
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-9-2024

Event Sensor Simulator with Hardware Accelerated Ray Tracer Event Sensor Simulator with Hardware Accelerated Ray Tracer

and Image Space Photon Mapping and Image Space Photon Mapping

Chengyi Ma
cxm3593@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Ma, Chengyi, "Event Sensor Simulator with Hardware Accelerated Ray Tracer and Image Space Photon
Mapping" (2024). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11887?utm_source=repository.rit.edu%2Ftheses%2F11887&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Event Sensor Simulator with Hardware Accelerated Ray

Tracer and Image Space Photon Mapping

by

Chengyi Ma

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

August 9th, 2024

Signature of the Author

Certified by
M.S. Program Director Date

B. Thomas Golisano College of Computing and Information Sciences

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

MS DEGREE THESIS

The MS degree proposal of Chengyi Ma
has been examined and approved by the
thesis committee as satisfactory for the

thesis required for the
MS degree in Computing and Information Sciences

Dr. Reynold Bailey, Thesis Advisor

Dr. Gabriel Diaz, Co-Advisor, Reader

Dr. Joe Geigel, Observer

Date

ii

Abstract

In this study, we present an advanced event sensor simulator leveraging
NVIDIA OptiX to address and overcome the limitations of existing event sen-
sor simulators. Our simulator demonstrates significant improvements in both
processing speed and temporal resolution compared to traditional methods
such as v2e. These advancements are achieved by programming a real-time ray
tracer with asynchronous event pixels using Nvidia OptiX’s sophisticated mo-
tion system, which provides hardware motion interpolation on GPU threads.
This enables sampling dynamic scenes to generate a series of events indepen-
dent from frame rates. Additionally, we introduce an image space photon
mapping method utilizing OptiX for enhanced global illumination, providing
fast and realistic lighting effects in the simulated environment to meet the
performance required to generate high frequency event streams. Our solu-
tion simulates real event cameras more accurately, expanding the potential
applications of simulators in research.

iii

Acknowledgments

I would like to express my deepest gratitude to all those who supported this
research project. I extend my sincere thanks to my supervisors, Dr. Reynold
Bailey and Dr. Gabriel Diaz. Your patience, guidance, and expertise have
been crucial to the completion of this project. And I wish to appreciate my
thesis committee member, Dr. Joe Geigel, for providing insightful suggestions
throughout the exploration.

I am grateful to my fellow students and colleagues in the PerForm lab.
Working with you over the past two years has been a tremendous learning
experience; your creativity and talent have greatly impacted me.

Lastly, I want to say thank you to my family for all their support through-
out my journey at RIT. This has been a long journey away from home, but your
understanding and encouragement have been invaluable, helping me overcome
challenges along the way.

iv

Contents

1 Introduction 1
1.1 Event Camera and Event based Vision 1
1.2 Event Sensor Simulators . 2
1.3 Objective . 3

2 Background 4
2.1 Current Simulators . 4

2.1.1 V2E . 4
2.1.2 ESIM . 6

2.2 Overcoming Challenges in Existing Solutions 7
2.3 Utilizing Nvidia OptiX to Address Simulation Challenges . . . 9

3 System Design and Implementation 10
3.1 Architecture Overview . 10
3.2 Data Input . 13
3.3 Optix Ray Tracing Application Components 14

3.3.1 Acceleration Structure 14
3.3.2 Pipeline . 16
3.3.3 Shader Binding Table (SBT) 17

3.4 Asynchronous Temporal Event Pixel 18
3.4.1 Motion System and Key-frame Strategy 20

3.5 Illumination . 20
3.5.1 Indirect Illumination: Photon Mapping vs Path Tracing 21
3.5.2 Image Space Photon Mapping with Hardware acceleration 23

3.6 Bias and Event Stream Output 28
3.6.1 Stream Compaction . 28

v

CONTENTS vi

3.6.2 Tone Mapping . 29
3.7 Evaluation Setup and Methodology 29

4 Result and Discussion 31
4.1 V2E Dataset . 31
4.2 OptiX Dataset . 32
4.3 Evaluation . 33
4.4 Additional Comparisons and Verifications 35

5 Conclusion 37

6 Future work 38

List of Figures

3.1 System Overview . 11
3.2 The architecture of acceleration structures 15
3.3 Shader pipeline . 17
3.4 An illustration of temporal multi-sampling for an event pixel . 19
3.5 An illustration of Image Space Photon Mapping (ISPM) 24
3.6 An example of gathering process from photon buffer 27

4.1 Images of V2E data . 32
4.2 Images from the OptiX event data 33
4.3 Comparison of event numbers over timestamps 33

vii

List of Tables

4.1 Comparison between v2e and our method in process-
ing time and performance 35

4.2 Comparison between various parameter settings in pro-
cessing time and performance 35

viii

Chapter 1

Introduction

1.1 Event Camera and Event based Vision

Event sensors, also known as neuromorphic cameras, represent a significant
advancement in computer vision by capturing visual information in a unique
way. Unlike traditional frame-based cameras that capture full images at fixed
intervals, event cameras detect and transmit changes in brightness at each
pixel asynchronously. Each transmitted change is referred to as an “event”
and each event includes the x and y coordinates of the pixel, a timestamp, and
a polarity value indicating whether the change was an increase or a decrease
in brightness. Each event in an event camera is triggered by a change in
logarithmic intensity. This logarithmic scaling allows the event camera to
function effectively in environments with varying brightness levels. [6]

Event sensors operate using various bias settings. Each event pixel detects
changes in brightness and compares them to a set bias value. An event is
triggered if the change in brightness exceeds either the ON comparator bias
or the OFF comparator bias. The refractory period bias then determines how
long the pixel remains inactive before it can generate a new event. The overall
bandwidth is controlled by the photoreceptor bias and source-follower bias. All
these biases are generated by the chip’s bias generator at the pixel level [15].

The ability to operate asynchronously at high frequencies allows event
cameras to function with much lower bandwidth and latency than more con-
ventional sensors, making them ideal for applications requiring real-time re-
sponsiveness and precise motion detection. Their capability to capture rapid

1

CHAPTER 1. INTRODUCTION 2

movements and adapt to varying lighting conditions is crucial in fields such as
image and video restoration [11], object detection [17], simultaneous localiza-
tion and mapping (SLAM) [5] and eye tracking [13].

1.2 Event Sensor Simulators

A common feature among all the mentioned applications is their reliance on
machine learning methods to analyze input event data. Traditional computer
vision algorithms are typically designed to work on 2D arrays of RGB val-
ues, making it challenging to process event streams effectively. Consequently,
learning-based methods such as convolutional neural networks (CNNs) and
spiking neural networks (SNNs) have become popular solutions for handling
event streams. These learning based methods require training with anno-
tated event datasets to function properly, making the scale and quality of the
training dataset crucial to the performance of the machine learning model.
However, the availability of large-scale annotated event datasets is limited.
Event data, while advantageous, are sparse both temporally and spatially,
making them significantly more challenging to label compared to traditional
image-based datasets. Additionally, event cameras are not always available
to researchers as most of these cameras are much more expensive than con-
ventional frame-based cameras. As a result, there is a scarcity of annotated
event datasets available for various research purposes [20]. Event camera sim-
ulators, such as v2e [18] and ESIM [7], offer a promising solution to these
challenges. Firstly, simulators can generate labels directly, simplifying the
otherwise difficult and time-consuming process of data annotation. Secondly,
simulator software is easier to set up and use compared to physical event cam-
eras, improving accessibility and reducing costs. Additionally, certain scenes
and motions, such as rapid movements and structured lighting, are easier to
create and reproduce virtually, making it more efficient to prototype solutions.
Consequently, event camera simulators not only streamline the research pro-
cess but also make advanced event-based vision technology more accessible.

While existing simulation solutions have effectively addressed the funda-
mental functionality of event sensors, several critical issues remain unresolved.
Both V2E and ESIM generate events by comparing image frames, and produce
an event stream characterized by large packets of events occurring at relatively
low temporal frequencies. This differs from the asynchronous nature of event

CHAPTER 1. INTRODUCTION 3

cameras in which each event pixel operates independently from another. This
discrepancy causes current solutions to produce event streams that are limited
by the input video’s frame rate, which is significantly lower than the frequency
of an event camera. This substantial difference can negatively impact perfor-
mance. Alternatively, to achieve higher temporal resolution, a significantly
greater number of frames must be generated to ensure each pixel updates cor-
rectly over time, resulting in an extremely lengthy generation process. Both
scenarios are suboptimal for research purposes.

1.3 Objective

This project aims to overcome these challenges by designing a new event sen-
sor simulator with asynchronous event pixels that generate event streams ef-
ficiently. We employ computer graphics techniques to build the simulator for
rendering events within a 3D virtual scene. This approach enables precise
control over the behavior of each event pixel, effectively simulating an event
camera with adjustable parameters. We utilize Nvidia OptiX, leveraging its
motion system and rays with timestamps to sample a scene asynchronously.
The rendering pipeline is simplified to compute intensity only, as event sen-
sors output events independently of frequency and wavelength. Additionally,
to efficiently compute indirect illumination and prevent the global illumination
feature from becoming a computational bottleneck and slowing down the entire
system, we introduce a novel hardware-accelerated photon mapping method
to compute global illumination. This method simulates how light interacts
within the 3D scene representation efficiently.

Chapter 2

Background

The development of event camera simulators has become crucial for advancing
research and applications in event-based vision. Current simulation methods
primarily focus on two approaches: converting video frames into event streams
and generating events from virtual 3D environments. Each method has its own
set of techniques, benefits, and challenges, which are critical to understand in
order to appreciate the innovations introduced by this project. In this chapter,
we will first delve into the advantages and challenges of these existing methods.
Following that, we will discuss our approach to overcoming these challenges,
paving the way for more efficient and accurate event camera simulations.

2.1 Current Simulators

This section provides an overview of the current state-of-the-art simulators
used for event cameras. These simulators play a crucial role in the development
and testing of event-based algorithms and systems. We will examine two
prominent simulators, V2E and ESIM, discussing their features, capabilities,
and limitations.

2.1.1 V2E

V2E [18], or Video to Events, is a simulator that converts standard frame-
based videos into event streams, leveraging existing video data to simulate the
behavior of an event camera. One of the primary advantages of V2E is its

4

CHAPTER 2. BACKGROUND 5

ability to utilize neural networks, specifically the SuperSlowmo network [18],
to generate interpolated frames. This interpolation improves the temporal res-
olution of the video, allowing for a more detailed representation of motion. By
using readily available video footage, V2E provides a convenient and accessible
method for generating event data without the need for specialized hardware.

However, despite its innovative approach, V2E faces several challenges that
limit its effectiveness in accurately simulating event cameras. One significant
limitation is the inability of traditional video images to capture the high dy-
namic range (HDR) signal in real-world scenes. Event cameras are capable
of detecting a wide range of light intensities, which is essential for accurately
representing dynamic environments. Standard videos, cannot replicate this
HDR capability, resulting in a loss of detail and accuracy in the simulated
event stream.

Another challenge is that the frame rate of videos, even after interpola-
tion by SuperSlowmo, remains much lower than the frequency at which event
cameras operate, because creating a sequence of images with periods of only a
few microseconds is impractical. It is also inefficient to generate interpolated
images since this requires rendering full images, which consumes significant
resources, even though only a few pixels changes. Such methods creates un-
necessary computational overhead without substantial benefits, making it an
inefficient use of computational resources. In comparison, event cameras can
detect changes in light intensity at extremely high speeds, often much faster
than the highest frame rates achievable by conventional video cameras. This
discrepancy means that V2E-generated event streams cannot fully capture the
rapid dynamics that event cameras are designed to detect, leading to a less
precise simulation.

Furthermore, the nature of event pixels in V2E simulations is not truly
asynchronous. Event cameras operate by detecting changes in light intensity
at each pixel independently and asynchronously, providing a continuous and
highly responsive stream of data. In contrast, V2E generates events based
on interpolated video frames, meaning the event pixels are synchronized to
the frame rate of the video. This synchronization fails to replicate the true
asynchronous nature of event cameras, reducing the fidelity of the simulation.

Lastly, the SuperSlowMo neural network used in V2E is not specifically
trained for certain types of images, such as those used in eye-tracking ap-
plications. Eye-tracking images often have unique characteristics and require

CHAPTER 2. BACKGROUND 6

specialized processing methods to accurately simulate event data. The general-
purpose nature of SuperSlowmo means it may not perform optimally for these
specialized scenarios, further limiting the applicability of V2E in diverse re-
search and development contexts.

In summary, while V2E offers a practical solution for generating event
data from existing videos, it faces significant challenges in accurately replicat-
ing the capabilities of event cameras, especially in special cases such as eye
movements. These challenges include the inability to capture high dynamic
range, lower frequency compared to event cameras, lack of continuous asyn-
chronous event pixel generation, and limitations in handling specialized image
types. Addressing these challenges is crucial for advancing the fidelity and
utility of event sensor simulators.

2.1.2 ESIM

ESIM [7], or Event-based Simulator, is another prominent tool used for gen-
erating synthetic event data from 3D models and scenes. One of the notable
features of ESIM is its ability to estimate the time delta (dt) based on the mo-
tion within the scene. This approach allows ESIM to create event streams that
closely mimic the temporal dynamics of real-world environments, enhancing
the realism and accuracy of the simulation. By simulating the motion of ob-
jects and estimating the corresponding event data, ESIM provides a valuable
platform for testing and developing event-based vision algorithms.

However, despite its advanced capabilities, ESIM also faces several limita-
tions that impact its effectiveness. A significant drawback is the lack of global
illumination, as ESIM does not employ path tracing techniques to simulate
realistic lighting conditions. Global illumination is essential for accurately ren-
dering how light interacts with surfaces, especially in complex environments.
Without it, the simulated scenes in ESIM may lack the depth and realism
needed for high-fidelity simulations. While ESIM offers a “photo realistic”
option by integrating with Unreal Engine. The provided Unreal Engine ren-
derer is very slow, as described in ESIM’s official documentation [7], it could
take many hours to render one minute of trajectory. Moreover, the system is
built for simulating camera motion in 3D scenes. It does not support object
animation. This makes it suitable for SLAM applications, but not for other
object and motion detection purposes. Another limitation is that it also uses a

CHAPTER 2. BACKGROUND 7

frame-based generation method that events are only generated by comparing
complete frames, leading to the same issue that v2e has.

Moreover, the integration of specific renderers is required to achieve the
desired visual quality in ESIM. This dependence on external rendering engines
adds complexity to the simulation setup and can introduce inconsistencies in
the event data. Each renderer may have different capabilities and limitations,
affecting the overall quality of the simulation. Researchers and developers
must carefully select and configure these renderers to ensure the best possible
approximation of real-world conditions. And the strong coupling between
renderers and simulators makes it difficult to write custom components for a
specific tasks.

In conclusion, while ESIM provides an framework for simulating event
data based on estimated motion time, it faces several challenges that limit
its effectiveness. The absence of global illumination and object animation,
reliance on traditional renderers, and the lack of asynchronous pixel generation
are significant drawbacks. These limitations must be addressed to enhance the
realism and accuracy of event-based simulations.

2.2 Overcoming Challenges in Existing Solutions

One of the major challenges in the development of event sensor simulators
is achieving truly asynchronous event pixels and obtaining better temporal
resolution, particularly for applications involving rapid movements, such as
eye tracking. These challenges can be addressed by focusing on two key areas:
making events asynchronous and rendering with better performance.

Creating truly asynchronous events involves designing algorithms that can
independently monitor and respond to changes in light intensity at each pixel,
without waiting for a global frame update. This can be achieved by leveraging
advancements in parallel processing and GPU computing. By mapping each
pixel’s event detection process to individual threads on a GPU, it is possible to
simulate the independent and continuous nature of real event cameras. This
approach ensures that each pixel operates asynchronously, allowing for a more
accurate and responsive simulation of rapid movements, such as those observed
in eye tracking.

Achieving better temporal resolution requires not only asynchronous event
generation but also the ability to render scenes efficiently and accurately. In

CHAPTER 2. BACKGROUND 8

computer graphics, multiple rendering techniques have been developed over
the past years. The main the methods that are widely used nowadays are the
rasterization and ray tracing methods. They each have their own advantages
and disadvantages for different tasks. Therefore we need to make a comparison
between these two methods to find out the best solution for our program.

Rasterization is a widely used rendering technique known for its speed and
efficiency. It converts 3D objects into 2D images by mapping vertices to the
screen space and filling in the pixels. This approach is highly efficient and suit-
able for real-time applications, such as video games and interactive graphics,
where rendering speed is crucial. However, rasterization has significant limi-
tations when it comes to rendering complex optical effects such as refraction
and reflection.

One of the primary drawbacks of rasterization is its inability to accurately
simulate the way light interacts with surfaces in real-world environments. Re-
fraction, which occurs when light passes through transparent materials and
bends, and reflection, which involves light bouncing off reflective surfaces,
are challenging to render accurately using rasterization. These effects require
tracing the path of light as it interacts with surfaces, a task that rasterization
cannot perform efficiently due to its inherent design. Consequently, rasteri-
zation often produces approximations of these effects, which can lead to less
realistic images.

To address some of these limitations, rasterization techniques often incor-
porate software-based global illumination [19]. Global illumination models
how light bounces around a scene, contributing to indirect lighting and shad-
ows. While software global illumination can enhance the realism of rasterized
images, it is heavily reliant on precomputed parameters and simplifications.
These approximations make the lighting less accurate and dependent on fine-
tuning parameters to achieve acceptable results. The reliance on such param-
eters can also limit the adaptability of rasterization to dynamic scenes with
varying lighting conditions.

In contrast, ray tracing offers a more accurate and flexible approach to ren-
dering. By simulating the actual paths of rays of light as they travel through
the scene, ray tracing can naturally handle complex interactions like refrac-
tion and reflection. Each ray can interact with surfaces in a realistic manner,
producing high-fidelity images with accurate lighting and optical effects. Ad-
ditionally, ray tracing inherently supports global illumination, as it can trace

CHAPTER 2. BACKGROUND 9

the multiple bounces of light required to capture indirect lighting accurately.
While ray tracing is computationally intensive and traditionally slower

than rasterization, advancements in GPU technology and frameworks like
NVIDIA OptiX have made real-time ray tracing feasible. The ability to lever-
age GPU acceleration allows ray tracing to perform efficiently, closing the
performance gap with rasterization while delivering superior visual quality.

Given the significant advantages in rendering accuracy and realism, ray
tracing was chosen for our event sensor simulator. Ray tracing’s ability to
model intricate light interactions, such as global illumination, which includes
both direct and indirect lighting, makes it an ideal choice for our needs.

2.3 Utilizing Nvidia OptiX to Address Simulation
Challenges

To overcome the challenges associated with existing event camera simulators,
we employ Nvidia OptiX, a powerful framework for real-time ray tracing.
Nvidia OptiX provides a flexible and efficient platform for rendering complex
scenes, enabling us to create more accurate and realistic simulations of event
cameras. One of the primary advantages of using Nvidia OptiX is its ability to
handle asynchronous event generation. By leveraging OptiX’s motion system
and ray tracing capabilities, we can sample scenes at different timestamps
for each pixel, reflecting the asynchronous nature of event cameras. This
allows us to generate event streams that are both temporally precise and
computationally efficient. Additionally, the flexibility of Nvidia OptiX allows
for the integration of custom shaders and algorithms, enabling precise control
over the behavior of each event pixel. This customization is essential for
tailoring the simulator to specific applications and research needs.

Chapter 3

System Design and
Implementation

In this chapter, we present the design and implementation of our event sensor
simulator utilizing Nvidia OptiX. The goal of this project is to address the
limitations of existing simulators by achieving truly asynchronous event pixel
generation and improving temporal resolution, particularly for applications
involving rapid movements such as eye tracking. This chapter will provide a
comprehensive overview of the system architecture, the key components and
algorithms used, and the implementation details.

3.1 Architecture Overview

The architecture of our event sensor simulator is designed to efficiently simu-
late asynchronous event generation and high temporal resolution using Nvidia
OptiX. In Figure 3.1, we provide an overview of the system’s architecture.
This architecture integrates various components and subsystems to achieve
our goals.

The system begins with input parameters and a 3D asset file. The pa-
rameters encompass various settings required for the simulation, such as scene
configuration, event sensor parameters, camera settings, and other relevant de-
tails. These parameters are either used to configure the pipeline or uploaded
to a GPU buffer for use by shaders at runtime. The 3D asset file contains

10

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 11

Figure 3.1: An overview of the architecture. This figure illustrates how input
data and parameters are processed in the application program to generate
synthetic events. The system could be divided into three stages: preprocess-
ing stage, simulation stage and output stage. In the first preprocessing stage,
input data such as 3D models, animations and textures are organized in Ren-
derObjects and parameters are used to configure the RenderSystem properties.
In the second stage, Nvidia OptiX’s components are built, such as pipelines
(photon mapping pipeline is optional), a shader binding table and accelera-
tion structures in the host CPU program. Then the pipeline is launched to
run GPU device programs to perform the simulation. In the final stage, the
events will be saved in an event buffer and exported with a stream compaction
algorithm.

the model of the scene to be rendered, including material data and animation

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 12

data for motion.
RenderObject is the structure responsible for recursively processing the

input 3D assets. RenderObjects are nested in a tree structure, similar to
the structure used in GL Transmission Format (glTF) models, to efficiently
manage the hierarchical nature of the scene data. Material data and animation
keyframes are stored within the corresponding objects.

RenderSystem holds all the parameters and states of the rendering pipelines.
It is responsible for compiling and building several different types of compo-
nents required by an OptiX program, including contexts, modules, program
groups, pipelines, and shader binding tables, which are defined as follows:

• The context in OptiX is the primary object that manages all the states
and resources for the ray tracing operations. It encapsulates the device
memory, execution configuration, and overall state needed for rendering.

• Modules are program files of OptiX programs written in CUDA or
PTX that define the behavior of the rays as they traverse the scene.
Module types include including ray generation, closest-hit, any-hit, and
miss shaders.

• Program groups in Optix define specific stages of the ray tracing
pipeline. Each group can contain different types of programs, such as
ray generation, intersection, and hit programs, allowing for modular and
organized shader management.

• Optix pipelines are a sequence of operations that define the execution
flow of the ray tracing process. A pipeline connects the various pro-
gram groups and ensures that rays are processed correctly through the
different stages of shading and intersection tests.

• The Shader binding table (SBT) is a data structure that maps ray
types to their corresponding shaders. It provides the necessary linkage
between the ray tracing pipeline and the specific programs that should
be executed for different ray interactions [2]

Both RenderObject and RenderSystem help to build the OptiX program.
The essential components required to launch an OptiX application is the linked
pipeline, shader binding table (SBT) and an acceleration structure (AS). The

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 13

acceleration structure built by RenderObject is a spatial data structure re-
quired for efficient ray tracing. It optimizes intersection tests of rays with the
geometric data in the scene, significantly speeding up the rendering process [2].

The core of our event sensor simulator is built upon the powerful ray
tracing capabilities provided by NVIDIA OptiX 8.0. NVIDIA OptiX provides
a flexible and programmable ray tracing pipeline, which allows us to implement
custom algorithms tailored to our specific needs. The OptiX application is
divided into two main categories: host programs and device programs. Host
programs manage the overall state of the application, set up the rendering
pipeline, and coordinate tasks between the CPU and GPU. Device programs
run on the GPU and handle the actual ray tracing computations by executing
a series of linked shaders, including ray generation shaders, closest-hit shaders,
any-hit shaders, and miss shaders. These components work together to trace
rays through the scene, determine intersections with objects, and compute the
resulting shading and lighting effects.

When the OptiX application is launched, the device program first exe-
cutes ray generation shaders for each event pixel. These shaders generate rays
with different ray time values to sample the acceleration structure at different
times. The intersection data is then reported by the close hit shaders. Unlike
conventional ray tracing programs that uses this information to compute pixel
colors, this intersection information is used to generate event data, which will
be saved in a CUDA object called the event buffer.

Finally, the event buffer copies the event data back to the host CPU pro-
gram, eliminating empty events in the buffer through a stream compaction
process.

An additional rendering pipeline, the photon pipeline, is optionally used
to improve the simulation capabilities. This pipeline utilizes a hardware-
accelerated photon mapping technique to model global illumination within
the 3D environment. By tracing the paths of photons and their interactions
with various surfaces, it provides a more efficient method to compute indirect
illumination in the scene.

3.2 Data Input

The system starts with importing necessary data such as 3D representations
and animations. The data input stage is a foundational component of our

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 14

event sensor simulator, and we utilize the Open Asset Import Library (i.e.,
ASSIMP [3]) to import and process 3D asset files.

Assimp is an open-source library designed to import and export various
3D model formats. It supports over 40 different file formats, including widely-
used ones such as OBJ, FBX, and glTF, making it a versatile tool for handling
a wide range of 3D assets created using different modeling software [1].

One of the key features of Assimp is its ability to manage hierarchical
structures inherent in complex 3D models. These structures include nested
objects and transformations, which are represented as nodes in a scene graph.
Each node can have multiple children, forming a tree-like hierarchy. our Ren-
derObject class mirrors this arrangement to maintain the relationships and
transformations between different parts of the model.

Additionally, Assimp can read material data and animation keyframes
bound to these hierarchical meshes. This comprehensive data extraction helps
us bind Shader Binding Table (SBT) records when building acceleration struc-
tures for each object. The SBT links ray tracing operations with the appro-
priate shaders and materials, ensuring that the rendering pipeline could access
necessary data for each object.

3.3 Optix Ray Tracing Application Components

Once the input data is processed properly, they will be loaded to the main
ray tracing program. As shown in Figure 3.1, the simulator’s ray tracing
application is built around three major components: acceleration structures,
shader binding tables, and pipelines. In this section, we will detail the design
and implementation of these components.

3.3.1 Acceleration Structure

As mentioned above, the acceleration structure is crucial for optimizing the
ray tracing process. We designed a hierarchical acceleration structure based on
the input data’s hierarchical organization. This design leverages the inherent
hierarchy to efficiently manage motion systems and temporal rays, ensuring
that dynamic changes and asynchronous sampling are handled seamlessly.

As shown in Figure 3.2, we have designed a three-level acceleration struc-
ture to represent the hierarchical data structure of 3D objects in the scene.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 15

Figure 3.2: The architecture of acceleration structures. The motion transform
nodes hold the motion keys to do interpolations. Instance acceleration struc-
ture can hold an object’s own geometry or handles to other children objects.

Each object is represented by a motion transform, an instance acceleration
structure (IAS), and a geometry acceleration structure (GAS). This hierarchi-
cal approach optimizes the ray tracing process, ensuring efficient handling of
both static and dynamic objects.

The motion transform component manages the dynamic aspects of the

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 16

object, such as translations, rotations, and scaling over time. This ensures
that any movement or transformation of the object is accurately reflected in
the acceleration structure. This node is important for sampling with asyn-
chronous event rays because it represent the motion between current two key
frames with their own timestamps that the system uses to generate interpo-
lated transformation matrices.

The instance acceleration structure (IAS) is the intermediate level that
connects the motion transform to the GAS. It organizes instances of objects
and their respective transformations. In our system, the IAS is primarily
responsible for holding all the children of a parent object and maintaining
their hierarchical transformations, as well as the static transformations of each
object for their initial states. This design ensures that any transformations
applied to the parent object are correctly propagated to its children, preserving
the integrity of the scene’s spatial relationships.

The geometry acceleration structure (GAS), is responsible for holding the
actual mesh data. This structure includes all the vertices and indices that
define the geometry of the objects.

3.3.2 Pipeline

In NVIDIA OptiX, the pipeline defines the flow of execution, connecting var-
ious shader programs and managing the stages of the ray tracing process. It
ensures that rays are generated, traced, and shaded correctly, facilitating the
integration of complex rendering techniques. The pipeline consists of multiple
stages, including ray generation, intersection, closest hit, any-hit, and miss
shaders. This is illustrated with Figure 3.3

In our program, the key shaders include the ray generation shader, the miss
shader, and the closest hit shader. Each ray generation shader acts like an
event pixel, generating multiple rays over time. Once the rays are generated,
the OptiX framework performs ray traversal. By default, this traversal tests
intersections against triangles using the default intersection shader and invokes
the closest hit shader when a ray intersects an object at a specific ray time.
The corresponding Shader Binding Table (SBT) record is passed to the closest
hit shader for evaluation. The closest hit shader then computes the intensity
value and returns the result to the ray generation shader through a payload,
which is a special memory with very limited size to pass data between shaders

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 17

Figure 3.3: The relationship of Nvidia OptiX programs. Image from the Nvida
OptiX programming guide [4]

efficiently [2]. Finally, the ray generation shader compares the intensity values
and generates event data, which is saved to an event buffer.

3.3.3 Shader Binding Table (SBT)

In those shader programs, the program needs to get access to rendering data
such as materials, vertex normals or texture coordinates, but they do not
know which object they will be rendering for until the intersection tests are
finished. Unlike traditional shaders, which typically access material and other
relevant data directly through texture maps and uniform buffers, hardware-
accelerated ray tracing frameworks require a Shader Binding Table (SBT) to
acquire object material and other relevant data for each shader program.

In NVIDIA OptiX, shader data is stored in Shader Binding Table (SBT)
records for each shader. The main types of SBT records include ray gen-
eration records, miss records, and hit group records. Among these, the hit
group record is the most crucial. Each acceleration structure is indexed to an
SBT record to provide the necessary rendering data for closest-hit shaders.
Therefore, the SBT records need to be organized based on the acceleration
structure’s hierarchy.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 18

3.4 Asynchronous Temporal Event Pixel

Unlike traditional image renderers, our goal is to simulate the asynchronous
pixels of an event sensor. To achieve asynchronous temporal event pixel gen-
eration, we leverage the OptiX Motion System and the ray time property to
sample the scene over different moments in time. This approach allows each
ray to capture unique temporal information.

To sample the dynamic scene with different ray times, we need to pro-
vide two keyframes for the motion transform node in the object’s acceleration
structure. The first keyframe represents the starting frame, while the sec-
ond keyframe represents the ending frame. Additionally, we must specify a
starting time and an ending time for these keyframes. To have rotation trans-
formations interpolated correctly, translation, rotation and scaling transforms
are set separately. The rotation inputs are in quaternion format so that the
system could use spherical linear interpolation(SLERP) for generating undis-
torted transformations.

When a ray traverses the scene, the OptiX framework interpolates the
motion over time for each ray individually based on its ray time property
and current two keyframes and timestamps. This interpolation allows the
framework to return results that accurately reflect the object’s state at the
specific time the ray intersects it.

The ray time property in OptiX is crucial for capturing dynamic changes
in the scene. Determining the appropriate ray time for ray generation is a key
aspect of this process. By varying the ray time for each ray, we can simulate
the passage of time and effectively track motion. To implement this, we use a
strategy for computing ray times. The ray times are calculated by taking the
difference between the current frame time and the last frame time, divided
by N, where N represents the number of samples taken. Additionally, we
can apply an indexed value or random offset to each ray time, ensuring that
different event pixels operate on different initial timestamps. This method
ensures that we can generate N events between two frames for each pixel with
an unique set of ray times, providing a high temporal resolution and capturing
rapid scene changes effectively.

Figure 3.4 illustrates the process of temporal multi-sampling. t1 and t2
represent two frames of the object’s motion. The simulated event camera has
an event pixel casting rays between these two frames. Normally, the ray R

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 19

will not intersect with the object in motion because it does not hit the object
at either t1 or t2. However, by sampling the scene at t1.5, the ray can detect
the object mid-motion.

Furthermore, by casting multiple rays at different times between t1 and
t2, such as t1.49, t1.50 and t1.51, we can obtain multiple samples. This
approach increases the likelihood of capturing the object during its motion,
providing a more accurate and detailed representation of the dynamic scene.
This is particularly effective for simulating the asynchronous behavior of event
cameras, which need to detect rapid changes in the environment accurately.

Figure 3.4: An illustration of temporal multi-sampling for an event pixel. A
synthetic camera could generate multiple sampling rays to sample any moment
between two frames individually, capturing the motion with better temporal
resolution.

This method is advantageous because it leverages the parallel processing
capabilities of the GPU, resulting in a highly efficient simulation process. Typ-
ically, interpolation is computed on the CPU, which means the process is han-
dled sequentially and inefficient. Furthermore, the constant need to transfer
data between the CPU and GPU further degrades performance, making real-
time processing impractical. Interpolating motion frames on the GPU enables
each ray to be processed in parallel, significantly accelerating the calculation

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 20

process.

3.4.1 Motion System and Key-frame Strategy

Now that we have the motion system in place, but it takes only two key frames
for interpolation. To render a sequence of animations, we need to continuously
update the motion transform node of the acceleration structure. For accurate
interpolation of rotation transformations, we utilize the SRT (Scale, Rotation,
and Translate) structure, with rotation represented in quaternion format.

The host program’s animation loop maintains the current time and extracts
new frames from the imported sequence, creating a new motion transform
node to update the existing one in real-time. This ensures smooth transitions
and accurate motion representation. The sequence of frames comes from the
output of Blender, which provides frame-by-frame animation. Notice that even
though the animation could be generated with an arbitrary number of key
frames, Blender will interpolate key-framed motions to a sequence of frames
with constant frame rate when exporting the output file.

3.5 Illumination

For each sampling ray, an illumination model is needed to evaluate the inten-
sity value for the hit point. Illumination models describe how light interacts
with surfaces in a scene, influencing the appearance of materials. These models
are essential for simulating realistic lighting effects in computer graphics.

Unlike traditional renderers that compute the color for each pixel, our
method focuses solely on computing the intensity. This approach is tailored
to the requirements of event sensors, which detect changes in light intensity
rather than color information. By computing intensity only, we streamline the
rendering process and ensure that the generated event data accurately reflects
the variations in light intensity within the scene.

For this project, we use a simplified Bidirectional Scattering Distribution
Function (BSDF), specifically employing a Lambertian model. The Lamber-
tian model assumes that light is scattered equally in all directions from a sur-
face, resulting in a matte appearance. This model is computationally efficient
and provides a basic yet effective approximation of diffuse reflection.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 21

We chose this model because we need further investigation to determine
which BSDF is most suitable for our simulator. The Lambertian model offers
a starting point with efficiency, allowing us to set up the fundamental aspects
of the simulator. This simplified approach enables us to establish a baseline
for performance and functionality, from which we can explore more complex
and precise models in the future.

3.5.1 Indirect Illumination: Photon Mapping vs Path Tracing

Having established the basics of direct illumination using a simplified Lam-
bertian model, we now turn our attention to indirect illumination. Indirect
illumination involves the complex interactions of light as it bounces off mul-
tiple surfaces before reaching the observer. Capturing these interactions is
crucial for producing high-fidelity simulations, particularly in dynamic scenes
where light and shadow are in constant flux.

Two common techniques for simulating indirect illumination are Path
Tracing and Photon Mapping.

Path Tracing [10] is a more straightforward and popular method. It traces
the paths of individual light rays as they bounce through the scene, simulat-
ing the way light naturally propagates. Each path is traced until it either
leaves the scene or is absorbed. Path tracing can produce highly realistic im-
ages by accurately simulating the interactions of light with surfaces, but it is
computationally intensive and can be slow to converge to a noise-free image.

Photon Mapping [8], on the other hand, is a two-pass global illumination
algorithm. The energy emitted from a light source are divided into many
energy packs called photons. Since modern computers cannot generate and
trace a realistic amount of photons efficiently, photons represent distribution
of energy in the 3D scene. In the first pass, photons are emitted from the light
sources in rays and traced through the scene, where they may interact with
surfaces and scatter. These interactions are stored in a photon map. In the
second pass, the photon map is used to estimate the light intensity at vari-
ous points in the scene, providing an approximation of indirect illumination.
Photon mapping is relatively efficient and can handle complex lighting effects
such as caustics, but it often requires careful tuning of parameters and can
suffer from artifacts if not adequately sampled.

It is difficult to make a direct quantitative comparison between path tracing

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 22

and photon mapping due to the inherent challenges in evaluating realism from
result images and the different sets of parameters each method uses. Few
research studies have comprehensively evaluated these methods side by side.
The subjective nature of image quality assessment and the dependency on
specific scene parameters complicate direct comparisons.

Quality-wise, both methods can provide excellent results. Path tracing
excels in producing highly realistic images with accurate global illumination,
reflections, and refractions. Photon mapping, on the other hand, is particu-
larly adept at simulating complex light interactions such as caustics and diffuse
inter-reflections, which can be challenging for path tracing [14].

Performance-wise, path tracing generally requires more rays and samples
to produce a noise-free image, making it computationally intensive. It relies
heavily on modern hardware acceleration and denoising techniques to be feasi-
ble for real-time applications. Photon mapping emits a predefined number of
photons, with the number depending on the scene’s complexity. It also requires
a spatial data structure like a kd-tree to efficiently store and retrieve photon
interactions, which can add to the computational overhead but is generally
more predictable in performance than path tracing.

Usage-wise, path tracing is commonly used for industrial offline rendering
where the highest quality and realism are prioritized, such as in film produc-
tion and high-end visual effects. Photon mapping is frequently employed in
research settings and simulations, where specific lighting effects and scenarios
are studied in detail [9].

For real-time interactive applications, path tracing can be used with AI-
based denoisers to approximate real-time performance. However, the perfor-
mance remains limited and can struggle with highly complex scenes. Pho-
ton mapping offers methods like image space photon mapping and photon
splatting, which are adapted for interactive applications, providing a balance
between quality and performance suitable for real-time scenarios [12].

Considering the high frequency and real-time requirements of event cam-
eras, achieving better performance is crucial. Therefore, we have chosen pho-
ton mapping for its efficiency in handling complex lighting interactions. By
leveraging the hardware-accelerated OptiX pipeline, we can efficiently manage
photons and utilize a screen space photon mapping method to meet the per-
formance needs of our simulation. This approach ensures that we can achieve
high-fidelity lighting effects while maintaining the necessary computational

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 23

efficiency for real-time applications.

3.5.2 Image Space Photon Mapping with Hardware accelera-
tion

Traditionally, photon mapping involves storing photons in a 3D data struc-
ture, which can be computationally intensive and memory-demanding. Today,
such complicated data structures, such as kd-trees, still do not work well on
GPU. To address these challenges, we utilize a 2D buffer that maps the pho-
tons directly into image space. This buffer allows for efficient storage and
retrieval of photon data, leveraging the GPU’s parallel processing capabilities
to accelerate the process.

In our event sensor simulator, we implement a method called Image Space
Photon Mapping, enhanced with hardware acceleration. This approach stores
photons in a 2D buffer in image space, optimizing the search and evaluation
process for indirect illumination.

This method is inspired by McGuire’s Image Space Photon Mapping (ISPM)
[12]. In ISPM, it is noted that the final bounce of photons is the most compu-
tationally expensive, so it introduces the concept of using photon volumes for
rasterization rendering to handle this last step efficiently. Since our approach
does not rely on rasterization, we map photons directly to an image space
buffer instead, and we can perform a 2D search for each pixel from the photon
buffer to gather nearby photons efficiently. This process is illustrated with
Figure 3.5

Photon Emission and Surface Interaction

To fully utilize the hardware acceleration features of OptiX, we create an
additional pipeline specifically for photon processing. This new pipeline oper-
ates alongside the main event pipeline, benefiting from the same acceleration
structure and Shader Binding Table (SBT) resources, thus optimizing resource
usage and maintaining efficiency.

Photons are emitted and traced from a separate ray generation shader,
originating from the light sources within the scene. The total flux of each
light source is divided into N photons, which are then cast into the scene
using rays. These photons interact with surfaces, capturing essential light
interactions that contribute to the indirect illumination within the scene.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 24

Figure 3.5: An illustration of Image Space Photon Mapping (ISPM). Photons
are emitted and traced from the light source in the first pass. Once it stays
on a surface, it will be mapped to a photon buffer (orange). In the rendering
pass, camera pixels will search in the photon buffer for closest photons and
make an estimation of intensity value for indirect illumination.

The interaction of a photon with a surface can result in three possible
outcomes: the photon remains on the surface, undergoes diffuse reflection, or
undergoes specular reflection. To control this behavior, we set two parameters
for materials in the SBT record:

0 ≤ tdiffuse ≤ tspecular ≤ 1

Once a photon hits a surface, a random number is generated. If the number
is smaller than tdiffuse the photon remains on the surface. If the number is
larger than tdiffuse but smaller than tspecular, the photon undergoes diffuse
reflection. If the number is above tspecular the photon reflects in a mirror-like
manner.

Usually, photon mapping utilizes BRDF parameters to dictate the photon’s
behavior upon interacting with surfaces. However, since we are currently em-
ploying a simplified Lambertian model, we have introduced this system to

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 25

control photon interactions for now. More complex behaviors will be imple-
mented as we integrate more advanced shading models in the future. This
initial approach allows us to lay a solid foundation, ensuring that our system
can be easily extended and refined with more sophisticated models as our work
progresses.

Image Space Photon Map

When a photon interacts with a surface and comes to rest, it must be deter-
mined if the photon is visible to the camera before saving it. This is achieved
by tracing an occlusion ray from the photon’s position to the camera. If the
photon is not obstructed and is visible to the camera, it is then saved; other-
wise, it is discarded.

To compute the pixel coordinate from hit position, we first convert the 3D
world position to normalized device coordinates(ndc) and then use the ndc
coordiantes with camera’s resolution to determine which pixel position it falls
into. The equations are listed below:

hit vec4 =


hit position.x
hit position.y
hit position.z

1.0


ndc = camera matrix× hit vec4

pixel.x =

⌊(
ndc.x

ndc.w
+ 1.0

)
× 0.5× dim.x

⌋
pixel.y =

⌊(
ndc.y

ndc.w
+ 1.0

)
× 0.5× dim.y

⌋
Ideally, a 3D photon buffer is used to store multiple photons that fall

into the same pixel bucket, ensuring comprehensive illumination data for each
pixel. However, this introduces significant complexity due to the asynchronous
nature and sheer volume of photons generated. Managing millions of photons
asynchronously poses substantial challenges. The synchronization required
to insert each photon into the buffer across all threads is computationally
prohibitive and inefficient.

To address this, we employ an asynchronous insertion method. While this
approach can lead to overwriting and race conditions, it is generally acceptable

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 26

because photons are typically sparse and photons that are very close to each
other tend to have very similar properties. This method allows for efficient
photon handling despite potential conflicts.

Future improvements could include advanced synchronization techniques
to locally coordinate threads, minimizing data conflicts and enhancing the
accuracy of photon mapping. This will allow for a more robust and precise
simulation of indirect illumination.

Photon Collection and Radiance Estimation

Once the event pipeline is initiated, it first computes the direct illumination
for each pixel. After this initial computation, the pipeline proceeds to gather
photons from the photon buffer near the pixel’s position to estimate the in-
direct illumination. The search for relevant photons is conducted within a
defined square boundary in the 2D buffer. This boundary size is set by a
parameter to ensure that the search does not extend too far in areas with low
photon density, maintaining computational efficiency. The size of the search
boundary is scaled by the pixel’s distance from the view position, ensuring
that the search area is appropriately sized relative to the pixel’s position in
the scene.

The total number of photons considered is limited by a parameter. This
helps manage the computational load and ensures that the estimation process
remains efficient. By limiting the number of photons, we prevent the system
from being overwhelmed in the regions with photons in very high density,
which could slow down the rendering process by a lot.

Additionally, to prevent extreme cases where distant photons might be
incorrectly considered, a distance filter r is applied. If a photon is farther
than this specified distance r from the evaluation point in image space, it is
skipped. This ensures that only relevant photons contribute to the radiance
estimation.

For efficient photon gathering, the search starts from the center and ex-
pands outward in square steps. This methodical approach ensures that pho-
tons closest to the pixel are considered first, optimizing both the accuracy and
speed of the indirect illumination estimation. By prioritizing nearby photons,
we can more accurately simulate the diffuse lighting effects that contribute to
the overall realism of the scene.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 27

Figure 3.6: An example of gathering process from photon buffer. Given a pho-
ton buffer with 5 photons saved (p1 to p5), to search photons within window
boundary(purple). The system will first search the positions closest to the
evaluation pixel(blue box) and then expand to a larger area(green box).

The Figure 3.6 illustrates an example of the photon collection process. We
are evaluating a pixel at coordinates x, y, indicated by P (x, y), with a search
boundary size of 5, represented by the purple square. In the photon buffer,
there are five photons, labeled from p1 to p5. The searching process begins at
P (x, y) and iterates through the positions covered by the blue square, followed
by the green square, moving left to right and top to bottom.

If we are gathering only three photons, the photons p1, p2 and p3 will be
collected, while p4 and p5 will not be included in this iteration.

To estimate the radiance from the collected photons, we use a general

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 28

equation commonly found in existing photon mapping methods [14]. The
equation is given by:

L(x, ω) ≈ 1

N

N∑
i=1

kr(x, xi)τi

In this equation, L(x, ω) represents the estimated radiance at point x in
direction of ω. N is the total number of photons considered in the estimation.
kr(x, xi) s the kernel function that determines the contribution of the i-th pho-
ton to the radiance estimation. In our project, we use a Gaussian distribution
kernel for the kernel function. However, other common kernels such as cone
kernels and other distance-based functions could also be used to weight the
contributions of photons based on their distance from the evaluation point.
This function evaluates the distance between the evaluation point x and the
photon position xi. τi is the flux of the i-th photon times BRDF.

3.6 Bias and Event Stream Output

Once the intensity values are calculated for each pixel, the next step involves
converting these values into event streams. This process begins by applying
a logarithmic transformation to the intensity values, which compresses the
dynamic range and simulates the response characteristics of real event sensors.
Subsequently, a bias threshold is applied to the log-transformed intensities to
determine when an event should be generated. Events are triggered when the
change in intensity exceeds the bias, effectively capturing significant variations
in light intensity. Once an event is fired from a pixel, the base intensity level
will be reset to the new value for future comparisons. The resulting event
streams, which indicate the pixel location, timestamp, and polarity, provide
a high temporal resolution and asynchronous output that accurately mimics
the behavior of real event cameras.

3.6.1 Stream Compaction

The returned event buffer contains many empty events that need to be filtered
out before the event data is loaded back to the CPU host program. Because
the CPU program is not efficient with iterating through such a large 3D data

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 29

structure and eliminating all the empty spaces to output events in a compact
format. This is known as a stream compaction problem [16]. To do this
efficiently, we perform stream compaction using the Thrust library provided
by CUDA. Thrust provides efficient parallel algorithms on GPU that allow
us to compact the event stream, removing any empty or invalid events and
ensuring that only valid events are retained for further processing.

3.6.2 Tone Mapping

For frame visualization, we employ the Extended Reinhard tone mapping
method to handle the higher dynamic range values produced by our simu-
lator. This method effectively compresses the wide range of light intensities
into a format that can be displayed on standard screens, preserving detail and
contrast.

3.7 Evaluation Setup and Methodology

We will conduct a preliminary evaluation focusing on processing speed and
temporal resolution, which are the primary challenges we aim to address with
our event sensor simulator. These aspects are crucial for ensuring that the
simulator can operate efficiently and accurately in real-time scenarios, partic-
ularly for applications involving rapid movements and dynamic scenes.

At this stage, we are unable to perform a systematic evaluation of the
accuracy of our simulator due to the lack of a ground truth dataset. Creating
a ground truth dataset requires measurements of light intensities and object
materials in a real scene, which would then be replicated in a similar virtual
environment for testing. This process is essential for validating the accuracy
of the simulator’s output against real-world data.

Additionally, we do not yet have an advanced and measured shading model
to evaluate the accuracy comprehensively. The current shading model used
in our simulator is a simplified Lambertian model, which is suitable for initial
testing but may not provide the level of detail necessary for precise accuracy
assessments. Future work will involve integrating more sophisticated shad-
ing models that can better replicate the complexities of real-world lighting
interactions.

To set up the testing scene, we use GIW data to animate eye movement

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 30

with an simplified RITEyes eye model. This updated model has been refined
to remove colliding polygons, which previously hindered performance by com-
plicating intersection tests for hardware accelerated raytracing frameworks.

We render a 30-second image sequence in Blender and use v2e (video
to events) to generate corresponding event data. This provides a reference
dataset for comparison.

The animation and model set up in Blender are exported to a glTF 2.0 file,
which is then imported into our event sensor simulator to render 30 seconds of
event data. We carefully tune the biases in the simulator to ensure a similar
number of events are generated over the same animation sequence, allowing
for a fair comparison.

Chapter 4

Result and Discussion

In this chapter, we will discuss the results of our preliminary tests conducted
using the OptiX-based event sensor simulator. The tests were performed on
a platform equipped with an Intel i9-10900 CPU, an NVIDIA 2080TI GPU,
and 64 GB of memory.

4.1 V2E Dataset

To create a simulated event dataset using v2e, we began by rendering a se-
quence of eye animation in Blender. The animation lasted 30 seconds and was
rendered at a resolution of 1280 by 720 pixels with a frame rate of 30 fps,
resulting in a total of 900 frames. This rendering process took approximately
40 minutes.

Once the image sequence was rendered, we loaded it into v2e to generate
the event data. For this, we set the positive and negative event thresholds
to 0.15 and the timestamp resolution to 3ms, ensuring the output resolution
remained consistent with the input resolution of 1270 by 720 pixels. We use
a 3ms resolution because any value lower than it would result in much longer
time to process.

The first step in v2e involved interpolating the image sequence to a higher
frame rate of 360Hz, which corresponds to a time resolution of 2.78ms per
frame. This interpolation process was computationally intensive, taking about
1 hour and 20 minutes to complete.

After interpolation, v2e proceeded to generate the event data from the

31

CHAPTER 4. RESULT AND DISCUSSION 32

interpolated image sequence. This final step took an additional 20 minutes,
resulting in a comprehensive event dataset that was ready for further analysis.
Figure 4.1 shows an example images from this dataset.

4.2 OptiX Dataset

To prepare the dataset using our OptiX event simulator, we first exported
the animated 3D scene from Blender into the GLTF 2.0 format. This format
was chosen for its compatibility and efficiency in handling complex 3D scenes.
Once exported, the scene was read into our OptiX event simulator.

To ensure that the dataset generated by OptiX was comprehensive and
comparable to the v2e dataset, we manually fine-tuned the bias (threshold)
to 0.05. This adjustment was necessary to match the magnitude of events
generated by v2e, considering that our simulator uses a different illumination
model than Blender.

For the simulation, we set the system to take 10 samples between each
frame. This setup ensured a high temporal resolution, with an average time
interval of 1ms between samples. By doing so, we aimed to capture the dy-
namic changes in the scene more accurately, similar to the high-frequency
sampling performed by v2e. Notice that the temporal resolution here refers
to the time periods between samples for a single pixel, not time difference
between a sequence of events in a larger scope.

The animation playback rate was set to 1.0, meaning the simulation ran in
real-time and completed in 30 seconds, matching the duration of the rendered
sequence from Blender. Example images from this dataset are displayed in

Figure 4.1: Images of V2E data: extracted frame image(left), accumulated
event frame(right)

CHAPTER 4. RESULT AND DISCUSSION 33

Figure 4.2

Figure 4.2: Images from OptiX event dataset: extracted frame image(left),
accumulated event frame(right)

(a) The blue line represents v2e. The
spike shows that most of the events
generated have the same timestamp.

(b) A portion of data from 4.3a, but
with the Y axes rescaled to reveal vari-
ation in the red trace that was not pre-
viously visible. Unlike the event data
from V2c, events generated with our
Optix-based algorithm can occur inde-
pendently.

Figure 4.3: Comparison of event numbers over timestamps

4.3 Evaluation

Table 4.1 provides a comparison between v2e and our method’s results.
The comparison between the v2e and OptiX event datasets reveals several

key insights. The v2e event dataset comprises 169,825,482 events, while the

CHAPTER 4. RESULT AND DISCUSSION 34

OptiX event dataset contains 186,636,537 events. This close match in the
number of events indicates that both datasets are comparable in terms of the
volume of data they provide.

In terms of processing efficiency, the OptiX simulator significantly outper-
forms the v2e system. The OptiX simulator operates in real-time, completing
the event generation process in just 30 seconds. In contrast, generating the
event data with v2e takes approximately 140 minutes. This substantial dif-
ference underscores the efficiency of the OptiX simulator in producing event
data.

Temporal resolution also highlights a notable advantage of the OptiX sim-
ulator. The frame-to-frame interval, or temporal resolution, of the OptiX
dataset is 1 millisecond, compared to 3 milliseconds for the v2e dataset. This
finer temporal resolution allows the OptiX simulator to capture more precise
and rapid changes in the scene.

Additionally, the asynchronous pixel feature of the OptiX simulator con-
tributes to a higher number of unique timestamps. Specifically, the OptiX
dataset includes 8,011,167 unique timestamps, whereas the v2e dataset con-
tains only 75,675 unique timestamps. This greater number of unique times-
tamps in the OptiX dataset reflects its enhanced ability to capture a wider
range of temporal variations within the scene. It also reflects the ability for
Optix to better capture the asynchronous nature of pixel level events trans-
mitted by the event sensor. The provided diagram in Figure 4.3 illustrates
the distribution of events over time for a section of the data. When plotting
the number of events against their timestamps, it becomes evident that the
v2e dataset exhibits spikes at several timestamps. These spikes occur because
v2e operates on a frame-by-frame basis, generating a burst of events at each
frame interval. In contrast, our OptiX-based method produces events that are
spread continuously over time. This continuous distribution of events ensures
a more consistent and accurate representation of dynamic changes within the
scene that is more consistent with the an event stream from a true sensor. The
asynchronous event generation allows the OptiX simulator to capture subtle
variations and movements more effectively than the frame-based approach
used by v2e.

CHAPTER 4. RESULT AND DISCUSSION 35

Table 4.1: Comparison between v2e and our method in processing
time and performance

V2E OptiX Events

Total Events 169,825,482 186,636,537
Processing Time 140 minutes 30 seconds

Temporal Resolution 3ms 1ms
Unique Timestamps 75,675 8,011,167

Table 4.2: Comparison between various parameter settings in pro-
cessing time and performance

OptiX Standard OptiX Slow OptiX Extra OptiX Photon

Total Events 186,636,537 264,307,541 293,080,056 112,302,293
Processing Time 30s 300s 30s 30s

Temporal Resolution 1ms 0.1ms 0.6ms 8ms
Unique Timestamps 8,011,167 18,547,501 15,772,339 1,872,819

4.4 Additional Comparisons and Verifications

To further verify the parameters and features of our simulation program, we
conducted additional comparisons using datasets generated with different set-
tings. These datasets were compared against the standard dataset used in our
comparison with v2e. Table 4.2 presents this comparison.

Firstly, the Optix Slow method modified the playback rate of the animation
to 0.1, significantly slowing down the simulation. This change extended the
rendering time by a factor of ten, providing a temporal resolution of 0.1ms
compared to the standard 1ms. The higher temporal resolution could break
down a single change in intensity into several steps, so more than one event
could be fired from a stimuli that previously generate only one event, producing
many more events and unique timestamps.

Additionally, the Optix Extra method involved increasing the sampling rate
to 100 times per frame, up from the standard 10 times per frame. This ad-
justment yielded a temporal resolution of 0.6ms. The performance improved
notably due to the reduction in CPU iterations required, highlighting the
efficiency gains achievable through higher sampling rates. This method pro-

CHAPTER 4. RESULT AND DISCUSSION 36

duced more events and unique timestamps than the standard setting, but
fewer unique timestamps than Optix Slow. This is because it has lower tem-
poral resolution.

Optix Photon tested the use of photon mapping for global illumination.
Despite the potential for improved lighting accuracy, this feature had mini-
mal impact on the results in this specific case due to the insufficient number
of polygons for photons to bounce off. Moreover, enabling photon mapping
slowed down the performance, resulting in a temporal resolution of 8ms and
much smaller amount of generated events and unique timestamp.

These additional comparisons underscore the flexibility and adaptability
of our simulation program. By adjusting parameters such as playback rate,
sampling rate, and global illumination settings, we can tailor the simulator to
meet specific needs and constraints. This capability is crucial for optimizing
performance and accuracy in various application scenarios.

Chapter 5

Conclusion

In this study, we have demonstrated the effectiveness and efficiency of our
OptiX-based event sensor simulator compared to the existing v2e system. Our
method leverages NVIDIA OptiX to program asynchronous event pixels using
its motion system and ray time features. This approach allows for precise
temporal sampling of dynamic scenes. Additionally, we introduced an image
space photon mapping method to simulate global illumination. This method,
combined with OptiX’s powerful ray tracing capabilities, enables our simulator
to produce event data efficiently.

Our results show that the OptiX simulator can generate a comparable
number of events while significantly reducing processing time. Specifically,
the OptiX simulator processes events in real-time, completing the task in just
30 seconds compared to v2e’s 140 minutes.

Furthermore, the OptiX simulator achieves a finer temporal resolution.
This higher resolution allows for more precise capture of dynamic changes
within the scene, which is crucial for applications requiring high temporal
fidelity. The asynchronous nature of the OptiX simulator results in a more
continuous and evenly distributed event stream over time. This characteristic
makes our generated event stream similar to event data captured by real event
cameras, as evidenced by the higher number of unique timestamps in the
OptiX dataset compared to v2e.

37

Chapter 6

Future work

The development of our event sensor simulator not only showcases significant
advancements but also lays a solid foundation for addressing the challenges
we’ve identified. The current implementation highlights key areas for fur-
ther exploration and improvement, opening up numerous opportunities in this
field. This chapter outlines the major limitations of the current project and
suggests directions for future work to enhance the simulator’s capabilities and
performance.

First, our simulator currently employs a simple illumination model, specif-
ically a Lambertian model, which is efficient but limited in its ability to simu-
late complex lighting interactions. In future iterations, we plan to incorporate
more advanced illumination models such as OpenPBR, the same system used
in Blender. we will also support physically measured materials, enhancing the
realism and accuracy of the simulated scenes.

Second, the current system does not yet integrate the complete RITEyes
system, which includes head models and other components essential for com-
prehensive eye-tracking simulations. Future work will focus on adding these
elements, ensuring that the simulator can provide a fully functional and real-
istic eye-tracking solution.

Third, the performance of our simulator, while already optimized for GPU
acceleration, can be further improved. By employing techniques such as com-
pressed acceleration structures, Shader Execution Reordering and more effi-
cient photon buffer for parallel reading, we could reduce computation time and
enhance the overall efficiency of the system. These optimizations will enable

38

CHAPTER 6. FUTURE WORK 39

the simulator to handle more complex scenes and higher workloads with even
better performance.

Additionally, to validate the accuracy of our simulation, we plan to con-
struct a measured real scene and compare the output of our simulator against
data from actual event cameras. This validation step is crucial for ensuring
that our simulator produces precise and reliable event data, which is essential
for its application in research and development.

Finally, for better workflow and integration into existing pipelines, we con-
sider incorporating our simulator into platforms like Unity or Blender. This
integration would provide a seamless user experience, leveraging the power-
ful features of these platforms for scene creation, animation, and rendering. It
would also facilitate broader adoption of our simulator in various applications,
from game development to scientific research.

In conclusion, the future work on our event sensor simulator will focus
on enhancing the illumination model, integrating the full RITEyes system,
optimizing performance, validating accuracy against real-world data, and im-
proving workflow integration. These improvements will significantly advance
the capabilities of our simulator, making it a more robust and versatile tool
for event-based vision research and applications.

Bibliography

[1] The asset-importer-lib documentation. Available at:
urlhttps://assimp-docs.readthedocs.io/en/latest/.

[2] Nvidia optix 8.0 – programming guide. Available at: https://raytracing-
docs.nvidia.com/optix8/guide/index.html.

[3] The open asset importer library.

[4] Relationship of nvidia optix programs. Available at:
urlhttps://raytracing-docs.nvidia.com/optix8/guide/index.html.

[5] Zhu Alex, Zihao, Yuan Liangzhe, Chaney Kenneth, and Daniilidis Kostas.
Unsupervised event-based learning of optical flow, depth, and egomotion.
European Conference on Computer Vision, 2018.

[6] Gallego Guillermo, Delbruck Tobi, Orchard Garrick, Bartolozzi Chiara,
Taba Brian, Censi Andrea, Leutenegger Stefan, Davison Andrew, Con-
radt Joerg, Daniilidis Kostas, and Scaramuzza Davide. Event-based vi-
sion: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020, 2020.

[7] Rebecq Henri, Gehrig Daniel, and Scaramuzza Davide. Esim: an open
event camera simulator. The 2nd Conference on Robot Learning, 2018.

[8] Jensen Henrik, Wann. Global illumination using photon maps. Euro-
graphics Workshop, 1996.

[9] Jensen Henrik, Wann and ChristensenAuthors Per, H. Efficient simula-
tion of light transport in scenes with participating media using photon
maps. Seminal Graphics Papers: Pushing the Boundaries, 1998.

40

BIBLIOGRAPHY 41

[10] Kajiya James, T. The rendering equation. SIGGRAPH ’86, 1986.

[11] Shijie Lin, Xu Fang, Wang Xuhong, Yang Wen, and Lei Yu. Efficient
spatial-temporal normalization of sae representation for event camera.
IEEE Robotics and Automation Letters, 2020.

[12] McGuire Morgan and Luebke David. Hardware-accelerated global illu-
mination by image space photon mapping. HPG ’09: Proceedings of the
Conference on High Performance Graphics, 2009.

[13] Bonazzi Pietro, Bian Sizhen, Lippolis Giovanni, Li Yawei, Sheik Sadique,
and Magno Michele. Retina : Low-power eye tracking with event camera
and spiking hardware. IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2024.

[14] Zhu Shilin, Xu Zexiang, Jensen Henrik, Wann, Su Hao, and Ramamoorthi
Ravi. Deep photon mapping. Computer Graphics Forum: Volume, 2020.

[15] Delbruck Tobi, Graca Rui, and Paluch Marcin. Feedback control of event
cameras. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2020.

[16] Rego Vernon, Sang Janche, and Yu Chansu. A fast hybrid approach for
stream compaction on gpus. 2016 Fourth International Symposium on
Computing and Networking (CANDAR), 2016.

[17] Deng Yongjian, Li Youfu, and Chen Hao. Amae: Adaptive motion-
agnostic encoder for event-based object classification. IEEE Robotics and
Automation Letters, 2020.

[18] Hu Yuhuang, Liu Shih-Chii, and Tobi Delbruck. v2e: From video frames
to realistic dvs events. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021.

[19] Majercik Zander, Marrs Adam, Spjut Josef, and McGuire Morgan. Scal-
ing probe-based real-time dynamic global illumination for production.
Journal of Computer Graphics Techniques, 2009.

BIBLIOGRAPHY 42

[20] Zhang Zhongyang, Cui Shuyang, Chai Kaidong, Yu Haowen, Dasgupta
Subhasis, Mahbub Upal, and Rahman Tauhidur. V2ce: Video to contin-
uous events simulator. IEEE International Conference on Robotics and
Automation, 2024.

	Event Sensor Simulator with Hardware Accelerated Ray Tracer and Image Space Photon Mapping
	Recommended Citation

	tmp.1727443429.pdf.R9jE6

