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Abstract 

Systems continue to grow in complexity to meet the demands of today’s society. To control 

severe nonlinearities and protect against errors in the system model, control methods with wider 

stability margins are necessary. However, most robust control methods require an increased 

energy cost to guarantee stability with wider margins. Furthermore, most current control methods 

are derived using system models, which are difficult to develop for complex systems. Model-

Free Sliding Mode Control is promising in overcoming the aforementioned difficulties; the 

control output is only determined by the system order, previous control values, and state 

measurements. The control scheme’s characteristics have been mathematically derived but may 

have important unexplored practical implications. Originally, Model-Free Controllers were only 

partially model-free due to assumptions on the control influence matrix. More recent controllers 

relaxed the assumption using a real-time estimator. In the present work, a model-free control 

implementation is developed exploiting the characteristic. The new implementation allows for 

quicker and easier model-free controller development. Additionally, model-free control’s current 

estimator is validated. A new estimator, which approximates the boundaries of the influence 

matrix (rather than the matrix itself) is proposed and tested in a sliding mode control setting. The 

new estimator allowed for stability in the reaching phase and comparable tracking performance 

in the sliding phase as a normal sliding mode controller. The tracking performance was a result 

of a lower control input, though this is not guaranteed in all circumstances. If the new estimator 

is added to the new model-free control implementation, the controller may perform better and 

more efficiently. In the first part of this work, the model-free controller and real-time estimator 

are derived. Next, a simulation study was performed to prove the feasibility of the new approach. 

Finally, recommendations for next steps of the research are outlined. 
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NOMENCLATURE 

𝐵  control influence matrix 

�̂�   estimate of 𝐵 

𝑑

𝑑𝑡
  time derivative operator (equivalent to an over dot) 

𝑑𝑖𝑎𝑔(·) diagonal matrix function: creates a matrix whose diagonal is · 

𝑓   the controller-independent part of the system model 

𝑓   the best estimate of 𝑓  

𝐼  identity matrix 

𝐿  used in the practical implementation of SMC to get s⃑ ̇ , see Section 3.3 

𝑚𝑎𝑥(·) maximum function: returns the maximum of · 

𝑚𝑖𝑛(·)  minimum function: returns the minimum of · 

𝑃  used in the practical implementation of SMC to get s⃑ , see Section 3.3 

𝑠   sliding mode function 

𝑠 ̇    time derivative of 𝑠  

𝑠𝑎𝑡(·)  saturation function: equal to 𝑠𝑔𝑛(·) if |·| > 1, equal to · otherwise 

𝑠𝑔𝑛(·)  signum function: equal to 0 if · is 0, equal to 
·

|·|
 otherwise 

𝑡  time variable 

�⃑⃑�   control input vector 

𝑣𝑒𝑐(·)  vectorization function: turns the matrix · into a vector by stacking its columns 

�⃑�   (actual) system states 

�⃑� ̇    time derivative of �⃑�  

�̃�   difference between the actual and desired system states 

�̃� ̇    the time derivative of �̃�  
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0  a matrix of all zeros 

�⃑�   estimator SMC state coefficient, see Section 4.2 

�⃑�   SMC discontinuous switching gain in the ideal setting 

𝛿  coefficient used in coupled SMC 

𝜀   control influence error 

𝜀̂   estimate of 𝜀  

𝜅   SMC discontinuous switching gain 

𝛬  positive definite matrix used in the definition of 𝑠  

�⃑�   the control output when 𝐵 is unitary 

�⃑⃑⃑�   SMC boundary layer thickness 

�⃑⃑⃑� ̇    time derivative of �⃑⃑⃑�  

�⃑�   vector created by stacking all �⃑� (𝑖), see Section 3.3 

�⃑� ̇    time derivative of �⃑�  

�̃�   difference between the real and desired values of �⃑�  

…  matrix element placeholder meaning “repeat while increasing indices to the right” 

⋮  matrix element placeholder meaning “repeat while increasing indices downward” 

⊗  Kronecker product, see Section A.1 

∘  Hadamard product, see Section A.1 

𝑎1  coefficient for state 1 or the first value in vector 𝑎 

𝑎2  coefficient for state 2 or the second value in vector 𝑎 

𝐵𝑘|𝑘  estimated value of B on iteration 𝑘 after final adjustments 

𝐵𝑘|𝑘−1  estimated value of B on iteration 𝑘 before final adjustments 

𝐵𝑚𝑎𝑥  maximum value of B 

𝐵𝑚𝑖𝑛  minimum value of B 
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𝐶𝑘  coefficient for the kth term of a polynomial 

�⃑� 𝑑  desired state values 

�⃑� (𝑖)  represents the set of all time derivatives of �⃑�  from 𝑖 = 0 through 𝑖 = 𝑛 − 1 

�⃑� (𝑛−1)  the (𝑛 − 1)th time derivative of �⃑�  

�⃑� (𝑛)  the 𝑛th time derivative of �⃑�  

�̃� (𝑛−1)  the (𝑛 − 1)th time derivative of �̃�  

�̃� (𝑛)  the 𝑛th time derivative of �̃�  

𝜅 ∗  SMC with variable boundary layer discontinuous switching gain 

𝜎𝑢  upper boundary constant in MFSMC 

SMC  sliding mode control 

MFSMC model-free sliding mode control 

MIMO  multi-input multi-output 
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1.0 INTRODUCTION 

Since the 19th century, control systems theory has grown to become an influential part of 

modern life. Traditional control methods were (and are) suitable for simple systems and well-

behaved nonlinear systems. However, severe nonlinearities can make applying traditional control 

laws difficult. The problem is exacerbated by inaccuracies in the system model due to error in 

parameter measurements and the simplifying assumptions in the system model. 

As a result of the aforementioned issues, control methods with wider stability margins 

have become popular. These robust control methods are provably stable for a general class of 

systems. One such example is Sliding Mode Control (SMC). To develop a sliding mode 

controller, a sliding mode with desirable characteristics for the system is chosen. Then, a 

controller is developed to cause squared magnitude of the sliding mode to be a Lyapunov 

function—a positive definite function (i.e., equal to 0 at the origin, greater than 0 otherwise) with 

a negative definite time derivative (i.e., equal to 0 at the origin, less than 0 otherwise) around a 

singular point in the operating region. If the measurement error does not exceed the assumed 

values, the closed-loop system will be stable. 

While SMC can be an ideal robust control choice, assumptions on the bounds of errors 

and unknown signals are integral in the derivation of these types of controllers. In many cases it 

may be desirable to assume wide error bounds. Doing so would make the system more robust 

against malfunction and would guarantee stability if the same controller is applied to multiple 

systems. In the case of SMC, increased robustness results in an increase in the energy 

requirements for the controller. In the most extreme case—where the bounds are unknown and 

thus assumed to be infinite—infinite energy from the controller would be required, severely 

limiting the controller’s practicality. 

A current solution to the deficiencies of traditional SMC is Model-Free Sliding Mode 

Control (MFSMC), which was developed in [1]. Rather than finding a way to widen the bounds 

of the error, model-free controllers avoid the system model entirely. The SMC-based controller 

is then developed using real-time state measurements and assumptions on the growth of the 

controller output. Since the first inception, the control system has been expanded to both square 

and non-square Multiple Input Multiple Output (MIMO) systems [2,3]. These were not truly 

“model-free” however, since an upper and lower bound was assumed for the input influence 

matrix, locking the matrix to a certain set of values. 

More recently, [4] proposed the use of an estimator to relax the assumptions on the 

control influence. Originally, the estimator estimated the minimum switching gain. Due to the 

approach’s lack of energy efficiency, [5] presented the idea of using the estimator to approximate 

the control influence. The estimate is used to calculate the bounds of the matrix, and the bounds 
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are then used in the controller. So far, the estimator’s convergence has been tested with some 

success.  

In this work, the previous estimation technique is validated. Then, a method for directly 

estimating the influence bounds is developed. SMC with and without the method is applied to a 

nonlinear, square systems, and the performance results are compared. This work also studies 

MFSMC’s implementation. Previous work has recreated MFSMC systems for each test plant. 

Thanks to MFSMC’s dependence on only the system order and the number of states, the present 

work removes other dependencies from MFSMC’s implementation. As a result, no other square 

MFSMC system is required to be created, even if the order or number of states changes. 

Simulation results using the old and new implementations are compared to validate the new 

approach. 

1.1 Focus and Proposed Purpose 

This work’s original purpose was to accomplish the following goals 

1. Derive a MFSMC scheme for MIMO, square, coupled systems (See Section 3.0). 

2. Create a generalized implementation of the scheme (See Section 3.3). 

3. Develop an improved estimator for MFSMC (See Section 4.0). 

4. Simulate the controller and estimator with various nonlinear systems (See Section 

5.0). 

5. (Time permitting) test the controller on original hardware. 

The focus of this work shifted away from Goal 1 and more towards Goals 2-4. A discussion of 

the accomplished goals – including motivation for the shift in focus – is given in Section 6.1. 
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2.0 LITERATURE REVIEW 

2.1 Robust Control with Wide Error Margins 

Sliding mode controllers are provably stable for a given range in the assumed parameters. 

Many facets of SMC are being explored, including stability under arbitrary error ranges and 

forms. For example, Zhou and Fisher [6] found conditions in which all nonlinear systems are 

stable. The controller was stable under a transformation of the Lyapunov function created from 

the sliding surfaces, provided the magnitude of each control input was greater than each 

component of one of the transformed variables. The theory illustrates the issues with widening 

the stability margins of SMC: the magnitude of the control input is dependent on the maximum 

magnitude of the error which is a gap in the research.  

Work alleviating the issue has been performed. Two examples are given in [7] and [8] 

(though their objectives were to design controllers with good performance in the reaching phase 

only). The Linear-Quadratic-Regulator-based SMC scheme in [7] optimally controls linear 

systems with nonlinear uncertainties. The method could be used to create a controller with a 

lower output magnitude than others while achieving similar—if not the same—performance.  

Cost functionals are not the only way to reduce the controller magnitude without 

performance losses. In [8], a controller is created exhibiting closed-loop stability so long as one 

of the controller parameters is larger than a linear combination of the system uncertainties. Since 

it is difficult to estimate the maximum uncertainty off-line, the authors proposed a novel on-line 

technique to calculate the controller parameter. The controller, which is proportional to the 

parameter, will, therefore, be optimized for each situation. 

Both controllers excel at what they were designed for but are not universal for two 

reasons. First, they were designed for specific systems (either second order-nonlinear [8] or 

linear with nonlinear unknowns [7]). The issue could be avoided if the controllers could 

accommodate arbitrary amounts of error (as discussed in Section 2.2). However, as with the 

controller in [6], both are dependent on the uncertainty magnitude—even if they are optimal for 

the given uncertainty. The preferred method to avoid the issue of unbounded uncertainty would 

be to avoid the modeling error sources. 

2.2 Model-Free Sliding Mode Control: Motivation and Previous Work 

Recently, Mizov [1] proposed a robust SMC scheme called Model-Free Sliding Mode 

Control (MFSMC). Unlike the previous methods, the new scheme did not assume a model form, 

only a unitary control influence matrix. By not assuming the model form, the control input could 

be found using previous inputs and state measurements. Therefore, the controller was 

independent of any modeling errors. Then, as a result of the work of Reis [2] and El Tin [3], the 

control system was expanded to MIMO systems with non-unitary control input influence 
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matrices. Several works have demonstrated MFSMC’s robust performance in situations where 

the control matrix’s boundaries are known [9,10]. 

To broaden the applicability of MFSMC, work has been done to relax the boundary 

assumptions on the influence matrix. Islam [4] proposed the use of a real-time estimator which 

was then adapted in [5] to estimate the input influence matrix. If the estimate error was below an 

assumed boundary, the system would be stable. Therefore, the estimator must perform well to 

ensure stability with the unknown input influence values. 

2.3 Time-Varying Parameter Estimation 

The estimator proposed by [4] and used in [5] is a least-squares real-time estimator with a 

bounded gain forgetting technique. While least-squares was originally devised for systems with 

constant parameters, the forgetting factor allows it to be used for time varying systems [11]. 

Where the estimator in [5] differs from the usual technique is it does not use an equation 

explicitly involving the estimated parameters. Rather, the estimator’s stable point is where the 

error in the sliding condition is zero (see Section 3.1.2). 

The method’s indirect nature is a departure from most other estimation techniques 

(including other time-varying estimation techniques [12–17]). Furthermore, it would be difficult 

to use a technique using an explicit equation due to the nature of MFSMC. Because MFSMC 

comes from a unity gain equation (see Section 3.0), the influence matrix would be eliminated 

during most estimator creation processes. Thus, a method not involving an explicit equation must 

be used and is proposed in this work. 

  



14 

 

3.0 MODEL-FREE SLIDING MODE CONTROL 

3.1 Background: Sliding Mode Control 

Sliding Mode Control (SMC) is a popular robust control method. It allows for control of 

systems with unknown parameters falling in a known range. Since MFSMC uses SMC 

techniques, a discussion of SMC is presented here. 

3.1.1 Lyapunov-Based Control 

SMC is one of several Lyapunov-Based Control methods. Lyapunov-Based Controllers 

mathematically ensure the stability of a system by showing it satisfies Lyapunov’s stability 

criterion: 

Given any system �⃑�(𝑛) = 𝑓(�⃑�(𝑖)), the system is asymptotically stable in a region 

of space if there is a positive definite function 𝑉(�⃑�(𝑖)) whose derivative �̇� is 

negative definite for all �⃑� in the region. [18] 

The argument �⃑�(𝑖) is the set of all time derivatives of �⃑� between 0 and 𝑛. First, a function 𝑉 is 

chosen. Then, a control input is chosen so 𝑉 satisfies the stability criterion. If the criterion is 

satisfied—even in the presence of uncertainties—the system is still stable. 

3.1.2 SMC Stability Criteria 

Most nonlinear systems may be written in the form: 

 �⃑�(𝑛) = 𝑓(�⃑�(𝑖), 𝑡) + 𝐵(�⃑�(𝑖), 𝑡)�⃑⃑� (1)   

The controller value is �⃑⃑�. Matrices 𝑓 and 𝐵 are unknown but bounded by [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] and 

[𝐵𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥], respectively. All �⃑�(𝑖) are known. Suppose �⃑⃑�   =   �̂� −1�⃑� . If �⃑� caused some 

predetermined function to satisfy Lyapunov’s stability theorem, the system would be stable.  

In SMC, the candidate Lyapunov function is defined using a “sliding mode” 𝑠: 

 𝑉 = 0.5𝑠𝑇𝑠 → �̇� = 𝑠𝑇�̇� (2)  

 
𝑠 = [

𝑑

𝑑𝑡
+ 𝛬]

𝑛−1

�̃� → �̇� = [
𝑑

𝑑𝑡
 +  𝛬]

𝑛 − 1

�̇̃� (3)  

When s⃑ = 0,  �̃� will go to 0 (along with the error in the system), so �⃑� should be chosen to make 

𝑉 a Lyapunov function. Since 𝑉 > 0, 𝑉 is a Lyapunov function if �̇� < 0.  Let: 

 �⃑�   =   −𝑓   − (𝑠 ̇   − �̃� (𝑛)) + �⃑� 𝑑
(𝑛)

− 𝜅  ∘ 𝑠𝑔𝑛 ( 𝑠  ). (4)   
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It is important to note if 𝜅 = �⃑� > 0 and there is no uncertainty, �̇� = −�⃑�𝑇|𝑠|  <  0. When 

uncertainty is present, 𝜅 may be chosen so  �̇� ≤ −�⃑�𝑇|𝑠|. The inequality is known as the sliding 

condition. After substituting in �̇� and rearranging, the inequality becomes: 

 𝑠 𝑇𝐵�̂� −1(𝜅  ∘ 𝑠𝑔𝑛 ( 𝑠  )) ≥ 𝑠 𝑇 [(𝐼 − 𝐵 �̂� −1) ((𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (𝑓  − 𝐵 �̂� −1  𝑓 )] + �⃑� 𝑇|𝑠 | (5)  

While upholding the inequality proves system stability, it leaves to many degrees of freedom. 

Satisfying the stronger inequality: 

 𝑠  ∘ 𝐵�̂� −1(𝜅  ∘ 𝑠𝑔𝑛 ( 𝑠  )) ≥ 𝑠  ∘ [(𝐼 − 𝐵 �̂� −1) ((𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (𝑓  − 𝐵 �̂� −1  𝑓 )] + �⃑�   ∘ |𝑠 | (6)  

proves stability while removing those degrees of freedom. There are several ways to solve the 

stronger inequality. Two methods (as developed in [19]) are discussed in 3.1.3 and 3.1.4.  

3.1.3 Decoupled SMC 

When the control inputs are decoupled (i.e. there is one input or the influence matrix is 

diagonal), the following relation is true: 

 𝑠𝑔𝑛(𝑠 ) ∘ 𝐵�̂� −1(𝜅  ∘ 𝑠𝑔𝑛 ( 𝑠  )) = 𝐵�̂� −1𝜅  (7)   

As a result, the inequality reduces to: 

 𝜅   ≥ 𝑠𝑔𝑛(𝑠 ) ∘ [(�̂�  𝐵−1  − 𝐼) ((𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (�̂�  𝐵−1  𝑓  − 𝑓 )] + �̂� 𝐵−1�⃑�  (8)   

If we define: 

 �̂�   =   √𝐵𝑚𝑎𝑥
 𝐵𝑚𝑖𝑛 (9)   

 
𝛽 =   √𝐵𝑚𝑎𝑥

 𝐵𝑚𝑖𝑛
−1 (10)   

the sliding condition is satisfied when: 

 𝜅   =   |𝛽 − 𝐼| (|�⃑� 𝑑
(𝑛)

| + |𝑠 ̇   − �̃� (𝑛)| + |𝑓 |) + 𝛽|𝑓 𝑚𝑎𝑥
 − 𝑓 | + 𝛽�⃑� . (11)   

3.1.4 Coupled SMC 

For the coupled case, Eq. (7) is not true. Instead, if  

 𝐵�̂� −1 = 𝛿 + 𝐼 (12)   

the sliding condition becomes: 

 𝑠   ∘ (𝛿 + 𝐼)(𝜅  ∘ 𝑠𝑔𝑛 ( 𝑠  )) ≥ 𝑠   ∘ [𝛿 ((𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (𝑓  − (𝛿 + 𝐼) 𝑓 )] + �⃑�   ∘ |𝑠 | (13)  

If 𝐷 =  𝑚𝑎𝑥(|𝛿|), 𝐷 is the matrix with only the diagonal elements of 𝐷, and 𝐷⦰ =  𝐷 − 𝐷: 
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𝜅   =   (𝐼 + 𝐷 − 𝐷⦰)

−1

[𝐷 (|𝑠 ̇   − �̃� (𝑛)| + |�⃑� 𝑑
(𝑛)

| + |𝑓 |) + |𝑓 𝑚𝑎𝑥
 − 𝑓 | + �⃑� ] (14)  

will cause the sliding condition to be satisfied. 

3.1.5 Dithering Reduction 

In general, basic SMC is not implementable due to the controller’s discontinuity. To 

solve the issue, [19] proposed a boundary layer in which the controller would become linear 

(regarding the sliding function). The linearity allows the controller to be continuous. Since this 

work is not concerned with the boundary layer, the resulting equations are given here. A more 

thorough discussion of the boundary layer is given in the original text.  

The boundary layer version presented in this work has a variable thickness �⃑⃑⃑� . To cause 

the controller to transition between a normal SMC scheme and a linear controller, the 𝜅   ∘ 𝑠𝑔𝑛(𝑠 ) 

is replaced with the 𝜅 ∗ ∘ 𝑠𝑎𝑡 (
𝑠 

�⃑⃑⃑⃑� 
). The values of �⃑⃑⃑�  and 𝜅 ∗ are given as: 

 
�⃑⃑⃑� ̇   =   {

−𝛬 �⃑⃑⃑�  + 𝛽𝑑
 𝜅 𝑑 𝛽𝑑

 𝜅 𝑑  > 𝛬 �⃑⃑⃑� 

− 𝛽𝑑
−2  𝛬 �⃑⃑⃑�  + 𝛽𝑑

−1  𝜅 𝑑 𝑒𝑙𝑠𝑒
 (15)  

 
𝜅 ∗ =   {

𝜅  − 𝛽−1  �⃑⃑⃑�  ̇   𝛽𝑑
 𝜅 𝑑  > 𝛬 �⃑⃑⃑� 

𝜅  − 𝛽 �⃑⃑⃑� ̇   𝑒𝑙𝑠𝑒
 (16)  

where 𝜅 𝑑 and 𝛽𝑑 are what the values of 𝜅  and 𝛽 would be if 𝑠 was 0. As discussed in [19], the 

method removes the unimplementable discontinuity while keeping the error within a certain 

boundary. 

3.2 MFSMC Derivation 

MFSMC is robust due to the avoidance of a system model and its basis in SMC. As a 

result, it may be derived in the same manner as all Sliding Mode Controllers. MFSMC was first 

derived in [3]. Square MFSMC was first applied to a coupled system in [5]. The present 

derivation rederives the controller and adds more discussion on the controller’s applicability to 

coupled systems.  

To create a model-free controller, start with the following unitary gain equation: 

 �⃑� (𝑛) =   �⃑� (𝑛) + 𝐵[�⃑⃑�   − �⃑⃑� 𝑘−1] + 𝜀  (17)   

where 𝜀   =  𝐵[�⃑⃑� 𝑘−1 − �⃑⃑� ] and �⃑⃑� 𝑘−𝑖 is the value of �⃑⃑� in the previous 𝑖𝑡ℎ time step. If we define 

𝜀̂   = �̂�[�⃑⃑� 𝑘−2 − �⃑⃑� 𝑘−1] and assume 𝜀 and 𝐵 are bounded by: 

 |𝜀 | < (1 + 𝜎𝑢)|𝜀̂ | (18)  

 𝐵𝑚𝑖𝑛 < 𝐵 < 𝐵𝑚𝑎𝑥 (19)  
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it is possible to apply traditional SMC principles to the model-free approach. Decoupled SMC 

has been used for all versions of MFSMC thus far (including coupled MFSMC). The controller is 

still stable because the coupled terms may be taken as part of the uncertainty (i.e., a part of 𝜀, 

still bounded by (1 + 𝜎𝑢)|𝜀̂ |). Noting �⃑� (𝑛) + 𝜀  is like 𝑓  in the SMC derivation, an MFSMC 

output may be defined as: 

 �⃑⃑�   =   �̂� −1[−�⃑� (𝑛)  − 𝜀̂  − (𝑠 ̇   − �̃� (𝑛)) + �⃑� 𝑑
(𝑛)  − 𝜅  ∘ 𝑠𝑔𝑛 ( 𝑠  )] + �⃑⃑� 𝑘−1 

 

(20)  

Now only κ⃑⃑  needs to be found. Noting again the sliding condition is: 

 𝑠   ∘ 𝑠 ̇   ≤ �⃑�   ∘ |𝑠 | (21)  

we can substitute in the definition of 𝑠 ̇   and replace �̃� (𝑛) with Eq. (17) minus �⃑� 𝑑
(𝑛)

. Finally, 

rearrange to get the inequality: 

 𝑠 𝑇𝐵�̂� −1(𝜅  ∘ 𝑠𝑔𝑛 ( 𝑠  )) ≥ 𝑠 𝑇 [(𝐼 − 𝐵 �̂� −1) (�⃑� (𝑛)  + (𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (𝜀  − 𝐵 �̂� −1  𝜀̂ )] + �⃑�   ∘ |𝑠 | (22)  

Since we are using decoupled SMC, we can take advantage of Eq. (7) and get: 

 𝜅   ≥ 𝑑𝑖𝑎𝑔(𝑠𝑔𝑛 ( 𝑠  )) [(�̂�  𝐵−1  − 𝐼) (�⃑� (𝑛)  + (𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (�̂�  𝐵−1  𝜀  − 𝜀̂ )] + �̂� 𝐵−1�⃑� (23)  

The final step is to maximize the right side and set it equal to 𝜅. The only difference between 

MFSMC’s approach and the approach in Section 3.1.3 is the grouping of 𝜀  and 𝜀̂ : 

 𝜅   =   |𝛽 − 𝐼|(|�̃� (𝑛)| + |𝑠 ̇   − �̃� (𝑛)|) + |𝛽 (1 + 𝜎𝑢) − 𝐼||𝜀̂ | + 𝛽�⃑�  (24)  

Both grouping methods are valid maximizations. Like SMC, the switching term in the control 

input makes the controller unimplementable. The dithering reduction techniques discussed in 

Section 3.1.5 may be added for practical use.  

As discussed, requiring known bounds of 𝐵 prevents MFSMC from being truly model-

free. However, the input influence matrix may be estimated in real-time. Influence matrix 

estimation is discussed in Section 4.0. 

3.3 Improved Implementation 

Mathematically, the creation of MFSMC is done. However, there is an important 

practical consideration. The purpose of MFSMC is to design a controller suitable to any problem, 

given the number of (nonderivative) states and the system order are known. The controller 

should be created once and then applied to any problem type. To allow for this versatility, SMC 

was derived in a general form. As previously discussed, only a correspondence between the 

general derivation and the terms in MFSMC is needed to derive MFSMC. However, the 

derivation by itself does not allow for the one-time creation of a broadly applicable controller 
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due to the polynomial operator in the sliding mode’s definition ( [
𝑑

𝑑𝑡
+ 𝛬]

𝑛  −  1
). The operator 

would have to be expanded by the controls engineer in every situation, limiting the controller’s 

use cases.  

To solve the issue, the following notation was developed. Again, the sliding surface 𝑠 𝑖𝑠: 

 
𝑠 = [

𝑑

𝑑𝑡
+ 𝛬]

𝑛−1

�̃� (25)  

The goal is to define an equivalent, generally implementable operation. If we define a vector �̃� 

and matrix 𝑃 to be: 

 𝑃 = [… 𝐶𝑘𝛬𝑛−𝑘 …] 𝑓𝑜𝑟  𝑘 ∈ [1, 𝑛] (26)  

 
�̃� = [

�̃�
⋮

�̃�(𝑛−1)
] (27)  

then 𝑠 = 𝑃�̃�. Since 𝑃 can be precomputed, the product may be automatically expanded by any 

program capable of matrix multiplication. Further, defining a similar matrix 𝐿: 

 𝐿 = [0 … 𝐶𝑘𝛬𝑛−𝑘 …] 𝑓𝑜𝑟  𝑘 ∈ [1, 𝑛 − 1] (28)  

�̇� may be computed as 𝐿�̃� + �̃�(𝑛). More importantly, 𝐿�̃�  may be used instead of 𝑠 ̇   − �̃� (𝑛). In 𝑃 

and 𝐿, 𝐶𝑘 is the 𝑘𝑡ℎ coefficient of the (𝑛 − 1)𝑡ℎ row of pascal’s triangle, which can be calculated 

from the formula given in [20]. A model-free controller designed using the matrices presented 

here can, therefore, be practically applied to any system.  

Example Simulink implementations are given in Figures 1 and 2. The original 

implementation (Figure 1) was only suitable for 2x2 systems and has two copies of almost every 

block. To apply it to a system with a different number of states and inputs, these blocks would 

have to be duplicated again. The new implementation in Figure 2, however, can control any 

square system. 
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Figure 1.An implementation of MFSMC for a 2x2 system. 

Figure 2. A generalized implementation of MFSMC. 
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4.0 INFLUENCE MATRIX ESTIMATION 

4.1 Previous Approach: Least-Squares 

To avoid requiring assumed or known boundaries of the input influence matrix, [5] 

proposed estimating the influence matrix in real-time. Using a traditional estimator in MFSMC is 

complicated without a system model because finding a regression equation is not 

straightforward. In [5], the least-squares with bounded gain forgetting estimator from [4] was 

adapted. The estimator worked to reduce the error in the sliding condition instead of in an 

equation directly involving the input influence matrix.  

A validation of Hutson’s [5] results is given in Figure 3. The estimates were close enough 

(i.e., within an assumed margin) to the actual influence matrix, so the closed-loop system was 

stable in the Lyapunov sense. Still, improved estimates are desired. 

Figure 3. Estimated and real values of B. Estimations are in orange. Real Values are in blue. 
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4.2 Boundary Estimation 

An estimator was created to find the bounds of 𝐵 rather than the exact value. The 

estimated bounds could either be paired with a constant �̂�  or be used to estimate the influence 

matrix in real-time. As with the previous estimator, the bounds would have to be found without a 

system model. As a result, the sliding condition is the only relation involving 𝐵. The sliding 

condition cannot be solved quickly1. However, a solvable equation may be derived from the 

inequality. 

Again, the sliding condition and the form of the models MFSMC should be able to 

control are the following: 

 (�⃑⃑⃑� 
̇
  − �⃑� ) ∘ |𝑠 | ≥ 𝑠  ∘ 𝑠 ̇   (29)  

 �⃑� (𝑛) =   𝑓 (�⃑� (𝑖)  , 𝑡) + 𝐵(�⃑� (𝑖)  , 𝑡)�⃑⃑�  (30)  

The estimator’s goal is to find the influence matrix bounds. First, substitute the model form into 

the condition and rearrange to get the matrix on one side: 

 𝑠𝑔𝑛(𝑠 ) ∘ 𝐵�⃑⃑�   ≤ 𝑠𝑔𝑛(𝑠 ) ∘ [�⃑� 𝑑
(𝑛)  − 𝑓  − (𝑠 ̇   − �̃� (𝑛))] + (�⃑⃑⃑� ̇   − �⃑� ). (31)  

Next, flip the inequality and multiply both sides by a factor �⃑� which is defined as: 

 
�⃑�   =   {−1 (�⃑⃑⃑� ̇   − �⃑� ) ∘ |𝑠 | ≥ 𝑠  ∘ 𝑠 ̇  

1 𝑒𝑙𝑠𝑒
 (32)  

The new relationship encompasses both situations in which the sliding condition is upheld, and 

in which it is not. 

Since the goal is to estimate the bounds of 𝐵, an equation may be created whose solution 

is generally greater than the current 𝐵 matrix. Here, the derivation diverges for decoupled and 

coupled systems. We will start with the decoupled case, in which all elements of 𝐵 off of the 

diagonal are zero. Defining �⃑⃑�  to be a vector of the diagonal elements of the influence matrix, the 

left side reduces to: 

 �⃑�   ∘ 𝑠𝑔𝑛(𝑠 ) ∘ 𝐵�⃑⃑�   = �⃑�   ∘ 𝑠𝑔𝑛(𝑠 ) ∘ �⃑⃑�   ∘ �⃑⃑�   = 𝑑𝑖𝑎𝑔(�⃑�  ∘ 𝑠𝑔𝑛 ( 𝑠  ) ∘ �⃑⃑� )�⃑⃑�  . (33)  

Next, define: 

 

1 Solving inequalities would require similar methods to linear programs, which may not find a solution in real-time. 

They also are not guaranteed to find a solution depending on the set of inequalities. 
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 𝐴 =   |𝑑𝑖𝑎𝑔 ( �⃑�  ∘ 𝑠𝑔𝑛 ( 𝑠  ) ∘ �⃑⃑�  )| (34)  

 �⃑�   =   �⃑�   ∘ (|�⃑⃑⃑� ̇   − �⃑�  + 𝑠𝑔𝑛 ( 𝑠  ) ∘ (�⃑� 𝑑
(𝑛)  − (𝑠 ̇   − �̃� (𝑛)))| + 𝑓 ∘ (𝑠𝑔𝑛 ( 𝑠  ))2) (35)  

 
𝑓 =   {

𝑚𝑖𝑛 ( |𝑓 𝑚𝑖𝑛| , |𝑓 𝑚𝑎𝑥| ) 𝐵𝑘|𝑘
 =  𝐵𝑚𝑖𝑛

𝑚𝑎𝑥 ( |𝑓 𝑚𝑖𝑛| , |𝑓 𝑚𝑎𝑥| ) 𝐵𝑘|𝑘
 =  𝐵𝑚𝑎𝑥

 (36)  

Using these equations and definitions, the influence matrix may be estimated as: 

 𝐵𝑘|𝑘 =  𝑚𝑎𝑥(𝐵𝑘|𝑘−1
 , 𝐵𝑘−1|𝑘−1) (37)  

 𝐵𝑘|𝑘−1 =  𝑑𝑖𝑎𝑔(𝐴+  �⃑�  ) (38)  

where 𝐴+ is the pseudoinverse of 𝐴. 𝐵𝑘|𝑘−1 is the exact solution to the equation. However, if any 

of the current values of 𝐵 are less than their corresponding maxima, some of the estimated values 

will be underestimated. Thus, the actual estimate 𝐵𝑘|𝑘 is found by comparing the equation’s 

solution with the last estimates.  

When the system is not decoupled, �⃑�   ∘ 𝑠𝑔𝑛(𝑠 ) ∘ 𝐵�⃑⃑� may be vectorized to obtain 

[�⃑⃑� 𝑇 ⊗ 𝑑𝑖𝑎𝑔(�⃑�   ∘ 𝑠𝑔𝑛(𝑠 ))]𝑣𝑒𝑐(𝐵) (applying identities 3 and then 1 from Appendix A.1). Like in 

the decoupled case, 𝐴 may be redefined as: 

 𝐴 =   |�⃑⃑� 𝑇  ⊗ 𝑑𝑖𝑎𝑔 ( �⃑�  ∘ 𝑠𝑔𝑛 ( 𝑠  ) )| (39)  

and the estimate now comes from: 

 𝑣𝑒𝑐(𝐵𝑘|𝑘−1) = 𝐴+�⃑�  . (40)   

Eq. (40) may be useful for MFSMC. However, many sliding mode controllers are formulated 

using the parameter 𝛿: 

 𝛿 =  𝐵�̂� −1 − 𝐼. (41)   

Given Eq. (41), rearrange the inequality to obtain: 

 𝑠𝑔𝑛(𝑠 ) ∘ 𝛿�⃑�   ≤ 𝑠𝑔𝑛(𝑠 ) ∘ (�⃑� 𝑑
(𝑛)  − 𝑓  − �⃑�  − (𝑠 ̇   − �̃� (𝑛))) + (�⃑⃑⃑� ̇   − �⃑� ) (42)  

and apply the previously discussed steps. As explained in Section 3.1.2, �⃑⃑�   =   �̂� −1�⃑� . The 

resulting  𝐴 and �⃑� are: 

 𝐴 =   |�⃑� 𝑇  ⊗ 𝑑𝑖𝑎𝑔 ( �⃑�  ∘ 𝑠𝑔𝑛 ( 𝑠  ) )| (43)  
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 �⃑�   =   �⃑�   ∘ (|�⃑⃑⃑� ̇   − �⃑�  + 𝑠𝑔𝑛 ( 𝑠  ) ∘ (�⃑� 𝑑
(𝑛)  − (𝑠 ̇   − �̃� (𝑛)) − �⃑� )| + 𝑚𝑎𝑥 ( |𝑓 𝑚𝑖𝑛| , |𝑓 𝑚𝑎𝑥| ) ∘ (𝑠𝑔𝑛 ( 𝑠  ))2) (44)  

 𝑣𝑒𝑐(𝐷𝑘|𝑘−1) = 𝐴+�⃑�  . (45)  

Note: 𝐷 is the estimate for the maximum value of 𝛿. Like with 𝐵, 𝐷𝑘|𝑘−1 should be compared to 

the previous estimates to keep only the highest values. 
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5.0 RESULTS 

5.1 General Implementation 

5.1.1 Two-State Comparison with Original Implementation 

To ensure the improved MFSMC implementation’s output aligns with the theory, both 

the new and original controllers were tested against the test system shown below: 

 �̈�1 = −𝑎1(𝑡)�̇�1
2 𝑐𝑜𝑠(2𝑥1) 𝑥2 + 𝑏11(𝑡)𝑢1 + 𝑏12(𝑡)𝑢2 (46)   

 �̈�2 = −𝑎2(𝑡)�̇�2
2�̇�1𝑥2 + 𝑏21(𝑡)𝑢1 + 𝑏22(𝑡)𝑢2 (47)   

A comparison between similar simulations for each implementation is given in Figures 4-7 and 

Table 1. 

Original Improved 

  

  

Figure 4.Closed-Loop Error responses for the original and improved implementations. 

The coefficient values and controller settings were identical in both simulations. The 

main controllers were created from identical derivations. However, the new controller included 
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an estimator dead zone to stop the estimator when 𝑠  was close enough to zero. The dead zone—

along with numerical differences in the Simulink blocks—explains the new implementation’s 

decreased error but increased control magnitude in Table 1 as well as in Figures 4 and 5, 

respectively. These differences also explain the high frequency mode in the improved 

implementation. To decrease the chances of high frequency excitations, the SMC lambda 

parameter may be tuned to a lower value. In both cases, the system was stable. These results 

verify the generalized implementation’s correctness. 

Original Improved 

  

  

Figure 5.Control inputs for the original and improved implementations. 
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Figure 6. Original implementation's tracking performance. 

 

 
Figure 7. Improved implementation's tracking performance. 
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 Original Improved 

∫|�̃�1|2 𝑑𝑡 2.009 2.003 

∫|�̃�2|2 𝑑𝑡 2.001 2.000 

∫|𝑢1|2 𝑑𝑡 12.92 13.76 

∫|𝑢2|2 𝑑𝑡 23.83 25.51 

Table 1. Integral squared magnitudes of closed-loop errors and control inputs for both implementations. 

5.1.2 Four-State System Validation 

The generalized implementation was also simulated with a randomized Four-state linear 

system (�̇⃑� = 𝐴�⃑�  +  𝐵�⃑⃑�). While 𝐵 was diagonal with random elements, the 𝐴 matrix was 

completely random. Typical results are given in Figures 8 and 9. 

 

Figure 8. State trajectories for a four-state system with generalized MFSMC. 
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Figure 9. Control effort for a four-state system with generalized MFSMC. 

The figures show behavior similar to the previous MFSMC example: good tracking (though 

there was a higher overshoot) and an implementable control effort. The overshoot may be due to 

a poor control influence estimate from insufficient excitation. Regardless, the closed-loop system 

was stable. 

More importantly, the simulation was created using an exact copy of the controller used 

in the previous section. All controller parameters were the same except for the initial 𝐵 estimate, 

which was set as the actual influence matrix with a random error added to each element. Since 

Simulink was able to compile and run the simulation, the premise of the generalized 

implementation is validated – generally implemented MFSMC schemes can be applied to any 

system. 

5.2 Boundary Estimation in SMC 

5.2.1 Decoupled Performance Comparison 

Initial tests of the boundary estimator consisted of a sliding mode controller developed 

for both decoupled and coupled versions of the previously mentioned system. Random sinusoids 

were used to generate 𝑎1 and 𝑎2 in Eqs. (46) and (47). 

Simulation results for the decoupled controller and system with a constant influence 

matrix are presented in Figures 10-13. The results primarily serve as a validation; since the 

sliding condition was always met (see Figure 11, left panel: no difference between dotted and 

dashed lines), no additional information may be given to the estimator. The estimator is unable to 
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adjust its values as a result. While the lack of adjustment resulted in underestimated values, the 

controller’s tracking performance was comparable to a SMC scheme with known bounds on the 

control matrix. Both closed-loop systems were stable. 

 
Figure 10. Best guess, estimated, and actual B values for 

a decoupled, constant B system. 

 
Figure 11. Sliding condition with (left) and without 

(right) boundary estimation for a constant B system. 

 

 

 
Figure 12. Tracking performance with and without boundary 

estimator for a constant B system. 

 
Figure 13. Control effort with (left) and without (right) 

boundary estimation for a constant B system. 
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Typical simulation results for the decoupled controller and system with a varying 

influence matrix are given in Figures 14-17. The 𝐵 values were generated using the last 

technique discussed in Appendix A.3. The estimator system performed basically comparably to 

the regular SMC system; it reached the desired trajectories slightly faster for state 2, but slower 

for state 1. The speed might be due to the low estimate for 𝑏11’s bounds at first (as seen in Figure 

14). The estimate increased later in the simulation. Since good performance cannot be 

guaranteed during any SMC reaching phase [21], perfect tracking once the system reaches the 

desired states is more important. Tracking performance was approximately equal after reaching 

the desired trajectories. 

  

 

Figure 14. Real (solid), best guess (dashed) and estimated maximum (dotted) values of B. 

Figure 15. Desired (dotted), SMC (dashed) and SMC 

with boundary estimation (solid) state trajectories. 
Figure 16. Control inputs for SMC with and without boundary 

estimation (left and right, respectively). 
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It is important to note the boundary values are overestimates. The overestimation would 

guarantee stability while suggesting the control input magnitude is increased. However, Figure 

16 shows the magnitude decreased, including during the reaching phase. The result, along with 

the sliding condition in Figure 17 suggests the controller was more energy efficient both in the 

controller magnitude and from a sliding condition standpoint. The sliding condition efficiency is 

especially seen in state 1: though it was slower than the known system, the condition error is 

close to zero in the end. 

5.2.2 Coupled Performance 

To test the estimator’s coupled performance, an SMC system with boundary estimation 

was simulated with a coupled version of Eqs. (46) and (47). Again, the system parameters were 

generated using sinusoids as well as the last technique discussed in Appendix A.3. Typical 

simulations are given in Figures 18-22.  

Like the previous simulations, the system is stable with perfect tracking after some time. 

In the current simulation, however, the effect of the estimator on the state trajectories and sliding 

function is somewhat visible. The initial estimate increase reorients the second state towards its 

desired trajectory (see Figure 19). The secondary increases (between 10 and 12 seconds) were 

the result of the estimator increasing its estimates to stop instability in the second state (see 

Figure 20, expansions correspond to when 𝑠2�̇�2 is positive). Finally, Figure 20 shows the system 

became more sliding-mode efficient, especially around the time state 1 reached zero error. 

Figure 17. Sliding condition states with and without boundary estimation (left and right, respectively) 
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Figure 18. Real (dashed) and estimated boundaries (solid) of delta. 

 
Figure 19. State trajectories for coupled SMC with boundary estimation. 
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Figure 20. Sliding Condition for coupled SMC with boundary estimation. 

 

 

 
Figure 21. Sliding mode value for coupled SMC with 

boundary estimation 

 

 
Figure 22.Control effort for coupled SMC with boundary 

estimation 
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6.0 CONCLUSION 

This work developed a new MFSMC implementation as well as an influence gain 

estimator improvement scheme. The implementation was compared with previous methods in 

simulations using a nonlinear system model. The controllers performed comparably, with the 

new implementation exhibiting lower error at the cost of a slightly higher control effort. The 

estimation technique was paired with a SMC scheme and simulated against a controller with 

known bounds. Again, the controllers performed similarly, especially at the end of the SMC 

reaching phases. The controller with the estimator, however, showed a lower control effort.  

Both improvements move MFSMC towards its main goal: to be a control system where 

only the system order and number of states need to be known. Such a controller would decrease 

development and testing times for any system due to the avoidance of usual control system 

overheads (e.g. tuning). While previous works had achieved the goal mathematically, the new 

implementation was shown to achieve the goal practically. As a result, no other MFSMC 

schemes for square systems need to be implemented. The controller also does not need to be 

implemented in code; Simulink can automatically convert the model. Furthermore, the 

techniques presented in this work may be used to afford the same advantages to non-square 

MFSMC systems when they are created.  

The boundary estimator, on the other hand, improves MFSMC in the same ways as 

previous estimators (i.e., relaxing the need to know the influence matrix a priori), while 

eliminating the need for assumptions on the matrix’s upper and lower margins. As a result, the 

new estimator could cause comparable tracking as previous MFSMC systems. An MFSMC 

boundary estimator could also be more energy and sliding-mode efficient. Previous tests show 

the estimator could give lower controller magnitudes, using less energy for the same tracking 

performance. Furthermore, since the estimator is meant to better meet and not necessarily exceed 

the sliding condition, it better drives the sliding condition to zero. However, no proof is given 

that the values will be more efficient, and so this is not guaranteed. 

6.1 Accomplished Goals 

The original goals for this work are outlined in Section 1.1. As previously mentioned, the 

focus shifted away from Goal 1. The shift was due to time limitations and the sufficient coupled-

system performance of previously derived MFSMC schemes (as discussed in Section 3.2). The 

majority of this work was dedicated to accomplishing Goals 2 and 3 and demonstrating the 

accomplishments using Goal 4. Goals 2 and 3 are presented in Sections 3.3 and 4.0, respectively. 

The original intent of Goal 4 was to present simulation results using system models of various 

forms. However, other than the four-state linear system in Section 5.1.2, the system form given 

by Eqs. (46) and (47). No work towards Goal 5 was performed due to time limitations.  
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6.2 Future Work 

To generate better estimates—and system performance—when using MFSMC, a 

boundary estimator could be implemented. Currently, the boundary estimator would be used with 

a constant estimate of the influence matrix. In the future, work should be done to use the 

boundary estimator to find a better �̂� for the sake of performance. The better value could simply 

be generated using Eq. (10) (the same relationship as in the current MFSMC implementation). In 

addition, a more formal proof for the convergence and efficiency of the estimator should be 

found. 

Also, future MFSMC versions should either be an adaptation of the general 

implementation or should use the same techniques. Specifically, the techniques should be used to 

implement an MFSMC system for non-square systems. Doing so would allow MFSMC to truly 

only depend on the system order and the number of states (rather than just in theory). As a result, 

implementing a MFSMC scheme will be much easier while development time is severely 

reduced. 
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A. APPENDIX 

A.1 Useful Mathematical Identities 

Given matrices 𝐴, 𝐵, and 𝐶, as well as vectors 𝑠  and �⃑⃑�: 

1. 𝑣𝑒𝑐(𝐴 𝐵 𝐶) = [𝐶𝑇  ⊗ 𝐴]𝑣𝑒𝑐(𝐵) [22] 

2. 𝐵�⃑⃑� = 𝑣𝑒𝑐(𝐵 �⃑⃑� ) = [�⃑⃑� 𝑇  ⊗ 𝐼]𝑣𝑒𝑐(𝐵) 

3. 𝑑𝑖𝑎𝑔(𝑠 )�⃑⃑�   = 𝑠   ∘ �⃑⃑�   = 𝑑𝑖𝑎𝑔(�⃑⃑� )𝑠  

A.2 Simulink Models for Example Systems 

A.2.1 Plant Models 

 

Figure 23. Original test plant for Eqs. (46) and 24(47) (without random B matrix, used in MFSMC tests). 

Figure 24.Test plant for Eqs. (46) and 24(47) with random B matrix (used in SMC tests). 
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Figure 25. Linear test plant (used for four-state MFSMC test). 



42 

 

A.2.2 MFSMC Diagrams 

 

  

Figure 26. Full MFSMC plant and controller Simulink model. 

Figure 27. Original MFSMC implementation. 
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Figure 28. Connections to the new MFSMC implementation 

Figure 29. New MFSMC implementation. 



44 

 

 

  

Figure 30.MFSMC boundary layer and estimator. 

Figure 31. MFSMC estimator internals. 
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Figure 32. SMC Simulink diagram. Models without boundary estimation only have the top two blocks. 
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A.2.3 SMC and Boundary Estimation 

 

 

  

Figure 33. SMC diagram. 

Figure 34. SMC with boundary estimation. 



47 

 

 

 

 

  

Figure 35. Decoupled boundary estimator. 

Figure 36. Coupled boundary estimator. 
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A.3 Random Invertible Continuous Matrix Generation 

When testing and validating a robust control system, it may be helpful to generate 

random parameters. Successful control of these random systems acts as more proof that the 

controller works.  

A.3.1 Initial Approach: Determinant Adjustment 

One method for ensuring invertibility is to adjust one of the matrix values so that the minimum 

determinant over all time is greater than zero. Given that a two-by-two matrix’s determinant is: 

 𝑑𝑒𝑡 ([
𝑎11 𝑎12

𝑎21 𝑎22
]) = 𝑎11𝑎22 − 𝑎12

 𝑎21 

 
(48)  

If 
𝑑𝑒𝑡  (  [

𝑎11 𝑎12

𝑎21 𝑎22
] )  − 𝑚𝑑

𝑎22
 is added to 𝑎11, the minimum determinant will become 𝑚𝑑. The 

technique was used on matrices created by sine waves with random frequencies and offsets early 

on in this project’s testing. The method is simple and can easily be used to produce matrices with 

positive elements (which was a requirement for this project). However, it would produce 

matrices with significantly larger first elements than any of the others. Ultimately, determinant 

adjustment was replaced by the other techniques in this section. 

A.3.2 Invertible Matrix Products and Row Swaps 

A property of invertible matrices is that their products are invertible. Take, for example, 

an invertible matrix generated using sine waves. To randomize this time varying matrix, it may 

be multiplied by a random, constant, invertible matrix. The original implementation repeatedly 

performed this multiplication then swapped two rows. The row swap has the effect of 

randomizing the sign of the determinant. While this works, a simpler, equally effective method 

would be to perform one multiplication and one swap. 

The method has the same positive properties as determinant adjustment but keeps all of 

the elements on the same order of magnitude. That being said, the technique relies on a 

preexisting invertible, time varying matrix. This dependence constrains the randomness of the 

matrix. For example, if the initial matrix is sinusoidal, then the resulting matrix will still be 

sinusoidal. In many applications, the technique will be sufficient, even with this drawback.  

A.3.3 Linear Independence of Rotated Vectors 

If more variability is desired, matrices may be constructed using vectors rotated with 

different angles. These vectors would be linearly independent. An initial angle vector may be 

generated at each time step. The first column may be created by rotating a constant vector by 

those angles. Subsequent angle vectors may be generated and mapped to values sufficiently 

outside the previous vectors, and the remaining columns may be created using the same constant 

vector. 
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Like the previous methods, it is easy to create time varying matrices with positive 

elements by limiting the angles to a range that rotates the constant vector to a vector with 

positive elements. Since the angles are randomly chosen without accounting for previous values, 

the generated matrix changes with a very high frequency. To reduce the frequency, the matrix 

may be generated with a lower sampling rate and interpolated.  

A.3.4 Jacobi’s Formula and the Matrix Determinant Lemma 

The final method for generating invertible, time varying matrices explored here is based 

on Jacobi’s formula for the derivative of the determinant: 

 𝑑

𝑑𝑡
𝑑𝑒𝑡(𝐴) = 𝑡𝑟(𝑎𝑑𝑗 ( 𝐴 ) 𝑑

𝑑𝑡
 𝐴) = 𝑑𝑒𝑡(𝐴)𝑡𝑟(𝐴−1  𝑑

𝑑𝑡
 𝐴) [23] (49)  

This formula may be vectorized to produce:      

 𝑑

𝑑𝑡
𝑑𝑒𝑡(𝐴) = 𝑑𝑒𝑡(𝐴)𝑣𝑒𝑐𝑇(𝐼)𝑣𝑒𝑐(𝐴−1  𝑑

𝑑𝑡
 𝐴) = 𝑑𝑒𝑡(𝐴)𝑣𝑒𝑐𝑇(𝐼)[𝐼 ⊗ 𝐴−1]𝑣𝑒𝑐(

𝑑
𝑑𝑡

 𝐴) (50)  

If a system is created such that this equation is upheld, the determinant may be constrained 

between a set of values. One such system is: 

 �⃑⃑� 
̇
  =  𝛼𝛤+[𝜁 − 𝑑𝑒𝑡 ( 𝐵 )] + 𝛽𝛤⊥𝛤⊥

+[𝑣𝑒𝑐 ( 𝐵𝑟𝑒𝑓
 ) − �⃑⃑� ] (51)  

 𝛤 =  𝑑𝑒𝑡(𝐵)𝑣𝑒𝑐𝑇(𝐼)[𝐼 ⊗ 𝐵−1] (52)  

 𝜁 =  𝑠𝑎𝑡(𝑑𝑒𝑡 ( 𝐵𝑟𝑒𝑓
 ) , |𝐵|𝑙

 , |𝐵|ℎ) (53)  

where 𝛤⊥ is a matrix made from the set of vectors in the null space of 𝛤, 𝛼 and 𝛽 are parameters 

to be chosen by the user, and |𝐵|𝑙 and |𝐵|ℎ are the minimum and maximum desired values of 

𝑑𝑒𝑡(𝐵), respectively. 𝐵𝑟𝑒𝑓 can be any time varying matrix, including a matrix that is not always 

invertible. 

 An important consideration is the initial conditions for the system. 𝐵𝑟𝑒𝑓(𝑡 = 0) could be 

chosen, but there is no guarantee that its determinant will be within the desired bounds. A known 

matrix with the correct determinant may be used. If more randomness is desired, the system 

could be simulated for extra time and the times when the determinant was out of bounds could be 

truncated.  

Another option – and the one chosen in this work – was to adjust the known matrix with 

the matrix determinant lemma: 

 𝑑𝑒𝑡(𝐴 + �⃑⃑�  �⃑�  𝑇) = [1 + �⃑� 𝑇  𝐴−1  �⃑⃑�  ]𝑑𝑒𝑡(𝐴) [24] (54)  

If u is chosen at random and 𝐴 is the known matrix, v may be solved for. The new initial matrix 

is the sum in the left determinant. The matrix determinant lemma technique has one other 
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benefit: if the unadjusted matrix is diagonal, its determinant is less than the desired range, and 

both the matrix and u have positive elements, then there exists a �⃑� such that all of the initial 

matrix’s elements will be positive. 

A.4 Block Controllable Canonical Transformations 

One of the proposed objectives for this work was to control a linearized aircraft system as 

presented in [5]. While testing the controller with this system, there were two main issues. First, 

preliminary results were unfavorable. Second (and presumably the cause of the first), the system 

was actually non-square. A method for transforming the system into an equivalent square system 

was developed but work with the system was abandoned in favor of the other proposed goals. 

The transformation method is given in this section. 

Many linear systems are equivalent to square systems through state transformations. 

While it is easy to transform a linear nth-order square system to a non-square system (just change 

it to state space form), the reverse is not always trivial. Take, for example, the aircraft system 

given in [5]: 

𝐴 =   [

−0.2316 0.0633 −0.9956 0.051
−29.4924 −3.0169 0.0201 0.0

6.2346 −0.0274 −0.4169 0.0
0.0 1.0 0.0631 0.0

]         𝐵 =   [

0.0052 0.031
−36.4909 8.109
−0.4916 −2.8274

0.0 0.0

] 

This system has four states and two controls. If the system was converted to an equivalent, 

square system, it would be in a block controllable canonical form:  

 𝑧   =  𝑇�⃑�  (55)  

 
𝐴 =   [

0 𝐼𝑝−𝑚

𝐴21 𝐴22

] = 𝑇𝐴𝑇−1 
(56)  

 
𝐵 =   [

0

𝐵2
] = 𝑇𝐵 

(57)  

where p and m are the number of states and the number of control inputs, respectively. Since 

𝑇𝐴 = 𝐴𝑇, the following relations may be found: 

 [𝐼𝑝−𝑚 0]𝑇𝐴 = [0 𝐼𝑝−𝑚]𝑇 

 

(58)  

 [𝐼𝑝−𝑚 0]𝑇𝐵 = 0 (59)  

With these equations, a solution for 𝑇 may be computed. There are many ways to solve 

for 𝑇. In this work, the system: 
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 𝑣𝑒𝑐(Ṫ ) = −𝑄+𝑄𝑣𝑒𝑐(𝑇) 

 

(60)  

 
𝑄 =   [

𝐴𝑇  ⊗ [𝐼𝑝−𝑚 0] − 𝐼𝑝
 ⊗ [0 𝐼𝑝−𝑚]

𝐵𝑇  ⊗ [𝐼𝑝−𝑚 0]
] (61)  

 
𝑇(0) = [

0 𝐼𝑝−𝑚

𝐴21 𝐴22
] (62)  

was integrated. 𝑇, 𝐴, and 𝐵 were found to be: 

𝑇 =   [

−0.2907 0.0 −0.0032 −0.0268
0.0 0.0 0.0 1.0

0.0474 −0.0451 0.2891 −0.0148
0.0 1.0 0.0631 0.0

] 

𝐴 =   [

0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

−10.8585 −0.2995 −0.7245 0.0837
100.378 2.7171 1.7258 −2.9409

] 

𝐵 =   [

0.0 0.0
0.0 0.0

1.5051 −1.1818
−36.5219 7.9306

] 

This transformation matrix is invertible, which is required. While there is no proof that this 

method will make an invertible 𝑇, it is most likely that this is the case. 𝑇’s Invertibility should be 

checked before use. 
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