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Abstract

This dissertation aims to study the underlying physics of anomalous transport of emulsions in porous

media and quantify the role of droplet-pore and droplet-droplet interactions in transport in porous

media experimentally. The complexities of this problem arise from the network heterogeneity,

correlations between the pores across the medium, interfacial properties of the fluids, and the

correlations between the pore scale dynamics and system-level transport.

This dissertation presents significant advancements in the study of emulsion dynamics within two-

dimensional porous media through the development of innovative image analysis and tracking

methods. These advancements include precise detection and tracking of deformable objects, which

is particularly challenging in experiments involving large datasets with thousands of objects and

millions of positional updates.

Utilizing cutting-edge microfluidic techniques, we developed an integrated experimental setup com-

bining an on-demand drop maker and advanced imaging methods. By precisely controlling emulsion

size, concentration, and injection rates, we uncovered critical insights into pore-level dynamics and

bulk transport properties.

Through the application of variational mode decomposition (VMD), we effectively distinguished

between uniform and irregular droplet formations, enhancing the accuracy of our measurements.

Our findings demonstrate that emulsions predominantly flow through higher velocity pores, often

becoming trapped in smaller pores, which reduces porosity and creates preferential pathways. In-

troducing slight polydispersity in emulsion sizes further improved transport efficiency by revealing

additional pathways.

We also explored the effects of device scaling, dye contrast adjustments, and interfacial tension
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on emulsion behavior, leading to refined detection and tracking algorithms. These advancements

provide a robust framework for future studies and have significant implications for applications in

soil remediation, drug delivery, and enhanced oil recovery.

Additionally, the creation of high-quality datasets from our experiments lays the groundwork for

leveraging machine learning techniques to further understand and predict the complex nature of

emulsion transport in porous media. This interdisciplinary approach offers the potential to bridge

experimental observations and theoretical models, enhancing our ability to manage and optimize

fluid dynamics in various applications.

This research represents a substantial contribution to the field of microfluidics and multiphase flow,

offering new methodologies and insights that will propel future innovations and applications.

The results of this research provide the necessary research platform to advance the research on

transport of deformable particles in porous media. In addition to the research questions, these

understandings will impact industrial processes such as filtration in food industry, sorting in phar-

maceutical, drug delivery in medical, enhanced oil recovery, and soil remediation in environmental

industries.
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Chapter 1

Introduction

Understanding the behavior of emulsions within porous media is critical for advancing applications

in fields such as material science, environmental engineering, and biomedical technology. This

research investigates microscale fluid dynamics through a combination of rigorous experimental

studies, advanced computational analyses, and innovative technical explorations. The initial focus

is on microfluidic droplet generation, utilizing precise control mechanisms to elucidate droplet

behaviors within engineered systems. This foundational study not only establishes benchmarks for

experimental precision but also sets the stage for exploring more complex fluid interactions.

The next phase explores the transport phenomena of emulsions within porous structures, empha-

sizing the characterization of flow anomalies and the emergence of preferential flow paths. These

intermittent dynamics challenge existing models, necessitating a more refined experimental and the-

oretical approach. By integrating experimental data with simulation outcomes, this work constructs

a comprehensive framework to describe the complex behaviors of fluids in porous environments.

The overarching goal of this dissertation is to bridge the control achieved in microfluidic systems

with the macroscopic fluid behavior in porous media, providing a thorough understanding of the

underlying physical processes. This research is pertinent to material science and engineering disci-

plines, enhancing the understanding of soft matter physics and refining methodologies for studying

fluid dynamics in porous systems. By combining empirical research with detailed analysis, this

work offers insights that extend to broader scientific and engineering fields.

Fluid dynamics within porous media is crucial across various scientific and engineering disciplines,

necessitating a multifaceted approach that combines experimental investigations with theoretical

1
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modeling. Traditional bulk analysis provides a macroscopic view of flow behavior through aggregate

statistics. However, this dissertation emphasizes the dynamics at the microscale using microfluidic

systems, which allow for precise manipulation and observation of fluid interactions. This focus is

critical for understanding the fundamental mechanisms of multiphase flow, common in both natural

and engineered porous media.

The intermittent nature of these flows presents significant challenges to conventional models, which

often fail to capture the stochastic behaviors of emulsions moving through heterogeneous pathways.

To address these complexities, this research integrates state-of-the-art experimental methods with

advanced computational modeling, employing sophisticated tracking and detection methods. These

methods enhance the accuracy of predictive models and offer granular insights that bulk analysis

typically overlooks. This synergy between empirical research and theoretical analysis lays the

groundwork for a comprehensive exploration of porous media dynamics, underscoring the pivotal

role of microfluidic technologies in bridging microscale phenomena and macroscopic applications.

Advanced image processing methods can significantly improve imaging outcomes. Enhanced image

contrast and modern tracking algorithms make it feasible to discern and characterize individual

emulsion behaviors at the pore level, providing deeper insights into their dynamics. The field of

microfluidic device fabrication is also making significant strides. Rapid prototyping, particularly

through high-resolution 3D printing, can circumvent the traditional reliance on time-consuming

lithography methods. Ensuring compatibility of 3D printing materials with PDMS, the prevalent

polymer in microfluidics, allows for rapid production of new designs.

The challenge of consistently forming uniform droplets can be addressed through an informed

design approach. Understanding the physics of droplet formation, such as the LaPlace snap-off

phenomenon, can inform the generation of uniform droplets from circular nozzles. Rectangular

channels, a limitation of 3D printing, can be optimized to leverage this physical behavior. Proper

channel coating and a pressure pulse device can facilitate the desired flow for consistent droplet

formation.

This study also employs computational simulations to design a precise and controllable droplet

generator, essential for initiating consistent microscale experiments focused on individual droplet

behaviors. Micromodels simulate real-world porous structures, facilitating direct observation of

phenomena such as droplet behavior and phase transitions within engineered porous matrices.

Advanced manufacturing techniques, such as 3D printing, create accurate micromodels of porous

structures, enabling detailed observations of droplet behaviors and flow characteristics.
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Characterizing transport phenomena within porous structures further explores how multiphase

fluids navigate these environments, focusing on the identification and exploitation of preferential

paths. This aspect is crucial for understanding the stochastic nature of fluid distribution and

movement, influenced by pore size variability and distribution. By coupling advanced tracking

and detection techniques, this research not only predicts flow behaviors more accurately but also

informs the design and optimization of processes involving fluid dynamics in porous media. This

approach significantly advances both scientific inquiry and practical applications, offering insights

into individual fluid dynamics that extend beyond the capabilities of traditional bulk analysis.

In summary, while the challenges of studying emulsion dynamics in porous media are multifaceted,

the integration of advanced imaging, rapid prototyping, and informed design approaches holds

promise in addressing these issues, paving the way for more accurate and insightful experiments.

This dissertation aims to enhance our understanding of emulsion transport through porous media,

with implications for various applications such as oil recovery, groundwater remediation, and drug

delivery systems. By bridging the gap between microscale control and macroscopic fluid behavior,

this research contributes to the broader field of fluid dynamics and porous media, offering refined

methodologies and comprehensive insights that can be applied across multiple disciplines.

1.1 Research Problem

Multi-phase flows through porous materials play a crucial role in various applications, presenting

distinct challenges rooted in fundamental physics. While fluid dynamics at scales larger than

individual pores are relatively well-understood through mean field approximation, this methodology

often falls short in capturing the intricate dynamics of multi-phase flows, particularly emulsions.

The behavior of emulsions within porous media reveals inherent complexities, such as non-linear

dynamics, challenging imaging conditions, and the proximity of deformable objects. These factors

complicate tasks such as image segmentation, object detection, and tracking. This complexity

underscores the need for advanced imaging methods and cutting-edge microfluidic techniques to

enhance our understanding of emulsion transport through porous media.

Characterizing emulsion dynamics within porous structures presents several significant challenges,

primarily in imaging and droplet generation. High-resolution, high-contrast, and rapid image ac-

quisition are necessary to accurately capture emulsion droplets’ behavior. However, the intrinsic

properties of porous materials, such as light scattering and similar refractive indices between the

droplets, continuous fluid, and the porous medium, often result in poor-quality images. Current
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imaging techniques, including confocal microscopy, struggle to provide the clarity and refresh rates

required for precise analysis.

Advanced imaging methods, such as X-ray tomography and magnetic resonance imaging (MRI),

have the potential to address these limitations but require further development for this specific ap-

plication. X-ray tomography offers detailed structural insights but often lacks sufficient temporal

resolution for dynamic studies. Similarly, MRI, particularly echo planar imaging (EPI), can achieve

echo spacings as short as 1.2 ms [86], allowing for rapid imaging with sub-millimeter resolution.

However, π EPI’s application in porous media is complex due to the need for compensating mag-

netic field distortions and precise gradient control, making it more challenging than optical imaging

methods. Despite these challenges, PEPI can generate high-quality, proton density-weighted im-

ages, useful in fluid saturation studies in rock core plugs.

In pioneering work, Seymour and Callaghan [70] introduced pulsed-gradient spin echo (PGSE)

NMR methods to study flow and diffusion in porous media. This approach allows probing fluid

dynamics over well-defined temporal and spatial domains. PGSE NMR techniques, like flow imaging

and velocity exchange spectroscopy, provide insights into the dispersion coefficient, mean local

velocity, and spatial-temporal correlations. These techniques have been applied to study flow

and dispersion of water in porous media, demonstrating the interplay between hydrodynamic and

structural characteristics.

Further advancements have been made with dynamic NMR relaxometry, as demonstrated by Maillet

et al. [?], offering a novel approach for characterizing liquid transfers and surface evolution in porous

media. This technique analyzes proton spin relaxation to provide quantitative insights into liquid

distribution and its temporal changes within porous structures. Unlike conventional imaging, NMR

relaxometry identifies liquid interactions with various pore sizes, offering insights into the internal

dynamics and specific surface area interactions within the media. It has been applied to materials

such as nanoporous silica, polymers, and cement, providing valuable data on fluid saturation,

drying, and phase transitions. This method is noninvasive and cost-effective, but it requires careful

data interpretation due to noise and resolution constraints.

Pak et al. [56] used X-ray computed microtomography to visualize complex pore-scale processes

during multiphase flow in carbonate rocks. Their research revealed the intricate dynamics of fluid

behavior at the pore level, emphasizing that even seemingly small-scale processes can significantly

impact overall fluid displacement efficiency. The study highlights the complexity of multiphase

flow in heterogeneous porous media, illustrating how minor variations in pore geometry and fluid

properties can lead to diverse flow patterns and behaviors.
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Parsa et al. [58] explored the complex dynamics of immiscible fluid displacement in porous media

with large viscosity mismatches using confocal microscopy. Their study revealed that polymer

retention leads to heterogeneous local flow changes, enhancing displacement even with significant

viscosity differences. The findings contradict traditional beliefs that improved displacement results

solely from increased viscosity suppressing viscous fingering. Instead, Parsa et al. found that

polymer flow induced local velocity fluctuations, which enhanced oil recovery, providing new insights

into pore-level fluid dynamics and challenging existing theories of polymer-enhanced oil recovery.

These advancements underscore the ongoing need for research and development in imaging and

tracking technologies to thoroughly understand and characterize emulsion dynamics within porous

structures. Despite significant progress, current methods still face limitations, such as inadequate

spatial resolution, restricted macroscopic views, and slow temporal resolution, which highlight the

necessity of exploring alternative techniques. Emerging technologies like advanced microfluidics

offer precise and controlled observations at the pore level, proving to be powerful tools in overcoming

these challenges. These innovations promise to provide deeper insights into the complex behaviors

within porous media and drive further advancements in the field.

Uniform droplet generation poses another major challenge. Ensuring that droplets remain uni-

form throughout the experiment is difficult due to interactions such as coalescence, divergence,

and unpredictable behavior when droplets are in close proximity. Factors such as interfacial ten-

sion, fluid properties, and flow dynamics contribute to these interactions, resulting in nonuniform

droplet formation that creates additional complexities in analysis. The added complexity of gener-

ating droplets on demand, rather than continuously, requires precise control over droplet size and

frequency.

Microvalve systems, such as the one developed by Churski et al. [17], utilize a computer-controlled

microvalve integrated into a stiff polymeric microfluidic device. This method allows for the forma-

tion of droplets and bubbles of arbitrary volumes and at arbitrary times of emission. However, the

complex, multilevel fabrication process and the requirement for external control equipment pose

significant drawbacks to its widespread application.

Negative-pressure controlled systems, like those introduced by Teo et al. [78], rely on toggling

fluid states using periodic negative pressure pulses to induce droplet generation. This method can

produce droplets on demand with volumes proportional to the pulse width. Despite its effectiveness,

it demands high synchronization and precision in toggling fluid states, which can be challenging to

maintain consistently especially when integrating additional features in the microfluidic device.
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Off-chip controlled systems, as presented by Hamidović et al. [30], utilize externally pre-programmed

positive pressure pulses applied to the dispersed phase input while maintaining constant pressure

in the continuous phase channel. This method allows for high reproducibility and simplicity in

chip design, facilitating rapid and cost-efficient prototyping. However, it faces precision issues at

extreme pressures and depends heavily on the response systems of controllers, which can affect

reproducibility.

In summary, the challenges of uniform droplet generation in microfluidic systems are multifaceted,

involving intricate interactions between various physical properties and control mechanisms. Con-

tinued advancements in microvalve systems, negative-pressure controlled systems, off-chip con-

trolled systems, and emerging technologies are essential to overcoming these challenges and achiev-

ing consistent and reproducible droplet formation.

Microfluidic device fabrication introduces its own set of complications. Maintaining consistent mi-

crofluidic channels across devices is crucial, yet reproducing intricate real-world pore structures at

microscopic scales remains an ongoing challenge. Techniques such as soft lithography and pho-

tolithography enable precise replication of microfluidic devices, but achieving rapid prototyping in

these devices is difficult and time consuming. Additionally, the material properties of the mold

and polydimethylsiloxane (PDMS), such as surface energy and chemical compatibility, need to be

carefully controlled to prevent unwanted interactions that could affect result in failed microfluidic

devices. Controlling and maintaining stable experimental conditions is integral but difficult, espe-

cially when attempting to replicate real-world scenarios. Variations in these conditions such as flow

rate and pressure can alter emulsion stability, droplet size, and flow dynamics.

In essence, while studying emulsion dynamics in porous media holds great promise, it is fraught

with multifaceted challenges ranging from imaging and droplet consistency to device fabrication and

the control of experimental conditions. This research aims to address these challenges by integrat-

ing advanced microfluidic technologies and sophisticated imaging techniques. By experimentally

discerning the elusive behavior of emulsions in porous structures and ensuring comprehensive char-

acterization throughout the experimental phases, we aim to enhance our understanding of emulsion

transport through porous media. This knowledge is crucial for applications in industries such as oil

recovery, groundwater remediation, and drug delivery systems, where improved emulsion dynamics

can lead to significant advancements and efficiencies.
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1.2 Research Questions and Hypotheses

1.2.1 Research Questions

The big picture question is to study the underlying physics of anomalous transport of emulsions

in porous media and quantify the role of droplet-pore and droplet-droplet interactions in transport

in porous media experimentally. The complexities of this problem arise from the network hetero-

geneity, correlations between the pores across the medium, interfacial properties of the fluids, and

the issues correlating pore scale dynamics and system-level transport. To address this challenging

research objective, we address the following questions:

1. How can advanced image processing methods, including fluorescent imaging, modern optical

microscopy, high-resolution cameras and modern tracking algorithms, be optimized to improve

the characterization of emulsion behaviors at the pore level in porous media?

2. What are the effects of using high-resolution 3D printing techniques on the precision and re-

producibility of microfluidic device fabrication, particularly in creating structures compatible

with PDMS?

3. How can the understanding of the LaPlace snap-off phenomenon and other droplet formation

physics inform the design of microfluidic channels to consistently generate uniform droplets?

4. What are the impacts of various channel coatings and pressure pulse devices on the consistency

and stability of droplet formation in microfluidic experiments?

5. How do variations in interfacial tension and pressure within the microfluidic setup affect the

stability and dynamics of emulsions, and how can these variations be effectively controlled?

6. How do surface tension and the physical properties of emulsions affect the ability to track,

detect, and characterize emulsion transport behavior?

1.2.2 Hypotheses

1. Advanced image processing methods, when integrated with fluorescent microscopy, signif-

icantly enhance image contrast and accuracy in object detection and tracking, leading to

more precise characterization of emulsion behaviors at the pore level.
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2. High-resolution 3D printing can produce microfluidic devices with greater precision, speed,

and reproducibility than traditional lithography, particularly when using materials compatible

with PDMS.

3. By leveraging the LaPlace snap-off phenomenon and other droplet formation principles, mi-

crofluidic channels can be designed to consistently produce uniform droplets, even in rectan-

gular channels typical of 3D printed devices.

4. Appropriate channel coatings and the use of pressure pulse devices improve the consistency

and stability of droplet formation in microfluidic experiments.

5. Controlled environmental conditions within the microfluidic setup can stabilize emulsion dy-

namics, leading to more reliable experimental results.

6. Deformation of droplets lead to more difficult instances of detection requiring advanced de-

tection methods.

1.3 Research Objectives

The overarching goal of this research is to quantify the pore-level dynamics of low concentration

emulsions in porous media and determine the role of pore-droplet interactions in transport across

the medium. I stride to enhance the understanding and characterization of emulsion dynamics

within porous media through the integration of advanced imaging techniques, innovative microflu-

idic device fabrication, and informed design approaches. Specifically, the research aims to:

1. Develop and optimize advanced image processing methods, incorporating fluorescent imaging,

dyes and modern tracking algorithms, to improve the resolution, contrast, and accuracy of

characterization of emulsion behaviors at the pore level.

2. Utilize high-resolution 3D printing to fabricate precise and reproducible microfluidic devices,

ensuring material compatibility with PDMS and validating the performance of these devices

in experimental setups.

3. Investigate the physics of droplet formation, such as the LaPlace snap-off phenomenon, to

inform the design of microfluidic channels that can consistently generate uniform droplets.

Explore the optimization of rectangular channels typical of 3D printed devices to enhance

droplet formation consistency.
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4. Test and implement various channel coatings and pressure pulse parameters to improve the

consistency and stability of droplet formation in microfluidic experiments, evaluating their

effectiveness under different experimental conditions.

5. Examine the effects of pressure and pore network variations on emulsion stability and dynam-

ics within the microfluidic device. Develop and implement control mechanisms to maintain

stable experimental conditions, ensuring reliable and reproducible results.

6. Apply the insights gained from improved emulsion characterization to practical applications,

such as oil recovery, groundwater remediation, and drug delivery systems, demonstrating the

broader impact of this research on industry and technology.

By addressing these objectives, this research seeks to overcome the current limitations in studying

emulsion dynamics in porous media, paving the way for more accurate and insightful experiments

and contributing to advancements in various applications that rely on multi-phase flow through

porous materials.



Chapter 2

Applications and Challenges

2.1 Emulsion Transport

Transport of emulsions in porous media is of significant interest in industrial, medical, and en-

vironmental applications, including food products, drug delivery, and immiscible displacement

[6, 39, 44, 45, 60, 67]. The heterogeneity of natural and synthetic porous materials leads to di-

verse flow patterns, significantly impacting droplet transport [1]. Transport properties can undergo

dynamic alterations due to flow and retention of materials inside the pores [21, 58, 59]. Biofilm

growth in filters [39, 53], transport of water-based emulsions in personal care products [4, 9], and

oil recovery [44, 46, 58, 59] exemplify how medium properties change in response to droplet flow.

Although bulk transport properties such as medium permeability may exhibit minor changes, local

and pore-scale flows can dramatically shift, leading to anomalous behavior [14,58,59,88].

The dynamics of a single emulsion droplet in porous media are governed by droplet size and

network properties such as pore size distribution and medium wettability [14,29,60,67,87]. Viscous,

interfacial, and drag forces balance to describe these dynamics. The Capillary and Weber numbers,

representing the ratio of viscous to interfacial forces and drag to interfacial forces, respectively, are

used for droplets with minimal deformations [7, 11, 50, 60, 74]. However, the collective dynamics of

emulsions in a complex pore network are influenced by local flow fluctuations due to droplet-droplet

and droplet-pore interactions [29]. High-concentration emulsion transport in media with random

pinning sites shows a transition from creeping flow to flow along smectic rivers and groups [40].

Experiments indicate negligible droplet deformation, with the majority of droplets never squeezing

through small pores, primarily pinning on surfaces. Bulk transport measurements of polydisperse

10



CHAPTER 2. APPLICATIONS AND CHALLENGES 11

droplets stabilized by surfactants injected into a three-dimensional porous medium reveal that small

droplets appear in the effluent, while large droplets remain trapped due to high deformation pressure

requirements [14,29,87,92]. Pore-level and collective droplet dynamics, and the impact of trapping

and re-mobilization on transport properties, require further examination. Accurate experimental

investigations necessitate advanced tracking and object detection techniques, particularly when

droplets are in proximity and deform based on pore sizes.

In this study, we quantify pore-level dynamics of monodisperse emulsions in a two-dimensional

porous medium using microfluidics. By integrating a microfluidics drop-maker on the same chip, we

precisely control the concentration and size of injected emulsions. Individual droplets are tracked

using optical microscopy and long-range recording while monitoring the bulk pressure gradient.

Advanced image analysis and object tracking are employed to monitor droplet flow through the

medium. At low concentrations, emulsions flow through pores with higher local velocities without

size selectivity, leading to potential trapping. As more pores fill with droplets, newly injected emul-

sions flow through remaining open paths. The average velocity of droplets correlates inversely with

their residence time and is proportional to path lengths, independent of emulsion size distribution.

Understanding the dynamics of emulsions in porous media is pivotal for advancements across vari-

ous sectors. In enhanced oil recovery and environmental remediation, the behavior of emulsions in

porous structures provides essential insights for developing more efficient methodologies. The food

and pharmaceutical sectors also benefit, as emulsions serve as stabilizers and carriers. Furthermore,

in material sciences, these dynamics are crucial for fabricating materials with tunable properties,

such as ceramics, composites, and catalysts [39,44,45,60,67].

These advancements can revolutionize industries by reducing costs and increasing productivity. The

ability to rapidly image, fabricate, and replicate experimental setups enables the accumulation of

extensive datasets. Properly interpreted, these data can reveal theories and models that elucidate

the intricate behavior of emulsions in porous media.

The heterogeneous nature of most natural and synthetic porous materials leads to diverse flow pat-

terns, which critically influence the transport of emulsion droplets [1]. Dynamic changes in transport

properties can result from biofilm growth in filters [39,53], water-based emulsion transportation in

personal care products, and the use of emulsions in enhanced oil recovery [4, 9, 44, 46]. While bulk

transport properties might exhibit minor shifts, pore-scale flow can experience significant changes,

leading to anomalous flow behaviors [58,59].

The dynamics of individual emulsion droplets in porous media can be explained through the balance

of various forces, primarily viscous, interfacial, and drag forces. Two non-dimensional parameters,
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the Capillary and Weber numbers, describe these dynamics for droplets exhibiting minimal de-

formations [7, 11, 50, 60, 74]. However, when considering multiple emulsions within complex pore

networks, their behavior is influenced by local flows resulting from interactions between droplets

and between droplets and the pore structure [29].

The complexity of emulsion dynamics within porous media poses significant experimental chal-

lenges. Prior experiments indicated minimal droplet deformation, suggesting droplets did not

navigate smaller pores. Measurements of bulk transport, particularly with polydisperse droplets

stabilized by surfactants in a three-dimensional porous medium, showed that smaller droplets passed

through the medium, while larger droplets were primarily retained within it. This retention is at-

tributed to the substantial pressure required to deform these larger emulsion droplets [14,29,87,92].

Experimentally probing these dynamics is particularly challenging when droplets are in proximity

and alter their shape based on pore dimensions, highlighting the need for advanced tracking and

precise object detection.

Several factors influence emulsion transport in porous media, including droplet properties, porous

medium characteristics, and flow conditions. As droplets traverse the porous medium, their size and

shape may alter, affecting emulsion viscosity and, consequently, flow resistance. These intricacies

underscore the need for a deeper understanding of emulsion behavior in porous landscapes, which

is crucial for practical applications like designing efficient oil recovery processes and innovating

contamination remediation techniques.

Predicting emulsion stability in porous media, given the variable conditions such as pressure, tem-

perature, and flow, is challenging. In real-world scenarios, regulating these variables is difficult,

making an understanding of force interplays essential.

In summary, while the dynamics of emulsions within porous media are complex and challenging to

study, advancements in experimental and computational techniques promise to unlock significant

potential across various applications. By integrating sophisticated imaging, rapid prototyping, and

informed design approaches, researchers can develop more accurate models and innovative solutions

for real-world challenges in fluid dynamics and material science.

2.2 Droplet Microfluidics

Droplet microfluidics is a powerful technique enabling the precise control of droplet size, cargo

loading, sorting, and merging at volumes as small as picolitres. These capabilities have led to
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its extensive use across industries such as pharmaceuticals, material production, and research and

development [15, 65, 72]. Moreover, droplet microfluidics shows promise in signal processing [31,

76]. Droplet sizes are determined by the interfacial tension between fluids, the geometry of the

microfluidics chip, and fluid phase flow rates [75, 80]. Optimally operated microfluidic chips are

stable and reliable for producing monodisperse droplets [23, 49, 52, 61, 63]. However, small errors,

such as satellite droplets or unexpected mergers, may still occur due to instabilities in external units

or local flow [16, 90]. Generally, these errors are monitored visually and sorted out using methods

like deflecting fluids with external forces or filtering droplets by size [12, 31, 54]. Given the high-

speed operation of microfluidic chips, it is crucial to detect and correct errors at comparable speeds.

Flow fluctuations driven by high flow rates can grow quickly and disrupt downstream flow due to

the nonlinear nature of fluid flows. Although not all fluctuations are significant, identifying them

theoretically or in real time is challenging. Nevertheless, flow velocities and pressure fluctuations

in a device are accessible in real time [1, 13].

Standard signal processing methods, such as Fourier transform and wavelet analysis, can quantify

or predict anomalies in microfluidics, though they are less efficient in nonlinear and non-stationary

systems and can be computationally intense. Dynamic mode decomposition, developed from con-

tinuous flow snapshots, closely describes flow motion even in turbulent regimes [68]. The empirical

mode decomposition (EMD) method, developed to better analyze nonlinear and non-stationary

signals, aims to separate events using instantaneous frequency [33, 43, 85]. EMD has been applied

in various fields, including identifying dominant frequencies in atmospheric data [38], separating

unsteady spatiotemporal scales in wind tunnel data [2], analyzing turbulent velocity fields in un-

steady flows [66], and extracting health-related hemodynamics features [84]. A successful use of

EMD is identifying physically significant modes or frequencies in noisy signals, as seen in char-

acterizing turbulence from grid-generated flows [27]. Variational mode decomposition (VMD), a

method based on EMD, has lower noise sensitivity and extracts modes concurrently, identifying

central frequencies and oscillatory modes [25]. VMD has been applied in various fluid mechanics

and hydrodynamics areas, showing promise in isolating physical signals and providing predictive

metrics for improved performances [24,26,37,69].

2.3 Concluding Remarks

While the study of emulsion dynamics in porous media is complex and challenging, advances in ex-

perimental and computational techniques offer significant potential across diverse applications. By

integrating sophisticated imaging, rapid prototyping, and informed design approaches, researchers
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can develop more accurate models and innovative solutions for real-world challenges in fluid dy-

namics and material science.



Chapter 3

Uniform Droplet Formation in

Microfluidics

The exploration of microfluidic droplet generation in this work underscores the meticulous design

and analytical precision required to enhance our understanding of fluid dynamics within microscale

systems. Through the application of variational mode decomposition, this research offers a de-

tailed analysis of velocity signals from drop-makers, revealing how subtle design variations can

significantly impact droplet uniformity and stability. Particularly, by adjusting the length of the

water inlet in the microfluidic devices, we observe a direct influence on droplet formation in flow

driven droplet makers. This design sensitivity highlights the critical role of engineering precision

in optimizing droplet uniformity, a key factor for applications ranging from pharmaceuticals to

material science. The analytical technique employed here—breaking down the velocity signal into

five intrinsic modes—allows for a clear distinction between oscillatory and stable flow components,

demonstrating how even minor fluctuations can be pivotal. The findings are particularly notable

in the detection of the fifth intrinsic mode’s behavior, which serves as a reliable indicator of droplet

uniformity. The presence of a stable fifth mode correlates strongly with the production of uniform,

mono-disperse droplets, whereas deviations in this mode signal potential inconsistencies. This

mode’s sensitivity to upstream conditions—far before the droplets are formed—provides invaluable

foresight, enabling preemptive adjustments to the process. This study not only deepens our under-

standing of the intricacies of microfluidic droplet dynamics but also enhances the methodological

framework for future research in this field. By demonstrating the effective use of sophisticated

signal analysis techniques, it offers a model for how detailed experimental data can be leveraged

to improve the design and functionality of microfluidic systems, ensuring more reliable and pre-

15
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dictable outcomes in various scientific and industrial applications. This chapter has been adapted

from Izaguirre’s 2022 paper. [35]

3.1 Introduction

Droplet microfluidics is a powerful technique enabling the precise control of the size of the droplets,

loading of cargo, sorting, and merging droplets at small volumes of the order of picolitres. These

capabilities have led to the extensive use of droplet microfluidics in a wide range of applications in

industries such as in pharmaceutical, material production, and in research and development [15,65,

72]. Moreover, droplet microfluidics is a promising tool in signal processing. [31, 76]. The sizes of

the droplets are determined by the interfacial tension between the two fluids, the geometry of the

microfluidics chip, and the flow rates of each fluid phase [75, 80]. Microfluidics chips operated in

their optimum regime prove to be stable and reliable for the production of monodisperse droplets

[23, 49, 52, 61, 63]. On-chip processes can be optimized to minimize errors in performance since a

microfluidic chip interacts with a few external control units, pumps, and valves [47]. However, small

errors, such as satellite droplets, missed mergers, or unexpected merging of droplets may still occur

due to instabilities in external units or in local flow [16,90]. In general, these errors are monitored

visually and anomalies can be sorted out with different methods, either by deflecting some fluids

to a separate channel using external electric or acoustic forces or by passing the droplets through

filters to sort by size [12,31,54]. Since most microfluidics chips run at high speeds, 100 s of µL/hr, it

is crucial to detect and correct errors at comparable speeds [16]. Flow fluctuations in a microfluidic

channel driven at a high flow rate can grow quickly and disrupt the flow downstream due to the

nonlinear nature of fluid flows. Although not all fluctuations are significant, it is not possible to

identify them theoretically or in real time once a microfluidic device is running. Nevertheless, flow

velocities and pressure fluctuations in a device are accessible in real time [1, 13].

In principle, standard methods of signal processing can be implemented to quantify or predict

anomalies in microfluidics, although they are not commonly used. Fourier transform and wavelet

analysis perform well in simplifying complex and noisy time series. However, this powerful signal

analysis method is less efficient in nonlinear and non-stationary systems such as fluid flows and

can be computationally intense. Moreover, dynamic mode decomposition is developed based on

continuous snapshots of flow and is shown to closely describe the motion of the flow even in the

turbulence regime [68]. In recent decades, the empirical mode decomposition (EMD) method has

been developed to better analyze signals from nonlinear and non-stationary data sets [33, 43, 85].

EMD is data driven, a posteriori, and adaptive, which aims to separate events by utilizing the

https://doi.org/10.3390/fluids7050174
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notion of instantaneous frequency, in contrast with fundamental frequencies as in Fourier analysis.

EMD has been used in a variety of applications, including identification of dominant frequencies

in atmospheric data [38], separating unsteady spatiotemporal scales in the mixing layer in wind

tunnel data [2], analyzing instantaneous turbulent velocity field in unsteady flows [66], and extract-

ing health-related hemodynamics features [84]. One of the successful uses of EMD is to identify

modes or frequencies with physical significance in a noisy signal, as in characterizing the properties

of turbulence from stationary and non-stationary grid-generated flows [27]. For example, in a sys-

tematic study, a periodic perturbation was introduced to the flow, and EMD was used to separate

the high-frequency part of the signal from the low-frequency parts, and the artificial perturba-

tion was retrieved. Variational mode decomposition (VMD) has been developed based on EMD

with a lower sensitivity to noise [25]. This method stepped away from recursive decomposition

and extracts modes concurrently. It finds central frequencies and oscillatory modes within various

basebands [25], and is even proven to extract central data from geophysical data where isolated

spikes appear often [48, 73]. The applications of VMD in different areas of fluid mechanics and

hydrodynamics has been extremely promising in isolating physical signals and providing predictive

metrics for improved performances [24,26,37,69].

In this paper, we use a novel method of signal decomposition, variational mode decomposition,

to determine the formation of uniform droplets in a microfluidic drop-maker. We simulate the

formation of water in oil droplets in a microfluidic device with two independent drop-makers.

To compare the signal from different geometries, we choose the sizes of the water inlets of the

drop-makers to be slightly different. We map the velocities calculated in the simulation onto a

uniform grid to mimic the velocity field commonly measured in experiments using particle image

velocimetry. Using variational mode decomposition, we decompose the velocities measured at

the center of the channel to its intrinsic mode functions (IMF). For the velocity signal in our

simulations, only five modes are sufficient to fully separate noise and high oscillations from the

underlying average velocity. The first mode in the decomposition, IMF 1, usually has the highest

oscillations and noises among all modes. The second to fourth modes have considerable oscillations

with magnitudes similar to each other and similar to the first mode or at least within the same

order of magnitude. However, the fifth mode, IMF 5, appears to only show the underlying average

velocities at the center of the channel with values much larger than the other IMFs. We find that

uniform droplets form when IMF 5 is a plateau with small variations around its local average.

Interestingly, this signature plateau coincides with uniform droplet formation even when we use

the velocities inside the water inlet and long before the fluid is broken into droplets. We show that

variational mode decomposition is able to quantify anomalies in the signal that trigger fluctuations

in flow and droplet sizes downstream.
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3.2 Materials and Methods

3.2.1 Droplet Simulation

To study the flow fluctuations during droplet formation in a microfluidic T-junction with high

spatial resolution, we use COMSOL multiphysics (3.2.10), a laminar two phase flow module, and

the level set method [77]. The geometry of the microfluidic device consists of two T-junction

dropmakers located on opposite sides of a long channel. Droplets are generated on two sides of

this channel and meet in the middle of the device where they can either merge or bypass each

other and exit through a single outlet as shown in Figure. The widths of the inlets channels are

50 µm. Droplets are formed when the inner fluid, water, in the middle inlet is sheared with the

outer fluid, an oil which has an interfacial tension of γ = 3 mN/m with water [77], which flows

in the two adjacent inlets as shown in Figure reffig1 (Supplementary Materials). Here, we choose

to generate water in oil emulsion droplets. The density of the inner fluid, ρ, is 1 kg/L and the

outer fluid is 1.6 kg/L and their respective viscosities are µin = 1 mPas and µout = 1.2 mPas.

To keep the simulations stable and resolve the interfaces, COMSOL used an adaptive mesh with

nonuniform grid sizes. The lengths of the channels on either side are 425 µm, measured from the

beginning of the inlet. These lengths are optimized so the two-phase simulation is stable and the

interfaces are resolved while the microfluidic device resembles physical experiments [15]. The inner

fluid is flowed at 2 cm/s and the outer fluid at u = 2 cm/s. At these flow rates, a steady stream

of droplets is expected to form in the dripping regime [80]. The imposed pressure at outlet is

Pout = 0 Pa. The capillary number is 8.0×10−3, ratio of capillary to viscous force (Ca = µoutu/γ).

The corresponding Weber number, the ratio of drag to cohesion force, We = ρu2r/γ is 6.0× 10−3,

where r is the radius of the channel. The Capillary and Weber numbers are within the dripping

regime where the balance between the capillary forces at the interface of two fluids and the viscous

force from the outer fluid determines the formation of a droplet [80]. Once a droplet is formed,

it flows through the channel leading to the junction with the opposite dropmaker as shown in

Figure 3.1 (Supplementary Materials). The left inlet channel is shortened to mimic a fabrication

error while the right channel has an optimized geometry for the flow rates chosen. The left channel

begins to form droplets a few milliseconds before the right channel as well as form satellite and

non-uniform droplets sporadically. The numerical simulation in COMSOL uses an adaptive mesh

to optimize the computational time. Consequently, the data are on a non-uniform grid with finer

mesh sizes close to the interfaces. Using the natural neighbor algorithm, we interpolate this data

on a uniform grid. The mesh size is 200 nm and the total area of the mesh is 850 × 215 µm2.
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3.2.2 Signal Decomposition

Variational mode decomposition extracts oscillatory modes of the signal and provides insight into

how the flow evolves as a function of time at various positions. VMD is a modern algorithm

based on some of the concepts of empirical mode decomposition which were first developed with

nonlinear and non-stationary processes in mind to decompose a time-domain signal into intrinsic

mode functions [33,89]. These oscillatory modes, IMF, follow two primary criteria: (i) the number

of extrema and number of zero crossings must either be equal or only differ by one; this criteria is

equivalent to the narrow band requirement for a stationary Gaussian process. (ii) The mean value

of the envelope defined by the local maxima and minima must be zero [34]. The second criterion

creates a local time-dependent requirement which assists with decomposing nonlinear signals and

allows IMFs to have both modulated amplitude and frequency with a finite bandwidth. However,

boundaries and spikes in the original signal can lead to artifacts in the IMFs to satisfy the criteria

mentioned above. To resolve such issues, various methods have been developed among which

variational mode decomposition (VMD) has been successfully used to describe dynamics in fluid

systems [73]. VMD stepped away from recursive decomposition and extracts modes concurrently.

It searches through frequencies of the original signal to find central frequencies and oscillatory

modes within various basebands [25]. VMD adaptively selects the IMFs concurrently, which results

in modes covering finite bandwidth within the original signal. Being weighted towards central

frequencies, IMFs contain physically relevant information of various processes that influence the

original signal, see Appendix ??. In this paper, we use the MATLAB (R2020a) built-in variational

mode decomposition function to decompose the velocity, u(t), at a given space into its oscillatory

modes. The number of IMFs needed to decompose the signal into physically relevant modes is not

known a priori. We vary the number of IMFs between 4 and 6 to decompose the signal. We find

that five IMFs are sufficient throughout our data to decompose the signal without any redundancy

or loss of modes that appear significant in predicting the droplet dynamics. Increasing the number

of IMFs affects the decomposition noise and oscillatory components which are of less interest in

this system in the laminar regime.

The goal is to analyze the flow dynamics in a time-domain signal to find a signal that will allow us

to determine if uniform droplets are being created at certain instances by viewing a single region

within the inlet. This is in contrast with other methods of signal analysis in fluids such as dynamic

mode decomposition which require a much larger data set in the entire field.
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Figure 3.1: Visualization of two-phase fluid and flow velocities in a microchannel where droplets

generated from right and left drop-makers meet at the center of the channel. Color Hue represents

direction of the velocity, Saturation represents the volume fraction of water, and brightness Value

represents the magnitude of the velocity.

3.3 Results

We develop a consolidated visualization method that integrates multiple physical quantities, ve-

locity, and fluid phase, into a simple graphic to better identify different dynamics. To visualize

the direction and magnitude of fluid velocities along with the volume fraction of each fluid phase,

corresponding colors, intensities, and saturation are assigned to form a single HSV image (Hue,

Saturation, Value) as shown in Figure 3.1 (Supplementary Materials). Hue is determined by the

angular velocity at each position and is mapped to a 360-degree color wheel with red and cyan cor-

responding to 0 and 180 degrees, respectfully. Saturation represents the volume fraction of oil and

water. Saturation is 1.0, where the volume fraction of water is larger than 55% and 0.25 where the

volume fraction is smaller than 45%. Saturation matches the volume fraction of water everywhere

else as shown in the Saturation color bar in Figure 3.1 (Supplementary Materials). Moreover, the

magnitude of the velocities is represented by Value, which describes how light or dark a Hue is with

larger velocities appearing brighter. Since there is an uneven distribution of velocities, with many

small velocities and a few large velocities, there is poor contrast within the slow velocity regions. To

enhance the contrast in these regions, we use a global transformation that bins and maps velocities

across all spatial and temporal points into Values. However, the distinction between the few high

velocities is no longer visible. This transformation and mapping, known as histogram equalization,

aims to create a uniform probability density function that enhances contrast for tightly grouped

velocities. Although it is unlikely to create a completely uniform histogram, histogram equalization

generally results in a wider range of the intensity scale to be used and, consequently, the contrast

is enhanced [28]. This process is only used for the visualization of the data and the velocities after
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histogram equalization are not used in data analysis.

Droplets of water in oil are formed on either side of the long channel and carried by the outer fluid

(oil) as shown in Figur). Droplets formed in the left channel appear red as they travel from left to

right. These droplets meet droplets from the opposing channel at the T-junction. Droplets either

merge or deflect towards the outlet vacating the device while appearing purple due to their now

downwards velocity. Interestingly, we observe a considerable number of satellite droplets in the left

channel where we intentionally selected non-ideal inlet geometry. Consequently, the sizes of the

droplets from the left channel are less uniform and the dynamics at the point of merging become

unpredictable with many missed mergers as observed in Figure.

We use variational mode decomposition to analyze temporal flow fluctuations downstream and

identify any significant modes. We choose a region of 4 × 4 µm2 in the right channel, 290 µm

downstream, to investigate where there is less variation in flow velocity away from the inlets prior

to the outlet, as shown in Figure 3.2b. We calculate the average flow velocity in this region since

our velocity field has a resolution of 200 nm, which is not achievable in most experiments.

Interestingly, droplets pass this region with very little variation in size and shape. We utilize

variational mode decomposition to separate fluctuations from the steady flow of droplets and drop

formation. Various regions require a different number of modes to produce unique IMFs without

frequency and amplitude overlap. We choose five intrinsic mode functions for this position for all

IMFs to remain significant and residual to have minimal oscillation. From our visualization of the

right channel in Figure 3.1 (Supplementary Materials), no major fluctuations are expected since

we see consistent production of uniform droplets. However, IMF 2 and 4 have a large amplitude

present at the start of the signal which wanes later in the signal. The maximum amplitude of

IMF 2 (IMF 4) from 0 ¡ t ¡ 80 ms ( 0 ¡ t ¡ 25 ms) is 4.73 (8.83) times greater than the maximum

amplitude in the rest of the IMF. The simulation begins with the device filled with oil. Therefore,

there are fluctuations in the velocities due to water being introduced to the device. We consider

this an initiation stage for the flow. The effect of the initiation of flow is present in IMFs 2 and 4.

The amplitude in IMF 3 appears to be modulated periodically, which we attribute to the steady

flow of droplets. IMF 5 summarizes both the effect of initiation of flow as well as the periodicity

from the flow of droplets. Moreover, the sharp drop in the amplitude in IMF 5 matches the time

when IMF 3 transitions to a periodic signal. Additionally, this time is close to where initiation

effects in IMF 4 start to wane. The decomposition clearly separates the events affected by the

initiation of flow, which appear in IMF 2 and IMF 4, and the steady flow and drop formation that

are evident in IMFs 1, 3, and 5. Interestingly, IMF 5 has some of the initiation effects which are
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Figure 3.2: Velocity and decomposition at one position as a function of time. (a) Magnitude

of velocity from 12 to 200 ms (b) for a 4 × 4 µm2 bin in the center of the channel; (c) First

intrinsic mode function (IMF 1) of the decomposed velocity signal showing the fastest oscillations

in the original signal; (d) IMF 2, the second largest oscillations heavily affected by the initiation

of flow; (e) IMF 3 showing the bulk of the original velocity signal; (f) IMF 4 slower oscillations

with a transition at around 20 ms corresponding to the initiation of flow; (g) IMF 5 is the slowest

oscillation of the flow with an average close to velocity of the outer fluid at 40 mm/s, and a spike

early in the signal at time briefly after the initiation; (h) Residual of the signal.

distinct peaks matching the IMF 2 and IMF 4 as well as the fluctuation within relatively consistent

signals in IMF 1 and IMF 3 at around 60 ms. The residual does not have any significant physical

meaning (Figure 3.2h), except that the signal can be recovered exactly by adding the residual and

all other IMFs.

Using variational mode decomposition, we analyze temporal flow fluctuations at both water inlets
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and identify any significant modes that indicate changes in droplet formation. We calculate the

velocity signal and IMFs of 4 × 4 µm2 regions prior to the oil inlets and pinch off points, 20 µm into

the water inlets, for the left and right drop-makers shown in Figure 3.3. Interestingly, we observe

that the right channel signal and IMFs appear similar to the results found downstream, comparing

Figure 3.3h–k to Figure 3.2c–f. The periodicity in IMF 2 coincides with the steady flow of droplets

while IMF 3 and 4 show the effects of initiation. Here, IMF 1 is an order of magnitude smaller than

the other IMFs. Additionally, IMF 5 contains a peak close to the initiation of the flow and the

amplitude falls off close to the average flow velocity after the initiation. We observe that there is

almost no periodicity in IMF 5 which is different from data downstream where droplets continuously

pass through. The decomposition of the signal for the left channel at the water inlet leads to IMFs

with highly variable amplitudes. The amplitudes of IMFs 1 to 3 are comparable to each other and

are larger than that of IMF 4, as can be seen in Figure 3.3b–e. We observe multiple large peaks

in IMF 5 which are of the same order of magnitude as the effect due to the initiation of flow. By

contrast, there is a plateau in IMF 5 during the time interval, 115 ¡ t ¡ 155 ms. Interestingly, this

plateau in IMF 5 coincides with the formation of uniform droplets from the left channel. Moreover,

during this time interval, the amplitude of IMF 3, which has the largest range among all IMFs, is

at its minimum. IMF 4 is also at its minimum during this time interval. We observe that IMF 2

during this time interval has a behavior similar to what is seen in uniform droplet formation in the

right channel. Additionally, IMF 2 contains most of the original signal during this time interval.

Satellite and non-uniform droplets are formed in the left channel at all other times. The effect of

initiation is apparent in IMF 3 and 4 in the right channel, Figure 3.3j,k, while, in the left channel,

this effect is not the most significant change in amplitude in any of the IMFs, Figure 3.3d,e, and

becomes suppressed. It should be noted that the signal obtained from the left water inlet ranges

between 1 mm/s while the signal from the right channel ranges 0.2 mm/s. Additionally, IMF 1 for

the left channel (Figure 3.3b) has amplitudes an order of magnitude larger than that seen in IMF 1

of the right channel (Figure 3.3h). IMF 1 contains the highest oscillating component of the signal

which is typically attributed to noise in the system.

Our analysis of the decomposed signal demonstrates and predicts if uniform and non-uniform

droplets will be formed; surprisingly, our prediction is based on the signal in the region before

where droplets are pinched off. Naturally, it is difficult to predict the formation of uniform droplets

from this region. We identify characteristics in the decomposed signal that indicate time intervals

when uniform droplets are formed. It appears that the peaks in IMFs 3 and 4 mostly coincide

with fluctuations that destabilize the formation of uniform droplets. Uniform droplets are formed

whenever there is a plateau in IMF 5. To better define the plateau, the average and standard

deviation of the IMF 5 are calculated on a moving window of at least 7 ms, corresponding to the
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Figure 3.3: Velocity and decomposition in the water inlet as a function of time. Left: the velocity

signal (a) and decomposition into intrinsic mode functions (b–f) for the left channel of Figure 3.1

(Supplementary Materials) demonstrates various large fluctuations. Right: velocity signal (g) and

decomposition (h–l) for the right channel with a single large fluctuation.

time needed to form two droplets. The fluctuations in the IMF 5 can be ignored as long as this

local standard deviation is smaller than 0.02. To predict if a uniform droplet is formed, we calculate

the standard deviation of IMF 5 over 7 ms before this time-step, assuming we have no information

about future velocities.

To investigate the applicability of the signal decomposition in lower resolution data, we study the

relationship between various spatial resolutions of the signal and decomposition. Additionally, this
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helps with evaluating the relevance of this method for experimental data considering simulations

that generally have higher spatial resolutions than in experiments. We analyze two velocity signals

taken from the same position, centered between the oil inlets, at different resolutions ranging from

4 × 4 to 20 × 20 µm2. To quantify the similarities in the IMFs, we calculate the maximum

normalized cross-correlation of the above signals with the signal obtained from a 1 × 1 µm2 region

(5 × 5 pixels2):

IMFcorrij =

∑N−m−1
n=1 IMF

(1)
i,n+mIMF

(2)
j,n√∑n=1

N |IMF
(1)
i,n |2

∑n=1
N |IMF

(2)
j,n |2

(3.1)

where i and j represent the IMF number, and n andm are the elements in each IMF. The superscript

(1) and (2) represent the different resolutions of the data. In our calculations, we choose (1) to be

at the 1 × 1 µm2 resolution and vary (2) between 4 × 4 µm2 and 20 × 20 µm2. Here, IMFcorrij

is an array with values between −1 and 1. We expect, for i = j at a coincident time, IMFcorrij

to be highly correlated. However, on rare occasions there is a time lag between the signals because

we are averaging over a larger window that encompasses fluid elements in nearby locations. Hence,

we report the maximum of this array for every combination of IMFs.

Comparing the velocities averaged over a 4 × 4 and 20 × 20 µm2 region centered between the two

oil inlets, we find that the higher resolution has larger average velocities. This is natural since the

lower resolution signal is averaging velocities closer to the wall, which are slower velocities than the

center, as seen in Figure 3.4a. The different IMFs from the two resolutions are barely different in

amplitude and frequency from one another as seen in Figure 3.4b–g. Small differences are observed

in IMF 1, which is an order of magnitude smaller than the other modes, Figure 3.4b. We attribute

these differences at this position to the 20 × 20 µm2 window extending into the water channel

which has additional inlet noise. Our calculation of the maximum IMFcorrij demonstrates that

the coinciding IMFs are highly correlated regardless of spatial resolution, Figure 3.4h. Addition-

ally, non-coinciding IMFs have very little correlation as demonstrated by the extremely small and

negligible sizes of the correlation bubbles in Figure 3.4h. The lowest maximum IMFcorrij of the

coinciding IMFs is 0.97 seen for IMF 4 of the 20 × 20 µm2 region. It is apparent that the results

of the decomposition are weakly dependent on spatial resolution up to 20 × 20 µm2 when using

a 1 × 1 µm2 region. Our results imply that this method should work on lower resolution experi-

mental data. Additionally, IMFs 2 to 4 and the residual match closely between the two different

resolutions.

To verify the robustness of this method, we calculate the maximum normalized cross-correlation,

IMFcorrij , across the center of the channel averaged for different positions. To avoid overlaps of
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the larger window, we choose these positions to be 65 µm apart. We calculate the IMFcorrij for

the signal obtained from a 1 × 1 µm2 window correlated with the 4 × 4, and the 20 × 20 µm2

windows. Interestingly, IMF 5 remains highly correlated regardless of window size and position

in the channel as shown in Table 3.1. Coinciding IMFs are heavily correlated for the 4 × 4 µm2

window size with very little correlation amongst non-coinciding IMFs, as can be seen by comparing

the diagonal elements of Table 3.1 with the off-diagonal elements. These results clearly show that

the 4 × 4 µm2 window is small enough and the decomposed signal matches the 1 × 1 µm2 window

closely (max(IMFcorrij) > 0.99). However, the IMFcorrij for i = j for IMFs 2, 3, and 4 are less

correlated for the larger window size, 20 × 20 µm2. Here, the off-diagonal elements (i ̸= j) increase

as seen in Table 3.2.
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Figure 3.4: Velocity signal (a) taken at a single position averaged for two different resolutions,

4 × 4 µm2 (blue circles) and 20 × 20 µm2 (orange asterisk); (b–g) the respective Intrinsic mode

functions; (h) normalized maximum cross correlation between the IMFs of the 4 × 4 µm2 (left) and

20 × 20 µm2 (right) with a 1 × 1 µm2 region. Color bar and relative size represent the strength of

the correlations.

Upon further investigation, IMF numbers swap occasionally when decomposing signals from dif-

ferent window sizes or neighboring positions. An example of this swapping is demonstrated for
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IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

IMF 1 1.0000 0.1003 0.0293 0.0239 0.0038

IMF 2 0.1003 0.9999 0.0808 0.0447 0.0052

IMF 3 0.0293 0.0805 0.9998 0.1500 0.0054

IMF 4 0.0240 0.0446 0.1487 0.9997 0.0125

IMF 5 0.0038 0.0052 0.0054 0.0124 1.0000

Table 3.1: Maximum normalized cross correlation averaged over 12 positions with

areas of 4 × 4 µm2 region. The IMF 1 to 5 on the columns are from the 1 × 1 µm2

and the rows are from the 4 × 4 µm2.

Table 3.2: Maximum normalized cross correlation averaged over 12 positions with areas of

20 × 20 µm2. The IMF 1 to 5 on the columns are from the 1 × 1 µm2 and the rows are from

the 20 × 20 µm2 region.

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

IMF 1 0.9090 0.1622 0.0326 0.0240 0.0037

IMF 2 0.1663 0.4976 0.3705 0.0486 0.0051

IMF 3 0.0332 0.2301 0.5048 0.3761 0.0053

IMF 4 0.0263 0.0518 0.2601 0.6468 0.0124

IMF 5 0.0039 0.0061 0.0061 0.0093 0.9997

two window sizes (4 × 4 and 20 × 20 µm2) at the center of the channel in Figure 3.5. Here,

swapping IMFs 2 and 3 of the larger window would result in a greater IMFcorrij . Interestingly,

this swapping seems to be contained to IMFs 2, 3, and 4. These three IMFs are small in magnitude

and similar in frequency where small changes in the average signal can swap their assigned IMF

number. Additionally, the swapping is predominately amongst neighboring modes, IMFs 2 and 3

and IMFs 3 and 4 swapping. The prevalence of swapping increases with window size as additional

velocities further from the center of the channel are being averaged into the signal prior to decom-

position. However, IMF 1 remains highly correlated regardless of window size up to 20 × 20 µm2.

The most consistent mode is IMF 5 as it was heavily correlated (Max(IMFcorrij) > 0.99) even

when using a 20 × 20 µm2 window size at various positions. We observe that IMF 5 is a good

indicator for changes in droplet formation and remains strongly correlated regardless of the spatial

resolution tested.
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Figure 3.5: Velocity signal and decomposition at one position as a function of time. (a) magnitude

of velocity from 12 to 200 ms (b) for a 4 × 4 µm2 (blue circles) and 20 × 20 µm2 (orange asterisk)

window size at the center of the channel; (c) first intrinsic mode function (IMF 1); (d) IMF 2 where

the larger window decomposition swaps with IMF 3; (e) IMF 3 where the larger window swaps

with IMF 2; (f) IMF 4; (g) IMF 5, (h) Residual.

3.4 Discussion

We simulate the formation of water in oil droplets and extract a high resolution velocity field from

the simulation. In this microfluidic drop-maker, we incorporate two independent drop-makers with

slightly different inlet geometries—in one of which the inlet is shorter than the other. The short

inlet leads to the formation of satellite droplets at the same flow conditions as the other inlet. Using

variational mode decomposition, we decompose the velocity signal at the center of the channel into

its intrinsic modes. We show that, by only decomposing the signal into five intrinsic modes, we can

fully separate the oscillatory and noisy parts of the velocity from an underlying average flow at the

center of the channel. Interestingly, IMF 5 carries most of the physical information. IMF 5 has
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distinct spikes when the flow is initiated and it transitions into a plateau as long as the droplets

are uniform. The IMF 5, of variational mode decomposition, has a smooth shape when uniform

droplets are formed even if we analyze the velocities in the water inlet and before the region where

droplets form. Additionally, this method is not sensitive to the spatial resolution of the signal, as

we decompose a velocity signal averaged over a considerably large area. We show that magnitude

of IMF 5 remains to be highly correlated with the high resolution velocities further confirming the

robustness of prediction of flow fluctuations by IMF 5. By choosing the appropriate number of

modes, we efficiently separate the physical part of the signal from oscillatory and noisy parts. Our

analysis provides a metric to predict uniform and satellite droplet formations.

The variational mode decomposition is a promising method of signal decomposition suitable for

fluid flows with random or periodic fluctuations. Additionally, VMD is integrated into scientific

software such as MATLAB, making it readily accessible to a broad range of users. Moreover, VMD

can be applied to spatially sparse data without losing critical information about the underlying

signal, as we demonstrate in this paper. While some of the conventional methods of signal analysis,

such as Fourier transform and Dynamic mode decomposition, have been used in different areas of

fluid mechanics, mainly in turbulence and channel flows, the use of signal analysis in microfluidics

has received less attention. Nevertheless, the integration of microfluidics circuits in commercial

platforms for sorting and processing small volumes of fluids is rapidly growing. Hence, the applica-

tion of signal analysis in microfluidics for optimization, troubleshooting, and quality assessments is

on the rise. Here, we demonstrate the successful application of VMD in predicting droplet sizes and

provide a platform for future use of VMD in microfluidics signal analysis. Future exploration of

the application of this method and extension into experimental and real time analysis can improve

the performance of microfluidics chips with single point velocity monitoring.

3.5 Variational Mode Decomposition

Variational mode decomposition separates a signal into components that can be expressed math-

ematically as amplitude-modulated-frequency-modulated signals [25]. This is in contrast with

Fourier transform which describes a signal as a sum of non-varying sinusoidal functions. A mode,

uk, in VMD is described as

uk(t) = Ak(t)cos(Φk(t)) (3.2)

where A is the time-dependent amplitude and Φ is the phase. Decomposing a signal into functions

that can vary over time allows VMD to become locally adaptive and have the ability to act as a
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narrow band filter. The robust nature of such a decomposition method effectively allows VMD

to decompose signals from nonlinear and non-stationary systems [25]. A real function can be

represented as an analytic signal that is comprised of the original function and its Hilbert transform

as:

fA(t) = f(t) + iHf(t) = A(t)eiϕ(t) (3.3)

Here, Hf(t) is the Hilbert transform of the signal, fA(t) represents the analytical representation

of the signal, and A(t) is the instantaneous amplitude and envelope of the signal. Instantaneous

frequency is found by the rate of change of the ϕ(t). The mode uk can be expressed as analytic

signals. This allows us to represent the mode in the form of a complex exponential with no negative

frequencies:

uk,A(t) = uk(t) + iHuk(t) = Ak(t)e
iϕ(t) (3.4)

In summary, variational mode decomposition utilizes frequency mixing and Hilbert transforms

to extract narrow band functions from a signal [25]. This minimization problem is framed by

attempting to simultaneously finding a unique number of functions, or modes, around different

central frequencies that sum to the original signal. These central frequencies, ωk, are initialized

randomly or selected and are then mixed with a mode of varying phase and amplitude that is narrow-

band limited around the respective central frequency. The central frequency is then updated by

utilizing the center of mass of the mode’s power spectrum. Additionally, the modes are determined

adaptively and concurrently to balance the errors between them:

min
{uk},{ωk}

{∑
k

∥∥∥∥∂t [(δ(t) + i

πt

)
∗ uk(t)

]
e−iωkt

∥∥∥∥2
2

}

s.t.
∑
k

uk(t) = f

(3.5)

where i/πt denotes the impulse response of a Hilbert Transform. Consequently, the convolution of

i/πt and the estimated mode results in an analytic signal. The analytical signal is then mixed with

the signal containing the estimated central frequency, ωk. This results in modes frequency spectrum

shifted into “baseband” by their respective estimated center frequencies for all k ’s. The bandwidth

of these modes are then estimated by the L2 Norm of the gradient resulting in a constrained

variational problem, Equation (3.5). To render the problem unconstrained, Dragomiretskiy and

Zosso recommend using Lagrangian Multipliers and a quadratic penalty term [25]. Additionally,

the alternate direction method of multipliers can be used to perform a sequence of iterative sub-

optimizations to find the solution to the final minimization problem. A full solution is provided in

Dragomiretskiy and Zosso’s article.
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Methods

4.1 Introduction to Methods

The methodology outlined here details the procedures and techniques used to study the intermittent

transport of emulsions in porous media. The aim is to provide a comprehensive guide to the

experimental and analytical methods, ensuring reproducibility and clarity for future research. The

subsections systematically cover various aspects of our methodology, offering an in-depth insight

not covered in previous publications.

We begin with the design process using AutoCAD 3D, specifying the dimensions and structural

elements critical for our experiments. A section on computationally and automatically character-

izing the porous designs is addressed next. Following this, the 3D printing techniques are detailed,

encompassing the selection of resin, printing profiles, and post-processing steps such as UV and

heat curing, and washing. The preparation of Poly(dimethylsiloxane) (PDMS), with a focus on its

properties, ratio, and bonding methods, is also thoroughly discussed. Additionally, the application

of Aquapel (PGW Auto Glass, LLC, Cranberry Township, PA, USA) for creating hydrophobic

surfaces is explained, highlighting its significance in droplet formation and pressure management.

The preparation and setting of the device, involving flushing with HFE and drying processes, are

outlined to ensure readiness for experiments.

The experimental setup section provides a comprehensive guide to setting up the apparatus, in-

cluding the pressure transducer, tubing connections, fluid preparations, and the use of Arduino

for generating pressure pulses. Finally, the data processing section covers the image processing

31
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techniques employed, including background subtraction, stabilization, local contrast enhancement,

and adaptive binarization, along with the development of tracking algorithms, cost matrices, and

visualization tools. This structured approach ensures a detailed and replicable methodology, align-

ing with the rigorous standards required for scholarly research in the field of emulsion transport in

porous media.

Ultimately, the design encompasses a comprehensive experimental setup. At its core is the mi-

crofluidic chip, housing both the on-chip drop-maker and the 2D porous medium. Precise droplet

production is ensured through modulated flow rates delivered by a pressure pulse to the water

inlet. Imaging and monitoring of the droplet dynamics within the porous medium are facilitated

by a high-resolution Zeiss Microscope (Axiozoom), paired with a FasTec IL5 camera to capture the

intricate details of the droplets. The syringe pump stands as a consistent tool in delivering a con-

trolled flow of the continuous phases into the system. Real-time pressure data across the medium is

collected through a pressure transducer, specifically an Omega-PX409. Completing the setup is a

stage, ensuring that the microfluidic device remains securely in place for stable visualization. This

integrated system aims to address the challenges of studying emulsion dynamics, offering precise

control and detailed visualization.

4.2 Emulsion Generation and Control

In efforts to mimic the slow flow regimes found in natural subsurface flows, specifically vint ∼ 1

ft/day or 3 µm/s, our microfluidic drop-maker is engineered to function within the dripping regime,

as described by Utada et al. [80]. The core design of the drop-maker features a central inlet for the

dispersed fluid, composed of water mixed with 0.1 wt% fluorescein sodium salt. Alternatively, food

dye can replace fluorescein in some experiments, offering higher contrast images despite altering

the surface tension. This is discussed in detail in a future chapter. The central inlet is flanked by

two inlets for the continuous phase, which consists of a specialized fluorinated oil, HFE750 (from

3M), mixed with 5 wt% FSH surfactant oil (from Krytox). The interfacial tension between these

phases is measured at γ = 26 mN/m.

In the dripping regime, the size of the droplets is primarily governed by the inlet geometry, as

shown by Barkley et al. [4]. At equilibrium, the pressure inside the droplet (Pd) balances with the

pressure of the outer fluid (P0) and the capillary pressure, following the relation Pd = P0 +
2γ
Rd

,

where Rd is the droplet radius. The droplet detaches when the internal droplet pressure exceeds

the external pressure, with the droplet radius Rd > 2R in a channel of radius R, assuming a circular
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cross-section. This behavior, thoroughly examined in Barkley’s 2016 paper, is reproduced here with

different geometry but similar results.

Achieving a low flow rate for uniform droplet formation requires maintaining the low flow limit and

stability. Surfactants stabilize droplets, ensuring uniformity and preventing breakup and coales-

cence. Creating a Pressure Collar involves using a hydrophobic coating to promote the formation

of a pressure collar, facilitating backward flow of the continuous phase into the inlet, essential for

the snap-off mechanism. Geometry significantly influences droplet generation, with the rectangular

inlet shape playing a crucial role. Unlike Barkley’s 2016 study on circular nozzles, the focus here

is on how the rectangular geometry affects droplet size, which is largely determined by the channel

design and effective radii. An innovative hybrid design combines pressure pulses and flow control

for precise droplet generation, addressing issues such as fluid viscosity and inconsistent droplet

sizes.

Laplace Snap-Off Physics, at the core, uses Laplace principles for controlled droplet breakup, en-

abling fine-tuning of droplet size and frequency for accurate experiments. The channel geometries

and pressure systems are engineered for precision, ensuring predictable droplet creation, crucial for

emulsion transport studies. Pressure-Induced Flow-Driven Droplet on Demand relies on surface

tension, the fluid’s inherent tendency to minimize its surface area, playing a critical role in shaping

and stabilizing droplets. Laplace Pressure in droplets refers to the pressure difference across the

curved surface of a droplet, driven by surface tension. In a droplet of radius Rd, internal pressure

(Pd) competes with surface tension’s contracting force.

The importance of nozzle design lies in forming a pressure collar (Pc) at the nozzle-dispersed fluid

interface, necessitating reverse flow of the continuous phase into the nozzle for effective droplet

detachment. As the droplet radius (Rd) increases, internal pressure (Pd) decreases, leading to

snap-off when Pc < P0 (ambient pressure). The pressure drop from nozzle pressure (Pn) to Pd

occurs over a length scale L + ϵRd. Despite the small flow term (Q) for the dispersed fluid, the

process is quasi-static. Maintaining a low flow rate of the dispersed fluid ensures uniform droplet

formation, with small pressure pulses initiating controlled flow (Q), crucial for consistent droplet

size.
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Figure 4.1: (A) Schematic prior to droplet snap-off. Key length scales include the inner radius of

the cylindrical nozzle R, minimum radius of the dispersed phase column within the nozzle Rc, and

the radius of the growing droplet Rd. Relevant pressures are the bulk continuous phase pressure P0,

the dispersed phase pressure in the growing droplet Pd, the dispersed phase pressure in the nozzle

Pn, and the continuous phase pressure in the collar around the dispersed phase Pc. (B) Pressure

schematic along the pipette length. Snap-off occurs if Pc < P0, as Rd grows, decreasing Pd and

other pressures relative to the fixed P0. Figure taken from Barkley 2016 [4].

4.3 General Fabrication and Design

In conclusion, our study successfully emulates the slow flow regimes observed in natural subsur-

face flows integrated with the precise operation of a microfluidic drop-maker operating within the

dripping regime. By meticulously controlling the inlet geometry, surfactant usage, and flow rates,

we achieve uniform droplet formation critical for emulsion transport studies. The integration of

pressure pulses and innovative channel designs, along with an understanding of Laplace principles

and surface tension dynamics, ensures the reproducibility and precision necessary for accurate ex-

perimental outcomes. This approach not only aligns with the findings of Barkley et al. [4] but also

demonstrates the robustness and versatility of our microfluidic system in producing consistent and

stable droplets.
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Figure 4.2: Droplet Generation and Control.

4.4 General Fabrication and Design

The 2D porous media were designed and constructed using established soft lithography and mi-

crofluidic methodologies [83]. The approach for creating a pattern with a random pore size distri-

bution involved using a 2D micrograph of a three-dimensional glass bead-pack captured through

confocal microscopy [1]. To enhance the heterogeneity in pore size, a gradient in pore size dis-

tribution, with increased porosity at the inlet compared to downstream sections, was introduced.

This gradient is reflective of the variance found in natural and geological porous formations [8].

The porosity and pore size distribution in the 2D porous structure were measured using a novel

algorithm rooted in Voronoi tessellation and skeletonization techniques [22,41,42,82].

To guarantee that emulsion droplets could seamlessly enter the medium, the physical dimensions of

the porous medium were modified to facilitate the droplets’ passage by scaling appropriately. For

these experiments, a microfluidic 3D printer, specifically the CADworks3D Pr110-385nm model,

was deployed. This advanced resin-based 3D printer, possessing an XY resolution of 40×40 µm2

and a Z resolution of 5 µm, allowed for the crafting of master molds in various dimensions. To

ensure the master mold exhibited smooth surfaces, which is imperative for optimal microfluidic

device functionality, the printing parameters were fine-tuned using a commercial powder-based

resin characterized by minimal light scattering. By adeptly managing UV exposure and curing

durations, fine edges and smooth surfaces were achieved. Subsequently, these master molds were

filled with polydimethylsiloxane (PDMS), followed by curing at 60-75◦C. The final step involved

plasma cleaning and securing them onto a glass slide.

A method to design and fabricate microfluidic molds and devices rapidly using a high-precision

and high-resolution 3D printer and specialized photo-resin compatible with PDMS was optimized.
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This method aimed to produce microfluidic devices within one week’s time, following the protocol

and method developed here. This approach resulted in a resource capable of fabricating complex

microfluidic devices in-house.

4.5 AutoCAD 3D Design

To design the experimental structures critical for studying the intermittent transport of emulsions

in porous media, AutoCAD 3D was utilized. The design process began with creating a 2D base

and integrating the drop-maker and microfluidic device. Pillars were added to the 2D inlet regions,

and all 2D objects were converted to regions. The porous media, mixing chambers, and initial

fluid mixing and filters around the inlet were subtracted from the main region to create depressed

regions, which were then extruded into 3D solid objects. This method allowed for precise and

functional molds for our experiments.

4.5.1 Base Thickness

The base thickness was set at 2 mm to ensure structural integrity during the heat curing process,

minimizing deformation. During initial tests, thinner bases were prone to warping and bending,

compromising the device’s functionality. A thicker base was necessary to prevent such issues,

although it increased printing time and resin usage. This thickness was found to be optimal for

maintaining the shape during curing stages.

4.5.2 Negative Space

Negative space was strategically designed by placing objects where voids were desired in the final

microfluidic device. This ensured that elevated regions in the mold translated to solid structures

in the PDMS device, essential for the functionality of the microfluidic channels and chambers.

4.5.3 Wall Structures

Wall structures were designed to be thick enough to prevent breakage when PDMS was extracted

from the molds. During early trials, thin walls often broke at the edges, leading to failed experi-

ments. Angling the walls helped relieve pressure during 3D printing, allowing resin to flow more
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easily and reducing the risk of defects. For our experiments, a wall height of 7 mm and thickness of

2 mm was optimal. This design ensured robustness and minimized the likelihood of leaks through

the tubing inlet.

4.5.4 Pillars

Pillars were designed to securely hold the polyethylene microtubing without leaks. The upper

region of the pillars had a diameter of 0.8 mm, increasing to 1.1 mm at 3 mm down the pillar. This

design allowed fluid to pool and flow uniformly. Initial pillar designs failed to securely hold the

tubing, leading to leaks. Adjusting the pillar dimensions ensured a tight fit. The tubing used had

an I.D. of 0.86 mm and an O.D. of 1.32 mm (Cat. BB31695-PE/5-(5) from Scientific Commodities).

This sizing ensured a slight pinch for secure insertion without hindering flow.

Figure 4.3: Example of 3D Design of microfludic chip mold.

4.6 Porous Characterization

The porous media is a 2D slice selected from a 3D glassbead pack network captured using confocal

microscopy. The properties of the porous media were further analyzed using a custom MATLAB

code written specifically for this study. This code calculates critical metrics such as dimensions,

void percentage, solid percentage, total volume, solid area/volume, void area/volume, and average

pore throat size. The analysis begins with an image of the porous media designed in AutoCAD.

The image is converted to binary format, and a Euclidean distance transform is applied, followed by

skeletonization to identify the media’s centerline. Delaunay triangulation is then utilized to deter-

mine pore centers and measure pore throat sizes. The code also includes steps to filter closely spaced
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points for accuracy. The results are visualized through various figures, including the skeleton, De-

launay triangulation, and pore throat distribution, and are summarized in a detailed message box,

providing a comprehensive understanding of the porous media’s structural properties. Additionally,

the final device can also be characterized by making a mask of the solid structure from an image

of the fabricated device. This provides more accurate characterization due to it being of actual

physical network being used in experimentation.

Figure 4.4: Example of Delaunay Triangulation of Porous Media - The image shows the thinned

skeleton (gray lines), Delaunay triangles (orange lines), and thresholded points (black circles) used

to analyze pore throat sizes and geometric properties.

4.7 3D Printing and Printer Limitations

The design of experimental structures using 3D AutoCAD was brought to life through extensive use

of resin-based 3D printing. Adhering to the constraints of the 3D printer, the design ensured that

no features were smaller than the printer’s resolution limits. The printer used, the Pr110-385nm

from CADworks3D, had an X:Y resolution of 40 µm and a Z resolution of 5 µm. Designing within

these parameters was crucial for achieving consistent and high-quality prints. Initial attempts

to print finer details below the resolution limit resulted in inconsistencies and poor print quality,

emphasizing the importance of adhering to printer capabilities.

The printer employed was a Digital Light Processing (DLP) printer, which utilizes UV light to cure
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a photosensitive resin into solid objects. The STL file designed in 3D AutoCAD was converted into

a layered file format, guiding the printer through the printing process. Proper settings were crucial

for achieving high-resolution prints and minimizing failed attempts.

4.7.1 Printer Setup and Process

The printer setup included a build plate, a vat of resin, and a Teflon sheet at the vat’s bottom.

The process followed these steps:

• Layer Projection: UV light projected by a digital light projector cures each resin layer

onto the build plate. The low surface energy of the Teflon sheet prevents the cured layer from

adhering to it and onto the build plate instead.

• Layer Building: The build plate rises incrementally, and this process repeats layer-by-layer

until the print is complete.

• Post-Processing: Post-printing steps included washing, UV curing, and heat curing to

prepare the model for use in creating PDMS devices.

4.7.2 Principles of DLP 3D Printing

DLP 3D printing relies on photochemistry and photopolymerization principles:

• Photopolymer Resin Composition: The resin comprises a monomer and a photoinitiator.

The photoinitiator, upon exposure to light, triggers the polymerization of the monomer,

solidifying the resin.

• Light Projection: The digital light projector projects an image of each cross-section of the

3D model onto the resin, solidifying the exposed areas. This forms a standing wave pattern,

where the resin solidifies in specific regions.

• Control of Mechanical Properties: The intensity and duration of light exposure affect the

final mechanical properties of the cured resin, such as hardness, flexibility, and transparency.

The photoinitiator absorbs light energy, converting it into chemical energy, which initiates

polymer chain formation.
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• Influencing Factors: The rate and extent of polymerization are influenced by factors like

the concentration of the photoinitiator, light intensity, wavelength, and temperature. These

factors enable precise control over the printing process, ensuring high-resolution, detailed,

and consistent parts.

4.7.3 Optimizing Print Quality

• Material Selection: Different resins with varying properties such as viscosity, curing time,

and mechanical strength were evaluated to achieve the desired resolution and structural in-

tegrity.

• Environmental Control: Maintaining a controlled printing environment (temperature,

humidity, and cleanliness) was necessary to ensure repeatable and high-quality prints.

• Balancing Speed and Quality: Optimizing the balance between print speed and quality

was crucial. Faster print speeds often compromised resolution and surface finish, so settings

were adjusted accordingly.

• Support Structures: For complex geometries, support structures are required to prevent

deformation and collapse during printing. Their placement are optimized to minimize surface

quality impacts and ease post-printing removal. For our designs, it was crucial to eliminate

any need for support structures as additional features create exposure to surface and print

defects.

• Dimensional Accuracy: Regular calibration and maintenance of the printer ensured di-

mensional accuracy. A test cube was periodically printed to assure dimensional accuracy.

4.7.4 Practical Considerations

• Cost Efficiency: Efficient use of materials and optimization of print settings helped manage

costs without compromising quality.

• Iterative Design Process: Numerous iterations and adjustments addressed challenges and

optimized model functionality, ensuring final structures met experimental requirements.

In conclusion, understanding and working within the limitations of the Pr110-385nm printer was

a critical aspect of the design process. By addressing these constraints, we were able to produce
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high-quality, functional models that met our experimental needs. Leveraging DLP 3D printing

technology allowed for the precise and high-resolution creation of experimental models. The next

section will detail the specific methods and techniques used to successfully transition from design

to physical prototypes, illustrating the integration of 3D printing in the development process.

4.7.5 Resin Selection

Selecting the appropriate resin was a critical step in achieving high-quality prints and ensuring

compatibility with subsequent experimental procedures. Initially, a high cost microfluidic resin

from CADworks3D was chosen due to its compatibility with polydimethylsiloxane (PDMS) and

the minimal number of curing steps required. This resin was specifically designed to not inhibit

curing of PDMS, a key requirement for the fabrication of microfluidic devices.

However, optimizing the printer settings for high-resolution prints using the initial resin proved

to be challenging. The microfluidic resin’s specific properties necessitated precise adjustments in

exposure times and layer thicknesses to achieve the desired resolution. This trial-and-error process

resulted in significant resin waste and increased the overall time required for printing.

To address these challenges, a commercial resin containing microcrystalline ceramic powders was

tested. This resin offered several advantages over the initial choice:

• Higher Resolution Prints: The inclusion of microcrystalline ceramic powders improved

the resin’s ability to capture fine details, resulting in higher resolution prints. This was

particularly important for the intricate geometries required in our experimental designs.

• Easier Optimization: The commercial resin’s properties made it more forgiving with regard

to printer settings, simplifying the optimization process. This reduced the time and material

waste associated with printing trials.

• Additional Curing Steps: Although the new resin required additional heat curing and

washing steps, these were manageable within our workflow. Post-printing, the models were

subjected to heat curing to enhance their mechanical properties and stability.

• Surface Treatment: To eliminate surface chemicals that could inhibit PDMS curing, the

printed models were washed with Tween 20 (Sigma-Aldrich, St. Louis, MO). This surfactant

effectively removed any residual inhibitors, ensuring a clean surface for PDMS application.
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• Higher Heat Tolerance: The new resin’s higher heat tolerance allowed for quicker PDMS

curing in an oven. This sped up the overall fabrication process of devices.

• Cost Efficiency: The commercial resin was significantly more cost-effective, with a cost

per unit volume that was 10 times less than the previous resin. This reduced material costs

substantially, making the overall process more economical.

In summary, the transition to a commercial resin containing microcrystalline ceramic powders

significantly improved the printing process. The benefits included higher resolution prints, easier

optimization, and better compatibility with PDMS curing protocols. These improvements were

instrumental in achieving consistent and high-quality results, ultimately contributing to the success

of our experimental models.
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Figure 4.5: Resin Comparison: A) Proprietary Microfluidic Resin from CADworks3D. B) Commer-

cialized microcrystalline ceramic powder based resin. Total Field of View for both images is 13 x

7.4 mm

4.7.6 Printing Profiles

Printing profiles played a crucial role in controlling the settings for each layer, including layer

thickness, number of base layers, base curing time, and buffer layers. These settings directly

impacted the quality and accuracy of the printed models.

The most critical setting was the curing time. Incorrect curing times could lead to over-curing,

which resulted in bleeding and low resolution, or under-curing, which caused deformations and
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structural weaknesses. To determine the optimal settings, a systematic approach was employed:

• Test Cube Method: A test cube with varying feature sizes was printed to evaluate the

effect of different curing times. This allowed for a visual inspection of edge sharpness and

resin accumulation.

• Adjusting Curing Time: If the test cube’s edges appeared too soft or blurred, the curing

time was increased incrementally. Conversely, if excess resin accumulated around features,

the curing time was decreased. This iterative process continued until the optimal curing time

for a 50 µm layer was established.

• Proportional Adjustment for Other Thicknesses: Once the ideal curing time for a 50

µm layer was found, curing times for other layer thicknesses were adjusted proportionally.

The following method was used to estimate curing time for different thicknesses near 50 µm:

New CT = Original CT−
(
Original CT× (Original Thickness−New Thickness)

2×Original Thickness

)
For example, if the optimal curing time for a 50 µm layer was 1 second, the initial curing

time for a 25 µm layer was estimated as follows:

New CT = 1 second−
(
1 second× (50µm− 25µm)

2× 50µm

)
= 1 second−0.25 seconds = 0.75 seconds

This formula provided a starting point for further fine-tuning.

• Base Layers and Curing Times: The number of base layers and their curing times were

critical for establishing a solid foundation for the print. Base layers required longer curing

times to ensure strong adhesion to the build plate. Typically, base layers were cured for 5 to

10 times longer than standard layers.

• Buffer Layers: Buffer layers acted as a transition between the base layers and the main

structure. They had intermediate curing times to gradually reduce the curing intensity,

preventing sudden changes that could lead to defects.

• Layer Thickness: The chosen layer thickness influenced the print resolution and time.

Thinner layers provided higher resolution but increased print time, whereas thicker layers

reduced print time at the expense of resolution. The optimal layer thickness was selected

based on the specific requirements of the model ranging from 5-100 µm.
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In summary, developing optimal printing profiles involved careful calibration of various parameters,

especially curing times, to achieve high-resolution, accurate, and defect-free prints. By systemat-

ically testing and adjusting these settings, we ensured that the printed models met the desired

specifications and quality standards.

4.7.7 Surface Area and Suction

High surface area prints posed unique challenges, particularly in managing the separation process

between the build plate and the Teflon sheet. Ensuring efficient peeling from the Teflon sheet was

critical to maintaining print integrity and quality.

• Slower Build Plate Separation: For high surface area prints, a slower separation speed

of the build plate from the Teflon sheet was necessary. Rapid peeling could cause layers to

adhere to the Teflon sheet, leading to misprints and potential damage to the sheet itself. By

reducing the separation speed, we minimized the risk of layers sticking and ensured a clean

detachment.

• Suction Forces and Trapped Fluid Areas: Designs with trapped fluid areas could gener-

ate suction forces during the separation process. These forces might pull layers off the print,

resulting in defects or complete print failure. Implementing a slower and more controlled

separation mitigated these risks by allowing trapped air or fluid to release gradually, reducing

the suction effect.

• Teflon Sheet Properties: The Teflon sheet served as a crucial component due to its nonstick

properties. Its low surface energy ensured that cured resin layers adhered to the build plate

rather than the Teflon surface. This characteristic was essential for consistent layer formation

and successful print completion.

• Maintenance of the Teflon Sheet: Maintaining a clean and uniform Teflon sheet was vital

for print quality. Any scratches, dents, or contamination on the Teflon surface could transfer

to the print, resulting in surface defects and affecting the overall functionality of the device.

Regular inspection and replacement of the Teflon sheet were necessary to prevent such issues.

• Optimizing Design Features: To further reduce the impact of suction forces, design fea-

tures were optimized. Incorporating small venting channels or avoiding large flat areas in

the design helped to alleviate the suction effect. These adjustments allowed air to flow more

freely during the separation process, enhancing print reliability.
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• Monitoring and Adjustments: Continuous monitoring of the separation process and mak-

ing real-time adjustments based on observed issues were crucial. Any deviations in the ex-

pected behavior were addressed promptly by tweaking separation speeds or modifying design

aspects, ensuring consistent print quality.

In conclusion, managing surface area and suction during the printing process required a combination

of careful speed adjustments, meticulous maintenance of the Teflon sheet, and thoughtful design

optimizations. By addressing these factors, we minimized print defects and ensured the successful

production of high-quality, functional models.

4.7.8 Washing and Curing Devices

Post-printing, thorough washing and curing of the printed device were essential to ensure the

removal of any uncured resin and to achieve the desired mechanical properties and stability. The

washing process removes residual resin, preventing interference with curing and further processing

steps, while curing solidifies the material, enhancing its durability and functionality. This multi-

step procedure is critical for preparing the device for subsequent experimental use and ensuring

high-quality results.

• Initial Washing with Isopropyl Alcohol (IPA): Once the device was removed from

the build plate, it was subjected to an initial wash using isopropyl alcohol (Amazon Brand,

USA). This step involved rinsing the surface of the device with a spray bottle filled with

IPA to dislodge and remove any semi-cured resin particulates. The IPA acted as a solvent,

efficiently cleaning the surface.

• Drying and Inspection: After washing, the device was dried using compressed air to remove

any residual IPA and particulates. The device was then inspected under optical magnification

to ensure no resin residue remained. This wash-and-dry cycle was repeated until the device

was completely clean, ensuring no contaminants interfered with subsequent curing steps.

• UV Light Curing: The cleaned device was placed in a UV light chamber for thorough

curing. Each side of the device was exposed to UV light for 20 minutes. This step en-

sured complete polymerization of the resin, enhancing the device’s mechanical properties and

stability while setting the surface properties.

• Heat Curing: Following UV curing, the device underwent heat curing in an oven set to 75

degrees Celsius for a duration of 24 hours or more. This prolonged heat exposure allowed
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any residual solvents or uncured resin to either evaporate or rise to the surface, ensuring the

internal and external structure of the device was fully cured.

• Soaking in Tween 20 Solution: After heat curing, the device was soaked in a solution of

water and 0.1% Tween 20. Tween 20, a surfactant, helped in removing any remaining surface

residues that could inhibit further PDMS curing. The device was then rinsed thoroughly with

deionized (DI) water to remove any surface residues.

• Final Drying and Preparation: The device was air-dried and then placed back in the

oven for a short duration to ensure complete dryness and readiness for PDMS application.

This final drying step was crucial to eliminate any moisture that could interfere with PDMS

bonding.

This comprehensive washing and curing process ensured that the printed models were free of any

contaminants and fully cured, providing a high-quality, stable foundation for subsequent experi-

mental procedures. The next section will detail the preparation and application of PDMS, further

advancing the creation of functional microfluidic devices.

4.8 Fabrication of Device

Poly(dimethylsiloxane) (PDMS) is a silicon-based organic polymer known for its flexibility, optical

transparency, and chemical inertness. These properties make it particularly suitable for use in mi-

crofluidic devices, which require precise control over fluid flow and robust, biocompatible materials.

PDMS’s biocompatibility and ease of fabrication further enhance its suitability for applications in

biomedical and biochemical research.

In the fabrication of microfluidic devices, PDMS was prepared using a 9:1 ratio of base agent

to curing agent. This ratio was selected to achieve a balance between flexibility and mechanical

strength, tailored to the desired device thickness and properties influenced by oven temperatures

during curing.

The fabrication process encompassed several key steps to ensure high-quality and functional mi-

crofluidic devices:

• Mixing and Degassing: The base and curing agents were thoroughly mixed to ensure

uniform distribution. The mixture was then degassed in a vacuum chamber to eliminate air
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bubbles, which could compromise the integrity, optical quality, and performance of the final

device.

• Pouring: The degassed PDMS mixture was poured into 3D printed molds to form the desired

microfluidic structures. The PDMS and molds are placed in the vacuum chamber once again

to eliminate any air bubbles.

• Curing: The filled molds were placed in an oven at a controlled temperature to cure the

PDMS. This step solidified the PDMS, creating a stable and durable structure.

• Demolding: Once cured, the PDMS structures were carefully removed from the molds using

a sharp. This step required precision to avoid damaging the delicate microfluidic features.

• Surface Treatment and Bonding: The PDMS structures were then washed, dried then

treated to facilitate bonding to other surfaces, such as glass slides. Plasma treatment was

employed to activate the surfaces, enabling strong covalent bonding.

Plasma bonding was utilized to achieve a durable seal between PDMS and glass slides. This

process involved exposing both surfaces to oxygen plasma, creating reactive sites that formed strong

covalent bonds upon contact. This bonding technique was essential for ensuring the reliability and

leak-proof performance of the microfluidic devices.

Finally, heating steps post-bonding were crucial for reinforcing the bond strength and ensuring

complete bonding of the PDMS and glass slide. The bonded devices were placed in an oven at 75

degrees Celsius for a duration of 2 hours or more.

In conclusion, the fabrication of PDMS-based microfluidic devices involved a series of meticulous

steps, from material preparation and molding to bonding and post-curing treatments. These pro-

cesses were designed to maximize the functionality, reliability, and performance of the devices for

various experimental applications.

Properties of PDMS

Poly(dimethylsiloxane) (PDMS) is a versatile material extensively used in the fabrication of mi-

crofluidic devices due to its unique physical and chemical properties. PDMS possesses several key

properties that make it ideal for microfluidic applications:



CHAPTER 4. METHODS 49

• Low Surface Energy: PDMS has a low surface energy, making it hydrophobic and resistant

to wetting. This property is advantageous for microfluidic channels where fluid flow control

and minimal adhesion of unwanted substances are crucial.

• Flexibility and Elasticity: The flexibility of PDMS allows it to be molded into complex

shapes. Its low modulus of elasticity means it deforms easily under small stresses, which is

beneficial for devices with moving components or where mechanical flexibility is required.

Altering the ratio of curing agent adjusts the mechanic flexibility of the final product.

• Chemical Inertness: Chemically, PDMS is inert and does not react with most chemicals and

biological materials. This makes it suitable for handling a wide range of fluids in microfluidic

devices, ensuring compatibility with various solvents, reagents, and biological samples.

• Biocompatibility: PDMS is biocompatible, meaning it does not harm living cells and tis-

sues. This is essential for biological and medical applications, where PDMS-based devices can

be used for cell culture, drug delivery, and diagnostic assays.

• Optical Transparency: PDMS is optically transparent, allowing for easy observation and

analysis of the fluids and reactions occurring within the microfluidic channels. This property

is particularly useful in applications involving microscopy and optical detection methods.

• Thermal Stability: PDMS exhibits good thermal stability, maintaining its properties over

a wide range of temperatures. This allows for its use in processes that require heating or

cooling without compromising the material’s integrity.

Preparation of PDMS

The preparation of PDMS for microfluidic device fabrication involves several steps to ensure the

material’s optimal performance and integration into the device structure:

• Mixing: PDMS is prepared by mixing a base agent with a curing agent, typically in a 10:1

ratio. A 9:1 ratio provides a balance between flexibility and mechanical strength. Thorough

mixing is crucial to ensure a homogeneous blend, which affects the uniformity of the final

cured product.

• Degassing: After mixing, the PDMS mixture is placed in a vacuum chamber to remove

trapped air bubbles. Degassing is an essential step as air bubbles can create defects in the

microfluidic channels, affecting device performance and reliability. Additionally, this process
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ensures optical quality results, which are crucial for applications requiring precise visual

observation and analysis.

• Casting: The degassed PDMS mixture is then cast onto a mold to form a thick layer. The

mold defines the microfluidic structures and channels. Additional degassing is required to

remove any additional air bubbles from the PDMS and 3D mold’s surface.

• Curing: The cast PDMS is cured in an oven at a controlled temperature. Curing solidifies

the PDMS, creating a stable and durable structure. The curing time and temperature are

optimized based on the desired properties of the final device.

• Demolding: Once cured, the PDMS layer is carefully peeled off the mold. This step requires

precision to avoid damaging the delicate microstructures. The resulting PDMS piece contains

the negative replica of the mold’s features.

• Surface Treatment and Bonding: To create a microfluidic device, the PDMS layer is

bonded to a substrate, typically a glass slide. Surface treatment, such as plasma activation,

is performed to enhance bonding. Plasma treatment introduces reactive groups on the PDMS

and glass surfaces, enabling strong covalent bonding.

• Final Curing: After bonding, the device may undergo additional curing steps to ensure

complete polymerization and stabilization of the PDMS. This final curing process enhances

the mechanical strength and durability of the device, preparing it for experimental use.

In summary, PDMS is an excellent material for microfluidic device fabrication due to its favorable

properties and ease of preparation. The combination of flexibility, chemical inertness, biocompati-

bility, and optical transparency makes PDMS a preferred choice for a wide range of applications in

biomedical and biochemical research.

4.8.1 PDMS Mixing and Curing

Typically, a 10:1 ratio of base agent to curing agent is used to cure PDMS. For these experiments,

a 9:1 ratio was used to produce less flexible PDMS devices, resulting in structures that are closer

to solid porous materials. This adjustment enhances the structural rigidity of the PDMS, which

is crucial for maintaining the integrity of the microfluidic channels under various experimental

conditions. Additionally, this ratio promotes curing even in the presence of minor surface defects

on the print that might otherwise inhibit the curing process.
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Temperature significantly affects the curing time of PDMS. Higher temperatures accelerate the

curing process, making it more efficient. At room temperature, PDMS can take several days to

fully cure. Extracting it from the mold prematurely can leave a sticky residue, ruining the print.

To overcome this, the molds filled with PDMS were placed in an oven to achieve faster curing times

and improve overall fabrication efficiency.

Using an Arrhenius plot calculation, based on manufacturer data and empirical observations, it

was determined that curing at 75 degrees Celsius results in approximately 2-hour curing times.

This temperature-dependent curing process allows for precise control over the final properties of

the PDMS devices. By adjusting the temperature, the curing time can be finely tuned to ensure

complete polymerization and optimal mechanical properties, which are essential for the functionality

and durability of the microfluidic devices.

Table 4.1: Curing Times of PDMS at Various Temperatures

Temp (°C) 20 25 30 35 40 45 50 55 60 65 70

Hours 58.81 41.32 29.37 21.10 15.33 11.25 8.33 6.23 4.69 3.57 2.74

Temp (°C) 75 80 85 90 95 100 105 110 115 120

Hours 2.11 1.64 1.29 1.02 0.81 0.64 0.52 0.42 0.34 0.28

4.8.2 Plasma Bonding to Glass

Once cured, the PDMS was carefully extracted from the 3D print using a scalpel to avoid any

damage to the intricate microfluidic structures. The extracted PDMS was then thoroughly washed

with isopropyl alcohol (IPA) to remove any residual uncured material or contaminants, ensuring a

clean surface for bonding. After washing, the PDMS was air-dried completely.

Similarly, the glass slide, which serves as the substrate for the microfluidic device, was washed with

IPA and air-dried to ensure it was free of any dust or oils that could impede bonding.

The bonding process involved using a plasma pen to create oxygen plasma. This plasma treatment

modifies the surface of both the PDMS and the glass slide, enhancing their adhesion properties.

The plasma pen generates a localized plasma field that activates the surfaces by introducing silanol

groups, which increase the surface energy of the PDMS and glass, enabling the formation of strong

covalent bonds between them.

• Surface Activation: The plasma pen (Plasma Etch Carson City, NV) was moved uniformly
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over the surfaces of both the PDMS and the glass slide. The oxygen plasma interacts with

the surfaces, creating reactive sites that facilitate the bonding process.

• Alignment and Bonding: After plasma treatment, the PDMS was carefully aligned with

the glass slide to ensure proper channel configuration and prevent misalignment. The acti-

vated surfaces were then brought into contact, and pressure was applied to ensure a uniform

bond without trapping air bubbles.

• Bonding Integrity: Proper bonding is critical to avoid trapping fluid or altering pressure

within the microfluidic device. Inadequate bonding can lead to leaks between the PDMS and

the glass slide, compromising the device’s functionality. Therefore, ensuring a strong and

uniform bond is essential for the reliability and performance of the microfluidic device.

Plasma bonding significantly increases the surface energy of both PDMS and glass, allowing for a

strong covalent bond to form between them. This process not only ensures a robust seal but also

maintains the transparency and optical clarity of the device, which is crucial for many microfluidic

applications.

In conclusion, plasma bonding is a vital step in the fabrication of PDMS-based microfluidic devices.

By utilizing oxygen plasma to activate the surfaces, a strong and reliable bond is achieved, ensuring

the device’s structural integrity and functionality. This method is particularly effective in preventing

leaks and maintaining the precise control of fluid flow within the microfluidic channels.

4.8.3 Heating After Bonding

After plasma bonding, the device was placed in the oven to ensure proper bonding. The PDMS sur-

face is less hydrophobic immediately after plasma treatment but regains its hydrophobic properties

after a few hours. This post-bonding heating step is essential for reinforcing the bond between the

PDMS and glass, ensuring it is robust and long-lasting. Proper bonding is crucial for maintaining

the device’s performance over extended periods and preventing leaks or detachment during use.

The heating process involves placing the bonded device in an oven at a controlled temperature.

This step serves multiple purposes:

• Enhanced Bond Strength: Heating facilitates the formation of stronger covalent bonds

between the PDMS and glass, enhancing the overall bond strength. This ensures that the

bond can withstand various stresses and strains during the device’s operation.
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• Stabilization of Surface Properties: Post-bonding heating helps stabilize the surface

properties of PDMS. Immediately after plasma treatment, the PDMS surface is less hydropho-

bic, which aids in bonding. However, over time, the surface gradually regains its hydrophobic

nature. Heating accelerates this stabilization process, ensuring the device’s surface properties

are consistent and reliable.

• Prevention of Delamination: Proper heating after bonding minimizes the risk of delamina-

tion, where the PDMS may separate from the glass over time. This is particularly important

for applications involving fluid flow, where pressure changes could otherwise compromise the

bond.

Typically, the heating process involves placing the bonded device in an oven at a temperature

around 75 degrees Celsius for 1-2 hours. This temperature and duration are sufficient to reinforce

the bond without causing any damage to the PDMS or the microfluidic structures.

These detailed steps ensure the successful preparation and application of PDMS in our experiments,

providing a robust foundation for the creation of functional microfluidic devices. The next section

will discuss the application of Aquapel to create hydrophobic surfaces in these devices.

4.9 Application of Aquapel

The application of Aquapel for creating hydrophobic surfaces is crucial in our experiments, partic-

ularly for droplet creation and pressure management. Aquapel, a commercial product designed to

increase the hydrophobicity of glass windshields, is employed to coat the inside of the microfluidic

device. It consists of petroleum distillates with proprietary additives that enhance adhesion to

surfaces, making it an effective solution for our needs.

The process for applying Aquapel to the microfluidic device involves several precise steps:

• Filling the Device: The device is filled with Aquapel and allowed to rest for 10 minutes.

This duration ensures that the Aquapel adequately coats all internal surfaces, enhancing their

hydrophobic properties.

• Flushing the Device: After the resting period, the device is flushed with air to remove

excess Aquapel. This is followed by flushing with HFE (Hydrofluoroether) to ensure any
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remaining Aquapel is removed. Finally, another air flush is performed to dry the internal

surfaces.

• Drying: The device is then placed in an oven to dry for 30 minutes. This drying step is

crucial to ensure that any residual fluids are completely evaporated, leaving behind a uniform

hydrophobic coating.

• Timing of Use: It is essential to begin the experiment within 30 minutes of completing the

drying process. Aquapel can precipitate when exposed to air over extended periods, which

could diminish its effectiveness. Therefore, timing is critical to maintain the hydrophobic

properties of the coated surfaces.

The application of Aquapel significantly enhances the hydrophobicity of both the glass slide and

the surrounding PDMS. This increased hydrophobicity is vital for creating the pressure collar

required for uniform droplet generation. When water is introduced through the inlet, the enhanced

hydrophobicity ensures the formation of a stable pressure collar, facilitating consistent and reliable

droplet production.

These steps ensure that the device is adequately prepared for experiments, leveraging Aquapel’s

properties to achieve the desired hydrophobic conditions. Proper application of Aquapel is es-

sential for maintaining the performance and reliability of the microfluidic device, particularly in

applications involving precise fluid control and droplet generation.

In conclusion, the careful application of Aquapel prepares the microfluidic device for optimal per-

formance, providing the necessary hydrophobic conditions for successful experimental outcomes.

The next section will discuss the preparation and setting up of the experimental devices, ensuring

readiness for precise and reliable data collection.

4.10 Experiments

The setup for our experiments was carefully designed to ensure precise and reliable data collection,

focusing on the components and processes essential for studying emulsion transport in porous media.

Each component of the experimental setup was selected and configured to maintain consistency and

accuracy throughout the experiments, from the pressure transducer to the imaging systems.

To achieve our objectives, the following aspects were critically evaluated and optimized:
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• Pressure Measurement and Control: Accurate pressure measurement and control were

paramount for maintaining consistent fluid dynamics within the microfluidic device. The

pressure transducer, connected between the continuous fluid inlet and the microfluidic device,

provided real-time data essential for adjusting and maintaining the desired experimental

conditions.

• Fluid Delivery System: The tubing connection setup facilitated the seamless flow of fluids

into the device, preventing leaks and maintaining system integrity. This ensured that the

water, HFE surfactant, and other fluids were delivered precisely to the designated inlets and

outlets.

• Fluid Preparation: Proper preparation of fluids, including FSH oil, HFE, and dyed water,

was crucial for achieving reliable and reproducible results. Each fluid was prepared to specific

concentrations and properties to ensure optimal performance in the experiments.

• Droplet Generation: The pressure pulse system, controlled by an Arduino board, allowed

precise regulation of pressure pulses, facilitating consistent droplet formation. This setup

was key to studying the dynamics of droplet creation and movement within the microfluidic

device.

• Imaging and Analysis: High-quality imaging was essential for capturing the behavior of

emulsions within the device. The FASTECmonochrome high-speed camera and the Zeiss Axio

Zoom.V16 microscope were configured to provide detailed, high-contrast images, enabling

accurate analysis of the experimental results.

• Microscope Configuration: The microscope setup, including the motorized 3D stage and

appropriate objectives, ensured precise orientation and focusing. This allowed for detailed

observation of the emulsion dynamics and facilitated the collection of high-resolution images

necessary for subsequent analysis.

These detailed steps ensured the successful preparation and execution of experiments, providing a

robust foundation for studying emulsion transport in porous media. Each component was carefully

chosen and integrated to maintain the integrity and reliability of the experimental setup, ultimately

contributing to the generation of precise and reproducible data.

The following subsections will delve into the specifics of each component, detailing the procedures

and configurations used to achieve the desired experimental outcomes. This comprehensive ap-

proach ensures that all aspects of the experimental setup are thoroughly documented and optimized

for studying emulsion transport.
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4.10.1 Pressure Transducer

The pressure transducer was a critical component in our experimental setup, positioned between the

continuous fluid inlet and the microfluidic device. This precise placement was essential for accurate

pressure measurement and control, ensuring the reliability and consistency of fluid dynamics within

the device. To integrate the pressure transducer into the setup, the following steps were undertaken:

• Calibration: The transducer was calibrated before each experiment to ensure accurate read-

ings. This involved setting a baseline pressure and verifying the transducer’s response to

constant pressure.

• Connection: The transducer was securely connected between the continuous fluid inlet and

the microfluidic device. Care was taken to ensure airtight connections, preventing any leaks

that could affect the pressure readings and the overall experiment.

• Fluid Filling: The transducer was filled with the HFE + surfactant fluid mixture. This step

was performed carefully to avoid introducing air bubbles, which could interfere with pressure

measurements.

• Monitoring: During the experiments, the transducer continuously monitored the pressure

within the system. The data collected was used to analyze how pressure changes with emul-

sions transport and dynamics.

By utilizing a pressure transducer in this manner, we ensured that the microfluidic device operated

under stable and controlled conditions. This precision was critical for the success of our experiments,

allowing us to study emulsion transport and other fluid dynamics with high accuracy and reliability.

In conclusion, the pressure transducer was an indispensable component of our experimental setup.

Its role in maintaining consistent fluid dynamics and providing accurate pressure measurements

was crucial for the integrity and reproducibility of our experimental results.

4.10.2 Tubing Connection

The connection of microfluidic tubing to the device is a critical aspect of the experimental setup,

requiring precision and reliability to ensure seamless fluid flow and prevent leaks. In our exper-

iments, we utilized 3D-printed pillars to create holes for tubing connections, addressing common

issues associated with traditional methods such as biopsy punches.
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Traditionally, biopsy punches are used to create holes in PDMS devices for tubing connections.

However, this method often presents several challenges:

• Risk of Damage: Biopsy punches can cause tearing or ripping of the PDMS, particularly

if the punch size is not perfectly matched to the tubing size or the punch is dulled.

• Imprecise Sizing: Inconsistent punch sizes can lead to holes that are either too loose or too

tight, resulting in leaks or difficulties in inserting the tubing securely.

To overcome these challenges, we incorporated 3D-printed pillars into our device design. These

pillars were specifically designed and printed as part of the device structure, providing several

advantages:

• Precision and Consistency: The 3D-printed pillars ensured precise and consistent hole

sizes, tailored to the exact dimensions required for the microfluidic tubing. This precision

minimized the risk of leaks and made the insertion of tubing straightforward and secure.

• Ease of Integration: The holes created by the pillars facilitated easy connection of the

microfluidic tubing to the device. This design eliminated the need for additional manual

punching, reducing the potential for human error and material damage.

• Enhanced Durability: The integrated pillars provided a more durable and stable connec-

tion point for the tubing, improving the overall robustness of the device.

The specific tubing connections in our setup included:

• Inner Inlet: The water column was connected to the inner inlet, ensuring controlled delivery

of the inner fluid for droplet formation.

• Outer Inlet: HFE surfactant fluid was connected to the outer inlet. This fluid acted as the

continuous phase, critical for maintaining stable fluid dynamics and droplet formation.

• Outlet: The outlet was connected to an empty reservoir for waste collection. This setup

ensured that the spent fluids were safely and efficiently removed from the system, preventing

any backflow or contamination.

• Emergency Outlet: An additional outlet was positioned prior to the main porous media

chamber. This outlet was typically pinched closed but could be opened to a waste reservoir
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in case of droplet formation failure. This emergency exit allowed for the removal of failed

emulsions before they reached the porous media, ensuring that only properly formed droplets

entered the main experimental area.

By utilizing 3D-printed pillars for tubing connections, we ensured a seamless flow of fluids into the

device, maintaining system integrity and reliability. This design innovation not only improved the

ease of setup but also enhanced the overall performance of the microfluidic device by providing

consistent and leak-free connections.

In conclusion, the integration of 3D-printed pillars for tubing connections addressed common is-

sues associated with traditional methods, offering a precise, reliable, and durable solution for our

microfluidic experiments.

4.10.3 Preparing Fluids

The preparation of fluids was a crucial step in ensuring the success of our experiments. Each fluid

used in the microfluidic device had specific roles and properties that contributed to the overall

functionality and accuracy of the experimental setup.

FSH Oil: FSH oil, a fluorinated oil, served as a surfactant in our experiments. It was mixed

overnight with HFE (Hydrofluoroether) to form the outer fluid at 5% by weight. This mixture

was essential for consistent droplet formation by decreasing interfacial tension. Surfactants, like

FSH oil, play a critical role in stabilizing emulsions by reducing the surface tension between two

immiscible liquids, such as oil and water. The dual nature of surfactants, with hydrophobic and

hydrophilic components, allows them to spread evenly at the interface and stabilize the mixture.

Surfactants are widely used in various industries, including cleaning agents, personal care products,

and oil extraction, due to their ability to alter surface properties and enhance mixing and stability.

HFE: HFE-7500, an engineering fluid, was used as the continuous fluid in the device. It flowed at a

controlled rate of 5 ml/hr using a syringe pump. Maintaining a steady flow rate was vital for stable

fluid dynamics and ensuring the accuracy of experimental results. HFE-7500, a hydrofluoroether

fluid, is known for its low global warming potential and high thermal stability, making it suitable for

applications requiring high performance with minimal environmental impact. Additionally, HFE-

7500 is non-toxic and non-flammable, providing a safer alternative compared to other industrial

fluids. Its properties make it an ideal choice for various industrial processes, such as heat transfer

and fluid power systems, where reliable and safe performance is paramount.
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Water + Various Dyes: Water served as the inner fluid for droplet formation, controlled by

a pressure pulse Arduino device. To enhance contrast for imaging, dyes such as food dye and

Fluorescein sodium salt were added to the water. These dyes allowed for better visualization and

tracking of droplets during experiments, facilitating accurate data collection and analysis. Food dye,

which contains Propylene glycol, was prepared by boiling at 300°C to remove the Propylene glycol,

ensuring appropriate interfacial tension for droplet formation. The use of dyes was particularly

important for capturing detailed images of the droplet dynamics within the microfluidic channels,

enabling precise observation and measurement of the experimental outcomes.

Preparation Process

The preparation of each fluid involved specific steps to ensure their proper function in the experi-

ments:

• Mixing FSH Oil with HFE: The FSH oil was mixed with HFE-7500 overnight to ensure

thorough incorporation and uniform distribution of the surfactant. This prolonged mixing

period was essential to achieve the desired interfacial tension reduction, critical for stable

droplet formation.

• Preparing HFE-7500: HFE-7500 was prepared and stored in a clean, sealed container to

prevent contamination. Before each experiment, the fluid was loaded into a syringe pump

ensuring consistent experimental conditions.

• Dyeing Water: Water was mixed with the appropriate dyes to achieve the required concen-

tration for imaging. When food dye was used, it was first boiled at 300°C to remove Propylene

glycol, ensuring appropriate interfacial tension for droplet formation. This preparation step

ensured clear and consistent visualization of the droplets during the experiments.

By diligently preparing each fluid, we ensured that the microfluidic device operated under optimal

conditions, facilitating accurate and reliable data collection. These preparation steps were crucial

for maintaining the integrity and consistency of the experimental setup, ultimately contributing to

the success of our studies on emulsion transport in porous media.
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4.10.4 Pressure Pulse (Arduino)

The precise control of pressure pulses was essential for achieving consistent and reproducible droplet

formation in our microfluidic experiments. To achieve this, we utilized an Arduino board connected

to a solenoid valve, which provided an efficient and customizable means of regulating pressure pulses.

System Components and Setup:

• Arduino Board: The Arduino board served as the central controller for the pressure pulse

system. It was programmed to manage the timing and duration of the solenoid valve’s

operation, ensuring precise control over the pressure pulses.

• Solenoid Valve: The solenoid valve was responsible for regulating the flow of the pressurized

fluid. Its opening and closing times were critical for generating the pressure pulses needed for

droplet formation.

• Control Mechanisms: The system included a knob to adjust the valve’s opening time and a

button to trigger the pressure pulse. These manual controls allowed for real-time adjustments

during the experiments, providing flexibility in managing the droplet generation process.

Operational Procedure:

• Pressure Regulation: The system was calibrated to regulate the pressure to 25 psi. This

pressure level was chosen based on preliminary experiments to ensure optimal droplet forma-

tion. The water column was balanced to stop the flow at the device inlet, allowing controlled

flow only when additional pressure was applied.

• Triggering Pressure Pulses: The operator could trigger pressure pulses by pressing the

button, which activated the solenoid valve according to the preset opening time. This ac-

tion allowed a controlled burst of pressure to be delivered to the fluid inlet, facilitating the

formation of droplets.

• Adjusting Pulse Duration: The knob allowed fine-tuning of the valve’s opening time,

providing precise control over the duration of each pressure pulse. This adjustability was

crucial for optimizing the size and consistency of the droplets produced. A single pulse can

produce a single droplet to tens of droplets of uniform size depending on the opening time.

Benefits of the Arduino-Controlled System:
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• Precision: The Arduino-based system offered high precision in controlling the timing and

duration of pressure pulses, which is essential for consistent droplet formation.

• Reproducibility: By standardizing the pressure pulse parameters, the system ensured re-

producible results across multiple experiments, enhancing the reliability of the data collected.

• Flexibility: The ability to manually adjust the pressure pulse parameters in real-time allowed

for flexibility in responding to varying experimental conditions, facilitating the optimization

of droplet generation.

In conclusion, the Arduino-controlled pressure pulse system was a key component in our experi-

mental setup. Its precise control over pressure pulses enabled accurate and reproducible droplet

formation, which was critical for studying emulsion transport in porous media. This setup not

only enhanced the reliability of our experiments but also provided the flexibility needed to adapt

to different experimental requirements.

4.10.5 Camera Settings

High-quality imaging was essential for accurately capturing the behavior of emulsions within the

microfluidic device. For this purpose, a FASTEC monochrome high-speed camera was employed.

Optimizing the camera settings was critical to ensure proper signal capture, contrast, and data

processing, facilitating precise analysis of the experimental results.

Camera Configuration:

• Frame Rate (FPS): A lower frame rate was selected due to the slow movement of emulsions

within the device. This choice minimized the amount of data to process while still capturing

sufficient temporal resolution to analyze the droplet dynamics and acquire positional updates.

Typically, frame rates were set to around 50-100 FPS, which balanced the need for temporal

resolution with manageable data file sizes.

• Exposure Time: Higher exposure times were used to improve image contrast. However, a

balance had to be struck to avoid blurred edges caused by motion within the frame. Through

careful calibration, the exposure time was optimized to enhance the visibility of droplets and

their interfaces without compromising image sharpness depending on the velocities of the

emulsions.
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• Resolution and Bit Depth: The camera’s resolution and bit depth settings were configured

to maximize image clarity and detail. Higher resolution allowed for detailed observation of

the microfluidic channels and droplets, while a bit depth ensured a robust dynamic range,

capturing subtle variations in light intensity.

Region of Interest (ROI):

• Defining the ROI: The region of interest (ROI) was carefully defined to capture only the

relevant area within the microfluidic device. This focus on the area of interest helped in

reducing data file sizes and improved processing speeds.

• Adjusting the ROI: During the setup, the ROI was adjusted to align perfectly with the

microfluidic channels where emulsion dynamics were to be observed. This ensured that all

significant interactions were captured, and extraneous areas were excluded from the analysis.

Additional Optimizations:

• Lighting Conditions: Proper lighting was crucial for achieving high-quality images. The

microfluidic device was illuminated using a collimated RGB LED backlight, which provided

uniform illumination across the field of view, reducing shadows and highlights that could

obscure details.

• Calibration: Regular calibration of the camera system was performed to ensure consistency

in imaging quality. This involved checking the alignment, focus, and exposure settings before

each set of experiments.

In conclusion, the thorough optimization of camera settings was vital for obtaining high-quality

images required for analyzing emulsion behavior in the microfluidic device. The chosen settings

ensured a balance between data processing efficiency and image clarity, enabling precise and reliable

experimental observations.

4.10.6 Microscope Setup

The microscope setup was a critical component of our experimental system, designed to capture

high-quality images of the intricate dynamics within the microfluidic device. The use of advanced
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microscopy techniques and precise control mechanisms ensured that we could observe and analyze

the behavior of emulsions in detail.

Microscope Configuration:

• Zeiss Axio Zoom.V16 Microscope: This widefield optical microscope provided a large

field of view without distortion, making it ideal for capturing the entire area of interest

within the microfluidic device. Equipped with a PlanApo 0.5x/0.125 WD 114mm objective,

the microscope delivered high-resolution images with excellent clarity and detail.

• Motorized 3D Stage: The microscope was mounted on a motorized 3D stage, which allowed

for precise orientation and focusing. This stage enabled fine adjustments in the X, Y, and Z

axes, optimizing the positioning of the microfluidic device for imaging. The motorized stage

was essential for maintaining consistent focus and alignment across multiple experiments.

By following these detailed procedures, the experimental setup ensured accurate and reproducible

results, providing a solid foundation for studying emulsion transport in porous media. The combi-

nation of advanced microscopy, precise stage control, and high-speed imaging allowed for compre-

hensive analysis of the emulsion dynamics, contributing significantly to the reliability and validity

of our experimental findings.

The next section will discuss data processing techniques, including image analysis and tracking

algorithms, to interpret the collected data effectively.

4.11 Data Processing and Analysis

Data processing involved sophisticated image processing techniques, which were essential for an-

alyzing the collected data accurately and reliably. These techniques included background sub-

traction, image stabilization, local contrast enhancement, adaptive binarization in Matlab, and

object detection algorithms. Additionally, the development of a tracking algorithm, cost matrix,

and visualization tools, along with GUI implementation and data structure conversions, ensured a

comprehensive and replicable methodology.

This structured approach aligns with the rigorous standards required for scholarly research in the

field of emulsion transport in porous media. The subsequent sections will delve into the specifics

of each technique and its implementation.
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4.12 Image Processing Techniques

The image processing techniques employed in our study are critical for analyzing the collected data

accurately. These methods are essential for transforming raw experimental data into meaningful

insights about emulsion transport in porous media. This section discusses the various techniques

and software tools used, including image stabilization, contrast enhancement, binarization, object

detection, and particle image velocimetry (PIV).

ImageJ and Fiji: ImageJ is an open-source, cross-platform software for scientific image analysis,

written in Java. It provides tools for image processing, measurement, and data analysis. Fiji, an

extended version of ImageJ, includes additional plugins and libraries for enhanced functionality like

3D visualization and registration, tailored for biological image analysis. We used ImageJ for initial

visualization and testing, followed by advanced processing in Matlab.

Particle Image Velocimetry (PIV): PIV is a non-intrusive fluid dynamics measurement tech-

nique used to determine fluid flow velocity. It involves introducing tracer particles into a fluid

sample and illuminating the sample with a laser light sheet. Images of the illuminated tracer parti-

cles are captured, and the displacement of the particles between two consecutive frames is analyzed

to determine the fluid flow velocity. In our study, PIV was used with tracer particles rather than

emulsions to better characterize flow within the device when void of emulsions as a comparative

measure [79].

PIV Algorithm Steps

Computationally, PIV algorithms involve the following steps:

• Image Acquisition: Sequential images of the illuminated tracer particles are captured using

a high-speed camera.

• Image Pre-processing: The images are pre-processed to improve their quality, such as by

correcting for image distortion, noise reduction, and background subtraction.

• Image Correlation: The displacement of the tracer particles between two consecutive im-

ages is determined using image correlation techniques, such as cross-correlation or phase-

correlation.
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• Velocity Calculation: The particle displacement is converted into fluid flow velocity using

the known properties of the fluid, the tracer particles, and the imaging system.

• Data Post-processing: The velocity data obtained from PIV is often post-processed to

correct for errors and to improve its accuracy, such as by removing false or erroneous vectors

and smoothing the velocity field.

PIV algorithms are computationally intensive and require sophisticated image analysis software to

extract accurate velocity information from the images of the tracer particles. The PIV algorithm

is a key component of the PIV measurement technique and has been continuously developed and

improved over the years to provide more accurate and reliable velocity measurements. In this work,

Thielicke’s PIVlab module from Matlab was utilized when PIV calculations where required.

4.12.1 Flow Visualization and PIV Analysis

Figure 4.6 illustrates the flow of florescent particles through a small section of porous media,

captured with different camera settings. The top row (A-D) presents images with the focal plane

closer to the glass slide, while the bottom row (E-H) shows images with the focal plane in the middle

of the glass slide and PDMS roof. Each column represents a different exposure time, ranging from

2.5 ms to 10 ms.

Particles near the boundaries mix with higher flow particles in the middle of the channel, causing

complications in PIV analysis. Faster-moving smaller particles require shorter exposure times to

prevent blurring, but they produce lower signals. In contrast, larger, slower clumps provide stronger

signals but are more affected by longer exposure times. A balance is necessary between focal plane

placement and exposure time to capture the dynamics accurately.

Panel A (2.5 ms) and E (2.5 ms) demonstrate shorter exposure, revealing faster particles as discrete

points, but some particles blink in and out of view due to signal noise. Panels B (5 ms) and F (5

ms) show a balance where both slow and fast particles are visible, although some faster particles

start to blur. Panels C (7.5 ms) and G (7.5 ms) illustrate increasing exposure, where blurring of

faster particles becomes more evident. Panels D (10 ms) and H (10 ms) show the longest exposure,

where fast particles are significantly blurred into lines, complicating PIV grouping and averaging

velocities of slow and fast particles.

This analysis highlights the importance of optimizing focal plane placement and exposure time to

accurately capture particle dynamics and improve PIV results. Additionally, more comprehensive
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PIVs were done using confocal microscopy to achieve more consistent and valid results.

Figure 4.6: Particle flow visualization with PIV results overlay. Top row (A-D): focal plane closer

to glass slide. Bottom row (E-H): focal plane in the middle of the glass slide and PDMS roof.

Columns represent different exposure times: (A, E) 2.5 ms, (B, F) 5 ms, (C, G) 7.5 ms, and (D, H)

10 ms. The images illustrate the challenges of balancing exposure time and focal plane placement

for accurate PIV analysis. Field of View for each is 1mm x 1 mm.

Once adequate parameters are established to capture Particle Image Velocimetry (PIV), a complete

device can be characterized by capturing tiles of the entire device. An autocorrelation algorithm was

developed, which extracts the top center portion of an image and identifies the highest correlated

position for the tile above, recording the coordinates. This process is repeated for each column of

tiles. Subsequently, the stitched columns undergo similar processing, using the middle right of the

image to determine the highest correlation and the most accurate match. This procedure yields

the relative coordinates of each tile, enabling the integration of their respective PIV results. A

weighted matrix is employed to combine these results, assigning greater weight to the center of the

data while reducing the weight at the corners to account for the edge effects typically observed in

PIV. The final results are illustrated in Fig. 4.7.
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Figure 4.7: PIV Characterization of a whole device using weighted stitching of 60 tiles. Field of

View 7.4 x 13 mm

4.13 Image Pre-Processing

4.13.1 Background Subtraction and Stabilization

Background subtraction and stabilization are crucial steps in our image processing workflow, de-

signed to enhance the clarity and accuracy of the captured data. These techniques help isolate the

emulsion droplets from the background, reducing noise and improving the reliability of subsequent

analyses.

Stabilization Process: Before performing background subtraction, a stabilization process is un-

dertaken to address any potential vibrations or movements during the experiment. The following

steps outline the stabilization method:

• Selection of a Reference Region: A small, undisturbed region within the microfluidic

device is selected. This region serves as a reference point for the stabilization process.

• Autocorrelation: Autocorrelation techniques are applied to the reference region. This

involves comparing the structure within the reference region of the background image to each

frame of the experiment. By calculating the degree of similarity, the images are aligned such

that the reference structure remains in the same position across all frames.
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• Image Shifting: Based on the autocorrelation results, each frame is shifted appropriately

to compensate for any detected movement. This alignment reduces the impact of vibrations

and ensures that the captured data is consistent and stable over time.

Background Subtraction: Once stabilization is complete, background subtraction is performed

to isolate the droplets from the background. The steps involved in background subtraction are as

follows:

• Capture of Background Image: An image of the microfluidic device is captured prior to

the introduction of any droplets. This background image represents the static components of

the device without any experimental activity.

• Subtraction Process: The background image is subtracted from each stabilized frame of

the experiment. This process removes the static elements of the device, highlighting only the

dynamic components, such as the moving emulsion droplets.

• Enhancement of Dynamic Features: By subtracting the background, the resulting images

primarily display the changes and movements within the device. This enhances the visibility

of the droplets and other relevant features, facilitating more accurate detection and analysis

through increased contrast.

Benefits of Stabilization and Background Subtraction:

• Signal Enhancement: These techniques help enhance the signal by minimizing interference

from static elements and background artifacts, providing clearer and higher contrast images

of the emulsion dynamics.

• Improved Accuracy: Stabilized and background-subtracted images allow for more accurate

detection of droplets and their movements, improving the reliability of positional measure-

ments and analyses.

• Consistency Across Frames: Ensuring that the reference region remains in the same

position across all frames enhances the consistency of the data, making it easier to track

changes and detect patterns over time.

In conclusion, the processes of background subtraction and stabilization are fundamental to prepar-

ing the captured images for detailed analysis. By removing static elements and compensating for
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vibrations, these techniques ensure that the focus remains on the dynamic features of the experi-

ment, thereby enhancing the quality and accuracy of the data collected.

Code Breakdown

This will breakdown the code responsible for image stabilization and background subtraction.

1 function processImages(imageFolder, outputFolder, backgroundModel, stabilizationRect, deviceCropRect, stabilizationRoi, deviceCrop)

2 % Define Max_shift value

3 Max_shift = 15;

4 tifFiles = dir(fullfile(imageFolder, '*.tif'));

5 % Parallel processing of frames

6 parfor idx = 1:length(tifFiles)

7 frame = imread(fullfile(imageFolder, tifFiles(idx).name));

The function begins by setting a maximum shift value, Maxshift, to control how much each frame

can be adjusted. It then gathers all the TIFF files from the specified image folder. To boost

performance, the frames are processed in parallel using parfor. Each frame is individually read

from the folder.

1 % Extract a region around the ROI from the frame from stabilization ROI

2 yStart = max(1, round(stabilizationRect(2) - Max_shift));

3 yEnd = min(size(frame, 1), round(stabilizationRect(2)

4 + stabilizationRect(4) + 2 * Max_shift));

5 xStart = max(1, round(stabilizationRect(1) - Max_shift));

6 xEnd = min(size(frame, 2), round(stabilizationRect(1)

7 + stabilizationRect(3) + 2 * Max_shift));

8 frameROI = frame(yStart:yEnd, xStart:xEnd);

A region around the stabilization ROI is extracted from each frame. This region is expanded by

Maxshift to allow for alignment adjustments.

1 bestShift = [0, 0];

2 minSSD = inf;

3

4 for y = 1:2*Max_shift
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5 for x = 1:2*Max_shift

6 currentROI = frameROI(y:y+size(stabilizationRoi,1)-1,

7 x:x+size(stabilizationRoi,2)-1);

8 ssd = sum((double(currentROI) - double(stabilizationRoi)).^2, 'all');

9 if ssd < minSSD

10 minSSD = ssd;

11 bestShift = [y, x];

12 end

13 end

14 end

A nested loop iterates over possible shifts within the range of Maxshift to find the best alignment.

The sum of squared differences (SSD) between the current ROI and the reference ROI is calculated.

The shift that minimizes the SSD is selected as the best shift.

1 yOffset = bestShift(1) - Max_shift;

2 xOffset = bestShift(2) - Max_shift;

3 % Shift the frame based on the computed offset

4 shiftedFrame = circshift(frame, [-yOffset, -xOffset]);

The best shift is applied to the frame using circshift, aligning the frame with the reference region.

1 % Convert to double for further operations

2 shiftedFrame = double(shiftedFrame); % Normalize to [0, 1]

3

4 % Subtract the background model

5 diffImage = shiftedFrame - double(backgroundModel);

6

7 rescaled = (diffImage - min(diffImage(:))) / (max(diffImage(:)) - min(diffImage(:)));

The shifted frame is converted to double precision for numerical operations. The background model

is subtracted from the shifted frames. The resulting difference image is rescaled to the range [0, 1]

and then converted to an 8-bit unsigned integer format for further processing.

1 % Convert the rescaled image to uint8 range [0, 255]

2 finalImageUint8 = uint8(255 * rescaled);

3
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4 % Use imcrop with deviceCropRect to crop the final image

5 croppedFinalImage = imcrop(finalImageUint8, deviceCropRect);

6

7 % Save the resulting image

8 imwrite(croppedFinalImage, fullfile(outputFolder,

9 [tifFiles[idx).name]), 'TIFF', 'Compression', 'lzw');

10 end

11 end

The final image is cropped to the region of interest specified by deviceCropRec and saved to the

output folder in TIFF format with LZW compression. This ensures that the processed images are

correctly aligned and focus on the relevant regions for further analysis.

4.13.2 Local Contrast Enhancement

In low contrast experiments where droplets blend with the background, Contrast Limited Adaptive

Histogram Equalization (CLAHE) is used to enhance local contrast. The process is as follows:

1. Tile Division: The image is divided into small, non-overlapping tiles.

2. Local Histogram Equalization: Histogram equalization is applied within each tile to

redistribute intensity values.

3. Contrast Limiting: To prevent noise amplification, the histogram is clipped at a specified

limit before redistribution.

4. Interpolation: Enhanced tiles are seamlessly combined using bilinear interpolation to avoid

artificial boundaries.

This method improves the visibility of droplets against the background, enhancing detection ac-

curacy. In our experiments, adjusting parameters like clip limit and tile size allowed for optimal

contrast enhancement without introducing noise. CLAHE’s ability to adapt to varying conditions

makes it a powerful tool for improving detection accuracy in low contrast scenarios. This tool is

an option when experimental images have low contrast.
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4.13.3 Adaptive Binarization (Matlab)

Adaptive binarization in Matlab, performed using the imbinarize function with the ’adaptive’

method, converts grayscale images to binary images by adjusting the threshold for each pixel based

on local image statistics. This method improves detection accuracy in varying lighting conditions

by considering local contrast variations. The process is enhanced with a median filter to eliminate

scattered, isolated signals that are not emulsions, ensuring a clearer distinction of relevant features

in the image.

4.14 Object Detection: Circle Hough Transform

The primary method utilizes a circle Hough transform, effective when droplets maintain a circular

shape. This algorithm follows these steps:

1. Edge Detection: Detect edges in the image using methods like the Canny edge detector to

identify potential circle boundaries.

2. Accumulator Array Creation: For each edge pixel, the algorithm votes in an accumulator

array for potential circle centers and radii.

3. Finding Circles: Peaks in the accumulator array indicate the presence of circles. The

algorithm identifies these peaks to determine the center and radius of each circle.

4. Validation: The detected circles are then validated against the original image to ensure

accuracy.

This method is highly effective for detecting droplets that retain a circular shape due to consistent

interfacial tension.

4.14.1 Code for Circle Hough Transform Detections

The function applies the circle Hough transform to detect droplets within images, focusing on

identifying circular shapes. Below is a detailed breakdown of the function.

1 function runFullProcessing()

2 imageFiles = dir(fullfile(imageFolder, '*.tif'));
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3 mask = imread(maskPath); % Load the mask

4 saveDetectionImages = saveDetectionImagesCheckbox.Value;

5 saveStepSize = saveStepSizeField.Value;

6 % Parameters from UI fields

7 circleRange = [circleRangeStartField.Value, circleRangeEndField.Value];

8 circleSensitivity = circleSensitivityField.Value;

9 adaptiveSensitivity = adaptiveSensitivityField.Value;

10 % Initialize storage for centers and radii for all images

11

12 % Initialize parallel pool

13 if isempty(gcp('nocreate'))

14 parpool;

15 end

The function starts by loading the image files and mask, and initializes parameters for the circle

Hough transform based on UI input fields. A parallel pool is created if it doesn’t already exist.

1 % Use parfor for parallel processing

2 parfor idx = 1:length(imageFiles)

3 imagePath = fullfile(imageFolder, imageFiles(idx).name);

4 image = imread(imagePath);

Parallel processing is employed to handle each image efficiently. Each frame is read from the image

folder.

1 % Image processing to detect circles

2 BW2 = imbinarize(image, 'adaptive', 'ForegroundPolarity', 'dark',

3 'Sensitivity', adaptiveSensitivity);

4 [centers, radii] = imfindcircles(BW2, circleRange, 'ObjectPolarity', 'dark',

5 'Method', 'TwoStage', 'Sensitivity', circleSensitivity);

The image is binarized using adaptive thresholding to prepare for circle detection. The ‘imfindcir-

cles‘ function is then used to detect circles based on the specified parameters for circle range and

sensitivity.

1 % Filter out circles based on the mask

2 validCircles = arrayfun(@(x, y) mask(round(y), round(x)) == 255, centers(:,1), centers(:,2));
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3 centers = centers(validCircles, :);

4 radii = radii(validCircles);

Detected circles are validated against the mask to ensure they fall within the region of interest.

Only valid circles are retained. Due to the circular nature of the solid space in porous media, solid

structures can be incorrectly identified as a detection.

1 allCenters{idx} = centers;

2 allRadii{idx} = radii;

Centers and radii of the detected circles are stored for each image.

1 % Check if saving is enabled and if the current image matches the step size

2 if saveDetectionImages && mod(idx, saveStepSize) == 0

3 % Create the overlay image with detected circles only if saving this image

4 overlayedImage = image;

5 for circleIdx = 1:length(radii)

6 overlayedImage = insertShape(overlayedImage, 'FilledCircle',

7 [centers(circleIdx, :) radii(circleIdx)], 'Color', 'blue', 'Opacity', 0.3);

8 end

9

10 % Save the overlayedImage with circles marked

11 outputPath = fullfile(outputFolder, sprintf('processed_%s', imageFiles(idx).name));

12 imwrite(overlayedImage, outputPath, 'Compression', 'lzw');

13 end

14 end

If saving of detection images is enabled via the UI, the function checks whether the current image

index matches the step size for saving. If it does, circles are overlaid on the image and the result

is saved.

1 % After processing all images, save the detection results to a .mat file

2 save(fullfile(outputFolder, 'detection_results.mat'), 'allCenters', 'allRadii');

3 % Compile settings into a string

4 settingsStr = sprintf([

5 'Image Folder: %s\n', ...

6 'Output Folder: %s\n', ...
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7 'Mask File: %s\n', ...

8 'Circle Range Start: %d\n', ...

9 'Circle Range End: %d\n', ...

10 'Circle Sensitivity: %.3f\n', ...

11 'Adaptive Sensitivity: %.3f\n', ...

12 'Save Detection Images: %s\n', ...

13 'Save Step Size: %d\n'], ...

14 imageFolder, ...

15 outputFolder, ...

16 maskPath, ...

17 circleRangeStartField.Value, ...

18 circleRangeEndField.Value, ...

19 circleSensitivityField.Value, ...

20 adaptiveSensitivityField.Value, ...

21 num2str(saveDetectionImagesCheckbox.Value), ...

22 saveStepSizeField.Value);

23

24 % Specify the filename for the settings file

25 settingsFilename = fullfile(outputFolder, '_processing_settings.txt');

26

27 % Write settings to the file

28 fid = fopen(settingsFilename, 'wt');

29 if fid > 0

30 fprintf(fid, '%s', settingsStr);

31 fclose(fid);

32 else

33 error('Failed to open settings file for writing.');

34 end

35

36 end

Finally, detection results are saved to a ‘.mat‘ file, and processing settings are compiled into a string

and written to a settings file. 6.1 illustrates an example of the results utilizing this method.
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Figure 4.8: Circle Hough Transform Detection Method A) Background Subtraction and stabiliza-

tion B) Adaptive Binarization C) Circle Hough Transform Detection

4.15 Object Detection: Deformable Droplets

For droplets with lower interfacial tension that deform easily, a combination of blob analysis,

watershed segmentation, and morphological operations is employed. This approach involves the

following steps:

1. Preprocessing: Apply preprocessing steps from previous section to increase contrast and

enhance the image.

2. Watershed Segmentation: Segment overlapping droplets by treating the image as a topo-

graphic surface and finding watershed lines that separate distinct regions.

3. Morphological Operations: Apply operations like erosion and dilation to refine the de-

tected shapes and separate closely packed droplets.

4. Blob Analysis: Detect connected regions in the binary image using properties such as area,

centroid, and bounding box. This helps identify and isolate individual droplets.

These methods ensure accurate detection of both regular and irregularly shaped droplets. While

there may be some errors in size calculation, the positional data and overall detection accuracy are

optimized. This dual-method approach balances the need for precise detection with the challenges

posed by varying droplet shapes and interfacial tensions.

Code for Deformable Droplets Detection

The function employs blob analysis, watershed segmentation, and morphological operations to

detect deformable droplets. Below is a concise breakdown of the function.

1 % Tunable parameters

2 adaptiveSensitivity = 0.35;
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3 minObjectSize = 100;

4 sizeErode1 = 6;

5 sizeErode2 = 4;

6 diskSize = 6;

7 gaussSigma = 6;

The function begins by defining several tunable parameters used throughout the image processing

workflow. These parameters control the sensitivity of adaptive thresholding, the size of objects to

retain, and the structuring elements for morphological operations.

1 parfor idx = 1:nFiles

2 image = imread(fullfile(inputDir, files(idx).name));

3

4 % Adaptive binarization and initial cleanup

5 BW = imbinarize(image, 'adaptive', 'ForegroundPolarity', 'dark',

6 'Sensitivity', adaptiveSensitivity);

7 BW = bwareaopen(~BW, minObjectSize); % Remove small objects from binary image

The parallel loop reads each image and performs adaptive binarization to convert the image to a

binary format. Small objects are removed from the binary image using bwareaopen.

1 % Distances and Gaussian filtering

2 D = bwdist(~BW);

3 D = imgaussfilt(D, gaussSigma);

4 L = watershed(-D);

5 BW(L == 0) = 0;

6 % Further morphological processing

7 se1 = strel('rectangle', [sizeErode1 sizeErode1]); % First erosion

8 se2 = strel('rectangle', [sizeErode2 sizeErode2]); % Second erosion

9 sedisk = strel('disk', diskSize); % Disk for opening

The function computes the distance transform of the binary image and applies Gaussian filtering

for smoothing. Watershed segmentation is used to separate overlapping droplets. Morphological

operations, including erosion and opening, refine the detected shapes. The watershed operation

splits pinched and deformed droplets, while erosion keeps them as a single droplet. Both operations

split droplets that are merely in contact.
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1 BW_eroded = imerode(BW, se1);

2 BW_eroded = imerode(BW_eroded, se2);

3 BW_cleaned = imopen(BW_eroded, sedisk);

4

5 % Combine with watershed processed image to finalize the binary mask

6 finalBW = BW_cleaned | BW;

7

8 % Extract properties from the final binary image

9 props = regionprops(finalBW, 'Area', 'Centroid', 'BoundingBox');

10

11 % Filter centroids based on the mask

12 validProps = props(arrayfun(@(p) mask(round(p.Centroid(2)),

13 round(p.Centroid(1))) > 0 && p.Area >= minObjectSize, props));

14 % Store the valid properties in the cell array

15 allValidProps{idx} = validProps;

Erosion operations are performed using the defined structuring elements. The cleaned binary mask

is combined with the watershed segmented image. Properties such as area, centroid, and bounding

box are extracted from the final binary image using regionprops. The detected regions are filtered

based on the mask to ensure only valid regions are considered.

1 % Save the visual output

2 numObjects = numel(validProps);

3 if mod(idx, 1000) == 0 % Check if idx is a multiple of 1000

4 figure('Visible', 'off');

5 imshow(image); hold on;

6 for i = 1:numObjects

7 rectangle('Position', validProps(i).BoundingBox, 'EdgeColor',

8 'r', 'LineWidth', .5);

9 end

10 hold off;

11

12 % Save the image with bounding boxes

13 saveas(gcf, fullfile(outputDir, replace(files(idx).name,

14 '.tif', '_processed.tif')), 'tif');

15 close; % Close the figure to free system resources

16 end

17 end
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Erosion ensures that droplets squeezed between pores are not eliminated. These droplets often

have a narrow region in the middle, which a watershed algorithm alone might cut, resulting in two

separate detections. By using double erosion, we maintain the definition of squeezed droplets, en-

suring accurate detection and separation only for droplets that are genuinely in close contact. This

combination ensures robust detection of squeezed droplets while also achieving proper separation

of closely packed droplets.

For visualization, the function overlays detected bounding boxes on the original image and saves

the result periodically.

Figure 4.9: Updated Detection Method A) Background Subtraction and stabilization B) Adaptive

Binarization C) Morphological and watershed processing D) Detection using Blog Analysis

4.16 Tracking Algorithm

A global nearest-neighbor algorithm is used to track detections. The detections are converted to be

compatible with the tracker, which employs an interacting multiple model (IMM) filter to handle

non-linear and intermittent motion by switching between constant velocity, acceleration, and turn

acceleration models. The tracking process involves several key steps:
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1. Filter Initialization: The tracking filter, such as a constant velocity unscented Kalman

filter (CVUKF), is initialized to adapt to the motion dynamics of the tracked objects.

2. Detection Association: A global nearest-neighbor approach associates new detections with

existing tracks based on spatial proximity, ensuring accurate tracking.

3. Model Switching: The IMM filter switches between different motion models (constant

velocity, acceleration, turn acceleration) to better predict and track the object’s trajectory

under varying motion conditions.

4. Cost Matrix Calculation: A cost matrix is computed to facilitate the partial hard assign-

ment of detections to tracks, optimizing the update of predicted positions.

5. Track Management: Tracks are managed using specific parameters, including assignment

thresholds, confirmation thresholds, and deletion thresholds, to maintain accurate and reliable

tracking over time.

Important parameters include:

Assignment Threshold: Controls the maximum cost for assigning a detection to a track.

Confirmation Threshold: Specifies the number of consistent detections required to confirm a

new track.

Deletion Threshold: Defines the number of missed detections before a track is deleted.

Max Number of Tracks: Limits the maximum number of tracks that can be maintained simul-

taneously.

Max Number of Detections: Sets the maximum number of detections the tracker can process at

one time. These parameters ensure robust tracking of multiple objects, handling complex motion

patterns and maintaining accurate position updates throughout the tracking process.

1 % Tracker settings

2 tracker = multiObjectTracker('FilterInitializationFcn', @initcvukf, ...

3 'AssignmentThreshold', [400 500], ...

4 'MaxNumTracks', 10000, ...

5 'ConfirmationThreshold', [3 4], ...

6 'DeletionThreshold', [10 10], ...

7 'MaxNumSensors', 1, ...

8 'MaxNumDetections', 1000);
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4.16.1 Cost Matrix

The cost matrix increases the cost of creating new tracks in the middle of the device and ending

tracks there as well. This approach prefers tracks to begin at the entrance and end at the exit,

helping lost tracks find the true path during intermittent and non-linear dynamics.

By employing these detailed image processing techniques and algorithms, the study ensures precise

and reliable analysis of the collected data, providing a solid foundation for understanding emulsion

transport in porous media.

Code for Tracking Droplets

The tracking code tracks droplets across frames by using their centroids and radii from the previous

detections. Below is a detailed breakdown of the tracking code.

1 % Loop over all frames in matFile.allCenters

2 for frameIdx = 1:length(matFile.allCenters)

3

4 % Use centers and radii from the mat file

5 centroids = matFile.allCenters{frameIdx};

6 radii = matFile.allRadii{frameIdx};

1 % Convert the centroids to objectDetection reports

2 numDetections = size(centroids, 1);

3 detections = cell(numDetections, 1);

4 for i = 1:numDetections

5 % Create an objectDetection report for each detection with a dummy 3D

6 dummyZ = 0;

7 detections{i} = objectDetection(currentTime, [centroids(i, :), dummyZ],

8 'MeasurementNoise', eye(3));

9 end

The centroids are converted to objectDetection reports, which include a dummy third dimension

for compatibility with 3D tracking systems used in Matlab. The measurement noise is set to an

identity matrix.
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1 if ~isempty(detections)

2 [currentTracks, ~, ~] = tracker(detections, currentTime);

3

4 % Direct assignments instead of looping

5 allTrackIDs = [currentTracks.TrackID];

6 allAges = [currentTracks.Age];

7 allStates = {currentTracks.State};

8 allCovariances = {currentTracks.StateCovariance};

If detections are not empty, the tracker processes them to update the tracks. Track IDs, ages,

states, and covariances are extracted directly from the currentTracks structure.

1 % Store data for this frame

2 frameData(frameIdx).trackIDs = allTrackIDs;

3 frameData(frameIdx).centroids = centroids;

4 frameData(frameIdx).trackAges = allAges;

5 frameData(frameIdx).radii = radii;

6 frameData(frameIdx).trackStates = allStates;

7 frameData(frameIdx).trackCovariances = allCovariances;

8 end

The tracking data for each frame, including track IDs, centroids, ages, radii, states, and covariances,

is stored in the ‘frameData‘ structure for further analysis.

1 currentTime = currentTime + 1;

2

3 % Update waitbar

4 if mod(frameIdx, updateInterval) == 0

5 waitbar(frameIdx/totalImages, h,

6 sprintf('Processing image %d of %d...', frameIdx, totalImages));

7 end

8 end

The currentTime variable is incremented for the next frame, and a waitbar is updated periodically

to show progress.

Advantages of the Tracking Approach: This tracking approach ensures accurate and consis-

tent tracking of droplets over time. By converting centroids to objectDetection reports and using
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a tracker system, the code maintains precise positional information. Including radii in the tracking

data ensures that both the position and size of each droplet are monitored. This method pro-

vides comprehensive tracking information that adapts to changes and maintains continuity across

frames. The combination of centroid and radius data ensures robust tracking of droplets, even in

dynamic environments, enhancing the accuracy and reliability of the tracking process. This method

is illustrated in Fig. 4.10.

Figure 4.10: Labeled Emulsions Tracked using the Algorithm described within this section. FOV

is 13 x 7.4 mm

4.17 UI Development

The development of software tools is essential for efficient data processing and analysis. This section

covers the graphical user interface (GUI) design, implementation, and data structure conversions.

4.17.1 GUI Implementation

The detection and tracking algorithms were packaged into a user-friendly GUI. This GUI allows

users to omit certain processing steps, save intermediate steps, and preview results before processing
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the entire experiment. It leverages Matlab’s parallel computing toolbox to reduce processing time

and optimize performance. Key features of the GUI include:

• User-Friendly Interface: The GUI provides an intuitive interface that enables users to

interact with the software efficiently. Users can select specific processing functions, set pa-

rameters, and view intermediate results, facilitating a streamlined workflow.

• Customizable Processing Workflow: Users can customize the data processing workflow

by omitting certain steps or modifying parameters. This flexibility ensures that the software

can adapt to various experimental needs and conditions.

• Parallel Computing: By utilizing Matlab’s parallel computing toolbox, the GUI signifi-

cantly reduces processing time. Parallel execution of computationally intensive tasks opti-

mizes performance and enhances the user experience.

• Intermediate Step Saving: The ability to save intermediate processing steps allows users

to review and validate results at different stages of the analysis. This feature enhances the

reliability of the data processing and ensures that errors can be identified and corrected early

in the workflow.

• Previewing Results: Users can preview the results of specific processing steps before com-

mitting to the full analysis. This capability helps in fine-tuning parameters and verifying the

accuracy of the detection and tracking algorithms.

• Efficient Data Handling: The GUI handles data structure conversions seamlessly, ensuring

compatibility with various input formats and facilitating smooth integration with other code

used in the analysis pipeline.

The implementation of this GUI facilitates user interaction and ensures that the data processing

workflow is streamlined and efficient. By providing a flexible, powerful, and user-friendly tool, the

GUI significantly enhances the ability to analyze and interpret experimental data, contributing to

more accurate and insightful findings.

4.17.2 Data Structures and Conversions

The original tracking data is saved on a per-frame basis, with each frame containing object IDs,

positions, velocities, and accelerations. For efficient analysis of individual objects and their trajec-

tories, an additional data structure is created in a map format. This assigns keys (object IDs) to
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each object, associating all corresponding frame data with it. This structure allows quick access to

an object’s data throughout its life in the device, reducing computational time and redundancies.

It also enables the trajectory GUI to update quickly and use minimal resources.

Efficient Data Handling: By organizing data in this manner, the system minimizes the processing

load and enhances the speed of data retrieval. This is crucial for handling large datasets generated

during the experiments, ensuring that analysis can be performed swiftly and accurately.

Trajectory Analysis: The map-based data structure supports detailed trajectory analysis, allow-

ing researchers to track the movement of individual droplets over time. This capability is essential

for understanding the dynamics of emulsion transport in porous media, providing insights into the

behavior of droplets under various experimental conditions.

By following these detailed image processing and software development procedures, we ensure

accurate analysis and efficient data handling, providing a robust foundation for studying emulsion

transport in porous media. The integration of sophisticated algorithms with user-friendly interfaces

enhances the research process, enabling precise control and comprehensive analysis of experimental

data.

4.18 Visualisation Methods

This section and the following subsections will detail the various visualization methods employed

in this work, which have not been extensively covered in previous publications.

4.18.1 Simulations

Creating an effective visualization method for our simulations and figures is crucial, as microfluidic

characteristics and flow dynamics can be complex and multifaceted. We employ the HSV color

space for visualizing the flow field around the droplet. Unlike the integrated RGB color space, HSV

allows for better separation and distinction of components.

The HSV color space consists of three components: hue (color), saturation (purity), and value

(brightness). Hue represents the flow direction, saturation indicates the fluid percentage, and value

shows the magnitude of the flow. This approach is more intuitive and aligns with human color

perception, providing clearer insights into the flow dynamics.
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Advanced visualization methods enable us to observe changes in various parameters simultaneously,

aiding in result interpretation and identifying key dynamics for further investigation. This method

has proven valuable in understanding the physics of droplet formation and the flow fields within

and around the droplets. This is clearly shown in Figure 3.1

4.18.2 Advanced Visualization Method for Emulsion Residency Time in Porous

Media

In order to better visualize the residency time of emulsions within porous media, this code involves

several key steps, starting with the utilization of a predefined binary mask to delineate regions of

interest within the experimental setup.

A crucial component of this visualization method is the computation of density maps from the

positional data of tracked particles. These maps offer a quantitative depiction of particle concen-

tration across the experimental domain, providing insights into how emulsions distribute within

the porous medium over time.

The process continues with the creation of a difference map to highlight variations between density

maps. Values outside the mask are set to NaN, ensuring the visualization focuses exclusively on

relevant regions. This difference map is then enhanced using a custom diverging colormap, which

transitions from red to black for negative differences and from black to blue for positive differences.

This colormap effectively distinguishes areas of varying residency times, offering a clear and intuitive

visual representation of the spatial dynamics of emulsions.

The final visualization is displayed as a heatmap using MATLAB’s pcolor function. By applying

flat shading, grid lines are removed, which enhances the clarity of the visual data. The ’jet’ colormap

is employed to further distinguish between different values, and a colorbar is included to provide

a reference scale. The y-axis direction is reversed to maintain proper orientation, and the aspect

ratio of the axes is set to equal, preserving spatial relationships.

This visualization method underscores the significance of precise and accessible representation

in scientific research. By leveraging advanced visualization techniques, this approach not only

enhances our understanding of emulsion behavior within porous media but also establishes a robust

framework for future research. The meticulous attention to detail in the creation and presentation

of these visualizations ensures that complex data is conveyed effectively, facilitating both scholarly

analysis and practical applications. This code can also be used with velocity data to create a
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velocity density map as shown in as shown in Figure ??.

Figure 4.11: Velocity Density map normalized by Interstitial Velocity Displaying regions where

burst events occur

4.18.3 Interactive GUI for Trajectory Visualization

To facilitate the visualization of the trajectories of emulsions within porous media, we introduce a

graphical user interface (GUI) designed to display the paths of tracked objects stored in a track-

Data map object. This GUI allows users to select a range of trackIDs using a slider, with the

corresponding trajectories overlaid on a provided background image. Additionally, the interface

offers tunable parameters such as linewidth, line color, and line style to enhance the clarity and

detail of the visualization.

The method requires that both the trackData map and a representative background image are

loaded into the workspace prior to execution. The trackData map is a containers.Map object

where each key corresponds to a trackID, and the associated value is a structured array containing

the tracking data for that object across various frames.

Initially, the tracking data is converted to a trajectory format suitable for the GUI. The represen-

tative background image is loaded and displayed as the visualization backdrop. A figure window is

created to host the GUI components, including controls for adjusting the linewidth, selecting the

line style, and specifying the range of trackIDs to be visualized.

The user can interact with several GUI elements:

• A text box to set the linewidth of the trajectories.

• A dropdown menu to select the desired line style from options such as solid, dashed, dotted,

and dash-dot.

• Text boxes to input the start ID and the range of trackIDs to be visualized.

• A button to update the visualization based on the selected parameters.

Upon triggering the update, the trajectories within the specified range are overlaid on the back-

ground image. Each trajectory is plotted using the selected linewidth and line style, ensuring that

the visualization is both clear and customizable according to the user’s preferences.
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The GUI is designed to provide a dynamic and intuitive way to explore the motion patterns of

emulsions, allowing for real-time adjustments and immediate visual feedback. This interactive

approach not only enhances the user’s ability to analyze the spatial dynamics of tracked objects

but also supports more effective communication of complex data through visually compelling and

easily interpretable graphics.

Figure 4.12: Trajectory Results

4.18.4 Simulation and Visualization of Sphere Packing

To effectively visualize the packing of spheres within a defined volume, this method involves a

comprehensive approach that includes simulation parameters, sphere placement, and detailed visu-

alization techniques. The primary goal is to simulate the packing of a specified number of spheres,

ensuring that they fit within the given volume constraints while allowing for a slight overlap to

maximize space utilization. This method serves as a way to create simulated bead-packing designs

in porous media, enabling researchers to test and analyze these designs by acquiring 2D slices of

the simulation.

The simulation begins with the definition of key parameters:

• Total Spheres: The total number of spheres to be packed, set to 5000 in this case.
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• Max Attempts: The maximum number of attempts to place each sphere without overlap,

set to 25.

• Volume Size: The dimensions of the volume (X, Y, Z) are specified as [30, 15, 25].

• Mean Radius and Standard Deviation: The mean radius (µ = 0.75) and standard

deviation (σ = 0.05) of the spheres follow a Gaussian distribution.

• Overlap Allowance: A fractional reduction of the sphere radius for overlap checks, set to

0.2.

The simulateSpherePacking function is then called to generate the packed spheres based on these

parameters. This function attempts to place each sphere within the volume by randomly generating

positions and ensuring no significant overlap with already placed spheres. The result is a set of

spheres defined by their coordinates and radii.

For visualization, the method includes both 3D and 2D representations:

• 3D Visualization: The spheres are visualized in a 3D plot, where each sphere is represented

by a scaled and translated sphere surface. The plot includes labels for the axes and a title, and

it utilizes Gouraud lighting to enhance the appearance. A light source is added to improve

the visualization of the spheres.

• 2D Cross-Section Visualization: This is achieved through a GUI that allows users to view

cross-sections of the packed spheres at different depths (z-values) within the volume. A slider

is provided to adjust the z-value, dynamically updating the plot to show the intersection of

spheres with the current plane. This 2D representation uses circles to depict the cross-sections

of spheres, providing a clear view of their spatial distribution.

The combination of these visualization techniques offers a comprehensive view of the sphere packing,

facilitating a deeper understanding of spatial arrangements and packing density within the volume.

The interactive elements, particularly in the 2D visualization, allow for detailed exploration of the

packed structure. This method is particularly valuable for creating and testing simulated bead-

packing designs in porous media, with the Gaussian distribution of beads serving as the basis for

this simulation.

The next section will explore a bimodal selection of beads based on volume, offering a different

approach to simulating bead packing in porous media.
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4.18.5 Bimodal Bead Packing Simulation

This subsection describes a method for simulating the packing of two types of spheres within a 3D

volume. The goal is to fill a predefined space with spheres of specified radii and volume percentages.

This simulation serves as an extension to the previous method, incorporating a bimodal selection

of beads based on volume to better mimic the complexities of porous media designs.

The simulation involves the following key parameters:

• Volume Size: The dimensions of the packing volume (X, Y, Z) specified as [30, 15, 10].

• Sphere Radii: Radii of the two sphere types, where the first type has a radius of 0.25 units

and the second type has a radius of 0.106 units.

• Volume Percentage: The volume percentage allocated to the first sphere type, set to 50%.

• Max Attempts: The maximum number of attempts for placing each sphere without overlap,

set to 100.

The simulateTwoSizeSpherePacking function generates the packed spheres based on these param-

eters. This function calculates the required number of spheres for each type based on their volume

percentages and attempts to place them within the volume while avoiding significant overlaps.

For visualization, the method includes both 3D and 2D representations similar to the Gaussian

distributed bead packing code.

Additionally, the method includes procedures for manipulating the smaller spheres to fit more

compactly within the packing structure. Small spheres are pulled towards the nearest larger spheres,

and their positions are updated accordingly. This adjustment helps achieve a more realistic packing

density, and distribution.

The simulation concludes with the generation of a DXF file representing a 2D slice of the packed

spheres, which is useful for further analysis and practical applications. The slice parameters, such

as the center and thickness along the Z-axis, can be adjusted to meet specific research requirements.

This DXF file can then be converted to a 2D autoCAD file to prepare for printing.

This method not only enhances the understanding of packing densities and spatial arrangements

within porous media but also provides a robust framework for simulating and visualizing complex

bead-packing designs.
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Figure 4.13: Bimodal Spherical Packing Simulation Results

4.18.6 Velocity Data Conversion and Histogram Calculation

This section provides a concise summary of the steps taken to process and visualize velocity data

from two experiments:

1. Velocity Conversion:

• Velocities for both experiments are converted from pixels per frame to millimeters per

second using specific conversion factors.

2. Edge Computation for Histograms:

• Logarithmically spaced edges are calculated for both positive and negative x and y veloc-

ity values from both experiments, ensuring appropriate binning for histogram creation.
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This was done to differentiate between tightly packed values.

3. Histogram Calculation and Visualization:

• Histograms for both positive and negative velocity values are computed and normalized

to probability densities. These histograms are then plotted to visualize the velocity

distributions.

• Histograms for x velocities from both experiments are plotted together, using logarithmic

scaling on the y-axis to highlight differences in velocity distributions.

• Similarly, histograms for y velocities are computed and visualized.

4. Magnitude Velocity Analysis:

• Combined magnitude velocities from both experiments are used to compute logarithmi-

cally spaced edges.

• Histograms of magnitude velocities are calculated and normalized to probability densi-

ties, then plotted with logarithmic scaling on both axes.

5. Overall Comparison:

• Histograms for all datasets (x and y velocities, and magnitudes) are plotted together

using shared bin edges, allowing for direct comparison of distributions between the two

experiments and additional PIV data.

4.18.7 Residency and Velocity Analysis

This section outlines the process of analyzing age and velocity data of tracked objects in an ex-

periment. The key steps include loading mask data, calculating maximum object age, computing

average velocities, and visualizing the results.

1. Loading Mask and Computing Maximum Age:

• The mask image is loaded to define the regions of interest.

• Maximum age of tracked objects is determined by iterating through the track data and

converting frame counts to seconds.

2. Average Velocity Calculation:
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• Average velocities for each tracked object are computed by averaging the magnitudes of

their recorded velocities.

• Objects with velocities above a certain threshold are filtered out if unrealistic and likely

due to incorrect tracking.

3. Velocity Mapping:

• A velocity accumulation map and a density map are initialized to store the sum of

velocities and counts respectively.

• These maps are used to compute an average velocity map, which is then converted to

represent velocities in millimeters per second.

4. Visualization:

• The average velocity map is normalized and displayed as a heatmap, with physical

measurements labeled on the axes.

• The trend of average velocities for objects that complete their paths is plotted against

object numbers.

5. Filtering and Regression Analysis:

• Objects are filtered based on their completion of paths and maximum age.

• A log-log scale transformation is applied to analyze the relationship between average

velocity and object age.

• Linear regression is used to classify objects into two groups based on their velocity trends,

and the results are visualized.

6. Centroid Analysis:

• Final Y-positions of centroids are analyzed for objects classified into two paths.

• Start times and final Y-positions are plotted to examine the movement patterns.

7. Dynamic Visualization:

• Y-positions of centroids closest to a range of target X-values are dynamically analyzed

and plotted.

• The figures are saved as PNG files, providing a visual representation of centroid paths

at different target X-values.
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These analyses offer insights into the dynamics of tracked objects, facilitating a deeper understand-

ing of their behaviors within the experimental setup. It is the primary steps used to identify the

preferential paths in the aformentioned chapter.

4.18.8 Final File Types and Conversion Descriptions

This subsection provides a brief overview of the final file types used and their respective data

structures.

frameData Struct: The frameData struct represents tracking data across multiple frames, with

dimensions of 1xM, indicating data for M frames. Each entry in the struct corresponds to a frame

and includes information about N tracked objects. The structure for each frame includes:

1. trackIDs:

• Size: 1xN

• Type: double array

• Description: Unique identifiers for each tracked object in the frame.

2. centroids:

• Size: Nx2

• Type: double array

• Description: (x, y) coordinates for the centroid of each tracked object.

3. trackStates:

• Size: Nx4

• Type: double array

• Description: State of each tracked object, with columns representing:

– Column 1: x position

– Column 2: x velocity

– Column 3: y position

– Column 4: y velocity

4. radii:
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• Size: Nx1

• Type: double array

• Description: Radius of each tracked object.

5. trackAges:

• Size: Nx1

• Type: uint32 array

• Description: Age (number of frames since detection) of each tracked object.

Note: The value of N varies for each frame and represents the number of objects tracked in that

particular frame.

trackData Map Object: The trackData variable is a MATLAB containers.Map object de-

signed to efficiently store and retrieve tracking data from multiple frames. Each key in the map

corresponds to a unique trackID of an object, and the associated value is an array of structured

data representing that object’s tracking data across frames. The structure of the data for each

object includes:

1. positionfromstates:

• Size: 1x2

• Type: double array

• Description: (x, y) position from trackStates for the object.

2. centroid:

• Size: 1x2

• Type: double array

• Description: (x, y) coordinates for the centroid of the object.

3. velocity:

• Size: 1x2

• Type: double array

• Description: (x, y) velocity of the object.
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4. radius:

• Size: 1x1

• Type: double

• Description: Radius of the object.

5. frame:

• Size: 1x1

• Type: double

• Description: Frame number from which this data was extracted.

6. age:

• Size: 1x1

• Type: uint32

• Description: Age (number of frames since detection) of the object.

To retrieve data for an object with a specific trackID, use:

objectData = trackData(trackID);

where objectData will contain an array of structured data for that object across all frames where

it appeared.

The final map object trackData is saved to a .mat file named trackData mapped.mat.

4.18.9 Annotating Results on Images

This section describes the process of annotating tracked object data on image frames and compiling

the annotated images into a video.

1. Mapping and Updating Track IDs:

• A mapping structure is created to uniquely identify and update trackIDs in frameData.

• The trackIDs in frameData are updated using this mapping.
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2. Handling Missing Data:

• For each frame, trackStates centroids are extracted and matched with centroids and

radii from the matFile.

• If a match is not found, the radius is set to the average value of the other radii in the

same frame.

• frameData is updated with the matched radii and centroids.

3. Annotating Images:

• Images are loaded from the specified input folder, and a corresponding output folder is

created if it does not exist.

• For each image, the corresponding tracking data is overlaid on the image. Circles are

drawn around tracked objects, and trackIDs are annotated next to them.

• Annotated images are saved in compressed TIFF format in the output folder.

4. Creating a Video:

• Annotated images are sorted and compiled into a video using the VideoWriter object.

• The frame rate and quality of the video are set as required.

• Each annotated image is added to the video, which is then saved in MP4 format.

This process allows for the clear visualization of tracked objects over time, facilitating a better

understanding of their movements and behaviors within the experimental setup.

4.19 Conclusion

The methods detailed here are employed in the following chapters to visualize and analyze the

experimental data. They establish a robust analytical framework, ensuring that results are con-

sistent and comprehensive. Designed for user-friendliness, these methods feature an intuitive UI

that allows for parameter adjustments specific to each experiment and offers preview capabilities

to streamline long processing times.

Looking ahead, the goal is to process future experimental data and create masks, frame data, and

Map objects, which will be stored in databases. These databases can then be leveraged for machine

learning applications, enhancing our understanding of emulsion transport in porous media.



Chapter 5

Preferential Flow Paths in Emulsion

Transport

Building on the foundational insights from the initial research on microfluidic droplet generation

using variational mode decomposition (VMD), which provided crucial understanding of droplet size

and concentration control, we now transition from the methods detailed in the previous chapter to

explore the behavior of emulsions within porous media. In this investigation, we employ techniques

to precisely control the concentration and sizes of emulsions injected into a two-dimensional porous

medium using an on-chip microfluidic drop-maker. This ability to finely tune droplet character-

istics is vital, as it allows for detailed observation and analysis of how these emulsions interact

with the intricate structures of porous media. The dynamics of these interactions are character-

ized by their high intermittency, despite the relatively slow average velocity over the trajectory

of individual emulsions. At lower concentrations, the emulsions frequently move through pores

that exhibit higher local velocities, which may be smaller than the size of the emulsion droplets

themselves. This interaction can lead to the trapping of emulsions and a reduction in the porosity

of the medium. As the porosity decreases, certain pathways begin to dominate the flow of emul-

sions, highlighting the significant impact that controlled droplet formation has on the macroscopic

transport properties within the medium. Introducing slight variations in the size distribution of

these emulsions further reveals additional pathways for transport, underscoring the importance of

droplet size control as observed in our earlier studies. These findings illustrate the critical role of

microfluidic control in influencing the larger-scale behaviors of emulsions in porous environments.

Such detailed understanding of pore-level dynamics, informed by our prior work on droplet forma-

tion, provides invaluable insights into the overall flow patterns and enhances our ability to predict

98
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and manipulate fluid movement in various applications. This research progression demonstrates

how foundational studies on the microscale control of fluid properties can be effectively applied

to complex, heterogeneous systems, offering profound implications for industrial, medical, and en-

vironmental applications. By bridging microfluidic technology with the study of porous media

dynamics, we can address practical challenges and innovate in the design and optimization of fluid

transport processes. This chapter has been adapted from This chapter has been adapted from

Izaguirre’s 2024 paper. [36]

5.1 Introduction

Transport of emulsions in porous media is a subject of significant interest in industrial, medical,

and environmental applications including many food products, drug delivery, and immiscible dis-

placement. [6, 39,44,45,60,67] The diversity and heterogeneity of most natural and environmental

porous materials lead to heterogeneous flow distribution which significantly impacts the transport

of droplets of emulsions in a medium. [1] Furthermore, the transport properties of porous me-

dia can undergo dynamic alterations as a result of the flow and retention of materials inside the

pores. [21,58,59] Growth of biofilms in filters [39,53], transport of water-based emulsion in personal

care product [4, 9], or oil recovery [44, 46, 58, 59] are some of the examples in which the properties

of the medium change in response to the flow of droplets of an immiscible phase. Earlier research

shows that although the changes in bulk transport properties such as medium permeability and in-

terstitial flow velocity are not considerably large upon the flow of individual droplets, the local and

pore-scale flow can change dramatically leading to anomalous flow behavior locally. [14, 58, 59, 88]

The transport properties of a single droplet of emulsion in porous media are dictated by the droplet

sizes and network properties such as pore size distribution and medium wettability. [14,29,60,67,87]

Hence, the dynamics of a droplet can be described by the balance of the viscous, interfacial, and

drag forces. Only two non-dimensional numbers Capillary number (ratio of viscous to interfacial

forces) and Weber number (ratio of drag to interfacial forces) are used to describe the dynamics of

droplets with small deformations. [7, 11, 50, 60, 74] However, the collective dynamics of a group of

emulsions in a complex network of pores are affected by the fluctuations in local flow due to the

droplet-droplet and droplet-pore structure interactions. [29] The collective transport of high con-

centration of emulsions in a medium with random pinning sites shows that dynamics of the droplets

sharply transition from a creeping regime to flow along smectic rivers and in groups. [40] The de-

formation of droplets in these experiments was negligible and the majority of the droplets (99.7%)

never squeeze through small pores and only pin on the surfaces. Furthermore, measurements of

https://doi.org/10.1039/D3SM01465G
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bulk transport of large quantities of polydisperse droplets stabilized by a surfactant and injected

into a three-dimensional porous medium show that mostly small droplets appear in effluent and

large droplets remain trapped in the medium due to the large pressure required to deform the large

emulsion droplets. [14,29,87,92] Nevertheless, the pore-level and collective dynamics of droplets in

a network of pores, and the impact of trapping and re-mobilization of droplets on pore-level and

macro-scale transport properties remain to be examined at the pore-scale. One of the challenges

in accurate experimental investigation is tracking and precise object detection in an environment

where the interfaces of droplets are in contact and droplets deform based on pore sizes.

In this paper, we quantify the pore-level dynamics of monodisperse emulsions flowing through a

two-dimensional (2D) porous medium experimentally. By incorporating a microfluidics drop-maker

on the same chip as the 2D porous medium, we control the concentration and sizes of the injected

emulsions precisely. In these experiments, we track individual droplets as they flow into the medium

using optical microscopy and a long-range recording mode while monitoring the bulk pressure

gradient across the medium. By employing advanced image analysis and object tracking, we track

individual emulsions as they flow through the medium. We show that at low concentrations,

emulsions flow through pores with higher local velocities without being selective about the size of

the pores they encounter, and this lack of selectivity can lead to the emulsions becoming trapped.

Once a significant number of pores are filled with droplets, newly injected emulsions continuously

flow through a few remaining open paths. We show that the average velocity of the droplets that

flow through the medium scale with the inverse of the total time of residence in the medium and

is proportional to the path lengths of the droplets independent of the distribution of sizes of the

emulsions.

5.2 Experimental Method

We generate emulsions and characterize the dynamics of emulsions in 2D micromodel of porous

media using microfluidics, fluorescent microscopy, and bulk transport properties of the medium.

One of the challenges in studying emulsions in porous media is to control the size, concentration,

and injection frequency of emulsions. [18,29] This is mainly due to the density contrast between the

dispersed phase (emulsions) and the continuous phase. To overcome this challenge, we leverage the

capabilities of microfluidics in producing well-controlled monodisperse emulsions. [7, 51, 71, 80] We

design an on-chip drop-maker in series with a 2D porous medium as shown in Fig.??a. This design

allows us to control the injection frequency and concentration of emulsions in a porous medium.
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Figure 5.1: a) 2D drawing of the drop-maker and porous medium on one chip. b) Schematic of

the experimental setup.

5.2.1 Microfluidics 2D porous media

To generate monodisperse droplets and inject them into a porous medium in a laminar flow condi-

tion, we design the microfluidic drop-maker to operate in the dripping regime. [80] The drop-maker

consists of an inlet for the dispersed fluid ( water and 0.1w% fluorescin sodium salt) at the cen-

ter, and two inlets for the continuous phase on either side. The continuous phase is a fluorinated

oil HFE750 (engineering fluid by 3M) with 5w% surfactant FSH oil (by Krytox). The interfacial

tension between the dispersed phase and the continuous phase is γ = 26 mN/m. In the dripping

regime, the droplet sizes are proportional to the inlet geometry. [4] At equilibrium, where the inner

phase fluid is protruding out of the inlet and into the outer phase, the pressure inside the droplet

Pd is balanced by the pressure in the outer fluid (P0) and the capillary pressure, Pd = P0 +
2γ
Rd

.

Here, Rd is the radius of the droplet. The droplet snaps off once the pressure inside the droplet

exceeds the outer pressure. The radius of the droplet is Rd > 2R, in a channel with radius R and

circular cross-section. [5, 19,20,64,81]

Here, the water inlet is a rectangular channel with dimensions of 84µm× 200µm, entering an area

measuring 1050µm × 200µm, as shown in Fig.??a. The two oil inlets each have dimensions of

115µm× 200µm. The entire channel spans 1100µm in length and 200µm in height, tapering down

to a 325µm channel before entering the porous medium. We use a syringe pump to inject the con-

tinuous phase at a constant flow rate of 5 mL/hr. However, to control the generation of individual
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droplets precisely, we use a pneumatic pump as shown in the schematic of the experimental setup

in Fig.??b. The viscous pressure of the flow of the continuous phase is balanced by a constant

pressure, provided by the hydrostatic pressure of the closed water column. The pneumatic pump

applies an additional pulse of pressure to the closed water column at 174 kPa for a duration of

200 ms. This method robustly produces monodisperse emulsion droplets with an average diameter

of 295±7 µm with a narrow distribution as shown in Fig.5.2. The corresponding capillary and

Weber number of the dropmaker in these experiments are Ca = 3×10−3 and We = 1.5×10−3. The

radii of the emulsions match our prediction of Rd > 2R. The snap-off and monodispersity of the

droplets in our experiments are assisted by the hydrophobic coating (aquapel) of all surfaces. [55]

However, small variations in pulses result in a slightly more polydisperse distribution of droplet

sizes. For example, we find that multiple consecutive pulses result in a wider distribution of droplet

sizes of 350±10 µm as shown in Fig.5.2. We continuously monitor the pressure gradient across the

medium using a pressure transducer (Omega-PX409) and apply variational mode decomposition to

the signal to eliminate the high-frequency noise of the transducer. [35]
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Figure 5.2: Probability distribution function of the sizes of the emulsions in monodisperse (Exp1:

blue) and polydisperse (Exp2: red) experiments. The total number of emulsions in Exp1 is 1334,

and in Exp2 is 1666.

We design and fabricate 2D porous media using standard soft lithography and microfluidics tech-

niques. [83] To obtain a pattern of random pore size distribution, we use a 2D micrograph of a

three-dimensional glass bead-pack imaged by a confocal microscope. [1] We further enhance the

pore size heterogeneity by imposing a gradient in pore size distribution with a larger porosity at

the inlet compared to the porosity downstream. This gradient in porosity represents the hetero-
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geneity of natural and geological porous structures. [8] We quantify the porosity and pore size

distribution of the 2D porous medium using a novel algorithm that utilizes Voronoi tessellation and

skeletonization. [22,41,42,82] The pore size distribution in the medium has an average pore size of

403 µm and varies between 150 and 1150 µm as shown in Fig.5.3.

Figure 5.3: Probability distribution of the pore sizes in the medium (solid line), the 1/3 entrance

to the medium (light gray), and the 2/3 end of the medium (dark gray)

To ensure that the emulsion droplets are small enough to enter the medium, the physical dimensions

of the porous medium are proportionally adjusted to allow some passage of the droplets. In these

experiments, we utilize a microfluidics 3D printer (CADworks3D Pr110-385nm). Using this cutting-

edge resin-based 3D printer, boasting an XY resolution of 40×40 µm2 and a Z resolution of 5 µm,

we fabricate microfluidic master-molds with a variety of dimensions. To achieve smooth surfaces

on the master-mold, which is critical for the performance of our microfluidic devices, we optimize

the printing settings for a commercial powder-base resin with low light dispersion. By controlling

the UV-exposure and curing time, the edges and surfaces are smooth. The master-molds are then

filled with polydimethylsiloxane (PDMS) and cured at 60o C before plasma cleaning and bonding

to a glass slide.
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(b)

(a)

(c)

(d)

Figure 5.4: Transport of individual droplets injected into a 2D porous medium as a function of

time a) 5 s, b) 25s, c) 42.5s, d) 62.5s. Blue circles mark the emulsions. Scale bar is 1 mm.
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5.2.2 Pore-scale Imaging

To quantify the dynamics of emulsion within the porous medium, we use a widefield optical micro-

scope (Axiozoom) and a long-range-record camera (FasTec IL5). The camera is operated at 50 Hz

with a resolution of 2500×1000 pixels at 16 bits, providing a high dynamic range. The microfluidic

porous medium is illuminated with a collimated RGB backlight LED providing a high contrast

image where emulsions can be identified.

We characterize the dynamics of emulsions at the pore-level and across the entire model porous

medium utilizing a modified particle tracking algorithm that accounts for objects in close contact

and with highly intermittent kinematics. While most particle tracking methods are optimized to

identify sparse objects [57], emulsions trapped in a porous medium are in close contact with each

other and are squeezed into a solid structure and can be slightly deformed, see Fig.5.4. Here, we

first subtract the solid background while applying a drift correction on all images to enhance the

accuracy of object detection. Using a Circular Hough Transform, we identify individual droplets

within the medium as shown in Fig.5.4. Once all droplets are identified, we employ a Global Nearest-

Neighbor (GNN) tracking method under Sensor Fusion and Tracking Toolbox in MATLAB R2023.

The GNN tracker uses the global nearest-neighbor assignment algorithm to match its detection to

identified tracks based on predicted position, velocity, and acceleration. The GNN tracker forms

a cost matrix by calculating the distance between each detection and existing tracks. Using this

cost matrix, it categorizes the detected objects into either assigned pairs with tracks or unassigned,

subsequently updating or initializing tracks as appropriate. Since our detection method is highly

accurate, we assign a high cost to new tracks created outside the spatial area in which new emulsions

are introduced into the field of view. We overcome the natural challenge of tracking objects that are

constantly trapped and mobilized by using an Interacting multiple-model filter. The high-resolution

imaging and enhanced edge detection are crucial in successfully applying the GNN tracker to the

highly intermittent dynamics of emulsion. See supplementary materials of Fig.5.4 providing a

dynamic visual representation of the emulsion transport through the porous medium.

5.3 Results

The dynamics of emulsions in porous media are highly intermittent despite the tendency of the

droplets to travel at the center of the pores. As single droplets enter the porous medium, they

flow through paths with a higher average velocity. In these experiments, we form and inject the

droplets at low concentrations and distribute their points of entry into the medium in the cross-
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sectional direction, Fig.5.4a. The low concentration of emulsion is crucial to avoid a yield stress

behavior. [82] The emulsions flowing into a porous medium, naturally follow the streamlines with

larger velocities. However, there is no feedback mechanism that would prohibit their entry to a

pore or a pore throat smaller than the diameter of the droplet. Interestingly, in a porous medium

with a random distribution of pore sizes, a considerable number of high-velocity paths flow through

small pores. Hence, we observe a substantial number of emulsions getting trapped in the medium

during the injection of the first batches of emulsions as seen in Fig.5.4b. While a few emulsions find

their way to the outlet, more than 65% of the emulsions are trapped following their predecessors as

seen in Fig.5.4c. A droplet trapped in a pore does not completely block the flow of the continuous

phase in this area and the continuous phase passes around the droplet. Consequently, the changes

in the local flow within the first few seconds of these experiments do not lead to a change in the

global flow, as opposed to pore blocking seen in experiments focusing on conformance control in oil

recovery. [59,91] Additionally, our continuous measurement of the pressure drop across the medium

confirms that the bulk flow is not affected by a few trapped emulsions in the medium. Trapping of a

few droplets in the medium changes the medium porosity from 55% in Fig.5.4a to 49% in Fig.5.4c.

Despite the considerable change in porosity, the pressure gradient across the medium increases only

from 1400 Pa to 1450 Pa, further confirming the presence of a flow around individual emulsions and

through the pores. Further injection of emulsions into the medium results in substantial clogging

of individual pores in the medium as seen in Fig.5.4d. Considering that the volumetric flow rate

is held constant throughout this experiment, one expects that flow should be redirected to other

open pores. Once the porosity of the medium decreases to 36% and many pores are filled with

emulsions, newly injected emulsions follow paths that were not explored earlier and find their way

to the medium outlet. Interestingly, we find that some entire paths are filled with emulsions (seen

in the center of Fig.5.4d) before the flow of emulsions is diverted. Finally, a tortuous path is

formed which is followed by newly injected emulsions. We do not observe clogging of the entire

medium at the constant injection flow rate and the concentration of the droplets remains to be

below a jamming transition. [62] Moreover, the balance between viscous and capillary forces does

not change dramatically to mobilize a large number of droplets. [3, 32]

To quantify the emerging flow paths within the medium, we track individual emulsions and superim-

pose the paths taken by these emulsions as shown in Fig.5.5. A few preferential paths are formed in

the medium and the subsequently injected emulsions continue flowing along these paths. While only

a few tortuous paths are established in the flow of monodisperse emulsions (Fig.5.5a), additional

paths are explored by introducing a slight polydispersity in the emulsion sizes (Fig.5.5b). Interest-

ingly, in the experiment with larger and polydisperse emulsions, large droplets squeeze through the

pores and create small perturbations in the flow of subsequent trailing droplets. Hence, droplets
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are more likely to switch paths as shown in Fig.5.5b.
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Figure 5.5: Spatial distribution of emulsions in (a) monodisperse (Exp1) and (b) polydisperse

(Exp2) experiments. Heatmap represents the log-transformed time (in seconds) spent at each

location, normalized to match the maximum time value of Exp2.

To quantify the variability of the velocities of the emulsions, we calculate the probability density

function (PDF) of the velocities in different experiments as shown in Fig.5.6a. The PDF of the
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magnitude of the velocities of emulsions has an exponential decay with a long stretched tail indi-

cating the presence of rare events with very large velocities compared to the interstitial velocity.

The interstitial velocity is vint = q/ϕ, where q is the volumetric flow rate per cross-sectional area

and ϕ is the medium porosity. The distributions of velocities of emulsions have similarities with

the PDF of the velocities of the flow of a single-phase continuous fluid, measured in identical but

separate experiments using 1µm tracer particles using Particle Image Velocimetry (PIV) . [1, 59]

However, the tail of the PDF of the velocities of droplets stretches to much larger velocities (5×vint

than that of the single-phase flow ( 3×vint).

Comparing the PDF of velocities of droplets with a single-phase flow confirms the intermittency in

the dynamics of droplets where trapping, re-mobilization, squeezing and bursts through pore throats

are common. The dynamics of emulsions in these experiments exhibit unique features reminiscent of

transport in a porous medium: 1) emulsions only pass through certain areas and some pores within

the medium are never explored by the droplets, as seen in Fig.5.5. 2) Trapping and accumulation

of emulsions within the porous structure result in changes in the medium permeability, leading

to an increase in the viscous forces. The latter effect, only observable in pore-level measurements

[21,59,91], can significantly change the flow in neighboring pores and consequently affect the global

flow. Despite the finite size of the emulsions, and an expected slower velocities than fluid elements

(represented as tracers), we find that the PDF of magnitude of the velocities of emulsions has an

average comparable to a single phase flow in agreement with the constant flow driven experiment.
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Figure 5.6: (a-c) Probability distribution of velocities of emulsions normalized by the interstitial

velocity a) PDf of the magnitude of velocity b) PDF of the longitudinal component of velocity

(vx) c) PDF of the transverse velocity, vy. Blue triangles represent the monodisperse emulsions,

red squares represent the polydisperse emulsions, and black diamonds represent the tracer particles

velocities. d) Distribution of the deviation of location of first 100 monodisperse droplets from fluid

elements for 3 time-stamps, 2 seconds after entering the medium (red), 10 seconds (blue), and by

the time either object reaches the end of their path in view (black).

The PDF of velocities of emulsions in the direction of the imposed flow, Fig.5.6b, has a positive

average, ⟨vx⟩ = 270 µm/s, consistent with the direction of flow. The significant negative tail in the

polydisperse experiments (Exp2) is due to the tortuous path taken by droplets in this experiment.

The PDF of vy of emulsions has a slightly higher probability in the downward (vy < 0) than the

upward direction, aligning with the most common paths observed in Fig.5.5. The average dynamics

of droplets in these experiments (Exp1: monodisperse and Exp2: polydisperse) are independent of

the distribution of droplet sizes. The average velocity is dominated by the large number of droplets

experiencing slow dynamics. However, the rare events with large velocities and bursts of motion

are more probable in the experiments with more variable sizes of emulsions.
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Additional insights into the preferential paths of the droplets can be drawn by comparing the

trajectory of a droplet with a fluid element as it enters the medium. The path of a droplet is

determined by the local stress (proportional to the velocity gradient) on the surface of the droplet,

while the path of a fluid element is dictated by the fluid velocities. Hence, the trajectory of an

emulsion droplet deviates from a fluid element due to the finite size of a droplet. The departure

of the trajectory of a droplet from fluid elements increases with time as shown in Fig.5.6d. We

quantify the distribution of the deviation between the location of the tracers and the emulsions

entering the medium at the same initial position. The locations of the tracers are determined by

integrating their trajectory using the flow velocity field (from PIV) and a fourth order Runge-Kutta

integration scheme. [57] The emulsions closely follow the path taken by a tracer for the first few

seconds but the location of the center of the droplet quickly departs from the fluid element. After

only 10 seconds the distance between the location of the droplets and fluid elements is distributed

evenly across the medium. The distribution of the distances shifts towards larger values and closer

to the length of the medium by the time either the emulsion or the fluid element reaches the end of

their paths. The distribution is converted into a smooth function using MATLAB Kernel smoothing

function estimate for univariate and bivariate data.
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Figure 5.7: Average velocity vs. residence time of emulsions, a) Magnitude of velocity and b)

longitudinal component of velocity. Crosses represent the monodisperse (Exp1) data and circles

correspond to polydisperse (Exp2) data. Marker sizes represent the number of emulsions within

each velocity-residence time bin. The colormap corresponds to the Euclidean distance along the

trajectory of the emulsions.

Our understanding of emulsion transport in porous media can be further enhanced by quantify-
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ing the dependence of the average velocity of the emulsions on the time of travel through the

medium, which we refer to as residence time. As shown in Fig.5.7, the average velocities of all

emulsions that pass through the medium scale with the inverse residence time of the emulsions,

⟨v⟩ ∼ 1/(resident time). We measure the residence time of each individual emulsion as it traverses

the medium. Emulsions that pass through the medium quickly have a short residence time, while

those that become trapped have a much longer residence time. The longest residence time recorded

in our experiments is 800 seconds, comparable to the duration of the experiment, and belongs to

an emulsion droplet trapped in the medium. The scaling of ⟨v⟩ with inverse resident time holds for

all emulsions that exit the medium, represented by the light color of the symbols in Fig. 5.7a. The

color of the symbols represents the value of the Euclidean distance along the trajectory of the emul-

sions, defined based on the initial and final locations of each emulsion droplet along its path. The

longest Euclidean distance within the 2D porous medium corresponds to the diagonal of the medium

(13.2 mm). Interestingly, the scaling of the average velocity is independent of the distribution of

the sizes of the emulsions (Exp1, Exp2). Moreover, the longitudinal component of the velocity

scales with the residence time similar to those with the average velocity, ⟨vx⟩ ∼ 1/(resident time).

We attribute the ⟨vx⟩ scaling to the dominance of the longitudinal direction in the transport of

emulsions within the medium. The transverse velocity, ⟨vy⟩, is an order of magnitude smaller than

the longitudinal component in these experiments. The average velocities of the emulsions that are

permanently trapped in the medium, or those that do not leave the medium for the duration of

the experiment, are smaller than the velocities of emulsions of similar residence time that pass

through the medium. Therefore, as illustrated in Fig.5.7, the average velocities of the emulsions

that remain within the medium consistently fall below the reference line that encompasses those

that pass through it. We observe that droplets with longer Euclidean paths, or equivalently those

closer to passing through the medium, are more likely to have an average velocity that approaches

the population following the scaling with inverse residence time. Throughout the experiments,

we extracted over 6 million positional updates and their corresponding velocities. Therefore, in

Figure 5.7, we aggregate numerous data points into a single symbol for better visualization. The

symbol’s size corresponds to the logarithmic scale of the data point count.
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Figure 5.8: Dependence of the average velocity of a) monodisperse and c) polydisperse emulsions on

residence time for emulsions that exit the medium. Final exit location of b) monodisperse and d)

polydisperse emulsions along the cross sectional direction. Blue symbols represent the path leading

to the exit point on top of the medium, red corresponds to the path leading to the bottom of the

medium, dashed gray line separates the two populations.

The scaling of average velocity with inverse residence time of emulsions is described with a simple

dimensional argument ⟨v⟩[ms ] =
Length(m)
res.time(s) . We find that the corresponding length scale is the path

length of the trajectory of the emulsions. Here, the emulsions are more likely to take either pref-

erential paths identified in Fig.5.5. We identify the emulsions with the paths they take and show

that in the monodisperse experiments where emulsions continuously follow two distinct paths, the

emulsions on the longer path have a slightly smaller average velocity. Nevertheless, the average ve-

locities of all emulsions are distinctly split into two groups as shown in Fig.5.8a. This observation is

further confirmed by the location of the exit point of the emulsions as shown in Fig.5.8b. Moreover,

similar separation of path lengths and exit points are observed for the polydisperse emulsions as

seen in Fig.5.8c, d. Observation of the distinct paths and exit points in this medium provides clear
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evidence of the emergence of preferential paths independent of the emulsion sizes. These paths

emerge as a consequence of the solid pore structure modified by the trapping of emulsions.

5.4 Conclusions

In the present study, we successfully investigate the pore-level dynamics of monodisperse emul-

sions navigating a two-dimensional porous medium. By leveraging the versatility of microfluidic

techniques, we control the concentration and sizes of emulsions, in addition to the injection rate

of emulsions, by integrating an on-chip drop-maker driven by an external pneumatic pulse. We

find that at low concentrations, emulsions flow through pores with higher local velocities and in-

dependent of the pore sizes, leading to trapping of emulsions in pores smaller than the emulsion

sizes. This leads to a 35% reduction in the porosity of the medium. Few preferential and highly

tortuous flow paths emerge within the medium after this reduction in porosity, along which low-

concentrations emulsions continue to flow. Our measurements of the pore-level velocities of the

emulsions show a highly intermittent dynamic consisting of trapping and subsequent mobilization

of emulsions within the porous structure. Nevertheless, we find that the average velocities of all

emulsions that flow through the medium scale with the inverse residence time of the emulsions and

is distinguished by the flow paths emulsions take within the medium. This emergent scaling holds

for slightly polydisperse emulsions.

The introduction of a slight polydispersity in the emulsions enhances the transport of emulsions

despite the larger sizes of the droplets revealing more fluctuations in transport paths. Independent

of the distribution of droplet sizes, trapped emulsions within the porous structure play a pivotal role

in defining preferential transport paths, showcasing the interaction intricacies between the droplets

and the porous network. Although the current experiments are focused on the dynamics of low

concentrations of emulsions in porous media at a moderately slow flow rate, corresponding to a

small Reynolds number, in the laminar regime, the approach serves as a foundational method for

characterizing emulsion dynamics in a variety of flow regimes. The formation and persistence of

preferential flow paths and droplet-droplet interactions at higher flow rates where the local flow

can be highly unstable remains to be explored. These findings and the associated experimental

methodology have the potential to drive advancements in areas such as soil remediation, drug

delivery, and oil spill cleanup.



Chapter 6

Transport Properties of Emulsions in

Porous Media

In this chapter, we investigate the transport properties of emulsions within various 2D porous net-

works by systematically altering network configurations and assessing their impact on emulsion

dynamics. We focus on the role of pore heterogeneity, pore size distribution, and pore connec-

tivity. Specifically, we fabricate these networks through simulations of bead packing, employing

both bimodal distributions to mimic physical environments and Gaussian distributions to represent

engineered environments, as detailed in the methodology chapter.

Our study examines several key parameters, including the length (ranging from 15 mm to 30 mm)

and width (ranging from 7.4 mm to 15 mm) of the device, the porosity of the medium (varying

from 52% to 67.9%), and the average pore throat size (ranging from 443 microns to 730 microns).

These variations provide quantitative insights into how structural and physical changes influence

emulsion behavior within porous media.

Unlike the initial experiments that utilized bimodal bead packs sintered together and scanned using

confocal microscopy, the diverse porous networks examined here are created using simulations and

packing algorithms developed within this work. This methodological evolution allows for precise

control over the network configurations, enabling a comprehensive investigation of their effects on

emulsion transport.

Furthermore, we analyze how variations in interfacial tension and droplet deformability influence

emulsion dynamics. These factors significantly affect the behavior of emulsions within the porous

115
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networks, providing additional layers of complexity and insight into the transport processes.

The subsequent sections offer a detailed overview of the creation of these porous networks, present

the results and analysis, and culminate in a discussion of the findings and their implications.

This structured approach enhances our understanding of the interplay between network properties,

interfacial tension, and emulsion transport dynamics.

6.1 Creation of Porous Networks

The porous networks were generated using custom simulations and packing codes designed to

mimic realistic porous structures. These simulations allowed for the manipulation of network

properties such as pore size distribution, connectivity, and overall porosity. The networks were

designed to explore the effects of both Gaussian and bimodal distributions of pore sizes, providing

a comprehensive range of structural configurations.

To create these networks, spheres were randomly packed within a defined 3D volume. A 2D slice

of this 3D arrangement was then selected to represent the porous medium for the microfluidic

devices. This method ensured a high degree of control over the structural parameters of the

networks, facilitating detailed studies of emulsion dynamics.

Two distributions were used in this study:

• Gaussian Distribution: Spheres were packed until a predetermined porosity measurement

was achieved, specifically 40% and 60% porosity for both short and long devices.

• Bimodal Distribution: An even volumetric distribution was used, meaning the number of

beads fit perfectly packed in the same volume were randomly packed. This process continued

until packing was complete, after which a slice was taken and scaled to have similar distribu-

tions as the initial experiments using scans from physical environments. For this distribution,

both narrow and wide devices were created to study the effects of varying width on emulsion

transport.
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6.2 Network Properties

The generated networks exhibit a range of properties tailored to investigate specific aspects of

emulsion transport. Key properties include:

• Pore Size Distribution: Networks were created with both Gaussian and bimodal distribu-

tions of pore sizes to analyze a range of distributions.

• Porosity: The porosity of the networks was varied to examine its influence on emulsion flow

and trapping mechanisms.

• Connectivity: The connectivity between pores was adjusted to study its impact on the

formation of preferential pathways and overall transport efficiency.

• Length/Width: The boundary dimensions of the porous networks were altered to see how

changes in interstitial velocity and path length may change transport.

Table 6.1 displays these network properties determined via the pore network characterization code

developed in the methods section. Although the designs targeted specific porosities (40% and 60%),

the final printed devices exhibited slightly higher porosities. This discrepancy is likely due to minor

swelling during the 3D printing process. The initial designs were within a few percentage points of

the desired values, but final characterization showed slight deviations. The design of 40% porosity

will still be referred to as such with the correct porosity listed in table 6.1.
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Table 6.1: Network properties of different porous media configurations.

Configuration Length (mm) Width (mm)

40 Short 15.5 7.4

40 Long 30.5 7.4

60 Short 15.5 7.4

60 Long 30.5 7.4

Narrow 30 7.4

Wide 30 15

Configuration Porosity Avg. Pore Throat (mm) STD of Pore Throat (mm)

40 Short 0.546 0.537 0.25

40 Long 0.52 0.562 0.253

60 Short 0.679 0.73 0.335

60 Long 0.607 0.69 0.34

Narrow 0.559 0.443 0.26

Wide 0.597 0.466 0.297

Additionally, changes in residency maps, clustering of droplets, probability density functions (PDFs)

of velocities, and the transport regime of the emulsions were all analyzed. The mean square displace-

ment (MSD) of the emulsions and their respective anomalous diffusive alphas were also evaluated

to categorize transport behaviors. These assist to identify key trends and correlations between

network properties and emulsion transport regimes.

6.3 Device Scaling and Dye Contrast Adjustment

The porous media boundaries were increase in size making them twice as wide and long as the

original designs. This increase in size necessitated a shift in the dyes used, as fluorescein sodium

salt no longer provided sufficient contrast in the larger field of view (FOV) images. Initially,

experiments were transitioned to using food dye, which introduced new challenges. The propylene

glycol in the food dye affected the interfacial tension between the water and HFE+surfactant,

leading to increased deformation of emulsions compared to previous experiments. Along with these

increased deformation, it increased the droplets ability to coalescence.
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6.4 Detection and Tracking Algorithm Enhancement

The deformation and coalescence of droplets required significant updates to the detection and

tracking algorithms. The previous version, which relied on a generalized Hough transform for

circular objects, was inadequate for detecting deformed emulsions. To address this, we developed

a more complex algorithm incorporating watershed segmentation, morphological operations, and

blob analysis. These enhancements improved detection accuracy and tracking efficiency for the

new experimental conditions which were not applicable in previous experiments due to the contrast

being low.

Figure 6.1: Circle Hough Transform Detection Method A) Background Subtraction and stabiliza-

tion B) Adaptive Binarization C) Circle Hough Transform Detection

Figure 6.2: Updated Detection Method A) Background Subtraction and stabilization B) Adaptive

Binarization C) Morphological and watershed processing D) Detection using Blog Analysis
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Despite the updated detection and tracking capabilities, the deformed droplets did not exhibit the

preferential pathways observed in earlier experiments. This prompted further adjustments to the

experimental design. The porous media and microfluidic devices were initially designed based on a

Gaussian distribution of spherical particles. In this design process, spheres were randomly placed

in a 3D volume without overlapping, and a 2D slice of this arrangement was used to create the

porous structure.

Recognizing that real-world environments often exhibit bimodal distributions, we ran additional

simulations using a bimodal distribution to better mimic realistic conditions. This led to the

creation of a new porous device. The new experiment featured two configurations: one with the

enlarged design printed in its entirety, and another with only the central section of the width

printed, maintaining the same length. These configurations aimed to test the impact of increased

width and network complexity on preferential path formation as well as have a similar comparison

to the initial experiments created from glass beads.

Additionally, food coloring was also altered to remove the propylene glycol from the food dye prior to

preparing the emulsions fluid. This resulted in highly contrasted fluid with close interfacial tension

to the original experiments. This resulted to less coalescence and a more uniform distribution of

droplets and decrease in the emulsions ability to deform easily.
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Figure 6.3: Interfacial Tension Samples: HFE & Air, Food Coloring & HFE+Surfactant, Dye (PEG

removed) & HFE+Surfactant, Water (FSS) & HFE+Surfactant, Food Coloring & Air, Dye (PEG

removed) & Air

Removing PEG from the food coloring results in an interfacial tension much closer to that seen

with the previous experiments using FSS as the contrast agent.

6.5 Physical Network and Residency Maps

Residency maps illustrating the physical network and emulsion traversal through various porous

media are presented in this section. Analysis of how structural variations affect residency and

distribution is performed.

The probability normalization of the data makes it more comparable across the different porous

media configurations. Variations in length, width, and porosity affect the traversal time of individ-

ual droplets through the medium. Hence, the following residence density maps are normalize by

the total time of each experiment to facilitate comparison.
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Figure 6.4: Normalized occupancy maps for devices with 40% porosity. (A) Short device. FOV

15.5 x 7.4 mm (B) Long device. FOV 30.5 x 7.4 mm

In the 40% porosity configuration, droplets in the shorter device explore different sections at the

bottom of the device, whereas in the longer device, droplets are more evenly distributed. Dominant

paths are affected, with the top versus center paths showing variance. In the longer device, most

droplets seem to travel towards the center while the short device has a dominant path towards the

top, a secondary path at the bottom and third less used path in the center. The edge on the top fills

with larger droplets, making the area inaccessible to new emulsions. Notably, for all experiments

objects enter the medium uniformly, as designed to avoid bias.
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Figure 6.5: Normalized occupancy maps for devices with 60% porosity. (A) Short device. FOV

15.5 x 7.4 mm (B) Long device. FOV 30.5 x 7.4 mm

For the 60% porosity configuration, some droplets hang in the middle for extended periods. Com-

paring long and short devices, droplets focus more on the center in the long device. This behavior

is attributed to the higher porosity, where the fluid separates from the emulsions, which follow

the high-velocity stream in the middle. At the outlet, the velocity drops, causing more piling and

clustering, with droplets at the cluster edge moving around and being pushed back by passing

droplets. Additionally, more intermittent behavior is observed in the short device.



CHAPTER 6. TRANSPORT PROPERTIES OF EMULSIONS IN POROUS MEDIA 124

Figure 6.6: Normalized occupancy maps for devices with bimodal packing. (A) Wide device with

the red rectangle indicating the narrow device region. FOV 30 x 15mm (B) Narrow device. FOV

30 x 7.4 mm

When examining the width effect, the central pattern remains similar, but with a wider device,

droplets form clusters across the entire cross-section. The role of the wall is reduced, allowing

droplets to spread more. Pressure measurements show a significant increase in pressure with wider

devices, indicating more clustering and reduced permeability. The probability density function

(PDF) of average droplet velocities reveals more intermittency in the narrow device, while the wide

device exhibits a more uniform velocity distribution.
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Figure 6.7: Normalized occupancy maps showing the effect of interfacial tension differences. (A)

Using dye with propylene glycol. (B) Using dried dye. FOV 30 x 7.4 mm

Regarding the effect of interfacial tension, size and elasticity of the droplets significantly impact

stability. Using propylene glycol, lower surface tension leads to merging and polydispersity, as

seen in the top map. This merging results in exploring more paths, compared to the dried dye

map, where a single path is often explored due to clogging with large droplets. This also leads to

slower motion and longer residency times. Clusters form and single paths emerge, consistent with

observations across different experiments.

6.6 Pressure Measurements and Experimental Images

The pressure measurements recorded during each experiment are displayed, along with example

images captured at select times. These images illustrate the emulsion behavior and the impact of

varying physical network configurations on pressure dynamics. By connecting the pressure mea-

surements to the observed emulsion behavior, additional insight of the interplay between emulsion

transport and pressure changes within the porous media is gained.

During each experiment, pressure measurements were continuously recorded using a high-precision

pressure transducer connected to the microfluidic device. These measurements allowed us to mon-

itor the pressure fluctuations and identify correlations between pressure changes and emulsion

dynamics.
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Figure 6.8: Pressure measurements and experimental images for 40% porosity short device. FOV

15.5 x 7.4 mm
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Figure 6.9: Pressure measurements and experimental images for 40% porosity long device. FOV

30.5 x 7.4 mm

Figure 6.10: Pressure measurements and experimental images for 60% porosity short device.FOV

15.5 x 7.4 mm
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Figure 6.11: Pressure measurements and experimental images for 60% porosity long device. FOV

30 x 7.4 mm

Figure 6.12: Pressure measurements and experimental images for interfacial tension differences

using propylene glycol.FOV 30 x 7.4 mm
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Figure 6.13: Pressure measurements and experimental images for interfacial tension differences

using dried dye. FOV 30 x 7.4 mm
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Figure 6.14: Pressure measurements and experimental images for the wide device. FOV 30 x 15

mm

6.7 Results and Analysis

6.7.1 Velocity Distributions

To facilitate a comprehensive comparison of the experiments, the probability density function

(PDF) of all velocities for all emulsions across all experiments is plotted. As anticipated, the

majority of droplets exhibit small velocities near the injection rate, with some zero values indi-

cating droplets that remain trapped for extended periods. Nevertheless, all experiments also show

instances of small populations with exceptionally high velocities.
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Figure 6.15: Velocity distributions for all experiments: (A) Velocity in the x-direction (Vx), (B)

Velocity in the y-direction (Vy), (C) Magnitude of velocity (|V |), and (D) Normalized magnitude

of velocity (|V |), normalized by ⟨V ⟩ = Q/(A · ϕ). Velocities are shown in units of mm/s. The plot

highlights the differences in velocity profiles across various porous media configurations.

In the normalized velocity distributions (Figure 6.15D), it is observed that:

1. For the 40% porosity (short and long), the velocities drop fastest, indicating less clustering

and more straightforward passage of emulsions through the medium.

2. The longer versions of these configurations shift slightly to higher normalized magnitudes

compared to their shorter counterparts.

3. Comparing monodisperse to polydisperse emulsions, as discussed in previous studies, similar

patterns emerge with a slight increase in velocities for polydisperse emulsions due to increased

deformability and bursts through smaller pores.
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4. In the narrow versus narrow with propylene glycol (PG), the higher deformability of droplets

leads to increased velocities as they navigate and burst through smaller pores.

5. Comparing wide versus narrow configurations, the wide device shows a small divot in the ini-

tial distribution, indicating more diffusive emulsions at lower velocities and increased cluster-

ing. The higher velocities in the wide device suggest more frequent bursts through additional

pores.

Interestingly, the PG and wide configurations show similar profiles in Vx (Figure 6.15A), Vy (Figure

6.15B), and |V | (Figure 6.15C), but diverge when normalized. This indicates that despite the geo-

metric similarities, the deformability induced by PG significantly impacts the emulsion dynamics.

More similarities are observed between the PG and wide configurations than between the narrow

and narrow PG setups. Baseline pressures for the wide and PG configurations are larger than the

narrow configuration which may lead to a higher number of bursting events.

The analysis indicates that while most droplets exhibit low velocities, a significant number of high-

velocity events highlight the complex interplay between emulsion size, deformability, and porous

media structure.

Average Velocity of Emulsions

This section discusses the distribution of average velocity for each emulsion droplet across different

experiments and porous media configurations. By examining the Probability Density Function

(PDF) tails and central peaks, we can draw comparisons and understand the effects of varying

porosity, device length, and device width on emulsion transport.

Porosity Changes: When comparing devices with different porosities (Figure 6.16), the lower

porosity device exhibits a longer tail towards higher velocities. This is due to more burst events

through smaller pore throats and higher pore velocities resulting from the reduced overall volume,

which increases flow rates through the existing pores. In the longer devices, the tails of the velocity

distributions converge, with the bulk of velocities shifting slightly to the right in the lower porosity

device. This indicates that emulsions in lower porosity media travel at higher velocities overall.

Additionally, an extra peak at low velocities is observed in the lower porosity device, attributed to

clustering, which is less prevalent in the higher porosity (60%) device.
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Figure 6.16: Distribution of average velocity for emulsions in devices with varying porosity. (A)

40% vs. 60% porosity. (B) 40% long vs. 60% long.

Changes in Length: Comparing the average velocity distribution of emulsions in devices of

varying lengths but similar porosity (Figure 6.17), we observe a shift towards higher velocities in

the longer devices. In the 60% porosity devices, this shift is more pronounced, but there is no

secondary peak near zero velocity, indicating the absence of large clusters. For the 40% porosity

devices, the shift is smaller but noticeable, with the secondary peak due to emulsion clustering with

near-zero velocities.

Figure 6.17: Distribution of average velocity for emulsions in devices with varying lengths. (A)

40% porosity short vs. long. (B) 60% porosity short vs. long.
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Narrow vs. Wide: When comparing narrow and wide devices (Figure 6.18), the narrow device

exhibits a longer tail towards higher velocities, with a subtle peak at low velocities and another

around 1, similar to the 40% long device with comparable porosity. The wide device, however,

shows a shorter tail and a single peak at a much lower velocity (0.25). This difference is likely

due to the emulsions acting in a more diffusive regime in the wider device, with more space for

exploration and less time spent in clusters. Interestingly, despite some clustering, there are no

significant peaks near zero, possibly due to the continuous reshuffling of droplets within clusters.

Figure 6.18: Distribution of average velocity for emulsions in narrow vs. wide devices.

6.7.2 Mean Square Displacement (MSD) and Regime Analysis

Introduction

In this section, we aim to quantify the transport regimes within porous media by analyzing the

Mean Square Displacement (MSD) of emulsion droplets. This analysis enables us to distinguish

between diffusive, advective, and anomalous transport behaviors.

Mean Square Displacement (MSD) Analysis

The MSD is defined as:

MSD(t) = ⟨[x(t)− x0]
2⟩ (6.1)

where x(t) denotes the position of the emulsion droplet at time t, and the brackets indicate an

average over the entire path.

To determine the transport nature, we examine the log-log plots of MSD as a function of time. The

slope of these plots, denoted as α, characterizes different transport regimes:
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• α ≈ 1: Diffusive transport, indicative of random motion following Fick’s law.

• α > 1: Superdiffusive transport, suggesting directed or advective motion often due to external

forces.

• α < 1: Subdiffusive transport, where motion is hindered, possibly by obstacles or binding

interactions.

• α = 2: Ballistic transport, indicating constant velocity motion.

Alpha Distribution and Its Significance

Before discussing the distribution of α values, it is crucial to understand their derivation from the

MSD analysis. By fitting the MSD data to a power-law function MSD(t) ∝ tα, we obtain the α

values for different experimental conditions.

The distribution of α values provides insights into the heterogeneity of transport regimes within

the porous media. This analysis helps identify the prevalence of different transport behaviors under

varying network configurations, such as changes in network width, porosity, and pore throat size.

Equations and Theoretical Background

The MSD can be described by the equation:

MSD(t) = Ktα (6.2)

where K is a proportionality constant and α is the exponent characterizing the transport regime.

We will explore the distribution of α values to understand how different structural parameters

of the porous network influence emulsion transport. Analyzing the α distribution reveals the

diversity in transport behaviors and highlights regions with predominant subdiffusive, diffusive, or

superdiffusive dynamics.

Visualizing Transport Regimes

To visually illustrate the different transport regimes, consider the following diagram fromWikipedia,

which depicts anomalous diffusion and the corresponding α values:

https://en.wikipedia.org/wiki/File:Msd_anomalous_diffusion.svg
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Figure 6.19: Illustration of transport regimes for anomalous diffusion.

Rationale for Analyzing Alpha Distributions

By examining the distribution of α values, we gain a comprehensive understanding of the trans-

port dynamics within the porous media. This analysis reveals how different physical properties

of the network, such as pore size and connectivity, influence the movement of emulsion droplets.

Understanding these dynamics is crucial for applications in enhanced oil recovery, drug delivery,

and other fields where transport through porous media is relevant.

6.7.3 Results and Discussion

The following section will present the distribution of α values obtained from our experiments,

providing a detailed analysis of how network properties affect transport regimes. This discussion

will highlight the implications of our findings for the design and optimization of porous media in

various applications.

Alpha Distribution and Analysis

Building on our analysis of the Mean Square Displacement (MSD), we now delve into the distribu-

tion of α values to further elucidate the transport regimes within the porous media. By fitting the

MSD data to a power-law function MSD(t) ∝ tα, we derive the α values for various experimental

conditions.

Analyzing the distribution of α values enables us to evaluate the heterogeneity in transport be-

haviors and identify the prevalence of specific regimes under various network configurations. This



CHAPTER 6. TRANSPORT PROPERTIES OF EMULSIONS IN POROUS MEDIA 137

analysis involves examining the influence of parameters such as network width, porosity, and aver-

age pore throat size on the transport dynamics.

Additionally, we note that some large α values (greater than 2) can be attributed to complex

interactions such as complex flow patterns, particle-particle interactions, particle-pore interactions,

and burst events where emulsion droplets accelerate through narrow pores. These factors introduce

complexities that can impact our measurements and interpretations.

Understanding these complexities is essential for accurately interpreting the results and their im-

plications for practical applications. Insights gained from the α distribution analysis are crucial for

comprehending how different physical properties of the network influence the movement of emulsion

droplets. This knowledge is vital for optimizing the design of porous media for various industrial

and scientific applications, such as enhanced oil recovery and targeted drug delivery systems.

In the subsequent section, we present the detailed results of the α distribution analysis. We highlight

how network properties affect transport regimes and discuss the broader implications of our findings.

For the 40% porosity device (Figure 6.20A), the alpha distribution shows that the majority of emul-

sions fall within the superdiffusive regime (86.89%), with a smaller percentage in the subdiffusive

(9.37%) and ballistic (3.75%) regimes. This indicates that most emulsions in this network experi-

ence higher velocities, likely due to burst events through smaller pore throats. The long version of

the 40% porosity device (Figure 6.20B) exhibits a similar trend with slightly higher subdiffusion

(10.84%) and lower ballistic motion (1.7%), suggesting more consistent high-velocity transport over

longer distances and a tendency for some emulsions to be trapped longer, forming clusters.

The 60% porosity device (Figure 6.20C) displays an even higher proportion of emulsions in the

superdiffusive regime (90.49%) and fewer in the subdiffusive (5.68%) and ballistic (3.88%) regimes.

This reflects the simpler network structure with fewer obstacles, allowing more straightforward

flow paths. The long version of the 60% porosity device (Figure 6.20D) maintains this pattern

with slightly increased subdiffusion (6.65%) and ballistic motion (4.55%), indicating a stable and

efficient emulsion transport through a less complex network.
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Figure 6.20: Alpha distributions and MSD vs time plots for varying porosity devices. (A) 40%

porosity, (B) 40% porosity long, (C) 60% porosity, (D) 60% porosity long.

When comparing monodisperse (EXP1) and polydisperse (EXP2) emulsions (Figure 6.21 A and

B respectively), the monodisperse emulsions show a larger proportion in the subdiffusive regime

(19.81%), indicating more trapping and slower transport. The polydisperse emulsions (EXP2)

exhibit increased superdiffusive behavior (88.86%), suggesting that size variability aids in navigating

the porous media, reducing clogging, and enhancing overall transport efficiency.

In the comparison of narrow versus wide devices (Figure 6.21 C and D respectively), the narrow

device displays a significant portion in the superdiffusive regime (81.47%) and a smaller subdiffusive

component (18.53%). The wide device, however, shows a substantial increase in subdiffusive be-

havior (48.01%), indicative of more space allowing emulsions to diffuse slowly and form clusters less

frequently. This supports the earlier observation that wider devices enable more diffusive regimes

due to the larger exploration area and reduced clustering, resulting in lower overall velocities.
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Figure 6.21: Alpha distributions and MSD log-log plots for varying emulsion types and device

widths. (A) Monodisperse (EXP1), (B) Polydisperse (EXP2), (C) Narrow, (D) Wide.

The systematic analysis of alpha distributions and MSD versus time log plots reveals that the

transport properties of emulsions are significantly influenced by the porosity, length, and width of

the porous media. Lower porosity devices enhance the velocity of emulsions due to increased pore

velocities and more frequent burst events as emulsions navigate smaller pore throats. Polydisperse

emulsions exhibit more burst events as well as unclogging and clogging events, while monodispersed

emulsions quickly reach a stable regime without significant changes. The variation in polydisperse

emulsions allows for the shuffling of clustered or trapped emulsions and enables them to pass through

pores that monodisperse emulsions would typically not traverse. Longer devices are inherently more

complex, which can lead to increased clustering and higher pore velocities as certain paths become

blocked. Narrow devices promote superdiffusive transport, whereas wider devices allow for more

diffusive behavior, reducing overall emulsion velocities and clustering.

These findings enhance our understanding of emulsion transport in porous media, emphasizing the

critical role of network structure and emulsion properties in determining transport regimes. Future

research can build upon this to explore more complex configurations and their implications for
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various applications, such as enhanced oil recovery, soil remediation, and drug delivery systems.

6.8 Conclusion

This chapter has examined the transport properties of emulsions in diverse porous media, elucidat-

ing how the structural characteristics of the porous networks and the properties of the emulsions

influence their movement and transport regimes. By varying the porosity, length, and width of

the devices and analyzing the impacts on emulsion transport, the study reveals several key insights

into emulsion dynamics within porous structures.

The creation of different porous networks through random packing simulations allowed for precise

control over structural parameters, facilitating detailed studies. The analysis of normalized res-

idency maps showed how structural variations impact emulsion distribution and residency time.

Shorter devices exhibited distinct sections of emulsion exploration, while longer devices displayed

more evenly distributed paths, influenced by higher velocities and less clustering in higher porosity

media.

The examination of pressure measurements and example images highlighted the effects of interfacial

tension on emulsion stability and transport. Lower interfacial tension, achieved by removing propy-

lene glycol, reduced droplet deformability and polydispersity. Wider devices allowed emulsions to

diffuse more freely, reducing clustering and maintaining lower velocities compared to narrower

devices.

The velocity distribution analysis further emphasized the differences across experiments. Lower

porosity devices showed longer tails towards higher velocities due to increased burst events, while

higher porosity devices displayed slower average velocities. Longer devices shifted the velocity

distribution towards higher values, especially in lower porosity setups, where clustering significantly

influenced transport dynamics.

The analysis of α distributions and Mean Square Displacement (MSD) log-log plots reveals distinct

differences between natural and artificial porous media. Artificial porous media exhibit a wider

range of transport regimes, including instances of α > 2, signifying ballistic or hyper-ballistic

transport. This behavior is not observed in natural porous media, which tend to pack more closely,

as demonstrated in Figure 21. The closer packing in natural porous media restricts the occurrence

of ballistic transport, resulting in more stable and predictable emulsion movement.
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Natural porous media, with their inherent structural complexity and closer packing, facilitate more

stable and predictable emulsion transport, reducing instances of high-velocity, ballistic behavior. In

contrast, artificial porous media, which can be engineered with varying porosity and structure, allow

for more diverse transport regimes, including enhanced ballistic transport due to less constrained

pore pathways.

The MSD and alpha distribution analysis elucidates the transport regimes observed. Most emulsions

exhibited superdiffusive behavior, with polydisperse emulsions showing more dynamic transport

through unclogging and clogging events. Narrow devices promoted superdiffusion, while wider

devices facilitated more diffusive transport, highlighting the role of spatial dimensions in emulsion

dynamics.

In summary, this chapter demonstrates that the transport properties of emulsions in porous media

are intricately linked to the structural characteristics of the porous network and the properties of

the emulsions. The findings underscore the importance of considering these factors in designing and

optimizing processes that rely on emulsion transport, such as enhanced oil recovery, soil remediation,

and drug delivery systems. Future research should continue to explore these relationships in more

complex configurations to further advance the understanding of emulsion dynamics in porous media.



Chapter 7

Machine Learning in Emulsion

Transport

7.1 Introduction

The study of emulsion dynamics necessitates a refined approach to predict the movement of droplets

through a medium. Droplets in the previously mentioned experiments typically follow one of two

preferred paths, become stuck in the media, or are still traveling through the media. Employ-

ing machine learning techniques enhances our understanding and classification of these droplet

tracks. This chapter discusses the methodology used for predicting droplet tracks through data

preprocessing, feature extraction, and machine learning.

7.2 Data Preprocessing and Map Creation

Initially, we begin with the track map containing droplet data that was created from the tracking

frame data. Each key in the map represents an emulsion that was tracked comprising it’s positional

and velocity information over time. The first step involves filtering this map to create a new map

which contains only droplets with at least 350 data points. This ensures the maps that are being

used in the machine learning algorithm has sufficient data points for meaningful predictions. The

data used here is introduced in my latest paper. [?] Fig. 7.1 displays the trajectory information

taken from similar experiments.
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Figure 7.1: Trajectories of Emulsions being transported through a porous medium with Residency

Map Overlayed. FOV 13.5 x 7.4 mm

1 % Create a new Map

2 newMap = containers.Map('KeyType', 'double', 'ValueType', 'any');

3 newKeyIndex = 1;

4 % Iterate through the original Map

5 for k = 1:numKeys

6 objectData = Map1(keys{k});

7 if length(objectData) >= 350

8 newMap(newKeyIndex) = objectData;

9 newKeyIndex = newKeyIndex + 1;

10 end

11 end

7.3 Label Assignment

Each droplet is assigned a label based on its final position. The labels represent one of the two

paths, being stuck, or still traveling. The final x and y coordinates of the droplet determine the

label. If the droplet’s final x position exceeds 1700, it is classified as following Path 1 or Path 2

based on the y position. If the droplet does not fit these criteria and has more than 8000 data

points, it is classified as being stuck. All other droplets are labeled as still traveling through the

medium.
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1 for i = 1:numKeys

2 objectData = Map1(keys{i});

3 finalX = objectData(end).position_from_states(1);

4 finalY = objectData(end).position_from_states(2);

5 label = 0;

6

7 % Check for Path 1 and Path 2 first

8 if finalX > 1700

9 if finalY >= 540 && finalY <= 670

10 label = 1; % Path 1

11 elseif finalY >= 90 && finalY <= 240

12 label = 2; % Path 2

13 end

14 end

15 % If still unlabeled, check for stuck or still traveling

16 if label == 0

17 if length(objectData) > 8000

18 lastXPositions = arrayfun(@(x) x.position_from_states(1),

19 objectData(end-movingWindow+1:end));

20 lastYPositions = arrayfun(@(x) x.position_from_states(2),

21 objectData(end-movingWindow+1:end));

22 movingAvgX = movmean(lastXPositions, [10, 0]);

23 movingAvgY = movmean(lastYPositions, [10, 0]);

24

25 if (max(movingAvgX) - min(movingAvgX) <= pixelThreshold) &&

26 (max(movingAvgY) - min(movingAvgY) <= pixelThreshold)

27 label = 3; % Stuck

28 else

29 label = 4; % Still traveling

30 end

31 else

32 label = 4; % Still traveling

33 end

34 end

35

36 labels = [labels; label];
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7.4 Feature Extraction

For each droplet, a set of features indicative of its behavior is extracted. These features include

mean velocities, positional data at specific time steps, and metrics such as tortuosity and velocity

direction. Features are selected based on their relevance in emulsion transport and what can be

calculated from the positional data from tracking.

1 meanVelocityX = mean(arrayfun(@(x) x.velocity(1),

2 objectData(initialTimeSteps:initialTimeSteps)));

3 meanVelocityY = mean(arrayfun(@(x) x.velocity(2),

4 objectData(initialTimeSteps:initialTimeSteps)));

5 stdVelocity = std(arrayfun(@(x) norm(x.velocity),

6 objectData(initialTimeSteps:initialTimeSteps)));

7

8 initialPosX = objectData(1).position_from_states(1);

9 initialPosY = objectData(1).position_from_states(2);

10 posX_initialTimeStep = objectData(min(initialTimeSteps,

11 length(objectData))).position_from_states(1);

12 posY_initialTimeStep = objectData(min(initialTimeSteps,

13 length(objectData))).position_from_states(2);

7.5 Initial Time Steps for Prediction

An important aspect of our methodology is the consideration of only the initial time steps of an

object’s position data for prediction purposes. Specifically, we focus on the first 100 time steps,

corresponding to the initial 2 seconds of movement. This approach is crucial as it allows us to

capture the early movement characteristics of the droplets, which are often indicative of their

overall behavior and final classification.

By using only the initial time steps, we aim to use this data as a predictive event. If we were to use

all available data for classification, we would inherently know the droplet’s final position or path,

thus negating the need for prediction. The ability to accurately classify droplets based on these

early time steps demonstrates the usefulness of modeling in this way.

For each droplet, features are extracted from these initial 100 time steps. This includes calculating

mean velocities, positional data, and other derived metrics such as tortuosity and velocity direction.
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Focusing on this initial segment enables effective differentiation between droplets that follow Path

1, Path 2, become stuck, or continue traveling.

1 % Ensure enough time steps

2 if length(objectData) < initialTimeSteps

3 padSize = initialTimeSteps - length(objectData);

4 objectData = [objectData; repmat(objectData(end), padSize, 1)];

5 end

6

7 % Extract the initial frame

8 initialFrame = objectData(1).frame;

9 straightLineDist = sqrt((objectData(1).position_from_states(1) -

10 objectData(initialTimeSteps).position_from_states(1))^2

11 + (objectData(1).position_from_states(2)

12 - objectData(initialTimeSteps).position_from_states(2))^2);

13 accumulatedDist = 0;

14 for j = 2:initialTimeSteps

15 accumulatedDist = accumulatedDist + sqrt((objectData(j).position_from_states(1)

16 - objectData(j-1).position_from_states(1))^2

17 + (objectData(j).position_from_states(2)

18 - objectData(j-1).position_from_states(2))^2);

19 end

20 tortuosity = accumulatedDist / straightLineDist;

7.6 Random Forest for Classification

Random Forests, a powerful ensemble learning method introduced by Breiman [10], construct mul-

tiple decision trees during training and output the mode of the classes for classification or mean

prediction for regression tasks. Each tree is trained on a random subset of the data through boot-

strapping, with random subsets of features considered for splitting at each node. This randomness

helps to ensure that the ensemble of trees has low correlation, leading to improved model gener-

alization. The aggregation of the trees’ predictions reduces the variance and prevents overfitting,

making Random Forests robust and accurate in various applications.

MATLAB’s TreeBagger function closely follows the principles outlined in Breiman’s paper, imple-

menting Random Forests by training multiple decision trees on bootstrapped samples of the data

and aggregating their predictions. TreeBagger supports both classification and regression, and in-
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cludes additional functionalities such as out-of-bag error estimation and quantile regression. These

features provide enhanced flexibility and robustness, ensuring reliable model performance across

various datasets.

7.7 Training and Testing the Model

The extracted features are utilized to train a Random Forest model. The data is split into training

and testing sets, with 40% reserved for testing. The model is trained using the training set, and

its performance is evaluated on the testing set. Accuracy and confusion matrices are calculated to

assess the model’s predictive power.

1 cv = cvpartition(size(enhancedFeatures, 1), 'HoldOut', 0.4);

2 idx = cv.test;

3 XTrain = enhancedFeatures(~idx,:);

4 YTrain = labels(~idx);

5 XTest = enhancedFeatures(idx,:);

6 YTest = labels(idx);

7

8 % Creating the Random Forest model

9 RFModel = TreeBagger(numTrees, XTrain, YTrain, 'Method',

10 'classification', 'OOBPrediction', 'On', 'MinLeafSize', 1);

11

12 % Predicting using the Random Forest model

13 [YPred, ~] = predict(RFModel, XTest);

14 YPred = str2double(YPred);

15

16 % Calculate Accuracy and Confusion Matrix

17 acc = sum(YTest == YPred) / length(YTest);

18 C = confusionmat(YTest, YPred);

7.8 Evaluating Feature Combinations

The model’s performance is refined by evaluating different combinations of features. The best

combination is selected based on the highest true positive rate for a particular label, in this case,

label 3 (stuck). This is due to the fact that label 3 has the least amount of data points.
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1 % Iterate through the confusion matrices

2 for i = 1:size(avgConfMatrices, 3)

3 truePositivesLabel3 = avgConfMatrices(3, 3, i);

4 if truePositivesLabel3 > maxTruePositives

5 maxTruePositives = truePositivesLabel3;

6 bestComboIndex = i;

7 end

8 end

7.9 Results and Discussion

The best feature combination for predicting droplets that are stuck includes ‘meanVelocityX‘,

‘posXinitialTimeStep‘, ‘posYinitialTimeStep‘, and ‘initialFrame‘. The results indicate that even

with just 100 positional updates, our model can predict droplet tracks with an accuracy of up to

92%. This demonstrates the effectiveness of our feature extraction and machine learning approach in

making early and accurate predictions about droplet behavior. By leveraging the initial time steps,

we ensure that our model is trained to make predictions based on early motion data, significantly

enhancing its accuracy and reliability in classifying droplet tracks.

The average, minimum, and maximum values for each feature across different combinations are

summarized in Table 7.1. These values represent the number of emulsions predicted to become

trapped, which constituted our smallest data class. It is evident that the initial frame plays a

critical role in predicting whether an emulsion will get trapped in the media. This indicates that

emulsions present early in the process are more likely to be transported to smaller pores with high

local velocities, where they quickly become trapped and pinned.

The application of machine learning, specifically Random Forest models, in predicting droplet

tracks in emulsions is highly effective. By carefully selecting and evaluating feature combinations,

we achieve high accuracy in classifying droplets’ paths, their likelihood of being stuck, or continuing

to travel.

7.10 Conclusion and Future Work

This study represents a minimal yet promising application of machine learning in predicting droplet

tracks in emulsions. Despite its simplicity, the approach demonstrates that even with limited data,
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Table 7.1: Feature Summary Statistics

Feature AverageValue MinValue MaxValue

meanVelocityX 4.84 0 14

posXinitialT imeStep 5.09 0 14

posYinitialT imeStep 4.83 0 14

initialPosY 4.85 0 13

initialFrame 10.8 8 14

tortuosity 4.89 0 12.6

avgVelocityDirection 4.85 0 13

meanVelocityY 4.83 0 13

machine learning techniques can achieve significant predictive accuracy. By leveraging the initial

100 time steps of droplet movement, our model successfully classified the droplet tracks with up to

92% accuracy. This indicates a strong potential for machine learning in this field.

However, it is important to acknowledge that this work is based on a single experiment and one

specific porous media design. As more experiments are conducted and larger databases of emulsion

transport in porous media become available, there will be an opportunity to apply more advanced

machine learning techniques. These advanced methods can address the complex problem of emul-

sions in porous media more comprehensively.

Future research can benefit greatly from these expanded datasets. With more extensive data, it will

be possible to uncover foundational characteristics and underlying patterns in emulsion dynamics.

Advanced machine learning algorithms, such as deep learning and ensemble methods, could then

be employed to enhance the predictive models further.

In conclusion, while this study serves as a preliminary investigation, it highlights the promise of

machine learning in this domain. The continued development of experimental databases and the

application of sophisticated machine learning techniques will likely lead to significant advancements

in understanding and predicting the behavior of emulsions in porous media.



Chapter 8

Final Conclusion

8.1 Summary of Findings

This dissertation presents significant advancements in understanding the pore-level dynamics of

emulsions in porous media. We report the first multi-scale measurements of the dynamics of indi-

vidual droplets, droplet-droplet interactions, porous medium dynamic changes, and the bulk level

transport properties of the medium. The results of our research presents the formation of preferen-

tial flow paths due to permeability reduction which entails a decrease in medium permeability from

a bulk measurement perspective. The known anomalous transport and enhanced shear thickening

of emulsion reported in industrial processes can be truly explained by our pore-level measurements,

resolving a long-standing paradox in flow of emulsions in porous media.

By integrating cutting-edge microfluidic techniques, high-resolution 3D printing, and advanced

image processing methods, we have developed a robust framework for studying and characterizing

emulsion behavior in complex environments. Our innovative approach allowed precise control over

emulsion size, concentration, and injection rates, leading to detailed insights into the transport

mechanisms and interactions within porous structures.

Specifically, we found that by using high-resolution 3D printing to fabricate microfluidic devices,

we could consistently generate uniform droplets, crucial for studying the intricate dynamics of

multiphase flows. The control over emulsion size and concentration was achieved through precise

manipulation of flow rates and device geometries, allowing us to systematically investigate how

these factors influence emulsion transport.
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8.2 Broader Implications and Impact

The insights gained from this research have far-reaching implications across multiple disciplines,

including environmental science, biomedical engineering, and industrial processes. The ability to

manipulate and analyze emulsions at such a granular level opens up new avenues for practical

applications such as soil remediation, targeted drug delivery, and enhanced oil recovery. The

methods developed here provide a foundation for optimizing fluid dynamics in various porous

media, potentially leading to more efficient and sustainable practices in these fields.

8.2.1 Advancements in Microfluidic Technology

This research introduces a state-of-the-art integrated microfluidic and imaging system that facil-

itates real-time analysis and high-precision control of emulsion formation and transport. Using

high-resolution 3D printing, we fabricated microfluidic devices with precise geometries, allowing

us to consistently generate uniform droplets and systematically vary parameters such as poros-

ity, length, and width of the devices. These advancements set a new standard for precision and

reproducibility in experimental setups.

8.2.2 Enhanced Understanding of Emulsion Dynamics

Our study revealed the critical role of droplet size and distribution in defining preferential transport

paths within porous media. For example, we discovered that lower concentrations of emulsions flow

through pores with higher local velocities, leading to a 35% reduction in the porosity of the medium

due to trapping in smaller pores. This leads to the formation of preferential and highly tortuous

flow paths.

Furthermore, the discovery of the velocity-age power-law relationship, which is independent of

droplet size, suggests a potentially universal characteristic of porous media dynamics. This rela-

tionship indicates that the average velocity of the emulsions scales inversely with their residence

time within the porous structure, providing a fundamental insight into emulsion transport in com-

plex environments.

Additionally, the variational mode decomposition (VMD) method proved effective in analyzing

the velocity signals within the microfluidic channels. IMF 5, an intrinsic mode function obtained

through VMD, was particularly robust in separating physical flow components from oscillatory and
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noisy parts, predicting droplet sizes and formations accurately.

8.2.3 Opportunities for Machine Learning in Emulsion Dynamics

The methodologies developed in this dissertation lay a solid foundation for future experiments and

the creation of extensive databases on emulsion transport in porous media. These datasets will be

invaluable for leveraging machine learning techniques to further understand the complex nature of

emulsion transport, which is challenging to simulate accurately due to the intricate physics involved.

By conducting experiments and generating comprehensive datasets, future research can employ

advanced machine learning algorithms to identify patterns and predict emulsion behavior under

various conditions. This approach opens up new avenues for exploration, enabling the development

of predictive models that can handle the intricate dynamics of multiphase flows in porous struc-

tures. This includes accounting for lubrication between particles, particle-particle interactions, fluid

dynamics, and correlations between the flow in different pores due to complex physical interactions.

Machine learning can thus help unravel the complexities of deformable particles moving through

filters, which has significant implications for fields such as targeted medicine delivery in porous

tissues and other natural porous media that are difficult to experiment on and too complex for

traditional simulations.

The preliminary success in using machine learning to classify droplet tracks with up to 92% accuracy

demonstrates the potential of these techniques. As more data becomes available, the application of

deep learning and other sophisticated algorithms could significantly enhance our understanding and

control of emulsion transport processes. These advancements could lead to improved strategies for

managing and optimizing the flow of emulsions in various industrial and biomedical applications.

The ability to simulate and predict the behavior of emulsions in complex porous media using ma-

chine learning not only enhances our fundamental understanding but also offers practical solutions

for real-world challenges. This interdisciplinary approach can bridge the gap between experimen-

tal observations and theoretical models, providing a comprehensive toolset for future research and

applications in the field of emulsion dynamics.
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8.3 Conclusion

This dissertation has systematically examined the transport properties of emulsions in diverse

porous media, elucidating how the structural characteristics of the porous networks and the prop-

erties of the emulsions influence their movement. The integration of precise fabrication techniques,

advanced imaging, and sophisticated data analysis tools provides a comprehensive approach to

studying complex fluid systems.

The non-linear nature of emulsion transport was investigated through variational mode decomposi-

tion (VMD), revealing that certain intrinsic modes carry significant physical information about the

flow dynamics. Specifically, IMF 5 was found to have distinct spikes when the flow is initiated and

transitions into a plateau as uniform droplets form, indicating its robustness in predicting droplet

sizes and formations.

Our experimental findings demonstrated that natural porous media, with closer packing and in-

herent structural complexity, facilitate more stable and predictable emulsion movement, reducing

instances of ballistic transport. In contrast, artificial porous media, engineered with varying poros-

ity and structure, allow for more diverse transport regimes, including enhanced ballistic transport

due to less constrained pore pathways.

Furthermore, the development of a robust experimental framework and the creation of high-quality

datasets pave the way for future applications of machine learning in this field. The initial success

in predicting droplet tracks highlights the potential of machine learning to provide deeper insights

and improve control over emulsion transport processes. As larger databases are built and more

sophisticated algorithms are applied, significant advancements in understanding and predicting the

behavior of emulsions in porous media are expected.

By conducting experiments and generating comprehensive datasets, future research can employ

advanced machine learning algorithms to identify patterns and predict emulsion behavior under

various conditions. This approach opens up new avenues for exploration, enabling the development

of predictive models that can handle the intricate dynamics of multiphase flows in porous struc-

tures. This includes accounting for lubrication between particles, particle-particle interactions, fluid

dynamics, and correlations between the flow in different pores due to complex physical interactions.

In summary, this research advances our understanding of emulsion dynamics in porous media

and sets the stage for future innovations in microfluidic technology and fluid dynamics research.

The findings demonstrate the importance of considering structural characteristics and emulsion
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properties in designing and optimizing processes that rely on emulsion transport, such as enhanced

oil recovery, soil remediation, and drug delivery systems.

By addressing fundamental challenges and providing robust solutions, this dissertation propels the

field forward, offering new tools and insights that will benefit future studies and industrial appli-

cations alike. The potential for cross-disciplinary impact underscores the importance of continued

exploration and innovation in this vital area of study.
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