
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-23-2024

Improvements on Model-Free Sliding Mode Control’s Improvements on Model-Free Sliding Mode Control’s

Implementation and Estimation Techniques Implementation and Estimation Techniques

Joshua Coleman
jcc2126@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Coleman, Joshua, "Improvements on Model-Free Sliding Mode Control’s Implementation and Estimation
Techniques" (2024). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11861?utm_source=repository.rit.edu%2Ftheses%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

ROCHESTER INSTITUTE OF TECHNOLOGY

Improvements on Model-Free Sliding Mode Control’s

Implementation and Estimation Techniques

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

JOSHUA COLEMAN

Advisor: DR. AGAMEMNON CRASSIDIS

Thesis Committee

Dr. Jason Kolodziej

Dr. Kathleen Lamkin-Kennard

Dr. Sarilyn Ivancic

7/23/24

DEPARTMENT OF MECHANICAL ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

1

Abstract

Systems continue to grow in complexity to meet the demands of today’s society. To control

severe nonlinearities and protect against errors in the system model, control methods with wider

stability margins are necessary. However, most robust control methods require an increased

energy cost to guarantee stability with wider margins. Furthermore, most current control methods

are derived using system models, which are difficult to develop for complex systems. Model-

Free Sliding Mode Control is promising in overcoming the aforementioned difficulties; the

control output is only determined by the system order, previous control values, and state

measurements. The control scheme’s characteristics have been mathematically derived but may

have important unexplored practical implications. Originally, Model-Free Controllers were only

partially model-free due to assumptions on the control influence matrix. More recent controllers

relaxed the assumption using a real-time estimator. In the present work, a model-free control

implementation is developed exploiting the characteristic. The new implementation allows for

quicker and easier model-free controller development. Additionally, model-free control’s current

estimator is validated. A new estimator, which approximates the boundaries of the influence

matrix (rather than the matrix itself) is proposed and tested in a sliding mode control setting. The

new estimator allowed for stability in the reaching phase and comparable tracking performance

in the sliding phase as a normal sliding mode controller. The tracking performance was a result

of a lower control input, though this is not guaranteed in all circumstances. If the new estimator

is added to the new model-free control implementation, the controller may perform better and

more efficiently. In the first part of this work, the model-free controller and real-time estimator

are derived. Next, a simulation study was performed to prove the feasibility of the new approach.

Finally, recommendations for next steps of the research are outlined.

2

TABLE OF CONTENTS

Abstract ... 1

TABLE OF CONTENTS .. 2

LIST OF FIGURES .. 4

LIST OF TABLES .. 6

NOMENCLATURE ... 7

1.0 INTRODUCTION .. 10

1.1 Focus and Proposed Purpose .. 11

2.0 LITERATURE REVIEW ... 12

2.1 Robust Control with Wide Error Margins .. 12

2.2 Model-Free Sliding Mode Control: Motivation and Previous Work 12

2.3 Time-Varying Parameter Estimation .. 13

3.0 MODEL-FREE SLIDING MODE CONTROL.. 14

3.1 Background: Sliding Mode Control .. 14

3.1.1 Lyapunov-Based Control .. 14

3.1.2 SMC Stability Criteria .. 14

3.1.3 Decoupled SMC .. 15

3.1.4 Coupled SMC.. 15

3.1.5 Dithering Reduction .. 16

3.2 MFSMC Derivation .. 16

3.3 Improved Implementation ... 17

4.0 INFLUENCE MATRIX ESTIMATION .. 20

4.1 Previous Approach: Least-Squares ... 20

4.2 Boundary Estimation .. 21

5.0 RESULTS ... 24

5.1 General Implementation.. 24

5.1.1 Two-State Comparison with Original Implementation 24

5.1.2 Four-State System Validation ... 27

5.2 Boundary Estimation in SMC ... 28

3

5.2.1 Decoupled Performance Comparison ... 28

5.2.2 Coupled Performance.. 31

6.0 CONCLUSION ... 34

6.1 Accomplished Goals ... 34

6.2 Future Work .. 35

7.0 ACKNOWLEDGMENTS .. 36

7.1 Financial Support .. 36

7.2 Further Acknowledgements .. 36

8.0 REFERENCES ... 37

A. APPENDIX ... 40

A.1 Useful Mathematical Identities ... 40

A.2 Simulink Models for Example Systems .. 40

A.2.1 Plant Models .. 40

A.2.2 MFSMC Diagrams ... 42

A.2.3 SMC and Boundary Estimation ... 46

A.3 Random Invertible Continuous Matrix Generation .. 48

A.3.1 Initial Approach: Determinant Adjustment.. 48

A.3.2 Invertible Matrix Products and Row Swaps .. 48

A.3.3 Linear Independence of Rotated Vectors ... 48

A.3.4 Jacobi’s Formula and the Matrix Determinant Lemma 49

A.4 Block Controllable Canonical Transformations ... 50

4

LIST OF FIGURES

Figure 1.An implementation of MFSMC for a 2x2 system. ... 19

Figure 2. A generalized implementation of MFSMC. .. 19

Figure 3. Estimated and real values of B. Estimations are in orange. Real Values are in blue. ... 20

Figure 4.Closed-Loop Error responses for the original and improved implementations. 24

Figure 5.Control inputs for the original and improved implementations. 25

Figure 6. Original implementation's tracking performance. ... 26

Figure 7. Improved implementation's tracking performance. ... 26

Figure 8. State trajectories for a four-state system with generalized MFSMC. 27

Figure 9. Control effort for a four-state system with generalized MFSMC. 28

Figure 10. Best guess, estimated, and actual B values for a decoupled, constant B system. 29

Figure 11. Sliding condition with (left) and without (right) boundary estimation for a constant B

system. .. 29

Figure 12. Tracking performance with and without boundary estimator for a constant B system.

... 29

Figure 13. Control effort with (left) and without (right) boundary estimation for a constant B

system. .. 29

Figure 14. Real (solid), best guess (dashed) and estimated maximum (dotted) values of B. 30

Figure 15. Desired (dotted), SMC (dashed) and SMC with boundary estimation (solid) state

trajectories. .. 30

Figure 16. Control inputs for SMC with and without boundary estimation (left and right,

respectively). ... 30

Figure 17. Sliding condition states with and without boundary estimation (left and right,

respectively) .. 31

Figure 18. Real (dashed) and estimated boundaries (solid) of delta. .. 32

5

Figure 19. State trajectories for coupled SMC with boundary estimation. 32

Figure 20. Sliding Condition for coupled SMC with boundary estimation. 33

Figure 21. Sliding mode value for coupled SMC with boundary estimation 33

Figure 22.Control effort for coupled SMC with boundary estimation ... 33

Figure 23. Original test plant for Eqs. (46) and (47) (without random B matrix, used in MFSMC

tests). ... 40

Figure 24.Test plant for Eqs. (46) and (47) with random B matrix (used in SMC tests). 40

Figure 25. Linear test plant (used for four-state MFSMC test). ... 41

Figure 26. Full MFSMC plant and controller Simulink model. ... 42

Figure 27. Original MFSMC implementation. ... 42

Figure 28. Connections to the new MFSMC implementation .. 43

Figure 29. New MFSMC implementation. ... 43

Figure 30.MFSMC boundary layer and estimator. ... 44

Figure 31. MFSMC estimator internals. ... 44

Figure 32. SMC Simulink diagram. Models without boundary estimation only have the top two

blocks. ... 45

Figure 33. SMC diagram... 46

Figure 34. SMC with boundary estimation. .. 46

Figure 35. Decoupled boundary estimator. ... 47

Figure 36. Coupled boundary estimator.. 47

6

LIST OF TABLES

Table 1. Integral squared magnitudes of closed-loop errors and control inputs for both

implementations. ... 27

7

NOMENCLATURE

𝐵 control influence matrix

�̂�  estimate of 𝐵

𝑑

𝑑𝑡
 time derivative operator (equivalent to an over dot)

𝑑𝑖𝑎𝑔(·) diagonal matrix function: creates a matrix whose diagonal is ·

𝑓  the controller-independent part of the system model

𝑓  the best estimate of 𝑓 

𝐼 identity matrix

𝐿 used in the practical implementation of SMC to get s⃑ ̇ , see Section 3.3

𝑚𝑎𝑥(·) maximum function: returns the maximum of ·

𝑚𝑖𝑛(·) minimum function: returns the minimum of ·

𝑃 used in the practical implementation of SMC to get s⃑ , see Section 3.3

𝑠  sliding mode function

𝑠 ̇   time derivative of 𝑠 

𝑠𝑎𝑡(·) saturation function: equal to 𝑠𝑔𝑛(·) if |·| > 1, equal to · otherwise

𝑠𝑔𝑛(·) signum function: equal to 0 if · is 0, equal to
·

|·|
 otherwise

𝑡 time variable

�⃑⃑�  control input vector

𝑣𝑒𝑐(·) vectorization function: turns the matrix · into a vector by stacking its columns

�⃑�  (actual) system states

�⃑� ̇   time derivative of �⃑� 

�̃�  difference between the actual and desired system states

�̃� ̇   the time derivative of �̃� 

8

0 a matrix of all zeros

�⃑�  estimator SMC state coefficient, see Section 4.2

�⃑�  SMC discontinuous switching gain in the ideal setting

𝛿 coefficient used in coupled SMC

𝜀  control influence error

𝜀̂  estimate of 𝜀 

𝜅  SMC discontinuous switching gain

𝛬 positive definite matrix used in the definition of 𝑠 

�⃑�  the control output when 𝐵 is unitary

�⃑⃑⃑�  SMC boundary layer thickness

�⃑⃑⃑� ̇   time derivative of �⃑⃑⃑� 

�⃑�  vector created by stacking all �⃑� (𝑖), see Section 3.3

�⃑� ̇   time derivative of �⃑� 

�̃�  difference between the real and desired values of �⃑� 

… matrix element placeholder meaning “repeat while increasing indices to the right”

⋮ matrix element placeholder meaning “repeat while increasing indices downward”

⊗ Kronecker product, see Section A.1

∘ Hadamard product, see Section A.1

𝑎1 coefficient for state 1 or the first value in vector 𝑎

𝑎2 coefficient for state 2 or the second value in vector 𝑎

𝐵𝑘|𝑘 estimated value of B on iteration 𝑘 after final adjustments

𝐵𝑘|𝑘−1 estimated value of B on iteration 𝑘 before final adjustments

𝐵𝑚𝑎𝑥 maximum value of B

𝐵𝑚𝑖𝑛 minimum value of B

9

𝐶𝑘 coefficient for the kth term of a polynomial

�⃑� 𝑑 desired state values

�⃑� (𝑖) represents the set of all time derivatives of �⃑�  from 𝑖 = 0 through 𝑖 = 𝑛 − 1

�⃑� (𝑛−1) the (𝑛 − 1)th time derivative of �⃑� 

�⃑� (𝑛) the 𝑛th time derivative of �⃑� 

�̃� (𝑛−1) the (𝑛 − 1)th time derivative of �̃� 

�̃� (𝑛) the 𝑛th time derivative of �̃� 

𝜅 ∗ SMC with variable boundary layer discontinuous switching gain

𝜎𝑢 upper boundary constant in MFSMC

SMC sliding mode control

MFSMC model-free sliding mode control

MIMO multi-input multi-output

10

1.0 INTRODUCTION

Since the 19th century, control systems theory has grown to become an influential part of

modern life. Traditional control methods were (and are) suitable for simple systems and well-

behaved nonlinear systems. However, severe nonlinearities can make applying traditional control

laws difficult. The problem is exacerbated by inaccuracies in the system model due to error in

parameter measurements and the simplifying assumptions in the system model.

As a result of the aforementioned issues, control methods with wider stability margins

have become popular. These robust control methods are provably stable for a general class of

systems. One such example is Sliding Mode Control (SMC). To develop a sliding mode

controller, a sliding mode with desirable characteristics for the system is chosen. Then, a

controller is developed to cause squared magnitude of the sliding mode to be a Lyapunov

function—a positive definite function (i.e., equal to 0 at the origin, greater than 0 otherwise) with

a negative definite time derivative (i.e., equal to 0 at the origin, less than 0 otherwise) around a

singular point in the operating region. If the measurement error does not exceed the assumed

values, the closed-loop system will be stable.

While SMC can be an ideal robust control choice, assumptions on the bounds of errors

and unknown signals are integral in the derivation of these types of controllers. In many cases it

may be desirable to assume wide error bounds. Doing so would make the system more robust

against malfunction and would guarantee stability if the same controller is applied to multiple

systems. In the case of SMC, increased robustness results in an increase in the energy

requirements for the controller. In the most extreme case—where the bounds are unknown and

thus assumed to be infinite—infinite energy from the controller would be required, severely

limiting the controller’s practicality.

A current solution to the deficiencies of traditional SMC is Model-Free Sliding Mode

Control (MFSMC), which was developed in [1]. Rather than finding a way to widen the bounds

of the error, model-free controllers avoid the system model entirely. The SMC-based controller

is then developed using real-time state measurements and assumptions on the growth of the

controller output. Since the first inception, the control system has been expanded to both square

and non-square Multiple Input Multiple Output (MIMO) systems [2,3]. These were not truly

“model-free” however, since an upper and lower bound was assumed for the input influence

matrix, locking the matrix to a certain set of values.

More recently, [4] proposed the use of an estimator to relax the assumptions on the

control influence. Originally, the estimator estimated the minimum switching gain. Due to the

approach’s lack of energy efficiency, [5] presented the idea of using the estimator to approximate

the control influence. The estimate is used to calculate the bounds of the matrix, and the bounds

11

are then used in the controller. So far, the estimator’s convergence has been tested with some

success.

In this work, the previous estimation technique is validated. Then, a method for directly

estimating the influence bounds is developed. SMC with and without the method is applied to a

nonlinear, square systems, and the performance results are compared. This work also studies

MFSMC’s implementation. Previous work has recreated MFSMC systems for each test plant.

Thanks to MFSMC’s dependence on only the system order and the number of states, the present

work removes other dependencies from MFSMC’s implementation. As a result, no other square

MFSMC system is required to be created, even if the order or number of states changes.

Simulation results using the old and new implementations are compared to validate the new

approach.

1.1 Focus and Proposed Purpose

This work’s original purpose was to accomplish the following goals

1. Derive a MFSMC scheme for MIMO, square, coupled systems (See Section 3.0).

2. Create a generalized implementation of the scheme (See Section 3.3).

3. Develop an improved estimator for MFSMC (See Section 4.0).

4. Simulate the controller and estimator with various nonlinear systems (See Section

5.0).

5. (Time permitting) test the controller on original hardware.

The focus of this work shifted away from Goal 1 and more towards Goals 2-4. A discussion of

the accomplished goals – including motivation for the shift in focus – is given in Section 6.1.

12

2.0 LITERATURE REVIEW

2.1 Robust Control with Wide Error Margins

Sliding mode controllers are provably stable for a given range in the assumed parameters.

Many facets of SMC are being explored, including stability under arbitrary error ranges and

forms. For example, Zhou and Fisher [6] found conditions in which all nonlinear systems are

stable. The controller was stable under a transformation of the Lyapunov function created from

the sliding surfaces, provided the magnitude of each control input was greater than each

component of one of the transformed variables. The theory illustrates the issues with widening

the stability margins of SMC: the magnitude of the control input is dependent on the maximum

magnitude of the error which is a gap in the research.

Work alleviating the issue has been performed. Two examples are given in [7] and [8]

(though their objectives were to design controllers with good performance in the reaching phase

only). The Linear-Quadratic-Regulator-based SMC scheme in [7] optimally controls linear

systems with nonlinear uncertainties. The method could be used to create a controller with a

lower output magnitude than others while achieving similar—if not the same—performance.

Cost functionals are not the only way to reduce the controller magnitude without

performance losses. In [8], a controller is created exhibiting closed-loop stability so long as one

of the controller parameters is larger than a linear combination of the system uncertainties. Since

it is difficult to estimate the maximum uncertainty off-line, the authors proposed a novel on-line

technique to calculate the controller parameter. The controller, which is proportional to the

parameter, will, therefore, be optimized for each situation.

Both controllers excel at what they were designed for but are not universal for two

reasons. First, they were designed for specific systems (either second order-nonlinear [8] or

linear with nonlinear unknowns [7]). The issue could be avoided if the controllers could

accommodate arbitrary amounts of error (as discussed in Section 2.2). However, as with the

controller in [6], both are dependent on the uncertainty magnitude—even if they are optimal for

the given uncertainty. The preferred method to avoid the issue of unbounded uncertainty would

be to avoid the modeling error sources.

2.2 Model-Free Sliding Mode Control: Motivation and Previous Work

Recently, Mizov [1] proposed a robust SMC scheme called Model-Free Sliding Mode

Control (MFSMC). Unlike the previous methods, the new scheme did not assume a model form,

only a unitary control influence matrix. By not assuming the model form, the control input could

be found using previous inputs and state measurements. Therefore, the controller was

independent of any modeling errors. Then, as a result of the work of Reis [2] and El Tin [3], the

control system was expanded to MIMO systems with non-unitary control input influence

13

matrices. Several works have demonstrated MFSMC’s robust performance in situations where

the control matrix’s boundaries are known [9,10].

To broaden the applicability of MFSMC, work has been done to relax the boundary

assumptions on the influence matrix. Islam [4] proposed the use of a real-time estimator which

was then adapted in [5] to estimate the input influence matrix. If the estimate error was below an

assumed boundary, the system would be stable. Therefore, the estimator must perform well to

ensure stability with the unknown input influence values.

2.3 Time-Varying Parameter Estimation

The estimator proposed by [4] and used in [5] is a least-squares real-time estimator with a

bounded gain forgetting technique. While least-squares was originally devised for systems with

constant parameters, the forgetting factor allows it to be used for time varying systems [11].

Where the estimator in [5] differs from the usual technique is it does not use an equation

explicitly involving the estimated parameters. Rather, the estimator’s stable point is where the

error in the sliding condition is zero (see Section 3.1.2).

The method’s indirect nature is a departure from most other estimation techniques

(including other time-varying estimation techniques [12–17]). Furthermore, it would be difficult

to use a technique using an explicit equation due to the nature of MFSMC. Because MFSMC

comes from a unity gain equation (see Section 3.0), the influence matrix would be eliminated

during most estimator creation processes. Thus, a method not involving an explicit equation must

be used and is proposed in this work.

14

3.0 MODEL-FREE SLIDING MODE CONTROL

3.1 Background: Sliding Mode Control

Sliding Mode Control (SMC) is a popular robust control method. It allows for control of

systems with unknown parameters falling in a known range. Since MFSMC uses SMC

techniques, a discussion of SMC is presented here.

3.1.1 Lyapunov-Based Control

SMC is one of several Lyapunov-Based Control methods. Lyapunov-Based Controllers

mathematically ensure the stability of a system by showing it satisfies Lyapunov’s stability

criterion:

Given any system �⃑�(𝑛) = 𝑓(�⃑�(𝑖)), the system is asymptotically stable in a region

of space if there is a positive definite function 𝑉(�⃑�(𝑖)) whose derivative �̇� is

negative definite for all �⃑� in the region. [18]

The argument �⃑�(𝑖) is the set of all time derivatives of �⃑� between 0 and 𝑛. First, a function 𝑉 is

chosen. Then, a control input is chosen so 𝑉 satisfies the stability criterion. If the criterion is

satisfied—even in the presence of uncertainties—the system is still stable.

3.1.2 SMC Stability Criteria

Most nonlinear systems may be written in the form:

 �⃑�(𝑛) = 𝑓(�⃑�(𝑖), 𝑡) + 𝐵(�⃑�(𝑖), 𝑡)�⃑⃑� (1)

The controller value is �⃑⃑�. Matrices 𝑓 and 𝐵 are unknown but bounded by [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] and

[𝐵𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥], respectively. All �⃑�(𝑖) are known. Suppose �⃑⃑�   =   �̂� −1�⃑� . If �⃑� caused some

predetermined function to satisfy Lyapunov’s stability theorem, the system would be stable.

In SMC, the candidate Lyapunov function is defined using a “sliding mode” 𝑠:

 𝑉 = 0.5𝑠𝑇𝑠 → �̇� = 𝑠𝑇�̇� (2)

𝑠 = [

𝑑

𝑑𝑡
+ 𝛬]

𝑛−1

�̃� → �̇� = [
𝑑

𝑑𝑡
 +  𝛬]

𝑛 − 1

�̇̃� (3)

When s⃑ = 0, �̃� will go to 0 (along with the error in the system), so �⃑� should be chosen to make

𝑉 a Lyapunov function. Since 𝑉 > 0, 𝑉 is a Lyapunov function if �̇� < 0. Let:

 �⃑�   =   −𝑓   − (𝑠 ̇   − �̃� (𝑛)) + �⃑� 𝑑
(𝑛)

− 𝜅  ∘ 𝑠𝑔𝑛 (𝑠 ). (4)

15

It is important to note if 𝜅 = �⃑� > 0 and there is no uncertainty, �̇� = −�⃑�𝑇|𝑠| < 0. When

uncertainty is present, 𝜅 may be chosen so �̇� ≤ −�⃑�𝑇|𝑠|. The inequality is known as the sliding

condition. After substituting in �̇� and rearranging, the inequality becomes:

 𝑠 𝑇𝐵�̂� −1(𝜅  ∘ 𝑠𝑔𝑛 (𝑠 )) ≥ 𝑠 𝑇 [(𝐼 − 𝐵 �̂� −1) ((𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (𝑓  − 𝐵 �̂� −1 𝑓 )] + �⃑� 𝑇|𝑠 | (5)

While upholding the inequality proves system stability, it leaves to many degrees of freedom.

Satisfying the stronger inequality:

 𝑠  ∘ 𝐵�̂� −1(𝜅  ∘ 𝑠𝑔𝑛 (𝑠 )) ≥ 𝑠  ∘ [(𝐼 − 𝐵 �̂� −1) ((𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (𝑓  − 𝐵 �̂� −1 𝑓 )] + �⃑�   ∘ |𝑠 | (6)

proves stability while removing those degrees of freedom. There are several ways to solve the

stronger inequality. Two methods (as developed in [19]) are discussed in 3.1.3 and 3.1.4.

3.1.3 Decoupled SMC

When the control inputs are decoupled (i.e. there is one input or the influence matrix is

diagonal), the following relation is true:

 𝑠𝑔𝑛(𝑠 ) ∘ 𝐵�̂� −1(𝜅  ∘ 𝑠𝑔𝑛 (𝑠 )) = 𝐵�̂� −1𝜅  (7)

As a result, the inequality reduces to:

 𝜅   ≥ 𝑠𝑔𝑛(𝑠 ) ∘ [(�̂�  𝐵−1 − 𝐼) ((𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (�̂�  𝐵−1 𝑓  − 𝑓 )] + �̂� 𝐵−1�⃑�  (8)

If we define:

 �̂�   =   √𝐵𝑚𝑎𝑥
 𝐵𝑚𝑖𝑛 (9)

𝛽 =   √𝐵𝑚𝑎𝑥

 𝐵𝑚𝑖𝑛
−1 (10)

the sliding condition is satisfied when:

 𝜅   =   |𝛽 − 𝐼| (|�⃑� 𝑑
(𝑛)

| + |𝑠 ̇   − �̃� (𝑛)| + |𝑓 |) + 𝛽|𝑓 𝑚𝑎𝑥
 − 𝑓 | + 𝛽�⃑� . (11)

3.1.4 Coupled SMC

For the coupled case, Eq. (7) is not true. Instead, if

 𝐵�̂� −1 = 𝛿 + 𝐼 (12)

the sliding condition becomes:

 𝑠   ∘ (𝛿 + 𝐼)(𝜅  ∘ 𝑠𝑔𝑛 (𝑠 )) ≥ 𝑠   ∘ [𝛿 ((𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (𝑓  − (𝛿 + 𝐼) 𝑓 )] + �⃑�   ∘ |𝑠 | (13)

If 𝐷 =  𝑚𝑎𝑥(|𝛿|), 𝐷 is the matrix with only the diagonal elements of 𝐷, and 𝐷⦰ =  𝐷 − 𝐷:

16

𝜅   =   (𝐼 + 𝐷 − 𝐷⦰)

−1

[𝐷 (|𝑠 ̇   − �̃� (𝑛)| + |�⃑� 𝑑
(𝑛)

| + |𝑓 |) + |𝑓 𝑚𝑎𝑥
 − 𝑓 | + �⃑� ] (14)

will cause the sliding condition to be satisfied.

3.1.5 Dithering Reduction

In general, basic SMC is not implementable due to the controller’s discontinuity. To

solve the issue, [19] proposed a boundary layer in which the controller would become linear

(regarding the sliding function). The linearity allows the controller to be continuous. Since this

work is not concerned with the boundary layer, the resulting equations are given here. A more

thorough discussion of the boundary layer is given in the original text.

The boundary layer version presented in this work has a variable thickness �⃑⃑⃑� . To cause

the controller to transition between a normal SMC scheme and a linear controller, the 𝜅   ∘ 𝑠𝑔𝑛(𝑠 )

is replaced with the 𝜅 ∗ ∘ 𝑠𝑎𝑡 (
𝑠 

�⃑⃑⃑⃑� 
). The values of �⃑⃑⃑�  and 𝜅 ∗ are given as:

�⃑⃑⃑� ̇   =   {

−𝛬 �⃑⃑⃑�  + 𝛽𝑑
 𝜅 𝑑 𝛽𝑑

 𝜅 𝑑 > 𝛬 �⃑⃑⃑� 

− 𝛽𝑑
−2 𝛬 �⃑⃑⃑�  + 𝛽𝑑

−1 𝜅 𝑑 𝑒𝑙𝑠𝑒
 (15)

𝜅 ∗ =   {

𝜅  − 𝛽−1 �⃑⃑⃑�  ̇   𝛽𝑑
 𝜅 𝑑 > 𝛬 �⃑⃑⃑� 

𝜅  − 𝛽 �⃑⃑⃑� ̇   𝑒𝑙𝑠𝑒
 (16)

where 𝜅 𝑑 and 𝛽𝑑 are what the values of 𝜅  and 𝛽 would be if 𝑠 was 0. As discussed in [19], the

method removes the unimplementable discontinuity while keeping the error within a certain

boundary.

3.2 MFSMC Derivation

MFSMC is robust due to the avoidance of a system model and its basis in SMC. As a

result, it may be derived in the same manner as all Sliding Mode Controllers. MFSMC was first

derived in [3]. Square MFSMC was first applied to a coupled system in [5]. The present

derivation rederives the controller and adds more discussion on the controller’s applicability to

coupled systems.

To create a model-free controller, start with the following unitary gain equation:

 �⃑� (𝑛) =   �⃑� (𝑛) + 𝐵[�⃑⃑�   − �⃑⃑� 𝑘−1] + 𝜀  (17)

where 𝜀   =  𝐵[�⃑⃑� 𝑘−1 − �⃑⃑� ] and �⃑⃑� 𝑘−𝑖 is the value of �⃑⃑� in the previous 𝑖𝑡ℎ time step. If we define

𝜀̂   = �̂�[�⃑⃑� 𝑘−2 − �⃑⃑� 𝑘−1] and assume 𝜀 and 𝐵 are bounded by:

 |𝜀 | < (1 + 𝜎𝑢)|𝜀̂ | (18)

 𝐵𝑚𝑖𝑛 < 𝐵 < 𝐵𝑚𝑎𝑥 (19)

17

it is possible to apply traditional SMC principles to the model-free approach. Decoupled SMC

has been used for all versions of MFSMC thus far (including coupled MFSMC). The controller is

still stable because the coupled terms may be taken as part of the uncertainty (i.e., a part of 𝜀,

still bounded by (1 + 𝜎𝑢)|𝜀̂ |). Noting �⃑� (𝑛) + 𝜀  is like 𝑓  in the SMC derivation, an MFSMC

output may be defined as:

 �⃑⃑�   =   �̂� −1[−�⃑� (𝑛) − 𝜀̂  − (𝑠 ̇   − �̃� (𝑛)) + �⃑� 𝑑
(𝑛) − 𝜅  ∘ 𝑠𝑔𝑛 (𝑠 )] + �⃑⃑� 𝑘−1

(20)

Now only κ⃑⃑  needs to be found. Noting again the sliding condition is:

 𝑠   ∘ 𝑠 ̇   ≤ �⃑�   ∘ |𝑠 | (21)

we can substitute in the definition of 𝑠 ̇   and replace �̃� (𝑛) with Eq. (17) minus �⃑� 𝑑
(𝑛)

. Finally,

rearrange to get the inequality:

 𝑠 𝑇𝐵�̂� −1(𝜅  ∘ 𝑠𝑔𝑛 (𝑠 )) ≥ 𝑠 𝑇 [(𝐼 − 𝐵 �̂� −1) (�⃑� (𝑛) + (𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (𝜀  − 𝐵 �̂� −1 𝜀̂ )] + �⃑�   ∘ |𝑠 | (22)

Since we are using decoupled SMC, we can take advantage of Eq. (7) and get:

 𝜅   ≥ 𝑑𝑖𝑎𝑔(𝑠𝑔𝑛 (𝑠 )) [(�̂�  𝐵−1 − 𝐼) (�⃑� (𝑛) + (𝑠 ̇   − �̃� (𝑛)) − �⃑� 𝑑
(𝑛)

) + (�̂�  𝐵−1 𝜀  − 𝜀̂ )] + �̂� 𝐵−1�⃑� (23)

The final step is to maximize the right side and set it equal to 𝜅. The only difference between

MFSMC’s approach and the approach in Section 3.1.3 is the grouping of 𝜀  and 𝜀̂ :

 𝜅   =   |𝛽 − 𝐼|(|�̃� (𝑛)| + |𝑠 ̇   − �̃� (𝑛)|) + |𝛽 (1 + 𝜎𝑢) − 𝐼||𝜀̂ | + 𝛽�⃑�  (24)

Both grouping methods are valid maximizations. Like SMC, the switching term in the control

input makes the controller unimplementable. The dithering reduction techniques discussed in

Section 3.1.5 may be added for practical use.

As discussed, requiring known bounds of 𝐵 prevents MFSMC from being truly model-

free. However, the input influence matrix may be estimated in real-time. Influence matrix

estimation is discussed in Section 4.0.

3.3 Improved Implementation

Mathematically, the creation of MFSMC is done. However, there is an important

practical consideration. The purpose of MFSMC is to design a controller suitable to any problem,

given the number of (nonderivative) states and the system order are known. The controller

should be created once and then applied to any problem type. To allow for this versatility, SMC

was derived in a general form. As previously discussed, only a correspondence between the

general derivation and the terms in MFSMC is needed to derive MFSMC. However, the

derivation by itself does not allow for the one-time creation of a broadly applicable controller

18

due to the polynomial operator in the sliding mode’s definition ( [
𝑑

𝑑𝑡
+ 𝛬]

𝑛 − 1
). The operator

would have to be expanded by the controls engineer in every situation, limiting the controller’s

use cases.

To solve the issue, the following notation was developed. Again, the sliding surface 𝑠 𝑖𝑠:

𝑠 = [

𝑑

𝑑𝑡
+ 𝛬]

𝑛−1

�̃� (25)

The goal is to define an equivalent, generally implementable operation. If we define a vector �̃�

and matrix 𝑃 to be:

 𝑃 = [… 𝐶𝑘𝛬𝑛−𝑘 …] 𝑓𝑜𝑟 𝑘 ∈ [1, 𝑛] (26)

�̃� = [

�̃�
⋮

�̃�(𝑛−1)
] (27)

then 𝑠 = 𝑃�̃�. Since 𝑃 can be precomputed, the product may be automatically expanded by any

program capable of matrix multiplication. Further, defining a similar matrix 𝐿:

 𝐿 = [0 … 𝐶𝑘𝛬𝑛−𝑘 …] 𝑓𝑜𝑟 𝑘 ∈ [1, 𝑛 − 1] (28)

�̇� may be computed as 𝐿�̃� + �̃�(𝑛). More importantly, 𝐿�̃�  may be used instead of 𝑠 ̇   − �̃� (𝑛). In 𝑃

and 𝐿, 𝐶𝑘 is the 𝑘𝑡ℎ coefficient of the (𝑛 − 1)𝑡ℎ row of pascal’s triangle, which can be calculated

from the formula given in [20]. A model-free controller designed using the matrices presented

here can, therefore, be practically applied to any system.

Example Simulink implementations are given in Figures 1 and 2. The original

implementation (Figure 1) was only suitable for 2x2 systems and has two copies of almost every

block. To apply it to a system with a different number of states and inputs, these blocks would

have to be duplicated again. The new implementation in Figure 2, however, can control any

square system.

19

Figure 1.An implementation of MFSMC for a 2x2 system.

Figure 2. A generalized implementation of MFSMC.

20

4.0 INFLUENCE MATRIX ESTIMATION

4.1 Previous Approach: Least-Squares

To avoid requiring assumed or known boundaries of the input influence matrix, [5]

proposed estimating the influence matrix in real-time. Using a traditional estimator in MFSMC is

complicated without a system model because finding a regression equation is not

straightforward. In [5], the least-squares with bounded gain forgetting estimator from [4] was

adapted. The estimator worked to reduce the error in the sliding condition instead of in an

equation directly involving the input influence matrix.

A validation of Hutson’s [5] results is given in Figure 3. The estimates were close enough

(i.e., within an assumed margin) to the actual influence matrix, so the closed-loop system was

stable in the Lyapunov sense. Still, improved estimates are desired.

Figure 3. Estimated and real values of B. Estimations are in orange. Real Values are in blue.

21

4.2 Boundary Estimation

An estimator was created to find the bounds of 𝐵 rather than the exact value. The

estimated bounds could either be paired with a constant �̂�  or be used to estimate the influence

matrix in real-time. As with the previous estimator, the bounds would have to be found without a

system model. As a result, the sliding condition is the only relation involving 𝐵. The sliding

condition cannot be solved quickly1. However, a solvable equation may be derived from the

inequality.

Again, the sliding condition and the form of the models MFSMC should be able to

control are the following:

 (�⃑⃑⃑� 
̇
  − �⃑� ) ∘ |𝑠 | ≥ 𝑠  ∘ 𝑠 ̇   (29)

 �⃑� (𝑛) =   𝑓 (�⃑� (𝑖) , 𝑡) + 𝐵(�⃑� (𝑖) , 𝑡)�⃑⃑�  (30)

The estimator’s goal is to find the influence matrix bounds. First, substitute the model form into

the condition and rearrange to get the matrix on one side:

 𝑠𝑔𝑛(𝑠 ) ∘ 𝐵�⃑⃑�   ≤ 𝑠𝑔𝑛(𝑠 ) ∘ [�⃑� 𝑑
(𝑛) − 𝑓  − (𝑠 ̇   − �̃� (𝑛))] + (�⃑⃑⃑� ̇   − �⃑� ). (31)

Next, flip the inequality and multiply both sides by a factor �⃑� which is defined as:

�⃑�   =   {−1 (�⃑⃑⃑� ̇   − �⃑� ) ∘ |𝑠 | ≥ 𝑠  ∘ 𝑠 ̇  

1 𝑒𝑙𝑠𝑒
 (32)

The new relationship encompasses both situations in which the sliding condition is upheld, and

in which it is not.

Since the goal is to estimate the bounds of 𝐵, an equation may be created whose solution

is generally greater than the current 𝐵 matrix. Here, the derivation diverges for decoupled and

coupled systems. We will start with the decoupled case, in which all elements of 𝐵 off of the

diagonal are zero. Defining �⃑⃑�  to be a vector of the diagonal elements of the influence matrix, the

left side reduces to:

 �⃑�   ∘ 𝑠𝑔𝑛(𝑠 ) ∘ 𝐵�⃑⃑�   = �⃑�   ∘ 𝑠𝑔𝑛(𝑠 ) ∘ �⃑⃑�   ∘ �⃑⃑�   = 𝑑𝑖𝑎𝑔(�⃑�  ∘ 𝑠𝑔𝑛 (𝑠 ) ∘ �⃑⃑� )�⃑⃑�  . (33)

Next, define:

1 Solving inequalities would require similar methods to linear programs, which may not find a solution in real-time.

They also are not guaranteed to find a solution depending on the set of inequalities.

22

 𝐴 =   |𝑑𝑖𝑎𝑔 (�⃑�  ∘ 𝑠𝑔𝑛 (𝑠 ) ∘ �⃑⃑� )| (34)

 �⃑�   =   �⃑�   ∘ (|�⃑⃑⃑� ̇   − �⃑�  + 𝑠𝑔𝑛 (𝑠 ) ∘ (�⃑� 𝑑
(𝑛) − (𝑠 ̇   − �̃� (𝑛)))| + 𝑓 ∘ (𝑠𝑔𝑛 (𝑠 ))2) (35)

𝑓 =   {

𝑚𝑖𝑛 (|𝑓 𝑚𝑖𝑛| , |𝑓 𝑚𝑎𝑥|) 𝐵𝑘|𝑘
 =  𝐵𝑚𝑖𝑛

𝑚𝑎𝑥 (|𝑓 𝑚𝑖𝑛| , |𝑓 𝑚𝑎𝑥|) 𝐵𝑘|𝑘
 =  𝐵𝑚𝑎𝑥

 (36)

Using these equations and definitions, the influence matrix may be estimated as:

 𝐵𝑘|𝑘 =  𝑚𝑎𝑥(𝐵𝑘|𝑘−1
 , 𝐵𝑘−1|𝑘−1) (37)

 𝐵𝑘|𝑘−1 =  𝑑𝑖𝑎𝑔(𝐴+ �⃑�  ) (38)

where 𝐴+ is the pseudoinverse of 𝐴. 𝐵𝑘|𝑘−1 is the exact solution to the equation. However, if any

of the current values of 𝐵 are less than their corresponding maxima, some of the estimated values

will be underestimated. Thus, the actual estimate 𝐵𝑘|𝑘 is found by comparing the equation’s

solution with the last estimates.

When the system is not decoupled, �⃑�   ∘ 𝑠𝑔𝑛(𝑠 ) ∘ 𝐵�⃑⃑� may be vectorized to obtain

[�⃑⃑� 𝑇 ⊗ 𝑑𝑖𝑎𝑔(�⃑�   ∘ 𝑠𝑔𝑛(𝑠 ))]𝑣𝑒𝑐(𝐵) (applying identities 3 and then 1 from Appendix A.1). Like in

the decoupled case, 𝐴 may be redefined as:

 𝐴 =   |�⃑⃑� 𝑇 ⊗ 𝑑𝑖𝑎𝑔 (�⃑�  ∘ 𝑠𝑔𝑛 (𝑠 ))| (39)

and the estimate now comes from:

 𝑣𝑒𝑐(𝐵𝑘|𝑘−1) = 𝐴+�⃑�  . (40)

Eq. (40) may be useful for MFSMC. However, many sliding mode controllers are formulated

using the parameter 𝛿:

 𝛿 =  𝐵�̂� −1 − 𝐼. (41)

Given Eq. (41), rearrange the inequality to obtain:

 𝑠𝑔𝑛(𝑠 ) ∘ 𝛿�⃑�   ≤ 𝑠𝑔𝑛(𝑠 ) ∘ (�⃑� 𝑑
(𝑛) − 𝑓  − �⃑�  − (𝑠 ̇   − �̃� (𝑛))) + (�⃑⃑⃑� ̇   − �⃑� ) (42)

and apply the previously discussed steps. As explained in Section 3.1.2, �⃑⃑�   =   �̂� −1�⃑� . The

resulting 𝐴 and �⃑� are:

 𝐴 =   |�⃑� 𝑇 ⊗ 𝑑𝑖𝑎𝑔 (�⃑�  ∘ 𝑠𝑔𝑛 (𝑠 ))| (43)

23

 �⃑�   =   �⃑�   ∘ (|�⃑⃑⃑� ̇   − �⃑�  + 𝑠𝑔𝑛 (𝑠 ) ∘ (�⃑� 𝑑
(𝑛) − (𝑠 ̇   − �̃� (𝑛)) − �⃑� )| + 𝑚𝑎𝑥 (|𝑓 𝑚𝑖𝑛| , |𝑓 𝑚𝑎𝑥|) ∘ (𝑠𝑔𝑛 (𝑠 ))2) (44)

 𝑣𝑒𝑐(𝐷𝑘|𝑘−1) = 𝐴+�⃑�  . (45)

Note: 𝐷 is the estimate for the maximum value of 𝛿. Like with 𝐵, 𝐷𝑘|𝑘−1 should be compared to

the previous estimates to keep only the highest values.

24

5.0 RESULTS

5.1 General Implementation

5.1.1 Two-State Comparison with Original Implementation

To ensure the improved MFSMC implementation’s output aligns with the theory, both

the new and original controllers were tested against the test system shown below:

 �̈�1 = −𝑎1(𝑡)�̇�1
2 𝑐𝑜𝑠(2𝑥1) 𝑥2 + 𝑏11(𝑡)𝑢1 + 𝑏12(𝑡)𝑢2 (46)

 �̈�2 = −𝑎2(𝑡)�̇�2
2�̇�1𝑥2 + 𝑏21(𝑡)𝑢1 + 𝑏22(𝑡)𝑢2 (47)

A comparison between similar simulations for each implementation is given in Figures 4-7 and

Table 1.

Original Improved

Figure 4.Closed-Loop Error responses for the original and improved implementations.

The coefficient values and controller settings were identical in both simulations. The

main controllers were created from identical derivations. However, the new controller included

25

an estimator dead zone to stop the estimator when 𝑠  was close enough to zero. The dead zone—

along with numerical differences in the Simulink blocks—explains the new implementation’s

decreased error but increased control magnitude in Table 1 as well as in Figures 4 and 5,

respectively. These differences also explain the high frequency mode in the improved

implementation. To decrease the chances of high frequency excitations, the SMC lambda

parameter may be tuned to a lower value. In both cases, the system was stable. These results

verify the generalized implementation’s correctness.

Original Improved

Figure 5.Control inputs for the original and improved implementations.

26

Figure 6. Original implementation's tracking performance.

Figure 7. Improved implementation's tracking performance.

27

 Original Improved

∫|�̃�1|2 𝑑𝑡 2.009 2.003

∫|�̃�2|2 𝑑𝑡 2.001 2.000

∫|𝑢1|2 𝑑𝑡 12.92 13.76

∫|𝑢2|2 𝑑𝑡 23.83 25.51

Table 1. Integral squared magnitudes of closed-loop errors and control inputs for both implementations.

5.1.2 Four-State System Validation

The generalized implementation was also simulated with a randomized Four-state linear

system (�̇⃑� = 𝐴�⃑� + 𝐵�⃑⃑�). While 𝐵 was diagonal with random elements, the 𝐴 matrix was

completely random. Typical results are given in Figures 8 and 9.

Figure 8. State trajectories for a four-state system with generalized MFSMC.

28

Figure 9. Control effort for a four-state system with generalized MFSMC.

The figures show behavior similar to the previous MFSMC example: good tracking (though

there was a higher overshoot) and an implementable control effort. The overshoot may be due to

a poor control influence estimate from insufficient excitation. Regardless, the closed-loop system

was stable.

More importantly, the simulation was created using an exact copy of the controller used

in the previous section. All controller parameters were the same except for the initial 𝐵 estimate,

which was set as the actual influence matrix with a random error added to each element. Since

Simulink was able to compile and run the simulation, the premise of the generalized

implementation is validated – generally implemented MFSMC schemes can be applied to any

system.

5.2 Boundary Estimation in SMC

5.2.1 Decoupled Performance Comparison

Initial tests of the boundary estimator consisted of a sliding mode controller developed

for both decoupled and coupled versions of the previously mentioned system. Random sinusoids

were used to generate 𝑎1 and 𝑎2 in Eqs. (46) and (47).

Simulation results for the decoupled controller and system with a constant influence

matrix are presented in Figures 10-13. The results primarily serve as a validation; since the

sliding condition was always met (see Figure 11, left panel: no difference between dotted and

dashed lines), no additional information may be given to the estimator. The estimator is unable to

29

adjust its values as a result. While the lack of adjustment resulted in underestimated values, the

controller’s tracking performance was comparable to a SMC scheme with known bounds on the

control matrix. Both closed-loop systems were stable.

Figure 10. Best guess, estimated, and actual B values for

a decoupled, constant B system.

Figure 11. Sliding condition with (left) and without

(right) boundary estimation for a constant B system.

Figure 12. Tracking performance with and without boundary

estimator for a constant B system.

Figure 13. Control effort with (left) and without (right)

boundary estimation for a constant B system.

30

Typical simulation results for the decoupled controller and system with a varying

influence matrix are given in Figures 14-17. The 𝐵 values were generated using the last

technique discussed in Appendix A.3. The estimator system performed basically comparably to

the regular SMC system; it reached the desired trajectories slightly faster for state 2, but slower

for state 1. The speed might be due to the low estimate for 𝑏11’s bounds at first (as seen in Figure

14). The estimate increased later in the simulation. Since good performance cannot be

guaranteed during any SMC reaching phase [21], perfect tracking once the system reaches the

desired states is more important. Tracking performance was approximately equal after reaching

the desired trajectories.

Figure 14. Real (solid), best guess (dashed) and estimated maximum (dotted) values of B.

Figure 15. Desired (dotted), SMC (dashed) and SMC

with boundary estimation (solid) state trajectories.
Figure 16. Control inputs for SMC with and without boundary

estimation (left and right, respectively).

31

It is important to note the boundary values are overestimates. The overestimation would

guarantee stability while suggesting the control input magnitude is increased. However, Figure

16 shows the magnitude decreased, including during the reaching phase. The result, along with

the sliding condition in Figure 17 suggests the controller was more energy efficient both in the

controller magnitude and from a sliding condition standpoint. The sliding condition efficiency is

especially seen in state 1: though it was slower than the known system, the condition error is

close to zero in the end.

5.2.2 Coupled Performance

To test the estimator’s coupled performance, an SMC system with boundary estimation

was simulated with a coupled version of Eqs. (46) and (47). Again, the system parameters were

generated using sinusoids as well as the last technique discussed in Appendix A.3. Typical

simulations are given in Figures 18-22.

Like the previous simulations, the system is stable with perfect tracking after some time.

In the current simulation, however, the effect of the estimator on the state trajectories and sliding

function is somewhat visible. The initial estimate increase reorients the second state towards its

desired trajectory (see Figure 19). The secondary increases (between 10 and 12 seconds) were

the result of the estimator increasing its estimates to stop instability in the second state (see

Figure 20, expansions correspond to when 𝑠2�̇�2 is positive). Finally, Figure 20 shows the system

became more sliding-mode efficient, especially around the time state 1 reached zero error.

Figure 17. Sliding condition states with and without boundary estimation (left and right, respectively)

32

Figure 18. Real (dashed) and estimated boundaries (solid) of delta.

Figure 19. State trajectories for coupled SMC with boundary estimation.

33

Figure 20. Sliding Condition for coupled SMC with boundary estimation.

Figure 21. Sliding mode value for coupled SMC with

boundary estimation

Figure 22.Control effort for coupled SMC with boundary

estimation

34

6.0 CONCLUSION

This work developed a new MFSMC implementation as well as an influence gain

estimator improvement scheme. The implementation was compared with previous methods in

simulations using a nonlinear system model. The controllers performed comparably, with the

new implementation exhibiting lower error at the cost of a slightly higher control effort. The

estimation technique was paired with a SMC scheme and simulated against a controller with

known bounds. Again, the controllers performed similarly, especially at the end of the SMC

reaching phases. The controller with the estimator, however, showed a lower control effort.

Both improvements move MFSMC towards its main goal: to be a control system where

only the system order and number of states need to be known. Such a controller would decrease

development and testing times for any system due to the avoidance of usual control system

overheads (e.g. tuning). While previous works had achieved the goal mathematically, the new

implementation was shown to achieve the goal practically. As a result, no other MFSMC

schemes for square systems need to be implemented. The controller also does not need to be

implemented in code; Simulink can automatically convert the model. Furthermore, the

techniques presented in this work may be used to afford the same advantages to non-square

MFSMC systems when they are created.

The boundary estimator, on the other hand, improves MFSMC in the same ways as

previous estimators (i.e., relaxing the need to know the influence matrix a priori), while

eliminating the need for assumptions on the matrix’s upper and lower margins. As a result, the

new estimator could cause comparable tracking as previous MFSMC systems. An MFSMC

boundary estimator could also be more energy and sliding-mode efficient. Previous tests show

the estimator could give lower controller magnitudes, using less energy for the same tracking

performance. Furthermore, since the estimator is meant to better meet and not necessarily exceed

the sliding condition, it better drives the sliding condition to zero. However, no proof is given

that the values will be more efficient, and so this is not guaranteed.

6.1 Accomplished Goals

The original goals for this work are outlined in Section 1.1. As previously mentioned, the

focus shifted away from Goal 1. The shift was due to time limitations and the sufficient coupled-

system performance of previously derived MFSMC schemes (as discussed in Section 3.2). The

majority of this work was dedicated to accomplishing Goals 2 and 3 and demonstrating the

accomplishments using Goal 4. Goals 2 and 3 are presented in Sections 3.3 and 4.0, respectively.

The original intent of Goal 4 was to present simulation results using system models of various

forms. However, other than the four-state linear system in Section 5.1.2, the system form given

by Eqs. (46) and (47). No work towards Goal 5 was performed due to time limitations.

35

6.2 Future Work

To generate better estimates—and system performance—when using MFSMC, a

boundary estimator could be implemented. Currently, the boundary estimator would be used with

a constant estimate of the influence matrix. In the future, work should be done to use the

boundary estimator to find a better �̂� for the sake of performance. The better value could simply

be generated using Eq. (10) (the same relationship as in the current MFSMC implementation). In

addition, a more formal proof for the convergence and efficiency of the estimator should be

found.

Also, future MFSMC versions should either be an adaptation of the general

implementation or should use the same techniques. Specifically, the techniques should be used to

implement an MFSMC system for non-square systems. Doing so would allow MFSMC to truly

only depend on the system order and the number of states (rather than just in theory). As a result,

implementing a MFSMC scheme will be much easier while development time is severely

reduced.

36

7.0 ACKNOWLEDGMENTS

7.1 Financial Support

The work was performed in fulfilment of a DoD Air Force AFWERX Phase I STTR, Award #

FA864923P0965.

7.2 Further Acknowledgements

I would like to thank Dr. Crassidis for advising me through this process.

Thank you, committee members, for your support and feedback.

Thank you, Carola, Aashrita, and everyone else who worked in the lab for being great friends

and lab mates.

Thank you, Katarina Wayman, for everything you do for the department (including answering all

of my questions and helping to keep me on track).

Finally, thank you, Riesa, for your ongoing love and support.

37

8.0 REFERENCES

[1] Mizov, A., 2015, “A Model-Free Control Algorithm Derived Using the Sliding Model

Control Method,” Rochester Institute of Technology.

[2] Reis, R. M., 2016, “A New Model-Free Sliding Mode Control Method with Estimation of

Control Input Error,” Rochester Institute of Technology.

[3] El Tin, F., 2017, “A Model-Free Control System Based on the Sliding Mode Control

Method with Applications to Multi-Input-Multi-Output Systems,” Rochester Institute of

Technology.

[4] Islam, M. S., 2020, “A Model-Free Control System Based on the Sliding Mode Control

with Automatic Tuning Using as On-Line Parameter Estimation Approach,” Rochester

Institute of Technology.

[5] Hutson, N., 2023, “Model-Free Sliding Mode Control in the Lateral and Direction

Dynamics of an Aircraft,” Rochester Institute of Technology.

[6] Zhou, F., and Fisher, D. G., 1991, “MIMO Sliding Mode Control: A Lyapunov

Approach,” 1991 American Control Conference, IEEE, Boston, MA, USA, pp. 1796–

1799.

[7] Pang, H.-P., and Tang, G.-Y., 2008, “Global Robust Optimal Sliding Mode Control for a

Class of Uncertain Linear Systems,” 2008 Chinese Control and Decision Conference,

IEEE, Yantai, Shandong, China, pp. 3509–3512.

[8] Huang, Z., and Sun, C., 2023, “Adaptive Global Robust Tracking Control for Uncertain

Dynamic Systems,” Int. J. Control Autom. Syst., 21(4), pp. 1070–1079.

[9] Schulken, E., “Investigations of Model-Free Sliding Mode Control Algorithms Including

Application to Autonomous Quadrotor Flight.”

[10] Sreeraj, A., Kaputa, D., and Crassidis, A., 2019, “A Model-Free Control Algorithm

Based On The Sliding Mode Control Method With Applications to Unmanned Aircraft

Systems.”

[11] Shaferman, V., Schwegel, M., Glück, T., and Kugi, A., 2021, “Continuous-Time Least-

Squares Forgetting Algorithms for Indirect Adaptive Control,” European Journal of

Control, 62, pp. 105–112.

38

[12] Na, J., Yang, J., Ren, X., and Guo, Y., “Adaptive Online Estimation of Time-Varying

Parameter Nonlinear Systems.”

[13] Yongliang Zhu, and Pagilla, P. R., 2003, “Adaptive Estimation of Time-Varying

Parameters in Linear Systems,” Proceedings of the 2003 American Control Conference,

2003., IEEE, Denver, CO, USA, pp. 4167–4172.

[14] Pan, Y., and Yu, H., 2018, “Composite Learning Robot Control with Guaranteed

Parameter Convergence,” Automatica, 89, pp. 398–406.

[15] Korotina, M., Romero, J. G., Aranovskiy, S., Bobtsov, A., and Ortega, R., 2021,

“Persistent Excitation Is Unnecessary for On-Line Exponential Parameter Estimation: A

New Algorithm That Overcomes This Obstacle.”

[16] Moshksar, E., and Guay, M., 2014, “Invariant Manifold Approach for Adaptive

Estimation of the Time-Varying Parameters for a Class of Nonlinear Systems,” 2014

American Control Conference, IEEE, Portland, OR, USA, pp. 2261–2266.

[17] Shao, J., and Chen, Y.-Y., 2020, “Distributed Parameter Estimation Using Invariant

Manifold Approach,” 2020 5th International Conference on Automation, Control and

Robotics Engineering (CACRE), pp. 302–307.

[18] Murray, R. M., Li, Z., and Sastry, S. S., 2017, “Ch4. Lyapunov Stability Theory,” A

Mathematical Introduction to Robotic Manipulation, CRC Press, pp. 43–53.

[19] Slotine, J.-J. E., and Li, W., 1991, “Chapter 7: Sliding Control,” Applied Nonlinear

Control, Prentice Hall, pp. 277–310.

[20] Geeks for Geeks, 2020, “Find the Nth Row in Pascal’s Triangle,” GeeksforGeeks

[Online]. Available: https://www.geeksforgeeks.org/find-the-nth-row-in-pascals-triangle/.

[Accessed: 25-Jun-2024].

[21] Pang, H.-P., and Wang, L.-P., 2010, “Global Robust Sliding Mode Control for a Class of

Uncertain Time-Delay Systems,” 2010 International Conference on Machine Learning

and Cybernetics, IEEE, Qingdao, China, pp. 910–915.

[22] Taboga, M., 2021, “Vec Operator,” Lectures on matrix algebra [Online]. Available:

https://www.statlect.com/matrix-algebra/vec-operator. [Accessed: 25-Jun-2024].

[23] Wikipedia contributors, 2024, “Jacobi’s Formula — Wikipedia, The Free Encyclopedia.”

39

[24] Wikipedia contributors, 2024, “Matrix Determinant Lemma — Wikipedia, The Free

Encyclopedia.”

40

A. APPENDIX

A.1 Useful Mathematical Identities

Given matrices 𝐴, 𝐵, and 𝐶, as well as vectors 𝑠  and �⃑⃑�:

1. 𝑣𝑒𝑐(𝐴 𝐵 𝐶) = [𝐶𝑇 ⊗ 𝐴]𝑣𝑒𝑐(𝐵) [22]

2. 𝐵�⃑⃑� = 𝑣𝑒𝑐(𝐵 �⃑⃑� ) = [�⃑⃑� 𝑇 ⊗ 𝐼]𝑣𝑒𝑐(𝐵)

3. 𝑑𝑖𝑎𝑔(𝑠 )�⃑⃑�   = 𝑠   ∘ �⃑⃑�   = 𝑑𝑖𝑎𝑔(�⃑⃑� )𝑠 

A.2 Simulink Models for Example Systems

A.2.1 Plant Models

Figure 23. Original test plant for Eqs. (46) and 24(47) (without random B matrix, used in MFSMC tests).

Figure 24.Test plant for Eqs. (46) and 24(47) with random B matrix (used in SMC tests).

41

Figure 25. Linear test plant (used for four-state MFSMC test).

42

A.2.2 MFSMC Diagrams

Figure 26. Full MFSMC plant and controller Simulink model.

Figure 27. Original MFSMC implementation.

43

Figure 28. Connections to the new MFSMC implementation

Figure 29. New MFSMC implementation.

44

Figure 30.MFSMC boundary layer and estimator.

Figure 31. MFSMC estimator internals.

45

Figure 32. SMC Simulink diagram. Models without boundary estimation only have the top two blocks.

46

A.2.3 SMC and Boundary Estimation

Figure 33. SMC diagram.

Figure 34. SMC with boundary estimation.

47

Figure 35. Decoupled boundary estimator.

Figure 36. Coupled boundary estimator.

48

A.3 Random Invertible Continuous Matrix Generation

When testing and validating a robust control system, it may be helpful to generate

random parameters. Successful control of these random systems acts as more proof that the

controller works.

A.3.1 Initial Approach: Determinant Adjustment

One method for ensuring invertibility is to adjust one of the matrix values so that the minimum

determinant over all time is greater than zero. Given that a two-by-two matrix’s determinant is:

 𝑑𝑒𝑡 ([
𝑎11 𝑎12

𝑎21 𝑎22
]) = 𝑎11𝑎22 − 𝑎12

 𝑎21

(48)

If
𝑑𝑒𝑡 ([

𝑎11 𝑎12

𝑎21 𝑎22
]) − 𝑚𝑑

𝑎22
 is added to 𝑎11, the minimum determinant will become 𝑚𝑑. The

technique was used on matrices created by sine waves with random frequencies and offsets early

on in this project’s testing. The method is simple and can easily be used to produce matrices with

positive elements (which was a requirement for this project). However, it would produce

matrices with significantly larger first elements than any of the others. Ultimately, determinant

adjustment was replaced by the other techniques in this section.

A.3.2 Invertible Matrix Products and Row Swaps

A property of invertible matrices is that their products are invertible. Take, for example,

an invertible matrix generated using sine waves. To randomize this time varying matrix, it may

be multiplied by a random, constant, invertible matrix. The original implementation repeatedly

performed this multiplication then swapped two rows. The row swap has the effect of

randomizing the sign of the determinant. While this works, a simpler, equally effective method

would be to perform one multiplication and one swap.

The method has the same positive properties as determinant adjustment but keeps all of

the elements on the same order of magnitude. That being said, the technique relies on a

preexisting invertible, time varying matrix. This dependence constrains the randomness of the

matrix. For example, if the initial matrix is sinusoidal, then the resulting matrix will still be

sinusoidal. In many applications, the technique will be sufficient, even with this drawback.

A.3.3 Linear Independence of Rotated Vectors

If more variability is desired, matrices may be constructed using vectors rotated with

different angles. These vectors would be linearly independent. An initial angle vector may be

generated at each time step. The first column may be created by rotating a constant vector by

those angles. Subsequent angle vectors may be generated and mapped to values sufficiently

outside the previous vectors, and the remaining columns may be created using the same constant

vector.

49

Like the previous methods, it is easy to create time varying matrices with positive

elements by limiting the angles to a range that rotates the constant vector to a vector with

positive elements. Since the angles are randomly chosen without accounting for previous values,

the generated matrix changes with a very high frequency. To reduce the frequency, the matrix

may be generated with a lower sampling rate and interpolated.

A.3.4 Jacobi’s Formula and the Matrix Determinant Lemma

The final method for generating invertible, time varying matrices explored here is based

on Jacobi’s formula for the derivative of the determinant:

 𝑑

𝑑𝑡
𝑑𝑒𝑡(𝐴) = 𝑡𝑟(𝑎𝑑𝑗 (𝐴) 𝑑

𝑑𝑡
 𝐴) = 𝑑𝑒𝑡(𝐴)𝑡𝑟(𝐴−1 𝑑

𝑑𝑡
 𝐴) [23] (49)

This formula may be vectorized to produce:

 𝑑

𝑑𝑡
𝑑𝑒𝑡(𝐴) = 𝑑𝑒𝑡(𝐴)𝑣𝑒𝑐𝑇(𝐼)𝑣𝑒𝑐(𝐴−1 𝑑

𝑑𝑡
 𝐴) = 𝑑𝑒𝑡(𝐴)𝑣𝑒𝑐𝑇(𝐼)[𝐼 ⊗ 𝐴−1]𝑣𝑒𝑐(

𝑑
𝑑𝑡

 𝐴) (50)

If a system is created such that this equation is upheld, the determinant may be constrained

between a set of values. One such system is:

 �⃑⃑� 
̇
  =  𝛼𝛤+[𝜁 − 𝑑𝑒𝑡 (𝐵)] + 𝛽𝛤⊥𝛤⊥

+[𝑣𝑒𝑐 (𝐵𝑟𝑒𝑓
) − �⃑⃑� ] (51)

 𝛤 =  𝑑𝑒𝑡(𝐵)𝑣𝑒𝑐𝑇(𝐼)[𝐼 ⊗ 𝐵−1] (52)

 𝜁 =  𝑠𝑎𝑡(𝑑𝑒𝑡 (𝐵𝑟𝑒𝑓
) , |𝐵|𝑙

 , |𝐵|ℎ) (53)

where 𝛤⊥ is a matrix made from the set of vectors in the null space of 𝛤, 𝛼 and 𝛽 are parameters

to be chosen by the user, and |𝐵|𝑙 and |𝐵|ℎ are the minimum and maximum desired values of

𝑑𝑒𝑡(𝐵), respectively. 𝐵𝑟𝑒𝑓 can be any time varying matrix, including a matrix that is not always

invertible.

 An important consideration is the initial conditions for the system. 𝐵𝑟𝑒𝑓(𝑡 = 0) could be

chosen, but there is no guarantee that its determinant will be within the desired bounds. A known

matrix with the correct determinant may be used. If more randomness is desired, the system

could be simulated for extra time and the times when the determinant was out of bounds could be

truncated.

Another option – and the one chosen in this work – was to adjust the known matrix with

the matrix determinant lemma:

 𝑑𝑒𝑡(𝐴 + �⃑⃑�  �⃑�  𝑇) = [1 + �⃑� 𝑇 𝐴−1 �⃑⃑�  ]𝑑𝑒𝑡(𝐴) [24] (54)

If u is chosen at random and 𝐴 is the known matrix, v may be solved for. The new initial matrix

is the sum in the left determinant. The matrix determinant lemma technique has one other

50

benefit: if the unadjusted matrix is diagonal, its determinant is less than the desired range, and

both the matrix and u have positive elements, then there exists a �⃑� such that all of the initial

matrix’s elements will be positive.

A.4 Block Controllable Canonical Transformations

One of the proposed objectives for this work was to control a linearized aircraft system as

presented in [5]. While testing the controller with this system, there were two main issues. First,

preliminary results were unfavorable. Second (and presumably the cause of the first), the system

was actually non-square. A method for transforming the system into an equivalent square system

was developed but work with the system was abandoned in favor of the other proposed goals.

The transformation method is given in this section.

Many linear systems are equivalent to square systems through state transformations.

While it is easy to transform a linear nth-order square system to a non-square system (just change

it to state space form), the reverse is not always trivial. Take, for example, the aircraft system

given in [5]:

𝐴 =   [

−0.2316 0.0633 −0.9956 0.051
−29.4924 −3.0169 0.0201 0.0

6.2346 −0.0274 −0.4169 0.0
0.0 1.0 0.0631 0.0

] 𝐵 =   [

0.0052 0.031
−36.4909 8.109
−0.4916 −2.8274

0.0 0.0

]

This system has four states and two controls. If the system was converted to an equivalent,

square system, it would be in a block controllable canonical form:

 𝑧   =  𝑇�⃑�  (55)

𝐴 =   [

0 𝐼𝑝−𝑚

𝐴21 𝐴22

] = 𝑇𝐴𝑇−1
(56)

𝐵 =   [

0

𝐵2
] = 𝑇𝐵

(57)

where p and m are the number of states and the number of control inputs, respectively. Since

𝑇𝐴 = 𝐴𝑇, the following relations may be found:

 [𝐼𝑝−𝑚 0]𝑇𝐴 = [0 𝐼𝑝−𝑚]𝑇

(58)

 [𝐼𝑝−𝑚 0]𝑇𝐵 = 0 (59)

With these equations, a solution for 𝑇 may be computed. There are many ways to solve

for 𝑇. In this work, the system:

51

 𝑣𝑒𝑐(Ṫ ) = −𝑄+𝑄𝑣𝑒𝑐(𝑇)

(60)

𝑄 =   [

𝐴𝑇 ⊗ [𝐼𝑝−𝑚 0] − 𝐼𝑝
 ⊗ [0 𝐼𝑝−𝑚]

𝐵𝑇 ⊗ [𝐼𝑝−𝑚 0]
] (61)

𝑇(0) = [

0 𝐼𝑝−𝑚

𝐴21 𝐴22
] (62)

was integrated. 𝑇, 𝐴, and 𝐵 were found to be:

𝑇 =   [

−0.2907 0.0 −0.0032 −0.0268
0.0 0.0 0.0 1.0

0.0474 −0.0451 0.2891 −0.0148
0.0 1.0 0.0631 0.0

]

𝐴 =   [

0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

−10.8585 −0.2995 −0.7245 0.0837
100.378 2.7171 1.7258 −2.9409

]

𝐵 =   [

0.0 0.0
0.0 0.0

1.5051 −1.1818
−36.5219 7.9306

]

This transformation matrix is invertible, which is required. While there is no proof that this

method will make an invertible 𝑇, it is most likely that this is the case. 𝑇’s Invertibility should be

checked before use.

	Improvements on Model-Free Sliding Mode Control’s Implementation and Estimation Techniques
	Recommended Citation

	tmp.1724684822.pdf.vgvLS

