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Abstract

As the nascent quantum computing paradigm matures and quantum devices be-

come widely available, discrete “eras” are emerging which characterize evolving quan-

tum computing technologies, much like semiconductor technology node classifications.

The current period has been coined the Noisy Intermediate-Scale Quantum (NISQ)

era [1], as devices above 50 qubits in size exist but computations using these devices

accumulate error quickly from classical interference sources and state decoherence.

NISQ machines may surpass the capabilities of modern classical computers in ideal

circumstances, but the accumulation of error from physical noise limits the size and

implementability of reliable quantum algorithms [2]. Because of these limitations,

strategies are under development that can improve the results of computations on

NISQ devices or identify characteristics of the accurate solution space that might be

preserved in the noisy data. These are known as error mitigation strategies [3] [4].

One such method that has shown promise is the use of classical machine learning

to extract information about the pre-measurement output of a NISQ device. This

work proposes a new use of machine learning to identify the accurate solutions of

basis-encoded quantum algorithms in the presence of noise. Methods of encoding

the probabilistic solution space of a basis-encoded quantum algorithm are researched

to identify the characteristics that represent good ML training inputs. A multilayer

preceptron artificial neural network (MLP ANN) was trained on the results of 8-state

and 16-state basis-encoded quantum algorithms both in the presence of noise and

in noise-free simulation. It is demonstrated using simulated quantum hardware and

probabilistic noise models that a sufficiently trained model may identify accurate so-

lutions to quantum applications with over 90% precision and 80% recall on select

data. The model makes confident predictions even with enough noise that the solu-

tions cannot be determined by direct observation, and when it cannot, it can identify

the inconclusive experiments as candidates for other error mitigation techniques.
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Chapter 1

Introduction

1.1 Motivation

This work is motivated by the need to extract useful information from the output of

quantum computational devices in realistic conditions, i.e. in the presence of noise.

As devices in the Noisy Intermediate-Scale (NISQ) era continue to scale, new quan-

tum computers are becoming available which feature increasing numbers of qubits.

The latest era of superconducting qubit circuits includes Google’s 53-qubit Sycamore

[12], the Chinese 66-qubit Zuchongzhi [13], and IBM’s 127-qubit Eagle and 433-qubit

Osprey [14]. Quantum computers with more qubits are capable of executing more

complex algorithms, including some which have “superclassical” speedup scaling. For

some of these problems, 50+ qubit NISQ-era devices have demonstrated quantum ad-

vantage: the ability to solve a problem that no classical computer can solve in a

reasonable amount of time [12] [13]. Demonstrable quantum advantage proves that

quantum computers are a useful subject of research.

As the name suggests, a key characteristic of NISQ-era devices is the presence of

error-inducing noise. In a superconducting quantum circuit, noise can be introduced

through thermal quantum state decoherence (relaxation), interference from outside

energy sources, and qubit link decoupling. This noise can alter the system state

during the experiment, changing the measured result and causing error in the results

2



Chapter 1. Introduction

of an experiment which uses multiple repeated trials of a quantum circuit to encode

its answer in the resulting probability distribution. In basis-encoded algorithms, noise

can cause the result of the experiment to be inconclusive–no output state is measured

frequently enough to be confidently identified as the answer to the problem [15]. This

work aims to mitigate the issue of noise in NISQ devices by identifying characteristics

of the probability distribution of basis-encoded quantum algorithms that are favorable

to classical machine learning techniques with the goal of using these techniques to

accurately classify the solution space of a problem.

1.2 Objectives

The primary objective of this work is to demonstrate a novel approach for the identi-

fication and characterization of solutions of quantum computing problems, employing

classical artificial neural networks (ANNs). Simple ANNs with a single hidden layer

are known to be capable of discrete categorization tasks [16]. Basis-encoded quantum

algorithms have a discrete answer or answers in a finite solution space, encoded as the

most frequently observed states in the probability distribution of all observed final

system states. This makes the results of basis-encoded algorithms a good candidate

as a multi-label classification problem for a neural network. This work aims to use

data generated from the results of quantum computer experiments as training, val-

idation, and test input for a feed-forward multi-label classification ANN. The ANN

is trained using this data and a supervised learning approach to identify the correct

solutions to quantum problems, encoded as discrete category labels.

As discussed in the previous section, confounding factors exist which may make

it difficult to identify the solutions to a basis-encoded problem. The primary imped-

iment is the presence of noise, which distorts the distribution and makes it less likely

to observe the answer states, in some cases making the answer inconclusive. Another

impediment is that a quantum algorithm may have more than one answer. Each ad-

3



Chapter 1. Introduction

ditional answer to a basis-encoded problem reduces the probability of observing each

other answer state which amplifies the negative effects of noise on the observability

of the answer states.

Since ANNs may provide a statistical confidence for their predictions, a well-

calibrated model may be used as part of a heterogeneous quantum-classical error

mitigation strategy. Given an arbitrary probability distribution from a basis-encoded

problem, the model’s predictions and its confidences may be applied back to the input

distribution to amplify predicted solutions and diminish other states.

Ultimately, this work provides a pathway for quantum computing researchers to

reach more useful conclusions about the results of their real-world experiments. Since

ANNs are a robust and mature area of existing research with a great deal of hard-

ware and software implementation support, they are straightforward to apply as a

characterization method for QC results. Adopting this approach will allow precious

NISQ-era QC hardware resources to be reallocated away from error mitigation or

correction and towards more complex algorithms, and future researchers in the NISQ

era may build upon this work by applying other ML strategies towards the charac-

terization of noisy quantum computer output.

1.3 Contribution

• A data set was created from the output of simulated quantum systems for a sub-

set of basis-encoded problems. This data set consists of approximately 230,000

experiments solving different problems that leverage the quadratic speedup of

Grover’s Algorithm for unstructured database search [17]. The data set contains

experiments from both ideal (noise-free) simulations and from simulations intro-

ducing various types and amounts of noise. This data set is the first-known of

its type, aggregating results from different complex quantum circuits that solve

real problems with QA and also include noise of different sources and types.
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Chapter 1. Introduction

• The results of each experiment in this data set were encoded as discrete prob-

ability distributions and the solutions to each problem were supplied as multi-

hot encoded multi-label classification categories against which machine learning

models can train. Characterizing basis-encoded quantum problems as a multi-

label classification problem suitable for ANN training is a novel contribution to

neural network-QC research, and a new approach to NISQ error mitigation.

• Multi-label classification models were trained and validated on subsets of this

data set. The models were also equipped with a mechanism enabling out-of-

distribution (OOD) detection, enabling them to evaluate whether the experi-

mental result was conclusive by determining whether any answer category can

be predicted with sufficient confidence to be called an answer to the problem.

• The performance of the model in identifying solutions was evaluated using stan-

dard ML classification success metrics. The model’s predictive performance was

evaluated on various subsets of the full data set, allowing performance to be

evaluated for specific noise types and amounts.

• An implementation from the conclusions of this work is proposed which inte-

grates classical ANNs into quantum computing workflows as an error mitigation

technique in a new way.

5



Chapter 2

Background and Related Work

2.1 Quantum Computing and the Qubit Gate Model

Quantum computing is a computational paradigm that leverages probabilistic quan-

tum mechanical effects to solve some problems that are classically intractable [18].

Quantum effects leveraged by this paradigm include superposition, entanglement, and

quantum tunneling. The superclassical speedup achieved by the use of these effects

is known as Quantum Advantage (QA): the demonstrable and measurable success of

processing some real-world problem faster or more efficiently on a quantum computer

than on a classical computer. While quantum computational hardware has yet to

scale to a size where QA may be exhibited for problems of practical interest, QA has

been demonstrated for simple algorithms and artificial problems [12, 13, 19]. Practi-

cal QA has the potential to revolutionize the world of computing in the near term,

and problem domains such as particle modeling, quantum simulation, encryption, and

machine learning will be changed forever by future generations of practical quantum

computational hardware.

The predominant theoretical model of quantum computation is the qubit gate

model, in which computation is decomposed into individual binary-state quantum

systems called qubits. While a classical bit may exist in exactly one of two possible

states, the superposition principle permits a qubit to simultaneously exist in both

6



Chapter 2. Background and Related Work

states, during which a classical observation of the qubit will probabilistically col-

lapse it into either of the two classically-observable states. Superposition is modelled

mathematically as a unitary linear combination of all possible states of the system.

Qubits can be combined to compose a quantum register in which an n-qubit system

is represented by a superposition state vector in 2n-dimensional Hilbert space:

|ψ⟩ =



α1

α2

...

α2n


(2.1)

With vector components α1, α2, ...α2n ∈ C. Qubits in a register compose the basic

information bits of a quantum computer, and during computation the register state is

evolved through unitary Hamiltonian energy transformations abstracted as quantum

gates, manipulating the register toward a desired final state which corresponds to the

answer to a problem. Once this state is achieved, the system is measured via a non-

unitary classical transformation which collapses the probabilistic state wavefunction

of the qubits into a discrete classical state.

The qubit-gate model formalism uses as its computational basis two states that

are represented in Dirac notation as |0⟩ and |1⟩. These states are orthogonal vectors

which span the vector space describing all possible qubit states. The state of a one-

qubit system may be represented as a unitary linear combination of possible states,

as in Equation 2.2:

|ψ⟩ = α |0⟩+ β |1⟩ ; |α|2 + |β|2 = 1. (2.2)

The probability amplitudes α and β are both complex, and the square of the norm of

each amplitude |α|2 or |β|2 is equal to the probability of observing the qubit in that

state. This is known as the Born rule [20] and is a fundamental concept of quantum

7



Chapter 2. Background and Related Work

Figure 2.1: Illustration of quantum state tomography. Schematic illustration of the con-
cept of tomography on left; reconstructed density matrix of a neutronic Bell state on right
[5] [6].

information science. The solution to a quantum problem may be encoded as the

specific state or states which are measured most frequently, known as basis-encoded

states [21]. This work focuses on the class of problems which are basis-encoded.

2.1.1 Quantum State Tomography

Tomography is the reconstruction of higher-dimensional data by the process of build-

ing from lower-dimensional sections or “slices” of the original data. An example of

this is a CT (computerized tomography) scan, which combines a series of X-ray images

into detailed internal views of body systems which are hidden from view without in-

vasive medical procedures. Similarly, the state of a qubit register before measurement

is unknown; without observation, qubits in the register may exist in any complex-

valued superposition of their possible basis states. It is well-known mathematically

how the energy Hamiltonian (and thus the qubit register’s statevector) evolves during

a quantum circuit, but measurement is a non-unitary operation which interacts with

and disturbs the energy state of a qubit, causing its wavefunction to collapse into one

of the basis states. Thus it is impossible to observe qubit state evolution directly and

so it must be extrapolated through quantum state tomography (QST).

QST is the process by which the results of a quantum algorithm are determined,

8



Chapter 2. Background and Related Work

and it provides a view into the state of the qubit register before measurement. Mea-

suring bits in the register causes them to collapse into one of the two basis states |0⟩

or |1⟩. Due to the probabilistic nature of QC, making only a single measurement of

the system after a circuit is executed provides an insufficient picture of the results of

the experiment. Information is encoded in the probability amplitudes or statevector

of the qubit register and making one (or even a few) repeated measurements results

in the loss of this information. Executing quantum experiments is thus a multi-shot

process, in which the qubits are initialized to a known rest state, the circuit is exe-

cuted, and measurements are taken in a repeated process, hundreds or thousands of

times.

2.1.2 Noisy Intermediate-Scale Quantum Computing (NISQ)

Superconducting qubit systems require rigorous physical conditions to maintain the

quantum properties of the qubit register. The system must be kept at an extremely

low temperature (on the order of millikelvins), which permits low resistance and

high conductivity, and it must be completely isolated from unintended environmental

interference. These challenges lead to the dual phenomena of quantum noise and state

decoherence, both sources of error which may render the outcome of an experiment

invalid [22]. Figure 2.2 demonstrates the effect of noise sources on the outcome of a

basis-encoded quantum experiment.

The problem class studied in the scope of this work, called the basis-encoded class,

encodes the answer to problems in the quantum state or states which, after repeated

experiments, are observed most often (with highest probability) [21]. As in Figure

2.2, the probability distribution of outcomes from repeated experiments may be rep-

resented graphically by a histogram of measurement results for each possible basis

state, which normalizes to a probability distribution of observable states. However,

the presence of error from quantum noise and state decoherence corrupt this probabil-

9



Chapter 2. Background and Related Work

Figure 2.2: Comparison of noise-free (left) and noisy (right) simulation results for a
quantum 3-SAT experiment with three solutions. Each simulation performed with 1,024
shots. The solutions {000}, {011}, and {101} are clearly recognizable without error from
noise, but the correct solutions (and number thereof) are unclear from the noisy simulation.

ity distribution; with noise, the chance of measuring incorrect states is higher, so the

chance of measuring the correct states is lower. Enough noise may corrupt the dis-

tribution entirely by causing incorrect states to be measured with higher probability

than correct ones, rendering the experimental results invalid.

2.1.3 Error Correction and Error Mitigation

Currently, two strategies exist which attempt to control the influence of error on

the outcome of an experiment: error correction routines and error mitigation strate-

gies. Quantum error correction routines are similar to error detection and correction

routines in classical information theory in that they may correct for arbitrary error

given enough dedicated resources (ancilla qubits or gate operations) [23]. However,

due to the limited hardware capabilities of today’s quantum computers, arbitrary-

precision error correction is not achievable as qubits are in short supply and gate

operations must be limited to preserve qubit coherence. Pre-measurement error miti-

gation strategies intend to reduce the effect of noise by addressing its sources: reducing

the number of gate operations or qubits required for the algorithm to execute [24].

This process may come at the cost of some accuracy in the final theoretical result,

10



Chapter 2. Background and Related Work

but actual accuracy may increase since the error sources have less effect overall. Er-

ror mitigation strategies may also be applied after execution of the quantum circuit,

using the experimental results as input to another algorithm or method. The method

implemented in this work is an example of a post-measurement NISQ error mitigation

strategy. Section 2.3 discusses other works in detail which develop error mitigation

strategies, many of which employ machine learning.

2.1.4 Grover’s Algorithm

Grover’s Algorithm is a fundamental and important quantum algorithm for unstruc-

tured database search [17] and is used throughout this work as the primary basis-

encoded algorithm for neural network characterization. This algorithm, one of the

first theorized to demonstrate quantum advantage, can find an item or items in a

database faster than classical search algorithms. Given a database of n elements, the

best classical search algorithm may take at worst O(n) time since, on average, half

the domain must be checked for an even chance to find the right item. Grover’s Al-

gorithm, however, requires O(
√
n) iterations, providing at most a quadratic speedup

for the problem. A quantum circuit of k qubits can search a database of at most

2k elements, and the returned elements are basis-encoded in the output probability

distribution of the multi-shot experiment.

The goal of Grover’s Algorithm is to perform a search of the database. A single

Figure 2.3: Steps of Grover’s Algorithm for unstructured database search [7].

11



Chapter 2. Background and Related Work

iteration has two steps: phase inversion and inversion about the mean, performed by

the oracle and diffusion operators, respectively. A visual depiction of the algorithm

is shown in Figure 2.3. To begin, the register qubits are put in equal superposition

of basis states with Hadamard gates. The oracle identifies the targets by inverting

their phase (and resulting probability amplitude), as shown in Figure 2.4. The oracle

defines the search, and proper creation of the oracle within the context of Grover’s

Algorithm can be used to solve any NP-hard problem which reduces to database

search, including cost function minimization and optimization problems.

Figure 2.4: Phase inversion step of Grover’s Algorithm, performed by the oracle, in
geometric and amplitude representations [7].

Following the oracle, the diffuser inverts the probability amplitude of all items

about the mean, as shown in Figure 2.5. Since the oracle step decreases the mean of

the amplitude, inversion about the mean has the effect of lowering the probability of

non-target items and amplifying the probability of the targets. This two-step process

is repeated approximately
√

N
m
times when searching for m items in an N -item search

space, until the probability of measuring the desired states corresponding with the

target items is as high as possible.

As mentioned, Grover’s Algorithm forms the basis of a broad class of quantum

applications. One such problem is the maximum clique problem for finding the largest

fully-connected subgraph (clique) of a given graph [11]. In that work, an oracle is

12
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Figure 2.5: Inversion about the mean in Grover’s Algorithm, performed by the diffuser,
in geometric and amplitude representations [7].

developed which flips a target qubit if the state represents a subgraph that is larger

than the minimum possible number of vertices for the clique. The diffuser reads this

target to identify cliques over the minimum acceptable size. A second use of Grover’s

algorithm is the Boolean satisfiability problem (SAT), the problem of identifying a

combination of Boolean variables (true or false) which cause a given Boolean formula

to evaluate truthfully [25] [26]. SAT has been shown to be NP-complete [27]. Grover’s

Algorithm is observed to provide speedup for NP-complete problems [28], indicating

that Grover’s can speed up SAT and any problem which is proven to reduce to it.

2.2 Artificial Neural Networks

Neural networks or artificial neural networks (ANNs) are a category of machine learn-

ing architecture which are intended to model the electrical connections found between

neurons in a biological brain [29]. Individual nodes or neurons are computational

units which apply an activation function to the sum of their inputs and, based on the

activation results of the function, may send the result to one or more nodes deeper

in the network. Each input to a node has an associated weight applied to the input

value, and inside the node, the resulting weighted values from each input are added

13
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together, as in a sum-of-products equation:

s = b+
N∑

n=1

anwn (2.3)

with n node inputs an, corresponding weights wn, and a tunable skew or bias value

b. In the node, the sum s is given to an activation function which determines whether

the node will send the value across its outputs to any connected nodes. The most

commonly used activation functions are the sigmoid and rectified linear unit (ReLU).

A model of an n-input neuron is shown in Figure 2.6.

ANN topology is a robust area of research; many topologies exist, but the most

common network used in machine learning is the feed-forward network, in which nodes

are organized into layers. In a feed-forward ANN, there are at least three layers: an

input layer, a hidden layer, and an output layer. The connections between layers,

called edges, link the output of nodes in one layer to the input of nodes in the next

layer. A single-hidden-layer feed-forward ANN is shown in Figure 2.7. At the output

layer, the activated neurons can be interpreted to form a classification or category

label which corresponds to the solution to a problem. The training process for an

ANN occurs through gradient descent. An error is determined between the ANN’s

output and the true solution to the problem, called the loss, and the loss is used to

modify the neuron weights for the next round of classification. Learning occurs in

Figure 2.6: n-input neuron in an artificial neural network with a sigmoidal activation
function [8].
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Figure 2.7: Single-hidden-layer feed-forward ANN with two inputs, two outputs, and seven
neurons [9]. This is a fully-connected network with all neurons connected to the inputs of
every neuron in the next layer.

the ANN over these rounds, called epochs, through the process of adjusting weights

and thresholds in the network with the ultimate goal of minimizing loss.

Determining appropriate neuron weights through training is the most computa-

tionally intensive part of using ANNs. Training requires a large set of data, with

many distinct input data samples and a corresponding expected output or label for

each. By working through a set of data across multiple epochs, the ANN can be

trained to answer questions which are similar to those in the input data set.

2.2.1 Multi-Label Classification

ANNs are useful for two types of predictive tasks: classification and regression. Clas-

sification tasks seek to predict a discrete identity or class label based on the input

data, while regression tasks seek to predict a continuous value, often for fitting or

identifying a trend in the data. In this work, the data under analysis by the ANN

is a set of discrete probability distributions resulting from normalized multi-shot QC

experiments. The ANN is tasked with predicting characteristics of the accurate solu-

tion set of such an algorithm. Since the ultimate goal of this work is the identification

of discrete solution states of basis-encoded algorithms, it is representative of a classi-

fication task.

Classification tasks may be binary, multi-class, or multi-label depending on the

type of category labels and how they may be applied to the data. Binary tasks
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are those with just two possible disjoint labels for each sample: a sample may be

categorized as in exactly one of the two classes. Multi-class tasks are those that have

more than two labels, but each label is disjoint: any sample still belongs to exactly one

of the categories. Multi-label problems are more complex, since in these tasks there

may be many possible labels but they are no longer disjoint: each sample may take

more than one label (or possibly none). A visual representation of these three types

of classification problem is shown in Figure 2.8. Since the problem being answered

by a quantum computer may have more than one answer and these answers coexist

in a basis-encoded problem’s probability distribution, the answer class labels are not

disjoint and it is a characteristic multi-label classification task.

Figure 2.8: Types of ML classification task. Binary classification separates data into two
disjoint categories. Multi-class classification decides between many disjoint categories. In
multi-label classification, multiple categories may be assigned simultaneously [10].

2.3 Related Work

Research of ML applications to QC is a developing area of study and this work

enhances the existing body of research by representing the task of identifying charac-

teristics of a quantum probability distribution as a multi-label classification problem.

The majority of existing research applying ML to QC focuses on the study of au-

toregressive models and their use as a QST technique [30]. As discussed in Section
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2.1.1, QST is the process of reconstructing the qubit register’s statevector before

measurement [31].

Much existing research [32, 33, 34, 35] explores tomographic schemes which im-

plement machine learning for the purpose of identifying the quantum statevector at

some point in time before measurement, a regression task. For example, Torlai et al.

[32] approach this task by using a tensor network encoding of quantum states and

unsupervised learning (with no reinforcement or data labeling). Yu et al. [35] use a

semiquantum reinforcement learning algorithm to reconstruct an unknown photonic

quantum state in the continuous-variable QC formalism (as opposed to the qubit-

gate model). Schmale et al. [34] use the density matrix representation of states as

an encoding to choose a favorable convolutional neural network architecture for QST,

and contrast the results to the most popular tomographic tool, maximum likelihood

estimation (MLE).

Ahmed et al. [33] implement a deep convolutional neural network for classification

tasks in QC and demonstrate its efficacy in in the presence of multiple noise sources,

but focus specifically on states of continuous-variable photonic quantum systems,

categorizing the Wigner state of the system as belonging to one of eight discrete rep-

resentative classes. This research does not attempt to classify basis-encoded quantum

algorithms or predict their results.

Mundada et al. [36] implement a complete automated error-suppressing workflow

for quantum algorithms, which is evaluated on quantum circuits of up to 16 qubits

implementing real algorithms. This process includes a post-experiment measurement

error mitigation step designed to suppress readout errors, which constructs a confusion

matrix of bit-flip error probabilities from groups of qubits in the circuit. This matrix is

used as input to a neural network which is tasked with restoring correlations neglected

between the groups and accounting for small nonlinear effects not captured by the

confusion matrix formalism. This step applies ML to QC error mitigation, but does
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so as an refinement to an existing error mitigation strategy based on the tensored

confusion matrix protocol presented by Nation et al. [37]. The machine learning

models are of the deep ResNet architecture, rather than the simple single-hidden-

layer ANN models of this work, and they are not trained directly on the circuit

results or used to predict answers to the problem.

Bennewitz et al. [38] present a neural network error mitigation scheme which is

used to improve estimates of ground states and ground-state observables of quantum

systems, a problem class called variational algorithms. This involves the application

of the neural network quantum state tomography process by Torlai et al. [32]. These

works focus on the application of ANNs to QST, reconstructing the pre-measurement

quantum states using unsupervised machine learning approaches. These approaches

differ from this work in both the problem class studied in [38] and the type of ANN

and the ultimate goal of its predictive capabilities in [32].

As mentioned, many of these works focus on regression tasks by ANNs, using them

to gain information on the pre-measurement quantum states, and their application to

variational algorithms which may achieve near-term quantum advantage. By keeping

the focus of this work exclusively on basis-encoded algorithms using the qubit gate

model and their tomographic post-measurement solution spaces, the difficult problem

of accurately predicting the continuous probability distribution of the system (char-

acterizing the real probability of measuring each possible state of the register) can

be reduced to a discrete prediction problem on the output of real quantum systems

(identifying the states which represent to the answer to a basis-encoded problem).
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Methodology

This work proposes a new approach to identify characteristics of the true solution

set of basis-encoded quantum algorithms, even in the presence of error from approx-

imation or from hardware noise. At a high level, this approach involves training

single-hidden-layer MLP ANNs using a back-propagation supervised learning strat-

egy to perform multi-label classification tasks on a dataset consisting of the output

probability distributions of basis-encoded quantum algorithms, simulated both with

and without noise, and including output from emulated NISQ hardware. The neu-

ral networks trained in this manner are evaluated based on standard ANN accuracy

metrics such as training and validation accuracy and loss and test prediction pre-

cision and recall, and compared to each other and to their own results on different

algorithms and with different sources and amounts of input error.

As demonstrated by the results in Section 4, a MLP ANN can accurately iden-

tify the solution set of an arbitrary basis-encoded quantum algorithm when imple-

mented on noisy hardware, given an appropriate set of training data and trained

for multi-label classification. This approach applies supervised learning techniques

to the probability distributions from both ideal and noisy quantum simulations: the

data is tagged with the correct solutions to the problem during training in order to

increase accuracy. Characteristics of the discrete probability distributions are evalu-

ated to determine what ANN input data results in the most accurate identification
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of solutions.

• A data set was created from the output of simulated quantum systems for

a subset of basis-encoded problems. This data set consists of approximately

230,000 experiments of different problems which leverage the quadratic speedup

of Grover’s Algorithm for unstructured database search [17]. Additionally, The

data set contains experiments from both ideal (noise-free) simulations and from

simulations introducing various types and amounts of noise. Each experiment

was performed with at least 1,000 shots to create an accurate tomographic

reconstruction of the experimental results.

• The experimental results in this data set were normalized into discrete quasi-

probability distributions and the solutions to each problem were supplied as

multi-hot encoded multi-label classification categories against which the models

are able to train. Characterizing basis-encoded quantum problems as a multi-

label classification problem suited to ANN training is a novel contribution to

neural network-QC research.

• Multi-label classification models were trained and validated on a subset of this

data set. The models were also equipped with a mechanism enabling confidence-

based out-of-distribution (OOD) detection, enabling them to evaluate whether

the experimental result was conclusive by determining whether any answer cat-

egory can be predicted with sufficient confidence to be called an answer to the

problem.

• The performance of the model in identifying solutions was evaluated using stan-

dard ML classification success metrics. Evaluating the success of multi-label

classifiers is an active area of study, and recent work on the evaluation and visu-

alization of multi-label classification performance is explored [39]. The model’s
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predictive performance was evaluated on various subsets of the full data set,

allowing performance to be evaluated for specific noise types and amounts.

• An implementation from the conclusions of this work is proposed which inte-

grates classical ANNs into quantum computing workflows as an error mitigation

technique in a new way.

The quantum circuits for each problem were generated using the Qiskit SDK and

executed using the Qiskit Aer simulator [40]. Each single experiment was comprised

of 1,000 shots and the shot counts were normalized to create discrete probability

distributions separated by solution bit-string, on four-bit-wide solution problems,

from |0000⟩ through |1111⟩. Each experiment’s quasi-probability distribution was

recorded along with its list of solutions as an entry in a CSV file, an ideal format for

neural network training input. This process was repeated for all experiments shown

in Table 3.2 until the entire data set of 229,800 experiments was generated.

3.1 Multi-Label Classification ANN Training

The data set was split into disjoint training, validation, and test subsets. 90% of the

experiments were used for training, while 5% each went to validation and test. The

measured shot probability of each possible state comprises the independent variable

input data. The solutions were encoded as a binarized one-hot vocabulary of target

values, making the single-experiment solution lists suitable targets for multi-label

binary classification.

TensorFlow [41] and Keras [42] were used to construct the ANN trained for the

classification task. The neural network architecture used in this work was a simple

feedforward MLP ANN with a single hidden layer composed of 128 rectified linear

unit (ReLU) neurons. The output layer uses sigmoid activation, which is standard

for multi-label classification models in order to map the output values to probabilities
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in [0, 1]. These output probabilities represent the confidence level of the model when

applying the given label to the input data, and the model is defined as identifying a

solution to the problem if its confidence level for that state is greater than 0.5.

This work employs a supervised learning approach. In this method, the model is

supplied with the independent data against which it makes a prediction, along with

the correct answer or answers to predict. A loss function is used to calculate the

error or loss, which is based on the distance between the predicted solution and the

actual solution in the n-parameter hyperspace of the problem. The models in this

work employ the binary cross-entropy loss function, which is standard for multi-

label classification problems (those that have multiple non-exclusive binary solutions).

The model makes a prediction, calculates the loss, and changes its weights based on

the process of optimization, whereby patterns in the change of loss per epoch give

information as to the amount and direction to change weights. Over epochs, this

approach trends towards a globally minimized loss, which means the model is making

its most accurate possible predictions.

To perform optimization on itself, the model employs an optimizer, an algorithm

that informs the model’s changes to its weights and parameters. Based on the opti-

mizer, there is a chance that the model may overshoot during optimization and get

stuck in an oscillating pattern, never actually reducing its absolute loss. Basic first-

order optimization, called gradient descent, may suffer from this phenomenon. As

machine learning has matured, higher-order optimizers have been introduced which

avoid the oscillation problem by considering rates of change of loss. The optimizer

employed in this work is one such called Adaptive Moment Estimation, or ADAM.

The ADAM optimizer requires no manual hyperparameter selection, has minimal

variance between models, and converges very quickly, at the cost of high computa-

tional complexity compared to simpler optimizers. ADAM is a popular choice for

supervised learning approaches for these reasons.
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Overall, this model is easy to implement and has little training overhead, allowing

future researchers the ability to iterate rapidly or adapt the model to more com-

plex classification tasks on quantum circuit output. Data collection, training, and

validation was performed using the resources from RIT Research Computing [43].

Two models were trained with these hyperparameters. One was trained on ex-

clusively Grover’s algorithm-based applications, defined in the following section. A

second was trained on a mixture of all quantum circuit data, including the quantum

integer multiplier implemented in [44], which is basis encoded but not Grover’s-based

or oracle-based. This provides an opportunity to determine how the model performs

when identifying the solutions to a basis-encoded problem class it has not encoun-

tered.

3.2 Benchmark applications

Grover’s Algorithm [17], discussed in Section 2.1.4, is at the core of the applications

that have been targeted in this work, as it is a very versatile quantum algorithm

with many possible applications. Even though this algorithm only offers polynomial

speedup (O(
√
N) vs. O(N)), the goal of this work is to offer a proof of concept of

the potential for post-measurement error mitigation of ML training and classifica-

tion process in basis-encoded applications, and Grover’s algorithm serves its purpose

well. Other basis-encoded algorithms can potentially benefit from this approach,

such as period finding in Shor’s algorithm which can potentially have multiple so-

lutions, or arithmetic operations with integers, such as integer quantum multipliers

[44]. The cases in this paper, however, are sufficient to demonstrate the efficacy of

the approach, since the key component is how the noise affects the ideal probability

distribution rendering the actual solutions undecided, and how ML classification can

help extract information nonetheless. This section introduces the test cases that were

used for training, validation, and testing: problems that are basis-encoded and with
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Table 3.1: Circuit features

Application Width Depth Size

3-SAT [3] [8-137] [15-182]
4-SAT [4] [8-329] [18-426]

Max Clique (Approx.) [18] [25-34] [55-68]
Max Clique (Exact) [18] [33-242] [66-403]

QBNN [12] [13439-89609] [13464-109657]

potentially multiple valid solutions. A table of relevant benchmark circuit features

by application including circuit width (number of qubits), circuit depth (number of

operational stages), and total gate count is shown in 3.1.

3.2.1 Grover’s-based applications

Grover’s implementation at a higher level can be broken down into three steps: initial-

ization, oracle and diffuser, as summarized in Figure 2.3. Although the initialization

and diffuser steps are the same for every application of Grover’s algorithm, the or-

acle holds the core of the specific applications. Any optimization problem can be

re-framed as a search problem, as long as the optimization conditions are expressed

in the oracle component of the search algorithm, and as long as the output can be

expressed as a binary string, as is the goal in the basis-encoded applications targeted

here. This Oracle holds all the versatility of Grover’s algorithm and offers enough

varying parameters to test this approach on different applications. Three different

applications of Grover’s algorithm to computationally difficult problems are tested:

Boolean satisfiability, maximum clique, and training of binary neural networks.

Satisfiability problem: The Boolean satisfiability problem (SAT, or k-SAT for

k literals) is the NP-complete problem if determining if there exists a combination of

Boolean variables (True or False) that may satisfy a given Boolean formula, causing

the formula to evaluate to True. An example of a three-variable satisfiability problem
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(3-SAT) is given in (3.1).

F = (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) (3.1)

A formula may have multiple satisfactory combinations of variable assignments.

Satisfiability problems are a well-known application of Grover’s algorithm. The vari-

able assignments that satisfy the formula are basis-encoded by assigning a qubit to

each variable and specifying a Boolean encoding, such as 0 to False and 1 to True.

A Grover’s oracle is constructed in the 2k-value search space of the k variables in

the formula and the algorithm is performed to find the solutions. Satisfiability is an

ideal problem for dataset generation, as it is fast to execute and modify to generate

SAT problems with different solutions and numbers thereof. While SAT circuits offer

excellent programmability and the lowest circuit width, they suffer from a high circuit

depth relative to others and thus a larger potential accumulation of error from noise.

Maximum clique problem: The maximum clique problem is the problem of

finding the largest fully connected subgraph of a graph. A graph can have more

than one maximum clique, as shown in Figure 3.1. The possible solutions may be

basis-encoded when the graph’s edges are expressed as one-hot in the connectivity

matrix of the graph. Grover’s algorithm was used in a previous work to solve this

Figure 3.1: Four-node graph demonstrating the maximum clique problem [11]. The graph
shown has two maximal cliques, ABD and ACD.
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problem [11]. In this work, three-node graphs with every possible combination of

edges were used for data generation. This resulted in three cases with a single answer

and three cases with two answers. Two implementations from [11] are used as a

test case here: one which solves the maximum clique problem exactly, and a second

one in which the implementation is approximate to reduce the depth of the circuit.

Approximate algorithms such as this are an example of a pre-measurement error

mitigation strategy, costing some experimental accuracy in ideal simulation but with

the potential to increase actual accuracy on NISQ hardware by reducing the ability

of noise to accumulate in the circuit.

Training Binary Neural Networks:

In Improved Grover’s Implementation of Quantum Binary Neural Networks [45], a

quantum circuit is introduced which trains a binary neural network (BNN), providing

optimal BNN weight strings as a basis-encoded output. The execution of the QBNN

has 2N possible weight strings, where N is the number of weighted edges in the

network. Since the cost function associated with the BNN training data may have

multiple minima, the QBNN may provide multiple optimal weight strings as answers.

In this work, a simple implementation is used with a single neuron with three inputs

and one output. The dataset has a single best weight string, “000”. This allows the

inputs to enter the neuron unchanged, and the neuron’s activation function th = 2

outputs a 1 when the inputs sum greater than or equal to 2. The MC and QBNN

implementations in this work are less programmable than SAT and use many more

qubits, but are good examples of recent complex quantum circuits.

3.2.2 Non-Grover’s-based application

Quantum Array Multipliers (QAM) were proposed by Crimmins et al. [44]. Tak-

ing inspiration from classical array multipliers, they implement integer multiplication

taking advantage of rotations in the phase domain through the Quantum Fourier
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Transform. The answer is basis-encoded, making tThere is only one correct result

per experiment: the resulting product of the two input integers, but noise and ap-

proximations contribute to a less definite probability distribution. In this case, since

for the sake of simulation cost the largest output in training and testing is four qubits

wide, only 2 × 2 = 4 qubit outputs are implemented and tested with different noise

levels. Therefore, the classes in this case are limited to 1×1 = 1, 1×2 = 2, 1×3 = 3,

2× 2 = 4, 2× 3 = 6 and 3× 3 = 9.

Table 3.2: Total experiment count for each problem.

8 State

Problem Type Solutions Experiment Count
3-Sat 0, 3, 5 11,000

3, 5 11,000
2, 4, 6 11,000
1, 2 11,000
0, 1, 3, 5, 6 11,000
7 11,000
2, 4 11,000
1, 7 11,000

Max. Clique 3, 5 3,000
(exact) 3, 6 3,000

5, 6 3,000
3 3,000
5 3,000
6 3,000

Max. Clique 3, 5 1,100
(approx.) 3, 6 1,100

5, 6 1,100
3 1,100
5 1,100
6 1,100

QBNN 0 1,200
QAM 0 300

1 300
2 300
3 300

Total 115,000

16 State

Problem Type Solutions Experiment Count
4-Sat 0, 15 11,000

7, 11, 12 11,000
2 11,000
1, 5 11,000
4, 6, 9 11,000
13 11,000
3, 14 11,000
2, 8, 10, 12 11,000
0, 4, 7, 9 11,000
11 11,000
5, 13, 15 11,000
1, 10, 11 11,000
3, 6, 8, 14 11,000

QAM 0 300
1 300
3 300
4 300
6 300
9 300

Total 114,800
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Results

4.1 Method, experiments and metrics

Classification of each probability distribution was performed according to 16 labels.

Each label corresponds to the binarized encoding of the measured answer state for

each basis encoded problem, e.g. |0000⟩ as the answer or label “0” and |1011⟩ as the

answer or label “11”. These classes are used for a direct one-to-one correspondence

between the solutions to each quantum algorithm and the classification labels for

the machine learning model. A supervised learning approach was used to train two

different models of the architecture described in Section 3.1. Model 1 was trained

using only Grover’s-based application data (SAT, Max. Clique, QBNN). Model 2

was trained using Grover’s-based and non-Grover’s based (QAM) application data.

Three different experiments evaluate the performance of each of the two models on

novel data. The first two experiments assessed Model 1, while the third one assessed

Model 2.

Experiment 1 evaluates Model 1 ’s performance using a 1,000-sample subset of

the Grover’s Algorithm dataset which is disjoint from the training and validation data

and includes all noise levels. Benchmarks in this test include satisfiability, maximum

clique, and training a binary neural network. This test provides a baseline perfor-

mance level on a wide variety of distributions with either 8 or 16 possible solutions
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and with various amounts of noise.

Experiment 2 evaluates Model 1 ’s performance in finding the solutions to the

quantum array multiplier circuit, QAM [44]. QAM has only one label in each sample

distribution, the product of the two input integer values. The test set included

various noise levels, to distort the probability distributions to different degrees. The

quantum multiplier is a basis-encoded circuit not based on Grover’s algorithm. This

test is useful to evaluate the model’s performance on a problem type that it has not

encountered during training.

Experiment 3 is performed with Model 2 and the test evaluates its performance

on a 1,000-sample subset of a test set comprised of data from all benchmarks and all

noise levels. This set includes results from the QAM.

4.1.1 Noise models

In order to generate the data set used for the ANN classification task, Qiskit noise

models were developed which emulate different sources of hardware errors. First,

a configurable probabilistic Pauli error (bit-flip) model was written which takes as

input a probability percentage, and constructs a noise model that will cause the

qubits to flip states randomly during reset, measurement, multi-axis rotation (U)

gates, and control-X (CX) gates. Next, a time-based single-qubit thermal relaxation

noise model was written which models the expected execution times of various gates

and randomly “relaxes” qubits during the gate operations to their rest |0⟩ state.

These noise models provide a degree of control over the noise on the basis-encoded

quantum circuits considered in this work while accounting for the probabilistic nature

of noise experienced by real quantum hardware.

In addition, five different simulated hardware noise models were used to generate

data. These are simulated versions of the IBM Hanoi, Johannesburg, Guadalupe,

Essex, and Almaden processors, implemented by applying the circuit noise models
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and coupling maps to an ideal Aer simulator and transpiling the quantum circuits

to hardware gates. Simulated hardware noise models provide insight into how the

algorithms perform on real hardware and how the ANN performs when analyzing the

output of real quantum computers.

4.1.2 Metrics

Evaluating the performance of multi-label classifiers is not straightforward when com-

pared to binary or multi-class classification, and is itself the subject of active research

[46] [47]. For example, standard multi-class accuracy metrics tend to inflate the ac-

curacy of a multi-label classifier by counting every no-match category as accurate,

even if the correct categories are not predicted accurately or the positive categories

are sparse. This work uses the multi-label performance indicators introduced by Hey-

darian et al. [39] including the precision, recall, F1-score, and weight metrics, and

the multi-label confusion matrix schema.

To evaluate multi-label classifiers, the metrics precision, recall, F1-score and weight

are introduced and calculated separately for each class. Precision gauges the model’s

accuracy of positive predictions: the percentage of its optimistic guesses that are

correct. Recall gauges the model’s positive predictions against all instances of the

class: how much of a given class label the model identified. F1-score is a specific

F-score measure which gives the harmonic mean of precision and recall. Weight is

the total count of a given class’ labels in the data set. Equations 4.1, 4.2, and 4.3

give precision, recall, and F1-score for a class c, respectively [39].

Pc =
TPc

TPc + FPc

(4.1)

Rc =
TPc

TPc + FNc

(4.2)

F 1
c =

2TPc

2TPc + FNc + FPc

(4.3)
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The confusion matrices in Figures 4.1, 4.2 and 4.3 show true positive predictions

on the main diagonal. These are cases where the true solution was also predicted

as a solution by the ANN. Entries off the diagonal show the number of inaccurate

predictions of other solutions when the true label was a solution to the given problem.

The final “NL” column shows cases where the model could not make a satisfactory

prediction (that is, with confidence ≥ 0.5) when the True Label was present. The

final “NL” row catches out-of-distribution data, or data with labels the model could

not recognize. No data of this type was present in the data set as all data was tagged

with a solution in [0, 15].

4.2 Experimental results

Results for each experiment presented in Section 4.1 are presented separately, and

a full summary follows. In all cases, tests were performed on a 1,000-experiment

subsample of data which was reserved for test: the models did not encounter this

data during training or validation. Each test set contains a randomized mixture of

all noise levels used for dataset generation.

4.2.1 Experiment 1: Grover’s trained model (Model 1) on Grover’s test

cases.

This experiment tested Model 1 against Grover’s Algorithm test cases. Since the

training and test data sets included three and four qubit output cases, the datasets

are unbalanced with a higher number of cases in the 0-7 range than 8-15 range. If

multi-label classification is meant to be effective, this pairing of training and testing on

the same application type (Grover’s) should show best results. As shown in Figure

4.1, the majority of predictions are true positive, reflected in the diagonal of the

confusion matrix. The model is presented with a significantly higher workload of

cases with answers between 0 and 7 due to the imbalanced nature of the dataset,
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which is reflected in the class weights in Table 4.1 and in the upper left quadrant of

the confusion matrix.

It is evident from these results that incorrect classifications are scarce despite

dataset imbalance. False positives, columnar entries of a given class off the diagonal,

are very low for every class although notably higher for class 3 and 5 again due

to dataset imbalance causing training bias. False negatives, row entries of a given

class off the diagonal, are similarly low throughout, although higher for classes 6 and

7. Weighted averages of precision and recall for this experiment are 95% and 84%

respectively, which indicate the model is exceptional at being conservative with its

positive predictions and adept at classifying the majority of cases it is presented with.

F1 scores range from 0.77 to 0.94 across all classes.

Table 4.1: Overall MLC ANN Performance Metrics for Experiment 1.

Class Precision Recall F1-score Weight

0 0.93 0.77 0.84 197
1 0.93 0.92 0.93 214
2 0.99 0.90 0.94 222
3 0.88 0.86 0.87 258
4 0.98 0.87 0.92 181
5 0.91 0.83 0.87 241
6 0.94 0.80 0.86 234
7 0.99 0.76 0.86 204
8 1.00 0.78 0.88 91
9 0.94 0.78 0.85 97

10 0.95 0.83 0.89 89
11 0.97 0.80 0.88 124
12 1.00 0.70 0.82 93
13 0.97 0.67 0.79 84
14 0.80 0.74 0.77 86
15 1.00 0.68 0.81 95

Micro Avg. 0.84 0.84 0.81 2510
Macro Avg. 0.94 0.82 0.86 2510

Weighted Avg. 0.95 0.84 0.87 2510

Inconclusive cases make up the largest group of misclassified results, appearing

in the final “NL” column in Figure 4.1. The inconclusive cases are also reflected
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Figure 4.1: Multi-label confusion matrix for performance evaluation, Experiment 1.

in the Recall metric in Table 4.1, as no-label results are considered false negatives.

Since inconclusive cases are counted as false negatives, they impact Recall and F1-

score negatively. The model was not presented with as many cases of the lower-

weight classes during training, and it is clear that this caused the model to be less

confident making positive predictions of these solutions. On average across all classes,

inconclusive cases represent 13.7 % of all tests. A review of the lower-weight labels

shows that the model is particularly weak here; for labels 12, 13, 14, and 15, the

model could not make conclusive predictions in over 20% of cases, peaking at 29.5%

inconclusive predictions for problems with 15 as the answer. These percentages are

also shown in Figure 4.4, along with the same metric from Experiment 3. These cases

are the reason Recall scores are lower than Precision scores.

Under further inspection, these inconclusive cases were found to be mostly from
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the Johannesburg hardware noise model and the 5% and 10% bit-flip probability

models. While it might be the case that inconclusive answers come mostly from

higher noise levels, it is also the case that the noise level is controlled for in the

random test sample as there are equal numbers of experiments of each noise level.

Since the number of conclusive predictions is still higher for the higher-weight classes

even controlling for noise with random sampling, it can be concluded that both noise

level and sample weight have independent effects on model confidence.

4.2.2 Experiment 2: Grover’s trained model (Model 1) on QAM test

cases

Table 4.2: MLC ANN Performance Metrics for Experiment 2. Classes with no samples
are omitted.

Class Precision Recall F1-score Weight

0 0.75 0.49 0.59 252
1 0.86 0.47 0.61 261
2 0.84 0.37 0.51 117
3 0.70 0.52 0.60 249
4 0.78 0.45 0.57 100
6 0.56 0.50 0.53 114
9 0.94 0.45 0.61 98

Micro Avg. 0.75 0.47 0.58 1191
Macro Avg. 0.77 0.46 0.57 1191

Weighted Avg. 0.77 0.47 0.58 1191

This experiment tested Model 1 against non-Grover’s Algorithm-based test cases,

namely those from QAM. The goal of this experiment was to test how the applications

used for training transpire into the ML model. In other words, these results mean to

prove that quantum noise from a circuit is not just random noise but structured on

the circuit’s internal rules, and that a ML model can find patterns in this structure to

make predictions. The models with this level of training are not universal; they will

need to be trained for specific applications or groups of applications with the same

structure or based in the same principles.
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Figure 4.2: Multi-label confusion matrix for performance evaluation, Experiment 2.

The QAM data was not generated using the noise models described in Section

4.1.1. QAM with small input cases as discussed in these experiments (2 qubits ×

2 qubits = 4 qubit result) are highly accurate under standard noise models. For

that reason, the simulations used a unique noise model applied to all qubits which

produced highly noisy results to test the accuracy of this ML model. Simulations were

run at three levels: no noise (perfect results), depolarizing error with 10−5 and 5 ·10−4

single-qubit and two-qubit gate error respectively, and a modified depolarizing error

with 10−2 single qubit and two qubit gate error. Results from this test are outlined

in Table 4.2 and Figure 4.2. Table 4.2 omits classes which were not present in the

dataset.

As expected, it is observed that the model makes significantly more misclassifi-

cations and inconclusive classifications. Only between 37% and 52% of the tests are
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correctly classified across all classes with an average of 47%. The high noise level

cases represent 33% of the total number of test cases, but the misclassifications go

well beyond that percentage. The reason is that the ML model was not trained on

data coming from this circuit implementations. The model does not know how to

handle the test cases or what to expect except for about 48-63% of the cases, which

is an overall poor result.

This test has a secondary benefit of highlighting bias in the model’s weights: due

to the dataset imbalance during training, the model tends to falsely predict solutions

3, 5, and 6 more often than other categories. While Model 1 is much less confident

making predictions on this data, it also makes many more erroneous predictions than

in the other experiments. This is due to the skew toward solutions 3, 5, and 6 in the

solutions of the training data.

4.2.3 Experiment 3: Grover’s and non-Grover’s trained model (Model 2)

on all test cases (Grover’s and QAM)

This experiment was conducted on Model 2 against a subset of data from all test cases,

including both Grover’s and non-Grover’s (QAM) problems. 1,000 experiments were

sampled out of the full test set, which contains data from all noise models. Thus Model

2 may encounter data from any problem of any noise level during this experiment.

This experiment is meant to second the previous point. The ML model now has

learnt the circuit implementation of a new application and is able to better classify

cases from that instance. Further, the new results show that two plus two does not

always equal four. In this case, the additional training on QAM not only improves

upon Experiment 2, but outperforms Experiment 1 as well.

Model 2 displays good performance at classifying solutions from Grover’s and

QAM probability distributions, as shown in Table 4.3 and Figure 4.3, and in contrast

with Experiment 2 demonstrates the importance of training the model on data sim-
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ilar to that which it will encounter during testing or deployment. Overall weighted

averages for precision and recall are 0.95 and 0.84 respectively, identical to those from

Experiment 1. But the average F1 score is slightly higher in Experiment 3 which indi-

cates a better rate of attempted classification when compared to Model 1. The extra

training data that Model 2 saw made it a more confident predictor of the solutions

to basis-encoded quantum problems. The reason for this change is that the number

of inconclusive cases has dropped slightly in this case, when compared to Experiment

1, and the distribution has also changed. Figure 4.4 displays these results for incon-

clusive cases. Experiment 1 had an average 13.7% number of inconclusive cases while

the average has dropped to 11.8% in Experiment 3. The probability distribution has

for Experiment 3 also seems to be more uniform, less skewed towards the higher end

of the figure. In a number of classes, the rate of inconclusive cases is lower in this

new experiment than in Experiment 1 (0,4,5,7, 8,9,10,12, 13, 14, 15). It appears that

QAM added diversity to train the model has a positive impact on the classification

as a whole, but further analysis should be performed to reach solid conclusions.

4.2.4 Noise Model Analysis

It is important to gain understanding of the effect of noise on the models’ predictive

confidence. Randomizing the training and test data in previous experiments effec-

tively controlled for the influence of noise by presenting equal amounts of each noise

level to the models for training and testing, with the goal of assessing performance

across solution categories and types of quantum circuits. By analyzing the model’s

performance categorized by noise level, it can be determined whether there is some

threshold above which the model can no longer make predictions confidently.

To perform this analysis, the complete data set was split up by noise type, per-

centage, and hardware backend, and 1,000-sample groups were pulled from each.

Model 2 was used in this analysis, as it had the best performance across the previous
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Table 4.3: Overall MLC ANN Performance Metrics for Test 3.

Class Precision Recall F1-score Weight

0 0.94 0.82 0.87 195
1 0.98 0.86 0.91 215
2 0.96 0.89 0.93 196
3 0.93 0.86 0.89 267
4 0.99 0.88 0.93 159
5 0.93 0.84 0.89 264
6 0.89 0.84 0.86 217
7 0.96 0.84 0.90 186
8 0.96 0.84 0.90 90
9 1.00 0.79 0.88 92

10 1.00 0.88 0.93 73
11 0.96 0.76 0.85 126
12 0.97 0.87 0.92 75
13 0.94 0.78 0.85 100
14 0.95 0.84 0.89 88
15 0.91 0.71 0.80 83

Micro Avg. 0.83 0.84 0.84 2426
Macro Avg. 0.95 0.83 0.89 2426

Weighted Avg. 0.95 0.84 0.89 2426

trials. QAM data was omitted due to the inconsistent noise models used for those

experiments. Precision and Recall for each noise type is shown in Figures 4.5 and 4.6.

Scoring metrics indicated in Figure 4.5 demonstrate the large effect that noise has

on model prediction accuracy and completeness. Predictions are very accurate and

recall is excellent for most noise levels, staying above 90% for all noise models except

Johannesburg and the 5% and 10% Pauli error models. For these three categories,

the model performs much worse. Especially for 10% noise, the model’s recall is 0.33

or 33% of which is very poor. Precision is better at 0.62 which indicates that at this

noise level the model is making many misclassifications, but is mostly unable to guess

any answer states with significant confidence.

Looking at the inconclusive predictions across each noise model, the results of this

analysis are shown in Figure 4.6. As the noise level increases in the quantum simu-

lation, the solution states are measured less frequently and the resulting probability
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Figure 4.3: Multi-label confusion matrix for performance evaluation, Experiment 3.

distribution increasingly resembles a uniform distribution, making it more difficult

for the ANN to classify the distribution. The ANN becomes less confident in its

predictions and at 10% bit-flip noise, eventually cannot classify approximately 50%

of the samples it is presented on a subset of all 10% noise data.

Knowledge of the distributions which resulted in inconclusive ANN output is a

useful research outcome. These samples can be separated from the dataset and re-

weighted for further training, or omitted from future training data altogether. These

samples are also identified as good candidates for cleaning or other post-measurement

error mitigation, a process that is not required for accurately classified data. Gener-

ally, when the model makes a prediction on an experiment it has been trained on, it

makes an accurate one; with a confidence threshold of 0.5, numbers of inconclusive

predictions are far higher than false positives.
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Figure 4.4: Fraction of inconclusive cases per label for Experiment 1 and Experiment 3
compared.

Of interest in this analysis is the poor performance on the data generated on the

IBM Johannesburg quantum system noise model. At the time the noise model was

extracted, this device was experiencing high error in both single qubits and two-qubit

links. Identification of this system as particularly noisy when compared to the other

hardware backends could indicate another use of machine learning analysis on quan-

tum computer outputs. A well-trained model looking at the real-time running output

of hardware quantum systems could be used as a preventative system monitoring

tool, assessing when system noise rises above some threshold during operation.
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Figure 4.5: Weighted average Precision, Recall, and F1 score of sampled data sets seg-
mented by noise model.
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Figure 4.6: Number of Zero-Prediction items by Model 2 in 1,000 samples of each noise
model dataset, with P(answer) ≥ 0.5.
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Conclusion

This work uses ML approaches to classify probability distributions generated out of

quantum computing experiments, specifically approaching the problem of identify-

ing solutions to a noisy quantum experiment as a multi-label classification problem.

Simple multi-label classification models were used to identify the correct solutions of

basis-encoded quantum applications. This process was successful despite noise that

would otherwise result in inconclusive outcomes and particularly when the number

of valid solutions to the problem is unknown beforehand.

The approach was tested on Grover’s Algorithm-based applications (Satisfiability,

Maximum Clique and Quantum Binary Neural Network training) and non-Grover’s

based applications (Quantum Array Multiplier). Due to resource and time constraints

for simulation, training, validation, and test were limited to three- and four-qubit

application outcomes. From the efficacy of the approach, these proof of concept

experiments showed that applying discrete classification strategies to data generated

on NISQ machines is a viable option with precision, recall and F1-score around 0.95,

0.84 and 0.89, respectively. As expected, the trained models had a large increase in

the number of inconclusive cases when noise raised above 5%. These same models

held up well with noise at 2% or under, or when noise was modeled after data taken

directly from hardware, except in the case of the IBM Johannesburg processor, which

was a particularly noisy example.
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In addition to the successful classification of solutions to quantum experiments,

another useful research outcome of this work is the identification of experiments which

are good candidates for further noise mitigation. This work may serve as the first

step toward an integrated quantum-classical workflow to identify and clean noisy

quantum probability distributions post-measurement, similar to the results in [36].

This would save valuable NISQ hardware resources for more complex algorithms. It is

evident that machine learning approaches can reduce or eliminate the need for costly

quantum error correction routines and compliment other methods of error mitigation,

providing a new pathway for quantum computing researchers to reach more useful

conclusions about the results of their real-world experiments.

5.1 Future Work

Due to the highly black-boxed nature of neural networks, it is difficult to gain insight

into the patterns the model learns or extract the learned trends from the model. It is

clear from the results that the noise in quantum computers is not completely random;

there is some deterministic pattern which is carried into the ML model through the

training process and which becomes part of the model used for classification. This

information could possibly be reflected in the network’s edge weights. Patterns in

the trained model’s weights may provide insight to the corruption that the noise

causes to the experiment and point toward how to best separate this noise from the

ideal probability distribution. The problem of separating out the noise is similar

to separating a mixture of probability distributions, and this strategy has not been

explored in existing research in quantum error mitigation.

While the efficacy of simple multi-label classification models in accurately predict-

ing the solutions to noisy quantum applications is demonstrated here, more specialized

and complex classifiers are worth exploring to build upon this work. More complex

models may be able to make more confident predictions in the difficult-to-classify
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experiments with high noise. The dataset developed in this work also demonstrates

bias toward a few categories due to the solutions to the problems used to develop

it. An enhanced dataset would have approximately equal quantities of experiments

with each possible solution, and could be expanded to contain more non-Grover’s

Algorithm basis-encoded problems.

Another enhancement to the dataset would be the inclusion of other characteristics

of each probability distribution, such as shape parameters like skewness or kurtosis.

This could be coupled with characteristics which contrast the information contained

in two probability distributions, such as Hellinger distance or Kullback-Leibler diver-

gence. This information could be used as an additional training weight or a separate

input category in addition to the measurement probabilities.
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