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Abstract

The emergence of large, general-purpose foundation models has sparked
significant interest in the broader machine learning community. Among the
many models being released, the Segment Anything Model (SAM) has demon-
strated exceptional capabilities for object segmentation in various settings.
Given its expansive training data, SAM has been used for image segmenta-
tion across various downstream tasks ranging from tumour segmentation to
aerial object detection. However, the majority of pretraining data used by
SAM consists of naturally-occurring images, which have significantly different
characteristics from images of tumours or images taken by drones. In order to
align SAM to these previously unseen domains, we need to fine-tune the model
to leverage its prior knowledge and learn generalizable features from newer im-
ages to increase performance on a given target dataset. However, given the ex-
tremely large size and number of parameters, traditional fine-tuning methods
are too costly to be applied to foundation models such as SAM. To overcome
this limitation, a new family of methods known as Parameter-Efficient Fine-
Tuning (PEFT) techniques have emerged to effectively and efficiently tailor
these large models to application domains outside their training data. While
there has been considerable research on developing new PEFT techniques,
different methods modify the representation of a model differently, making it
a non-trivial task to select the most appropriate method for a particular do-
main of interest. To this end, we propose a new framework, Mixture-of-PEFTs
(MoPEFT), that is inspired by tradition Mixture-of-Experts (MoE) method-
ologies and use it to fine-tune SAM. Our MoPEFT framework incorporates
three different PEFT techniques as submodules and learns to dynamically ac-
tivate the ones that are best suited for a given data-task setup. We test our
method on the Segment Anything Model across 22 different datasets spread
over 5 domains and show that MoPEFT consistently outperforms other fine-
tuning methods on the MESS benchmark.
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Chapter 1

Introduction

1.1 Introduction

The machine learning research community has witnessed an explosion in the
development of foundation models for language and vision, such as CLIP [34],
GPT-4 [1], PaLM [4] and the Segment Anything Model (SAM) [14]. SAM is a
promptable model for image segmentation that is pretrained on over 1 billion
masks and 11 million images. It has demonstrated performance comparable
to state-of-the-art approaches in multiple applications related to segmentation
tasks. Moreover, SAM’s zero-shot and few-shot capabilities have garnered
significant attention across multiple domains [13, 52]. However, prior works
[25, 29] have shown that despite noteworthy proficiency in segmenting real-
world objects in natural images, SAM has difficulty with objects outside its
training domain.

Following the pretraining-fine-tuning paradigm [38, 50], it is desirable to
fine-tune SAM in order to enhance its performance in the application domain
of interest. However, fine-tuning foundation models can be costly due to their
large number of parameters. This motivates the development of efficient fine-
tuning methods with the goal of achieving comparable performance to full fine-
tuning while employing as few trainable parameters as possible. Interest in
Parameter-Efficient Fine-Tuning methods (PEFT) has increased significantly
since the advent of foundation models [8, 12,15,32].

Recent studies [7, 16] have shown that some PEFT methods are more ef-
fective at fine-tuning with the objective of reducing overfitting on the target
domain, especially in data-sparse environments. However, we find that com-
bining different PEFT methods often yields better results without a substan-
tial loss in efficiency. This is because different techniques operate on different

1



CHAPTER 1. INTRODUCTION 2

parts of the transformer architecture, making it possible to utilize more than
one technique at a time. We also run additional experiments on object detec-
tion tasks, and find a similar, recurring problem. More details can be found
in Appendix A.

In light of this, we propose a new framework, called Mixture-of-PEFTs
(MoPEFT), that incorporates different PEFT methods as submodules and
learns to dynamically activate the fine-tuning method(s) that best suit the data
or task of interest. Inspired by the Mixture-of-Experts approach [18, 28, 33],
MoPEFT switches between different PEFT methods using a gating mechanism
that learns to favor the method that positively contributes to a given task. In
addition, since the number of parameters introduced by each PEFT is very
small, compared to the entire SAM architecture, combining multiple PEFT
methods has little effect on the efficiency of our framework. In this thesis, we
consider the three most commonly used PEFT techniques- Low Rank Adapta-
tion (LoRA) [8], Prefix Tuning [12], and Adapters [7]. Our experiments shed
light on the effectiveness of these methods across segmentation tasks in multi-
ple domains, and demonstrate gains when combined together in our MoPEFT
framework.

1.2 Thesis Contributions

The contributions for this thesis can be outlined as follows:

• We conduct a comprehensive survey of the widely-used PEFT methods
and benchmark their performance across segmentation tasks in multiple
domains.

• We introduce our MoPEFT framework, which incorporates multiple
PEFT methods as submodules and learns to dynamically activate or
deactivate the appropriate submodule based on the given task.

• We show that our MoPEFT framework achieves better performance than
individual PEFT methods across multiple domains in the MESS bench-
mark.

1.3 Motivation

Image segmentation is a fundamental task in computer vision and plays an
important part in a significant number of applications across varied domains
ranging form tumour segmentation in medical images to object identification
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for autonomous driving. However, given the breadth of domains and the
amount of differences (both coarse and fine-grained) in their constituent im-
ages, it is necessary to have a model that can adapt to these changes without a
reduction in performance. While there have been recent advances in creating
large, ’foundation’ models which specialize in a singular domain, it is extremely
tough and costly to adapt these models to newer domains. This led to a new
area of fine-tuning, known as Parameter-Efficient Fine-Tuning (PEFT) which
uses specific techniques that effectively adapt these large models to unseen
domains in a cost-efficient way. However, there has been significant debate on
which PEFT method to use for a particular domain, since different methods
show varying performance and there is no one-size-fits-all technique that can
be applied in any given scenario. This thesis addresses this issue by taking the
three broad categories of PEFT methods and combining them into one dy-
namic framework. Our proposed MoPEFT method leverages the best parts of
all constituent PEFT techniques and surpasses their individual performance.

1.4 Document Structure

The rest of the document is structured as follows: Chapter 2 discusses the
background material and contains an overview of related works in fine-tuning
and foundation models. Chapter 3 covers our proposed methodology and
provides the fundamental intuitions behind the implementation. Chapter 4
presents an overview of the MESS benchmark, which is the collection of
datasets spread across different domains that we use as our test-bed, and
provides practical details on implementation. It also presents our results com-
pared to current state-of-the-art mechanisms, and also discusses different ab-
lation studies that we ran. Finally, Chapter 5 contains our concluding remarks
and provides possibilities for future works.



Chapter 2

Background

2.1 Segment Anything Model

We begin by describing the architecture and workings of the SAM in more
detail. These provide a better insight into the intricacies of the model, which
set the stage for our parameter-efficient fine-tuning techniques. The Segment
Anything Model [14] is a large-scale segmentation model released by Meta
in April 2023. It deals with the concept of promptable segmentation, which
translates the idea of prompting from NLP to panoptic segmentation. In
the case of SAM, a prompt can be a set of foreground/background points, a
rough box or mask, free-form text, or, in general, any information specifying
a region-of-interest within an image. The goal of SAM is then to return a
valid segmentation mask given any prompt. The requirement of a valid mask
refers to the fact that even when the prompt is ambiguous or referring to
multiple objects, the generated mask must reasonably segment at least one of
those objects. The introduction of this promptable segmentation task allows
it to be used as both a pretraining objective and to solve general downstream
segmentation tasks using prompt engineering.

SAM consists of three main components: a large-scale image encoder, a
prompt encoder, and a lightweight mask decoder. The image encoder utilizes
a pretrained Vision Transformer (ViT) to process high-resolution inputs and
produces feature maps at a 1/16 scale of the original image. The prompt en-
coder enables region-of-interest selection using sparse prompts (points, bound-
ing boxes), dense prompts (masks) or text prompts. Both encoders feed into
the mask decoder, which updates the image and prompt embeddings through
a cross-attention mechanism. Following the standard implementation of SAM,
for the purposes of our experiments, we rescaled all our inputs to 1024×1024.

4



CHAPTER 2. BACKGROUND 5

Figure 2.1: The Segment Anything Model [14].

Since the image encoder outputs a 16× downscaled embedding, we obtain a
64× 64 vector which is passed through a 1× 1 and a 3× 3 convolutional layer
to reduce the channel dimension. Every convolutional layer is followed by a
LayerNorm layer to enable layer normalization.

While multiple variants of SAM were released based on different sizes of
the image encoder, our experiments in this study are based on the ViT-B/16
version, keeping in mind the significant computational costs incurred during
fine-tuning.

2.2 Parameter Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) methods aim to minimize the com-
putational and memory requirements incurred during fine-tuning by selectively
updating only a small subset of model parameters, while keeping the majority
frozen. PEFT techniques originally gained popularity in the Natural Language
Processing (NLP) domain after being used to align large language models
(LLMs) to specific domains [26,48]. These techniques have also proven useful
in the visual domain [37], and have been adapted to enhance the performance
of Vision Transformers under domain shifts [3, 12].

PEFT encompasses methods such as adapter-based techniques [7], prompt-
driven fine-tuning [15, 16], and low-rank adaptation (LoRA) [8]. In our work,
we focus on dynamically incorporating all three PEFT techniques into SAM
to improve its performance on semantic segmentation tasks. We explain all
three techniques in greater detail in Section 3.2.
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Figure 2.2: An overview of the PEFT methods used in our MoPEFT frame-
work: (a) Low Rank Adaptation (LoRA) [8], (b) Prefix Tuning [16], and (c)
Bottleneck Adapters [7].

2.3 Mixture-of-Experts

Mixture-of-Experts (MoE) is designed to expand model capacity while intro-
ducing minimal overhead during training and inference. A traditional MoE
architecture [18] maintains a set of experts (neural networks) and one or more
trainable gates that select a combination of experts specific to each given in-
put. Despite being conceptually similar, this work does not aim to improve
traditional MoE architectures. We only mirror the original goal of MoE in our
work, expanding model capacity without excessively increasing computational
overhead. A major difference between MoPEFT and MoE is that the submod-
ules in MoPEFT are not combined explicitly by summation like conventional
MoE, but in sequential order. This causes them to affect each other implicitly.



Chapter 3

Mixture-of-PEFTs
(MoPEFT)

We now present the details of our proposed MoPEFT framework. We set up
a foundation for the framework by defining the task at hand, giving a deeper
overview into how each of the PEFT techniques work, and outlining how they
are integrated into our unified framework.

3.1 Task Formulation

We consider a very large model M , which cannot be efficiently fine-tuned due
to computational costs, and assume we have a collection of PEFT methods
FT = {ft1, ft2...ftn} with negligible trainable parameters compared toM , i.e.∑n

i=1 |fti| << |M |. Here, | ◦ | denotes the number of trainable parameters for
a given model or fine-tuning technique. Our goal is to design a framework that
incorporates {ft1, ft2...ftn} as individual, independent submodules and learns
to dynamically activate different fti based on different data-task scenarios.
This would ensure that a singular framework would be capable of achieving
optimal results in terms of both accuracy and efficiency without permuting
through all data-task combinations for every datapoint.

3.2 Parameter-Efficient Fine-Tuning Methods

In this section, we provide a brief overview of the PEFT techniques used in
our framework and how they align the image encoder to the target dataset.
A pictorial representation of each of the PEFT techniques can be found in

7



CHAPTER 3. MIXTURE-OF-PEFTS (MOPEFT) 8

Figure 2.2.

3.2.1 Low Rank Adaptation (LoRA)

Low Rank Adaptation (LoRA) [8] exploits the low rank structure inherent in
deep learning models to align them to specific tasks. With LoRA, we adapt
SAM by updating the parameterized weight matrices of the multi-head self-
attention (MHSA) mechanism within each transformer block in the image
encoder. The pretrained weight matrix W0 ∈ Rd×k is updated as W0 +∆W ,
where ∆W ∈ Rd×k is a low-rank matrix decomposed as ∆W = BA. Here,
B ∈ Rd×r, A ∈ Rr×k and the rank r << min(d, k). During fine-tuning, the
pre-trained weights remain frozen, and ∆W serves as the trainable parameter.
The decomposition of ∆W = BA as a product of two low-rank matrices
effectively reduces the memory and computational cost of fine-tuning.

Figure 3.1: A pictorial representation of fine-tuning using Low Rank Adapta-
tion (LoRA) [8].

For a SAM image encoder (a ViT-B/16 model) represented as Ei containing
l transformer blocks, we can define the LoRA process on each block as follows.

h = W0x+∆Wx = W0x+BΛA (3.1)
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where W0 represents the pretrained weight matrix, x denotes the input for
each transformer block, and h represents the output. ∆W represents the
parameterized weight matrix with B and A representing the left and right
singular values of ∆W , while the diagonal matrix Λ contains singular values
λi(1≤i≤r). This restructures the attention process as follows

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.2)

where (ignoring
√
dk as a scaling parameter)

Q = (Wq +AqΛqBq)x

K = Wkx

V = (Wv +AvΛvBv)x

(3.3)

We preserve the original projection weight matrices Wq,Wk, and Wv as frozen
while Aq,Λq, Bq, and Av,Λv, Bv serve as adaptable LoRA parameters.

3.2.2 Prefix Tuning

Prefix Tuning [16] prepends a number of tunable, task-specific vectors to the
input of the multi-head self-attention in each transformer block, whose orig-
inal tokens can attend to as if they were virtual tokens. This method was
originally developed for natural language processing and was eventually ex-
tended to vision applications as Deep Visual Prompt Tuning (VPT-Deep) [12].
We use VPT-Deep for all our experiments and call it Prefix Tuning to main-
tain uniformity with literature in the field. We denote the original sequence
length L0, the number of tunable vectors (i.e., prefix length) as L, and the
Transformer layer input as hin ∈ RDhidden×L0 . First, three linear projec-
tions, WQ,WK ,WV ∈ RDhidden×Dhidden transform hin into Query (Q), Key
(K), and Value (V ) matrices. The two prefix matrices PK ∈ RDhidden×L

and PV ∈ RDhidden×L are pre-pended to K and V . The prefix matrix P is
reparametrized by a feedforward network to stabilize the optimization proce-
dure.

3.2.3 Adapters

Adapters [7] align the model to the target task by adding a trainable MLP
after the feedforward layer in each Transformer block. The MLP consists
of a down+up projection that condenses and recovers the size of the origi-
nal hidden token space. This is better represented pictorially in Figure 3.3.
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Figure 3.2: A pictorial representation of fine-tuning using Prefix Tuning [16].
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Mathematically, we can denote the Adapter operation as

ZA = W T
1 ϕ(W T

2 ZFN ) (3.4)

where, W1 ∈ RDhidden×Dmid ,W2 ∈ RDmid×Dhidden . Here, Dhidden represents
the hidden token space in the Transformer block, and Dmid represents the
condensed embedding space of the Adapter MLP. ZFN is the output of the
feedforward network of the Transformer block after the residual connection
and the layer normalization steps.

Figure 3.3: A pictorial representation of fine-tuning using Adapters [7].
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3.3 Proposed Method

3.3.1 Intuition

During the analysis of individual PEFT methods, we observed that differ-
ent methods often involve different parts of the Vision Transformer model in
the image encoder of SAM. For instance, Adapters add an MLP after the
feedforward layer in each Transformer block, while Prefix Tuning prepends
tunable tensors before the multi-head self-attention layers. This unique prop-
erty makes it possible to essentially combine multiple PEFT techniques in the
proposed framework without interfering with each other.

Keeping the above in mind, we propose a unified MoPEFT framework
which takes a hybrid approach by incorporating multiple PEFT methods as
submodules. At a high level, MoPEFT shows better performance than its
individual components due to two main reasons. Firstly, MoPEFT learns
to dynamically access individual submodules based on the given task. This
means that for a given data-task sample, a particular PEFT method may be
allotted different weights or turned off entirely to ensure optimal performance
in all cases. Secondly, we find that our MoPEFT framework generally outper-
forms the best-performing individual PEFT technique in multiple domains,
suggesting that there may be benefits due to compounding effects that lead
to better model effectiveness, as multiple PEFT techniques are used together.
We show how we incorporate these different techniques under one framework
in the next section.

3.3.2 Gating Mechanism

To achieve fine-grained control over the activation of the individual PEFT
techniques that make up our MoPEFT framework, we take inspiration from
current Mixture-of-Experts (MoE) methods [18,36,46]. Similar to the Sparsely-
Gated-MoE method [42], we add a gating mechanism that dynamically links
different PEFT methods to the relevant layers in the image encoder of SAM.
As depicted in Figure 4.1, we add three trainable gates, one for each PEFT
technique. Intuitively, if a particular PEFT technique is useful for a given
data-task setup, then the output of the corresponding gate would be set to
high. This would ensure that the specific PEFT plays a more important role
during the execution.

For LoRA, our gate is not added directly in the form of the traditional MLP
architecture as seen in MoE literature. Instead, we make use of the inherent
scaling factor, α already present in the LoRA architecture as a pseudo-gating
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mechanism. A higher α assigns more weight to the LoRA activations, while
a lower α makes the effect of LoRA negligible. Thus, we already have a
gating mechanism in place. To integrate this with our broader framework, we
make the scaling factor learnable by using a feedforward network instead of
specifying the constant manually.

For Prefix Tuning, we design a gating function GP ∈ (0, 1) that is applied
to the Prefix vectors PK and PV keeping the representations of the original Key
and Value tokens K and V intact. GP is estimated using another feedforward
network which takes in the input provided to the specific ViT layer.

For Adapters, we make use of the residual connection between the Adapter
MLP and the feedforward network of the ViT Transformer block. This connec-
tion is responsible for summing up the input to the Adapter MLP. Our Adapter
Gating Function GA ∈ (0, 1) estimates the importance of the Adapter MLP
using a feedforward network with sigmoid activation. The Adapter MLP is
essentially bypassed if GA = 0.
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Figure 3.4: An overview of the proposed MoPEFT framework



Chapter 4

Experimental Results

We provide a brief overview of the MESS benchmark that was used for our
evaluation and the implementation details. Following that, we compare our
method with other PEFT techniques and individually analyze the significance
of each technique and the gating mechanism.

4.1 Datasets

We employ the Multi-domain Evaluation of Semantic Segmentation (MESS)
benchmark [2], which measures the mIOU score of models performing semantic
segmentation tasks on 22 datasets spread across five major domains- General,
Earth Monitoring, Medical Imaging, Engineering, and Agriculture and Biol-
ogy. The collection of these datasets cover a variety of applications and allow
us to conduct a holistic evaluation of our method in multiple domain-specific
applications.

4.1.1 The MESS Benchmark

Inspired by the HELM Benchmark [17] proposed for the evaluation of large
language models, Blumenstiel et al. proposed the Multi-domain Evaluation for
Semantic Segmentation (MESS) [2] benchmark for zero-shot semantic segmen-
tation tasks. It reveals the various challenges for the application of zero-shot
semantic segmentation on domain-specific datasets, such as sensitivity to se-
mantic prompts and label specificity across different domains. The authors of
the MESS benchmark originally formulated a taxonomy over 120 datasets by
specifying meta-characteristics and identifying visual characteristics of down-
stream tasks influencing the performance of zero-shot semantic segmentation

15
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Domain Dataset Sensor Type Segment Size Number of Classes Class similarity

General BDD100K [53] Visible Spectrum Medium 19 (Medium) Low
Dark Zurich [39] Visible Spectrum Medium 20 (Medium) Low
MHPv1 [27] Visible Spectrum Small 19 (Medium) High
FoodSeg103 [49] Visible Spectrum Medium 104 (Many) High
ATLANTIS [30] Visible Spectrum Small 56 (Many) Low
DRAM [19] Visible Spectrum Medium 12 (Medium) Low

Earth iSAID [47] Visible Spectrum Small 16 (Medium) Low
Monitoring ISPRS Postdam [10] Multispectral Small 6 (Few) Low

WorldFloods [24] Multispectral Medium 3 (Binary) Low
FloodNet [35] Visible Spectrum Medium 10 (Few) Low
UAVid [22] Visible Spectrum Small 8 (Few) High

Medical Kvasir-Instr. [11] Visible Spectrum Medium 2 (Binary) Low
Imaging CHASE DB1 [40] Microscopic Small 2 (Binary) Low

CryoNuSeg [23] Microscopic Small 2 (Binary) Low
PAXRay-4 [41] Electromagnetic Large 4x2 (Binary) Low

Engineering CorrosionCS [6] Visible Spectrum Medium 4 (Few) High
DeepCrack [20] Visible Spectrum Small 2 (Binary) Low
PST900 [43] Visible Spectrum Medium 5 (Few) High

Agriculture ZeroWaste-f [5] Electromagnetic Small 5 (Few) Low
and Bio SUIM [9] Visible Spectrum Medium 8 (Few) Low

CUB-200 [45] Visible Spectrum Medium 201 (Many) High
CEFID [51] Visible Spectrum Small 3 (Few) High

Table 4.1: Multi-domain benchmark (MESS) for zero-shot semantic segmen-
tation models consists of 5 sensor types, different segment mask sizes and a
total of 448 classes [2]

models. They then refined this taxonomy in multiple empirical-to-conceptual
iterations and selected a representative set of datasets to make the benchmark
informative, reproducible, and manageable. These datasets cover a variety of
applications, resulting in a holistic evaluation of domain-specific applications.

We provide a short introduction of each dataset as follows: The Gen-
eral datasets include datasets with everyday scenes but are limited to more
specific use-cases and niche image themes compared to standard image evalu-
ation datasets. More specifically, the general domain focuses on driving (both
during day and night time), food, and images of body parts. The Earth Mon-
itoring datasets include iSAID [47] which consists of 15 object categories pho-
tographed through satellites. ISPRS Potsdam [10] and WorldFloods [24] are
responsible for providing multispectral data and the authors employ IRRG
false color mapping for their main evaluation. To maintain consistency, we
replicate these settings for our work as well. Finally, UAVid [22] and Flood-
Net [35] are drone datasets that cover urban scenes. The Medical Imaging
datsaets cover four different modalities within medical images itself- RGB im-
ages, whole slide imagery, retinal scans, and X-Ray scans. The benchmark also
includes four different Engineering datasets. CorrosionCS [6] consists of close-
up images of different stages of corrosion on bridges and other buildings. Sim-
ilarly, DeepCrack [20] shows magnified images of cracks. PST900 [43] shows
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Domain Dataset Vocabulary Number of images Task

General BDD100K [53] Generic 100 Driving
Dark Zurich [39] Generic 50 Driving
MHPv1 [27] Task-spec. 980 Body Parts
FoodSeg103 [49] Generic 2,135 Ingredients
ATLANTIS [30] Generic 1,295 Maritime
DRAM [19] Generic 718 Paintings

Earth iSAID [47] Generic 4,055 Objects
Monitoring ISPRS Postdam [10] Generic 504 Land Use

WorldFloods [24] Generic 160 Floods
FloodNet [35] Task Specific 5,571 Floods
UAVid [22] Task Specific 840 Objects

Medical Kvasir-Instr. [11] Generic 118 Endoscopy
Imaging CHASE DB1 [40] Domain Specific 20 Retina scan

CryoNuSeg [23] Domain Specific 30 WSI
PAXRay-4 [41] Domain Specific 180 X-Ray

Engineering CorrosionCS [6] Task Specific 44 Corrosion
DeepCrack [20] Generic 237 Cracks
PST900 [43] Generic 929 Conveyor

Agriculture ZeroWaste-f [5] Generic 288 Thermal
and Bio SUIM [9] Generic 110 Underwater

CUB-200 [45] Domain Specific 5,794 Bird Species
CEFID [51] Generic 21 Crops

Table 4.2: Multi-domain benchmark (MESS) for zero-shot semantic segmen-
tation models consists of 22 downstream tasks, 3 different vocabularies, and
25,079 images [2]

thermal imagery for firefighter-related objects. The original MESS bench-
mark consists of ZeroWaste-f [5] which is a collection of different types of
recyclable waste on a conveyor belt. The final domain, Agriculture and Bio
covers biological-related datasets like SUIM [9] which is an underwater imagery
dataset showing aquatic plants and fish, CUB-200 [45] which shows different
species of birds, and CWFID [51] which shows agriculturally significant images
like crop seedling and weeds.

4.2 Implementation Details

We use the Segment Anything Model [14] for all our fine-tuning and experi-
ments. The traditional implementation of SAM consists of an image encoder
(we use ViT-B for our experiments), a Prompt Encoder and a Mask Decoder.
However, to better equip SAM for end-to-end semantic segmentation, we freeze
the Prompt Encoder, always providing constant prompt tokens to the Mask
Decoder when fine-tuning. Additionally, we apply full fine-tuning to the Mask
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Decoder, since it is an extremely lightweight module.
For consistency, we include public implementations for all PEFT methods

in our framework. We use a batch size of 4 and the Adam optimizer with a
learning rate of 1x10−4 as a default with a weight decay of 1x10−4. All PEFT
methods are implemented in the same codebase to ensure a fair comparison.
We largely follow the default PEFT-specific hyperparameters and keep them
unchanged across domains for uniformity. Unless otherwise specified, we set
the LoRA rank r = 8 prefix length L = 20, and the adapter bottleneck size
Dmid = 64 for our experiments.

4.3 Comparison with state-of-the-art

Table 4.4 shows the performance of our MoPEFT framework against the three
most commonly used PEFT methods, i.e., LoRA [8], Prefix Tuning (VPT
Deep) [12], and Adapters [7]. We compare these methods against a vanilla
SAM framework (Baseline), fully fine-tuning the SAM decoder on the target
dataset (decoderFT), and ’simple’ Visual Prompt Tuning (VPT) [12], which
is similar to Prefix Tuning except that the tunable tensors are added to only
the first Transformer block as opposed to all of them. We measure the Mean
Intersection-over-Union (mIOU) to compare performance across all method
and datasets.

Figure 4.1: SAM [14] predictions for a range of domain-specific datasets from
the MESS benchmark.
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Domain Dataset Baseline decoderFT MoPEFTs

General BDD100K [53] 41.58 42.84 50.93
Dark Zurich [39] 20.91 23.42 31.19
MHPv1 [27] 29.38 31.40 41.84
FoodSeg103 [49] 10.48 14.93 22.99
ATLANTIS [30] 17.33 20.62 30.03
DRAM [19] 57.38 58.83 67.25

Earth iSAID [47] 62.59 63.14 68.29
Monitoring ISPRS Postdam [10] 29.73 29.92 40.42

WorldFloods [24] 46.45 48.75 63.17
FloodNet [35] 39.72 40.94 50.01
UAVid [22] 60.19 60.96 71.12

Medical Kvasir-Instr. [11] 46.82 48.32 71.92
Imaging CHASE DB1 [40] 23.56 25.95 42.49

CryoNuSeg [23] 38.06 40.36 59.88
PAXRay-4 [41] 41.07 43.73 59.42

Engineering CorrosionCS [6] 20.88 21.93 35.61
DeepCrack [20] 59.02 62.27 72.59
PST900 [43] 21.39 21.89 29.46

Agriculture ZeroWaste-f [5] 0.43 1.12 2.99
and Bio SUIM [9] 14.13 15.42 19.07

CUB-200 [45] 38.41 40.29 48.46
CEFID [51] 16.74 19.62 24.71

Table 4.3: Comparison of our MoPEFT framework with baseline and decoder-
only fine-tuned SAM variants across multiple domains. Scores shown are
mIOU scores.

4.4 Analysis of the Gating Mechanism

The results in this section provide a better understanding of what the MoE
learns during fine-tuning. To gain a better understanding of our gating mech-
anism, we conduct an analysis by tracking the frequency of the selection of
each PEFT technique across different datasets during inference. We present
our detailed results in Figure 4.2.

Most notable in our results is the fact that different datasets give more
preference to different PEFT techniques. For instance, the graph depicting
iSAID [47] (an Earth Monitoring dataset in the MESS benchmark [2]), tends to
select LoRA more often than the other two PEFT methods. Similarly, Kvasir-
Instrument [11] (a Medical Imaging dataset in the MESS benchmark [2]) tends
to select Adapters more often, instead of LoRA or Prefix Tuning. This obser-
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Figure 4.2: Number of times each PEFT method is called during inference.
Different datasets display distinct patterns. We show results on (a) Kvasir-
Instr. (Medical Imaging) [11] and (b) iSAID (Earth Monitoring) [47].
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Domain Dataset LoRA VPT Deep VPT Adapter MoPEFTs

General BDD100K [53] 49.39 46.24 43.18 47.03 50.93
Dark Zurich [39] 30.82 27.16 24.49 26.72 31.19
MHPv1 [27] 39.21 35.59 32.72 36.17 41.84
FoodSeg103 [49] 22.45 19.91 16.02 20.05 22.99
ATLANTIS [30] 28.03 27.61 24.91 27.91 30.03
DRAM [19] 64.48 60.23 58.89 63.79 67.25

Earth iSAID [47] 66.29 65.61 64.71 64.82 68.29
Monitoring ISPRS Postdam [10] 38.25 33.52 31.42 35.77 40.42

WorldFloods [24] 59.53 56.13 52.29 54.23 63.17
FloodNet [35] 46.79 43.97 42.81 41.09 50.01
UAVid [22] 69.43 65.39 61.19 63.59 71.12

Medical Kvasir-Instr. [11] 66.97 58.31 52.23 62.06 71.92
Imaging CHASE DB1 [40] 37.22 32.48 28.39 30.85 42.49

CryoNuSeg [23] 54.93 48.12 44.81 36.22 59.88
PAXRay-4 [41] 56.05 52.83 46.62 51.35 59.42

Engineering CorrosionCS [6] 30.68 26.14 24.94 27.07 35.61
DeepCrack [20] 69.83 66.02 63.81 65.82 72.59
PST900 [43] 27.12 25.29 22.93 26.01 29.46

Agriculture ZeroWaste-f [5] 2.53 3.83 2.36 1.43 2.99
and Bio SUIM [9] 16.79 16.62 13.48 16.58 19.07

CUB-200 [45] 47.35 45.28 42.56 44.79 48.46
CEFID [51] 23.94 22.51 21.19 23.85 24.71

Table 4.4: Comparison of our MoPEFT framework with different PEFT fine-
tuned SAM variants across multiple domains. Scores shown are mIOU scores.

vation supports our initial claim that our gating mechanism learns to dynam-
ically select appropriate PEFT techniques based on the provided data-task
setup. This reinforces the significance of the MoPEFT framework in tailor-
ing its selection to the unique characteristics of diverse datasets enhancing its
effectiveness across different domains.

4.5 Analysis of individual PEFT methods

4.5.1 Analysis of LoRA

From Table 4.4 we notice that LoRA usually performs the best out of all the
representative PEFT methods. While it does not outperform our MoPEFT
framework due to compounding effects, it perfroms significantly better than
traditional decoder fine-tuning on all domains. On average, we see an increase
of 7.7% across all datasets when compared to decoder fine-tuning, and an
increase of 9.5% compared to the baseline performance.
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4.5.2 Analysis of Prefix Tuning

Visual Prompt Tuning (denoted by VPT in Table 4.4) and Visual Prefix Tun-
ing or Deep Visual Prompt Tuning (denoted by VPT-Deep) show similar per-
formance to each other. On average, we see that Prefix Tuning generally out-
performs Prompt Tuning, a phenomenon that has also been observed during
fine-tuning Large Language Models (LLMs) [15].

4.5.3 Analysis of Adapter

The performance of Adapter in Table 4.4 is shown to be on-par with Prefix
Tuning. While it consistently outperforms Visual Prompt Tuning, it usually
fails to outperform LoRA. While other papers [3, 32] tuned hyperparameters
for each specific dataset, we went with standard parameters and a bottleneck
size of 48 across all our datasets. We also slightly deviate from the original
Adapter implementation [7] and port the AdapterFusion approach [31] for
visual tasks, adding only one Adapter layer in each ViT block instead of two.

4.6 Efficiency Comparison

We benchmark the efficiency of different PEFT methods against MoPEFT
and full fine-tuning of SAM (including the image encoder). Table 4.5 shows
a quantative comparison of the number of parameters, training, and infer-
ence time relative to full fine-tuning. All experiments were conducted on the
FloodNet [35] dataset.

4.6.1 Parameter Efficiency

As the number of trainable parameters in all PEFT methods are negligi-
ble compared to full fine-tuning, combining multiple PEFT methods in our
framework still does not lead to significant increases in the overall number of
trainable parameters.

4.6.2 Training and Inference Efficiency

Due to parameter efficiency, all representative PEFT methods train compar-
atively faster than full fine-tuning and incorporating multiple PEFTs into
MoPEFT is only slightly slower due to the additional training of the gating
mechanisms. In terms of inference time, we see that decoder fine-tuning has
no increase compared to full fine-tuning, since full fine-tuning also includes
fine-tuning the decoder. However, the inference time of other PEFT methods
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Method Params. Ttrain Tinference

Full fine-tuning 100% 100% 100%
Decoder fine-tuning - 38% 100%
LoRA 0.24% 55% 104%
Prompt Tuning (VPT) 0.08% 49% 109%
Prefix Tuning (VPT-Deep) 0.17% 54% 114%
Adapter 0.83% 55% 108%
MoPEFT 1.47% 63% 124%

Table 4.5: Number of trainable parameters and time required during training
and inference relative to full fine-tuning.

are considerably larger since they require more FLOPs during test time. Due
to multiple gating mechanisms and combinations of other PEFT methods,
MoPEFT has a significantly larger inference times compared to other tech-
niques. We aim to develop newer techniques to reduce this overhead as part
of future endeavors.

4.7 Ablation Studies

This section presents a deeper overview into the selection of hyperparameters
for the optimal configuration of our MoPEFTs framework. We show ablations
by varying the main parameter of each of our PEFT methods and measuring
the change in the performance of our overall framework. As such, we conduct
experiments with changing the rank of the LoRA matrices, the Prefix Length
of the embedded tensors, and the bottleneck size of the Adapter MLP. While
there have been previous studies [13, 32] on understanding the effect of these
changes, our goal was to see if varying these parameters brought about a
change in our MoPEFT framework. This also gave us a chance to observe the
compounding effect of implementing multiple PEFT methods together from
a different perspective. We conduct these ablation studies on only two out of
the four domains: earth monitoring and medical imagery.

4.7.1 Effect of rank r in LoRA

Table 4.6 shows the effect seen on overall performance when we vary the
rank of the A and B matrices in LoRA. The rightmost column is the baseline
performance of vanilla SAM without MoPEFT. We observe that a increasing
rank correlates to a higher overall performance. However, a very high rank
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Datasets rank = 4 rank = 8 rank = 16 Basline

iSAID [47] 59.89 64.91 68.29 62.59
ISPRS Postdam [10] 31.92 38.27 40.42 29.73
WorldFloods [24] 56.24 60.19 63.17 46.45
FloodNet [35] 39.57 42.22 50.01 39.72
UAVid [22] 62.03 68.94 71.15 60.19
Kvasir-Instrument [11] 60.72 67.43 71.92 46.82
CHASE DB1 [40] 36.61 40.05 42.49 23.56
CryoNuSeg [23] 51.09 54.39 59.88 38.06
PAXRay-4 [41] 48.11 52.83 59.42 41.07

Table 4.6: Effect of LoRA rank on task performance. Scores shown are mIOU
scores.

would also start to disobey the ‘parameter-efficient’ rule of the PEFT. We
hope future works can design a more efficient way of incorporating high-rank
LoRA matrices in our MoPEFT framework.

4.7.2 Effect of L in Prefix Tuning

Table 4.7 shows the variance in performance as a function of the prefix length.
We compare four different prefix lengths against the baseline performance of
vanilla SAM. The results illustrate that increasing the prefix length from L = 5
to L = 20 shows a gradual increase in performance, while performance drops
for L = 25. This indicates that, unlike the rank of LoRA matrices, simply
increasing the prefix length may not work for all scenarios. Moreover, a larger
L leads to significantly increased delays in training and inference due to costly
multi-head attention. In summary, using more trainable parameters for prefix
tuning does not always guarantee better performance.

4.7.3 Effect of Dmid in Adapters

Table 4.8 shows the effect of varying the bottleneck size Dmid of the Adapter
MLP on the overall performance of the MoPEFT framework. The results show
that the performance of the Adapter increases gradually with an increase in the
bottleneck size. This suggests that a larger bottleneck size could be beneficial
for an Adapter. However, this also has the same problem as the rank in
LoRA. While Dmid = 256 shows the best performance, it also has 3.5× more
trainable parameters than Dmid = 48, which we use in our main results in
Table 4.4. Continually increasing the bottleneck size affects the parameter-
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Datasets L=5 L=10 L=20 L=25 Baseline

iSAID [47] 62.14 63.14 68.29 64.18 62.59
ISPRS Postdam [10] 28.92 29.92 40.42 37.94 29.73
WorldFloods [24] 46.75 48.75 63.17 64.02 46.45
FloodNet [35] 39.94 40.94 50.01 51.22 39.72
UAVid [22] 58.12 60.96 71.10 68.72 60.19
Kvasir-Instrument [11] 43.35 48.32 71.92 70.04 46.82
CHASE DB1 [40] 25.20 25.95 42.49 43.11 23.56
CryoNuSeg [23] 39.21 40.36 59.88 52.93 38.06
PAXRay-4 [41] 40.43 41.07 59.42 58.32 41.07

Table 4.7: Effect of Prefix Length on task performance. Scores are mIOU
scores.

efficiency aspect of our framework.

Adapters Dmid = 48 Dmid = 64 Dmid = 128 Dmid = 256 Baseline

iSAID [47] 59.02 64.82 65.03 68.29 62.59
ISPRS Postdam [10] 19.23 35.77 36.24 40.42 29.73
WorldFloods [24] 13.01 54.23 57.29 63.17 46.45
FloodNet [35] 21.39 41.09 44.68 50.02 39.72
UAVid [35] 10.43 63.59 69.82 71.12 60.19
Kvasir-Instrument [11] 38.41 62.06 67.31 71.92 46.82
CHASE DB1 [40] 16.74 30.85 34.69 42.49 23.56
CryoNuSeg [23] 32.21 36.22 44.20 59.88 38.06

Table 4.8: Effect of Adapter bottleneck size on task performance. Scores are
mIOU scores.
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Conclusion

5.1 Conclusion

In this work, introduce a new framework, Mixture-of-PEFTs (MoPEFT), that
is inspired by Mixture-of-Experts methods. Our MoPEFT framework dynam-
ically learns to activate or deactivate a particular PEFT technique based on a
given data-task setup. Since each PEFT technique modifies the internal repre-
sentation of the model on its own different way, our framework allows us to se-
lectively utilize the best representation for a given scenario. Moreover, this also
helps us mitigate the non-trivial task of choosing a particular PEFT technique
for a specific use-case. To test out our framework, we present a comprehen-
sive study of the three most widely used PEFT techniques- LoRA [8], Prefix
Tuning [16], and Adapters [7]. We take the Segment Anything Model [14] and
apply the mentioned PEFT techniques to it, fine-tuning it across a variety of
different datasets across five different domains. We benchmark their efficacy
and finally combine them all into our MoPEFT framework by adding them to
the same model and gating them to control their effectiveness on the overall
result. We then compare our MoPEFT framework against traditional PEFT
techniques on the same benchmark. Our results show that MoPEFT usually
outperforms all traditional fine-tuning techniques on multiple datasets across
different domains.

5.2 Future Work

There are two major avenues of future work that we envision for this work.
Firstly, our experiments are focused primarily on the Segment Anything Model.
However, our MoPEFT framework only requires an underlying Vision Trans-
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former model to function. This means that other vision foundation models
such as Florence [54] or VISION-MAE [21] can also be fine-tuned using our
proposed methods. It would be interesting to see how other foundation models
in different tasks fare after being fine-tuned using MoPEFT.

Our work currently focuses on the three most widely-used PEFT techniques-
LoRA, Prefix Tuning, and Adapters. Since these are the most simple and form
the basis for more sophisticated fine-tuning methodologies, it made sense to
have them as the building blocks for our MoPEFT framework. However, we
can also swap one or more of the techniques used with more advanced tech-
niques that come from the same family of PEFT techniques. This means
that, in our framework, LoRA can be swapped with another technique that
modifies the representation of the model in a similar way (e.g. BitFit [55] or
GaLoRE [56]).
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Appendix A

First Appendix

In addition to the experiments conducted in Chapter 4, we also conducted a
benchmarking study of PEFT techniques on the FAIR-1M dataset [44]. Since
FAIR-1M is an object detection dataset, as opposed to segmentation, we had
to modify the overall structure of the Segment Anything Model in order to
accommodate the new task. As such, we added a Masks2Boxes head at the
end of the pipeline which takes the maximally-enclosing area within a given
segmentation mask to generate a bounding box for object detection. Inspired
by [57], we also add an MLP to the mask decoder in order to predict the
class along with the bounding box. Our modified mask decoder structure is
illustrated in Figure A.1 A complete overview of the pipeline can be seen in
Figure ??. As such, the evaluation metric for this task is set to the mean
average precision (mAP) instead on the mIOU, as the latter is used in image
segmentation tasks. Since the mask decoder was always fine-tuned completely,
we did not need to make any other changes in the fine-tuning procedure. The
results from our experiments on FAIR-1M can be found in Table A.1.

A.1 Dataset Description

We begin by giving a brief overview of the FAIR-1M dataset used for evalu-
ation. The dataset consists of 15,000 images containing more than 1 million
fine-grained objects in high-resolution remote sensing images. The resolu-
tion in the dataset ranges from 0.3m to 0.8m and is spread across multiple
countries and regions. The dataset is divided into 5 major categories and 37
sub-categories, all of which can be found in Table A.1.
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Figure A.1: Our modified structure of the SAM mask decoder (inspired from
[57]).

Figure A.2: Overall pipeline of our SAM model applied to the FAIR-1M
dataset.
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A.2 Results

This section shows the results of applying different variants of a fine-tuned
SAM model on the FAIR-1M dataset. We apply LoRA [8], Simple Prompt
Tuning [15], and Prefix Tuning [16] to all 37 sub-categories in the dataset.

From Table A.1, we can see that the model has no trouble generalizing
to the first and fourth categories (Airplane and Court), but other categories
show significant degradation in performance. We attribute this to the fine-
grained nature of the images within these categories. Regardless of whatever
fine-tuning technique has been applied, a photo of a Tennis Court would al-
ways implicitly have more useful information for detection than a Small Car,
especially when depicted from the perspective of an aerial image. We also see
that Prefix Tuning usually outperforms simple Prompt Tuning. This is in line
with previous literature both in vision [15] as well as language models [31].
However, Prefix Tuning does require more parameters to be fine-tuned since
we add a prefix to the beginning of every Transformer block instead of just
the first one (as we do in Prompt Tuning).
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mAP Mean mAP mAP Mean mAP mAP Mean mAP mAP Mean mAP

(Category, Class Label) Baseline Prompt Tuning Prefix Tuning LoRA

Boeing737 37.39 38.92 45.09 48.17
Boeing747 85.24 78.39 83.16 84.20
Boeing777 17.25 18.81 23.48 23.49
Boeing787 53.95 56.98 62.64 67.14
C919 13.31 25.37 20.88 22.91
A220 48.24 49.71 51.24 56.49
A321 70.52 65.84 69.59 78.38
A330 71.02 73.63 70.77 74.29
A350 66.93 75.41 75.81 72.10

Airplane

ARJ21 34.50

49.83

39.61

52.27

39.89

54.26

40.31

56.75

PassengerShip 16.36 19.75 20.74 24.62
Motorboat 61.46 63.84 67.59 68.13
FishingBoat 8.77 13.03 14.61 20.41
Tugboat 40.13 32.66 36.55 38.27
EngineeringShip 12.24 20.75 15.03 20.31
LiquidCargoShip 21.30 26.16 29.53 38.16
DryCargoShip 38.75 38.62 42.72 44.13

Ship

Warship 24.76

27.97

36.35

31.39

45.41

34.02

47.74

37.72

SmallCar 12.70 26.31 34.19 35.92
Bus 23.69 54.89 59.72 62.52
CargoTruck 41.16 56.75 65.75 65.19
DumpTruck 45.75 61.28 66.31 69.72
Van 55.82 76.38 77.61 63.21
Trailer 13.20 23.19 25.27 26.01
Tractor 4.12 10.62 14.96 12.83
Excavator 11.72 21.48 23.35 21.81

Vehicle

TruckTractor 0.56

23.19

4.27

37.24

5.38

41.39

8.24

40.61

BasketballCourt 50.45 62.17 65.43 66.19
TennisCourt 80.56 85.67 90.60 92.84
FootballField 55.81 72.66 74.87 75.30

Court

BaseballField 85.45

54.45

89.36

77.46

89.45

80.09

90.59

81.23

Intersection 59.35 61.34 64.67 59.47
Roundabout 20.65 22.62 29.46 47.62Road
Bridge 31.60

37.20
37.58

40.51
41.83

45.32
42.18

49.76

Table A.1: Comparison of performance of different PEFT techniques on FAIR-
1M [44]
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