ne) peak to valley 

with an interferometer [46]. Therefore, we use 0.1λ RMS as benchmark to qualify ODWS 

measurements with UltraSurf in this work. The UltraSurf measurements were obtained at a spatial 

resolution of 250 µm; the measurements were interpolated for direct comparison with ODWS.  

Characterizing the freeform phase plates with a Zygo interferometer (Zygo GPI 4" Verifier 

AT) in transmission mode without any nulling component was successful for phase plate #1 but 

was not successful for phase plates #2 and #3, which would therefore require the manufacturing 

of specific nulling components. We therefore used the residual errors between ODWS and 

UltraSurf measurements to validate the ODWS measurements. It should be noted that this error 

contains the inherent error in both the ODWS and UltraSurf measurements, as well as imperfect 

registration (translation and rotation) between the reconstructed wavefronts, magnification and 

other experimental imperfection. For all wavefronts, piston, tip, and tilt were removed, as is 

customary in the metrology of optical components. 

3.3 Phase plate measurement results 

The ODWS was first compared to the UltraSurf when characterizing a rotationally symmetric 

optics. The UltraSurf measurement is shown in Fig. 3.4(a). Figure 3.4(b) shows the wavefront 

result as an average of 20 sets of measurements by the ODWS. The validity is determined by 

calculating the RMS of difference between the measured wavefronts. The difference is shown in 

Fig. 3.4(c) and the measurements agree to 0.08λ. 
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Figure 3.4 Wavefront of a rotationally symmetric optics (a) measured with UltraSurf, RMS = 0.18λ, PV = 0.8λ; (b) 

measured with ODWS, RMS = 0.19λ, PV = 0.8λ (c) difference, RMS = 0.08λ. 

 

We present and compare the transmission wavefront measured by the ODWS, the UltraSurf 

and the Zygo interferometer for freeform phase plates #1 and #2. The wavefront of phase plate #1 

measured by UltraSurf and ODWS are shown in Fig. 3.5(a) and 3.5(b) respectively, and the 

difference of the two measurements is shown in Fig. 3.5(c). A similar comparison between Zygo 

interferometer and ODWS measurement for phase plate #1 is shown in Fig. 3.6. Similarly, the 

measurement results of phase plate #2 are shown in Fig. 3.7. The ODWS wavefront result is 

obtained by averaging the measurements performed on four different days, each having 10 

measurements. Piston, tip/tilt were removed due to the reasons mentioned in Section 3.2. The 

feature located at the center of each phase plate, which is retrieved by the three diagnostics, is a 

manufacturing artifact. From the difference maps shown in Figs. 3.5(c), 3.6(c) and 3.7(c), the 

wavefront measured on phase plates #1 and #2 by the ODWS are comparable to the wavefront 

measured by other techniques. The corresponding RMS of the wavefront difference is 0.04λ (phase 

plate #1, ODWS/UltraSurf), 0.06λ (phase plate #1, ODWS/Zygo) and 0.1λ (phase plate #2, 

ODWS/UltraSurf). For reference, the RMS of the wavefront difference calculated with the Zygo 

and UltraSurf wavefront maps for phase plate #1 is 0.05λ, showing that even the wavefront 

returned by the two commercial diagnostics are not identical. 
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Figure 3.5 Wavefront of freeform phase plate #1 (a) measured with UltraSurf, RMS = 0.16λ, PV = 0.86λ; (b) 

measured with ODWS, RMS = 0.15λ, PV = 0.79λ; (c) difference, RMS = 0.04λ. 

 

Figure 3.6 Wavefront of freeform phase plate #1 (a) measured with Zygo interferometer, RMS = 0.2λ, PV = 0.87λ; 

(b) measured with ODWS, RMS = 0.15λ, PV = 0.79λ; (c) difference RMS = 0.06λ. 

 

 

Figure 3.7 Wavefront of freeform phase plate #2 (a) measured with UltraSurf, RMS = 0.38λ, PV = 2.58λ; (b) 

measured with ODWS, RMS = 0.39λ, PV = 2.28λ; (c) difference RMS = 0.1λ 

To illustrate the measurement for the freeform component of the wavefront, we removed 

the power term from the ODWS measurements shown in Figs. 3.5(b) and 3.7(b) and show the 

results in Figs. 3.8(a) and 3.8(b) for phase plate #1 and #2, respectively. The primary coma 

aberration is more clearly visible after the power removal, although the plotted wavefronts still 

include higher-order aberrations and the sharp central feature. 
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Figure 3.8 Wavefront measured by the ODWS after power removal for (a) freeform phase plate #1; RMS = 0.06λ, 

PV = 0.38λ; (b) freeform phase plate #2; RMS = 0.16λ, PV = 1.13λ. 

The measurement precision was quantified by taking the RMS difference between 

individual wavefront maps and the average of multiple measurements on each day. Figure 3.9 

shows an average precision of 0.014λ for phase plate #2, using data taken over four consecutive 

days. The maximum variation between measurements is 0.02λ at worst which shows that the 

measurements are highly consistent. The observed precision is impacted not only by detection 

noise but also by environmental factors such as air turbulence in the laboratory environment. 

Because this ODWS implementation is based on fluence measurements that are sequentially 

measured, the measurement precision could be improved using a stabilized laser source and a high-

dynamic-range camera. 

 

Figure 3.9 Precision plot for 40 measurements of phase plate #2 taken over four days, average precision is 0.014λ. 

3.4 Impact of filter width on high wavefront slope measurement 

High wavefront slopes leading to far-field components beyond the 1-cm filter width are not 

expected to be accurately measured, leading to poor wavefront reconstruction at the corresponding 
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near-field locations. The purpose of this section is to experimentally investigate this effect. For 

this study, we chose phase plate #3 which has wavefront slopes much higher than the theoretical 

limitation of the current ODWS design. The maximum wavefront slope resides near the left edge 

of the phase plate with an aperture of 20 mm. Because the portion of the beam that has larger 

wavefront slope lands closer to the edge of the filter, we compare wavefront measurements over 

two apertures with diameter equal to 15 mm and 20 mm, respectively. The ranges of wavefront 

slopes at the conjugate plane are within ([-5.5, 6.3] waves/mm for the 15-mm diameter) and much 

beyond ([-5.5, 19.3] waves/mm for the 20-mm diameter) the dynamic range design baseline for 

the implemented ODWS ([-8, 8] waves/mm, corresponding to the 1-cm filter width).  

The wavefront maps of phase plate #3 in the 15 mm pupil are shown in Figs. 3.10(a) and 

3.10(b). Since maximum wavefront slope at 15-mm aperture is within the design baseline of the 

implemented 1-cm filter, the ODWS and UltraSurf measurements agree well, within 0.1λ RMS 

[Fig. 3.10(c)]. The Zernike coefficients (in fringe Zernike order) for these two measurements are 

in excellent agreement [Fig. 3.11]. The Zernike coefficients are obtained by fitting 37 Zernike 

polynomials, with terms 4 to 15 shown in Fig. 3.11. We note that the bump at the center of the 

wavefront is poorly fitted by Zernike polynomials, potentially leading to discrepancies. 

 

 
Figure 3.10 Wavefront of freeform phase plate #3 within 15-mm aperture (a) measured with UltraSurf, RMS = 

0.66λ, PV = 2.8λ; (b) measured with ODWS, RMS = 0.59λ, PV = 2.61λ; (c) difference, RMS = 0.1λ. 
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Figure 3.11 Comparison of Zernike coefficients of wavefront of phase plate #3. 

When increasing the pupil size from 15 mm to 20 mm, the high wavefront slopes at the left 

edge of this phase plate exceed theoretical limit of the implemented ODWS ([-5.5, 19.3] vs. [-8, 

8] waves/mm). The RMS difference of the measurements by UltraSurf and ODWS subsequently 

increases from 0.1λ to 0.16λ [Fig. 3.10(c) and Fig. 3.12(c)]. 

 
Figure 3.12 Wavefront of freeform phase plate #3 within 20 mm (a) measured with UltraSurf, RMS = 0.69λ, PV = 

4.44λ; (b) measured with ODWS, RMS = 0.6λ, PV = 2.8λ; (c) absolute difference, RMS = 0.16λ. 

In Fig. 3.12(c), the highest difference between the two measurements is observed at the left 

edge in the difference map (plotted as magnitude of the difference to emphasize the peak value on 

the left side of the aperture). This can be explained by fluence measurements performed in the far-

field plane, where the ODWS filter is located, and in the detection plane, where the near-field 

fluence is measured. Figure 3.13(a) shows the far-field of phase plate #3 compared to the 1-cm 

filter width. The high-slope wavefront components that exceed the design baseline are clipped by 

the filter at the right edge, marked with a white line. This far-field clipping results in a dark patch 



   

 

 29 

at the left edge in the fluence map of phase plate #3 at the detection plane as shown in Fig. 3.13(b). 

The resulting dark patch in fluence distribution due to clipping from the current filter-width design 

leads to less accurate wavefront reconstruction in that region, although good wavefront 

reconstruction is observed everywhere else. 

We further demonstrate that this far-field clipping is the main source of inaccurate 

wavefront retrieval. Figures 3.13(c) and 3.13(d) show the measurement results through the same 

filter for phase plate #2 that has wavefront slopes close to the design baseline. The lower wavefront 

slopes lead to smaller spatial spread of the far field, well within the filter width. The wavefronts 

measured by the ODWS and the UltraSurf agree within 0.1λ RMS [Fig. 3.7(c)] 

These results experimentally confirm that the ODWS dynamic range is effectively limited 

by filter width, because far-field components induced beyond that by large wavefront slopes lead 

to inaccurate wavefront reconstruction.  

 
Figure 3.13 Fluence at far-field plane for (a) phase plate #3 and (c) phase plate #2, and at the detection plane for (b) 

phase plate #3 and (d) phase plate #2. All data is measured with a filter having 100% transmission over 1 cm. On (a) 

and (c), the ODWS-filter 1-cm width is shown by two white lines. On (b) and (d), the 20 mm measurement diameter 

is indicated by a white circle. The PSF images are intentionally saturated towards the center to make the edge 

visible. 

Characterization of phase plate #3 with the Zygo interferometer was not successful as some 

portions in the center and on the edge of the wavefront could not be retrieved due to high slopes 
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there. A raw wavefront returned by the software is displayed in Fig. 3.14, showing areas where the 

wavefront was not reconstructed and set to NaN (Not a Number), same as background. The 

measurement has a resolution of 51.4 µm for a 22 mm measurement aperture. 

 

Figure 3.14 Wavefront of phase plate #3 measured with the Zygo interferometer. 

3.5 Simulation study for impact of experimental imperfection and choice of optimal filter 

The effect of experimental imperfections was simulated by considering an ODWS based on a 4f 

line with f  = 1 m and detection with a camera having 7.7-µm pixels. This pixel size, which is set 

by simulation sampling requirements in the near field and far field, is close to the experimental 

pixel size (4.4 µm) and typical of scientific cameras. A wave with uniform fluence and phase given 

by a test wavefront is propagated to the far field, modulated by the filter transmission, and Fourier 

transformed back to the near field for detection. The fluences in the x and y direction are simulated, 

then used for wavefront reconstruction using the Southwell procedure. The test wavefronts 

correspond to Alvarez lens profiles proportional to x3/3+xy2 [48], with the quoted amplitude being 

the maximal amplitude over the 1-cm-diameter pupil. For a 1-wave amplitude, the largest 

wavefront slope is approximately 0.78 waves/mm in both the x and y direction over the 1-cm pupil. 

This indicates that the accuracy of an ideal ODWS is expected be excellent for these test 

wavefronts until their amplitude reaches approximately 10 waves, leading to wavefront slopes 

equal to DR/2 (8 waves/mm), for which some light in the far field reaches the edge of the filter. 



   

 

 31 

 Additive uncorrelated noise with standard deviation s normalized to the value of Fx and Fy 

for a flat input wavefront was introduced on all pixels of the two detected fluences Fx and Fy. 

Figure 3.15 shows the RMS error on the retrieved wavefront as a function of the test-wavefront 

amplitude for various values of s. It is clear that the ODWS can tolerate high levels of noise. The 

main effect of the detection noise is to decrease the dynamic range. In the absence of noise (s = 0), 

the RMS error increases sharply for large wavefront amplitudes which lead to energy at the edge 

of the far-field filter. When detection noise is present, the RMS error increases for low-amplitude 

test wavefronts. This is however a minor effect, considering that the largest noise level considered 

in these simulations (s=10%) is much larger than the typical noise of modern scientific cameras. 

For comparison, the RMS error obtained with three ideal pixelated binary filters (pixel size equal 

to 10 µm, 5 µm, and 2.5 µm) and noise-free detection has been plotted on the same figure. It is 

clear that noise due to filters with large pixels is the dominant factor limiting the accuracy for 

wavefront amplitudes approximately smaller than 5 waves, while photodetection noise becomes 

dominant beyond that. The induced errors remain below λ/20 over the ODWS dynamic range. 

 

Figure 3.15 Calculated RMS error for the reconstructed wavefront of an Alvarez lens of varying amplitude for 

various noise levels from 0% to 10% and an ideal continuous filter (continuous lines). The RMS errors 

corresponding to noise-free detection with ideal pixelated filters (10 µm, 5 µm, and 2.5 µm) are indicated with 

markers. 
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 We simulate the performance impact of the non-ideal filter transmission profile arising 

from fabrication uncertainties by two different approaches. The transmission profile (Eq. 2.3) was 

first modified using the following analytical formula: 

                                  ( )
2

1 2
, 1 ,

2

u u
t u v q

W W

  
= + + −  

   
  (3.1) 

where the term proportional to q introduces a nonlinear transmission dependence relative to the 

far-field variable. Identically to the ideal transmission given by Eq. 2.3, the transmission given by 

Eq. 3.1 takes the values 0 and 1 at –W/2 and W/2, respectively, and has the slope 1/W at u = 0. The 

wavefront was retrieved using two wavefront slopes obtained from fluence distributions Fx and Fy 

simulated using the filter transmission profile given Eq. 3.1. Figure 3.16 shows the RMS error for 

various test-wavefront amplitudes and values of the nonlinear coefficient q. 

We then fitted the measured transmission profiles of the three fabricated filters (pixel size 

equal to 10 m, 5 m, and 2.5 m) with fourth-order polynomials to remove the noise associated 

with the transmission measurement and facilitate interpolation in the simulations. The determined 

polynomials were used to generate filter transmission profiles in the wavefront reconstruction 

simulations. Owing to the fact that filters are non-ideal, the field transmission is not linear over the 

filter width W, and the transmission slope is not uniformly equal to 1/W over the ODWS dynamic 

range. To compensate for this effect in the phase retrieval from the calculated Fx and Fy, the 

quantity W in Eqs. (2.11) and (2.12) was replaced by the inverse of the measured filter slope at u 

= 0. Using this effective slope compensates for the non-ideal filter transmission for wavefronts 

leading to far fields that are contained within the region where the filter transmission is linear with 

the identified slope. The simulated RMS reconstruction (Fig. 3.16) shows that the larger 

transmission profile error associated with smaller pixels leads to larger phase-retrieval error. While 

smaller pixels lead in theory to better accuracy because of lower noise due to pixelation, 
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transmission profile errors due to fabrication tolerance increase for smaller pixels. Comparison of 

Figs. 3.15 and 3.16 shows that the 2.5-µm filter is the optimal choice for wavefront smaller than a 

few waves, but the profile error leads to relatively larger measurement error for that pixel size than 

for larger pixel sizes for larger wavefronts. Reconstruction error smaller than λ/10 is achievable 

with the current filters, which were fabricated with a mild tolerance of +/-0.5 µm, over most of the 

ODWS dynamic range. Improving the accuracy and taking advantage of the smaller pixel size over 

the full dynamic range of the ODWS requires tighter fabrication tolerance to limit the transmission 

profile error to within a few percent. Digital halftoning algorithms generating pixel distributions 

that are less sensitive to fabrication errors could also be investigated [49]. 

 

Figure 3.16 Calculated RMS error for the reconstructed wavefront of an Alvarez lens of varying amplitude for 

various nonlinearity coefficient q and an ideal continuous filter (continuous lines) and for the measured transmission 

profiles of the pixelated filters (markers). 
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Chapter 4 Miniaturization and system tolerance 

In Chapter 3, we demonstrated ODWS based on 4𝑓 configuration. We used a down-collimating 

relay since the accuracy of an ODWS implemented with a spatially dithered distribution of 

transparent and opaque pixels depends on the ratio of the far-field size and pixel size. Smaller 

pixels generally provide better accuracy because they provide a transmission that is closer to the 

ideal linear profile. However, the pixel size is in general limited by fabrication technology and 

physical effects that can occur in components with features size of the order of the optical 

wavelength. The relative error on the pixel size, and therefore on the synthesized transmission 

profile, increases for smaller pixels because of fabrication tolerance. Increasing the focal length of 

the optical system in an ODWS (resulting in increased far-field spread) allows for an increase in 

precision with spatially dithered pixels, but such an increase can be impractical when using a 

standard 4f arrangement. A telephoto system can solve this issue by offering a large Effective 

Focal Length (EFL) in a relatively small footprint. While the larger EFL yields a smaller dynamic 

range, this can be compensated in practice by using larger width filters. In this work, we describe 

the design of telephoto based-ODWS that accurately characterizes freeform optics and 

significantly reduces the system length, and we evaluate its robustness to the misalignment of 

system components. 

4.1 Design of Telephoto based ODWS 

In a telephoto, the physical length from vertex to focal plane is less than the EFL. Figure 4.1 shows 

a telephoto system has an EFL of f (the distance between principal plane P2 and focal plane F2), 
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but the total length from vertex of first lens to focal plane is kf, where k < 1 is the telephoto ratio, 

defined as the ratio of distance between front vertex of the first lens and the focal plane of the 

telephoto with respect to the effective focal length of the telephoto. For a given separation ′d′ 

between positive and negative lenses, EFL ′f′ and telephoto ratio ′k′ , the focal lengths of two lenses 

required are: 𝑓1 =
𝑓𝑑

𝑓(1−𝑘)+𝑑
, 𝑓2 =

(𝑓1−𝑑)(𝑘𝑓−𝑑)

𝑓1−𝑘𝑓
. 

 

Figure 4.1 Layout of Telephoto lens. 

We investigated the ODWS wavefront retrieval scheme i.e., the relationship between final 

intensity and wavefront slope. This also helps in understanding how the parameters will affect the 

wavefront measurement quality and the miniaturization. Figure (4.2) shows an ODWS system, 

where the first two lenses form telephoto. A gradient transmission filter is placed at the focal plane 

of a telephoto system with EFL of 𝑓. The wavefront to be tested is at the input plane at a distance 

𝑑0 from the vertex of first lens. The third lens having a focal length of 𝑓3 is positioned at a distance 

𝑎 from the filter and it images the input plane to a detector at distance 𝑏. 

 

Figure 4.2 Telephoto based ODWS system layout. 
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Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) 𝑟epresent the coordinate planes of the test object 

location, filter location and detection plane respectively. Let 𝑢1(𝑥1,  𝑦1) represent the field of the 

test object. The field at the filter location can be written by using the matrix method [50] as 

𝑢2(𝑥2, 𝑦2) =
1

𝑗λ𝐵
∬ 𝑢1(𝑥1, 𝑦1)𝑒{𝑗

π

λ𝐵
[𝐴(𝑥1

2+𝑦1
2)−2(𝑥1𝑥2+𝑦1𝑦2)+𝐷(𝑥2

2+𝑦2
2)]} 𝑑𝑥1𝑑𝑦1

∞

−∞
,  (4.1) 

where 𝐴, 𝐵 and 𝐷 are the elements of the 𝐴𝐵𝐶𝐷 matrix of the propagation from object plane to 

filter plane, given by: 

 [
𝐴 𝐵
𝐶 𝐷

] = [
0 𝑓

−
1

𝑓
1 −

𝑑

𝑓2
−

𝑑0

𝑓

],     (4.2) 

where 𝑓 is given by  
1

𝑓
  =  

1

𝑓1
  +  

1

𝑓2
  −   

𝑑

𝑓1𝑓2
. Note that matrix element 𝐵 = 𝑓, the EFL of the 

telephoto. Using 𝐴 = 0 in Eq. (4.1), we get  

𝑢2(𝑥2, 𝑦2) =
1

𝑗λ𝐵
𝑒𝑗

π𝐷

λ𝐵
(𝑥2

2+𝑦2
2)𝑈1(ξ, η),    (4.3) 

where (ξ, η) are the spatial frequencies defined by ξ =
𝑥2

λ𝐵
 𝑎𝑛𝑑 η =

𝑦2

λ𝐵
. 𝑈1(ξ, η) is the Fourier 

transform of input field. 𝑢2 is not an exact Fourier transform of 𝑢1, unlike in 4𝑓 based ODWS 

setup where an exact Fourier transform of the input field is obtained at the filter plane location.  

The field at (𝑥2, 𝑦2) is modified by a filter of linear transmission, 𝑡𝐴 =
𝑥2

𝑊
+

1

2
 where, 𝑊 is 

the width of the filter. Using Eq. (4.3), the field at detection plane can be written as: 

𝑢3(𝑥3, 𝑦3) =
−1

(𝜆2𝐵𝐵′)
∬ (

𝑥2

𝑊
+

∞

−∞

1

2
) 𝑒𝑗

𝜋𝐷

𝜆𝐵
(𝑥2

2+𝑦2
2)𝑈1(𝜉, 𝜂)𝑒

{𝑗
𝜋

𝜆𝐵′[𝐴′(𝑥2
2+𝑦2

2)−2(𝑥2𝑥3+𝑦2𝑦3)+𝐷′(𝑥3
2+𝑦3

2)]}
 𝑑𝑥2𝑑𝑦2,    (4.4) 

where 𝐴′, 𝐵′ and 𝐷′ are the elements of the 𝐴′𝐵′𝐶′𝐷′ matrix of the propagation from filter plane 

to detection plane through third lens, given by: 
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 [
𝐴′ 𝐵′

𝐶′ 𝐷′] = [
1 −

𝑏

𝑓3
𝑎 + 𝑏 −

𝑎𝑏

𝑓3

−
1

𝑓3
1 −

𝑎

𝑓3

].    (4.5) 

Equation (4.4) can be simplified if the quadratic phase factors in coordinates (𝑥2, 𝑦2) are 

cancelled, i.e., if the following condition is satisfied: 

 
𝐷

𝐵
= −

𝐴′

𝐵′.      (4.6) 

Using the matrix elements 𝐷, 𝐵, 𝐴′ and 𝐵′ from Eqs. (4.2) and (4.5) in Eq. (4.6) and 

solving for 𝑏, we get,  

𝑏 = 𝑓3
𝑓1𝑓2𝑑0+𝑓1𝑓2𝑑−𝑓2𝑑𝑑0+(𝑓1𝑓2−𝑓1𝑑−𝑓1𝑑0−𝑓2𝑑0+𝑑𝑑0)(𝑘𝑓−𝑑+𝑎)

𝑓1𝑓2𝑑0+𝑓1𝑓2𝑑−𝑓2𝑑𝑑0+(𝑓1𝑓2−𝑓1𝑑−𝑓1𝑑0−𝑓2𝑑0+𝑑𝑑0)(𝑘𝑓−𝑑+𝑎−𝑓3)
  (4.7) 

 If we calculate the conjugate location of the phase object in ODWS by calculating its image 

position through each lens, we arrive at the expression in Eq. (4.7). Therefore, if the detector is at 

imaging position of phase object, then Eq. (4.6) is satisfied. To solve Eq. (4.4), we invoke the 

Fourier derivative property which can be written as 

𝜕𝑔(𝑥1,𝑦1)

𝜕(𝑥1)
= ∬ 𝑗2𝜋𝜉𝐺(𝜉, 𝜂)𝑒𝑗2𝜋(𝑥1𝜉+𝑦1𝜂) 𝑑𝜉𝑑𝜂

∞

−∞
,    (4.8) 

where 𝐺 and 𝑔 are Fourier transform pairs. With the detector being at image plane of test object 

and using the Fourier derivative property, we can write Eq. (4.4) as: 

                      𝑢3(𝑥3, 𝑦3) = 𝑒
𝑗

𝜋𝐷′

𝜆𝐵′(𝑥3
2+𝑦3

2)
[

𝑗𝜆𝐵2

2𝜋𝑊𝐵′

𝜕𝑢1(
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𝐵′ ,
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𝐵′ )

𝜕(
−𝑥3𝐵

𝐵′ )
−

𝐵

2𝐵′ 𝑢1 (
−𝑥3𝐵

𝐵′ ,
−𝑦3𝐵

𝐵′ )]                  (4.9) 

 Assuming the input field amplitude 𝐴0 to have negligible variation and phase 

distribution to be 𝜑 that we want to characterize, i.e. 

  𝑢1(𝑥1, 𝑦1) = 𝐴0𝑒𝑗𝜑(𝑥1,𝑦1),    (4.10) 

Eq. (4.9) can be simplified to obtain: 

                        𝑢3(𝑥3, 𝑦3) = 𝑒
𝑗
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−𝑥3𝐵
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+

1

2
].            (4.11) 
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The corresponding fluence at detection plane is given as 

 𝐹𝑥(𝑥3, 𝑦3) = (
−𝐴0𝐵

𝐵′ )
2

[
𝜆𝐵

2𝜋𝑊

𝜕𝜑(
−𝑥3𝐵

𝐵′ ,
−𝑦3𝐵

𝐵′ )

𝜕(
−𝑥3𝐵

𝐵′ )
+

1

2
]

2

.          (4.12) 

Field at (𝑥3, 𝑦3) with filter of transmission 𝑡𝐴 = 1 can be obtained similarly and the 

corresponding fluence at detection plane in this case is 

 𝐹0(𝑥3, 𝑦3) = (
−𝐴0𝐵

𝐵′ )
2

.     (4.13) 

From Eq. (4.12) and (4.13), we obtain, 

𝜕𝜑(−
𝑥3
𝑚

,−
𝑦3
𝑚

)

𝜕(−
𝑥3
𝑚

)
=

𝜋𝑊

𝜆𝑓
(2√

𝐹𝑥(𝑥3,𝑦3)

𝐹0(𝑥3,𝑦3)
− 1),    (4.14) 

Eq. (4.14) calculates wavefront slope at input plane location from the fluences at detection plane. 

The negative sign is due to inversion of the field. 𝑓 = 𝐵 is the EFL of the telephoto lens pair. 𝑚 =

𝐵′

𝐵
=

𝑎+𝑏−
𝑎𝑏

𝑓3

𝑓
 is the magnification between input and detection plane. When the system is aligned 

to be afocal, i.e., 𝑎 = 𝑓3, the magnification m is simply 
𝑓3

𝑓
. For m=1, Eq. (4.14) describes an ODWS 

based on two lenses of identical focal length f set in a 4f configuration. Similarly, the wavefront 

slope along the y direction can be obtained from the detected near-field fluence after rotating the 

far-field filter by 90 degrees. The dynamic range for wavefront slope measurement is set by the 

filter’s width and EFL of the telephoto system, i.e., 𝐷𝑅 = 2𝜋𝑊/𝜆𝑓 in units of radians per unit 

length (𝑊/𝜆𝑓 in units of number of waves per unit length). 

4.2 Experimental demonstration using phase plate measurement  

The experimental setup (Fig. 4.3) closely resembles the system layout presented in Fig. 4.2. Lenses 

1, 2 and 3 are commercial off-the-shelf lenses (Thorlabs), chosen as plano-convex, plano-concave 
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and plano-convex, respectively. The collimated input laser beam (𝜆 = 633 nm) with a diameter of 

20 mm propagates through a freeform phase plate which introduces a wavefront distortion. The 

beam then propagates through the telephoto system and is focused onto the transmission filter. The 

modulated beam propagates through the third lens and is captured on the camera (@The Imaging 

Source, DMK 23U274) located at the image plane of the phase plate. The system design 

parameters are shown in Table 4.1 referring to the layout in Fig. 4.2.  

 
Figure 4.3 Telephoto ODWS experimental system. 

Table 4.1 Design parameters for an ODWS implemented with a telephoto system. 

Object distance from Lens-1, 𝑑0 140 mm 

Lens-1 focal length, 𝑓1 200 mm 

Lens-2 focal length, 𝑓2 -25 mm 

Distance between Lens-1 and Lens-2, 𝑑 176.43 mm 

Distance between Lens-2 and filter plane, 𝑘𝑓 − 𝑑 412.1 mm 

Lens-3 focal length, 𝑓3 300 mm 

Distance between filter plane and Lens-3, 𝑎 300 mm 

Detecting plane distance from Lens-3, 𝑏 506.6 mm 

Telephoto EFL, 𝑓 3.5 m 

  

The experiments in this work were performed using the pixelated filter with pixel size of 

2.5 𝜇m and width W equal to 1 cm. The range of slopes that can be measured around the mean 

slope is [-2.3, 2.3] waves/mm, and the dynamic range is 4.6 waves/mm. Accurate wavefront 

reconstruction requires optimum far-field spot size that is proportional to the EFL so that the 

sampling from the binary pixelated filter is sufficient. A telephoto EFL ~3.5 m was chosen based 

on different experimental trials to reconstruct a plane wavefront accurately, i.e., when no 

aberration is induced on the input wave with a phase plate.  

Referring to the layout in Fig. 4.2, for convenience in determining the experimental 

telephoto EFL, the system was aligned to be afocal, i.e., the distance between the filter and Lens 
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3 is 𝑎 = 𝑓3. In this case, the magnification is 𝑚 =
𝑓3

𝐸𝐹𝐿
, and the experimental EFL can be determined 

from the measured magnification without the need to determine a or b accurately. Both 𝑓3 and EFL 

determine the magnification of the system and hence the measurement resolution. The parameters 

of the optical system determined experimentally are m = 1/11.4044, EFL(𝑓)  = 3421.3 mm, 

yielding a spatial resolution in the input plane equal to 50.2 𝜇m based on the 4.4-𝜇m camera pixel 

size.  

The total length of this telephoto-ODWS system, from object to detection plane is ~1.5 m. 

For a similar EFL and measurement resolution using the same camera, the length of an ODWS 

without a telephoto (𝑓1 = 3.5 m, 𝑓3 = 300 m) would be 7.6 m. In this demonstration, the use of a 

telephoto system reduces the footprint by 5 compared to a 4f- ODWS system. More compact 

implementations with longer EFL are possible following the same concept. 

In order to assess the performance of the telephoto-lens-based ODWS, we have measured 

the wavefront induced by two of the phase plates as shown in Chapter 3. Each phase plate was 

previously measured by Ultrasurf with a spatial resolution of 250 𝜇m. The UltraSurf data are 

interpolated to match the ODWS data resolution. A reference wavefront without any phase plate 

is measured with the ODWS to account for static aberrations present in the system. This reference 

wavefront is subtracted from each test wavefront. The difference in the wavefronts reconstructed 

by the ODWS and the UltraSurf is taken as a metric for accuracy validation, after numerical 

removal of the piston and tip/tilt. 

The measurements of phase plate #1 by UltraSurf, ODWS and their comparison are shown 

in Figs. 4.4(a), (b) and (c), respectively. Similarly, the measurements of phase plate #2 are shown 

in Fig. 4.5. Each ODWS measurement is an average of 10 measurements. For lateral registration 

of the wavefronts, the centroid of the peak at center of the phase plates is used as fiducial. For 
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clocking alignment, each wavefront is rotated in a range of angles and for each angle, Zernike 

polynomials are fit to the wavefront. The wavefronts primarily have coma aberrations, and we 

choose coma in the horizontal direction as reference. The angle that gives the minimum Zernike 

coefficient for horizontal coma is chosen for numerical rotation before calculation of the wavefront 

difference. The wavefront alignments were done separately for UltraSurf and ODWS 

measurements in MATLAB. In future, fiducials can be machined on the parts for wavefront 

alignment and easier comparison.  

The telephoto-lens-based ODWS wavefront measurements are comparable with UltraSurf 

measurements; their RMS difference is 0.09𝜆 for both phase plates. This difference may be caused 

by imperfect registration and may include inherent error in either measurement technique. The 

ODWS measurements for each phase plate show an average precision of ~λ/50, quantified as the 

RMS of difference between each wavefront map and the average of all the measurements. 

 

Figure 4.4 Wavefront of phase plate #1: (a) UltraSurf measurement [PV: 2.66λ, RMS: 0.4λ]; (b) ODWS 

measurement [PV: 2.32λ, RMS: 0.37λ]. (c) Difference (RMS 0.09λ). 
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Figure 4.5 Wavefront of phase plate #2: (a) UltraSurf measurement [PV: 4.25λ, RMS: 0.67λ,]; (b) ODWS 

measurement [PV: 3.8λ, RMS: 0.7λ]; (c) Difference (RMS: 0.09λ). 

4.3 Alignment tolerance 

In this section, we analyze the error in wavefront measurement due to misalignment of the ODWS 

components along the optical axis. First, we give a description of the alignment of the telephoto 

ODWS system. Referring to Fig. 4.2, the three lenses are initially put at their respective positions 

according to the design in Table 4.1 and are optically aligned for tilting and centering. An object 

with known dimension is placed in front of Lens 1 at the design object distance and is imaged to 

a camera, from which the object location and magnification of the system are determined. The 

amplitude filter, mounted on a three-axis translation stage, is placed at the focal plane of the 

telephoto system. Its longitudinal position is determined by a knife edge test, using the sharp 

transition from opaque to transparent transmission at the edge of the filter. The filter is centered 

with respect to the beam using fiducials added at the four edges of the filter. During the alignment, 

a Shack-Hartman wavefront sensor is used after Lens 3 to ensure that the system is afocal. The 

exact EFL of telephoto is determined by dividing the focal length of Lens 3 by the magnification. 

Referring to Fig. 4.2, the alignment uncertainties are primarily from the position of the 

object, filter, and detector. Hence for tolerance analysis, each of these components was separately 

moved from its ideal position over a range of [-8 mm, +8 mm], in steps of 2 mm (only one 
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component was moved at a time while the other components were kept at their ideal positions). 

These longitudinal translations are facilitated by motorized translation stages. 

Figures 4.6(a) and (b) show the wavefront measurement error in relation to variation of the 

object and filter position respectively. The measurement error is quantified as the RMS of the 

difference between wavefront measured at misaligned position and wavefront at ideal position. 

These figures show that the ODWS is tolerant to object and filter position misalignments. The 

maximum RMS error with respect to ideal position is within λ/10 for both phase plates. 

Considering that the range of misalignments ([-8 mm, +8 mm]) is significantly larger than the 

typical uncertainty during alignment, we conclude that this system can tolerate typical 

misalignments of the object and filter positions. Figure 4.7 shows that the wavefront RMS error 

also increases with the misalignment of the detector. It is within λ/12 and λ/20 for a misalignment 

range of [-8 mm, 8 mm] and [-2 mm, 2 mm], respectively.  

Figures 4.6 and 4.7 also show that the measurement of wavefronts with steeper slopes is 

more sensitive to misalignments of the object, filter and detector. Phase plate #2 has higher 

wavefront amplitude (1.6 times) and steeper slope (3.2 times for the maximum slope) at edge 

compared to phase plate #1. It therefore has higher error than phase plate #1. It is noted that the 

detector misalignment data were obtained with a reduced pupil diameter of 17 mm to compare the 

results for the same misalignment range. For a full 20-mm beam, the wavefront measurements 

were not valid when misalignment is larger than +4 mm as the much higher wavefront slope at the 

edge diffracts the beam away.  
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Figure 4.6 RMS difference of wavefront measurements from ideal position when varying (a) the object position, and 

(b) the filter position. 

 

Figure 4.7 RMS difference of wavefront measurements from ideal position when varying the detector position. 

The presented tolerance analysis was performed for component misalignments along the 

optical axis. Object and detector position misalignments in the lateral directions result in transverse 

shifts of the measured fluence profiles. This can be handled during the registration process after 

wavefront reconstruction from the measured fluences. Transverse translation of the filter in the 

direction orthogonal to its gradient has no impact on the ODWS operation because this does not 

modify the modulation induced on the field. Translation of the filter in the direction of the gradient 

introduces a global tilt on the reconstructed wavefront. Such tilt is not a concern for components 

metrology. 

We have also analyzed the wavefront sensing performance of the telephoto ODWS system 

@Zemax optical design software to estimate the effects of tip/tilt misalignments. The peak-to-

valley (PV) and RMS errors in retrieving a test wavefront in the nominal system are 0.0886λ and 

0.0146λ respectively.  For 0.8-degree tip and tilt misalignment in filter, the respective PV and 

RMS errors are 0.0889 waves and 0.0148 waves. For 0.8-degree tip and tilt misalignment in 

camera, the PV and RMS errors are 0.1052 waves and 0.017 waves.  The experimental tilt/tip 
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alignment uncertainty in the filter and camera plane is less than 0.1°, much less than the modeled 

tilt/tip effected. Therefore, the ODWS measurements are tolerant to tip/tilt alignment error of these 

two components.
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Chapter 5 Wavefront sensing using deep learning in nonlinear filter based ODWS  

5.1 Need for nonlinear filter 

We discussed the trade-off between dynamic range and sensitivity in Section 2.5.  A step like filter 

will have maximum sensitivity, this is like a pyramid wavefront sensor. A filter of large width can 

give high dynamic range. A qualitative illustration done in [42] is shown here. Figure 5.1 shows 

the amplitude transmission of filters of three different widths. The spherical phase object in the 

simulation has a far-field of width corresponding to the width of filter-2.  

 

Figure 5.1 Amplitude transmittance of three linear filters. Figure credit [42]. 

Figure 5.2 shows the corresponding fluence images. The contrast is weak for Filter 1 which 

is the low sensitivity case. The contrast is good in the case of Filter 2 because its width corresponds 

matches the far-field. However, Filter 3 is narrower than the far-field; so, the contrast is partially 

enhanced but the image is saturated for the far-field region outside Filter 3 decreasing the dynamic 

range. 
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Figure 5.2 Calculated fluence images for (a) filter 1, (b) filter 2, (c) filter 3 in Fig. 5.1. Figure credit [42]. 

By combining both the step and linear filter, the trade-off between dynamic range and 

sensitivity can be controlled by balancing the relative power of two extreme filters. A nonlinear 

transmission profile with relatively high amplitude transmission gradient near the center of a large 

filter width thus is both sensitive and high dynamic range. The transmission profiles of the binary 

pixelated nonlinear filters investigated in this work are described by [39] 

𝑇𝑥(𝑥, 𝑦) = (
1−𝛽

2
) (1 +

𝑥

𝑊/2
) +

𝛽

1+𝑒
−

2𝑥
𝜎 𝑊

 .    (5.1) 

It is a combination of a linear and a step function where β and σ determine the height and 

width of the step respectively. In this work, we investigate the CNN with three filters (one linear 

and two nonlinear). Figure 5.3 shows the designed transmission and corresponding slope profiles 

where the transmission gradient is in x-direction. The three filters of specifications in Table 5.1 

were designed using the binary pixelated method with 2.5µm size pixels. A design example is 

shown in Fig. 5.4. The nonlinear filters use steep and shallow transmission slopes for low and high 

spatial frequencies respectively. Such general filter profiles can be realized by spatial dithering 

and binary pixelation, however, it has not been investigated for ODWS. When such a non-linear 

transmission modulates the far field, a closed-form analytical solution to relate the fluence images 
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to wavefront slopes cannot be obtained in general, due to infinite number of terms arising from the 

series expansion of a non-linear profile. 

Table 5.1 Amplitude transmission parameters of one linear and two nonlinear filters. 

σ β Transmission Slope at center 

in units of (mm)-1 

 0 Linear filter, slope = 0.05 

0.1 1/4 0.1 

3/4 0.2 

 

 

Figure 5.3 Amplitude transmission and its slope profiles of (a) linear, LF, (b) nonlinear filter 1, NLF1, and (c) 

nonlinear filter 2, NLF2. 

 

Figure 5.4 A design example of binary pixelated non-linear ODWS filter. 
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5.2 Investigation of phase retrieval 

We explored iterative phase retrieval method to retrieve wavefront from fluence 

measurements in ODWS with non-linear filter. It was inspired by the Gerchberg-Saxton algorithm 

[51,52]. In phase retrieval, the goal is to recover the unknown input phase from the ODWS fluence 

measurements for two orthogonal filter transmissions. The input to the algorithm is the amplitudes 

of electric fields at the object plane, filter plane and the image plane. The amplitudes are 

proportional to the square roots of the measured fluences. The algorithm can be described in the 

following steps. An initial estimate of the phase at object plane is done by generating a random 

phase array. This estimated phase along with the measured amplitude forms an estimate of the 

complex electric field at object plane. This field is numerically propagated through ODWS and 

fluence maps are obtained for horizontal gradient filter. The phase computed from the complex 

field at image plane is combined with the measured amplitude. This forms an estimate of the field 

at image plane for the horizontal filter gradient. This field is back propagated to get an estimate of 

the field at filter plane. To get the field just before the filter, the amplitude of the field at back of 

the filter was replaced to be the square root of generated fluence there. This field was again 

propagated to the object plane. The phase computed from this field at object plane is combined 

with the measured amplitude and the aperture constraint, to form a new estimate of the field at 

object plane. This estimated input field is propagated to image plane and then back to the object 

plane though vertical gradient filter in same way to get a new estimate of the input field. The 

extracted phase at object plane is the input to the algorithm for next iteration. After 100s of 

iterations, we compared the retrieved input phase with the ground truth phase we took as input for 

data generation. 
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The algorithm was tested for linear and non-linear filter based ODWS for different 

wavefronts. The results imply that the convergence of the algorithm depends on both the wavefront 

shape and initial guess. The challenge appears to be in the convergence to a solution when the 

initial guess is not close to the solution and in the case of complex wavefront shape. Another 

potential challenge is dividing the filter transmission to get the field just before the filter during 

backpropagation from camera to input plane. The algorithm worked in some cases where the 

aperture constraint is applied and without this constraint the algorithm for same situation did not 

converge to the solution. Here the input amplitude profile used was gaussian; the algorithm should 

also be investigated for top-hat input amplitude profile.  

Next, we decided to investigate an alternative method of using machine learning for 

wavefront reconstruction in ODWS. 

5.3 Convolutional Neural Network for ODWS wavefront reconstruction 

Convolutional Neural Network (CNN)-based approach has attracted interest in image-

based wavefront sensing [53-55]. This data-driven deep learning approach allows to establish the 

complicated nonlinear relations between system inputs and outputs, without knowing the details 

of a physical model of the system. Therefore, it is especially useful in image analysis tasks. CNN 

architecture can be designed to predict spatial phase information [55-58], or coefficients of basis 

functions such as Zernike polynomials and deformable mirror modes [41,53]. The deep-learning-

based wavefront estimation method has been demonstrated to be robust in the presence of noise 

and misalignments in deflectometry and Shack Hartman sensing methods [56,58]. 

For robust phase reconstruction of generally shaped wavefronts (that cannot be described 

by modal coefficients), zonal reconstruction is preferred. This is because it is difficult to accurately 
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train and predict such wavefronts with a CNN architecture that has modal coefficients as output 

[55,58].   

This chapter presents our investigation on CNN for robust phase reconstruction in ODWS 

based on a binary pixelated filter. Figure 5.5 shows the CNN architecture implemented to retrieve 

wavefronts from the ODWS fluence images. The input and output of the CNN are the fluence 

image ratios and corresponding reconstructed input wavefront respectively. The CNN is inspired 

by the U-Net architecture [55-59]. It is trained using mini batches of data.  

 

Figure 5.5 Overall CNN architecture with encoder (blue blocks) and decoder (green blocks) layers for wavefront 

reconstruction from ODWS fluence ratio maps; the number under each block is the depth of the feature maps or the 

number of kernels in that layer. (b) Architecture of an encoder layer. (c) Architecture of a decoder layer. 

The two-channel input (fluence image ratios) of all training samples in the mini batch are 

processed by a series of encoder layers. In Fig. 5.5(a), we have five of the encoder layers, shown 

in blue blocks. Architecture of an encoder layer is shown in Fig. 5.5(b). Let us first consider the 

case of a single training sample, meaning a batch size of one. The convolutional layer in a neural 
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network performs a convolution operation on the input data using learnable filters/kernels. The 

mathematical representation of this operation is as follows: 

𝑂𝑖,𝑗,𝑘 = ∑ ∑ ∑ 𝐼(𝑖+𝑚),(𝑗+𝑛),𝑙
𝐿−1
𝑙=0 · 𝐾𝑚,𝑛,𝑙,𝑘 + 𝑏𝑘

𝑁−1
𝑛=0

𝑀−1
𝑚=0    (5.2) 

where: 

• 𝑂𝑖,𝑗,𝑘 is the element at position (𝑖, 𝑗, 𝑘) in the output feature map. 

• 𝑀 and 𝑁 are the spatial dimensions of the kernel 𝐾. Specifically, we use 𝑀 = 𝑁 = 3. 

• 𝐿 is the number of channels in the input tensor 𝐼. 

• 𝐼(𝑖+𝑚),(𝑗+𝑛),𝑙 is the element at the position (𝑚, 𝑛, 𝑙, 𝑘) in the kernel 𝐾. Note that each kernel 

operates on all of the 𝐿 channels of the input tensor. 

• 𝑏𝑘 is the bias term for the 𝑘-th kernel. 

• The numbers under the blocks (64, 128…) represent the number of kernels (and hence the 

number of output features/channels, also called the depth) of that layer. 

The output feature maps of the convolutional layer are then processed through the average 

pooling. For each 2x2 square in the input feature map, we calculate the average of the numbers in 

that square. However, instead of moving the 2x2 window one step at a time, we move it two steps 

at a time. This skipping is called the "stride". The result is a downsampled output feature map. 

This operation reduces the height and width of the feature maps by factor of two. Pooling layers 

are used to reduce the dimensions of the feature maps by summarizing the features. Hence, it 

decreases the number of parameters to be learned and the computational workload within the 

network.  

The output from the pooling layer is then processed through activation function. The 

purpose is to introduce non-linearity so that CNN can learn complex mapping. Here we use leaky 

rectified linear unit (ReLU) activation. Mathematically, it can be written as follows: 



   

 

 53 

𝑓(𝑥) = {
𝛼𝑥,   𝑖𝑓 𝑥 < 0

𝑥, 𝑖𝑓 𝑥 ≥ 0
        (5.3) 

where 𝛼 = 0.01 is small positive constant. With each consecutive encoder layer, the spatial size 

(height and width) of the feature maps is halved by the average pooling, but the number of feature 

maps are doubled, because the number of kernels is being doubled (64, 128...). 

 After the encoder layers, the feature maps are processed through the decoder layers (shown 

in green blocks). Figure 5.5(c) shows the architecture of a decoder layer. The spatial dimensions 

of the input feature maps are expanded by applying transposed convolutions. Unlike standard 

convolution, which decreases input elements through the kernel, transposed convolution 

broadcasts input elements through the kernel, resulting in an output that is larger than the input. 

As an example, Fig. 5.6 shows how the transposed convolution of a 2x2 input tensor with a 2x2 

kernel is computed to produce a 3x3 output. The weights in the kernel are learnable during the 

training process.  

 

Figure 5.6 Example showing transposed convolution operation. 

The spatial dimensions of the input feature maps are doubled by applying transposed 

convolutions in the decoder layers with appropriate kernel size and stride, while reducing the depth 

by half. For example, the first decoder layer takes in 1024 features and by setting the number of 

transpose convolution kernels to 512, the depth of its output is halved. Then the feature maps from 

the output of different encoder layers are concatenated to the decoder layers (gray arrows) to 

enhance the wavefront reconstruction details. For concatenation, features maps from the encoder 
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layers are first matched to the spatial dimension in decoder layers by average pooling with 

appropriate pooing window and stride. For example, the feature concatenation in the first decoder 

layer produces feature maps of depth 1472 (512 from the transposed convolution and 

concatenation from the encoder layers of depth 64, 128, 256, 512 respectively). The feature 

concatenation is followed by convolution (3×3 kernel) and leaky ReLU operations; here the 

number of convolution kernels is set to produce feature maps of depth equal to the depth of the 

output of the prior transposed convolution (except for the last decoder layer).  

The last decoder layer in Fig. 5.5(a) takes in 64 features maps, the transposed convolution 

operation in it produces 32 feature maps. In this layer there is no concatenation from the encoder 

layers and the convolution operation is set to produce 16 output feature maps or depth. The output 

of this last decoder layer is resized to depth of one by applying 1×1 convolution (indicated as the 

operation in red arrow in Fig. 5.5a). The output represents the reconstructed wavefront map which 

spatial array dimension is same as that of the input fluence ratio maps. 

These weights and biases of all the kernels in all layers of the CNN represent the mapping 

from input to output, and their optimal values would be realized through the training process. CNN 

is trained using mini batches of training samples to achieve faster learning. As shown in Fig. 5.5(b), 

the batch input to the encoder layer is first processed through batch normalization. It scales the 

feature maps of the mini-batch by the mean and standard deviation of the mini-batch. This step 

reduces the problem of the input values changing. It makes them more stable, making the model 

more general. 

We implemented the CNN in the PyTorch framework [60]. The weights and biases are 

randomly initialized and then optimized during the training.  CNN loss function in the form of 

RMS of residual between the ground truth and CNN predicted wavefront is computed. The loss in 
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essence is a function of weights and biases of the CNN. The loss is minimized using the Adam 

optimizer which is based on stochastic gradient descent algorithm. The optimizer updates the 

weights and biases of the CNN based on the gradients of the loss function. A learning rate of 

0.0001 is used that determines the rate of training convergence.  

5.4 Method for beam propagation simulation 

Training CNN requires a large variety of wavefronts and corresponding ODWS fluence images. 

A numerical model was developed to predict fluence images and to simulate the theoretical 

wavefront measurement performance of our experimental ODWS system, shown in Fig. 5.7. The 

pixel size of the realized filter is 2.5-µ𝑚. 

 

Figure 5.7 Telephoto based ODWS system layout. 

 

Table 5.2 Design parameters for an ODWS implemented for CNN training. 

Object distance from Lens-1, 𝑑0 700 mm 

Lens-1 focal length, 𝑓1 200 mm 

Lens-2 focal length, 𝑓2 -25 mm 

Distance between Lens-1 and Lens-2, 𝑑 176.43 mm 

Distance between Lens-2 and filter plane, 𝑘𝑓 − 𝑑 412.06 mm 

Lens-3 focal length, 𝑓3 300 mm 

Distance between filter plane and Lens-3, 𝑎 300 mm 

Detecting plane distance from Lens-3, 𝑏 502.24 mm 

Telephoto EFL, 𝑓 3.5 m 

 

A beam propagation model was developed in MATLAB considering the ODWS design 

parameters as per Table 5.2. The model input considers a top-hat beam of diameter 9.73 mm. The 

input beam is aberrated by pre-specified wavefronts. The simulation grid size is (𝑀x 𝑀 =

215x 215) with sampling interval of ∆𝑥1 = 1.25µ𝑚, the array length, 𝐿1 = 𝑀∆𝑥1 = 41𝑚𝑚, 
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approximately being four times the wavefront measurement aperture which covers ~7780×7780 

samples. The sampling interval is chosen to have four samples (two in one direction) for each of 

the 2.5µm size pixel of the binary pixelated filter. The highest spatial frequency that can be 

modelled is the Nyquist frequency 𝑓𝑁 = 1 ⁄ (2∆𝑥1 )  = 400 
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚𝑚
𝑜𝑟 (400 

𝑤𝑎𝑣𝑒𝑠

𝑚𝑚
). The spatial 

frequency coordinate samples along one axis are 𝑓𝑥1
=

−1

(2𝛥𝑥1)
:

1

𝐿1
:

1

(2𝛥𝑥1)
−

1

𝐿1
, corresponding to the 

source plane coordinate samples, 𝑥1 =
−𝐿1

2
: 𝛥𝑥1:

𝐿1

2
− 𝛥𝑥1. 

  Free-space beam propagation from a source plane (field, 𝑈1) to an observation plane (field, 

𝑈2) at a distance ‘𝑧’, as depicted in Fig. 5.8, can be obtained by using the Rayleigh-Sommerfeld 

diffraction: 

𝑈2(𝑥, 𝑦) = ∬ 𝑈1(𝜉, 𝜂)ℎ(𝑥 − 𝜉, 𝑦 − 𝜂)𝑑𝑥𝑑𝑦                          (5.4) 

where ℎ(𝑥, 𝑦) =
𝑧

𝑗𝜆

𝑒𝑗𝑘𝑟12

𝑟12
2 , 𝑟12 = √𝑧2 + 𝑥2 + 𝑦2  and 𝑘 is the wave number. 

 

Figure 5.8 Propagation geometry for source and observation planes. Figure credit [61]. 

Using Fourier convolution theorem, Eq. (5.4) can be expressed as, 

𝑈2(𝑥, 𝑦) = ℱ−1[ℱ{𝑈1}  ×  𝐻(𝑓𝑥, 𝑓𝑦)],    (5.5) 

where ℱ and ℱ−1 are the Fourier and inverse Fourier transform operation respectively. (𝑓𝑥 , 𝑓𝑦) are 

the spatial frequency coordinates corresponding to the spatial coordinates (𝑥, 𝑦). 𝐻 is the transfer 

function given as 
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  𝐻(𝑓𝑥, 𝑓𝑦) = 𝑒
𝑗𝑘𝑧√1−(𝜆𝑓𝑥)2−(𝜆𝑓𝑦)

2

                                          (5.6) 

The beam propagation model considers the effect of lenses by its phase transmission given as 

𝑒
−𝑗

𝑘

2𝑓
(𝑥2+𝑦2)

, where 𝑓 is the focal length of the lens. 

We designed the binary pixelated filters with width of 20mm and a pixel size 2.5µ𝑚 and 

other parameters as shown in Table 5.1, using the error diffusion algorithm (Section 2.4). Each 

pixel is then resampled to 1.25µ𝑚 by assigning the filter design. This resampled transmission 

profile is loaded into the simulation, which modulates the far-field. One unmodulated and two 

modulated (for orthogonal filter orientations) field are generated which then propagate to the third 

lens. We require the output fluence maps to have spatial resolution ∆𝑥2 = 4.4µ𝑚, which 

corresponds to the CCD pixel size. For the propagation from the third lens to the image plane, we 

use the Fresnel two-step propagator [61] for different step size requirements at the source and 

observation plane as per shown in Fig. 5.9. The source and observation plane side lengths are 𝐿1 =

𝑀Δ 𝑥1,  𝐿2 = 𝑀Δ 𝑥2, where 𝑀 = 215 is the number of samples, ∆𝑥1 and ∆𝑥2 are the respective 

sampling intervals. The field at observation plane can be calculated as: 

𝑈2(𝑥2, 𝑦2) =

 
𝐿2

𝐿1
𝑒𝑗𝑘𝑧𝑒

𝑗
𝑘

2𝑧

(𝐿1−𝐿2)

𝐿2
[−(𝑥2

2+𝑦2
2)]𝐹

−1

{𝑒
𝑗𝜋𝜆𝑧

𝐿1
𝐿2

[−(𝑓𝑋1
2+𝑓𝑌1

2)]𝐹
{𝑈1(𝑥1, 𝑦1)𝑒

𝑗
𝑘

2𝑧

(𝐿1−𝐿2)

𝐿1
[−(𝑥1

2+𝑦1
2)]

}},  (5.7) 

where (𝑓𝑥1
, 𝑓𝑦1

) being the spatial frequency coordinates corresponding to the spatial coordinates 

(𝑥1, 𝑦1).  
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Figure 5.9 Fresnel two-step propagation geometry. Figure credit [61]. 

The ODWS model outputs are the three fluence maps 𝐹0, 𝐹𝑥 ,  𝐹𝑦 corresponding to the 

uniform transmission, horizontal, and vertical gradient filter transmission respectively. After 

propagation, the beam is demagnified by a factor of ~11 and is of size ~0.8 mm. It corresponds to 

192×192 pixels which are cut out for further analysis. 

5.5 Training and testing data generation, and results on simulation data 

The strategy for generating the input wavefront data set is to provide sufficient wavefront 

variability while ensuring the wavefront slopes to be within the dynamic range of the ODWS, 

primarily limited by the proof-of-concept filter width of 2 cm. Ten thousand data sets were created 

for each of the three filters as shown in Fig. 5.3. Figure 5.10 shows the statistics of the 10,000-

wavefront set generated for the training and testing purpose. The peak-to-valley of the input 

wavefronts is between 0 and 10 waves and the maximum slope for each wavefront is between -4.6 

and 4.6 waves/mm. 

 The wavefront data consists of three sets.  Set 1 is created with randomized individual 

fringe Zernike polynomial (𝑍𝑖) and corresponding coefficients (𝑐𝑖), 𝜑(𝑥, 𝑦) = ∑ 𝑐𝑖
37
𝑖=4 𝑍𝑖(𝑥, 𝑦).  

Set 2 is made of combined fringe Zernike polynomials with coefficients chosen from unique 
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normal distributions. Set 3 is the combinations of different Zernike wavefronts and random 

patterns.  

 

Figure 5.10 (a) Peak-to-valley (PV) and (b) wavefront slopes of the wavefront dataset. 

A subset of the wavefront and fluence data (9,000 out of 10,000 pairs), obtained through 

beam propagation, was used to train the CNN. The remaining 1,000 pairs were used as test data to 

evaluate the CNN. Figures 5.11 (a), (b) and (c) show the histograms of the residual wavefronts 

which are the differences between the ground-truth and the CNN predicted wavefronts. The 

analytically reconstructed wavefronts (Eq. (4.14)) were compared to the ground truth to validate 

the beam propagation model, confirming a retrieval accuracy of less than 0.1λ RMS residual (Fig. 

5.11 d). Figure 5.11 further shows that CNN-based wavefront retrievals for the two nonlinear 

filters have the same level of accuracy as the linear filter, with residual wavefronts being less than 

0.1λ (RMS). The CNN is capable of retrieving the wavefront using a nonlinear filter, for which 

there is no analytical solution. The distribution of the residual wavefront (RMS) obtained from the 

analytic equation peaks at 0.05λ while this peak is lower than 0.02λ for the CNN reductions for all 

three filters. This demonstrates that the CNN is statistically a more robust method for ODWS 

wavefront reconstruction, in comparison to the analytic equation. This is because the analytic 

solution assumes slow varying amplitude and the accuracy also depends on the robustness of 

wavefront-slope integration [35, 62]. 
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Figure 5.11 Residual RMS of the 1000 test wavefronts for (a) the linear filter LF, (b) the nonlinear filter NLF1, and 

(c) the nonlinear filter NLF2, retrieved by the CNN and (d) by the analytic equation. 

5.6 Experimental setup for training and testing the developed CNN 

We built an experimental setup as shown in Fig 5.12. This experiment uses the Spatial Light 

Modulator (SLM) that serves as a reconfigurable-CGH-based null in a freeform metrology system, 

developed by Romita et al. at the University of Rochester [9]. An SLM (Meadowlark Optics) with 

1152×1920 pixels and a pitch of 9.2 µm is used to generate the training and test wavefronts. A 

laser beam (632.8-nm wavelength) from a Fizeau interferometer is down collimated by the 2:1 

beam expander so that the beam size fits the short axis of the SLM. The circularly polarized light 

emitted by the interferometer is first converted to linear polarization by a quarter wave plate. Then 

a half wave plate is used to rotate the axis of the linear polarization to align it parallel to the 

extraordinary axis of the SLM. This polarization alignment is critical for minimizing unmodulated 

light. The SLM modulates the wavefront (9.73-mm pupil diameter) of the linearly polarized laser 

beam using birefringence. A tilt carrier (~200 waves) is added to the generated wavefront to 

separate the diffraction orders. The +1 order is used in the system. A standalone ODWS was built 
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using the nominal specifications as per Table 5.2 and was validated using the phase plates 

described in Chapter 4. The reflected +1 order from the SLM is aligned to the ODWS arm through 

the beam splitter. The ODWS camera is positioned at the imaging plane of the SLM; containing 

sharp images of crosshairs displayed on the SLM during alignment.  

  

Figure 5.12 Schematic of the experimental ODWS setup to collect training and testing data. 

We automated the SLM-based wavefront generation and the fluence data acquisition. The 

control loop for the SLM-ODWS is implemented in a Python program. The SLM is configured to 

generate a wavefront using a software operation in Matlab. The ODWS camera is then controlled 

to capture the fluence with certain exposure time. The exposure time is in the order of milli-seconds 

and is automatically scaled during the acquisition to keep the maximum pixel counts to 240 for the 

8-bit camera.  

We measured the SLM-ODWS path reference wavefront, 𝑊𝑠𝑦𝑠,𝑂𝐷  using ODWS with a 

linear filter when no phase modulation is added on SLM except for the tilt. We then add −𝑊𝑠𝑦𝑠,𝑂𝐷 

to the SLM to compensate the reference wavefront. Figure 5.13(a) shows the ODWS path system 

wavefront 𝑊𝑠𝑦𝑠,𝑂𝐷, The astigmatic nature is due to the tilted lens after the Fizeau interferometer 

which avoids the reflected beam back to the interferometer. Figure 5.13(b) shows the ODWS 

reference wavefront when the compensating phase is added on SLM. The ODWS reference after 

the compensation is close to the diffraction limit.  
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Figure 5.13 (a) ODWS path system wavefront, RMS 0.26λ, PV 1.27λ, (b) ODWS reference wavefront after 

compensated by the SLM, RMS 0.03λ, PV 0.36λ. 

5.7 CNN performance on experimental data 

The CNN training was further carried out experimentally, using the setup shown in Fig. 5.12. The 

same set of wavefronts used for theoretical training were created using the SLM, and the 

corresponding fluences were captured at the image plane of the ODWS. The CNN was then trained 

using pairs of fluence ratios (for filters in Fig. 5.3) and wavefronts for the 9,000-training data. To 

make a fair assessment of linear or nonlinear filter based retrieval, ground truth wavefronts in 

training should be used independent of ODWS, for example, calibrating the SLM or measuring 

with another wavefront sensor. In this work, we used the input command wavefront to the SLM 

as the ground truth. Figure 5.14 shows the training as the loss (averaged RMS wavefront residual 

across data) progression with epochs.  

 
Figure 5.14 Loss progression showing CNN training. 

The experimentally trained CNN was evaluated on the 1,000 test wavefronts. For the result 

shown in Fig. 5.15, residual wavefronts have less than 0.02λ RMS for 38.4%, 38.6% and 42.3% 

of the test wavefronts for the linear and the two nonlinear filters, respectively. It shows overall 
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nonlinear filter performs better, meaning that, given same dynamic range, the nonlinear filter 

retrieval appears to be more sensitive. The CNN reconstruction using all three filters [Figs. 5.15(a)-

5.15(c)] has lower residual wavefront RMS than the linear analytic reconstruction [Fig. 5.15(d)], 

following the simulated data trend shown in Fig. 5.11. This provides an experimental validation 

that a CNN can reduce ODWS fluence data with better accuracy than the analytical method. 

Experimentally, the limitation on accuracy is due to detector noise, misalignments, and inaccuracy 

in amplitude transmission with spatial dithered binary pixelated filters. The CNN is much more 

robust to these system imperfections as compared to the analytic equation. Compared to the CNN 

retrievals [Figs. 5.11(a)-5.11(c) and Figs. 5.15(a)-5.15(c)], the accuracy deterioration in the 

experimental condition is much higher for the analytic solution [Fig. 5.11(d) and Fig. 5.15(d)].   

We further plot the relative error, residual RMS/Ground Truth (GT) RMS vs. the Ground 

Truth RMS in Fig. 5.16. We observe a progressive increase in measurement accuracy for the 

wavefronts with low wavefront strengths, corresponding to low spatial frequency, as filters with 

larger center slopes are used for the LF, NLF1 and NLF2, respectively. This demonstrates 

improved measurement sensitivity, without sacrificing the dynamic range by using the nonlinear 

filter profiles. It demonstrates that CNN can retrieve wavefronts accurately across the dynamic 

range and the nonlinear filters show more sensitivity.  
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Figure 5.15 Residual RMS of the 1000 test wavefronts experimentally measured through (a) the linear filter LF, (b) 

the nonlinear filter NLF1, and (c) the nonlinear filter NLF2, retrieved by the CNN and (d) by the analytic equation. 

 

 

 

Figure 5.16 Comparison of the relative CNN reconstruction error of the 1,000 test wavefronts. 
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This is an experimental validation that a CNN can reduce ODWS fluence data, produced 

by binary pixelated filters with generalized transmission profiles, to wavefronts accurately. The 

local transmission slopes of the nonlinear filter shapes can be designed to tune measurement 

sensitivity to meet metrology requirements. 

 We tested the robustness of the CNN in predicting random phase profiles, which cannot be 

described in terms of basis functions such as Zernike coefficients or deformable mirror modes. 

The wavefront shown in Fig. 5.17(a) is a random phase profile which was generated using a 

technique in which the Fourier spectrum of a random number matrix is multiplied with a Gaussian 

filter [63]. The complexity and the slope of the wavefront is adjusted by setting the standard 

deviation of the Gaussian filter. The CNN prediction from the ODWS fluence images and its 

difference with the ground truth are plotted in Figs. 5.17(b) and 5.17(c) respectively. This result 

indicates that the CNN architecture is capable of predicting the complex shapes that can be present 

in astronomical imaging and biological samples. 

 

Figure 5.17 CNN performance on a random pattern wavefront: (a) Analytic reconstruction (PV: 1.16λ, RMS: 0.15λ); 

(b) CNN prediction (PV: 1.14λ, RMS: 0.15λ); (c) Residual (RMS: 0.02λ). 
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Chapter 6 Subaperture stitching of wavefronts 

There are potentially three benefits of subaperture stitching with ODWS. First, when measuring 

optical phase components of aperture larger than the ODWS diagnostic aperture, several 

measurements over the diagnostic aperture can be stitched to obtain the full aperture wavefront.  

The second potential benefit of subaperture stitching is to avoid the effect of any local surface tilts 

in a freeform surface which otherwise leads to extended far-field and thus reduces the dynamic 

range. This local tilt can be cancelled by aligning the subaperture containing the local surface tilt 

such that it is perpendicular to the beam path. Then the subapertures can be stitched and local tilts 

will be computed. The third potential benefit of stitching is that the accuracy of ODWS increases 

with decreasing aperture size for a fixed ODWS filter pixel size. This is because of more sampling 

points in a larger focal spot in the filter plane. Then the accurately measured subapertures can be 

stitched to characterize over full aperture size. 

6.1 Simulation of stitching algorithm 

The subaperture stitching methods have been investigated for stitching interferometry [64,65], null 

based interferometry [66] and scanning Shack Hartman wavefront sensor [67] in literature. The 

algorithms are based on the least square solution to determine misalignments of subapertures and 

include higher complexities specific to the measurement method. In this work, we consider ideal 

wavefront measurement condition and implement the algorithm described in [65]. 

The subaperture measurements can be performed by moving the sample on a translation 

stage in lateral directions to cover the full aperture. The translation stage can move laterally with 

incremental movement of less than 1µm, which is less than the lateral resolution of ODWS (~50 

µm). Therefore, the error of lateral position can be ignored. Error from tip/tilt and displacement 
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along optical axis (piston) are of concern and need to be corrected during stitching. To correct 

these errors, ODWS measurements will be conducted in a way that the adjacent subapertures have 

overlapping areas. Then the subapertures will be stitched such that difference in phase distribution 

in the common area is minimum. 

Let there be two subaperture areas  𝐴 and  𝐴′ with coordinates (𝑥, 𝑦) and (𝑥′, 𝑦′) 

respectively as shown in Fig. 6.1. If (𝑥0, 𝑦0) is the shift of origin of between the two subapertures, 

then 𝑥 = 𝑥′ + 𝑥0and 𝑦 = 𝑦′ + 𝑦0. Let the wavefront of the two subapertures be 𝜑(𝑥, 𝑦) and 

𝜑′(𝑥 − 𝑥0, 𝑦 − 𝑦0), respectively.  

 

Figure 6.1 Two subapertures A and A' having overlapping are measured. 

Considering wavefront of subaperture 𝐴 as a standard measurement, the relation between 

𝜑 and 𝜑′in the overlapping area of 𝐴 and 𝐴′satisfies the following, 

         𝜑(𝑥, 𝑦) = 𝜑′(𝑥 − 𝑥0, 𝑦 − 𝑦0) + 𝑎𝑥 + 𝑏𝑦 + 𝑐                                      (6.1) 

where, 𝑎 and 𝑏 are coefficients of tip and tilt errors, and 𝑐 is the piston error in measuring 𝜑′. 

These errors can be minimized by finding the coefficients of tip/tilt/piston and correcting the 

wavefront accordingly. The coefficients can be found by minimizing the sum of the squared 

difference of the phase distributions in the overlapping area of two subapertures: 

Minimize:           ∑{𝜑(𝑥, 𝑦) − [𝜑′(𝑥 − 𝑥0, 𝑦 − 𝑦0) + 𝑎𝑥 + 𝑏𝑦 + 𝑐]}2   (6.2) 

Differentiating Eq. (6.2) with respect to (𝑥, 𝑦), the following relation can be obtained:          
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                                             [

∑ 𝑥(𝜑 − 𝜑′)

∑ 𝑦(𝜑 − 𝜑′)

∑(𝜑 − 𝜑′)
] = [

∑ 𝑥2 ∑ 𝑥𝑦 ∑ 𝑥

∑ 𝑥𝑦 ∑ 𝑦2 ∑ 𝑦
∑ 𝑥 ∑ 𝑦 𝑛

] [
𝑎
𝑏
𝑐

],                                    (6.3) 

where 𝑛 is the number of sampling points in the overlapping area. From Eq. (6.3), the misalignment 

coefficients can be obtained as:  

                                            [
𝑎
𝑏
𝑐

] = [

∑ 𝑥2 ∑ 𝑥𝑦 ∑ 𝑥

∑ 𝑥𝑦 ∑ 𝑦2 ∑ 𝑦
∑ 𝑥 ∑ 𝑦 𝑛

]

−1

[

∑ 𝑥(𝜑 − 𝜑′)

∑ 𝑦(𝜑 − 𝜑′)

∑(𝜑 − 𝜑′)
]                                    (6.4) 

In the simulation in MATLAB, a full aperture freeform wavefront of dimension 12 mm × 

12 mm as shown in Fig. 6.2(a) was divided into 2 x 2 square subaperture arrangement as shown in 

Fig. 6.2(b), not to scale. 

 

Figure 6.2 (a) Nominal full aperture freeform wavefront with full area of 12 mm x 12mm: Peak-to-valley (PV) 

12.2λ, Root-mean-square (RMS) 1.65λ, λ=633nm. (b) Arrangement of 2 x 2 measurement areas of overlapping 

subapertures A1, A2, A3 and A4, (not to scale). 

The wavefront was divided such that the overlapping area between two subapertures is 

50% of a subaperture. The subaperture 𝐴1 was taken as standard. The nominal subapertures are 

shown in Fig. 6.3. Alignment errors i.e., piston, tip and tilt of different amplitudes were added to 

subapertures 𝐴2, 𝐴3 and 𝐴4. The misaligned subapertures are shown in Fig. 6.4. Alignment errors 

added exceed the nominal wavefront as seen from the scale in color bar (PV of A2: ~50λ in Fig. 

6.4 vs ~3λ in Fig. 6.3).  
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Figure 6.3 Nominal subapertures extracted from full aperture wavefront of Fig. 6.2(a). Area overlap between two 

subapertures is 50%. 

 

Figure 6.4 Subapertures after piston, tip and tilt misalignments added to A2, A3 and A4. Alignment errors added 

exceed the nominal wavefront as seen from the scale in color bar. 

For each overlapping region, the data of phase distribution, spatial coordinates and number 

of sampling points were extracted and used to solve for the coefficients of alignment errors of each 

misaligned subaperture using Eq. (6.4). Then the subapertures were aligned using the retrieved 

coefficients of misalignment and stitched to get full aperture wavefront map. We followed a 

sequential stitching of two subapertures by stitching the subapertures pairs in the order (𝐴1, 𝐴2), 

(𝐴2, 𝐴3) and (𝐴3, 𝐴4). 𝐴2 can be aligned with respect to 𝐴1(standard) and then 𝐴2 becomes the 
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standard for 𝐴3. The result in Fig. 6.5 demonstrates that the subapertures are stitched accurately 

and the exact wavefront as the original one was produced. This process can be extended to 

subaperture arrangement of 3 × 3 and so on. 

 

Figure 6.5 Comparison between nominal and stitched wavefront inside pupil of 12 mm diameter: (a) Nominal 

wavefront PV 3.86λ, RMS 0.71λ (b) Stitched wavefront PV, 3.86λ RMS 0.71λ (c) Difference PV 0λ, RMS 0λ.  
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Chapter 7 Conclusion and future direction 

We have demonstrated the first high-performance Optical Differentiation Wavefront Sensor 

(ODWS) based on spatially dithered binary pixelated filters towards freeform metrology. Its 

performance in freeform phase plate measurement is compared to that of a commercial scanning 

low-coherence interferometer, and shows excellent agreement. The accuracy in comparison and 

precision have been determined to be ~ λ/10 (RMS) and ~ λ/70 (RMS), respectively. We 

experimentally demonstrated that the dynamic range can be increased via tailoring the filter width 

or focal length of the imaging system. Though coordinate-based scanning techniques can measure 

high surface slopes, ODWS has the advantage of short measurement times. Coordinate-based 

measurements typically have micron-level precision. Our ODWS demonstration has shown 

precision of λ/70 that is comparable to nanometer level precision in interferometry. Simulations 

that include the photodetection noise and the far-field filter nonlinearity demonstrate the impact of 

these parameters and the general robustness of the ODWS.  

 We have formulated the concept of a compact ODWS based on a telephoto configuration 

and experimentally demonstrated wavefront retrieval with such diagnostic based on spatially 

dithered binary pixelated filters. The ODWS measurements of phase plates are consistent with 

those from a commercial scanning low-coherence interferometer. The total system length is five 

times shorter than a 4𝑓 ODWS system of identical effective focal length, yet allowing for accurate 

metrology of free-form optics. We have shown experimentally that the demonstrated ODWS has 

an alignment tolerance, rendering accurate measurements, that can easily be met in practical 

conditions. This novel implementation of an ODWS with a telephoto-lens expands the domain of 

applicability for this technique. 
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We demonstrated that CNN can be a robust wavefront reconstructor when ODWS is 

employed with pixelated linear and nonlinear filters, allowing for high dynamic range, high 

sensitivity and high-resolution wavefront sensing. We developed a numerical beam propagation 

model to facilitate the theoretical training of a CNN. The CNN architecture reconstructs the 

wavefront in a zonal manner from the ODWS fluences. It was also found that this architecture 

retrieves wavefront with better accuracy than that of a CNN producing wavefront modal 

coefficients. We further demonstrated an SLM wavefront generator with ODWS to perform 

experimental training and testing. The CNN was separately trained from scratch with simulation 

and experimental data. For both cases, a typical residual of less than 0.05λ was achieved. We 

achieved improved sensitivity within a fixed dynamic range, overcoming the tradeoff between 

dynamic range and sensitivity. 

We tested a subaperture stitching algorithm to sense a wavefront that is larger than the 

ODWS diagnostic aperture. The algorithm recovers the full wavefront exactly using the 

overlapping measurement area of the misaligned subaperture measurements.  

The main advantages of the ODWS are its scalable dynamic range and the intrinsic high 

resolution compared to other wavefront sensors. As an example, a commercial Shack Hartman 

sensor WFS20-5C from Thorlabs has microlenses of diameter 150-μm, focal length of 4.1 mm and 

wavefront diameter of 5.4-mm. When measuring a beam/object with 20-mm diameter, considering 

the magnification factor of 3.7, the expected spatial resolution and dynamic range for wavefront 

slope will be 555.6-μm and ±7.6 waves/mm, respectively. For comparison with the implemented 

telephoto ODWS system for measuring the same 20-mm beam, the expected ODWS spatial 

resolution and dynamic range are 50.2-μm and ±11.5 waves/mm, respectively when the filter width 

is increased to 5-cm. The spatial resolution is less than one tenth and the dynamic range is 1.5 
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times that of the expected values from the Shack Hartman sensor. If the beam size is reduced, the 

ODWS dynamic range will be further increased proportionally because the effective focal length 

can be reduced by the same factor. Furthermore, commercial lithography allows for scaling the 

filter width to the level of tens of centimeters, if needed. For a filter size of 10-cm, the expected 

spatial resolution and dynamic range are 50.2-μm and ±23 waves/mm, which is significantly 

higher than what a Shack Hartman sensor can offer. 

In the future perspective, the calibration of the image sensor can be done to account for any 

nonlinearity and nonuniform response. Improvements in the wavefront slope integration algorithm 

can be further investigated. For CNN based retrieval, the experimental efficiency can be further 

improved by transferring the ODWS-simulation-trained CNN parameters, such as weights for fine 

tuning the experimental data. Further, the experimental ground truth can be characterized with 

another wavefront sensor. The subaperture stitching algorithm can be further investigated by 

propagating and retrieving the subaperture wavefronts through ODWS model. In simulation, more 

uncertainty such as noise and other misalignment errors can be included to study impact on 

stitching accuracy. Then the algorithm can be tested in experimental condition. The scalability of 

ODWS for more complex wavefronts that require further high dynamic range and high resolution 

measurement can be investigated further by implementing filters of larger width and focusing lens 

with shorter focal length and optimizing experimental system parameters. 
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