
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Presentations and other scholarship Faculty & Staff Scholarship 

7-2012 

A Covert Channel in TTL Field of DNS Packets A Covert Channel in TTL Field of DNS Packets 

Christopher Hoffman 
Rochester Institute of Technology 

Daryl Johnson 
Rochester Institute of Technology 

Bo Yuan 
Rochester Institute of Technology 

Peter Lutz 
Rochester Institute of Technology 

Follow this and additional works at: https://repository.rit.edu/other 

Recommended Citation Recommended Citation 
Hoffman C., Johnson D., Yuan B., and Lutz P., A Covert Channel in TTL Field of DNS Packets. In SAM'12 - 
The 2012 International Conference on Security and Management (Las Vegas, NV, USA, July 2012) 

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information, 
please contact repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


A Covert Channel in TTL Field of DNS Packets
Christopher Hoffman, Daryl Johnson, Bo Yuan, Peter Lutz

Rochester Institute of Technology
{cwh4129,daryl.johnson,bo.yuan,peter.lutz}@rit.edu

Abstract—Covert channels are used as a means of secretly
transferring information when there is a need to hide the fact that
communication is taking place. With the vast amount of traffic on
the internet, network protocols have become a common vehicle
for covert channels, typically hiding information in the header
fields of packets. Domain name service (DNS) packets contain a
32-bit time to live (TTL) fields for each response record. This
is the number of seconds the entry is valid for before caching
servers remove the entry. There is no prescribed value for this
field making it an ideal covert carrier.

I. INTRODUCTION

The most common technique for transferring secure infor-
mation is cryptography, using algorithms to mask what is
being communicated [1]. Although this makes the information
unreadable by third-parties, it does not hide the fact that
communication is taking place. Covert channels are utilized
to attempt to hide the existence of a communication channel.
The original application of covert channels was to solve the
Prisoners Problem, where two parties wanted to communicate
but communication was mediated by a warden who was able
to read the messages and determine if they were allowed. They
had to devise a way to hide their secret conversation in a way
that would not look suspicious.

Covert channels can be categorized into three categories:
storage, timing, and behavior[2], [3]. Storage channels use a
shared storage medium between two parties where one party
writes and one reads. These include networking protocols or
disk storage. Timing channels use relative timing of events
to convey information using patterns. This is normally done
by purposely altering resources such as CPU or other resource
utilization. Behavior channels function more at the application
layer and information is conveyed by selecting certain actions.
An example of this is selecting certain moves in a board game.

With the vast amount of traffic on the internet, network
protocols have become a common vehicle for covert channels,
typically hiding information in the header fields of packets.
DNS has a time-to-live(TTL) field, a 32-bit unsigned integer,
which denotes how long the (domain name, address) pair is
valid for, measured in seconds. This is different from the IP
TTL field which is the number of hops a packet can make
before being removed from the network. This keeps a packet
from traveling in a continuous loop.

The DNS protocol does not outline what the TTL value
should be so it is possible to assign it any desired value.
Although most authoritative servers use discrete increments
such as hours and days, due to caching, it is not uncommon
to see values with minutes and seconds. This amount of

uncertainty makes the TTL field ideal for a covert channel.
Different methods for encoding information can be used to
alter the bandwidth and covertness of the channel.

II. RELATED WORK

There has not been much work using DNS to transfer
information other than encoding information in the domain
name. Typically it is more common to use DNS as a device
for tunneling TCP to restricted areas [4]. This is due to
the robustness of DNS. In systems that require payment or
authentication, DNS traffic is typically still allowed to ensure
users do not cache incorrect information.

Even though multiple answers can be returned for each
question, a long packet length can appear suspicious. Omar,
Ahmedy, and Ngadi examined this issue while they were
working with a DNS covert channel for tunneling IP [5].
Their work involved using an alphabet of domain names, each
domain name corresponding to a set of characters. To increase
bandwidth, more question/answer segments could be included
per packet but this increased the size of the packet. The packet
would become suspicious if it was either much shorter or
longer than normal DNS packets. By keeping the packets near
a normal size, the channel would be less suspicious.

Zander, Armitage, and Branch devised a covert channel
using the IP TTL field [6]. The effectiveness of this field is
dependent on the natural variation in the carrier network and
the ability to encode information in this natural carrier. Since
the hop distance between two hosts can change over time, it
is not possible to assign a static value to their distance. They
proposed using an alphabet of low and high values to signal
0 and 1 respectfully. To allow the channel to be more robust,
natural distance between the two hosts was reacquired as it
changed to provide a channel with less noise.

Zander, Armitage, and Branch went on to evaluate IP covert
channels in [7]. They observed three basic techniques: direct
encoding, mapped encoding, and differential encoding. These
techniques fall short due to the problem of not being able to
add this covert channel to a preexisting carrier. Instead of a
channel where the endpoints are the covert sender and receiver,
a preexisting channel can be utilized and the covert operators
sit in the middle and either actively alter traffic or passively
listen for the channel passing by. Zander et al developed a
method for transmitting a covert channel over IP TTL where
the covert sender and receiver are not the overt sender and
receiver. The first method they proposed assumes that the
distance between the covert parties is already known. The
sender generates a TTL related to the message, the receiver



then adds the known distance before decoding the message.
They also proposed another scheme where the sender alters
the TTL value, sending bits by repeating or changing the TTL
value of subsequent packets.

Qu et al examined another TTL covert channel in the
IP header protocol [8]. They used this carrier because it is
common to see variance in the values it sends. This channel is
also persistent from IPv4 to IPv6, even though the field name
changes to Hop-Limit. In IP, the TTL field will decrement as
it passes through each device on its path and remove itself
from circulation when it hits zero. Since the hop distance
between two hosts can change dynamically, care must be taken
so the message doesnt deteriorate along its path. They devised
a method utilizing Galois Fields to decrease the error rate in
the channel.

III. TTL IN DNS

A. Background

DNS is used for translating qualified domain names to
addresses that can be used for communicating to remote
servers. The DNS request message consists of a list of one or
more server names it wants to communicate with. The DNS
server generates resource records for the questions, returning
address information. The reply can also contain additional
resource records with information the server thinks the client
may want to know. Generally authoritative name servers for
the domain are also provided.

Part of the DNS reply is a time to live (TTL) field attached
to each resource record. This is used to communicate how
long that DNS entry is valid for caching purposes. When the
entry reaches its life span it is removed from the caching table.
Before the lifespan is reached, the caching server can generate
a reply as opposed to forwarding the request to a higher level.

B. Covert Channel

For this covert channel, communication will appear to take
place normally. It will require a DNS server either be operated
by the sender or a server that has been compromised by the
sender. Clients require no special utilities to use the channel.
When a client sends a request to the defined domain, the server
will generate a valid DNS reply, answering all the questions.
An analysis of the packet will show an answer for every
question as to not raise suspicion of an observer or IDS system.
It does not include additional answers to protect the channels
presence.

For each question, a small portion of the message is inserted
into the TTL field of the answer. To provide a higher level of
covertness, messages can be encrypted instead of plain text.
The proof of concept server and client are configured so that
an encryption scheme can be placed into each of them easily
to provide more security or covertness as needed.

A DNS request can contain more than one question state-
ment and each question can have multiple resource records for
clustered services such as the Google search engine. This can
be leveraged to increase bandwidth by having more than one
TTL field in the reply.

To examine TTL fields of large data sets, packet captures
were obtained from the Cooperative Association for Internet
Data Analysis(CAIDA) [9]. These packet captures were ana-
lyzed with Wireshark and scripting tools to examine the TTL
fields. TTL values varied between a few minutes and a couple
days. A large percentage of values were a discrete number
of hours or days but values of minutes and seconds were not
uncommon. Observing the DNS traffic, the average number of
answer records, authority records, and additional records per
response averaged a little above one with the high end of the
range well above twenty, even reaching above 100. For testing,
one question was used in the request and one answer resource
record was returned along with one of each authoritative and
additional resource records, a situation that would not look
suspicious. Since some DNS servers strip authoritative and
additional resource records, these TTLs will not be used for
data transfer.

While testing, the TTL values were also examined to find
their behavior. The data was graphed to observe the distri-
bution. There was a constant distribution of all TTL values
with the most prevalent spikes at 1 and 2 days. There was
also more prevalent values in the low range. Statistical tests
were also carried out. The mean TTL was found to be 98742
seconds, 27.4 hours, and a standard deviation of 81766, 22.7
hours. This gives a range of 4.7 to 50 hours that most traffic
will fall into. Removing the 10 most used TTL values (5, 10,
15 minutes, 1, 2, 3, 4, 12 hours, and 1, 2 days), the mean
and standard deviation become 38.44 hours and 42.86 hours
respectively for a range of 0 to 81.30 hours. By removing the
extreme outliers, more information can be gained about the
behavior of traffic that isn’t a highly common value. To be
covert, an alphabet should be chosen that falls into this range
to blend into the rest of the non-covert DNS traffic. The graph
of TTL values with the top 10 removed is shown in Figure 1.

If the message is placed into the TTL field as the ASCII
value, the packet capture will show the message. To increase
the covertness of the channel, a layer of encryption can be
used to mask the value. Many of the encryption schemes used
for IP TTL field need to handle the decremental nature of
the field. Since DNS TTL doesnt change between endpoints,
except during caching, any reversible obfuscation algorithm
can be used. This could incorporate encryption such as AES
or it can be a simple addition based cipher. The client and
server are configured to be able to replace the obfuscation
algorithm.

Since the TTL field is 4 bytes long, it would be possible to
encode 4 bytes directly into the TTL but this would create a
TTL over 27 weeks which would be suspicious. Instead, one
of the current implementation uses a cipher that takes the value
of 2 ASCII bytes and multiplies it by 2 to generate larger TTL
values. Calculation is shown in Equation 1

TTL = (byte1 ∗ 256 + byte2) ∗ 2. (1)

This is sufficient to mask the hidden value from a packet
capture. This scheme has a one standard deviation range of
range of 13.04-17.02 hours so there is a high probability that



Fig. 1. Plotting the number of occurrences of TTL values from CAIDA datasets

the values will fall within the desired range. Packet captures
of this scheme were taken and displayed in Figures 2 and 3
which together form the word ”come”.

Fig. 2. Packet capture of covert traffic with the message ”co”.

Fig. 3. Packet capture of covert traffic with the message ”me”.

To increase bandwidth, a text only scheme was imple-
mented. A text only message can be sent using a mapping
of a=0, b=1, etc with 26=EOF. The EOF character is used
at the end of stream to notify the receiver that the message
is complete. If the message is an odd length the EOF will
appear directly after the message, otherwise it will be sent in
the next TTL value. EOF also helps keep a larger TTL as to
avoid suspicion as opposed to padding with null values. Using
this scheme, a TTL of one day can transmit 3 characters per
resource record. Four characters cause the TTL value to move
towards a week which is a long time out if a caching server
is in the middle. To increase the TTL to fit within the desired
range, the value is multiplied by 5 before it is encoded into
the packet. This calculation is shown in Equation 2.

TTL = (char1 ∗ 272 + char2 ∗ 27 + char3) ∗ 5 (2)

This scheme has a one standard deviation range of 0.1-21.05
hours so it falls below the desired range but is acceptable due
to the density of low values in the CAIDA dataset.

IV. RESULTS AND EVALUATION

Based on a proof of concept server and client, the TTL
field of DNS successfully carried a channel between two
parties. The experiment was constructed using Amazon AWS
to host the DNS server to have the traffic travel across the
internet. The client was run on a local host using Wireshark
to monitor the traffic between the two locations. To conduct
testing through DNS servers, a domain was attached to the
server. This ensured that the channel would not be broken
during normal communication.

Testing this channel for bandwidth, the client was con-
figured to query 100 new hostnames. Using Wireshark, the
duration of all 100 queries were measured and used to find the
number of queries per minute. 100 queries took 2.6 seconds
which calculates to a bandwidth of 2305 packets per minute.

Using the alphabetic encoding scheme with one resource
record, the capacity of the channel is 3 characters per packet.
Averaging 2305 DNS interactions a minute, this gives a
6915 character/minute bandwidth. Using the byte encoding
alphabet, 2 bytes can be transmitted per packet. This yields
4610 bytes/minute bandwidth.

Both of the proposed alphabets fall within the desired range
gained from the statistical analysis of CAIDA data. If the
covert traffic is viewed on its own it may look suspicious but
with overt traffic it will be sufficiently masked.

Investigating rules from Snort [10], a popular IDS, rules do
not exist for specifically limiting DNS traffic based on TTL.
There exist a set of rules that do block a DNS packet with
TTL as a parameter of the condition, it looks for a TTL less
than or equal to one minute. However, it also has a condition
that the reply is coming from a non-authoritative server. This
rule is to alert to the presence of a DNS spoofing attack and so



the DNS covert channel would not trigger that alarm. To test,
a snort IDS was configured on the network where it could see
the covert channel traffic. The IDS did not detect the presence
of the covert channel.

To detect the presence of this channel, a stateful system
would need to be employed that would compare the TTL of
similar resource records. If the values appeared to fluctuate in
a non-uniform manner, there could be suspicion that covert
communication is taking place. Such a system would generate
a number of false negatives that it may be deemed unusable.

Bromberger alerts to the possibility of covert channels using
DNS and gives an outline on how to protect against them
[11]. A few of the characteristics that could indicate a DNS
channel are lookups that are composed of hexadecimal strings,
lookups with long 3rd and higher level names, multiple queries
to non-obvious or foreign domains, responses with loopback
addresses or other non-routable network addresses, queries
to DDNS providers, and requests that are not followed by a
requested connection to the requested addresses. As long as the
parties communicating are within the same country and limit
the number of interactions, the only characteristic my covert
channel would fail is the client not requesting a connection to
the requested addresses although this can be solved by having
the client generate a connection to the addresses it received.

Once the channel is discovered, the channel can be linked
to the sender. The receiver is safer from being detected in
that the communication stream would need to be tracked
through multiple DNS servers to get back to the receiver.
Anonymity can be attempted by each party using the follow
techniques. For the sender, a rogue DNS can be configured
inside a network for sending information. Using spoofed IP
and MAC addresses that keep changing, the server can avoid
being located. However, the network could be configured as to
only allow DNS replies from certain internal machines. The
user could also obtain a public addressable DNS server under
fraudulent credentials to avoid being tracked if the channel is
found.

The receiver can also attempt to remain anonymous by
spoofing their address on a request and passively listening for
a reply. The caveat here is that the receiver might not see
the return traffic if they are on a switched network that will
send the reply directly to the address of the spoofed request.
If the receiver is on a hubbed network and is able to see the
traffic, it could only be increasing the chance of the channel
being detected. If the spoofed address does not exist, it would
be suspicious that communication is taking place with a non-
existent entity. If the address does exist, a host-based IDS
might trigger an alert that it received DNS traffic it did not
request.

The channel is robust when the reply is from an authori-
tative server as opposed to a caching server. DNS traffic is
necessary for network communication, even if only allowing
DNS queries to an internal server. During normal traffic, DNS
TTL does not get altered except during caching. When caching
occurs, the TTL value gets decremented which will break
the channel. During normal request/reply interaction, the TTL

doesnt change.

V. FUTURE WORK

DNS uses caching along the path to reduce the amount of
queries needed and speed up resolutions. When an answer
is received from a caching server, the TTL value will be
altered from the value given by the authoritative server. This
change can break the channel since the time until it is
requeried is unpredictable. Creating a channel that would be
robust over caching would allow multiple clients to access
the covert channel after a single client resolved the domain
name. Although this would not be robust for the full life of
the entry, it would allow some flexibility to who could access
the channel.

This channel can also be used from an intermediate station
[1], so instead of the channel endpoint generating traffic, the
response can be encoded into existing traffic. This would
require a router in the data flow stream to intercept and alter
packets. This could use a legitimate DNS server and limit the
linkability of the communicating parties.

VI. CONCLUSION

The TTL field of DNS was created to give a lifespan to a
domain name, address pair. However, this value can be altered
by the user to create a covert channel. This works well because
the remainder of the packet is legitimate traffic and TTL does
not have an expected value. This creates a robust channel as
DNS traffic is largely unobstructed. At the current time, the
channel is not robust enough to survive caching.

ACKNOWLEDGEMENTS

Support for the IPv4 Routed /24 Topology Dataset is pro-
vided by the National Science Foundation, the US Department
of Homeland Security, the WIDE Project, Cisco Systems, and
CAIDA Members.

REFERENCES

[1] S. Zander, G. Armitage, and P. Branch, “A Survey of Covert Channels
and Countermeasures in Computer Network Protocols,” Communica-
tions Surveys Tutorials, IEEE, vol. 9, no. 3, pp. 44 –57, quarter 2007.

[2] D. Johnson, B. Yuan, and P. Lutz, “Behavior-Based Covert Channel in
Cyberspace,” Intelligent Systems and Knowledge Engineering, 2009.

[3] R. C. Newman, “Covert Computer and Network Communications,” in
Proceedings of the 4th Annual Conference on Information Security
Curriculum Development, ser. InfoSecCD ’07. New York, NY, USA:
ACM, 2007, pp. 12:1–12:8.

[4] L. Nussbaum, P. Neyron, and O. Richard, “On Robust Covert Channels
Inside DNS,” in Emerging Challenges for Security, Privacy and Trust,
ser. IFIP Advances in Information and Communication Technology,
D. Gritzalis and J. Lopez, Eds. Springer Boston, 2009, vol. 297, pp.
51–62.

[5] S. Omar, I. Ahmedy, and M. Ngadi, “Indirect DNS Covert Channel
Based on Name Reference for Minima Length Distribution,” in Informa-
tion Technology and Multimedia (ICIM), 2011 International Conference
on, Nov. 2011, pp. 1 –6.

[6] S. Zander, G. Armitage, and P. Branch, “Covert Channels in the IP
Time To Live Field,” in Australian Telecommunication Networks and
Applications Conference, Dec. 2006.

[7] S. Zander, G. Armitage, and Branch, “An Empirical Evaluation of IP
Time To Live Covert Channels,” in Networks, 2007. ICON 2007. 15th
IEEE International Conference on, Nov. 2007, pp. 42 –47.



[8] H. Qu, P. Su, and D. Feng, “A Typical Noisy Covert Channel in the IP
Protocol,” in Security Technology, 2004. 38th Annual 2004 International
Carnahan Conference on, Oct. 2004, pp. 189 – 192.

[9] Y. Hyun, B. Huffaker, E. Aben, and M. Luckie, “The CAIDA
IPv4 Routed /24 Topology Dataset - 3/26/2012-3/27/2012,4/7/2012-
4/8/2012,” http://www.caida.org/data/active/ipv4 routed 24 topology
dataset.xml.

[10] Snort IDS, http://www.snort.org/.
[11] S. Bromberger, “DNS as a Covert Channel Within Protected Networks,”

in National Electric Sectory Cybersecurity Organization, 2011.


	A Covert Channel in TTL Field of DNS Packets
	Recommended Citation

	tmp.1393096071.pdf.ahBfC

