
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

7-2012

Browser Web Storage Vulnerability Investigation: HTML5 Browser Web Storage Vulnerability Investigation: HTML5

localStorage Object localStorage Object

Dan Bogaard
Rochester Institute of Technology

Daryl Johnson
Rochester Institute of Technology

Robert Parody
Rochester Institute of Technology

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
Bogaard D., Johnson D., and Parody R. Browser Web Storage Vulnerability Investigation: HTML5
localStorage Object. In SAM'12 - The 2012 International Conference on Security and Management (Las
Vegas, NV, USA, July 2012)

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Browser Web Storage Vulnerability Investigation
HTML5 localStorage Object

Daniel Bogaard1, Daryl Johnson2, and Robert Parody3

1Information Technology, Rochester Institute of Technology, Rochester, NY, USA
2NSSA, Rochester Institute of Technology, Rochester, NY, USA
3CQAS, Rochester Institute of Technology, Rochester, NY, USA

Abstract - Along with the introduction of HTML5 a new data
storage technique, Web Storage, has been added to browsers.
This technique stores larger amounts of data for an extended
period of time on a client system. This technology does not
(as of this writing) have a fully implemented interface to
support end user control.

The authors interest is modeling the use of Web Storage to
store illicit data. The authors built a web application that
would take a file, encrypt it, split it into multiple parts and
distribute it to as many clients as possible. At a later time, the
system could then watch for return visits and retrieve data
parts as clients interact with a host website. The recidivism
rate of clients returning to the host website and the number of
copies of each distributed part needed to achieve a reliable
recovery rate of the entire file are under study.

Keywords: browser security, Web Storage, evasion,
forensics, obfuscation

1 Introduction
 Suppose a nefarious user has a file of incriminating

material (credit card number, account number,
username/password or Personally Identifiable Information,
drug client list…) that the user does not want to be
apprehended with but needs access to from time to time. The
users goal would be to store the file somewhere that can be
reliably retrieved but does not reside locally (for very long)
and is not usable or discernable for what it is if found where
stored.

The authors propose a solution – Web Storage or
localStorage. If the nefarious user has access to a domain
(simple Internet Service Provider will suffice) they could hide
parts of any incriminating file on various client systems
without keeping a local copy that he/she might be caught with.
At a later time, when the information is needed, the user could
get the parts back from the clients and reconstitute the original
data.

To explore this scenario, the authors have split the experiment
into 3 parts. The first part (testing phase) of this study has
been completed. A web application was built that proves the

hypothesis that localStorage can be used for such a purpose.
The second part of this study is to install the application on a
working production site and statistically determine how many
copies of the parts need to be disseminated in order to ensure
retrieval – both over the short term and long term (would there
be a difference between trying to get the data back in 10 days
versus 90 days?). Phase 2 has been initiated and 67 days of
data have been collected as of this writing and preliminary
findings will be presented herein. Potentially, the effects of
the choice of the number of segments to divide the original
file could be studied, but for now they are held constant. The
third part of the study will look at possible detection
characteristics for this sort of behavior and the development of
tools and techniques for defense.

2 Problem Examined
 The illicit users have the same needs for information
management and security that the rest of the world has, if not
greater. The needs can be broken into two classes. The first
class would be one shared by all digital users, Confidentiality,
Integrity and Availability or CIA[1], and the second would be
one that is not so common, evasion. Each of these classes is
addressed in the proposed solution.

Confidentiality is the limiting of access to data to authorized
or intended users. The data in this case is encrypted and then
segmented into many sections. The sections are then
separated, encrypted and dispersed to disassociated unaware
clients. If any piece or subset of the collection is discovered
and reassembled it is unusable.

Integrity is knowing if the data is trustworthy, or in this case,
were all of the pieces retrieved and reassembled correctly? In
this proposed solution, the individual pieces have a checksum
or digest calculated and appended to the end before delivery
to the client systems. Upon retrieval the checksum is
recalculated and verified to ensure that the chunk of data has
returned intact. Once the pieces have been reassembled, the
original message is decrypted. A final checksum for the
entire original message is verified assuring that the message
has been retrieved intact.

Availability is being able to access the data when and where
needed. In this situation, the concept of availability relates to
the reliability of future access to the data. This is currently
being studied as phase two of this project. The trade off is
speed of access for deniability or “it’s not on my drive!” The
file is available to the owner with an access time of hours,
days or months depending on many factors. The benefit is
that the file is unavailable to anyone else.

The last issue is evasion. Evasion is an act of subterfuge,
avoiding or eluding detection. The idea here is to hide the
data from an examination of the local system. Once the
pieces are distributed, the local system and web database can
be forensically cleaned and all evidence of the data
eradicated. Even if it were suspected that the web clients
might be involved, a moderately trafficked web site could
have hundreds, thousands or even millions of individual
clients to investigate. Since the clients are not owned by the
illicit user being investigated, possible jurisdiction problems
arise investigating any potential involvement of the clients.

3 HTML5 and Web Storage
 With the advent of HTML5 and its subsequent adoption
in all modern web browsers (to varying degrees[2]),
programming for a browser based internet experience recently
turned to the better. HTML as a standard has been around
since 1990 and was standardized as HTML 4 in 1997.
HTML5 is still under development (as of November 2011)
and is meant to subsume not only HTML4, but XHTML1 and
DOM2 HTML (JavaScript) as well[3].

Some of the advantages of HTML5 (ubiquitous coding APIs,
numerous new media types, embedded semantic meanings)
while a boon to both developers and users alike, are outside
the scope of this paper. The area of the HTML5
improvements that the authors are planning on exploiting is
the advanced data storage, or Web Storage[4]. While Web
Storage is not directly part of HTML5, it has been repeatedly
attributed to being part of HTML5 enough that most sources
currently attribute it to HTML5. Many developers may think
that Web Storage includes cookies, various browser
dependent client side databases, as well as storage objects.
However, by the specification, the term Web Storage is
limited to the storage objects – specifically localStorage and
sessionStorage.

Since Web Storage includes both localStorage and
sessionStorage, both needed to be considered. Upon a quick
examination it was found that sessionStorage matched its
name – it is storage that exists solely for a browser session
(sessions expire when the browser is closed and the data
automatically cleared). Because sessionStorage is
implemented effectively, it is of little use to the user for our
purpose. localStorage, on the other hand, works perfectly for
what is needed. From a developer’s point of view,
localStorage is an associative array or hash – a name=value
pair that can hold any textual content.

To understand the need for a localStorage object, a little
history is needed. Since the inception of the HTTP protocol,
it has been stateless and anonymous, so a mechanism had to
be created to make the tracking of state possible. The ‘HTTP
State Management Mechanism’ proposal was created to fill
this void[5]. The outcome of which is commonly known as
cookies. The cookie mechanism is a name value pair that is
served up from the client to the server inside of the HTTP
Request phase (based upon various criteria: path on the
server, domain to be served to, protocol to be served up to –
http or https). Cookies have been used in various ways
through the history of the web, more often than not they are
used to hold a session identifier or token. Server frameworks
(.Net, PHP, JSP) often implement these identifiers but
occasionally they are created by hand by the developer.

Historically, cookies were the sole means web browsers had
for long-term storage capabilities. They had limited length
(4096 bytes) and a limited number could be written per
domain (20) for a total of 81,920 bytes of storage space[4].
Today, localStorage, as a storage mechanism, is limited to
5Mb per origin (domain)[6], or 655,360 bytes of storage (8
times larger). If the browser manufacturers maintain the size
of the specification (currently IE9 allows more - 10Mb per
origin), the possibility of using various client’s hard drives for
illicit storage becomes tempting.

As often happens with newer technologies, they are
implemented before they are fully tested. localStorage works
flawlessly in the modern browsers, but the tools that the end
user has to allow, view, update or delete them is very limited
(see TABLE 1). Combining the amount of storage space with
a lack of user control makes this an invisible attach vector for
illicit users to exploit. At the time of this paper, there is no
unified user interface for localStorage. If a user wants to find
out what is stored on their various browsers there is no easy
way. An advanced user would have to visit the domain they
are interested in and then run a bit of code to see if they had
any localStorage recorded.

for (i=0; i<localStorage.length; i++) {
 key = localStorage.key(i);
 pairs += "key:"+key+" value:"+localStorage.getItem(key);
}
console.log(pairs); (1)

Adding to the problem of knowing if your localStorage is
being used, there is no clear way for a common or average
user to turn it off. Additionally, once it is written it doesn’t
have an easy affordance to remove or review the data. As an
example of how this can be confusing, for Firefox’s DOM
Storage (Firefox’s moniker for Web Storage) can be cleared
via the menus “Tools -> Clear Recent History -> Cookies”
ONLY when the range is “Everything”[7].

TABLE I. BROWSER COMPARISONS

Current
Browsers

Access to Web Storage

Disable Storage Clear Storage Examine
Storage

Current
Browsers

Access to Web Storage

Disable Storage Clear Storage Examine
Storage

Firefox
10.0.2

Yes, by turning
cookies off in
preferences(but
does not clear
old values) or
in about:config

Select “Tools” »
“Clear Recent
History”, open
“Details”, check
“Cookies” and
select
“Everything” as
time range.

Not without
an external
extension

Safari
5.1.2

No, with
cookies turned
off,
localStorage is
still set

Select “Safari” »
“Reset Safari…” »
Remove all
website data

Have to go
into
preferences
and turn on
developer
menu, then
navigate to
domain where
it was set

Chrome
17

Yes, turn off
cookies in
preferences (but
does not clear
old values)

Select “Tools” »
“Clear browsing
data…”, check
“Delete cookies
and other site
data”, select
“Everything” from
“Clear data from
this period” and
click on “Clear
browsing data”.

Developer
Tools »
Tools »
Developer
Tools - can
see
localStorage,
but only for
domain I'm
currently
visiting

Opera
11.61

Yes,
opera:config
Persistent»Stora
ge turn off
global quota
(then have to
turn it on on a
per/domain
basis)

Preferences »
advanced »
Storage (can
delete one at a
time)

Preferences »
advanced »
Storage See
domain and
size, not
content

IE 9

Yes, internet
options»Advan
ced»unclick
Enable DOM
Storage

Select “Tools”»
“Internet Options”
»“General” »
check “Delete
browsing history
on exit”, click on
“Delete”, check
“Cookies” and
click on “Delete”
once more.

can see being
set by running
profiler in
Developer
Tools »
Profiler

A more universal interface is needed. While it might not be
necessary to split localStorage out from other data storage
capabilities, listing it under Cookies may not be intuitive for
average users. Also, the ability to clear stored data in a more
chronologically granular way would be useful.

4 Problem Exploited
 To exploit this possible weakness, the authors devised a
web application that would take any textual file, calculate and
attach a checksum, encrypt it, split it into a some number of
parts (26 in our testing), give each part an identifier (both for
the part of the whole and an identifier for which file it came
from), calculate a checksum for the part and append it to the
string then re-encrypt it. It was found that from this formula

it was possible to hide the parts on different clients and on
subsequent visits those parts could be retrieved and
reconstituted into our original data. Should a non-textual file
be the target, a simple binary to text translation tools such as
base64 or uuencode would suffice.

4.1 Web Environment
For the implementation of the web application, the authors

chose the open source LAMP architecture for it’s ubiquitous
nature. LAMP is an acronym for Linux, Apache HTTP
Server, MySQL database, and PHP server-side scripting
environment.

4.2 Web Software
From a top-level view, the implementation of the application
via web browsers consists of an interface to take a textual file
and use the processed described above to split the file and
insert the parts to a database. When the authors were ready to
populate the parts to the visitors that come to our site, a small
client-side script that communicates covertly (via AJAX -
Asynchronous JavaScript and XML) with a server-side script.
The result of the server-side script is stored in the client’s
localStorage. Once the illicit user decides there are enough
copies distributed for his purposes, he can wipe out his file,
the database AND all traces of the information.

Some time later, when it is decided it is time to reconstitute
the data, a different client-side script is inserted that checks
return visit clients for our data. If any data was found, be it a
piece that hadn’t gotten back yet or one already recorded, it
was decrypted, the checksum checked and stored. After a
period of time, the entire file was retrieved.

 For a deeper explanation, there are two sets of scripts that
execute this process. One set is used to distribute the parts out
to various clients and the other set is used to retrieve the data
back. Each set has both a client and a server script used to
access the database for storage or retrieval as is applicable.

The first small client-side script (2) can be injected into any
html page. It tests if localStorage is implemented on the
particular browser. Next, if the browser doesn’t already have
a piece of the text file from our domain, a jQuery AJAX call
is triggered to the server for the part of the file that has been
distributed to the fewest clients. The part is then written to
the browsers localStorage under a commonly used token
name (we used ‘uid’) to help hide our data and intentions.

if(window.localStorage) {
 if(localStorage.getItem('uid')==null){
 $.getJSON('localStorageSet.php',function(data){
 localStorage.setItem("uid",data.uid);
 });
 }
} (2)

The localStorageSet.php file that the AJAX call is hitting
goes into the database of encrypted parts, finds the part that

has been copied to the least number of browsers and sends it
back to the client to be injected into the localStorage with
‘uid’. While the script is doing this, it also updates the total
disseminated count on the part that it just served up and logs
the visit to the database.

Once the authors are confident that a sufficiently large
enough number of targets have been populated, the original
nefarious file and the database table holding the parts were
destroyed. For the truly paranoid a forensic wipe of the drive
and the user would be worry free of being searched.

The second small client script (Algorithm 3) can be employed
at a later date, when the data is to be reconstituted. For this, a
jQuery AJAX call is employed to send the contents of the
specific localStorage data back to the server.

$.post(‘localStorageBack.php’,{
 d:localStorage.getItem(‘uid’)
}); (3)

The data this sends back to the server is decrypted, checksum
is checked and split into our original encryption, part and file
identification. The data is then populated in a database table
by its part identifier and filename for future reference. Once
all of the parts are recovered, the entire file is reconstituted,
decrypted to the original state and the checksum verified.

5 Proof of Concept Testing Environment
The laboratory proof of concept testing environment is simple
and easily duplicated. VMware Workstation 7.1.0 was the
foundation for the test environment installed on a Lenovo
T61p laptop with 6Gb of memory. The target web server was
a stock BackTrack5 virtual machine image[8]. Apache
2.2.14, MySQL 14.14 and PHP 5.3.2 were used to support the
testing environment on the server.

5.1 Configuring the Web Server
The server application used was the default install that came
with BackTrack5. The only addition to this was an
installation of phpMyAdmin, an open source tool for simple
database access (http://www.phpmyadmin.net/). Starting
Apache and MySQL was all that was necessary (no
specialized settings like .httaccess was needed).

In the testing environment, there was no reason to hide what
was being attempted – so therefore two separate html files,
one to set the localStorage, setData.php and one to get the
localStorage back, getData.php. setData.php had the client-
side code that executed the AJAX call (Algorithm 2). The
AJAX call triggered the server side localStorageSet.php to get
the least distributed part of the file and send it back in JSON
(JavaScript Object Notation) format.

getData.php had the client-side code that used AJAX to send
the contents of the localStorage.getItem(‘uid’) (Algorithm 3).

The server-side code this executed, localStorageBack.php,
decrypts the data and checks the checksum. If the checksum
was accurate the data was stored.

In both cases, localStorageSet.php and localStorageBack.php
all calls were logged and recorded for future study.

5.2 The client setup
To emulate the Internet client population at large, additional
virtual machines were employed. For the initial test, a
Windows XPpro base image was constructed with no service
packs installed. This was not a necessary insecurity but
established a baseline. A stock install of Firefox 4.0.1 was
done with no add-ons. No special configuration of Firefox
was performed. Two scripts were added to the C:\ directory
of this initial configuration to aid in the automation of the test
case: setData.bat and getData.bat.

First, the scripts make sure that the browser is not still
running by executing a taskkill. This was necessary to ensure
that localStorage was not preserved for only a single browser
session. By terminating Firefox the session was stopped.

5.3 Assembling the masses
Once the Windows XPpro client is prepared, it is shut down
and only used as a master for cloning. The algorithm requires
at least 26 clients to hold all of the pieces of the message.
The following scripts automated the process of construction
utilizing VMware’s vmrun tool[9]. The tool can issue
instructions to several of VMwares virtualization tools
including Workstation. The following script creates 26
clones of the master Windows XPpro virtual machine.

set VMRUN="C:\Program Files (x86)\VMware\VMware
VIX\vmrun.exe"

set SRCVM="C:\LocalStorage\Masters\WinXPpro\winXPPro.vmx"
set CLONE=C:\LocalStorage\CLONES\WXP

for /L %%i IN (101 1 126) do (
 %VMRUN% -T ws clone %SRCVM%

%CLONE%%%i\WXP%%i.vmx linked
 %VMRUN% -T ws start %CLONE%%%i\WXP%%i.vmx gui
 timeout -T 60 /NOBREAK >NUL
 %VMRUN% -T ws suspend %CLONE%%%i\WXP%%i.vmx hard
) (4)

Vmrun is utilized to instruct VMware Workstation to clone
the base Windows XPpro virtual machine 26 times. After
starting the VM a delay of 60 seconds allows the client to
fully boot before the client is suspended. Suspending allows
for a faster cycle time for client visits to the web site.

5.4 Occupy localStorage
The next phase of the test is to have each of the 26 Windows
XPpro clients start a browser, surf to the web server, and run
the code to cause data to be deposited in the client’s
localStorage area. It is important for the browser to be started

and stopped to assure that localStorage has persistence
beyond the current session. The following scripts are run on
the host of the virtual machines to first set or download the
data chunk to the client and second to get or retrieve the
chunk from the client.

set VMRUN="C:\Program Files (x86)\VMware\VMware
VIX\vmrun.exe"

set CLONE=C:\LocalStorage\CLONES\WXP
set FIREFOX="C:\Program Files\Mozilla Firefox\firefox.exe"
for /L %%i IN (101 1 126) do (
 %VMRUN% -T ws start %CLONE%%%i\WXP%%i.vmx
 %VMRUN% -T ws -gu dgj -gp "ATest4LocalStorage!"

runScriptInGuest %CLONE%%%i\WXP%%i.vmx -nowait ""
"cmd.exe /k C:\setData.bat

 timeout -T 60 /NOBREAK >NUL
 %VMRUN% -T ws suspend %CLONE%%%i\WXP%%i.vmx hard
) (5)

The MakeGetVisits script differ from the MakeSetVisits
script in (Algorithm 5) only in the target script that is run
locally on the client system: getData.bat. This structure is
only necessary in this test environment to ensure that the
browser is successfully started and stopped and that sufficient
time is given to the client and browser to complete the
operations. Typically the setData.bat script is run first
followed by the getData.bat script. The set/get operation
takes about an hour to complete. The entire environment
starting from making the clones to retrieving the data set
takes about 2 hours. The use of linked clones keeps the
storage requirements down to under 40GB for entire
environment.

6 PHASE 2 - DATA

6.1 Seeding
After proving that the authors could hide and retrieve
information in a client’s Web Storage in a controlled
environment, our task was to discover what would happen in
the wild. Interesting questions surfaced, such as how many
copies of our user encrypted and obfuscated parts are needed
to disseminate in order to ensure recovery and feel confident
that the parts could be retrieved intact after 5 days, 30 days,
or even 1 year.

In order to begin answering these questions, permission was
obtained to use two of the author’s departmental web
presences (http://www.ist.rit.edu and
http://www.nssa.rit.edu). To make the results of this testing
more accurate, the decision was made to remove all visitors
from the 129.21.0.0/16 domain (RIT’s domain). This
decision was made because most of the visitors to these sites
from that domain are the universities’ lab machines that are
forced to visit those sites on browser launch and are re-
imaged at startup. Since the set data on the lab machines
would be removed at startup and the machines visit these sites
multiple times a day, using results from these machines
would skew the results in an unfavorable way.

6.2 Limits
The testing and data collection phase went live on December
17th,, 2011. While the data setting and collecting is still
ongoing, for this paper it was decided to cap the data analysis
on February 22nd , 2012 – so the preliminary data in this paper
is from 67 days. While this may be a small data set,
interesting trends are already being seen.

6.3 Observations
An observational study was run with input variables number
of sets available and the number of days until retrieval. The
sample size for this study was - full sets of data
seeded. The response was measured as the number of days
until a full set was received. Figure 1 contains the plot of the
response and the number of sets available.

Figure 1. Days until one complete set returned against the number of sets
available.

The vertical line on the plot occurs at 178 sets complete. This
cut-off point was chosen since set 178 was the last set
available for a total of 35 days. This is important because
from the limited timeframe of our data collection, waiting 35
days for retrieval was determined to be our upper limit. As
our data collection grows and ages, the authors look forward
to seeing what the revisit rates will be for longer periods of
time.

From the plot, a relationship is apparent. The relationship
seems to be a slow decay then level off as the number of sets
increase. This relationship is anticipated since it is logical to
expect to get a full set back faster with more sets available.
There is also a set of points between 75 and 93 sets that seem
to be an anomaly as compared to the rest of the data. These
data points represent 5% of the overall data and seem to occur
for responses larger than 25 days.

Figure 2 contains the plot of the response and the number of
days before retrieval.

Figure 2. Days until on complete set returned over the number of days
before retrieval

Based on Figure 2, overall there seems to be some sort of
increasing relationship occurring. The same group of data
points from Figure 1 does not seem to fit with the rest of the
data on this plot as well.

Table II includes the information on the rank correlations
between the response and each input variable.

TABLE II. CORRELATION TABLE

Input Variable Estimate p-value

Sets Available -0.451 < 2.2E-16

Days Until Retrieval 0.361 < 2.2E-16

Based on the results in Table II, there is a significant
correlation between the response and both inputs at the

 level. From the estimates, the relationship between
the response and the sets available seems to be decreasing and
the relationship between the response and the days until
retrieval is increasing. This matches what is in the figures
above.

6.4 Next Steps
From here the authors would like to increase the size and age
of the study to assess whether or not the anomaly data that we
observed is repeatable and allow for the all of the sets to be

available for an equal length of time. We would like to create
a model that can be used to predict the response based on the
inputs and run this study in an experimental setting with other
variables such as different websites, different configurations
on the break-up of the set, etc.

6.5 Exclusions
From the capped data (as of 2/22/12), a total of 10263 initial
visit parts have been set, with 24873 re-visits. Of the total
35136 visits to our sites, 1825 (5.19%) either had Web
Storage turned off or their browser was unable to implement
it. For these visits, the database tracked the User Agent to
determine the reasons. Some of the browsers were simply too
old (Internet Explorer 7) or aren’t equipped to handle local
storage (Opera Mini). Of the 35136 total visits, 328 had
browser versions that have Web Storage implemented, but
had it turned off (0.933 %), while the remaining 1497 visits
were by browsers or devices that were incapable of Web
Storage.

The authors postulate that the very low number of visitors
who had disabled Web Storage (<1%) may be due to many
factors, including the standard being new and unfamiliar or a
less than standard confusing interface. While this is an area
that could use future study, it only adds to the viability of
Web Storage as being a useful tool for our purposes.

7 Phase 3 – Detection
Once a greater data set has been accumulated, the authors are
interested in studying the future application and usage of
localStorage. The goal is looking for possible ways of
monitoring and controlling localStorage activity, and
identifying potential misuse. Intrusion Detection System
tools such as Snort examine network traffic looking for digital
signatures indicate that potential malicious activity is present.
The development of signatures and other tools will be of
primary interest during this phase.

8 Preventative Measures
The history of software interfaces is littered with examples of
poorly designed and implemented user facing controls. The
current state of the different browser interfaces to control
Web Storage is lacking to say the least. The only
preventative measure for not allowing something like this to
happen on a client is to completely disable cookies. It should
be noted that on all modern browsers there are different levels
of cookie blocking (1st-party and 3rd party). However, since
most trust the site they are visiting and 1st-party is what is
being used, this number is relatively small. The number of
visitors blocking 1st-party cookies varies greatly from one site
to the next. Reports of 25% for sites about security and 1%
for sites about general health are abundant. To know for sure
one would need to test for their specific kind of site.. It should
also be noted that once a localStorage value has been set,

turning off cookies will not remove it, just make it
inaccessible.

9 Conclusions
The authors hope these findings motivate browser architects
to realize what they are making possible with their
implementations and web application developers to think
about the attack vectors they are creating. The need for a new
storage capability in web browsers is not in question. The
need to have the storage be easy to use for both developers
and users alike is not in question. Although it may be a good
idea to often hide implementation details from users, not
giving them simple and intuitive controls that provide the
ability to at least see what is being stored on their machines is
in question.

10 References
[1] M. Stamp, "Information Security: Principles and
Practice", John Wiley & Sons, Inc., Hoboken, NJ, USA. doi:
10.1002/0471744190

[2] N. Leenheer, sights "The HTML5 Test." Last
modified April 2012 – version 3.0, accessed April 22, 2012.
http://html5test.com/

[3] I. Hickson, World Wide Web Consortium, "HTML5,
A vocabulary and associated APIs for HTML and XHTML,
Editor’s Draft." Last modified November 04, 2011. Accessed
November 05, 2011.
http://dev.w3.org/html5/spec/Overview.html.

[4] I. Hickson, World Wide Web Consortium, "Web
Storage, Editor's Draft." Last modified October 04, 2011.
Accessed November 05, 2011.
http://dev.w3.org/html5/webstorage/.

[5] D. Kristol, and L. Montulli. Netscape
Communications, "HTTP State Management Mechanism."
Last modified February, 1997 . Accessed November 04, 2011.
http://www.w3.org/Protocols/rfc2109/rfc2109.

[6] I. Hickson, World Wide Web Consortium, "Web
Storage, Editor's Draft." Last modified October 04, 2011.
Accessed November 05, 2011.
http://dev.w3.org/html5/webstorage/#disk-space.

[7] Mozilla Developer Network, "DOM Storage." Last
modified October 23, 2011. Accessed November 08, 2011.
https://developer.mozilla.org/en/DOM/Storage.

[8] back|track-linux.org, "Downloads : BackTrack Linux
– Penetration Testing Distribution." Accessed November 14,
2011. http://www.backtrack-linux.org/downloads/.

[9] VMware, "Using vmrun to Control Virtual
Machines." Last modified 2009. Accessed November 14,
2011. www.vmware.com/pdf/vix162_vmrun_command.pdf.

	Browser Web Storage Vulnerability Investigation: HTML5 localStorage Object
	Recommended Citation

	LocalStorageVulnerability

