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Abstract

Recent technological advances have yielded several high-complexity models for fire behavior.

Low-intensity burns present difficulties in modeling due to a strong sensitivity to wind and fuels.

This dissertation explores support research to improve representation of low-intensity fire in these

high-complexity fire simulations. We focus on three areas: (i) data-driven modeling with a Spa-

tially Extended Radiant heat Fire model (SERF), (ii) fuel heterogeneity with our model Distribution

of Understory using Elliptical Transport (DUET), and (iii) research on whole system dynamics us-

ing chaos theory. To increase simulated resolution of low-intensity fire behavior, we employ an

observational data set to develop SERF with spatial resolution on the order of ⇡ 0.05 m2, in con-

trast to the 1–2 m2 typical of the process-based models. SERF uses probability distributions to

calculate radiant heat levels through a coupled map lattice which then inform a cellular automata

model. In response to the need for more detailed surface vegetation maps, we develop a mech-

anistic model for estimating variation in surface vegetation called the Distribution of Understory

using Elliptical Transport (DUET). DUET connects the canopy structure to the litter dispersal us-

ing ellipses based on tree species characteristics, wind data, and location-specific features, and

then calculates grass growth and decomposition in the years since the last burn of the area. Finally,

we investigate the sensitivity of a high complexity wildfire model, FIRETEC, using chaos theory.

We develop 3900 one-dimensional time series from a FIRETEC simulation designed to represent

low-intensity burning conditions. We test them using the Chaos 0-1 Test and an artificial neural

network designed to distinguish between stochastic and deterministic series. By focusing on data-

driven modeling, vegetation mapping, and broad-scale dynamics, our work adds essential support

models and research to process-based fire models when representing low-intensity burns.
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CHAPTER 1. Introduction

1.1 Background

Oxygen, heat, and fuel are the three components that influence fire dynamics (Quintiere 1998).

However, the simplicity of this “fire triangle” can be misleading, as different configurations of

these ingredients lead to a diverse set of dynamics. The topography of the fuel bed influences the

convection and radiative heat transfer (Iniguez, Swetnam, and Yool 2008; Clements and Seto 2015;

Airey-Lauvaux et al. 2022). Differences in litter accumulation or treatments in a given area can

change the surface and ladder fuels and lead a lower-intensity fire to develop into a high-intensity

crown fire (Kilgore and Sando 1975; Menning and Stephens 2007; Alvarez, Gracia, and Retana

2012). Flow fields in the atmosphere interact with the heat released from a fire to create new

atmospheric flows and can lead to unique phenomena like fire whirls and counter-rotating vortices

in and around the flames (Potter 2012a, 2012b; Lareau et al. 2022). These are just a few examples

of the possible complex behaviors that can develop from these three simple components.

Fire is an essential element to healthy ecosystems across the world. Many environments are

considered to be “fire-dependent” ecosystems, in that the flora and fauna present in the area require

heat for survival (Sauer 1950; Bond, Woodward, and Midgley 2005; McGranahan and Wonkka

2020; McLauchlan et al. 2020; Robbins et al. 2022). Many plants use heat to motivate their

reproductive processes, or the area may require clearing of debris or dead surface layers, leaving

a carbon rich soil for new growth. Crown fires may clear some of the canopy to leave room for

sunlight to reach the surface and provide warmth to seedlings or smaller plants that require sun to
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grow. Ecosystems rely on the balance of nutrients and natural resources and fire is one of many

contributing factors for healthy systems.

Some human suppression tactics have had devastating effects on these fire-dependent ecosys-

tems (Van Lear et al. 2005; Keane et al. 2008; La Puma, Lathrop, and Keuler 2013; Hanberry

2021). To restore these ecosystems to their natural state, we often intentionally light fires in spec-

ified areas with particular ecological goals in mind. This practice is called “prescribed burning.”

These burns are designed for the given ecosystem considering several factors including wind and

environmental conditions as well as ecological needs (Wade and Lunsford 1989; Keane et al. 2008;

Linn et al. 2021). In the performance of prescribed burns, control is of utmost importance to

avoid unintentionally damaging the environment or the surrounding structures (Wade and Lunsford

1989). Typically, prescribed burns are designed to be lower intensity than major wildland fires to

avoid escape and unintentional ecological damage (Wade and Lunsford 1989; Van Lear et al. 2005;

Linn et al. 2021). These lower intensity fires, defined here as slow-moving surface-level fires, tend

to be more sensitive to environmental conditions including slight wind variations and surface fuel

spatial heterogeneity (Clements et al. 2015; Jonko et al. 2021; Linn et al. 2021). Due to their

low flame lengths and slower speeds, they can also be easier to control. Fire practitioners and

land managers are always seeking a better understanding of fire behavior to avoid damaging the

ecosystems further and design our prescriptions to minimize the risk of escape.

To further our understanding of fire dynamics, we require a substantial variety of data sets to

allow for the examination of the whole system and its components. Collecting data in the field is

challenging given the large amount of energy emitted from even the smallest fires, the consumption

of vegetation (fuel), and the complex interactions in the fire environment. However, it is possible

to design new experiments for specific measurement goals through computer modeling and simu-
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lation. In particular, numerical models offer us the ability to generate data at the spatial resolution

characteristic of low-intensity fire propagation without the risks and challenges associated with

data collection in the field. Even though models may lack some of the physical processes, the

intricacy and fidelity of these models in comparison to experimental data make them an essential

tool for studying fire dynamics.

Hawley (1926) and Gisborne (1927) began the conversation regarding the value of forest fire

modeling and objectives for the research in the 1920s. Their initial models relating fire spread

to weather patterns and moisture contents laid the groundwork for more complex models in the

30s and 40s. Curry and Fons (1938) employed observational data from the field connecting wind,

moisture, time, and slope to approximate rate of perimeter increase for Ponderosa Pine forests in

California, but found that the results were unique to the circumstances of the data and could not

be universally applied. Fons (1946) then expanded the model to include results from laboratory

experiments with homogeneous fuel beds in an attempt to develop knowledge of the fundamental

processes contributing to fire spread.

Following World War II, fire modeling expanded significantly after the government reports by

Chandler, Storey, and Tangren (1963) and Rogers and Miller (1963) regarding the resulting mass

fires from nuclear explosions (Sullivan 2009). These reports led to an increased desire for under-

standing fire behavior and developing “fire-danger” metrics. Weber (1991) provided a compre-

hensive review of the various models developed from this era, dividing them into three categories:

statistical, empirical, and physical. The statistical models rely on data collected in the field and

generally work well for fires that are similar to the data upon which they are based, but have mini-

mal success for fires outside of those specific parameters (Weber 1991; Linn 1997; Sullivan 2009).

McArthur (1966) developed a statistical model using grassland fire data which was used to develop

3



a fire-danger metric, classifying likelihood of fire danger from “low-moderate” to “catastophic.”

This model was translated into equations by Noble, Gill, and Bary (1980) and is still being used

extensively, particularly in Australia (Griffiths 1999; Khastagir, Jayasuriya, and Bhuyian 2018;

Shah et al. 2022).

Arguably, one of the most well-known models in the fire science community from this era is

the Rothermel (1972) model. Based on a model built by Frandsen (1971) in conjunction with

McArthur (1966) data plus wind tunnel experimental data developed by Rothermel and Anderson

(1966) and modified by Albini (1976), the Rothermel model uses these data and applies equa-

tions that represent the heat flux and energy transfer within a fire in one-dimension (Weber 1991;

Andrews 2018). It is classified as a quasi-empirical model by Sullivan (2009), as it uses data as

well as equations, but does not represent the specific type of heat transfer. Often this model has

been implemented as a base for more complex models as in BEHAVE (Burgan 1984), FARSITE

(Finney 1998), and FireStation (Lopes, Cruz, and Viegas 2002). Cellular automata models that

track fire through a landscape also use Rothermel’s model as in Yongzhong et al. (2004), Trunfio

et al. (2011), and Zhang et al. (2022).

The physical models from Weber (1991) are those that attempt to represent the physical and/or

chemical processes from combustion, and are the types of models we refer to as “high-complexity.”

The Fons (1946) model would be the first of this type of model, but recently, major technological

advances have increased computational power to allow for more complex coupled atmosphere-

fire models. These models often use computational fluid dynamics (CFD) to resolve the wind

behavior interacting with the heat from the fire. For instance, the National Center for Atmospheric

Research developed WRF-SFIRE that uses the Weather Research and Forecasting model (WRF)

in conjunction with the fire spread model SFIRE (Mandel et al. 2014). SFIRE was developed
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from the Coupled Atmosphere-Wildland Fire Environment (CAWFE) which uses the Rothermel

fire-spread model applied to three dimensions (Clark et al. 1996). The Wildland-urban-interface

(WUI) Fire Dynamics Simulator (WFDS) was developed by the National Institute for Standards

and Technology and is an extension of the urban fire simulator FDS (Fire Dynamics Simulator)

(Mell et al. 2007). This model was specifically designed to investigate the effect of fires on the

WUI, the intersection between wildland and urban environments. Finally, HIGRAD-FIRETEC,

developed at the Los Alamos National Laboratory and used in the third part of this dissertation,

uses the atmospheric model HIGRAD in conjunction with the fire behavior simulator FIRETEC

(Linn et al. 2002). HIGRAD is specifically designed for atmospheric behavior under high gradients

of temperature and pressure, such as those encountered during an active fire. HIGRAD is coupled

with FIRETEC, a CFD fire behavior model designed to be a research tool for the fundamental

physical processes occurring during wildfires.

Due to the acute sensitivity for low-intensity fires, representing wind variation and surface fuel

heterogeneity becomes vital to the success of these high-complexity models in simulating this type

of fire (Linn et al. 2021). Additionally, comparison to data and evaluating uncertainty in these input

parameters may lead to more precise estimates of low-intensity burning behavior. Our research

involves modeling efforts in support of these process-based fire behavior models to increase fidelity

for low-intensity fires. For this dissertation, we split this research into three sections: (i) a spatially

extended model from data collected in the field to study low-intensity behavior dynamics at small-

scales, (ii) a mechanistic surface fuel model based on canopy structure to represent greater surface

fuel heterogeneity for input parameters, and (iii) an investigation into the chaotic qualities of low-

intensity fires using nonlinear time series analysis. These three components are described in detail

below and throughout this thesis.
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1.2 SERF

Our first goal involves studying a dataset collected in the field of small-scale, low-intensity

fires lit in the New Jersey Pine Barrens over the course of several years. We develop a Cellular Au-

tomata (CA) model to mimic these data fires, as CA models miminize the computational expense

of modeling by discretizing time and space, reducing the model to a collection of basic equations

applied to each cell during a single timestep. Physicists often utilize the CA framework for rep-

resenting geophysical processes that adhere to some basic physical laws in which the new value

for a particular spatial location at time t depends on the spatial neighborhood at previous timesteps

(Wolfram 1983; Toffoli 1984; Vichniac 1984). From snow avalanche models to lava flows to

porous media, CA models are popular among fluid flow modelers (Rothman 1988; Kronholm and

Birkeland 2005; Herault et al. 2009).

The discretization process resembles using Reimann sums to calculate integral approximations.

While some information may be lost in the estimation, the results can be close enough to be valu-

able depending on how and for what purpose you use the integral or model. CA models also

often allow for the possibility of “self-reproduction” in that a neighboring state will directly repro-

duce itself in adjacent cells (Wolfram 1983), a common attribute of chaotic systems and fractals.

Mathematical models are inherently approximations of the processes they represent, in which er-

ror estimates are used for validation purposes (Braga-Neto 2005; Rebba, Mahadevan, and Huang

2006).

Most wildland fire behavior CA-based models produce results that track the fireline and create

images with limited information. These models use inputs regarding the surrounding topography

and wind data, seeking to predict the area burnt over time. The typical resulting graphs focus on

either contours of the fireline in time increments as in (Berjak and Hearne 2002; Alexandridis et
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al. 2008; Almeida and Macau 2011; Ghisu et al. 2015; Gennaro et al. 2017; Zheng et al. 2017), or

they represent the shape of the resulting burnt area as in (Hernández Encinas et al. 2007; Yassemi,

Dragićević, and Schmidt 2008; Trunfio et al. 2011; Mahmoud and Chulahwat 2017; Freire and

DaCamara 2019), or both (Liu et al. 2018). These models take advantage of the finite set of

discrete outputs in the CA framework, but this limits the information that can be obtained from the

model.

Adding an underlying Coupled Map Lattice (CML) model to the CA framework allows for

more information to be collected than with typical CA models that only produce a finite amount

of discrete output values. In this project, we present a Spatially-Extended Radiant heat Fire model

(SERF), a CA model using arrays with infrared radiant heat values recorded during a selection

of small-scale prescribed fires. Using these infrared data, we determine the main characteristics

of the radiant heat emanating from these fires and create a CML for simulating the fire behavior.

We then use this CML to define five states of fire behavior for a CA model, creating a spatially

extended discrete dynamical systems-based model whose parameters we determine from empirical

data. The SERF model will be explained in detail in chapter 2.

1.3 DUET

The spread and intensity of wildland fire is determined by an interplay between elements of

the fire environment, including fuels, weather, and topography (Rothermel 1972; Agee 1996). Fire

behavior sensitivity to fuel heterogeneity depends on burn intensity and features of the fire envi-

ronment. In low wind and low intensity fire scenarios, fire behavior can be particularly sensitive

to the distribution of understory or surface fuels, consisting of live herbaceous vegetation, shrubs,

and dead leaf litter, as the surface is the fire’s primary fuel source (Stephens, Finney, and Schantz
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2004; Hiers et al. 2009; Dell et al. 2017; Loudermilk, Hiers, and O’Brien 2017; Prior, Murphy,

and Bowman 2018). Accounting for the spatial distribution and heterogeneity of surface fuels is

thus important for predicting prescribed fire behavior, fire spread, as well as flanking and back-

ing portions of wildfires (Campbell-Lochrie et al. 2021; Linn et al. 2021; Atchley et al. 2021).

Recent work has highlighted fire behavior sensitivity to surface fuel distribution for a variety of

ecosystems through observation and modeling which implies that the heterogeneity of these fuels

is of particular interest (E. L. Loudermilk et al. 2011; E. Louise Loudermilk et al. 2014; O’Brien

et al. 2016; Parsons et al. 2017; Hoffman et al. 2018; Skowronski, Gallagher, and Warner 2020;

Coen et al. 2020; Linn et al. 2021).

In addition to wildland fire behavior, tree litter deposition patterns affect ecosystem dynamics

by supplying soil nutrients through leaf, bark, and catkin litter decomposition (Midgley, Brzostek,

and Phillips 2015). Several studies have examined how different tree species’ litter affects soil

nitrogen and carbon (Prescott and Grayston 2013; Lin et al. 2017; Trap et al. 2017). More pre-

cise representation of spatial litter distributions may lead to a better understanding of ecosystem

changes due to litter accumulation from various tree species within forests or wetlands, and poten-

tially how patterns of decomposition influence fire effects (Stephens, Finney, and Schantz 2004;

Stoler and Relyea 2011; Arthur et al. 2012; Carpenter et al. 2021).

Heterogeneous tree litter and grass patterns are influenced by various factors, including over-

story structure and prevailing winds, which affect when the foliage falls from trees or shrubs, where

it lands, and how it influences grass distribution and density through indirect effects on resources

(Riegel, Miller, and Krueger 1992; Staelens et al. 2003; Jonard, Andre, and Ponette 2006; Pecot

et al. 2007). Once on the ground, other processes redistribute and decompose the litter material

(Forrester and Bauhus 2016; Garcı́a-Palacios et al. 2016). A number of factors can alter the trajec-

8



tory of leaves when they fall from the tree, including the shape of the needles or leaves, the height

from which they fall, and local winds (Nickmans et al. 2019). Decay variability, which depends on

climatic conditions, species litter characteristics and chemistry, moisture retention, packing density

etc., can change the depth and loading of the localized litter accumulation, the nutrient composi-

tion of the soils, and the moisture levels present at any given time (R. Mitchell et al. 1999; Adair

et al. 2008; Keane 2008; Arthur et al. 2012; Cornelissen et al. 2017; Babl-Plauche et al. 2022; Berg

and Lönn 2022).

Traditional sampling methods for obtaining accurate and spatially-explicit estimates of the dy-

namic heterogeneity of surface biomass require considerable investment in personnel, time, and

money (Keane and Reeves 2012; Tinkham et al. 2012). At stand scales, scientists and managers

commonly combine surface biomass sampling approaches with other forest and rangeland inven-

tory methods to estimate the fuel load at landscape or prescribed fire burn block scales for various

fuel strata (i.e., surface and canopy fuel layers). Terrestrial lidar has been used to characterize more

localized (radius of tens of meters) fuel load in strata (E. Louise Loudermilk et al. 2009; Bright et

al. 2017; Jarron et al. 2020). Lidar techniques and photogrammetric methods show success when

representing surface fuels (Keane and Reeves 2012; Rowell et al. 2020). However, they are asso-

ciated with great financial and labor costs when employed at landscape scales (Silva et al. 2016).

Aerial lidar can be used at much larger spatial scales, and while it can be used to some degree to

map coarse woody debris or shrubs, it is limited in its ability to detect lower strata surface fuels

such as litter or grass, due to both signal noise and occlusion (Seielstad and Queen 2003; Gajardo,

Garcı́a, and Riaño 2014). Consequently, most studies using aerial lidar have focused on char-

acterizing the canopy fuel layer and individual tree properties such as tree crown diameter, stem

spatial-density, basal area, and biomass in several locations (Goodwin, Coops, and Culvenor 2006;
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Hyde et al. 2006; Hudak et al. 2008; Ruiz et al. 2014; Silva et al. 2016). Litter and grass continue

to be difficult to map with remote sensing, so spatially explicit data capturing their patterns at large

extents is difficult to find.

Most previous work modeling litter dispersal employs probabilistic approaches. Ferrari and

Sugita (1996) created an exponential model based on stem location, which Staelens et al. (2003)

expanded to include wind influence. Jonard, Andre, and Ponette (2006) used a ballistic and a

Weibull distribution approach that incorporated height of maximum crown radius, which was also

used by Nickmans et al. (2019) to determine soil nutrient characteristics. Linn et al. (2005) used

the vertically integrated canopy foliar mass above a location to infer litter and grass patterns, but

this approach led to litter being only located directly under trees. The Jonard, Andre, and Ponette

(2006) model assumed all leaves were released from the center of the tree at the height of maximum

crown radius and it modeled leaf dispersal patterns using a seed dispersal model designed by

Greene and Johnson (1989). Although there is value in each of these approaches, they miss some

of the processes that impact litter dispersal, such as variation in heights and locations of trees

from which leaves and needles fall, species-specific leaf and needle characteristics, and dominant

seasonal wind events, which can create direction bias in litterfall heterogeneity.

We present here a mechanistic model we call Distribution of Understory using Elliptical Trans-

port (DUET) that connects the litterfall from the trees to a specific canopy arrangement. It also

uses dynamic decay rates that change with time and spatial configuration. The model develops a

full picture of the surface fuels of a given area for use within FIRETEC, or with other fire modeling

systems. The DUET model is described in detail in chapter 3.
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1.4 Detecting Chaos in Fire

The concept of chaos was first introduced in the late 1800’s by the mathematician Jules Henri

Poincaré, and further defined in 1963 by meteorologist Edward Lorenz, who introduced the con-

cept of the strange attractor (Lorenz 1963). There is some debate on the official definition of chaos,

but it is generally accepted to include at least three features: sensitive dependence on initial condi-

tions, and deterministic and aperiodic long-term behavior (Lorenz 1963; Banks et al. 1992; Brown

and Chua 1996; Hunt and Ott 2015; Strogatz 2019). Sensitive dependence on initial conditions

implies that a very slight change in an initial condition can result in vastly different outcomes. De-

terministic behavior implies that any noisiness within the outputs are a result of the nonlinearity of

the system, not any stochastic components. Specifically, a unique input to a deterministic system

will always result in a corresponding unique output, whereas a stochastic system may produce a

variety of outputs for any given input. Aperiodic long-term behavior is characterized by trajecto-

ries that do not “settle” into any kind of periodic behavior (i.e. limit cycles, stable fixed points, or

quasiperiodic orbits). This is a secondary result of the combination of determinism and sensitive

dependence on initial conditions; since no trajectory ends up exactly where any previous trajectory

has been (unique inputs lead to unique outputs), no matter how close those trajectories are, there

will be long-term divergence between them (sensitivity to initial conditions).

Gaining information on whole system dynamics using chaos theory could reveal new relation-

ships between parameters and potentially improve our understanding of the interplay between all

the characteristics of the fire. Clements et al. (2015) demonstrates that low intensity fires are sen-

sitive to shifts in near-surface wind dynamics through field collected data during nine burns on

different plots. Linn et al. (2021) uses one of those experimental burns to inform a FIRETEC

simulation to further illustrate that small changes in the windfield can have a broad effect on fire
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behavior. Jonko et al. (2021) uses an ensemble approach in which they compare 45 FIRETEC

simulations with identical conditions except for small perturbations in the ambient wind field. All

of these studies clearly indicate that macroscopic fire behavior is sensitive to small perturbations in

wind conditions. This sensitivity to small perturbations in initial conditions is a hallmark feature

of chaos and nonlinear dynamics.

The attempt at prediction of chaotic systems beyond a particular time factor will result in

significant uncertainty which creates challenges in effectively predicting geophysical systems, such

as the weather, river flow, or sediment transport (Sivakumar 2004). By mathematically defining fire

behavior as chaotic, we seek to discover relationships between its system components and some

underlying patterns that contribute to the apparent irregularity of the system. Finding patterns in

fire behavior will be a critical step in finding ways to evaluate uncertainty in these fire behavior

models and improve prescribed fire designs for more control, thereby improving their effectiveness

for reducing destructive wildfire events and restoring balance within fire-dependent ecosystems.

We describe the study and the results in detail in chapter 4.
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CHAPTER 2. SERF: Spatially Extended Radiant heat Fire model

The material presented below is part of the article published in Physical Review E (McDanold and

Malik 2023).

2.1 Description of SERF

SERF defines Tn(i, j), the radiant heat temperature at time step n for cell location (i, j), in

five discrete stages. Using the CML framework, an equation defines the behavior of the radiant

temperature for each stage, with parameter thresholds marking the transition from one stage to the

next. These five stages represent the life cycle of radiant temperature for an area that burns. Figure

2.1 shows a schematic of the five stages and each are explained in detail within the following

sections.

Figure 2.1: A schematic of the five stages that make up the life cycle of a burning cell.
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2.1.1 The Model

All cells begin in stage one, stable, in which the heat from the oncoming fire has not yet reached

this cell. Once that heat affects the cell, it transitions into the warming stage, and when the heat

rises sufficiently for ignition, it transitions into stage three, rising. The heat then rises as the fuel

is consumed until it reaches its maximum temperature,TM(i, j), after which it transitions into stage

four, falling, when the radiant heat reduces as the fuel consumption completes. Once the fuel is

gone, the flame ceases, and the cell transitions into stage five, cooling, in which the ground beneath

the fire cools back to equilibrium with the ambient temperature of the area.

The parameters in SERF unique to each simulation are the domain size in two dimensions and

the overall moisture content for the area, mc. The parameters unique to each cell per simulation

are the maximum radiant temperature TM(i, j), the heat transfer coefficient for the fuel k(i, j), and

the time required to rise to and fall from TM(i, j), R(i, j) and F(i, j) respectively. Each of these

parameters are generated from a probability distribution built from the data set described in section

2.2.1.

Algorithm Structure and Boundary Conditions

The algorithm loops through each coordinate in the lattice, (i, j), defined by a domain size of

I ⇥ J to calculate the radiant temperature and assign the discrete stage number to the cell. The

first two stages calculate the radiant temperature of a particular cell using the temperatures of the

surrounding neighbors. For this process, we use the Moore neighborhood defined as

{(i+a, j+b) |�1  a,b  1;a,b 2 Z}. (2.1)

14



In the event that a particular coordinate (i, j) lies on the boundary of the domain, we only consider

those coordinates defined within the domain as part of the equations. Meaning, if we are calculating

the ambient temperature of the corner coordinate (1,1), we would only consider the three existing

neighbors, (2,1),(2,2), and (1,2) in the calculation. For more information regarding the ambient

temperature function, please see section 2.1.1 and equation 2.3.

Stages one and two: Stability and Warming

To begin, we initialize the entire domain as the base temperature for the day on which the burn

is to take place, TB, which we define as stage one, stable. To start the fire, we synthetically raise the

temperature to ignition for a chosen group of cells and set them to stage three, rising.As the heat

from these initialized cells approaches the neighbors, radiant and convective heat transfer causes

the temperature to rise and results in the transition into stage two. Within stages one and two,

we use a modified Newton’s law of cooling equation to represent how the radiant temperature at

timestep n+1 is affected by the ambient temperature of the neighboring area at timestep n.

Tn+1(i, j) = Tn(i, j)+ k(i, j) [An(i, j)�Tn(i, j)] . (2.2)

Here, An(i, j) is the ambient temperature calculated from the neighboring cells with a weighting

function W (i, j) at the previous timestep as follows:

An(i, j) =
1

Â
a=�1

1

Â
b=�1

W (i+a, j+b)Tn(i+a, j+b). (2.3)

In stage one, W (i, j) = 1/N 8 i, j, where N is the total number of neighbors in the calculation. This

along with (2.3), leads to An(i, j) = Tn(i, j). From (2.2), we therefore have Tn+1(i, j) = Tn(i, j) and
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the temperature does not change. In stage two, since heat is present, we apply a multiplicative

factor of 1.2 to W (i, j), which represents the addition of convective heat transfer as the flames

encroach on the area while the radiant temperature increases. Once the temperature rises to inside

the bounds of the ignition interval such that Tn(i, j) 2 [Imin, Imax], a cell can undergo one of three

options: (i) remain in stage two, warming, (ii) transition into stage three, rising, or (iii) transition

into stage five, cooling. If Tn(i, j) 2 (Imin, Imax), using the moisture content, mc, the cell attempts

to ignite between Dmin and Dmax times, based on a uniformly distributed parameter delay matrix,

D, which will be explained in detail in section 2.2.3. If the attempt fails, the cell remains in stage

two. If the attempt succeeds, the cell transitions into stage three. If we have Tn(i, j)> Imax, the

cell automatically transitions into stage three, rising. If all attempts fail, the cell transitions into

stage five. A transition from stage two to stage five represents a cell that will not ignite due to the

chemical structure of the fuel in that cell. For instance, this could represent a rock that will heat

up but never ignite. Figure 2.2 shows how a particular cell might move through stages two to five,

each of which is described in the subsequent subsections.

Stages three and four: Rising and Falling

If the cell ignites, the chemical and physical characteristics of the fuel become the driving

forces in how the radiant heat rises and falls. Since the fuel is now being consumed, the area

begins to generate its own heat. Thus, for stages three and four, we move away from Newton’s law

of cooling and define two linear functions for how the heat changes from one timestep to the next.

For stage three, rising, we have:

Tn+1(i, j) = TS(i, j)+
TM(i, j)�TS(i, j)

R(i, j)
(n�S(i, j)), (2.4)
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Figure 2.2: Representation of how the radiant temperature changes in a specific cell over time
beginning in stage two, warming, where Newton’s law of cooling is applied, moving through the
linear equations developed for stages three (rising) and four (falling) and ending in stage five,
cooling.

and for stage four, falling, we have:

Tn+1(i, j) = TM(i, j)� TM(i, j)�TS(i, j)
F(i, j)

(n�M(i, j)). (2.5)

For simplicity, stages three and four are defined as linear functions in which the cell rises to its max-

imum temperature, TM(i, j) over R(i, j) timesteps, and falls from TM(i, j) over F(i, j) timesteps.

Since the temperature at which the transition into stage three occurs is not set but determined

through the use of the delay matrix, D(i, j) interacting with the ignition interval (Imin, Imax), we de-

fine TS(i, j) to be the ignition temperature for location (i, j) and S(i, j) to be the timestep at which

the transition occurs. Then M(i, j) is the timestep at which the maximum temperature is achieved.

During stage four, once the cell reduces in heat back down to the ignition interval, [Imin, Imax], the
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cell is again tested to see if it has extinguished. The temperature at which the cell extinguishes is

defined as TE(i, j) at timestep E(i, j), and we transition into stage five.

Stage five: Cooling

This stage represents the time when the fuel has been consumed, and the ground beneath the

fuel is cooling off back down to equilibrium with the area’s temperature, TB. We use an exponential

function to show how the heat dissipates after the fire has moved through the area:

Tn+1(i, j) = (TE(i, j)�TB)exp
✓

E(i, j)�n
TE(i, j)�TB

◆
+TB. (2.6)

This is the last stage of the process. Once the cell reduces back down to TB, it is considered to be

burnt and is no longer subject to any temperature changes.

2.2 Parameters and the data set

SERF was built from a large data set developed in the New Jersey Pine Barrens from 2017

through 2021 during several controlled burns, under a grant from SERDP (Strategic Environmen-

tal Research and Development Program) within the Department of Defense. The data was collected

by the Northern Research Station of the United States Department of Agriculture (USDA) Forest

Service (Kremens 2019). In this section, we describe the extent of the data set and how we incor-

porated this data into the model.

2.2.1 The Data Set

There were two types of fires that were burned under this grant: square fires with 12-meter

length sides, and 30-acre fires. Both were prescribed and kept under tight surveillance. The 12-
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meter fires were outfitted with a truss at six feet over the burning zone containing 16 equally spaced

data collection devices in a four-by-four grid (see Fig. 2.3). Each device housed a FLIR Lepton®

1.5 that recorded infrared information, and a digital camera along with various other data collection

devices. The fuel below the cameras for the 12-meter burns was collected, weighed, and evenly

distributed throughout the burn zone. For the 30-acre fires, the devices were distributed randomly

throughout the burn zone.

All of the cameras were initiated simultaneously and began taking snapshots of the area at

one-second intervals. The FLIR Lepton® 1.5 recorded the infrared radiant output (from 8 � 14

microns) emanating from each cell in the viewing range and outputted a numerical array with

values ranging from approximately 8000 to 16000. The prescribed fires were ignited below the

cameras and allowed to burn through the area underneath (Kremens 2019). For the 12-meter burns,

the viewing area for each camera was approximately 3 meters square, but the resulting numerical

array was presented as 60⇥80 cells. Figure 2.3 shows the setup for the data set collection. Please

note that due to the Covid-19 crisis, we could not perform the necessary experiments to determine

the exact spatial region captured by each camera by calibrating the digital and infrared cameras

together; this should be done in the future.

Since each segment of ground was individually recorded, we first found all of the arrays related

to a particular fire in a given section and stacked the arrays on top of one another in a three-

dimensional time-sequential tensor (dimensions being x and y spatial dimensions with time as the

third). Out of 3.1 million files, we could find 74 successful fire visualizations that did not have any

deformities. We denote these 74 fire visualizations using the symbol fm, where m is the fire index

that goes from 1 to 74, that is the set { fm}74
m=1 represents these 74 successful fire visualizations.
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Figure 2.3: Truss setup in the New Jersey Pine Barrens for the creation of the data set; (a) Before
the burn; (b) After burn was initialized; Photos courtesy of Dr. Robert Kremens, Chester F. Carlson
Center for Imaging Science, Rochester Institute of Technology (RIT); credit: USDA Forest Service
Northern Research Station.

Figure 2.4: Calibration graph for relating infrared output data to radiant temperature values from
observations using a black box unit with the FLIR Lepton® 1.5 camera.

From laboratory experiments performed with the Lepton® camera, the infrared values were

found to correspond to a radiant temperature flux range of approximately 22�C to 400�C (FLIR

2018). For the interpolation scheme, we first attempted a cubic spline interpolation but the results

were similar to the linear interpolation, and thus the linear was chosen for simplicity. Note the

sudden increase towards the top right of the graph in Fig. 2.4 that indicates the temperature data

may not be entirely accurate towards the upper bound for the range of temperatures recorded. This
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is reflected in the maximum temperatures for the power flux being capped at TM = 400�C. This

anomaly was adjusted in the model so that some of the maximum temperatures can be above this

value, but without accurate data for that range, it is possible that the resulting maximum radiant

temperature estimations may be lower than the true values.

2.2.2 Data-Driven Parameters

From the data set, we obtained several parameters for SERF including two global parameters:

the ignition interval, [Imin, Imax], and the unburnt proportion of land U( fm) for a fire instance fm;

and four cell-dependent input parameter matrices: the maximum temperatures, TM, the rise and

fall times, R and F , and the heat coefficients, k. Each of the input parameter matrices used in the

model is defined using a probability distribution taken from all of the cells in the data set fires. We

experimented with fitting several different probability distributions to the data. Since we cannot

assume that our data parameters adhere to any specific distribution, we chose the kernel distribution

since it led to the most accurate model outputs compared to the observational data.

For R, F , TM, and k, SERF builds the input matrices by assigning values to a subset of cells

through sampling the corresponding distribution defined by the data set, and then “smoothing”

these numbers to increase realistic stability in the model. For R and F , a random number between

50% and 70% of the cells are assigned a value with the rest equal to 1. For k and TM, all cells are

assigned a value from their respective probability distributions.

The smoothing process for each of the four parameter matrices is performed by finding the sum

of each cell and its immediate neighbors, and then multiplying that by a random number chosen
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from a normal distribution:

P0(i, j) = p
1

Â
a=�1

1

Â
b=�1

P(i+a, j+b) (2.7)

where P 2 {R,F,k,TM}, and p ⇠ N (µ = 1,s = 0.04). This process is repeated twice for R, F ,

and k, and ten times for TM. Then the values are normalized back to the original interval by finding

the maximum value of the original matrix, max(P) and dividing that by the maximum value of the

new matrix max(P0):

P(i, j) = P0(i, j)
max(P)
max(P0)

. (2.8)

Figure 2.5 shows a sample TM matrix, where Fig. 2.5(a) shows the initial sample matrix and

Fig. 2.5(b) shows the matrix after smoothing.

Figure 2.5: A representative sample of TM matrix and a smoothed version used in SERF: (a)
Initial TM matrix with values sampled from the distribution for maximum temperatures; (b) TM
matrix after smoothing.

The Ignition Interval: [Imin, Imax]

The fuel for the 12m2 prescribed burns was a mixture of live and dead needles, leaves, and

brush, and was gathered from the area designated for the fire, weighed, then dispersed as evenly
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as possible throughout all 16 sections of each burn zone (Kremens 2019). The 30-acre fires held

a mixture of the same but more heterogeneously distributed. As ignition temperatures vary widely

for these different fuels, we needed to find a reasonable interval, [Imin, Imax], for ignition tempera-

tures represented in these fires, { fm}74
m=1.

Since we had chosen the set of fires to be those known to ignite, we could estimate the second

of ignition to be the timestep at which the fire entered the field of view. Using visualizations of the

infrared value tensors, we came up with an equation for the average temperature of the cells based

on the maximum and minimum radiant temperature of each fire, fm:

Im( fm) = |0.2(Imax( fm)� Imin( fm))|+ Imin( fm). (2.9)

The equation was developed by finding the range of temperatures recorded in each fire fm, [Imin( fm), Imax( fm)],

and determining the ignition point for that fire to be approximately 20% of that range above

Imin( fm). Then we found the greatest and least value for all ignition temperatures and that de-

fined the ignition interval for SERF. Figure 2.6 shows the various temperatures for each fire in the

data set.

From Fig. 2.6 we found that the minimum and maximum values for threshold for each of these

fires to be: Imin ⇡ 90�C and Imax ⇡ 150�C. Note that Fig. 2.6 also shows the upper bound on the

recording device at 400�C as described previously in section 2.2.1.

Maximum temperatures

A kernel distribution was fitted to a histogram of the maximum radiant temperatures achieved

for each cell in all of the fire tensors, for a total of 355,200 cells. Figure 2.7 shows the maximum
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Figure 2.6: Maximum, Minimum, and Threshold Temperatures for each fire in degrees Celsius and
the top and bottom of the threshold interval.

temperatures for each cell across all fires and the estimated distribution for these quantities. The

majority of the fires had a large variance in temperatures across cells, resulting in various local

maxima in the distribution. Moreover, there were some fires in which the entire area was engulfed

in flames that all burned at the upper bound of the Lepton device. The tall bar at the right end

of this graph in Fig. 2.7 represents these high-intensity fires. A large number of cells reached

around 200 degrees indicating that most of the cells caught fire but did not release significant

heat energy. The smaller local maxima around 300 degrees indicates that certain fires maintained a

higher temperature than average but did not reach the upper bound. In short, the variety of different

fires begot various maximum temperatures.

This kernel distribution was then sampled to initialize all cells in the TM parameter matrix. The

“smoothing” process was then applied as described in section 2.2.2. Each cell was “smoothed” to

allow for more even heating temperatures in neighboring cells.
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Figure 2.7: Recorded maximum temperatures for 355,200 cells from all fires in the data set;
histogram and fitted kernel distribution (red line).

Rise(R) and Fall (F) Times Distributions

Using the ignition temperature defined for each fire (see section 2.2.2), we measured the num-

ber of timesteps, R(i, j), required for the temperature in each cell to go from the starting ignition

temperature, TS(i, j), up to maximum temperature TM(i, j) and the number of time steps F(i, j) to

fall from TM(i, j) back to the ignition temperature. Figure 2.8 shows the distribution of R and F de-

rived from the data. The red lines in this figure are the corresponding kernel density estimate. We

experimented with various probability distributions including joint distributions for these parame-

ters and found that the kernel distribution with each R and F value sampled separately produced

results that most closely matched the data set fires. The average rise time , hRi = 26 seconds, and

the average fall time hFi = 58 seconds. These histograms indicate a strong likelihood that the rise

and fall times would be relatively low, although it is possible to have a long tail during the cooling

stage.
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Figure 2.8: Rise (a) and fall (b) time value histograms and kernel distributions from the data set.

Heat Coefficient Array (k-matrix)

The heat coefficient for a given material is typically determined as the likelihood of a given

substance to transfer heat to a neighboring material. Sometimes referred to as “conductance,” it is

the primary parameter in Newton’s law of cooling which was used for the rising of the temperature

during stages one and two, and the transition into stage three. We determined the probability

distribution of these coefficients from the data set by finding the global maximum temperature

achieved for all cells in a given fire and then estimating the ratio of the maximum temperature for

each cell to that global value. This gave us a number between 0 and 1 that we used to represent
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the “burnability” of that particular cell. We created a histogram and fitted a kernel distribution

to the data. Figure 2.9 shows the results of that distribution. We note that the majority of the

Figure 2.9: Heat coefficient histogram with kernel distribution; found largest temperature value
in the maximum temperature matrix for each fire and the proportion of that maximum reached by
each cell.

calculations of k lie between 0.7 and 0.95, which implies that the radiant temperatures for each

cell were relatively close to the global maximum for that fire. This accounts for an approximate

mean of 0.0855 for the unburnt proportion of land, U , and also indicates that most of the cells

reached temperatures above Imax. The values for the k parameter matrix are sampled from this

probability distribution for each cell in the domain. The matrix is then “smoothed” according to

the method described at the start of section 2.2.2. As with the other cell-specific parameter matrices

(R, F , and TM), we experimented with various probability distributions for these values but found

the kernel distribution to represent the heat coefficients most accurately in comparison with the

data set.
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Initial Conditions

From the visualizations of the data set fires, we found four initial conditions represented: cor-

ner, side, chunk, and double chunk. Figure 2.10 shows examples of these initial conditions from

the simulations alongside data set representations of each type (the left images are from SERF

simulations and the right from the data set). It should be noted that the orientation of the cameras

was not standardized when they were placed along the truss, which means that the fire traveled in

several directions on camera. For SERF, the fires all move in the same direction with a standardized

trajectory of west to east, or south to north within the view frame.

Figure 2.10: Initial Conditions: a) corner from {Sm}, b) corner from { fm}, c) side from {Sm}, d)
side from { fm}, e) chunk from {Sm}, f) chunk from { fm}, g) double chunk from {Sm}, h) double
chunk from { fm}.

We also incorporated an initial condition that was not represented in the data set. It is widely

known that spotting occurrences in wildfires can accelerate the spread of the fire, and understanding

this phenomenon is an important part of keeping prescribed fires under control (Koo et al. 2012;

Manzello et al. 2020). Therefore, we added more simulations with a fifth initial condition of

spotting, where we ignited three spots in the middle of the domain (see Fig. 2.11).
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Figure 2.11: Spotting initial condition, added to the simulations to analyze fires beyond what was
represented in the data set.

As described in section 2.1.1, these initial conditions were used to synthetically raise the tem-

perature of a particular set of cells at the start of the simulation. Each of these cells were raised to

Imax for the CML model and the stages set to three in the CA model. Section 2.5 has examples of

each ignition type from the data set and the simulations, including a set of images from the spotting

ignition. Of note in these images are that the timing varied greatly for the length of the fires within

the viewing area, but the simulation versus the data set image sets are quite similar in structure.

Distribution for Unburnt Area

For verification purposes, we used the unburnt proportion of land in each fire from the data set,

U( fm), by determining the mean, hU( fm)i of this parameter (the mean is taken over { fm}74
m=1, the

fire instances). To find the proportion of cells that did not ignite and therefore did not burn, we

used the ignition values represented in Fig. 2.6 and described in section 2.2.2, and defined each of

the cells as burnt if they achieved the ignition temperature for that particular fire, or unburnt if they

did not. We counted the number of cells whose final state was burnt, out of the total number of

cells in each fire and created a matching exponential distribution. Figure 2.12 shows the histogram
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with the fitted exponential. When we fit the curve for the proportion of land that did not burn, we

found that hU( fm)i = 0.0855.

Figure 2.12: Histogram of the proportion of cells that did not burn in each fire from the data set
(U). The exponential curve fitted to the histogram shown here in red has a mean of hU( fm)i =
0.0855.

2.2.3 Non-Data-Driven Parameter:Moisture Content: mc

Although moisture information was not available for the data set, fuel moisture levels have a

major impact on fire behavior (Blauw et al. 2015; Torres et al. 2018). To appropriately use the

moisture content in the simulations, we needed to associate that value, mc, with whether or not the

cell would ignite. To do this, we use this moisture level as a threshold to decide if the temperature

will change for that cell for a given timestep. For each cell, we randomly generate a uniformly

distributed number between 0 and 1 and if the number is below mc, then we set Tn+1(i, j) = Tn(i, j)

and the algorithm skips to the next cell. This allows for a slower rate of spread when the moisture

level is higher.
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When testing the effect of the moisture content in the simulations, we found that while this

random uniform number had an effect, the speed of the fires in the data set were still slower than

those achieved with mc. Thus, to accentuate the effect of mc, we created a parameter matrix to delay

the ignition, D(i, j), in which each cell was assigned an integer between 1 and 10 from a uniform

distribution for how many times SERF attempts to ignite that particular cell. The matrix was then

smoothed using the method described in section 2.2.2, and returned to integers. This delay value

is used to test the transition from stage two to stage three. If the cell does not ignite within D(i, j)

attempts at ignition, the cell is considered nonflammable and the algorithm transitions that cell

from stage two directly into stage five, cooling. As with the other parameter matrices, this matrix

was built by assigning values as described above to all of the cells in each simulation and then

“smoothing” the values across the domain.

2.3 Results and Discussion

We performed a total of 100 SERF simulations, {Sm}100
m=1 with 20 of each initial conditions

described in section 2.2.2. A simulation begins with a synthetic rising of the temperature to Imax

and setting the cell stage to three for a collection of cells. A simulation is considered complete

when all cells have reached stage five. We collected the fire simulation tensors, parameter matrices,

and a variety of other useful information from each simulation so that we could analyze the results.

Since the data set was collected at one-second intervals, each I ⇥ J matrix produced from the

algorithm is considered to be one second in the life of the fire.

To verify SERF, we compared several metrics from the simulations to the data set, including the

likelihood of transition between stages, burning potential for each cell, the proportion of land that
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remained unburnt, and two timing metrics for spread rates. Each is described in detail in section

2.3.1.

To validate SERF, we compared the output to a typical CA model without the underlying CML

model to show the strengths of adding the ability to achieve a continuous set of outputs for de-

termining the states of the system. The results of these tests are described in detail in section

2.3.2.

2.3.1 Verification

The combination of all of the probabilistic parameter inputs with the smoothing function de-

scribed in section 2.2.2, the uniformly distributed moisture content and delay matrix, and the

stochastic values generated in the algorithm makes SERF inherently probabilistic. Thus, we were

able to use several input parameter distributions as metrics to calibrate and verify the model. We

ran several sets of simulations and compared the outputs to these parameters as metrics derived

from the observational data. In particular, we compared unburnt areas U( fm) for each fire in

{ fm}74
m=1, the distribution of maximum temperatures, and the distributions of rising and fall times.

Transition Matrices

To test the overall effectiveness of the CA model, we developed a transition matrix for the data

set fires { fm}74
m=1 and the SERF simulations {Sm}100

m=1 showing the probability of moving from

one stage to another, calculated and averaged over all cells in the fires and simulations separately.

The transition matrices were then created for the fires and SERF. Figure 2.13 shows the difference

between the transition probabilities for the fires and the SERF simulations.
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Figure 2.13: Percentage differences in stage transition probabilities for the SERF simulations
versus the data set. The simulations reproduce the transition probabilities with an error of less
than 3% for all cases except the stage two to three transition where the error is 12%.

Due to the probabilistic nature of the algorithm, each set of simulation results were unique in

their comparison to the data set. Using the parameter values and ranges we chose, the resulting

differences ranged from a maximum difference of 11% to 12% in transition from stages 2 to 3. We

have chosen to show a matrix representing an 11.76% maximum difference in figure 2.13. The rest

of the differences were less than 3% for all sets of simulations indicating that SERF successfully

captured the transition probabilities for each stage. Other metrics that were compared with the data

set including unburnt proportion of land and the heat coefficient ranges showed no major changes

between the various simulation runs.

Heat Coefficients: Vegetation Burning Potential

The heat coefficients assigned to each cell represent the likelihood of the fuel burning. A low

heat coefficient indicates a low probability of ignition, as in the case of a cell that is dominated by
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the presence of a rock or dirt, as opposed to leaves or branches, which would represent a higher

heat coefficient. Initialized using the distribution from the data set as defined in section 2.2.2, the

final heat coefficients were also affected by the moisture content, mc, and the delay matrix, D.

Figure 2.14 shows the heat coefficients of each cell from every simulation in comparison to those

determined from the data sets. The mean of the heat coefficients for SERF is approximately 0.8351

Figure 2.14: Box plot comparing the heat coefficients in the SERF simulations and the data set;
the red line in the middle of the boxes indicates median values. Observe the relative similarity
between k in the data set and SERF simulations.

and the mean for the data set is 0.8264, a difference of .0087. In Fig. 2.14, we observe that the

variance of the simulations and data set are relatively close, and the median values represented by

the red lines are 0.8325 and 0.8347 for the data set and simulations respectively, which indicates a

difference of only 0.0022 and a successful representation of the heat coefficients for the data set in

the model.
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Unburnt proportion of land

Another metric we used to determine the success of SERF was to see if the unburnt proportion

of land (U) was similar between the simulations and the data set. Figure 2.15 shows a box plot

that exhibits the success of this metric. For SERF, we estimated U by finding the proportion of

cells that transitioned from stage two to stage five, without ignition. TA, M, D, and k influenced

U . The mean of U in the SERF simulations is 0.0865, and in the data set, 0.0867 for a difference

Figure 2.15: Box plot showing the unburnt proportion of land in the SERF simulations compared
to the data set. Observe the relative similarity between U in the data set and simulations.

of 0.0002. The medians (represented as the red line in the box plot) are 0.0293 and 0.0125 for the

data set and simulations respectively which exhibits a difference of only 1.68%. The variance of

U differed, with the simulations creating slightly more variance than the data set.

Lingering Embers

Often in a fire, particular spots continue to burn long after the bulk of the fire has dissipated.

This phenomenon has to do with the density and moisture level of the fuel on the ground. A
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more moisture-rich fuel takes longer to burn because the water must be evaporated off before

the fuel can be consumed, and a denser area lacks the ability to draw in the oxygen as freely

so the combustion process slows. Understanding the length of time embers may linger during a

prescribed burn could inhibit the introduction of firebrands into the surrounding foliage long after

the area has burnt. In the data set, 29 of the 74 fires showed obvious evidence of lingering embers.

However, many of the data set visualizations were cut short from the full length of the fire if the

embers burned at a low temperature, so some lingering embers may have been lost. Figure 2.16(a-

Figure 2.16: Lingering embers in the simulations and fire data sets; (a) f8, second 500 of 1100;
(b) f50, second 2550 of 2894; (c) S71, second 2000 of 2310; (d) S93, second 900 of 1241.

b) shows some images from the data set fires representing this phenomenon and Fig. 2.16(c-d)

shows the same behavior from the simulations. In the SERF simulations, this originates from the

probabilistically determined rise and fall times of each cell in conjunction with the varying start

time for the ignitions. Some of those values add up to a long burn for a particular group of cells.

36



Cell rise and fall relationship with fireline

Many CA models focus on the speed of the fireline as it moves through the area because that

gives an indication of how quickly it will take over a given area outside of the burn zone. However,

the time the fire spends in any given area can also make a huge difference to fire practitioners

because of the likelihood of firebrand transport, lingering embers, and smoke production. SERF

accurately represents the variance in how long the fire spends in any given area. Figure 2.17

displays some stills from SERF simulation number 30 that exhibit the length of time the fire spends

in the domain.

Figure 2.17: Successful representation of the lingering heat after the fireline moves through the
area; images from SERF simulation number 30; a) timestep 30; b) timestep 50; c) timestep 100;
d) timestep 200; e) timestep 400; f) timestep 700.

2.3.2 Validation: Comparison to Basic CA

To validate mathematical models, we compare the model output against known fire behavior

and analyze any similarities or differences. For SERF, we made a direct comparison to a much

lower complexity CA model. We began this project by constructing our own basic square-cell CA
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model. For this basic model, each cell is in one of three states: burned, unburnt, or burning, so that

Bn(i, j)2 {0,1,2} respectively for each cell, (i, j) and time step n. The only parameter represented

in this basic CA model is a heat coefficient for each cell uniformly distributed between 0.5 and 1

such that 8(i, j),k(i, j) ⇠ U (0.5,1).

All cells are initialized with a value of unburnt, 8(i, j),B0(i, j) = 1. We “ignite” a fire by

assigning a selection of cells to the burning stage, such that B0(i, j) = 2 for those cells. With each

time step in the loop, each cell that is currently burning may cause a neighboring cell to transition

into the burning stage by a factor that is based on wind direction and speed. With wind speed

W = 0 m/s, the factor governing any of the eight neighboring cells transitioning to burning is 0.5.

With a wind speed greater than 0, the factor increases by 0.4 ⇥W/5 in the direction of the wind,

and 0.3 ⇥W/5 for the neighboring cells to the wind direction, and reduces by 0.4 ⇥W/5 in the

opposite direction from the wind and 0.3⇥W/5 for the neighboring cells in opposition to the wind

direction. The cells perpendicular to the wind direction remain with a transition factor of 0.5. The

5 in the denominator for each of these values minimizes the effect of the wind for slower wind

speeds below 5 meters per second. For instance, if we set the wind direction to NW (meaning the

wind is coming from the NW) and the wind speed to 5, then we have the following factor matrix

for the neighboring cells of a particular cell Bn(a,b) transitioning into the burning state:

if Bn(a,b) = 2

F

2

6666664

(a�1,b+1) (a,b+1) (a+1,b+1)

(a�1,b) (a,b) (a+1,b)

(a�1,b�1) (a,b�1) (a+1,b�1)

3

7777775
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=

2

6666664

0.1 0.2 0.5

0.2 0 0.8

0.5 0.8 0.9

3

7777775
(2.10)

The new values of the cells are then calculated as the sum of the originally assigned heat

coefficient value described in the first paragraph with these factors above, and then we use the

ceiling function to define the current state of cell (i, j) as 1 (unburnt) or 2 (burning):

Bn(i, j) = dk(i, j)+F (i, j)e (2.11)

If the cell value is unburnt (Bn(i, j) = 1), the cell remains available for this transition in subsequent

time steps. If the cell is burning, (Bn(i, j) = 2), the cell will transition to 0 in the next time step and

remain at 0 from there on. Thus, in each time step, each cell will achieve one of only three distinct

states: 0,1, or 2. Once a cell has transitioned into burning, or state 2, the next time step transitions

the cell into the burnt state, 0. Therefore, no cell remains burning for longer than one time step.

The simulation ends when no cell values are equal to 2, or 8(i, j),Bn(i, j) 2 {0,1}.

For comparison to SERF, Fig. 2.18(a-d) shows different time steps from that basic model using

a 300⇥300 grid with winds from the North at 5mph, and Fig. 2.18(e-h) showing the same domain

with no winds. From these figures, the fireline clearly defines the next movements through the

field of view, and the presence of heavy winds adjusts the fireline significantly. With no winds, this

basic CA model represents the elliptical shape of the fireline with concentric contours as portrayed

in the other papers (Hernández Encinas et al. 2007; Alexandridis et al. 2008; Yassemi, Dragićević,

and Schmidt 2008; Progias and Sirakoulis 2013; Ghisu et al. 2015; Gennaro et al. 2017; Mahmoud

and Chulahwat 2017; Zheng et al. 2017; Liu et al. 2018; Freire and DaCamara 2019). The main
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Figure 2.18: 300 ⇥ 300 grid for a basic CA model with probability of spread weighted by wind;
(a-d) Northern winds at 15mph; (a) time step 5; (b) time step 75; (c) time step 150; (d) time step
250; (e-h) no winds; (e) time step 5; (f) time step 20; (g) time step 80; (h) time step 150.

difference between this type of CA model and SERF is that the underlying CML model gives

us more information regarding parameters other than the location of the fireline. SERF offers an

opportunity to potentially learn about how the heat transfers from one area to the next, and includes

the time delay between when the fireline crosses through the area and when the fire is completed.

These are important features of a prescribed fire to study in order to mitigate the potential for

firebrands to be blown outside of the burn zone.

2.4 Conclusion

This chapter describes and analyzes a Spatially Extended Radiant heat Fire model, SERF, com-

bining a CA and CML framework, modeling radiant temperatures with data-driven parameters for

fine-scale prescribed fire spread. Using a data set created in the New Jersey Pine Barrens over the

course of five years, we built a spatially extended model using probability distributions for sev-

eral parameters derived from the data set. The use of the data set is unique to SERF and helps to

validate the accuracy of the simulations.
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While SERF has shown excellent performance in reproducing many of the features of pre-

scribed fires, and it is one of the first non-laboratory data-driven cellular automata models for

prescribed fires, some parts of SERF still need refinement. In future work, we plan to explore a

variety of modifications to increase its accuracy, as it under-performed in some critical parame-

ter settings. We will perform a more advanced analysis of the SERF simulation outputs to assess

how various parameters affect the model’s accuracy. Furthermore, we will study the statistical

properties of the spatial features of fire.

2.5 Appendix: Output Images

Figures for each of the five initial conditions (ignition types) are listed below. Each set of

images from the data represents six particular time steps from the fire data. Each set of images

from the SERF simulations represents six time steps from the simulation. Of note within these

images is the similarity between the data set and SERF ignition types. Although the timing of each

varied greatly, looking at the images clearly shows the successful representation of this data set

through this model.
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Figure 2.19: Side ignition: SERF Simulation 4; a) time step 30; b) time step 90; c) time step 200;
d) time step 400; e) time step 600; f) time step 800

Figure 2.20: Side ignition: data set Fire 120; a) time step 200; b) time step 220; c) time step 250;
d) time step 300; e) time step 400; f) time step 500
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Figure 2.21: Corner ignition: SERF Simulation 25; a) time step 75; b) time step 150; c) time step
300; d) time step 500; e) time step 900; f) time step 1300

Figure 2.22: Corner ignition: data set Fire 25; a) time step 65; b) time step 80; c) time step 100;
d) time step 150; e) time step 180; f) time step 250
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Figure 2.23: Chunk ignition: SERF Simulation 45; a) time step 30; b) time step 70; c) time step
200; d) time step 300; e) time step 500; f) time step 700

Figure 2.24: Chunk ignition: data set Fire 145; a) time step 5; b) time step 15; c) time step 30; d)
time step 60; e) time step 100; f) time step 300
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Figure 2.25: Double Chunk ignition: SERF Simulation 90; a) time step 30; b) time step 50; c)
time step 90; d) time step 200; e) time step 500; f) time step 800

Figure 2.26: Double Chunk ignition: data set Fire 3; a) time step 5; b) time step 20; c) time step
40; d) time step 70; e) time step 100; f) time step 160
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Figure 2.27: Spotting ignition: SERF Simulation 63; a) time step 10; b) time step 20; c) time step
50; d) time step 100; e) time step 300; f) time step 600
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CHAPTER 3. DUET: Distribution of Understory using Elliptical Transport

The material presented below is part of the article published in Ecological Modelling (McDanold

et al. 2023).

3.1 Basic description

Here we describe a mechanistic model called the Distribution of Understory using Elliptical

Transport (DUET), using a frequently burned longleaf pine woodland in the southeastern U.S. as

a case study. Two tree species with very different canopy and leaf shapes (pine needles vs. broad

leaves) are used to test the model. DUET uses simplified fall trajectories to determine leaf litter and

grass spatial patterns from a given overstory structure with specified wind conditions. For brevity,

we define leaf litter as only dead leaves and needles. We propose a methodology to model leaf and

needle shedding from trees, accumulation on the surface, decay and compaction over time, and the

effects of litter buildup on grass growth. The model uses elliptical dispersal regions to represent

the area covered by litter as a function of winds and aerodynamic characteristics of falling foliage,

based on surface area and drag coefficients approximated from the average size and shape of an

individual leaf. We verified the methodology by testing changes in tree height, size and shape of

an average leaf, drag coefficients, and wind variance.

3.2 Model design

DUET accesses canopy structure data stored in three-dimensional voxelated density arrays and

produces a discretized spatially explicit array of litter deposited on the ground resolved at meter
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scales. The deposition region from a voxel within the tree canopy is an elliptical area defined by

gravity, local wind estimates, and aerodynamic drag of the foliage that is falling. Models are then

used to account for litter decay and compression effects according to each species’ characteristics,

and grass growth is predicted based on tree shade and litter cover patterns.

3.2.1 Foliage trajectory and deposition

DUET uses species-dependent foliage bulk density for each canopy location in an explicitly

resolved forest, woodland, or shrub layer within the domain of interest as input. Bulk density

values are provided in a three-dimensional voxelated array. Such arrays can be developed from

field measured or remotely sensed data (Linn et al. 2005; Pimont et al. 2016; Parsons et al. 2018).

Voxel size depends on the application, but for the purposes of this work, we choose voxel resolution

of 1 or 2 meters, depending on the simulation.

We assume that in the absence of wind, the foliage from each voxel falls predominantly down-

ward with some oscillating lateral movement due to its unstable aerodynamics. This lateral move-

ment during the fall creates a cone of flight paths from each canopy location that intersect the

ground within a circle of radius, rgroundmeasured in meters. If the ground is flat, rground represents

a minimally sized circular deposition footprint since any other trajectory induced by the presence

of wind will be a longer distance with more dispersed patterns. This is not strictly true for sloped

ground, which will be addressed in future work.

The radius of the resulting deposition pattern is dependent on the time (in seconds) the leaf re-

quires to fall, t f all , and the lateral distance the leaf could travel during that time, assuming minimal

wind activity. We assume that the leaf reaches terminal vertical velocity quickly and therefore t f all

is defined using the height off the ground, HC, divided by the terminal velocity, vterminal; vterminal is
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dependent on the average mass and surface area for a leaf or needle for each species, m f ol and A f ol ,

the air density for the area, rair, the acceleration due to gravity, g, and a predefined drag coefficient

for the leaves or needles, Cd , either from literature or species-specific measurements, if available

(Eq. 3.1 and 3.2).

t f all =
HC

vterminal
(3.1)

vterminal =

s
2m f olg

rairA f olCd
(3.2)

To calculate rground , we define the effective radius of the voxel of horizontal dimension dx⇥dy

to be the radius of the deposition circle if the foliage was located just above the ground when it

fell, rmin =
p

dxdy/p . We then add to this minimum radius a distance contributed by oscillating

lateral movement, rosc, of the foliage as it falls from some height > 0:

rground = rmin + rosc (3.3)

We define rosc = LHnsteps, where LH is found by the Cauchy momentum equation in Lagrangian

form. This equation was developed to represent linear transport of a unit of material subjected to

the forces acting on the unit as it travels through a given slow-moving fluid. We use this to represent

the maximum horizontal distance that the leaf or needle can reach within each oscillation step it

takes through the air during its descent. In the model, LH is calculated by dividing a characteristic

length proportional to
p

A f ol , where A f ol is the surface area of the leaf or needle, by the Froude

number, Fr, which represents a measurement of buoyancy. To compute the Froude number, we

assume minimal oscillation velocity |u0|= 0.01. nsteps is the maximum number of steps the leaf or
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needle can take in the time within which it is falling, t f all . We estimate that oscillation frequency

of the falling foliage is N steps per second. Definition of this parameter and the proportion constant

a could be refined in future work.

LH =
a
p

A f ol

Fr
Fr =

|u0|q
g
p

A+ f ol

nsteps =

⇠
t f all ⇥

Nsteps
s

⇡
(3.4)

Figure 3.1: Transformations from wind information for determining dispersal region of leaf or
needle fallout; zonal wind stretch is defined using zonal standard deviation multiplied by fall time;
meridional wind stretch is determined by meridional standard deviation multiplied by fall time;
rotation and displacement are determined by the mean wind speed trajectory

Given the circle defined by rground located at the center of the canopy voxel at coordinates

(xc,yc) within the surface voxel, we now perform displacement, stretching, and rotation to this

circle to find the dispersal area for the foliage (Fig. 3.1). These transformations deform the circle

into an ellipse centered at (cx,cy) with radii rma jor and rminor, aligned along angle q . To define

these transformations, we use mean horizontal wind velocity components in the x and y directions,

u and v, and their standard deviations, su and sv. At the very least, this methodology requires
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estimates of wind velocities during the time when foliage is falling for each year since the last

burn. If more information is available regarding the winds throughout the area, the model allows

for the option to separate the year into equal sections (monthly, 4 seasons, 6-months, etc.), each

with their own wind velocity components. This offers the opportunity to designate a particular

time of year for each specific species to drop their foliage (as different species of trees might drop

their foliage at different times of year) and implement related wind conditions for that time.

Using t f all , the mean horizontal displacements in the x and y directions, Dx and Dy for the ellip-

tical region can be computed by integrating the horizontal wind velocity over this time. For a dis-

cretized spatial and temporal system such as DUET, this collapses to Dx = uxt f all and Dy = uyt f all ,

because of the terminal velocity approximation (gravitational force and drag force are equal) that

translates to the foliage moving horizontally as the speed of the surrounding air.

We assume that the foliage rapidly reaches the horizontal velocity of the local wind in the i

direction, Ui, based on its low inertia. With this assumption, the mean horizontal displacement,

Dn, in the i direction is given by:

Di =
Z h

0
Ui(z)

dz
vterminal

(3.5)

For scenarios where the average ambient horizontal velocity over the height h is known, the for-

mula collapses to:

Di =
Z t f all

0
Uidt =Uit f all (3.6)

By adding components of displacement in the x and y directions, the net average horizontal

movement of the foliage becomes ~D = Dx~i+Dy~j where~i and ~j indicate the directions aligned with

the x and y axes. The displaced center of the elliptical region for dispersal of the leaves or needles,
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(cx,cy) can be computed as cx = xc +Dx and cy = yc +Dy where (xc,yc) is the center of the voxel

distributing its leaves.

Figure 3.2: Configuration for the change in major radius of the ellipse when center is displaced

As the circle is displaced to a new location using u and v, the angle of incidence for the cone

becomes an ellipse as shown in figure 3.2. The ellipse is now assumed to be aligned such that the

major axis is directly in line with the displacement vector, ~D. When the circular cross section with

radius rground of the dispersion path takes on an angular trajectory onto the ground some non-zero

horizontal distance from (xc,yc), the projected pattern on the ground is much more elliptical in

nature. The projected ellipse is modeled with a minor axis that remains rground , and the major axis

will be stretched into rdisp to account for the angle of incidence fall trajectory and the ground:

rdisp =
rground

sinf
= rground

q
H2

C + |~D|2

HC
(3.7)
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which equals rground for ~D = 0.

For the two stretches, the standard deviation of the winds directly affects the breadth of the

dispersal region. For instance, for high standard deviations in wind direction, the ellipse will be

stretched into a broader area than for low standard deviation. This is to account for areas in which

vast changes in wind directions occur rapidly during the time when the leaves are falling.

The standard deviations of the horizontal wind speeds, su and sv, influence the aligned and

perpendicular stretches of this displaced ellipse when multiplied by the time for the leaves to fall,

t f all:

rma jor = rdisp + t f allsu rminor = rground + t f allsv (3.8)

The rotation of the ellipse is then determined by calculating the angle between u and v to align

it with the displacement vector, ~D (Figure 3.1). Note that the stretches are mathematically calcu-

lated before the rotation of the ellipse. Once the rotation occurs, the stretches are affected by the

rotation and are adjusted. In this way, the major and minor axes of the ellipse are affected by both

directional wind vectors once the rotation has been applied.

In matrix notation, we can use projective coordinates to illustrate the process by which each of

the original points within the unit circle move to their new coordinates in the transformed space.

In equation 3.9 the first matrix on the left represents the displacement, the second the rotation, and

the third the aligned and perpendicular stretches:

8(x,y) 2 x2 + y2  1 :
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2

6666664

1 0 Dx

0 1 Dy

0 0 1

3

7777775

2

6666664

cosq �sinq 0

sinq cosq 0

0 0 1

3

7777775

2

6666664

rma jor 0 0

0 rminor 0

0 0 1

3

7777775

2

6666664

x

y

1

3

7777775
=

2

6666664

Ex

Ey

1

3

7777775
(3.9)

This series of matrices can be expressed as A~x = ~E where~x is any coordinate within the unit circle,

~E is the corresponding coordinate within the transformed elliptical space, and

A =

2

6666664

rma jor cosq �rminor sinq Dx

rminor sinq rminor cosq Dy

0 0 1

3

7777775
(3.10)

To find each point on the edge of the elliiptical region, we use

~x 2

8
>>>>>><

>>>>>>:

2

6666664

x

y

1

3

7777775
s. th.

2

6666664

x

y

1

3

7777775
=

2

6666664

cosf

sinf

1

3

7777775
8 0  f  2p

9
>>>>>>=

>>>>>>;

(3.11)

and we find the equations for the edge of the rotated and displaced ellipse:

8 0  f  2p :

2

664
Ex(f)

Ey(f)

3

775=

2

664
|rma jor|cosf cosq � |rminor|sinf sinq +Dx

|rminor|sinf cosq + |rma jor|cosf sinq +Dy

3

775 (3.12)
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Figure 3.3: Rotated elliptical region for litter dispersal with q = the rotation of the ellipse, f
defined as all radians between 0 and 2p , Ex and Ey as the displaced coordinates at the specific
angle f , and the radii defined using the wind information in equation 3.8

Figure 3.3 shows the rotated ellipse and the locations of the angles and measurements for these

equations.

3.2.2 Mass dispersal within the elliptical region

Once the elliptical region is defined, DUET disperses a portion of the mass for each species

from a canopy voxel to a particular location in the elliptical region. Each species drops a fraction

of the mass within the voxel that is shed per year, xdrop or per time period during the year when

foliage is shed, tdrop. xdrop is calculated using the inverse of the number of years a species requires

to shed its entire canopy, adrop; e.g., longleaf pine (Pinus palustris) needles are retained for two

years (Stowe 2019). We chose to use adrop=2 which makes xdrop=1/2.

As foliage falls along a mean trajectory, we assume that the distribution of the foliage within

the deposition region is at its maximum at the center. Since the ellipse defines the outer limit of

the potential deviation from the mean fall trajectory the foliage may achieve during its descent, we
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assume that the deposition load declines linearly from the center to any location on the perimeter

of the deposition region. This means that the distribution of the foliage takes on a conical shape, so

that the peak of the cone is located at the center of the ellipse, where the mean trajectory intersects

the ground, and the distribution reaches zero at the perimeter of the elliptical fall pattern. In the

absence of wind, as the dispersal region is circular, this process creates a circular cone distribution;

in the presence of a wind field, the cone takes on the elliptical base for surface deposition.

Since the integrated mass over the elliptical area is xdrop times the mass within the source

canopy cell, mc, we can solve for the maximum mass of the conical distribution, mmax, which

occurs at the center point of the ellipse, (cx,cy). We use the equation for the volume of a cone

using the elliptical radii, rma jor and rminor:

xdropmc =
1
3

prma jorrminormmax ! mmax =
3xdropmc

prma jorrminor
(3.13)

Once the maximum of the conical distribution is known, the deposited mass of the litter at any

given point within the elliptical region can be calculated using a linear function with mmax as the

y-intercept. See section 3.2.5 for the numerical calculation of the mass dispersal.

For each year since the region was last burned, the elliptical deposition region is identified for

foliage falling from all canopy voxels with foliage in them, and the resulting mass depositions are

accumulated in appropriate ground-level voxels. This produces a layering effect with each layer

tracked separately, representing the litter fall per year within the simulation where total litter load

is the sum of the layers in one voxel.
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3.2.3 Litter decay

Decay is an important process controlling litter mass. Olson (1963) illustrates well how vari-

ables decay among ecosystems. We postulate that the loss of litter mass accumulated in year,

mlitter,year, with a decay rate for species S, DS,year, can be written:

∂mlitter,year

∂ t
= �DS,yearmlitter,year (3.14)

For mass accumulated in a single year, this becomes

mlitter,year =
�
1� exp�DS,year

�
mlitter,year�1 (3.15)

Litter is dispersed per year with various wind conditions, which results in heterogeneous spatial

deposition each year. We can imagine this as laying down variably thick litter layers across the

forest floor, a layer for each year (or potentially season, depending on the species and location).

As annual layers build up in different areas, the decay rate for each of these layers is affected by

the number and thickness of layers that have accumulated above it (older layers are likely to have

more mass above them). Thus, DS,year might be greater due to moisture retention and compaction

when greater mass of litter is stacked above a specific year’s layer by litter falling in more recent

years (Stephens, Finney, and Schantz 2004; Mueller et al. 2021).

For this proof-of-concept demonstration, we approximate the annual decay of year layer, DS,year,

with the most recent year of deposition defined as Yr, with the linear function:

DS,year =
yr

Â
j=year+1

CPsmlitter, j (3.16)
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where CPs is a species- and area-specific compaction rate, and mlitter, j is the mass of the litter

deposited in this area during year j. Then we have:

∂mlitter,year

∂ t
= �

"
yr

Â
j=year+1

CPsmlitter, j

#
mlitter,year (3.17)

∂massaccum

∂ t
=

∂ Âyr
j=1 mlitter, j

∂ t
= �

yr

Â
j=1

"
yr

Â
k= j+1

CPsmlitter,k

#
mlitter, j +mlitter,yr (3.18)

There are two long-term effects that result from this increasing decay rate with increasing depth:

1) the rate of change of the litter mass with time since last burn decreases with time and can stop

changing when
yr

Â
j=1

"
yr

Â
k= j+1

CPsmlitter,k

#
mlitter, j = mlitter,yr (3.19)

and 2) over many years there is an homogenization of litter loads over time as locations where

large amounts of litter falls also eventually gain higher decay rates (Stephens, Finney, and Schantz

2004).

3.2.4 Grass production

Grass production is affected by light availability, belowground competition, and inhibition from

accumulated tree litter (Hiers et al. 2007; Pecot et al. 2007; Montgomery, Reich, and Palik 2010).

The amount of grass is influenced by a litter cover factor, ll (Eq. 3.20), determined by the amount

of litter covering the ground in a particular voxel, along with a shade factor, ls (eq. 3.21), de-

termined by the voxel with the maximum density located above the voxel (x,y). Each of these

factors are divided by rmax,species, the maximum density of a given species that can exist within a
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particular voxel.

ll =
minrlitter,rmax,species

rmax,species
(3.20)

ls =
maxz rspecies,x,y(z)

rmax,species
(3.21)

Once these factors are determined, grass growth is calculated by taking a fraction of the maximum

annual grass growth for the area, grassann,max in mass/year:

grassx,y = exp�(glll +gsls) (3.22)

For maximum litter and shade cover, ll = ls = 1 and eq. 3.22 simplifies to exp�(gl +gs), where

gl and gs represent the maximum inhibition of grass growth within the given area for litter cover or

shade, respectively. Note that if rlitter and maxz rspecies,x,y(z) are equal to 0, we have exp�0 = 1,

and there is no reduction in grass growth.

For circumstances in which only the average value of grass growth is known, we normalize

these values by finding the average value for the grass across the entire domain using the sum of

all of the grass values for every voxel, grassx,y, and dividing by the number of cells in the domain,

HxHy, with Hx = total voxels in the domain in the x direction, and Hy = total voxels in the domain

in the y direction:

grassx,y =
Âx,y grassx,y

HxHy
(3.23)

3.2.5 Numerical implementation

DUET has been designed to create numerical simulations of litter and grass for a designated

virtual environment. The inputs for the system include a canopy voxel array and information
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regarding species and stems per hectare for the area to be simulated. The outputs for the system

were designed to be usable by various existing fire or ecosystem models.

Model Inputs

DUET simulations begin the year of the last burn, in which the previously existing grass and

litter have been consumed, leaving no grass or litter on the ground. This can potentially be adjusted

for existing grass and litter in future work. The provided density array for the shrub or canopy

fuels that exist in the area, r f , must be four-dimensional with three spatial dimensions per species

(fourth index is species), assuming no litter or grass. The first layer of this array may contain shrub

or canopy fuel, however, as some species stretch into the ground-level voxels (depending on height

to foliage on plants and vertical extent of the first cell).

A list of species-specific characteristics, and a list of wind values must also be provided. The

species-specific values required include the maximum density of a species, rmax,species, average

crown bulk density within the tree, ravg, an average mass for a single leaf or needle, m f ol , an

average surface area for a single leaf or needle, A f ol , a drag coefficient for the leaf or needle,

CD, a compaction rate, CPs, a moisture level for the live leaf, Ms, and a timestep during which

the leaves will be dropping from the tree, tdrop. For instance, the drag coefficient, CD, can be

approximated based on the shape of the leaf: a pine needle resembles a thin cylinder which could

be approximately, CD = 0.6, whereas a broadleaf resembles a piece of paper, which could be

approximately CD = 2.43.

Wind information must be provided for the area per time step. Although typically we use

year-length time steps, the model can also use shorter time steps to account for the various times

during the year that a particular species will lose its canopy. The wind file must list the year,
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year, the step during the year, yeart , and the corresponding average wind speeds in the x and

y directions at canopy height, u and v, along with their standard deviations, su and sv. These

can be directly measured for the area, or obtained from gridded meteorological datasets based

either on observations [e.g. Livneh, (Livneh et al. 2013) or the Gridded surface Meteorological

dataset (Gridmet) (Abatzoglou 2013)], downscaled climate model simulations [e.g. Multivariate

Adaptive Constructed Analogs Comparison Project Phase 5 (MACA CMIP5) (Abatzoglou and

Brown 2012)], or fine-scale atmospheric simulations [e.g. HIGRAD (Dupuy et al. 2011; Koo et

al. 2012)]. If a fine-scale atmospheric model is used, the wind field presents as u and v values for

each voxel in the domain array based on the vegetation structure itself, and DUET will calculate

the u,v,su,andsv values for the vertical column corresponding to the canopy voxel dropping its

leaves.

Numerical density calculations

Once the deposition distribution pattern for foliage originating from a particular canopy voxel

and species has been defined by the equations in the previous sections, the mass of the foliage is

added to the appropriate ground-level voxel. The mass contribution from each canopy or shrub

voxel that contains mc foliage bulk density to each of these ground voxels, mx,y is calculated using

a weighting system based on the conical distribution model discussed above:

mx,y =
ln(x,y)

ÂEn
n=1 ln(x,y)

xdropmc (3.24)

where ln is the relative height of the cone distribution pattern within voxel (x,y), and En is the total

number of surface voxels contained within the entire elliptical deposition region associated with
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this source canopy voxel. ln(x,y) is defined as:

ln(x,y) = 1�
p

(cx � x)2 +(cy � y)2
p

(cx �Ex)2 +(cy �Ey)2
(3.25)

with (cx,cy) as the coordinate of the center of the ellipse and (Ex,Ey) as the corresponding coor-

dinate for the edge of the ellipse such that there exists a straight line that passes through (cx,cy),

(x,y), and (Ex,Ey). See the complete description for how (Ex,Ey) is calculated in section 3.2.1.

To illustrate how the numerical model applies the conical distribution for a given ellipse, Fig.

3.4 shows the predicted litter bulk density at each of the surface voxels within the defined elliptical

region from a single canopy voxel located 20m high with wind values of u = 9m/s, v = �9m/s,

su = 5m/s, and sv = 12m/s:

Figure 3.4: Voxelated density array produced by the program for use within HIGRAD/FIRETEC
fire behavior simulations; the star is the location of a canopy voxel with coordinates (35,35,10)
and wind values of u = 9, v = �9, su = 5, and sv = 12m/s
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3.3 Results

3.3.1 Simulation setup

Tree maps

We consider four synthetic forests to examine the effects on litter dispersal of several species

and environmental characteristics including the impact of tree height, drag coefficients, wind influ-

ence, average leaf surface area, and decay factors. To show the impact of tree height, we developed

two maps with generalized species characteristics (a conifer species and a broadleaf species), each

with a single small tree and a single large tree. Table 3.1 reports the specific measurements used

in these short versus tall simulations. Note that the drag coefficients, compaction rates, and drop

rates are nondimensional parameters.

Table 3.1: Species specific parameters for short versus tall tree simulations

Tree
Type

Height
(m)

Height
to max
crown
radius

(m)

Canopy
base

height
(m)

m f ol
(g)

A f ol
(cm2)

Decay
(%/yr)

Drag
Coeff Compact

Drop
per
year

Short,
Conifer

10 7 5.5 1 0.5 1 0.6 0.2 1/2

Tall,
Conifer

20 14 11 1 0.5 1 0.6 0.2 1/2

Short,
Broadleaf

10 0 0 2.04 168 0.5 2.43 0.2 1

Short,
Conifer

20 0 0 2.04 168 0.5 2.43 0.2 1

These parameter values represent average relative relationships developed from a dataset col-

lected at Eglin Air Force Base in Florida, described in further detail below.
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Drag coefficients are used to distinguish fall trajectories for coniferous needles versus broadleaves.

We use a drag coefficient of 2.43 for the broadleaf described above, a relatively flat leaf that will

have more oscillations due to the larger surface area than the conifer. For a coniferous needle,

which has less surface area and therefore will oscillate less as it falls through the air, we use a

drag coefficient of 0.6. A map using two identical trees at 10m tall, 5m height to maximum crown

radius, and 0m canopy base height with drag coefficients 0.6 and 2.43 compares drag coefficient

effects.

We also test the model in a domain populated using tree measurements collected at Eglin

Air Force Base in Florida in 2008, a xeric longleaf pine sand-hill forest and grass area with a

subtropical climate (Ottmar et al. 2015). The recorded tree locations span an area of approximately

67m ⇥ 106m. The terrain in this area was without slope at that scale. We used this tree dataset to

populate a 400m ⇥ 400m domain at 2m lateral resolution using random sampling of the original

dataset while preserving measured stem density for a total of 2163 trees in the domain. This dataset

included two species of trees: longleaf pine (Pinus palistrus) and turkey oak (Quercis laevis). We

used this tree map to test various decay factors and wind field effects.

Wind conditions

To test the effect of winds on the litter deposition, several of the simulations used extreme wind

conditions. Using the standard deviation of the winds as a metric for variability, we evaluated four

idealized wind scenarios, including (1) a “no wind, no standard deviation” (NWNS) scenario where

the litter deposition is solely reliant on height from the tree and atmospheric drag, and represents

the circle with radius rground; (2) a “high wind, no standard deviation” (HWNS) scenario with

strong winds of 15m/s coming directly from the southwest with no standard deviation in trajectory,
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(3) a “no wind, high standard deviation” (NWHS) scenario where wind speeds average spatially to

0m/s, but standard deviation is high at 8m/s in all directions, and (4) a “high wind, high standard

deviation” (HWHS) scenario with high average wind speeds (15m/s), and high standard deviation

(8m/s) in all directions.

Then, we examined litter deposition using a more realistic wind profile to incorporate wind

gusts that likely cause the leaves to fall from the tree. For this purpose, we first spun up a wind field

in HIGRAD using the same Eglin tree plot with a starting wind speed of 13.4112m/s at a height of

34m, which is approximately 10m above the highest tree in the dataset. We used cyclic boundary

conditions as described in Pimont et al. (2016). After allowing the wind to find a relatively steady

state over 600 seconds, we then recorded and averaged the mean wind values and variances in each

voxel over all time steps to find the average wind speeds and the standard deviation at any given

voxel within the three-dimensional domain. We applied DUET using wind information averaged

over all voxels from the ground up to the height of the given canopy voxel, HC. The values for the

wind scenarios ranged as:

1.1872m/s  u  13.8865m/s (3.26)

�1.04651m/s  v  0.9614m/s (3.27)

0.0m/s  su  24.3431m/s (3.28)

0.0m/s  sv  7.4149m/s (3.29)

within the areas that contained the canopy voxels. Tables 3.2 and 3.3 include a list of all the

simulations performed to test the functionality of DUET.
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3.3.2 Basic model functionality

Effects of tree height

To test the model’s ability to distinguish litter dispersal from short versus tall trees, we used

a small domain with 1-m resolution and two general tree types, conifer and broadleaf (CTH and

BTH simulations described in Table 3.2). We applied species characteristics as defined in table

3.1, with wind descriptions as defined in section 3.3.1 and table 3.2. Figures 3.5 and 3.6 show the

results of the tree height comparison.

Figure 3.5: Short versus tall broadleaf tree dispersal for four generalized wind events; a) no wind
or standard deviation (NWNS), b) wind at 15m/s with no standard deviation (HWNS), c) no wind
but 8m/s standard deviation (NWHS), and d) 15m/s winds with 8m/s standard deviation (HWHS);
BTH = Broadleaf tree height; black dots are tree bole locations
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The broadleaf tree canopy represented here stretches down to the ground, while conifer trees

have height to live crown distances of 5m and 10m for the short and tall trees, respectively. When

no mean wind is present, litter accumulates primarily below and around trees. Taller trees result in

a broader dispersal area (compare Figs. 3.5a , 3.5c, 3.6a, and 3.6c). With a positive mean wind, the

dispersal area is stretched in the direction of the mean wind. For broadleaf trees, it begins closer

to the base of the tree than for the conifer trees (compare figure 3.5b and 3.5d, and 3.6b and 3.6d).

Figures 3.5c, 3.5d, 3.6c, and 3.6d also show that high wind standard deviations disperse the limited

amount of litter from short trees leading to low litter bulk densities in any given voxel.

Figure 3.6: Short versus tall conifer tree dispersal for four generalized wind events; a) no wind or
standard deviation (NWNS), b) wind at 15m/s with no standard deviation (HWNS), c) no wind but
8m/s standard deviation (NWHS), and d) 15m/s winds with 8m/s standard deviation (HWHS);
CTH = conifer tree height; black stars are tree bole locations
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Drag coefficient comparison

To demonstrate the influence of the drag coefficient on the litter dispersal region, we used a

small domain with two trees, each of which were 10m tall, 5m maximum radius, 0m height to live

crown, with drag coefficients 0.6 and 2.43. Figure 3.7 shows the results of the drag coefficient test.

Figure 3.7: Effect of the Drag Coefficient (DCO) on the dispersal region; all tree characteristics
are identical except for the drag coefficient as labelled on the image where one drag coefficient is
2.43 which represents a flat leaf and the other is 0.6 which represents a needle falling; black stars
are tree bole locations

With the absence of wind influence, the drag coefficient does not affect the dispersal region,

as shown in Fig. 3.7a. A larger drag coefficient expands the dispersal region due to the inverse

relationship with terminal velocity, vterminal (Eq. 3.2). As vterminal increases, the time it takes for

the foliage to fall (t f all) increases, which in turn increases the maximum horizontal distance that
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the foliage can be transported and the greater dispersion that can occur, broadening the dispersal

region. Figures 3.7b-d show these expansions clearly.

Decay factor comparison

To show the long-term effects of the decay factor on litter buildup, we ran three five-year sim-

ulations on a 400m ⇥ 400m tree map using the two species described in table 3.1. The simulation

tracks how the litter decays when deposited in the first of the five years with no other litter placed

for the duration of the simulation (Fig. 3.8).

Figure 3.8: Litter decay using (a) DECAY 1.0 = a decay rate of 1.0 in which there is a 63% loss
of mass in one year, and (b) DECAY 0.1 = a decay rate of 0.1 in which there is a 63% loss of mass
per 10 years, or approximately a 10% loss of mass per year
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To develop Fig. 3.8, we calculated the litter deposit for a single year with zero wind influence,

and then applied the decay function with three different decay factors for 5 years without adding

litter after the initial year. With a decay factor of 0.1, we lose 1 � e�0.1 ⇡ 10% of the mass each

year; a decay factor of 0.5 results in a loss of 1�exp�0.5 ⇡ 40% mass per year; and a decay factor

of 1.0 results in a loss of 1� exp�1.0 ⇡ 63% mass per year. In the figure, we begin with the same

amount of litter dispersal for the first year, which is why the litter maps in the column for year 1

are identical.

Since the decay factor of 0.1 only results in 10% loss of mass per year, the mass on the ground

remains for several years after the initial dispersal. In Fig. 3.8, the top row of year 5 is only

slightly lighter than the top row of year 1, indicating only a slight loss of mass, or approximately

1� exp�0.1(5) ⇡ 40% mass loss. In contrast, the decay factor of 1.0 results in a 1� exp�1.0(5) 99%

loss of mass over five years, which can be seen in Fig. 3.8 in the bottom row on the right, which is

almost completely devoid of litter.

3.3.3 Idealized forest area representation

Litter Buildup Under Randomized Wind Conditions

We performed simulations on a 400m by 400m domain with 2�m resolution to examine litter

dispersion from trees of variable size and shape. We populated the domain with 2163 trees with

heights ranging from 6.7m to 23.2m, heights to live crown ranging from 0m to 17.7m, and height

to maximum crown radius ranging from 1.2m to 12.8m. We chose random wind velocities that

ranged as:

�8.998m/s  u  5.308m/s (3.30)
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�8.805m/s  v  7.433m/s (3.31)

�7.871m/s  su  8.785m/s (3.32)

�7.396m/s  sv  7.330m/s (3.33)

Figure 3.9: Output for 10 years of litter deposition with random winds to show accumulation of
surface litter over time

Figure 3.9 shows the litter accumulation over ten years with overlapping ellipses. The layering

effect for these elliptical dispersal regions is clearly shown in this figure. By year 10, there occurs

a clear and direct connection with the canopy structure which is strengthened over time.

Litter deposition under gusty wind conditions

Because litter deposition from the canopy is sensitive to the variation in the wind fields, we next

explored the influence of variation in winds through the large eddy simulation model HIGRAD,

results of which are shown in Fig. 3.10.
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Figure 3.10: WFIELD simulation; Litter deposition for (a) pine and (b) oak, and (c) grass biomass
results from a DUET simulation using wind fields generated by HIGRAD, which captures wind
gusts that cause the leaves to detach from the tree

This more realistic wind field represents how we can account for the fully variable wind condi-

tions for each spatial grid cell within the domain. Since the wind fields in these simulations are a

function of the stand-scale drag, and include minimal wind speeds close to the ground, we can see

that the dispersal regions are restricted closer to the tree locations. Within denser stands, the atten-

uation of mean windspeed dominates the distribution of litter, with occasional gusts distributing

litter farther from originating voxels.

3.4 Discussion

The DUET model is capable of producing a heterogeneous surface litter and grass layer through

a mechanistic representation of leaf litter and herbaceous spatial distribution based on tree canopy

structure. Simulations explore critical phenomena that lead to the surface fuel deposition and

growth patterns, and results agree with expected sensitivities to various canopy and wind parame-
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ters. However, there are processes that affect fuel distribution that are not yet included and contin-

ued efforts to validate the model are necessary.

3.4.1 Overstory Structure and composition

DUET produces modeled tree litter accumulation that is directly affected by overstory structure

including the height and species-specific characteristics of the trees, in agreement with observa-

tions (Staelens et al. 2003; Nickmans et al. 2019). The model uses the height from which foliage

is falling along with the average mass, surface area, and drag coefficient for the foliage (leaves

or needles) to calculate the fall time for the foliage based on a terminal velocity approximation.

In conjunction with the average wind speeds associated with the time period in which the foliage

falls, this fall time helps to define the breadth of the dispersal pattern possible when falling needles

or leaves reach the ground. The orientation of the wind-influenced fall path elongates the other-

wise circular pattern into an elliptical region if the path is not straight down. Figures 3.5 and 3.6 in

section 3.3.2 show effects of the height of the tree on the deposition region. Species foliage char-

acteristics also influence the width of the deposition pattern. We compare oak leaves, which have

a larger surface area and thus greater drag/mass, to pine needles. This slows down the fall speed

of oak leaves relative to pine needles, increases the time aloft and allows for more lateral disper-

sion; therefore, the spread is generally broader for a given tree height (see Fig. 3.7). Since access

to information on canopy structure is more readily available than understory structure, having a

model that bases the understory on the canopy may provide the necessary precision for improving

fire and ecosystem model inputs (Silva et al. 2016).
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3.4.2 Wind influence

Wind events in the area directly affect when and how the litter falls from the tree (Staelens

et al. 2003). In DUET, we use average wind speeds and standard deviations for the area to define

the shape and size of the dispersal region. As wind is a main driver for mean horizontal movement

of litter while it is falling, we use average wind speed to determine horizontal displacement as

well as the orientation, and length of the ellipse in line with the horizontal trajectory. The standard

deviation of wind speed affects how wide or narrow the ellipse becomes perpendicular to the

displacement vector. We treat the influences of the wind standard deviations as having a diffusion

type effect on the leaves or needles, resulting in a conical distribution of leaves when they land.

While the majority of the leaves follow the mean path, the net pattern of foliage deposition from

any single canopy source is a maximum at the center of the deposition pattern and the loadings fall

off to zero linearly at the perimeter. While currently these wind trajectories are static inputs to the

model, we hope to connect to a database in which we can implement recorded wind information for

various time periods throughout the year and potentially expand DUET to include dynamic wind

inputs. Figures 3.5, 3.6, 3.7, and 3.10 all show the effect wind conditions have on the elliptical

regions and the heterogeneity of the result. In low wind conditions, the dispersal regions remain

close to the tree boles, while high wind conditions result in wider spread. Future iterations of the

model should incorporate a wind intensity vector that accounts for higher rates of litter drop during

high wind events.

3.4.3 Decay Processes

Within DUET, decay processes affect how the bulk density, moisture level, and depth of litter

changes over the years after deposition, as well as the inhibition of grass growth. With the layering
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effect created over years of litter accumulation, the decay processes are affected both by species-

specific decay factors and depth of litter on top. Figure 3.8 shows three different decay factors

and the resulting effect on the litter accumulation through the years after they fall. When a smaller

decay factor is applied, the litter does not decay and reduce as much as a higher decay factor. When

coupled with the layering effect shown in Fig. 3.9, the decay factor has a high influence on the

spatial heterogeneity of litter on the ground over years.

3.4.4 Model Assumptions

As with any mathematical model, several assumptions were made within the design of DUET.

First, we assumed that leaves reach their terminal vertical velocity immediately during the descent,

whereas in reality, the time required to reach terminal velocity is typically reached asymptotically

and depends on the air resistance and weight of the object. The latter assumption may be less

critical for litter resulting from broad leaves than needles as drag forces lead needles to reach

terminal velocity in a shorter time, but a full consideration of velocity is needed in future work.

Further, the decay functions used in DUET are appropriate for shorter timeframes and xeric

sites of the southeastern U.S., but don’t include nutrient cycling, including carbon:nitrogen, detri-

tivore effects as described in De Smedt et al. (2018) and climatic effects on litter decomposition

rates as described in Gavazov (2010). Further expanding the decay function and adding live and

dead fuel moisture information, and grass senescence and decay to the model, would improve

model accuracy and expand the range of ecosystems to which the model can be applied.

DUET does not currently include redistribution of litter by the wind or animal tracking once

on the ground, which is observed predominantly in hardwood litter (Wade and Lunsford 1989).

Many shrub species or trees in shrub stature contribute to the understory characteristics of many
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surface fire regimes, which are currently included as regular trees but can be added as an additional

component to the model.

3.4.5 The need for validation

While the model produces heterogeneity that meets expected patterns for wind, tree height,

and litter type, there is a need for both verification and validation. While verification of a model

confirms that the model is correctly implemented, validation ensures that the model represents the

real system it was built to represent accurately. In this study, we have presented verification of

the DUET model by testing the model’s representation of various idealized scenarios. However,

validation must occur through spatially explicit field data, which are just now becoming available

as scales to test DUET (Hawley et al. 2018). We view DUET as a series of hypotheses that brings

together the basic influential processes involved in how the canopy affects litter buildup, which

will be evaluated against these high-resolution observations in the future.

3.5 List of simulations
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Table 3.2: List of all simulations performed to test various attributes of DUET; PHT = Pine Height,
OHT = Oak Height, DCO = Drag Coefficient, DECAY = Decay rate tests, LD = Large Domain,
and WFIELD = Windfield; NWNS = No Winds, No Standard deviation; HWNS = High Winds,
No Standard deviation; NWHS = No Winds, High Standard deviation; and HWHS = High Winds,
High Standard deviation

Simulation
Name

Perturbed Pa-
rameter

Domain Size m/cell Trees Winds

CHT NWNS Tree height 35 ⇥ 35 ⇥ 25
cells

1m Conifers: 1@10m,
1@20m

u,v,su,sv = 0

CHT HWNS Tree height 35 ⇥ 35 ⇥ 25
cells

1m Conifers: 1@10m,
1@20m

u,v,su,sv =
20,20,0,0

CHT NWHS Tree height 35 ⇥ 35 ⇥ 25
cells

1m Conifers: 1@10m,
1@20m

u,v,su,sv =
0,0,10,10

CHT HWHS Tree height 35 ⇥ 35 ⇥ 25
cells

1m Conifers: 1@10m,
1@20m

u,v,su,sv =
20,20,10,10

BHT NWNS Tree height 35 ⇥ 35 ⇥ 25
cells

1m Broadleaf:
1@10m, 1@20m

u,v,su,sv = 0

BHT HWNS Tree height 35 ⇥ 35 ⇥ 25
cells

1m Broadleaf:
1@10m, 1@20m

u,v,su,sv =
20,20,0,0

BHT NWHS Tree height 35 ⇥ 35 ⇥ 25
cells

1m Broadleaf:
1@10m, 1@20m

u,v,su,sv =
0,0,10,10

BHT HWHS Tree height 35 ⇥ 35 ⇥ 25
cells

1m Broadleaf:
1@10m, 1@20m

u,v,su,sv =
20,20,10,10

DCO NWNS Drag Co =
1.28 and 0.6

35 ⇥ 35 ⇥ 25
cells

1m 2 identical Conifers u,v,su,sv = 0

DCO HWNS Drag Co =
1.28 and 0.6

35 ⇥ 35 ⇥ 25
cells

1m 2 identical Conifers u,v,su,sv =
20,20,0,0

DCO NWHS Drag Co =
1.28 and 0.6

35 ⇥ 35 ⇥ 25
cells

1m 2 identical Conifers u,v,su,sv =
0,0,10,10

DCO HWHS Drag Co =
1.28 and 0.6

35 ⇥ 35 ⇥ 25
cells

1m 2 identical Conifers u,v,su,sv =
20,20,10,10
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Table 3.3: List of all simulations performed to test various attributes of DUET; PHT = Pine Height,
OHT = Oak Height, DCO = Drag Coefficient, DECAY = Decay rate tests, LD = Large Domain,
and WFIELD = Windfield; NWNS = No Winds, No Standard deviation; HWNS = High Winds,
No Standard deviation; NWHS = No Winds, High Standard deviation; and HWHS = High Winds,
High Standard deviation

Simulation
Name

Perturbed Pa-
rameter

Domain Size m/cell Trees Winds

DECAY˙0.1 Decay rate =
0.1

200 ⇥ 200 ⇥
41 cells

2m 2163 trees - Oak
and Pine

Various winds
for 5 years

DECAY˙1.0 Decay rate =
1.0

200 ⇥ 200 ⇥
41 cells

2m 2163 trees - Oak
and Pine

Various winds
for 5 years

DECAY˙0.5 Decay rate =
0.5

200 ⇥ 200 ⇥
41 cells

2m 2163 trees - Oak
and Pine

u,v,su,sv = 0

WFIELD wind field 200 ⇥ 200 ⇥
41 cells

1m 2163 trees - Oak
and Pine

Windfield de-
veloped in HI-
GRAD
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CHAPTER 4. Detecting Chaos in Fire

The material presented below is part of the article that is in preparation for Chaos: An

Interdisciplinary Journal of Nonlinear Science.

4.1 Introduction

For this project, we use a CFD model, HIGRAD-FIRETEC (Linn et al. 2002; Linn et al. 2005),

a coupled atmospheric-fire behavior model (which we shall refer to as “FIRETEC” from here on)

that has been utilized in numerous studies, including those examining fire propagation (Pimont

et al. 2011), fire effects (Linn et al. 2002; Pimont et al. 2016), and the impact of fuel treatments

(Marshall et al. 2020). We choose this model for our study due to the high-fidelity mass and energy

resolutions present in FIRETEC.

Clements et al. (2015) demonstrated that low intensity fires are sensitive to shifts in near-surface

wind dynamics through field collected data during nine burns on different plots. Linn et al. (2021)

used one of those experimental burns to inform a FIRETEC simulation to further illustrate that

small changes in the wind field can have a broad effect on fire behavior. Jonko et al. (2021) used

an ensemble approach with FIRETEC simulations that focused on low-intensity fires in which they

compared 45 simulations with identical conditions except for small perturbations in the ambient

wind field. All of these studies clearly indicate that macroscopic fire behavior is sensitive to small

perturbations in wind conditions. This sensitivity to small perturbations in initial conditions is a

hallmark feature of chaos and nonlinear dynamics.
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There have been several studies done on the nonlinear dynamics of fire behavior. Turcotte

et al. (2007) found self-organized criticality in the frequency of forest fires relating to the area

burned, promoting the concept of scale-invariance in fire occurrence. Similarly, Ricotta, Avena,

and Marchetti (1999) also examined self-organizational trends in wildfire occurrence in Ligurnia,

showing that the ignition mechanism may have the most impactful effect on how it organizes. The

most recent example of chaos theory applied to fire behavior presents a discrete set of equations

developed from a reaction-diffusion equation, similar to the derivation of Lorenz equations for

wind dynamics (Mampel, Egorova, and Pagnini 2023; Lorenz 1963). We employ nonlinear time

series analysis to detect the presence of chaos in model-derived fire behavior data (Kantz and

Schreiber 2003; Malik 2020).

Although there is still some debate on specific mathematical properties of chaotic systems, a

system can be defined as chaotic if it presents sensitivity to initial conditions and deterministic

behavior (Lorenz 1963; Sander and Yorke 2015). Deterministic implies that if we input a unique

input into the system, we will always see a corresponding unique output from the system. Sen-

sitivity to initial conditions implies that if we introduce an arbitrarily small perturbation to that

unique input, the corresponding output may change considerably. There are several methods for

detecting the presence of deterministic chaos in a time series. The most well-known among these

is estimating the maximal Lyapunov exponent, for which there exist several algorithms (Grass-

berger and Procaccia 1983; Wolf et al. 1985; Eckmann et al. 1986; Sato, Sano, and Sawada 1987;

Rosenstein, Collins, and De Luca 1993; Touzé and Chaigne 2000; Akemann, Burda, and Kieburg

2019; Strogatz 2019). These methods measure the divergence between two trajectories that begin

infinitesimally close together, with the maximal Lyapunov exponent representing the rate of this

divergence. Another typical testing method involves calculating several different types of frac-
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tal dimensions. Each fractal dimension offers insights into the system dynamics over time and

gives a measurement of complexity (Lai and Lerner 1998; Sprott and Rowlands 2001; Lacasa and

Gómez-Gardeñes 2013; Strogatz 2019).

Accurately estimating Lyapunov exponents and fractal dimensions to determine the presence

of chaos can be challenging when the time series have limited lengths since the existing methods

fail to converge in such situations (Decoster and Mitchell 1991; Gencay and Dechert 1992). The

techniques used in calculating Lyapunov exponents and some fractal dimensions require determin-

ing two parameters: the embedding dimension, the minimum dimension needed to reconstruct a

topologically equivalent attractor to the attractor in the underlying data, and a time delay which

removes any temporal correlations in the time series to avoid oversampling of the data which could

suppress any chaotic signals. These parameters form the basis for phase-space reconstruction of

the dynamical system underlying the time series, and Lyapunov exponents and fractal dimensions

can be highly sensitive to the choices of these parameters. Reliable evaluation of the values for

these parameters can be challenging for shorter time series with limited knowledge of the system,

especially in the presence of noise (Wolf et al. 1985; Eckmann et al. 1986; Rosenstein, Collins,

and De Luca 1993). Also, with a short time series, a time delay embedding can reduce the length

of the series even further which increases the potential for lack of convergence in the method. On

the other hand, without the embedding, we risk oversampling the data which flattens out the dy-

namics and can lead to false results. These methods are also computationally expensive, and often

require manual investigation and adjustment of parameters for every series under study. However,

as this project involves thousands of time series and will therefore require automation, individual

time-series adjustments are not feasible.
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Instead of these more classic chaos detection methods, we use the recently developed Chaos

0-1 test (C01) that uses ergodic theory and Fourier analysis to find the asymptotic growth rate

of the mean squared displacement in a given time series (Gottwald and Melbourne 2004). We

couple this test with an artificial neural network (ANN) that distinguishes between deterministic

and stochastic series using ordinal analysis and permutation entropy (Boaretto et al. 2021). For our

data, we develop a simulation using FIRETEC, with homogeneous fuels, moderate moisture levels,

and low winds. Employing four variables produced by FIRETEC for each cell in the domain, we

design several thousand one-dimensional time series from the curated simulation that we test for

chaotic qualities using the C01 and ANN tests. We examine these results by variable and series

format, and compare them to known phenomena in physical fire behavior. We show that all four

variables modeled in FIRETEC display a wide range of behavior from stochastic to deterministic

with chaos expressed through the majority of the results.

4.2 Data and Methods

We design these time series with “marginal” fire conditions defined as a fire whose condi-

tions are designed to be just on the tipping point of extinguishment and sustainable combustion

to propagate through the domain. The transition between these states tends to be highly sensitive

to atmospheric and surface conditions. Since our time series are designed with this sensitivity

in mind, we assume the simulation is straddling this transition point and will produce both non-

chaotic and chaotic regimes. In addition, we know that fire behavior is nonlinear. The sensitivity to

wind dynamics viewed in low-intensity fire field experiments (Clements et al. 2015) and previous

FIRETEC simulations (Jonko et al. 2021; Linn et al. 2021) inspires the possibility that a transition

into chaos is possible in these types of fires.

82



In this study, we generate time-series from simulations using FIRETEC, a coupled fire-atmosphere

behavior model, to evaluate the chaotic qualities in simulated fire behavior. To assess the presence

of chaos, we use the chaos 0-1 test developed by Gottwald and Melbourne (2004) and an artificial

neural network developed by Boaretto et al. (2021) each of which is described in detail below.

4.2.1 Data

FIRETEC

Although there are various options within the FIRETEC model, we design our series to re-

move any stochastic functions, configuring the program to be fully deterministic. This includes

removing the monte-carlo based radiation program and replacing it with a simpler radiation sink

since convective heat transfer is the main fire spread mechanism, and turning off the options for

firebrands or spotting as this phenomena is minimal in grass fires.

FIRETEC is a Eulerian CFD model simulating the spatio-temporal behavior of fire using Carte-

sian (X ,Y,Z) spatial coordinates. We use a domain size of X = 200 and Y = 1200 with horizontal

resolution of 2 m ⇥ 2 m for each cell. We have Z = 41 vertical cells employing a cubicly stretched

grid ranging from ⇡ 1.5 m tall near the surface to ⇡ 40 m tall near the top of the atmosphere,

resulting in a total domain height of 615 m as defined in Linn et al. (2005). Fuels (vegetation) are

resolved in 3 dimensions at the model’s grid resolution, and characterized by species variables such

as moisture, height, and density. We limit our fuel to homogeneous grass to reduce the number of

variables that could affect the fire behavior and change our results. Our grass is 0.3 m tall at 0.3

kg/m2 with 15% moisture as designed in Jonko et al. (2021).

The advantage of using FIRETEC for this analysis is the large amount of information produced

from the simulation. For this analysis, we use two fire variables: the temperature of the solid
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(T ) and the convective heat transfer (Q); and two wind variables: the horizontal wind magnitude

(UV =
p

u2 + v2), and the vertical wind velocity (W ). T is measured in Kelvin (K) and is defined

as the temperature of the combination of the grass and the enclosed water (the “solid”), and is

representative of the energy consumed by the fuel. The convective heat transfer, Q, can be defined

as the energy transferred from the gas to the solid fuel in a cell and has units W/m2. The wind

variables are both defined in m/s. Each of these are recorded per cell for every time step. For a

detailed description of the governing equations in FIRETEC for the variables we choose to study,

please see Appendix A.

We simulate a wind field where the primary wind direction flows along the long side (Y ) of the

domain with an average speed of 6 m/s at ⇡ 150 m high in the domain. Turbulence is generated

through randomly placed blocks of vegetation in the lowest five layers of the domain (1  z  5)

in which the number of blocks exponentially reduce as we get higher in the domain. These blocks

interrupt the flow field, causing turbulence in the winds. Boundary conditions are defined to be

cyclic perpendicular to the primary wind direction. Cyclic boundary conditions essentially make

the domain laterally infinite as described in Linn et al. (2012), allowing flow to pass through the

boundary on one side, and back into the domain on the other side and allows us to consider each x-

coordinate as a separate “fire event” for our time series. To avoid any influence from the boundary

conditions at the lower edge of the domain, we define an ignition transect two cells thick at 100

cells away from Y = 0. We “ignite” each x 2 X along this transect by removing all fuel moisture

and linearly increasing T to 1000K over the first 3.5 seconds of the simulation (Linn et al. 2005).

The laterally infinite domain coupled with an ignition line that spans the entire width creates an

“infinite fireline,” which virtually eliminates any edge effects for the simulation that may interfere

with the study.
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Figure 4.1: Average fireline widths for each time step; vertical line at 250 s shows the starting
point for each time series developed. Note that at 250 s, we have reached a level average state
after the initial ramping of the fire behavior due to ignition.

To avoid sampling any unusual fire behavior due to the non-physical ignition, we record sim-

ulation data from 250 seconds to 950 seconds, creating 7001 time steps per series with each time

step representing 0.1 seconds of the simulation. This timing is chosen to allow for the full for-

mation of the fire after the ignition, which can be determined by examining the average fireline

width for each time step. The fireline width is defined as the distance between the cell that has a

temperature T � 500K and is farthest from the ignition, and the cell that is closest to the ignition

to reach the same threshold. Once the average fireline width ceases growth beyond the noise of the

simulated environment, we consider it to no longer reflect the non-physical characteristics of the

ignition. Figure 4.1 shows the average fireline width for each time step of our simulation with a

vertical line at 250 s, after which point the fireline width has stabilized. The end of the simulation

is defined to be before the fireline reaches the end of the domain space.
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Time Series

Lagrangian: Moving spatial coordinate

Eulerian: Static spatial coordinate

Figure 4.2: Diagram to illustrate the difference between Lagrangian and Eulerian time series.
Eurlerian series track how the fluid at a particular spatial location changes through time. La-
grangian style series track how a particular fluid parcel changes in space over time.

FIRETEC output is Eulerian (values recorded for each cell per time step). To determine the

presence of chaotic behavior in the changes for each variable through time and space, we choose

a Lagrangian style time series (Fig. 4.2) to track how the energy moves through the domain in the

form of heat. To convert the Eulerian data to a Lagrangian format we track the movement of the

fireline through time for individual x-coordinates in the domain. The fireline, referred to hereafter

as Ys(x), is defined as the series of spatial y-coordinates farthest from the ignition line that achieve

a temperature of the solid T � 500K for each time step s 2 S = {250.0,250.1, ...,950.0}. Figure

4.3 shows a top down view of time step s = 2800 = 280 s from the simulation. Note the broad area

that is actively on fire (T � 500K) in black. The off-white line at the top of the black area depicts

the leading edge of the fire as it progresses upward.
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Table 4.1: Table showing the various time series types we developed that use each x-coordinate as
a separate fire event. v represents the variable for the time series, n shows the offset from Ys(x), for
all time steps s. See Eqns. 4.5 through 4.8.

Name Description
Fv(x) Values of each variable v 2 V for the fireline locations
Iv,n(x) Values of each variable for cells in front and behind in line with Fv(x)

Cv,n(x)
Difference between the values at the fireline and cells in front and behind in
line with Fv(x)

Lv,n(x)
Values of each variable for the fireline locations and lateral cells to the left and
right, perpendicular to Fv(x)

Ov,n(x)
Difference between the fireline and cells to the left and right, offset along the
fireline

Fireline Location Ys(x)

Fire Area
Burnt Area

Unburnt Fuel Area

Fv

+1

+2

+3

-1

-2

-3

Direct Series

+1 +3+2-3 -2 -1

Iv,n

Lv,n

+1

+2

+3

-1

-2

-3

Comparison Series

+1

+3

+2

-3 -2

-1

Cv,n

Ov,n Fv

Figure 4.3: Top down visualization of the time step related to 280 s from the FIRETEC simulation.
The fireline location is defined as Ys(x) for the y-coordinate at location x 2 X = {5,10,15, ...,195}
at time s 2 S = {250.0,250.1, ...,950.0}. Fv(x) is the value of the variable v 2 V = {Q,T,UV,W}
at location Ys(x). The fireline location is in off-white, the unburnt fuel area is in green, the burnt
area is in brown and the locations that are actively on fire are in black. The small white box is
blown up on either side to show the Direct time series and the Comparison time series. Direct
takes values directly from the variable matrices; comparison finds the difference between Fv(x)
and the values at the particular offset (n) location

Using the fireline, Ys(x), we develop a variety of time series that investigate the fire behavior

from several perspectives. Table 4.1 gives a list of the time series developed from the x-coordinates

in the domain and Fig. 4.3 shows visual representations. A full description of each style of time

series is below.
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To reduce computational expense for our analysis, the four series described in Table 4.1 are

created using every 5 cells from 5  x  195 and each of the four variables are described at the top

of this section and in Appendix A. For the equations that follow, we define these sets:

V = {Q,W,UV,T}, (4.1)

which defines the matrices of variables that are used in each of the series. Each of these variable

matrices are 200 ⇥ 1200 cells, recorded from the FIRETEC simulation for each time step in the

bottom vertical layer (Z = 1). Then we have,

X = {5,10,15, ...,195}, (4.2)

that defines the 39 x-coordinates used in this analysis. Likewise, the offset coordinates for each

time series N, are defined such that:

N = {�3,�2,�1,1,2,3}. (4.3)

As defined above, Ys(x) is the y-coordinate for the fireline at time step s for a particular x-coordinate.

The base set of time series are built from the values of each variable at the fireline, (x,Ys(x)):

Fv(x) = {v(x,Ys(x))}s2S (4.4)
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We include a modified version of Fv defined as F̂v in which we only consider every other time

step in S, such that S⇤ = {250.0,250.2, ...,949.9} and F̂v(x) = {v(x,Ys(x))}s2S⇤ for test validation

purposes.

The first “Direct” series, Iv,n(x), tracks each variable for the three coordinates in line with the

movement of Fv(x), in front and behind Fv(x) 8n 2 N:

Iv,n(x) = {v(x,Ys(x)+n)}s2S . (4.5)

The second “Direct” series, Lv,n(x) shows the value at corresponding lateral coordinates to the left

or right of each specific Fv(x) for all v 2 V and n 2 N:

Lv,n(x) = {v(x+n,Ys(x))}s2S. (4.6)

The first “Comparison” series, Cv,n(x), Finds the difference in the value at the fireline, Fv(x), and

those corresponding coordinates in front or behind Fv(x) for all v 2 V and n 2 N:

Cv,n(x) = {v(x,Ys(x)+n)�Fv(x)}s2S. (4.7)

Ov,n(x) shows the difference between the value at the fireline and corresponding coordinates to the

left or right of each coordinate, following the path of the fireline for all v 2 V and n 2 N:

Ov,n(x) = {v(x+n,Fs(x+n))�Fv(x)}s2S. (4.8)
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Note that each v 2 V , n 2 N, and x 2 X produce different series for each of these types, resulting in

a total of 3900 different time series (975 per variable) used in this study. The above equations are

visualized in Fig. 4.3. Since the I and L series are built directly from the variable values, we refer

to them as the “Direct” series; then C and O are considered the “Comparison” series.

4.2.2 Chaos Detection Methods

We analyze each of the time series described in Sec. 4.2.1 using the chaos 0-1 test (C01) cou-

pled with an artificial neural network (ANN) for distinguishing between stochastic and determin-

istic chaotic behaviors. An advantage of the two tests we use for this project is that they provide

several different insights into the underlying system. The C01 test can identify whether the system

is chaotic (K � 0.5) or non-chaotic (K < 0.1), and it is inconclusive when K 2 [0.1,0.5). The

inconclusive range for the C01 test does not necessarily infer the absence of chaotic dynamics in

the system but that the results require a more in-depth analysis of the series before concluding the

level of chaos present (Gottwald and Melbourne 2008). As designed, the C01 test was developed to

identify deterministic chaos (Gottwald and Melbourne 2004, 2016). Thus, some of our results that

indicate chaos may be stochastic as described in Sec. 4.2.2, and require an additional test to rule

out stochasticity. The ANN test recognizes stochasticity with two results, classifying dynamics as

stochastic (W < 0.1) or deterministic (W � 0.1).

The 0-1 Test

The chaos 0-1 test (C01) has been successfully applied for various time series of experimental

data, demonstrating its robustness in identifying chaotic phenomena in different real-world settings

(Litak et al. 2009; Litak, Syta, and Wiercigroch 2009; Savi et al. 2017; Ouannas et al. 2020). C01
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analyzes the asymptotic growth rate between time steps in a given series (Gottwald and Melbourne

2004, 2009, 2016). The growth rate is defined as the slope of a line fit to changes in the mean

squared displacement as the duration between time steps increases. When the series is chaotic,

the rate will be close to 1, and the translated data will appear disorganized. If the series is non-

chaotic, the growth rate will be close to or less than 0 and the translated data appears bounded and

symmetric. For values that lie in between 0.1 and 0.5, an inspection of the visualizations for each

step should be included to verify the existence of weak chaos or the presence of stability (Gottwald

and Melbourne 2008).

The test involves four steps to calculate the asymptotic growth rate between values through

time. For this description, we have reproduced all equations from Gottwald and Melbourne (2016).

The first step translates each of the time series data points using sin and cos functions, similar to

using the power spectra. Consider a time series f(s), s = 1, ...,n. Then we translate for each

c 2 {Cn}:

pc(n) =
n

Â
s=1

f(s)cos(sc) qc(n) =
n

Â
s=1

f(s)sin(sc) (4.9)

where we define {Cn}:

{Cn}100
n=1 2R


p
5
,
4p
5

�
(4.10)

where values are randomly chosen from a uniform distribution and applied to this interval, then

sorted from smallest to largest.

The second step in the process is to calculate the mean squared displacement for the p’s and

q’s for each c 2 {Cn}. Using the first tenth of the p and q values to avoid undersampling, we define

ncut as the closest integer to the total number of time steps divided by 10: ncut = N//10 and for

each n 2 [1, ...,ncut ], we calculate:
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Mci(n) = lim
N!•

1
N

N

Â
s=1

[pci(s+n)� pci(s)]
2 +[qci(s+n)�qci(s)]

2 (4.11)

We then normalize the mean squared displacement using the squared mean of the series and an

oscillation factor:

Vosc(c,n) =

 
1
N

N

Â
s=1

f(s)

!2
1� cos(cn)
1� cos(c)

(4.12)

such that:

Dc(n) = Mc(n)�Vosc(c,n). (4.13)

Finally, we calculate the asymptotic growth rate for the normalized mean squared displacement

using a correlation method. Assuming we have ~n = {1,2,3, ...,ncut} and ~Dc = {Dc(n)}ncut
n=1, we

calculate:

Kc = corr
⇣
~n, ~Dc

⌘
=

cov(~n, ~Dc)r
var (~n) ,var

⇣
~Dc

⌘ (4.14)

where we use a typical covariance equation:

cov(a,b) =
1

ncut

ncut

Â
s=1

(a(s)� ā)(b(s)� b̄) (4.15)

and var(a) = cov(a,a). To avoid possible resonance for various c, we define the K value to be the

median value of all calculated Kc which discounts any outliers in the results.

The advantage of the 0-1 test lies within the single value output and the visualizations for each

step in the process. To illustrate the usefulness of the method, we used the Logistic map with a

parameter known to be stable (µ = 3.5), and one known to be chaotic (µ = 3.91). In Fig. 4.4, the

column on the left corresponds to the stable parameter, and the column on the right to the chaotic.
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Figure 4.4: Visual representation of four steps in the Chaos 0-1 test process. Top row relates
to a chaotic parameter, µ = 3.91 and bottom row relates to a non-chaotic parameter, µ = 3.5.
Left column is the visual graph of pc versus qc. Second column is the mean squared displacement
between values for each c and each n, the third column represents the asymptotic growth rate of the
mean squared displacement. The right column is the K results for each c, and the median value.
Note the differences in each visual representation for each step.

Each row represents a step in the process and the graphs clearly depict different behaviors for

chaotic or stable systems, showing how easy this method is to interpret.

Figures 4.4a and b show graphs of the translated data for µ = 3.5 (4.4a) and µ = 3.91 (4.4b).

In Fig. 4.4a, the stable behavior is structurally symmetric and organized, where in 4.4b we see the

disorganization of the time series caused by the chaos. The second row from this image shows the

mean squared displacement in blue and the normalized version in red. Figure 4.4c shows the stable

case and Fig. 4.4d the chaotic. Note that if we fit a line to either the blue or red lines they will have

the same slopes which indicates that this normalization process does not affect the growth rate we

seek.

The third row of graphs in this figure (Fig. 4.4e and f) show the calculation of the growth rate.

We can see that the growth rate in the stable case is declining which indicates stability, and the

growth rate for the chaotic case is increasing, confirming the presence of chaos. The test translates
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the data using a variety of different translation variables between p/5 and 4p/5. We then use the

median growth rate for all of the transition variables so as to avoid resonance or outliers. The last

row in Fig. 4.4 shows the calculated growth rate for several translation variables. We can see in

Fig. 4.4g that the calculated growth rate for stable behavior in the Logistic map is below 0 when we

discount the outlier. For the chaotic case in Fig. 4.4h, all of the values are within [0.95,1] which

clearly indicates chaos as the values are all close to 1. Note that Fig. 4.4g shows the benefit of

using the median value to avoid any effect caused by outliers.

Chaotic or Stochastic

Stochastic and chaotic time series have similar characteristics, which creates challenges in

distinguishing between the two (Dämmig and Mitschke 1993; Rosso et al. 2007). A variety of

methods have been developed for distinguishing these states, including using the Shannon entropy,

using a Horizontal Visibility Graph method in conjunction with the correlation dimension, or in-

corporating machine learning algorithms (Rosso et al. 2007; Lacasa and Gómez-Gardeñes 2013;

Boaretto et al. 2021). As with the Lyapunov exponent estimation, many of the above methods

require phase-space reconstruction using the time delay embedding parameters. In our case, deter-

mining these parameters is challenging due to the short length of individual time series in our data

and the lack of algorithms that can estimate these parameters for a large number of time series in

an automatized way. Therefore, we choose to use the open source artificial neural network (ANN)

that is designed to make this distinction using permutation entropy (PE) and does not require de-

termination of time delay embedding parameters (Boaretto et al. 2021). PE finds ordinal relations

between the values of time series and calculates the probability of these patterns. This approach
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gives a quantity of complexity or irregularity of the system and how it changes between time steps

(Henry and Judge 2019).

Permutation entropy is calculated by investigating different sequences in each time series and

finding the probability of each permutation. As an example, consider the series {B,D,A,C,E}.

If we use ordinal analysis and split the series into sequences of length r = 3, we have {B,D,A},

{D,A,C}, and {A,C,E} (Bandt and Pompe 2002; Henry and Judge 2019). We assign a permuta-

tion to each sequence based on the order of the letters and which come before or after the others

in alphabetical sequence. The list of permutations for r = 3 includes r!= 3!= 6 possibilities:

123, 231, 312, 213, 321, 132.

Consider our first permutation: {B,D,A}. Since A is the lowest letter in alphabetical order, we

assign it a 1. B is the next highest letter, so it becomes 2, and then D is now 3. This makes the

permutation, {B,D,A} = 231. Similarly, we have {D,A,C} = 312 and {A,C,E} = 123. We then

calculate the permutation entropy of order r for the series as Âr!
i=1 �pi log2(pi). where r! is the

total possible permutations of r and pi = the probability of the ith permutation (Bandt and Pompe

2002).
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Figure 4.5: Output for the artificial neural network (ANN) that detects determinism to distinguish
between chaotic and stochastic behavior. The Logistic results show deterministic behavior for
each run in which the run number relates to evenly spaced parameter values for µ 2 [3.5,4.0]. The
Random results show that all 50 normally random series accurately showed stochastic behavior.

The ANN is trained on flicker noise to find the permutation entropy of the noise (Boaretto

et al. 2021). Flicker noise is a well known stochastic process where the noise is generated from a

power spectra in which the frequency is inversely proportional to the spectral density (Barnes and

Allan 1966). The ANN then calculates the permutation entropy of the time series of order r = 6

and compares the entropy to that of the noise. If the values are similar, (< 0.1 difference) then the

time series is stochastic. If the values differ (� 0.1), the time series is deterministic.

We validate the ANN using 50 normally distributed random series and the Logistic map with

50 parameter values evenly spaced in 3.5  µ  4.0. Fig. 4.5 shows that the ANN output is close to

0 for the normal random series, strongly indicating stochasticity. The logistic map also accurately

presents as deterministic for all runs with µ 2 [3.5,4] in which the system toggles between deter-

ministic chaos and stability. Note that in Fig. 4.5 we can see that there are spikes in the W output

when the corresponding Lyapunov exponents are negative. Since negative Lyapunov exponents
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indicate highly deterministic non-chaotic behavior, this figure validates that the test is accurately

distinguishing between deterministic and stochastic behaviors.

4.3 Results and Discussion

In the following figures, we represent all 975 series for each variable v 2 V = {Q,W,UV,T} di-

vided into 39 series at the Fireline, Fv(x), one for each x-coordinate with x 2 X = {5,10,15, ...,195},

and 234 for the Iv,n(x) and Lv,n(x) “Direct” series, and the “Comparison” series, Cv,n(x) and Ov,n(x),

one for each offset coordinate n 2 {�3,�2,�1,+1,+2,+3} (Sec. 4.2.1).

Figure 4.6 summarizes the results for all 3900 time series and shows how each result for the

tests is distributed among the variables. We see that the series are highly chaotic with 79.4% of

the results showing chaos from the C01 test. The results are also highly deterministic with 84.9%

of the series showing determinism from the ANN test. The highest variance in results from the

C01 test occurs in UV and T , while the stochasticity is only showing in the winds, UV and W . Q

exhibits the most deterministic chaos among the four variables. In the following sections, we dive

into these results and hypothesize about the motivating factors for some of these outcomes.

4.3.1 Determinism and Stochasticity

If a series is deterministic, we can construct a map that inputs the value at a particular time

step, applies the map, and outputs the value of the next time step with reasonable accuracy. Given

that we designed our FIRETEC simulation to be fully deterministic, we expect that determinism to

show in our results. We can see from the bar charts in Fig. 4.6 that the fire-induced variables are

entirely deterministic. The wind variables, however, show stochasticity in 43% of the time series

from W and 18% of all series using UV .
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Figure 4.6: Pie charts showing results for all 3900 time series per test. Top pie shows the results
of the C01 test (K), and the distribution of the results by variable in the corresponding bar charts
for each result. Bottom pie shows W values from the ANN test and their distribution across the
variables. Bar charts show how many series of the 975 developed per variable that had the corre-
sponding result.
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Figure 4.7: Results for FW and FUV with the regular time series and another in which only every
other time step was used (F̂UV and F̂W ). Note that the C01 test does not show sensitivity to the
length of the series whereas both shorter time series for these variables shows significantly more
stochasticity than the longer series.

To investigate this phenomenon, we test a time series built from every other time step for each

x-coordinate in Fv, doubling the length of the time step, d t from 0.01 seconds to 0.02. These series,

F̂v, have only 3500 time steps instead of the original 7001. When we run the C01 and ANN tests

on these new series, we see that the C01 test results are very similar for the short and longer series

as can be seen in the top panel of Fig. 4.7. The ANN test results, however, change significantly

(Fig. 4.7 bottom panel). In fact, the average difference in value for the C01 test is an order of

magnitude less than the average difference for the ANN test. This indicates two things: (1) the
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C01 test is less sensitive to the length of the series and the sampling rate than the ANN test and

(2) the design of our time series in conjunction with the structure of the FIRETEC model is likely

breaking the determinism in the system.

FIRETEC is deterministic in three spatial dimensions. However, we construct our time series as

one-dimensional series through the domain. We hypothesize that due to the structure of FIRETEC,

only knowing the variable values for one specific spatial location may not be enough to be able

to map how the system will evolve moving forward. As a three-dimensional system, each cell is

affected by the surrounding cells for atmospheric flow fields as well as fire-related dynamics. The

interval between time steps, d t influences the radius around the specific cell that will affect the

behavior for the next time step. That is, a smaller time step will require a limited amount of spatial

information surrounding the target step because the three-dimensional flow fields and combustion

processes will not progress as much in a shorter period of time. Alternatively, a longer time step

requires knowledge of a correspondingly bigger spatial region since the amount of movement in the

atmosphere will be much larger. Since our time series only represent the surface z-layer and a single

x-coordinate, we do not include the spatial information for the surrounding cells. This is causing a

break in the determinism of the series. Thus, as the time step gets smaller, the series reflect more

of the deterministic behaviors, whereas the larger time step in F̂v show more stochasticity as more

information is missing from the deterministic map.

It is not surprising that the wind variables are most affected by the broken determinism, as they

are intricately involved in the three-dimensional flow field and turbulence in the atmosphere. Since

we limited our fuels to grasses that only exist in the surface layer of the domain, the fire will be

more concentrated within that fuel area, and thus require less information from the surrounding

spatial coordinates for prediction. Therefore, the fire variables are less affected by the d t. We
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Figure 4.8: Two-dimensional histogram plot for each variable. Red dotted lines delineate the two
output results for the ANN test (W) with deterministic when W � 0.1 and stochastic when W < 0.1.
Black dotted lines delineate the three output results for the C01 test (K) with Non-Chaotic when
K < 0.1, Inconclusive when K 2 [0.1,0.5), and Chaotic when K � 0.5. Each variable set contains
975 total series.

expect that a canopy fire may have more influence from all three dimensions and therefore may be

more sensitive to the d t.

4.3.2 Variable and spatial analysis

The results are separated by variable in Fig. 4.8 where we observe a cluster in the bottom

right corner of each panel. This clustering indicates some consistency within the results for each
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variable. The W variable is the most tightly clustered in the bottom right of the graph, showing that

those series were 100% chaotic from the C01 test with 57% of them being deterministic. The Q

series has two clusters with 97% chaotic from the C01 test and 100% deterministic, which means

Q has the most deterministic chaos in our set. T and UV are laterally spread out across the graph

indicating a variety of C01 results. As stated above, the UV and W results are much lower on

the graphs due to the lack of three-dimensional information for the map which likely caused a

breakdown in the determinism for the system.

The four variables we investigated for this project are not entirely independent. Convective

heat transfer (Q) is defined as the transfer of heat from one location to another due to the move-

ment of air. Therefore, the behavior of Q is heavily dependent on the wind variables UV and W .

Similarly, the temperature of the solid (T ) is directly affected by the convective heat transfer from

the surrounding fuel (see Appendix A.0.3). Thus, although we have separated these components

to develop the time series for testing, we must also investigate the results of all four variables to-

gether for each type of series to evaluate our conclusions. Even though we have 64.3% of all of

the series that are both deterministic and chaotic, we found that only 9% of the time series had

all four variables simultaneously exhibit determinism and chaos, translating to only 88 series in

each variable. Of those sets of 4 that have either non-chaotic or stochastic behavior for at least

one variable, 41% are stochastic in at least one of the wind variables from the ANN test but the

C01 test shows chaotic behavior in all 4. Based on the discussion above regarding the stochasticity

caused by the length of time step, we may assume that many of those series are actually chaotic,

but require a smaller time step for an accurate diagnosis.

Figure 4.9 shows the percentage of the deterministic chaos results for each spatial location per

series type. In general, we see more correlation with the fireline within the direct series, except
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Figure 4.9: Percentage of results for each series type and offset coordinate. Left column repre-
sents a deterministic ANN test (W � 0.1). Right column represents a chaotic C01 test (K � 0.5).
Rows correspond to variables and the colored borders relate to the series. Axes represent offset
coordinates from the fireline Fv as n 2 N = {�3,�2, ...2,3}.

103



in the case of TK . We know the spatial coordinates immediately in front of the fireline are being

heated by convection and are organizing to raise the temperature and begin the combustion process.

Thus, we expect there to be less chaos present in the area immediately in front of the fireline. On

the other hand, just behind the fireline we are fully engulfed in the fire and thus, we expect to have

chaotic behavior as the wind and fuel interact with the ongoing combustion. Panel TK in Fig. 4.9

shows this spatial phenomenon in our results as the spatial coordinates in front of the fireline (+1,

+2, and +3) exhibit very little chaos while those spatial coordinates located behind the fireline

(�1, �2, and �3) show highly chaotic results. The effect is less dramatic in panel QK as the

percents of series showing chaos is still in the 90s in front of the fireline, but there is still a clear

difference in front and behind the line. This is an indication that the variables within the fire are

indeed chaotic, while those cells undergoing heating before combustion have a broader range of

possible results.

The comparison series have much stronger results than the direct series and do not show the

same correlation with the corresponding firelines. Only 14 series of type C are inconclusive and

only 1 show non-chaotic behavior. This style of series is where the stochasticity shows in the winds.

WK in Fig. 4.9 shows that both comparison series are highly stochastic while the direct series are

highly deterministic. We note in Fig. 4.9 that the stochasticity of W for the comparison series (WW)

increases as the spatial coordinates approach the fireline. Although these percentages are small

(15% in CW,F+3, 28% in CW,F�3, and 35% for both OW,F±3), the difference as we approach the

fireline is significant with 0% determinism for CW,±1, and 30% and 15% for OW,F�1 and OW,F+1

respectively. For the C series, we find something more pronounced in UV where we have 53% for

CUV,F±3 and 5% or less for CUV,F±1. Since these are series built from the difference between each

coordinate and the fireline itself, we assume the fireline is affecting the stochasticity of the winds
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Figure 4.10: Results per variable for Fv(x) for all 39 spatial coordinates x 2 X =
{5,10,15, ...195}. Panel (a) represents the C01 output (K) and (b) shows ANN output (W).

at the point of ignition, but as we get spatially farther away the values are less affected by the active

combustion of that fireline cell.

We observe strong spatial similarity in the complexity of the fire variable dynamics, leading

to high correlations in the outcomes. When we compare the two fireline time series FT and FQ

in Fig.4.10, we see this high level of correlation; that is, when we see a local maximum in FQ

there is often a corresponding local maximum in FT . The magnitude of these spikes in the C01

K (Fig. 4.10, top panel) result values are much larger in FT , but the changes in values between

neighboring spatial coordinates have similarities. Since the FQ values are all close to 1, which is

the maximum boundary result for this test, we hypothesize that the magnitude of changes between

spatial coordinates are suppressed when the values approach that maximum. In the lower panel of
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Fig. 4.10, we can see similar local maximum and minimum correspondence for these two variables

as well in the ANN W output. For this determinism result, the magnitudes of the changes are more

closely related, presumably because neither set of results is approaching a boundary for the test

results.

4.3.3 Organizing Dynamics

We design these series in relation to the fireline, the point of transition between the combustion

processes and the area being heated in front of the line. All of the FUV series are non-chaotic or

inconclusive and the other three variables are clustered with FQ showing all deterministic chaos

and the most clustered values for all series, as can be seen in Fig. 4.10. FW is also all chaotic from

the C01 test, but 4 series show stochastic behavior. FT shows a high level of determinism from the

ANN test, but 5 of the 39 series have an inconclusive C01 test. In Fig. 4.9, we see that FUV shows

no chaotic behavior at all at the fireline and very little in the surrounding cells from I and L, while

these same spatial coordinates are 100% chaotic in W . We assume that this lack of chaos in the

horizontal wind magnitude is due to the effects of entrainment. As the heat from the flames push

the winds upwards during combustion, winds are drawn in from the surrounding atmosphere (Linn

2019). Since the domain is cyclic to create an infinite fireline, these winds are only drawn in from

in front and behind the line. As a result, the horizontal winds close to the fireline self-organize into

these indrafts, reducing the chaotic dynamics (Linn et al. 2012; Canfield et al. 2014).

From the work of Drossel and Schwabl (1992), Ricotta, Avena, and Marchetti (1999), and

Turcotte et al. (2007) we know that fire is a self-organizing system. This implies that the system

tends toward certain organizational patterns. In fire dynamics, this includes fire whirls and the

development of counter-rotational vortices which lead to towers and troughs (Banerjee et al. 2020;

106



Lareau et al. 2022). The high level of correlation between Fv and the Iv series indicates that there is

a relationship between the fireline and those corresponding coordinates in front and behind the line.

This could be an indication of self-organizing behavior. In particular, our work recognizes some

spatial commonalities in the series among the fire-induced variables T and Q. These commonalities

may indicate new organizing dynamics that will need to be investigated further.

There are several previous publications regarding the “towers and troughs” organizational be-

havior in fire (Finney et al. 2015; Banerjee et al. 2020). This phenomenon shows the relationship

between the atmospheric turbulence and the heat from the fire creating counter-rotational vortices

in the area of the flames. The towers are large updrafts of wind that push the flames upwards, cou-

pled with troughs in which the flames are suppressed by the drawing of that updraft into the tower

(Banerjee et al. 2020). This is one example of a self-organizing behavior within fire dynamics. It

is plausible that since we are using univariate time series, the variance in behavior is showing these

towers and troughs inside the fireline. We postulate that if we could track the towers and troughs

as the fire moves through the domain, we could begin to see how each of these series are affected

by their position within this phenomenon.

4.3.4 Conclusions

This study produced a broad range of results, with implications that the dynamics represented

in FIRETEC within the fire are indeed chaotic and not random. In particular, we find:

• Stochasticity Comes From Series and Program Design. Although we design the configu-

ration of FIRETEC to be a deterministic algorithm, the time series for this project show some

stochasticity. After investigation we find the determinism of the system to be sensitive to the
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length of the time step interval due to dimension reduction methods. More investigation into

different time step intervals is needed.

• Fire Variables are Chaotic. Fire induced variables for the temperature of the fuel (T ) and

the convective heat transfer (Q) are deterministic and highly chaotic.

• Spatial Relationships Affect Chaotic Signals. In front of the fireline there is a significant

decrease in chaotic dynamics from the fireline itself. This is not surprising as the chaotic

qualities of the fire behavior are most likely not present until the moment of ignition.

• More Work is Needed. We discussed a variety of hypotheses in this paper, each of which

should be investigated more thoroughly. In particular, more investigation into the stochastic

signals using finer time step data may help to define the sensitivity of the determinism within

the program.
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CHAPTER 5. Conclusions

We set out to enhance existing fire models by providing support models and research to advance

the field of fire science through mathematical modeling. We address how each of these projects

accomplishes our goals in the following sections.

5.1 SERF

SERF uses a five-stage approach to how the radiant temperature changes through the life cycle

of a given fuel cell. Stage one, stable, occurs before any temperature changes in the cell, and

stage two represents the warming of each cell based on the radiant temperature of the surrounding

eight cells. After ignition, stage three represents the rising of the radiant heat in the cell and

stage four represents the falling of the heat after the fuel has been mostly consumed. The final

stage represents the cooling off of the cell back to base temperature. This approach offers the

opportunity to simplify the physical processes of fire behavior to save computational time while

maintaining the relationships between stages of the burning process.

The significant contribution of this work is a novel, low-complexity, data-driven, spatially ex-

tended fire model that employs a coupled map lattice to increase the information provided by the

model and inform the basic CA with continuous radiant heat output levels. This model can ac-

curately represent the speed of the fire as it moves through the area. Moreover, it can accurately

capture the unburnt proportion of land in the SERF simulations, the presence of lingering embers,

the heat coefficients of the fuel on the ground, and the probability of transition between stages.
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5.2 DUET

DUET provides complex, realistic and adjustable representations of tree leaf litter and grass

distributions that directly relate to canopy structure, litter decay, and wind dynamics. Potential

applications of this model include developing realistic heterogeneous surface fuel representations

for spatially explicit fire behavior models and ecological examinations of ecosystem dynamics

dependent on variable representation of litter biomass, including nutrient cycling within senescence

processes and fine-scale fire behavior (Hiers et al. 2009). DUET can also be used to examine finer

scale litter and grass dynamics that can influence coarser scale fuel and fire dynamics in current

stand and landscape level ecosystem models (e.g. (Keane, Loehman, and Holsinger 2011; E. L.

Loudermilk et al. 2011; Scheller et al. 2019)).

DUET has the flexibility to be calibrated for any forest type through the tree species character-

istics, as well as environmental inputs and parameters. By representing leaf fall within an ellipse,

the model allows for approximations within leaf traits, such as surface area and mass, and coarse

dispersal functions. Using DUET, one could vary wind speeds and direction through time and

characterize several possible surface fuel representations for simulating ecosystem or fire behavior

within the area. Our results show how the drag coefficient, wind dynamics, and decay factors affect

litter accumulation though space and time. Through species specific parameterization, the model

can be calibrated for specific species or generalized for a broad range of species (e.g., conifer vs.

broadleaves). Similarly, wind inputs can represent specific wind events or averaged values across

a given area. Such mechanistic models are critical for representations of fine-scale heterogeneity

driven by canopies, their influence on patterns of energy release from fires and resulting patterns

of fire effects, as well as ecosystem renewal applications (R. J. Mitchell et al. 2006).
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5.3 Detecting Chaos in Fire

A broad range of behaviors have been observed in low-intensity fires. Some experience sudden

extinction, while others transition into high-intensity fire. This sensitivity has been studied with

respect to initial wind conditions and moisture content (Wilson Jr. 1985; Jonko et al. 2021; Linn

et al. 2021). In our study, we attempt to capture this potential transition point to test the system

for the emergence of chaotic dynamics using a FIRETEC simulation, a coupled hydrodynamic-fire

behavior model. We find the model presents a broad range of dynamical behaviors with 64.3%

of all 3900 series as deterministically chaotic - a solid result that FIRETEC presents fire behavior

with strong chaotic tendencies. The vast array of results that we found in this study supports the

hypothesis that subtle differences in winds, fuel, or other environmental factors affect fire behavior.

Many of the hypotheses that we make in this paper require significant research and comparison to

real-life data.

5.4 Summary

These projects presented work to provide models and research to better understand low-intensity

fire behavior. SERF provides the mathematical modeling community a novel combination of two

modeling formats (cellular automata and coupled map lattice) in an effort to enhance the infor-

mation that can be gained through a computationally inexpensive fire behavior model. The model

provides the fire science community the potential to develop larger data sets of small-scale fire be-

havior to gain a better understanding of how the radiant heat moves through the area during a fire

at very small-scales. DUET is a mechanistic model that ties the canopy arrangement to the forest

floor by examining litter deposition according to tree species and placement and wind behavior.

This enhances the abilities for large-scale fire behavior models to represent low-intensity fire by
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offering a more heterogeneous surface fuel arrangement for the fire to interact with in the modeling

programs. DUET is a versatile tool for the fire science community and is currently being used by

the Forest Service for investigating surface vegetation heterogeneity and the effect on fire behav-

ior. The chaos study is the first step in examining whole system dynamics to better understand

the motivating factors in fire behavior using FIRETEC. The project presented a variety of gaps in

knowledge regarding how to examine large numbers of series efficiently and may lead to further

work that will provide the mathematics community an expansion of the testing capabilities for

data-driven chaos theory. The fire science community could benefit from the advanced knowledge

that this project could lead to in the future.
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CHAPTER 6. Deliverables

6.1 Articles

6.1.1 First Author

McDanold, Jenna S., and Nishant Malik. “Spatially Extended Radiant Heat Fire Model.” Physical

Review E 107, no. 3 (March 23, 2023): 034133. https://doi.org/10.1103/PhysRevE.107.034133.

McDanold, Jenna S., Rodman R. Linn, Alex K. Jonko, Adam L. Atchley, Scott L. Goodrick, J.

Kevin Hiers, Chad M. Hoffman, E. Louise Loudermilk, J.J. O’Brien, Russ A. Parsons, Carolyn

Sieg, Julia A. Oliveto. “DUET - Distribution of Understory Using Elliptical Transport: A

Mechanistic Model of Leaf Litter and Herbaceous Spatial Distribution Based on Tree Canopy

Structure.” Ecological Modelling (September 1, 2023): 110425.

https://doi.org/10.1016/j.ecolmodel.2023.110425.

McDanold, Jenna S., Alex Jonko, Rod Linn, Sophie Bonner, and Nishant Malik. ”Finding Chaos

in Fire.” Chaos: An Interdisciplinary Journal of Nonlinear Science. In Prep.

6.1.2 Other

Wang Qing, Matthias Ihme, Rod R. Linn, Yi-Fan Chen, Vivian Yang, Fei Sha, Craig Clements,

Jenna S. McDanold, and John Anderson. “A High-Resolution Large-Eddy Simulation Framework

for Wildland Fire Predictions Using TensorFlow.” International Journal of Wildland Fire 32, no.

12 (October 18, 2023): 1711–25. https://doi.org/10.1071/WF22225.
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Banesh, Divya, Jonas Lukasczyk, Jenna McDanold, and David Rogers. ”An Image-based

Exploration of Prescribed Fire Simulation Ensembles.” IEEE Transactions on Visualization and

Computer Graphics. Submitted to IEEE VIZ 2024 Conference in March, 2024. In Review.

6.2 Software

6.2.1 SERF

For SERF, we coded the simulation program in MATLAB and created visualizations of the

dataset and output simulations using the MATLAB plotting programs. To begin the project, we

cleaned the dataset described in section 2.2.1, by first taking the 3.1 million matrices of infrared

data recorded and determining which contained heat by searching for a 30% variance in the values

within each matrix through the terminal. We then used the time indexes for the fires to “stack” each

matrix into a time series tensor for each individual fire in MATLAB, producing over 300 potential

fires. We then visualized these fires to find useful fires without various impurities like condensation

on the lens or a viewing area that was cut off by the end of the burn zone, resulting in the usable

dataset of 74 fires. We calculated various metrics on the dataset fires and translated the data into

several different forms, which can be seen in tables 6.1, 6.2, and 6.3.

6.2.2 DUET

For DUET, we programmed the equations in Fortran90 and Python. The Fortran90 program

has been implemented into the LANL Tree-building program that creates the input files necessary

for FIRETEC or QUIC-Fire. The code takes either a list of trees for a particular area, or generalized

data involving trees per hectare and species information to create a fuel bed for these models and

record them into four .dat files, one each for bulk density per cell, moisture level per cell, fuel depth
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per cell, and sizescale per cell. Sizescale is a parameter related to how the program recognizes fuel

within a cell and allows atmospheric interaction with the fuel (i.e. how the wind moves through

a field of grass). To accentuate the DUET part of the program, I added a section of the code that

takes a given tree list that has a particular domain size, calculating the trees per hectare and general

requirements for the species of trees, and expands the given tree list to cover a larger domain.

? A patent application has been submitted for the methodology of DUET as per the

suggestion from the Intellectual Property Department of the Los Alamos National

Laboratory. Currently, a copyright has been approved for the release of the DUET

program.

6.2.3 Chaos

This project was programmed in Python, using a variety of packages including numpy, mat-

plotlib, scipy, pandas, ordpy, pypsr, os, sys, and csv.

The ANN test used in the project is open source at the following link:

https://github.com/brunorrboaretto/chaos detection ANN/ (Boaretto et al. 2021)
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Table 6.1: All data analysis performed on the dataset received from the USDA Forest Service;
Each line contains information regarding how the data was analyzed and the resulting outputs for
each fire

Cell Label Description

1 Main tensor Flux values for a single fire: z-direction is time

2 File Names List of file names for each time step (z-layer) in the tensor
- correlates to original files within directories and subdirec-
tories for the original raw data

3 Video Info - side Side video information for the flux video of each fire from
the dataset

4 Video info - top Top video information for the flux video of each fire from
the dataset

5 Original fire number Correlates to the first number from the original array of 191
fires after reducing the number of fires to 114

6 Min, Thresh, Max Minimum flux value from tensor, threshold value, maxi-
mum flux value - values determined over all values in the
tensor

7 0-1-2 Matrix Translates the original tensor into a 3-color matrix using
the threshold value from cell 6 with unburnt, burning, and
burnt as the three values

8 0-1-2 Video Video created from 3-color array within cell 7

9 Total Flux Sum of flux values from all cells and all time steps for each
fire

10 Single Cell Array Each fire split into vectors for each cell across all time steps

11 Max Position Matrix First layer: matrix of all max values for each cell through-
out all time steps
Second layer: x-value of corresponding max value
Third layer: y-value of corresponding max value
Fourth layer: time step of corresponding max value

12 Surface Plot Info Information regarding saved surface plot of all max values
for each cell

13 Previous fire number Fire number relating to the list of 114 fires after switch to
75 fires
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Table 6.2: All data analysis performed on the dataset received from the USDA Forest Service;
Each line contains information regarding how the data was analyzed and the resulting outputs for
each fire

Cell Label Description

14 Max Time Matrix First layer: time step for first ”burning” moment in each
cell
Second layer: time step for max flux in each cell
third layer: time step for last ”burning” moment in each
cell

15 Max Value Differences Matrix of Value differences within the max flux matrix:
finds the difference between each cell and its neighbor; 8
layers for the 8 neighbors of each cell:
1 = N, 2 = NE, 3 = E, 4 = SE, 5 = S, 6 = SW, 7 = W, 8 =
NW, 9 = firenum, 10 = x-value, 11 = y-value

16 Max Time Differences Matrix of Value differences within the max flux matrix:
finds the difference in time steps between the max value
for each cell and its neighbor’s max cell ; 8 layers for the 8
neighbors of each cell:
1 = N, 2 = NE, 3 = E, 4 = SE, 5 = S, 6 = SW, 7 = W, 8 =
NW, 9 = firenum, 10 = x-value, 11 = y-value

17 Change Matrix Value differences for each time step for each cell and its
neighbors: 1 = N, 2 = NE, 3 = E, 4 = SE, 5 = S, 6 = SW, 7
= W, 8 = NW, 9 = firenum, 10 = x-value, 11 = y-value

18 Temp Matrix New tensor with Celsius values correlating to infrared val-
ues

19 Final Burned Area The last time step of the 0-1-2 tensor

20 Flux Difference Finds the difference in flux values from one time step to the
next for each cell

21 Flux Statistics Minimum and maximum flux values per cell

22 Temp Statistics Corresponding temperatures for cell 21

23 Temp Difference Transforms the flux values from cell 20 into temperatures

24 Max Temps Lists only the maximum temperatures for each cell

25 K-matrix Finds the highest maximum temp for all cells and finds the
proportion of that maximum that each cell reaches
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Table 6.3: All data analysis performed on the dataset received from the USDA Forest Service;
Each line contains information regarding how the data was analyzed and the resulting outputs for
each fire

Cell Label Description

26 State matrix Finds the state for each timestep in each cell
1 = Basetemps
2 = Warming
3 = Burning and rising
4 = Burning and falling
5 = Cooling

27 Transition Matrix Finds the Markov chain transition matrix for the fire
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wind-influenced leaf litterfall in a mixed hardwood forest.” Canadian Journal of Forest Re-
search 33, no. 2 (February): 201–209. ISSN: 0045-5067. https://doi.org/10.1139/x02-174.

Stephens, S. L., M. A. Finney, and H. Schantz. 2004. “Bulk density and fuel loads of ponderosa
pine and white fir forest floors: impacts of leaf morphology.” Northwest Science 78 (2): 93–
110. ISSN: 0029-344X. https://www.cabdirect.org/cabdirect/abstract/20043105936.

Stochastic. 2022. In American Heritage Dictionary, 5th ed. HarperCollins. Accessed June 19,
2024.

Stoler, Aaron B., and Rick A. Relyea. 2011. “Living in the litter: the influence of tree leaf litter on
wetland communities.” Oikos 120 (6): 862–872. ISSN: 1600-0706. https://doi.org/10.1111/j.
1600-0706.2010.18625.x.

135



Stowe, Johnny. 2019. “AFTER ACTION: Witnessing drought in longleaf pine country.” Wildfire
Magazine 4.

Strogatz, Steven H. 2019. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. 2nd ed. Boca Raton: CRC Press, May. ISBN: 978-0-429-49256-
3. https://doi.org/10.1201/9780429492563.

Sullivan, Andrew L. 2009. “Wildland surface fire spread modelling, 1990–2007. 1: Physical and
quasi-physical models.” International Journal of Wildland Fire 18, no. 4 (June 29, 2009):
349–368. ISSN: 1448-5516. https://doi.org/10.1071/WF06143.

Tinkham, Wade T., Alistair M.S. Smith, Chad M. Hoffman, Andrew T. Hudak, Michael J. Falkowski,
Mark E. Swanson, and Paul E. Gessler. 2012. “Investigating the influence of LiDAR ground
surface errors on the utility of derived forest inventories.” Canadian Journal of Forest Re-
search 42, no. 3 (March): 413–422. ISSN: 0045-5067. https://doi.org/10.1139/x11-193.

Toffoli, Tommaso. 1984. “Cellular automata as an alternative to (rather than an approximation
of) differential equations in modeling physics.” Physica D: Nonlinear Phenomena 10, no. 1
(January): 117–127. ISSN: 0167-2789. https://doi.org/10.1016/0167-2789(84)90254-9.

Torres, Fillipe Tamiozzo Pereira, Joyce Machado Nunes Romeiro, Ana Carolina de Albuquerque
Santos, Ricardo Rodrigues de Oliveira Neto, Gumercindo Souza Lima, and José Cola Za-
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APPENDIX A. HIGRAD-FIRETEC

Here we describe the governing equations for calculating the variables we used within FIRETEC

and it’s coupled hydrodynamic solver HIGRAD. HIGRAD-FIRETEC is, in its essence, a modified

Navier-Stokes system that takes an ignition sequence and a fuel bed or canopy arrangement as

inputs. FIRETEC works with HIGRAD to track the fire movement throughout the domain space.

HIGRAD is an atmospheric simulator that uses a Method of Averages scheme to decrease compu-

tational expense (Reisner et al. 2000).

A.0.1 Definitions

• Solid: The combination of the fuel and the water within a given material.

• Fuel: The dry portion of the solid.

• Cell: The three-dimensional cube at a given coordinate in the FIRETEC domain space.

• Cylinder: The basic building blocks of the fuel within a particular FIRETEC cell; all fuel

is modeled to be made up of several cylinders such that environmental factors may move

through the area in between each cylinder.

A.0.2 Q

Q stands for Convective Heat Transfer and is used in FIRETEC to describe the transfer of heat

from the gas to the solid within a given cell. It is positive when the gas in the cell is hotter than the

solid in the cell as it is measured from the perspective of the solid. The equation is related to the
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basic convective heat transfer formula from Çengel and Ghajar (Çengel and Ghajar 2019):

Q = hg(Tg �T ) (A.1)

where

• h is the convective heat transfer coefficient (units = W/m�2 ·K�1),

• g is a scaling coefficient based off of the relationship of the bulk density to the true density,

• Tg is the temperature of the gas in the cell, and

• T is the temperature of the solid.

Note that since we are subtracting T from Tg, this value can be negative when the gas in the cell is

hotter than the solid. We define each of these parameters below.

The parameter h can be derived from using the Nusselt number, which in thermodynamics can

be defined as the ratio of the convective heat transfer to the conductive heat transfer:

Nu =
h

Cp/L
=

hL
Cp

(A.2)

where Cp is the thermal conductivity or specific heat of the air (units = W/m�1 · K�1), and L is a

characteristic length which we define as the radius of the cylinder (units = m). When we solve for

h in this equation, we find:

h =
NuCp

L
(A.3)

In practice, we define the Nusselt number as a function of the Reynold’s number to represent

forced convection within the fire. In FIRETEC, the vegetation is modeled as a collection of cylin-
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ders of ranging sizes (i.e. 0.005 m for grass) so that the wind may travel through the cylinders and

spread the fire. Thus, we use a Nusselt number associated with crossflow wind across a cylinder

(Edge and LLC, ):

Nu = 0.683Re0.466 (A.4)

and altogether we get:

h = 0.683Re0.466Cp

L
(A.5)

with units of W/m�2 ·K�1.

For the parameter g , we use an area per volume and define it as the ratio of the bulk density of

the fuel in the cylinder to the true density of the fuel, multiplied by the radius of the cylinder, L.

The bulk density of the fuel r f is defined as the mass of the fuel to the volume of the cell, and the

true density of the fuel r0 is defined as the mass of the fuel to the volume of the fuel.

g = 2a
r f

r0

1
L

(A.6)

where a is a dimensionless correction factor for a change in orientation of the cylinder. This

equation can be expressed as being the surface area of the cylinder to the volume of the cell and

has units 1/m.

A.0.3 T

T stands for the temperature of the solid. Using conservation of energy laws, this quantity is

calculated using the specific internal energy of the solid (Es) divided by the heat capacity for the
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solid material at a constant pressure (Cp,s):

T =
Es

Cp,s
(A.7)

We use the Kopp-Neumann Law (Kauwe et al. 2018) to define Cp,s:

Cp,s =
rwCp,w +rFCp, f

rw +r f
(A.8)

where we take the density of the water within the solid, rw, and multiply it by the specific heat

of the water at constant pressure, Cp,w. We add that to rF , the density of the fuel within the

solid, multiplied by the specific heat of the fuel at constant pressure, Cp, f ; and divide that sum by

rw+r f = rs, the total density of the solid. We define the change in the energy of the solid (ES) as:

dEs

dt
= Qconv +qsDHRXN �E f ,m +DHEVAP �Ew,m +Rs (A.9)

where we have:

• Q = the convective heat transfer (see Appendix A.0.2)

• qSDHRXN = the amount of energy from combustion returning to the solid with:

– qS = the proportion of the combustion energy that returns to the solid and

– DHRXN = the total energy generated through the combustion reaction

• E f ,m = m fCp, f TRXN is the loss of energy attributed to mass loss during combustion with

– m f = mass of fuel lost

141



– Cp, f = heat capacity of the fuel

– TRXN = temperature of the combustion reaction

• DHEVAP = amount of energy lost due to evaporation of the water in the solid

• Ew,m = the loss of energy attributed to water loss through evaporation

• Rs = �0.8sg(T 4 �T 4
A ) is the energy added to the solid through radiation with

– �0.8 is an emissivity constant for the fuel

– s = 5.678e�8 is the Stefan-Boltzmann constant,

– g is defined as in Eqn. A.6

– T = the temperature of the solid and

– TA = the ambient temperature

A.0.4 WIND VARIABLES

The horizontal wind magnitude we are using, UV =
p

u2 + v2 and the vertical wind velocity

W are calculated using HIGRAD, the hydrodynamics solver coupled with FIRETEC. A complete

description and all equations associated with these variables can be found in Reisner et al. (2000).
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APPENDIX B. Limited Glossary

B.1 Fire and Thermodynamics Terminology

Convective Heat Transfer High-to-low temperature transport of energy between a moving fluid

(gas or liquid) and a solid surface (Quintiere 1998).

Fire Behavior The manner in which a fire reacts to the influences of fuel, weather and topography

(“USDA Forest Service Fire Terminology Web Page” 2024); The way a fire burns, such as

how quickly it spreads, how much energy it gives off, and how much vegetation it consumes.

Fireline AKA Fire Front The part of a fire within which continuous flaming combustion is taking

place. Unless otherwise specified the fire front is assumed to be the leading edge of the

fire perimeter (“USDA Forest Service Fire Terminology Web Page” 2024); in FIRETEC, the

fireline is the cells farthest from the ignition source that has a temperature of the solid of

500K or greater.

Heat Coefficient AKA Thermal Conductivity The property of matter that represents the ability to

transfer heat from high-to-low within a substance (Bergman et al. 2011).

Heat Flux The transfer rate per unit area perpendicular to the direction of transfer and it is pro-

portional to the temperature gradient; in a direction defined as x:

Q00
x = �k dT

dx

• k = thermal conductivity

• dT
dx = temperature gradient
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(Bergman et al. 2011)

Low-Intensity Fire Flames with an upper bound on the output power range such that the heat

consumes the fuel and produces char, but does not burn hot enough to become a crown fire

(when the flames encroach on the canopy). These types of fires generally move slower than

high-intensity fires and rely on surface fuels as their main driver. Many prescribed burns are

designed to be low-intensity fires as they are easier to control and char increases soil fertility

for ecosystem management (Linn et al. 2021).

Newton’s Law of Cooling The equation for convective heat flux (W/m2):

Q00 = h(Ts �T•)

• h = convective heat transfer coefficient

• Ts = temperature of the surface

• T• = temperature of the fluid

Prescribed Fire is defined by the USDA Forest Service as:

... fire applied in a knowledgeable manner to forest fuels on a specific land

area under selected weather conditions to accomplish predetermined, well-defined

management objectives (Wade and Lunsford 1989).

Some examples of these objectives include removing invading species, reducing fuel loads

to minimize wildfire risk, perpetuating fire-dependent species, controlling disease, restoring

ecosystem balance, and nutrient cycling, among other things.

Radiant Heat Transfer Transfer of heat due to electromagnetic energy transfer such as light (i.e.

infrared light) (Quintiere 1998).
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B.2 Ecological Terminology

Broadleaf Trees or plants having leaves that are not needles (Broadleaf 2024)

Conifer Any of an order of mostly evergreen trees and shrubs having usually needle-shaped or

scalelike leaves and including forms (such as pines) with true cones and others (such as

yews) with an arillate fruit (Conifer 2024).

Decay Factor The total mass loss of a plant per unit of time due to decay; decay factors are

affected by moisture levels (Etheridge 1958).

Drag Coefficient A dimensionless quantity used to quantify the resistance of an object moving

through a fluid (gas or liquid); ratio of the drag force on an object to the dynamic pressure

of the free-stream flow times frontal area of the object (Çengel and Ghajar 2019)

Cd = Fd
1
2 ru2A

• Fd = drag force on the object in the direction of the flow velocity

• r = mass density of the fluid

• u = flow speed of the object relative to the fluid

• A = the reference area

(Bergman et al. 2011)

Duff The partly decayed organic matter on the forest floor (Duff 2024)

Litter Fallen leaves and other decaying organic matter that make up the top layer of a forest floor

(Litter 2022).
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Overstory The highest layer of vegetation in a forest, usually forming the canopy; the trees in a

forest whose crowns constitute this layer (Overstory 2022)

Understory An underlying layer of [live and dead] vegetation; the plants that grow beneath a

forest’s canopy (Understory 2022).

Xeric : Of, characterized by, or adapted to an extremely dry habitat (Xeric 2022).
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B.3 Mathematical Terminology

Artificial Neural Network A massively parallel combination of simple processing units which

can acquire knowledge from environment through a learning process and store the knowl-

edge in its connections loosely based on the structure of the brain (Haykin 1998).

Cellular Automata A discrete mathematical model or dynamical system of an infinite, regular

lattice in a finite number of dimensions, which consists of cells, each in a finite number of

states. The cells evolve in discrete time steps according to a set of rules based on the state of

both the cell and its neighboring cells (Cellular Automata 2022).

Chaos Aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence

on initial conditions (Strogatz 2019).

Coupled Map Lattice A discrete mathematical model or dynamical system of an infinite, regular

lattice in a finite number of dimensions, which consists of cells, each of which is assigned a

real number from a continuous set of state variables. The cells evolve in discrete time steps

according to a set of rules based on the state of both the cell and its neighboring cells.

Deterministic Causally determined and not subject to random chance; the system has no random

or noisy inputs or parameters (Strogatz 2019).

Embedding Dimension / Time Delay AKA Phase Space Reconstruction Parameters The mini-

mum dimension needed to reconstruct a topologically equivalent attractor to the attractor in

the underlying data by the technique of time-delay embedding; Time delay assists in remov-

ing the temporal correlations that exist in time series due to the sampling rate that one would

like to remove (Malik 2024).
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Eulerian An analysis of fluid flow developed from a frame of reference through which the fluid

particles move (Çengel and Ghajar 2019).

Fractal Dimension An index for characterizing fractal patterns or sets by quantifying their com-

plexity as a ratio of the change in detail to the change in scale (Mandelbrot 1982).

Lagrangian : An analysis of fluid flow developed from a frame of reference attached to moving

material particles (Çengel and Ghajar 2019).

Permutation Entropy A measure of complexity for a system that finds ordinal relations between

the values of time series and calculates the probability of these patterns (Henry and Judge

2019). The Permutation Entropy is defined as:

Âr!
i=1 �pi log2(pi)

• r = length of possible permutations

• r!= total number of possible permutations

• pi = probability of the ith permutation

(Bandt and Pompe 2002)

Phase-Space Reconstruction AKA Attractor Reconstruction A data analysis technique in which

the full phase space dynamics of a system governed by an attractor are reconstructed from

a single time series (Strogatz 2019). The reconstruction requires an embedding dimension

and a time delay which are defined above.

Self-Organization The appearance of structure or pattern in the evolution of a nonlinear dynami-

cal system without an external agent imposing it (Heylighen 2001).
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Spatially Extended : A dynamical system that evolves in space as well as time (Malik 2024).

Stochastic Involving or containing a random variable or process (Stochastic 2022).

Transition Matrix AKA Markov Matrix, Probability Matrix, Stochastic Matrix For a system that

could be in n discrete states, a n⇥n matrix in which the abth element, pab is the probability

for a cell in state a to transition to state b (Asmussen 2003).
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