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Abstract

Recent technological advances have yielded several high-complexity models for fire behavior.
Low-intensity burns present difficulties in modeling due to a strong sensitivity to wind and fuels.
This dissertation explores support research to improve representation of low-intensity fire in these
high-complexity fire simulations. We focus on three areas: (i) data-driven modeling with a Spa-
tially Extended Radiant heat Fire model (SERF), (i1) fuel heterogeneity with our model Distribution
of Understory using Elliptical Transport (DUET), and (iii) research on whole system dynamics us-
ing chaos theory. To increase simulated resolution of low-intensity fire behavior, we employ an
observational data set to develop SERF with spatial resolution on the order of ~ 0.05 m?, in con-
trast to the 1-2 m? typical of the process-based models. SERF uses probability distributions to
calculate radiant heat levels through a coupled map lattice which then inform a cellular automata
model. In response to the need for more detailed surface vegetation maps, we develop a mech-
anistic model for estimating variation in surface vegetation called the Distribution of Understory
using Elliptical Transport (DUET). DUET connects the canopy structure to the litter dispersal us-
ing ellipses based on tree species characteristics, wind data, and location-specific features, and
then calculates grass growth and decomposition in the years since the last burn of the area. Finally,
we investigate the sensitivity of a high complexity wildfire model, FIRETEC, using chaos theory.
We develop 3900 one-dimensional time series from a FIRETEC simulation designed to represent
low-intensity burning conditions. We test them using the Chaos 0-1 Test and an artificial neural
network designed to distinguish between stochastic and deterministic series. By focusing on data-
driven modeling, vegetation mapping, and broad-scale dynamics, our work adds essential support

models and research to process-based fire models when representing low-intensity burns.
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CHAPTER 1. Introduction

1.1 Background

Oxygen, heat, and fuel are the three components that influence fire dynamics (Quintiere 1998).
However, the simplicity of this “fire triangle” can be misleading, as different configurations of
these ingredients lead to a diverse set of dynamics. The topography of the fuel bed influences the
convection and radiative heat transfer (Iniguez, Swetnam, and Yool 2008; Clements and Seto 2015;
Airey-Lauvaux et al. 2022). Differences in litter accumulation or treatments in a given area can
change the surface and ladder fuels and lead a lower-intensity fire to develop into a high-intensity
crown fire (Kilgore and Sando 1975; Menning and Stephens 2007; Alvarez, Gracia, and Retana
2012). Flow fields in the atmosphere interact with the heat released from a fire to create new
atmospheric flows and can lead to unique phenomena like fire whirls and counter-rotating vortices
in and around the flames (Potter 2012a, 2012b; Lareau et al. 2022). These are just a few examples
of the possible complex behaviors that can develop from these three simple components.

Fire is an essential element to healthy ecosystems across the world. Many environments are
considered to be “fire-dependent” ecosystems, in that the flora and fauna present in the area require
heat for survival (Sauer 1950; Bond, Woodward, and Midgley 2005; McGranahan and Wonkka
2020; McLauchlan et al. 2020; Robbins et al. 2022). Many plants use heat to motivate their
reproductive processes, or the area may require clearing of debris or dead surface layers, leaving
a carbon rich soil for new growth. Crown fires may clear some of the canopy to leave room for

sunlight to reach the surface and provide warmth to seedlings or smaller plants that require sun to



grow. Ecosystems rely on the balance of nutrients and natural resources and fire is one of many
contributing factors for healthy systems.

Some human suppression tactics have had devastating effects on these fire-dependent ecosys-
tems (Van Lear et al. 2005; Keane et al. 2008; La Puma, Lathrop, and Keuler 2013; Hanberry
2021). To restore these ecosystems to their natural state, we often intentionally light fires in spec-
ified areas with particular ecological goals in mind. This practice is called “prescribed burning.”
These burns are designed for the given ecosystem considering several factors including wind and
environmental conditions as well as ecological needs (Wade and Lunsford 1989; Keane et al. 2008;
Linn et al. 2021). In the performance of prescribed burns, control is of utmost importance to
avoid unintentionally damaging the environment or the surrounding structures (Wade and Lunsford
1989). Typically, prescribed burns are designed to be lower intensity than major wildland fires to
avoid escape and unintentional ecological damage (Wade and Lunsford 1989; Van Lear et al. 2005;
Linn et al. 2021). These lower intensity fires, defined here as slow-moving surface-level fires, tend
to be more sensitive to environmental conditions including slight wind variations and surface fuel
spatial heterogeneity (Clements et al. 2015; Jonko et al. 2021; Linn et al. 2021). Due to their
low flame lengths and slower speeds, they can also be easier to control. Fire practitioners and
land managers are always seeking a better understanding of fire behavior to avoid damaging the
ecosystems further and design our prescriptions to minimize the risk of escape.

To further our understanding of fire dynamics, we require a substantial variety of data sets to
allow for the examination of the whole system and its components. Collecting data in the field is
challenging given the large amount of energy emitted from even the smallest fires, the consumption
of vegetation (fuel), and the complex interactions in the fire environment. However, it is possible

to design new experiments for specific measurement goals through computer modeling and simu-



lation. In particular, numerical models offer us the ability to generate data at the spatial resolution
characteristic of low-intensity fire propagation without the risks and challenges associated with
data collection in the field. Even though models may lack some of the physical processes, the
intricacy and fidelity of these models in comparison to experimental data make them an essential
tool for studying fire dynamics.

Hawley (1926) and Gisborne (1927) began the conversation regarding the value of forest fire
modeling and objectives for the research in the 1920s. Their initial models relating fire spread
to weather patterns and moisture contents laid the groundwork for more complex models in the
30s and 40s. Curry and Fons (1938) employed observational data from the field connecting wind,
moisture, time, and slope to approximate rate of perimeter increase for Ponderosa Pine forests in
California, but found that the results were unique to the circumstances of the data and could not
be universally applied. Fons (1946) then expanded the model to include results from laboratory
experiments with homogeneous fuel beds in an attempt to develop knowledge of the fundamental
processes contributing to fire spread.

Following World War II, fire modeling expanded significantly after the government reports by
Chandler, Storey, and Tangren (1963) and Rogers and Miller (1963) regarding the resulting mass
fires from nuclear explosions (Sullivan 2009). These reports led to an increased desire for under-
standing fire behavior and developing “fire-danger” metrics. Weber (1991) provided a compre-
hensive review of the various models developed from this era, dividing them into three categories:
statistical, empirical, and physical. The statistical models rely on data collected in the field and
generally work well for fires that are similar to the data upon which they are based, but have mini-
mal success for fires outside of those specific parameters (Weber 1991; Linn 1997; Sullivan 2009).

McArthur (1966) developed a statistical model using grassland fire data which was used to develop



a fire-danger metric, classifying likelihood of fire danger from “low-moderate” to “catastophic.”
This model was translated into equations by Noble, Gill, and Bary (1980) and is still being used
extensively, particularly in Australia (Griffiths 1999; Khastagir, Jayasuriya, and Bhuyian 2018;
Shah et al. 2022).

Arguably, one of the most well-known models in the fire science community from this era is
the Rothermel (1972) model. Based on a model built by Frandsen (1971) in conjunction with
McArthur (1966) data plus wind tunnel experimental data developed by Rothermel and Anderson
(1966) and modified by Albini (1976), the Rothermel model uses these data and applies equa-
tions that represent the heat flux and energy transfer within a fire in one-dimension (Weber 1991;
Andrews 2018). It is classified as a quasi-empirical model by Sullivan (2009), as it uses data as
well as equations, but does not represent the specific type of heat transfer. Often this model has
been implemented as a base for more complex models as in BEHAVE (Burgan 1984), FARSITE
(Finney 1998), and FireStation (Lopes, Cruz, and Viegas 2002). Cellular automata models that
track fire through a landscape also use Rothermel’s model as in Yongzhong et al. (2004), Trunfio
et al. (2011), and Zhang et al. (2022).

The physical models from Weber (1991) are those that attempt to represent the physical and/or
chemical processes from combustion, and are the types of models we refer to as “high-complexity.”
The Fons (1946) model would be the first of this type of model, but recently, major technological
advances have increased computational power to allow for more complex coupled atmosphere-
fire models. These models often use computational fluid dynamics (CFD) to resolve the wind
behavior interacting with the heat from the fire. For instance, the National Center for Atmospheric
Research developed WRF-SFIRE that uses the Weather Research and Forecasting model (WRF)

in conjunction with the fire spread model SFIRE (Mandel et al. 2014). SFIRE was developed



from the Coupled Atmosphere-Wildland Fire Environment (CAWFE) which uses the Rothermel
fire-spread model applied to three dimensions (Clark et al. 1996). The Wildland-urban-interface
(WUI) Fire Dynamics Simulator (WFDS) was developed by the National Institute for Standards
and Technology and is an extension of the urban fire simulator FDS (Fire Dynamics Simulator)
(Mell et al. 2007). This model was specifically designed to investigate the effect of fires on the
WUI, the intersection between wildland and urban environments. Finally, HIGRAD-FIRETEC,
developed at the Los Alamos National Laboratory and used in the third part of this dissertation,
uses the atmospheric model HIGRAD in conjunction with the fire behavior simulator FIRETEC
(Linn et al. 2002). HIGRAD is specifically designed for atmospheric behavior under high gradients
of temperature and pressure, such as those encountered during an active fire. HIGRAD is coupled
with FIRETEC, a CFD fire behavior model designed to be a research tool for the fundamental
physical processes occurring during wildfires.

Due to the acute sensitivity for low-intensity fires, representing wind variation and surface fuel
heterogeneity becomes vital to the success of these high-complexity models in simulating this type
of fire (Linn et al. 2021). Additionally, comparison to data and evaluating uncertainty in these input
parameters may lead to more precise estimates of low-intensity burning behavior. Our research
involves modeling efforts in support of these process-based fire behavior models to increase fidelity
for low-intensity fires. For this dissertation, we split this research into three sections: (i) a spatially
extended model from data collected in the field to study low-intensity behavior dynamics at small-
scales, (i) a mechanistic surface fuel model based on canopy structure to represent greater surface
fuel heterogeneity for input parameters, and (iii) an investigation into the chaotic qualities of low-
intensity fires using nonlinear time series analysis. These three components are described in detail

below and throughout this thesis.



1.2 SERF

Our first goal involves studying a dataset collected in the field of small-scale, low-intensity
fires lit in the New Jersey Pine Barrens over the course of several years. We develop a Cellular Au-
tomata (CA) model to mimic these data fires, as CA models miminize the computational expense
of modeling by discretizing time and space, reducing the model to a collection of basic equations
applied to each cell during a single timestep. Physicists often utilize the CA framework for rep-
resenting geophysical processes that adhere to some basic physical laws in which the new value
for a particular spatial location at time ¢ depends on the spatial neighborhood at previous timesteps
(Wolfram 1983; Toffoli 1984; Vichniac 1984). From snow avalanche models to lava flows to
porous media, CA models are popular among fluid flow modelers (Rothman 1988; Kronholm and
Birkeland 2005; Herault et al. 2009).

The discretization process resembles using Reimann sums to calculate integral approximations.
While some information may be lost in the estimation, the results can be close enough to be valu-
able depending on how and for what purpose you use the integral or model. CA models also
often allow for the possibility of “self-reproduction” in that a neighboring state will directly repro-
duce itself in adjacent cells (Wolfram 1983), a common attribute of chaotic systems and fractals.
Mathematical models are inherently approximations of the processes they represent, in which er-
ror estimates are used for validation purposes (Braga-Neto 2005; Rebba, Mahadevan, and Huang
2006).

Most wildland fire behavior CA-based models produce results that track the fireline and create
images with limited information. These models use inputs regarding the surrounding topography
and wind data, seeking to predict the area burnt over time. The typical resulting graphs focus on

either contours of the fireline in time increments as in (Berjak and Hearne 2002; Alexandridis et
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al. 2008; Almeida and Macau 2011; Ghisu et al. 2015; Gennaro et al. 2017; Zheng et al. 2017), or
they represent the shape of the resulting burnt area as in (Herndndez Encinas et al. 2007; Yassemi,
Dragicevi¢, and Schmidt 2008; Trunfio et al. 2011; Mahmoud and Chulahwat 2017; Freire and
DaCamara 2019), or both (Liu et al. 2018). These models take advantage of the finite set of
discrete outputs in the CA framework, but this limits the information that can be obtained from the
model.

Adding an underlying Coupled Map Lattice (CML) model to the CA framework allows for
more information to be collected than with typical CA models that only produce a finite amount
of discrete output values. In this project, we present a Spatially-Extended Radiant heat Fire model
(SERF), a CA model using arrays with infrared radiant heat values recorded during a selection
of small-scale prescribed fires. Using these infrared data, we determine the main characteristics
of the radiant heat emanating from these fires and create a CML for simulating the fire behavior.
We then use this CML to define five states of fire behavior for a CA model, creating a spatially
extended discrete dynamical systems-based model whose parameters we determine from empirical

data. The SERF model will be explained in detail in chapter 2.

1.3 DUET

The spread and intensity of wildland fire is determined by an interplay between elements of
the fire environment, including fuels, weather, and topography (Rothermel 1972; Agee 1996). Fire
behavior sensitivity to fuel heterogeneity depends on burn intensity and features of the fire envi-
ronment. In low wind and low intensity fire scenarios, fire behavior can be particularly sensitive
to the distribution of understory or surface fuels, consisting of live herbaceous vegetation, shrubs,

and dead leaf litter, as the surface is the fire’s primary fuel source (Stephens, Finney, and Schantz



2004; Hiers et al. 2009; Dell et al. 2017; Loudermilk, Hiers, and O’Brien 2017; Prior, Murphy,
and Bowman 2018). Accounting for the spatial distribution and heterogeneity of surface fuels is
thus important for predicting prescribed fire behavior, fire spread, as well as flanking and back-
ing portions of wildfires (Campbell-Lochrie et al. 2021; Linn et al. 2021; Atchley et al. 2021).
Recent work has highlighted fire behavior sensitivity to surface fuel distribution for a variety of
ecosystems through observation and modeling which implies that the heterogeneity of these fuels
is of particular interest (E. L. Loudermilk et al. 2011; E. Louise Loudermilk et al. 2014; O’Brien
et al. 2016; Parsons et al. 2017; Hoffman et al. 2018; Skowronski, Gallagher, and Warner 2020;
Coen et al. 2020; Linn et al. 2021).

In addition to wildland fire behavior, tree litter deposition patterns affect ecosystem dynamics
by supplying soil nutrients through leaf, bark, and catkin litter decomposition (Midgley, Brzostek,
and Phillips 2015). Several studies have examined how different tree species’ litter affects soil
nitrogen and carbon (Prescott and Grayston 2013; Lin et al. 2017; Trap et al. 2017). More pre-
cise representation of spatial litter distributions may lead to a better understanding of ecosystem
changes due to litter accumulation from various tree species within forests or wetlands, and poten-
tially how patterns of decomposition influence fire effects (Stephens, Finney, and Schantz 2004;
Stoler and Relyea 2011; Arthur et al. 2012; Carpenter et al. 2021).

Heterogeneous tree litter and grass patterns are influenced by various factors, including over-
story structure and prevailing winds, which affect when the foliage falls from trees or shrubs, where
it lands, and how it influences grass distribution and density through indirect effects on resources
(Riegel, Miller, and Krueger 1992; Staelens et al. 2003; Jonard, Andre, and Ponette 2006; Pecot
et al. 2007). Once on the ground, other processes redistribute and decompose the litter material

(Forrester and Bauhus 2016; Garcia-Palacios et al. 2016). A number of factors can alter the trajec-



tory of leaves when they fall from the tree, including the shape of the needles or leaves, the height
from which they fall, and local winds (Nickmans et al. 2019). Decay variability, which depends on
climatic conditions, species litter characteristics and chemistry, moisture retention, packing density
etc., can change the depth and loading of the localized litter accumulation, the nutrient composi-
tion of the soils, and the moisture levels present at any given time (R. Mitchell et al. 1999; Adair
et al. 2008; Keane 2008; Arthur et al. 2012; Cornelissen et al. 2017; Babl-Plauche et al. 2022; Berg
and Lonn 2022).

Traditional sampling methods for obtaining accurate and spatially-explicit estimates of the dy-
namic heterogeneity of surface biomass require considerable investment in personnel, time, and
money (Keane and Reeves 2012; Tinkham et al. 2012). At stand scales, scientists and managers
commonly combine surface biomass sampling approaches with other forest and rangeland inven-
tory methods to estimate the fuel load at landscape or prescribed fire burn block scales for various
fuel strata (i.e., surface and canopy fuel layers). Terrestrial lidar has been used to characterize more
localized (radius of tens of meters) fuel load in strata (E. Louise Loudermilk et al. 2009; Bright et
al. 2017; Jarron et al. 2020). Lidar techniques and photogrammetric methods show success when
representing surface fuels (Keane and Reeves 2012; Rowell et al. 2020). However, they are asso-
ciated with great financial and labor costs when employed at landscape scales (Silva et al. 2016).
Aerial lidar can be used at much larger spatial scales, and while it can be used to some degree to
map coarse woody debris or shrubs, it is limited in its ability to detect lower strata surface fuels
such as litter or grass, due to both signal noise and occlusion (Seielstad and Queen 2003; Gajardo,
Garcia, and Riafio 2014). Consequently, most studies using aerial lidar have focused on char-
acterizing the canopy fuel layer and individual tree properties such as tree crown diameter, stem

spatial-density, basal area, and biomass in several locations (Goodwin, Coops, and Culvenor 2006;



Hyde et al. 2006; Hudak et al. 2008; Ruiz et al. 2014; Silva et al. 2016). Litter and grass continue
to be difficult to map with remote sensing, so spatially explicit data capturing their patterns at large
extents is difficult to find.

Most previous work modeling litter dispersal employs probabilistic approaches. Ferrari and
Sugita (1996) created an exponential model based on stem location, which Staelens et al. (2003)
expanded to include wind influence. Jonard, Andre, and Ponette (2006) used a ballistic and a
Weibull distribution approach that incorporated height of maximum crown radius, which was also
used by Nickmans et al. (2019) to determine soil nutrient characteristics. Linn et al. (2005) used
the vertically integrated canopy foliar mass above a location to infer litter and grass patterns, but
this approach led to litter being only located directly under trees. The Jonard, Andre, and Ponette
(2006) model assumed all leaves were released from the center of the tree at the height of maximum
crown radius and it modeled leaf dispersal patterns using a seed dispersal model designed by
Greene and Johnson (1989). Although there is value in each of these approaches, they miss some
of the processes that impact litter dispersal, such as variation in heights and locations of trees
from which leaves and needles fall, species-specific leaf and needle characteristics, and dominant
seasonal wind events, which can create direction bias in litterfall heterogeneity.

We present here a mechanistic model we call Distribution of Understory using Elliptical Trans-
port (DUET) that connects the litterfall from the trees to a specific canopy arrangement. It also
uses dynamic decay rates that change with time and spatial configuration. The model develops a
full picture of the surface fuels of a given area for use within FIRETEC, or with other fire modeling

systems. The DUET model is described in detail in chapter 3.
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1.4 Detecting Chaos in Fire

The concept of chaos was first introduced in the late 1800’s by the mathematician Jules Henri
Poincaré, and further defined in 1963 by meteorologist Edward Lorenz, who introduced the con-
cept of the strange attractor (Lorenz 1963). There is some debate on the official definition of chaos,
but it is generally accepted to include at least three features: sensitive dependence on initial condi-
tions, and deterministic and aperiodic long-term behavior (Lorenz 1963; Banks et al. 1992; Brown
and Chua 1996; Hunt and Ott 2015; Strogatz 2019). Sensitive dependence on initial conditions
implies that a very slight change in an initial condition can result in vastly different outcomes. De-
terministic behavior implies that any noisiness within the outputs are a result of the nonlinearity of
the system, not any stochastic components. Specifically, a unique input to a deterministic system
will always result in a corresponding unique output, whereas a stochastic system may produce a
variety of outputs for any given input. Aperiodic long-term behavior is characterized by trajecto-
ries that do not “settle” into any kind of periodic behavior (i.e. limit cycles, stable fixed points, or
quasiperiodic orbits). This is a secondary result of the combination of determinism and sensitive
dependence on initial conditions; since no trajectory ends up exactly where any previous trajectory
has been (unique inputs lead to unique outputs), no matter how close those trajectories are, there
will be long-term divergence between them (sensitivity to initial conditions).

Gaining information on whole system dynamics using chaos theory could reveal new relation-
ships between parameters and potentially improve our understanding of the interplay between all
the characteristics of the fire. Clements et al. (2015) demonstrates that low intensity fires are sen-
sitive to shifts in near-surface wind dynamics through field collected data during nine burns on
different plots. Linn et al. (2021) uses one of those experimental burns to inform a FIRETEC

simulation to further illustrate that small changes in the windfield can have a broad effect on fire
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behavior. Jonko et al. (2021) uses an ensemble approach in which they compare 45 FIRETEC
simulations with identical conditions except for small perturbations in the ambient wind field. All
of these studies clearly indicate that macroscopic fire behavior is sensitive to small perturbations in
wind conditions. This sensitivity to small perturbations in initial conditions is a hallmark feature
of chaos and nonlinear dynamics.

The attempt at prediction of chaotic systems beyond a particular time factor will result in
significant uncertainty which creates challenges in effectively predicting geophysical systems, such
as the weather, river flow, or sediment transport (Sivakumar 2004). By mathematically defining fire
behavior as chaotic, we seek to discover relationships between its system components and some
underlying patterns that contribute to the apparent irregularity of the system. Finding patterns in
fire behavior will be a critical step in finding ways to evaluate uncertainty in these fire behavior
models and improve prescribed fire designs for more control, thereby improving their effectiveness
for reducing destructive wildfire events and restoring balance within fire-dependent ecosystems.

We describe the study and the results in detail in chapter 4.
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CHAPTER 2. SEREF: Spatially Extended Radiant heat Fire model

The material presented below is part of the article published in Physical Review E (McDanold and

Malik 2023).

2.1 Description of SERF

SERF defines 7,(i, j), the radiant heat temperature at time step n for cell location (i, j), in

five discrete stages. Using the CML framework, an equation defines the behavior of the radiant

temperature for each stage, with parameter thresholds marking the transition from one stage to the

next. These five stages represent the life cycle of radiant temperature for an area that burns. Figure

2.1 shows a schematic of the five stages and each are explained in detail within the following

sections.
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max temp
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Cooling
Cell has
gone out
and is
cooling

ignited and
temps are
rising

Figure 2.1: A schematic of the five stages that make up the life cycle of a burning cell.
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2.1.1 The Model

All cells begin in stage one, stable, in which the heat from the oncoming fire has not yet reached
this cell. Once that heat affects the cell, it transitions into the warming stage, and when the heat
rises sufficiently for ignition, it transitions into stage three, rising. The heat then rises as the fuel
is consumed until it reaches its maximum temperature,Tj; (i, j), after which it transitions into stage
four, falling, when the radiant heat reduces as the fuel consumption completes. Once the fuel is
gone, the flame ceases, and the cell transitions into stage five, cooling, in which the ground beneath
the fire cools back to equilibrium with the ambient temperature of the area.

The parameters in SERF unique to each simulation are the domain size in two dimensions and
the overall moisture content for the area, m.. The parameters unique to each cell per simulation
are the maximum radiant temperature Ty (i, j), the heat transfer coefficient for the fuel k(i, j), and
the time required to rise to and fall from Ty (i, j), R(i, j) and F(i, ) respectively. Each of these
parameters are generated from a probability distribution built from the data set described in section

2.2.1.

Algorithm Structure and Boundary Conditions

The algorithm loops through each coordinate in the lattice, (i, j), defined by a domain size of
I x J to calculate the radiant temperature and assign the discrete stage number to the cell. The
first two stages calculate the radiant temperature of a particular cell using the temperatures of the

surrounding neighbors. For this process, we use the Moore neighborhood defined as

{(i+a,j+b)|—1<a,b<1l;a,beZ}. (2.1)
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In the event that a particular coordinate (i, j) lies on the boundary of the domain, we only consider
those coordinates defined within the domain as part of the equations. Meaning, if we are calculating
the ambient temperature of the corner coordinate (1, 1), we would only consider the three existing
neighbors, (2,1),(2,2), and (1,2) in the calculation. For more information regarding the ambient

temperature function, please see section 2.1.1 and equation 2.3.

Stages one and two: Stability and Warming

To begin, we initialize the entire domain as the base temperature for the day on which the burn
is to take place, Tp, which we define as stage one, stable. To start the fire, we synthetically raise the
temperature to ignition for a chosen group of cells and set them to stage three, rising.As the heat
from these initialized cells approaches the neighbors, radiant and convective heat transfer causes
the temperature to rise and results in the transition into stage two. Within stages one and two,
we use a modified Newton’s law of cooling equation to represent how the radiant temperature at

timestep n + 1 is affected by the ambient temperature of the neighboring area at timestep n.

Tt (iaj) = Tn(iaj) +k(i7j) [An(iaj) - Tn(iaj)] . (2.2)

Here, A, (i, j) is the ambient temperature calculated from the neighboring cells with a weighting

function W (i, j) at the previous timestep as follows:

1 1
A )=Y, Y W(i+a,j+b)Th(i+a,j+b). (2.3)
a=—1b=-1

In stage one, W (i, j) = 1 /N V i, j, where N is the total number of neighbors in the calculation. This

along with (2.3), leads to A, (i, j) = T,(i, j). From (2.2), we therefore have T,, (i, j) = T,(i, j) and
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the temperature does not change. In stage two, since heat is present, we apply a multiplicative
factor of 1.2 to W (i, j), which represents the addition of convective heat transfer as the flames
encroach on the area while the radiant temperature increases. Once the temperature rises to inside
the bounds of the ignition interval such that 7,,(i, j) € [Lnin, Inax), @ cell can undergo one of three
options: (i) remain in stage two, warming, (ii) transition into stage three, rising, or (iii) transition
into stage five, cooling. If T,(i, j) € (Lnin,Imax), using the moisture content, m,, the cell attempts
to ignite between D,,;,, and D,,,, times, based on a uniformly distributed parameter delay matrix,
D, which will be explained in detail in section 2.2.3. If the attempt fails, the cell remains in stage
two. If the attempt succeeds, the cell transitions into stage three. If we have T,,(i, j) > Lyay, the
cell automatically transitions into stage three, rising. If all attempts fail, the cell transitions into
stage five. A transition from stage two to stage five represents a cell that will not ignite due to the
chemical structure of the fuel in that cell. For instance, this could represent a rock that will heat
up but never ignite. Figure 2.2 shows how a particular cell might move through stages two to five,

each of which is described in the subsequent subsections.

Stages three and four: Rising and Falling

If the cell ignites, the chemical and physical characteristics of the fuel become the driving
forces in how the radiant heat rises and falls. Since the fuel is now being consumed, the area
begins to generate its own heat. Thus, for stages three and four, we move away from Newton’s law
of cooling and define two linear functions for how the heat changes from one timestep to the next.

For stage three, rising, we have:

TM(iaj) — TS<i>j)
R(i, j)

Tn+l(i7j):TS(i7j)+ (I’Z—S(i,j)), (2.4)
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Figure 2.2: Representation of how the radiant temperature changes in a specific cell over time
beginning in stage two, warming, where Newton’s law of cooling is applied, moving through the
linear equations developed for stages three (rising) and four (falling) and ending in stage five,
cooling.

and for stage four, falling, we have:

TM(iaj) _TS(iaj)

F@i)) (n—M(i,))). (2.5)

Tn+l(i7j) = TM(Z7.]) -

For simplicity, stages three and four are defined as linear functions in which the cell rises to its max-
imum temperature, Ty/(i, j) over R(i,j) timesteps, and falls from Ty (i, j) over F (i, j) timesteps.
Since the temperature at which the transition into stage three occurs is not set but determined
through the use of the delay matrix, D(i, j) interacting with the ignition interval (75, Lnax ), We de-
fine Ts(i, j) to be the ignition temperature for location (i, j) and S(i, j) to be the timestep at which
the transition occurs. Then M(i, j) is the timestep at which the maximum temperature is achieved.

During stage four, once the cell reduces in heat back down to the ignition interval, [Lyin, Inay|, the
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cell is again tested to see if it has extinguished. The temperature at which the cell extinguishes is

defined as Tg (i, j) at timestep E (i, j), and we transition into stage five.

Stage five: Cooling

This stage represents the time when the fuel has been consumed, and the ground beneath the
fuel is cooling off back down to equilibrium with the area’s temperature, 7. We use an exponential

function to show how the heat dissipates after the fire has moved through the area:

o
Tyaa (i) = (1. 0) - Toyexp (1 =0 )+ 26)

This is the last stage of the process. Once the cell reduces back down to 7p, it is considered to be

burnt and is no longer subject to any temperature changes.

2.2 Parameters and the data set

SERF was built from a large data set developed in the New Jersey Pine Barrens from 2017
through 2021 during several controlled burns, under a grant from SERDP (Strategic Environmen-
tal Research and Development Program) within the Department of Defense. The data was collected
by the Northern Research Station of the United States Department of Agriculture (USDA) Forest
Service (Kremens 2019). In this section, we describe the extent of the data set and how we incor-

porated this data into the model.

2.2.1 The Data Set

There were two types of fires that were burned under this grant: square fires with 12-meter

length sides, and 30-acre fires. Both were prescribed and kept under tight surveillance. The 12-
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meter fires were outfitted with a truss at six feet over the burning zone containing 16 equally spaced
data collection devices in a four-by-four grid (see Fig. 2.3). Each device housed a FLIR Lepton®
1.5 that recorded infrared information, and a digital camera along with various other data collection
devices. The fuel below the cameras for the 12-meter burns was collected, weighed, and evenly
distributed throughout the burn zone. For the 30-acre fires, the devices were distributed randomly
throughout the burn zone.

All of the cameras were initiated simultaneously and began taking snapshots of the area at
one-second intervals. The FLIR Lepton® 1.5 recorded the infrared radiant output (from 8 — 14
microns) emanating from each cell in the viewing range and outputted a numerical array with
values ranging from approximately 8000 to 16000. The prescribed fires were ignited below the
cameras and allowed to burn through the area underneath (Kremens 2019). For the 12-meter burns,
the viewing area for each camera was approximately 3 meters square, but the resulting numerical
array was presented as 60 x 80 cells. Figure 2.3 shows the setup for the data set collection. Please
note that due to the Covid-19 crisis, we could not perform the necessary experiments to determine
the exact spatial region captured by each camera by calibrating the digital and infrared cameras
together; this should be done in the future.

Since each segment of ground was individually recorded, we first found all of the arrays related
to a particular fire in a given section and stacked the arrays on top of one another in a three-
dimensional time-sequential tensor (dimensions being x and y spatial dimensions with time as the
third). Out of 3.1 million files, we could find 74 successful fire visualizations that did not have any
deformities. We denote these 74 fire visualizations using the symbol f,,, where m is the fire index

that goes from 1 to 74, that is the set { ]‘,,1},7”4:1 represents these 74 successful fire visualizations.
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Figure 2.3: Truss setup in the New Jersey Pine Barrens for the creation of the data set; (a) Before
the burn; (b) After burn was initialized; Photos courtesy of Dr. Robert Kremens, Chester F. Carlson
Center for Imaging Science, Rochester Institute of Technology (RIT), credit: USDA Forest Service

Northern Research Station.
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Figure 2.4: Calibration graph for relating infrared output data to radiant temperature values from
observations using a black box unit with the FLIR Lepton® 1.5 camera.

From laboratory experiments performed with the Lepton® camera, the infrared values were
found to correspond to a radiant temperature flux range of approximately 22°C to 400°C (FLIR
2018). For the interpolation scheme, we first attempted a cubic spline interpolation but the results
were similar to the linear interpolation, and thus the linear was chosen for simplicity. Note the
sudden increase towards the top right of the graph in Fig. 2.4 that indicates the temperature data

may not be entirely accurate towards the upper bound for the range of temperatures recorded. This
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is reflected in the maximum temperatures for the power flux being capped at 7); = 400°C. This
anomaly was adjusted in the model so that some of the maximum temperatures can be above this
value, but without accurate data for that range, it is possible that the resulting maximum radiant

temperature estimations may be lower than the true values.

2.2.2 Data-Driven Parameters

From the data set, we obtained several parameters for SERF including two global parameters:
the ignition interval, [y, Lnay], and the unburnt proportion of land U (f,,) for a fire instance fi,;
and four cell-dependent input parameter matrices: the maximum temperatures, 7Tj;, the rise and
fall times, R and F', and the heat coefficients, k. Each of the input parameter matrices used in the
model is defined using a probability distribution taken from all of the cells in the data set fires. We
experimented with fitting several different probability distributions to the data. Since we cannot
assume that our data parameters adhere to any specific distribution, we chose the kernel distribution
since it led to the most accurate model outputs compared to the observational data.

For R, F, Ty, and k, SERF builds the input matrices by assigning values to a subset of cells
through sampling the corresponding distribution defined by the data set, and then “smoothing”
these numbers to increase realistic stability in the model. For R and F, a random number between
50% and 70% of the cells are assigned a value with the rest equal to 1. For k and Ty, all cells are
assigned a value from their respective probability distributions.

The smoothing process for each of the four parameter matrices is performed by finding the sum

of each cell and its immediate neighbors, and then multiplying that by a random number chosen
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from a normal distribution:

1

1
Pi,j)=p Y, Y Pli+ta,j+b) (2.7)
a=—1b=-1

where P € {R,F,k, Ty}, and p ~ A (u = 1,0 = 0.04). This process is repeated twice for R, F,
and k, and ten times for 7). Then the values are normalized back to the original interval by finding
the maximum value of the original matrix, max(P) and dividing that by the maximum value of the

new matrix max(P'):

P J) =P ) e

(2.8)

Figure 2.5 shows a sample 7, matrix, where Fig. 2.5(a) shows the initial sample matrix and

Fig. 2.5(b) shows the matrix after smoothing.

400
300
1CC)

200

100

Figure 2.5: A representative sample of Ty matrix and a smoothed version used in SERF: (a)
Initial Ty; matrix with values sampled from the distribution for maximum temperatures; (b) Ty
matrix after smoothing.

The Ignition Interval: |1, [ax]

The fuel for the 12m?> prescribed burns was a mixture of live and dead needles, leaves, and
brush, and was gathered from the area designated for the fire, weighed, then dispersed as evenly
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as possible throughout all 16 sections of each burn zone (Kremens 2019). The 30-acre fires held
a mixture of the same but more heterogeneously distributed. As ignition temperatures vary widely
for these different fuels, we needed to find a reasonable interval, [Ln, nay], for ignition tempera-
tures represented in these fires, { f;, Zn4:l'

Since we had chosen the set of fires to be those known to ignite, we could estimate the second
of ignition to be the timestep at which the fire entered the field of view. Using visualizations of the
infrared value tensors, we came up with an equation for the average temperature of the cells based

on the maximum and minimum radiant temperature of each fire, f,:

Im(fm) — ’O-Z(Imax(fm) _Imin(fm))’ +Imm(ﬁn) (29)

The equation was developed by finding the range of temperatures recorded in each fire fo,, [Lnin(fin)s Imax(fm)]
and determining the ignition point for that fire to be approximately 20% of that range above
Luin(fm). Then we found the greatest and least value for all ignition temperatures and that de-
fined the ignition interval for SERF. Figure 2.6 shows the various temperatures for each fire in the
data set.
From Fig. 2.6 we found that the minimum and maximum values for threshold for each of these
fires to be: I, ~ 90°C and I, =~ 150°C. Note that Fig. 2.6 also shows the upper bound on the

recording device at 400°C as described previously in section 2.2.1.

Maximum temperatures

A kernel distribution was fitted to a histogram of the maximum radiant temperatures achieved

for each cell in all of the fire tensors, for a total of 355,200 cells. Figure 2.7 shows the maximum
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Figure 2.6: Maximum, Minimum, and Threshold Temperatures for each fire in degrees Celsius and
the top and bottom of the threshold interval.
temperatures for each cell across all fires and the estimated distribution for these quantities. The
majority of the fires had a large variance in temperatures across cells, resulting in various local
maxima in the distribution. Moreover, there were some fires in which the entire area was engulfed
in flames that all burned at the upper bound of the Lepton device. The tall bar at the right end
of this graph in Fig. 2.7 represents these high-intensity fires. A large number of cells reached
around 200 degrees indicating that most of the cells caught fire but did not release significant
heat energy. The smaller local maxima around 300 degrees indicates that certain fires maintained a
higher temperature than average but did not reach the upper bound. In short, the variety of different
fires begot various maximum temperatures.

This kernel distribution was then sampled to initialize all cells in the 7j; parameter matrix. The
“smoothing” process was then applied as described in section 2.2.2. Each cell was “smoothed” to

allow for more even heating temperatures in neighboring cells.
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Figure 2.7: Recorded maximum temperatures for 355,200 cells from all fires in the data set;
histogram and fitted kernel distribution (red line).

Rise(R) and Fall (F) Times Distributions

Using the ignition temperature defined for each fire (see section 2.2.2), we measured the num-
ber of timesteps, R(i, j), required for the temperature in each cell to go from the starting ignition
temperature, Ts(i, j), up to maximum temperature Tjs(i, j) and the number of time steps F (i, j) to
fall from T (i, j) back to the ignition temperature. Figure 2.8 shows the distribution of R and F de-
rived from the data. The red lines in this figure are the corresponding kernel density estimate. We
experimented with various probability distributions including joint distributions for these parame-
ters and found that the kernel distribution with each R and F value sampled separately produced
results that most closely matched the data set fires. The average rise time , (R) = 26 seconds, and
the average fall time (F) = 58 seconds. These histograms indicate a strong likelihood that the rise
and fall times would be relatively low, although it is possible to have a long tail during the cooling

stage.
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Figure 2.8: Rise (a) and fall (b) time value histograms and kernel distributions from the data set.

Heat Coefficient Array (k-matrix)

The heat coefficient for a given material is typically determined as the likelihood of a given
substance to transfer heat to a neighboring material. Sometimes referred to as “conductance,” it is
the primary parameter in Newton’s law of cooling which was used for the rising of the temperature
during stages one and two, and the transition into stage three. We determined the probability
distribution of these coefficients from the data set by finding the global maximum temperature
achieved for all cells in a given fire and then estimating the ratio of the maximum temperature for

each cell to that global value. This gave us a number between 0 and 1 that we used to represent
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the “burnability” of that particular cell. We created a histogram and fitted a kernel distribution

to the data. Figure 2.9 shows the results of that distribution. We note that the majority of the
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Figure 2.9: Heat coefficient histogram with kernel distribution; found largest temperature value
in the maximum temperature matrix for each fire and the proportion of that maximum reached by
each cell.

calculations of k lie between 0.7 and 0.95, which implies that the radiant temperatures for each
cell were relatively close to the global maximum for that fire. This accounts for an approximate
mean of 0.0855 for the unburnt proportion of land, U, and also indicates that most of the cells
reached temperatures above I,,,,. The values for the k parameter matrix are sampled from this
probability distribution for each cell in the domain. The matrix is then “smoothed” according to
the method described at the start of section 2.2.2. As with the other cell-specific parameter matrices
(R, F, and Tj;), we experimented with various probability distributions for these values but found
the kernel distribution to represent the heat coefficients most accurately in comparison with the

data set.

27



Initial Conditions

From the visualizations of the data set fires, we found four initial conditions represented: cor-
ner, side, chunk, and double chunk. Figure 2.10 shows examples of these initial conditions from
the simulations alongside data set representations of each type (the left images are from SERF
simulations and the right from the data set). It should be noted that the orientation of the cameras
was not standardized when they were placed along the truss, which means that the fire traveled in
several directions on camera. For SEREF, the fires all move in the same direction with a standardized

trajectory of west to east, or south to north within the view frame.

N ih »
(b) Data Corner . (d) Data Side (f) Data Chunk (h) Data Double Chunk

Figure 2.10: Initial Conditions: a) corner from {S,}, b) corner from { f,,}, c) side from {Sy,}, d)
side from {fn}, e) chunk from {S,,}, f) chunk from { f,,}, g) double chunk from {S,,}, h) double
chunk from { f,, }

We also incorporated an initial condition that was not represented in the data set. It is widely
known that spotting occurrences in wildfires can accelerate the spread of the fire, and understanding
this phenomenon is an important part of keeping prescribed fires under control (Koo et al. 2012;
Manzello et al. 2020). Therefore, we added more simulations with a fifth initial condition of

spotting, where we ignited three spots in the middle of the domain (see Fig. 2.11).
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Spot Ignition

Figure 2.11: Spotting initial condition, added to the simulations to analyze fires beyond what was
represented in the data set.

As described in section 2.1.1, these initial conditions were used to synthetically raise the tem-
perature of a particular set of cells at the start of the simulation. Each of these cells were raised to
Lipax for the CML model and the stages set to three in the CA model. Section 2.5 has examples of
each ignition type from the data set and the simulations, including a set of images from the spotting
ignition. Of note in these images are that the timing varied greatly for the length of the fires within

the viewing area, but the simulation versus the data set image sets are quite similar in structure.

Distribution for Unburnt Area

For verification purposes, we used the unburnt proportion of land in each fire from the data set,
U(fn), by determining the mean, (U(f,,)) of this parameter (the mean is taken over {f,,}7% |, the
fire instances). To find the proportion of cells that did not ignite and therefore did not burn, we
used the ignition values represented in Fig. 2.6 and described in section 2.2.2, and defined each of
the cells as burnt if they achieved the ignition temperature for that particular fire, or unburnt if they

did not. We counted the number of cells whose final state was burnt, out of the total number of

cells in each fire and created a matching exponential distribution. Figure 2.12 shows the histogram
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with the fitted exponential. When we fit the curve for the proportion of land that did not burn, we

found that (U (f;,)) = 0.0855.
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Figure 2.12: Histogram of the proportion of cells that did not burn in each fire from the data set
(U). The exponential curve fitted to the histogram shown here in red has a mean of (U(f,)) =
0.0855.

2.2.3 Non-Data-Driven Parameter:Moisture Content: m,

Although moisture information was not available for the data set, fuel moisture levels have a
major impact on fire behavior (Blauw et al. 2015; Torres et al. 2018). To appropriately use the
moisture content in the simulations, we needed to associate that value, m,., with whether or not the
cell would ignite. To do this, we use this moisture level as a threshold to decide if the temperature
will change for that cell for a given timestep. For each cell, we randomly generate a uniformly
distributed number between 0 and 1 and if the number is below m,, then we set 7,11 (i, j) = T,,(i, j)
and the algorithm skips to the next cell. This allows for a slower rate of spread when the moisture

level is higher.
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When testing the effect of the moisture content in the simulations, we found that while this
random uniform number had an effect, the speed of the fires in the data set were still slower than
those achieved with m.. Thus, to accentuate the effect of m., we created a parameter matrix to delay
the ignition, D(i, j), in which each cell was assigned an integer between 1 and 10 from a uniform
distribution for how many times SERF attempts to ignite that particular cell. The matrix was then
smoothed using the method described in section 2.2.2, and returned to integers. This delay value
is used to test the transition from stage two to stage three. If the cell does not ignite within D(i, j)
attempts at ignition, the cell is considered nonflammable and the algorithm transitions that cell
from stage two directly into stage five, cooling. As with the other parameter matrices, this matrix
was built by assigning values as described above to all of the cells in each simulation and then

“smoothing” the values across the domain.

2.3 Results and Discussion

We performed a total of 100 SERF simulations, {S,, ,lnogl with 20 of each initial conditions
described in section 2.2.2. A simulation begins with a synthetic rising of the temperature to I,
and setting the cell stage to three for a collection of cells. A simulation is considered complete
when all cells have reached stage five. We collected the fire simulation tensors, parameter matrices,
and a variety of other useful information from each simulation so that we could analyze the results.
Since the data set was collected at one-second intervals, each / X J matrix produced from the
algorithm is considered to be one second in the life of the fire.

To verify SERF, we compared several metrics from the simulations to the data set, including the

likelihood of transition between stages, burning potential for each cell, the proportion of land that
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remained unburnt, and two timing metrics for spread rates. Each is described in detail in section
2.3.1.

To validate SERF, we compared the output to a typical CA model without the underlying CML
model to show the strengths of adding the ability to achieve a continuous set of outputs for de-
termining the states of the system. The results of these tests are described in detail in section

2.3.2.

2.3.1 Verification

The combination of all of the probabilistic parameter inputs with the smoothing function de-
scribed in section 2.2.2, the uniformly distributed moisture content and delay matrix, and the
stochastic values generated in the algorithm makes SERF inherently probabilistic. Thus, we were
able to use several input parameter distributions as metrics to calibrate and verify the model. We
ran several sets of simulations and compared the outputs to these parameters as metrics derived
from the observational data. In particular, we compared unburnt areas U(f;,) for each fire in

{fm 77!4:1, the distribution of maximum temperatures, and the distributions of rising and fall times.

Transition Matrices

To test the overall effectiveness of the CA model, we developed a transition matrix for the data
set fires {f,}/* , and the SERF simulations {S,}1%°, showing the probability of moving from
one stage to another, calculated and averaged over all cells in the fires and simulations separately.
The transition matrices were then created for the fires and SERF. Figure 2.13 shows the difference

between the transition probabilities for the fires and the SERF simulations.
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Figure 2.13: Percentage differences in stage transition probabilities for the SERF simulations
versus the data set. The simulations reproduce the transition probabilities with an error of less
than 3% for all cases except the stage two to three transition where the error is 12%.

Due to the probabilistic nature of the algorithm, each set of simulation results were unique in
their comparison to the data set. Using the parameter values and ranges we chose, the resulting
differences ranged from a maximum difference of 11% to 12% in transition from stages 2 to 3. We
have chosen to show a matrix representing an 11.76% maximum difference in figure 2.13. The rest
of the differences were less than 3% for all sets of simulations indicating that SERF successfully
captured the transition probabilities for each stage. Other metrics that were compared with the data
set including unburnt proportion of land and the heat coefficient ranges showed no major changes

between the various simulation runs.

Heat Coefficients: Vegetation Burning Potential

The heat coefficients assigned to each cell represent the likelihood of the fuel burning. A low

heat coefficient indicates a low probability of ignition, as in the case of a cell that is dominated by
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the presence of a rock or dirt, as opposed to leaves or branches, which would represent a higher
heat coefficient. Initialized using the distribution from the data set as defined in section 2.2.2, the
final heat coefficients were also affected by the moisture content, m., and the delay matrix, D.
Figure 2.14 shows the heat coefficients of each cell from every simulation in comparison to those

determined from the data sets. The mean of the heat coefficients for SERF is approximately 0.8351
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Figure 2.14: Box plot comparing the heat coefficients in the SERF simulations and the data set;
the red line in the middle of the boxes indicates median values. Observe the relative similarity
between k in the data set and SERF simulations.

and the mean for the data set is 0.8264, a difference of .0087. In Fig. 2.14, we observe that the
variance of the simulations and data set are relatively close, and the median values represented by
the red lines are 0.8325 and 0.8347 for the data set and simulations respectively, which indicates a
difference of only 0.0022 and a successful representation of the heat coefficients for the data set in

the model.
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Unburnt proportion of land

Another metric we used to determine the success of SERF was to see if the unburnt proportion
of land (U) was similar between the simulations and the data set. Figure 2.15 shows a box plot
that exhibits the success of this metric. For SERF, we estimated U by finding the proportion of
cells that transitioned from stage two to stage five, without ignition. Ty, M, D, and k influenced

U. The mean of U in the SERF simulations is 0.0865, and in the data set, 0.0867 for a difference

0.3
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Figure 2.15: Box plot showing the unburnt proportion of land in the SERF simulations compared
to the data set. Observe the relative similarity between U in the data set and simulations.

of 0.0002. The medians (represented as the red line in the box plot) are 0.0293 and 0.0125 for the
data set and simulations respectively which exhibits a difference of only 1.68%. The variance of
U differed, with the simulations creating slightly more variance than the data set.

Lingering Embers

Often in a fire, particular spots continue to burn long after the bulk of the fire has dissipated.

This phenomenon has to do with the density and moisture level of the fuel on the ground. A
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more moisture-rich fuel takes longer to burn because the water must be evaporated off before
the fuel can be consumed, and a denser area lacks the ability to draw in the oxygen as freely
so the combustion process slows. Understanding the length of time embers may linger during a
prescribed burn could inhibit the introduction of firebrands into the surrounding foliage long after
the area has burnt. In the data set, 29 of the 74 fires showed obvious evidence of lingering embers.
However, many of the data set visualizations were cut short from the full length of the fire if the

embers burned at a low temperature, so some lingering embers may have been lost. Figure 2.16(a-

(a) Fire Data 1 (b) Fire Data 2

(c) Simulation 71 (d) Simulation 93

©

Figure 2.16: Lingering embers in the simulations and fire data sets; (a) f3, second 500 of 1100;
(b) fs0, second 2550 of 2894; (c) S71, second 2000 of 2310; (d) So3, second 900 of 1241.

b) shows some images from the data set fires representing this phenomenon and Fig. 2.16(c-d)
shows the same behavior from the simulations. In the SERF simulations, this originates from the
probabilistically determined rise and fall times of each cell in conjunction with the varying start

time for the ignitions. Some of those values add up to a long burn for a particular group of cells.
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Cell rise and fall relationship with fireline

Many CA models focus on the speed of the fireline as it moves through the area because that
gives an indication of how quickly it will take over a given area outside of the burn zone. However,
the time the fire spends in any given area can also make a huge difference to fire practitioners
because of the likelihood of firebrand transport, lingering embers, and smoke production. SERF
accurately represents the variance in how long the fire spends in any given area. Figure 2.17
displays some stills from SERF simulation number 30 that exhibit the length of time the fire spends

in the domain.
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Figure 2.17: Successful representation of the lingering heat after the fireline moves through the
area; images from SERF simulation number 30; a) timestep 30; b) timestep 50; c) timestep 100;
d) timestep 200, e) timestep 400; f) timestep 700.

2.3.2 Validation: Comparison to Basic CA

To validate mathematical models, we compare the model output against known fire behavior
and analyze any similarities or differences. For SERF, we made a direct comparison to a much

lower complexity CA model. We began this project by constructing our own basic square-cell CA
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model. For this basic model, each cell is in one of three states: burned, unburnt, or burning, so that
B, (i, j) € {0,1,2} respectively for each cell, (i, j) and time step n. The only parameter represented
in this basic CA model is a heat coefficient for each cell uniformly distributed between 0.5 and 1
such that V(i j),k(i, j) ~ 2 (0.5,1).

All cells are initialized with a value of unburnt, ¥(i, j),Bo(i, j) = 1. We “ignite” a fire by
assigning a selection of cells to the burning stage, such that By(i, j) = 2 for those cells. With each
time step in the loop, each cell that is currently burning may cause a neighboring cell to transition
into the burning stage by a factor that is based on wind direction and speed. With wind speed
W = 0 m/s, the factor governing any of the eight neighboring cells transitioning to burning is 0.5.
With a wind speed greater than 0, the factor increases by 0.4 x W/5 in the direction of the wind,
and 0.3 x W/5 for the neighboring cells to the wind direction, and reduces by 0.4 x W /5 in the
opposite direction from the wind and 0.3 x W /5 for the neighboring cells in opposition to the wind
direction. The cells perpendicular to the wind direction remain with a transition factor of 0.5. The
5 in the denominator for each of these values minimizes the effect of the wind for slower wind
speeds below 5 meters per second. For instance, if we set the wind direction to NW (meaning the
wind is coming from the NW) and the wind speed to 5, then we have the following factor matrix

for the neighboring cells of a particular cell B,(a,b) transitioning into the burning state:

if By(a,b) =2

(a—1,b+1) (a,b+1) (a+1,b+1)

Y

(a—1,b) (a,b) (a+1,b)

(a—1,b—1) (a,b—1) (a+1,b—1)
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0.1 0.2 0.5

=102 0 038 (2.10)

0.5 0.8 09
The new values of the cells are then calculated as the sum of the originally assigned heat
coefficient value described in the first paragraph with these factors above, and then we use the

ceiling function to define the current state of cell (i, j) as 1 (unburnt) or 2 (burning):

Bn(i, ) = [k(i,j) + 7 (i, J)] (2.11)

If the cell value is unburnt (B, (i, j) = 1), the cell remains available for this transition in subsequent
time steps. If the cell is burning, (B, (i, j) = 2), the cell will transition to 0 in the next time step and
remain at O from there on. Thus, in each time step, each cell will achieve one of only three distinct
states: 0, 1, or 2. Once a cell has transitioned into burning, or state 2, the next time step transitions
the cell into the burnt state, 0. Therefore, no cell remains burning for longer than one time step.
The simulation ends when no cell values are equal to 2, or V(i, j), B, (i, j) € {0,1}.

For comparison to SERF, Fig. 2.18(a-d) shows different time steps from that basic model using
a 300 x 300 grid with winds from the North at Smph, and Fig. 2.18(e-h) showing the same domain
with no winds. From these figures, the fireline clearly defines the next movements through the
field of view, and the presence of heavy winds adjusts the fireline significantly. With no winds, this
basic CA model represents the elliptical shape of the fireline with concentric contours as portrayed
in the other papers (Herndndez Encinas et al. 2007; Alexandridis et al. 2008; Yassemi, Dragicevic,
and Schmidt 2008; Progias and Sirakoulis 2013; Ghisu et al. 2015; Gennaro et al. 2017; Mahmoud

and Chulahwat 2017; Zheng et al. 2017; Liu et al. 2018; Freire and DaCamara 2019). The main
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Figure 2.18: 300 x 300 grid for a basic CA model with probability of spread weighted by wind;
(a-d) Northern winds at 15mph; (a) time step 5; (b) time step 75; (c) time step 150; (d) time step
250; (e-h) no winds; (e) time step 5; (f) time step 20, (g) time step 80; (h) time step 150.

difference between this type of CA model and SERF is that the underlying CML model gives
us more information regarding parameters other than the location of the fireline. SERF offers an
opportunity to potentially learn about how the heat transfers from one area to the next, and includes
the time delay between when the fireline crosses through the area and when the fire is completed.
These are important features of a prescribed fire to study in order to mitigate the potential for

firebrands to be blown outside of the burn zone.

2.4 Conclusion

This chapter describes and analyzes a Spatially Extended Radiant heat Fire model, SERF, com-
bining a CA and CML framework, modeling radiant temperatures with data-driven parameters for
fine-scale prescribed fire spread. Using a data set created in the New Jersey Pine Barrens over the
course of five years, we built a spatially extended model using probability distributions for sev-
eral parameters derived from the data set. The use of the data set is unique to SERF and helps to

validate the accuracy of the simulations.

40



While SERF has shown excellent performance in reproducing many of the features of pre-
scribed fires, and it is one of the first non-laboratory data-driven cellular automata models for
prescribed fires, some parts of SERF still need refinement. In future work, we plan to explore a
variety of modifications to increase its accuracy, as it under-performed in some critical parame-
ter settings. We will perform a more advanced analysis of the SERF simulation outputs to assess
how various parameters affect the model’s accuracy. Furthermore, we will study the statistical

properties of the spatial features of fire.

2.5 Appendix: OQutput Images

Figures for each of the five initial conditions (ignition types) are listed below. Each set of
images from the data represents six particular time steps from the fire data. Each set of images
from the SERF simulations represents six time steps from the simulation. Of note within these
images is the similarity between the data set and SERF ignition types. Although the timing of each
varied greatly, looking at the images clearly shows the successful representation of this data set

through this model.
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Figure 2.19: Side ignition: SERF Simulation 4; a) time step 30; b) time step 90; c) time step 200;
d) time step 400; e) time step 600; f) time step 800
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Figure 2.20: Side ignition: data set Fire 120; a) time step 200; b) time step 220; c) time step 250;
d) time step 300; e) time step 400; f) time step 500
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Figure 2.21: Corner ignition: SERF Simulation 25; a) time step 75; b) time step 150; c) time step
300; d) time step 500; e) time step 900; f) time step 1300
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Figure 2.22: Corner ignition: data set Fire 25; a) time step 65; b) time step 80; c) time step 100;
d) time step 150; e) time step 180; f) time step 250
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Figure 2.23: Chunk ignition: SERF Simulation 45; a) time step 30; b) time step 70; c) time step
200; d) time step 300; e) time step 500; f) time step 700
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Figure 2.24: Chunk ignition: data set Fire 145; a) time step 5; b) time step 15; c) time step 30; d)
time step 60; e) time step 100; f) time step 300
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Figure 2.25: Double Chunk ignition: SERF Simulation 90; a) time step 30; b) time step 50; c)
time step 90; d) time step 200; e) time step 500; f) time step 800

(@) Timestep 5 (b) Timestep 20

. (d)'.ilj imé.step 70 °

“.“ . . ‘l‘
D ¥
-. J

Figure 2.26: Double Chunk ignition: data set Fire 3; a) time step 5; b) time step 20; c) time step
40; d) time step 70; e) time step 100; f) time step 160
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Figure 2.27: Spotting ignition: SERF Simulation 63; a) time step 10; b) time step 20; c) time step
50; d) time step 100; e) time step 300; f) time step 600
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CHAPTER 3. DUET: Distribution of Understory using Elliptical Transport

The material presented below is part of the article published in Ecological Modelling (McDanold

et al. 2023).

3.1 Basic description

Here we describe a mechanistic model called the Distribution of Understory using Elliptical
Transport (DUET), using a frequently burned longleaf pine woodland in the southeastern U.S. as
a case study. Two tree species with very different canopy and leaf shapes (pine needles vs. broad
leaves) are used to test the model. DUET uses simplified fall trajectories to determine leaf litter and
grass spatial patterns from a given overstory structure with specified wind conditions. For brevity,
we define leaf litter as only dead leaves and needles. We propose a methodology to model leaf and
needle shedding from trees, accumulation on the surface, decay and compaction over time, and the
effects of litter buildup on grass growth. The model uses elliptical dispersal regions to represent
the area covered by litter as a function of winds and aerodynamic characteristics of falling foliage,
based on surface area and drag coefficients approximated from the average size and shape of an
individual leaf. We verified the methodology by testing changes in tree height, size and shape of

an average leaf, drag coefficients, and wind variance.

3.2 Model design

DUET accesses canopy structure data stored in three-dimensional voxelated density arrays and

produces a discretized spatially explicit array of litter deposited on the ground resolved at meter
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scales. The deposition region from a voxel within the tree canopy is an elliptical area defined by
gravity, local wind estimates, and aerodynamic drag of the foliage that is falling. Models are then
used to account for litter decay and compression effects according to each species’ characteristics,

and grass growth is predicted based on tree shade and litter cover patterns.

3.2.1 Foliage trajectory and deposition

DUET uses species-dependent foliage bulk density for each canopy location in an explicitly
resolved forest, woodland, or shrub layer within the domain of interest as input. Bulk density
values are provided in a three-dimensional voxelated array. Such arrays can be developed from
field measured or remotely sensed data (Linn et al. 2005; Pimont et al. 2016; Parsons et al. 2018).
Voxel size depends on the application, but for the purposes of this work, we choose voxel resolution
of 1 or 2 meters, depending on the simulation.

We assume that in the absence of wind, the foliage from each voxel falls predominantly down-
ward with some oscillating lateral movement due to its unstable aerodynamics. This lateral move-
ment during the fall creates a cone of flight paths from each canopy location that intersect the
ground within a circle of radius, r,,,.,gmeasured in meters. If the ground is flat, 7,,0,,q Tepresents
a minimally sized circular deposition footprint since any other trajectory induced by the presence
of wind will be a longer distance with more dispersed patterns. This is not strictly true for sloped
ground, which will be addressed in future work.

The radius of the resulting deposition pattern is dependent on the time (in seconds) the leaf re-
quires to fall, #¢,;, and the lateral distance the leaf could travel during that time, assuming minimal
wind activity. We assume that the leaf reaches terminal vertical velocity quickly and therefore 774y

is defined using the height off the ground, H¢, divided by the terminal velocity, Vie minals Vierminal 1
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dependent on the average mass and surface area for a leaf or needle for each species, my,; and Az,
the air density for the area, p,;, the acceleration due to gravity, g, and a predefined drag coefficient
for the leaves or needles, Cy, either from literature or species-specific measurements, if available

(Eq. 3.1 and 3.2).

H,
ol = ——— 3.1)

Vterminal

/ 2m fol8
. f— _— 3 .2
Vterminal = i A folCd ( )

To calculate rgypynq, We define the effective radius of the voxel of horizontal dimension dx X dy
to be the radius of the deposition circle if the foliage was located just above the ground when it
fell, ryin = \/dxdy/m. We then add to this minimum radius a distance contributed by oscillating

lateral movement, r,,., of the foliage as it falls from some height > 0:

Tground = Tmin + Yosc 3.3)

We define ry5c = Lyngeps, Where Ly is found by the Cauchy momentum equation in Lagrangian
form. This equation was developed to represent linear transport of a unit of material subjected to
the forces acting on the unit as it travels through a given slow-moving fluid. We use this to represent
the maximum horizontal distance that the leaf or needle can reach within each oscillation step it
takes through the air during its descent. In the model, Ly is calculated by dividing a characteristic
length proportional to \/m, where Ay, is the surface area of the leaf or needle, by the Froude
number, Fr, which represents a measurement of buoyancy. To compute the Froude number, we

assume minimal oscillation velocity |ug|= 0.01. ny,, is the maximum number of steps the leaf or

49



needle can take in the time within which it is falling, 77,,;,. We estimate that oscillation frequency
of the falling foliage is N steps per second. Definition of this parameter and the proportion constant

a could be refined in future work.

a./A Nst
LH:—fOZ F—ﬂ Asteps = |tfall X wep (3.4)
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Figure 3.1: Transformations from wind information for determining dispersal region of leaf or
needle fallout; zonal wind stretch is defined using zonal standard deviation multiplied by fall time;
meridional wind stretch is determined by meridional standard deviation multiplied by fall time;
rotation and displacement are determined by the mean wind speed trajectory

Given the circle defined by rg.punq located at the center of the canopy voxel at coordinates
(xc,ye) within the surface voxel, we now perform displacement, stretching, and rotation to this
circle to find the dispersal area for the foliage (Fig. 3.1). These transformations deform the circle
into an ellipse centered at (cy,cy) with radii r,4jor and 7pinor, aligned along angle 6. To define
these transformations, we use mean horizontal wind velocity components in the x and y directions,

u and v, and their standard deviations, o, and 0,. At the very least, this methodology requires
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estimates of wind velocities during the time when foliage is falling for each year since the last
burn. If more information is available regarding the winds throughout the area, the model allows
for the option to separate the year into equal sections (monthly, 4 seasons, 6-months, etc.), each
with their own wind velocity components. This offers the opportunity to designate a particular
time of year for each specific species to drop their foliage (as different species of trees might drop
their foliage at different times of year) and implement related wind conditions for that time.

Using 774, the mean horizontal displacements in the x and y directions, D, and D, for the ellip-
tical region can be computed by integrating the horizontal wind velocity over this time. For a dis-
cretized spatial and temporal system such as DUET, this collapses to Dy = uyt rq; and Dy = uyt 74y,
because of the terminal velocity approximation (gravitational force and drag force are equal) that
translates to the foliage moving horizontally as the speed of the surrounding air.

We assume that the foliage rapidly reaches the horizontal velocity of the local wind in the i
direction, Uj;, based on its low inertia. With this assumption, the mean horizontal displacement,

D, in the i direction is given by:

dz

Vterminal

h
D= [ Ul (35)

For scenarios where the average ambient horizontal velocity over the height h is known, the for-
mula collapses to:

Lfall

D; = Uidt = Uitfall (3.6)
0

By adding components of displacement in the x and y directions, the net average horizontal
movement of the foliage becomes D = D,i + Dyfwhere i and j indicate the directions aligned with

the x and y axes. The displaced center of the elliptical region for dispersal of the leaves or needles,
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(cx,cy) can be computed as ¢y = x. + Dy and ¢, = y. + D, where (x.,y.) is the center of the voxel

distributing its leaves.
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Figure 3.2: Configuration for the change in major radius of the ellipse when center is displaced

As the circle is displaced to a new location using u and v, the angle of incidence for the cone
becomes an ellipse as shown in figure 3.2. The ellipse is now assumed to be aligned such that the
major axis is directly in line with the displacement vector, D. When the circular cross section with
radius rg,unq Of the dispersion path takes on an angular trajectory onto the ground some non-zero
horizontal distance from (x.,y.), the projected pattern on the ground is much more elliptical in
nature. The projected ellipse is modeled with a minor axis that remains 4,4 , and the major axis

will be stretched into rg;s), to account for the angle of incidence fall trajectory and the ground:

Veround H(Zf + |D|2

— o 3.7
Sin¢ T'ground He (3.7)

Tdisp =
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which equals 7g,,,q for D=0.

For the two stretches, the standard deviation of the winds directly affects the breadth of the
dispersal region. For instance, for high standard deviations in wind direction, the ellipse will be
stretched into a broader area than for low standard deviation. This is to account for areas in which
vast changes in wind directions occur rapidly during the time when the leaves are falling.

The standard deviations of the horizontal wind speeds, 0, and ©,, influence the aligned and
perpendicular stretches of this displaced ellipse when multiplied by the time for the leaves to fall,
Ifall:

Tmajor = Vdisp T fallOu  Tminor = ground + 1t fall Oy (3.8)

The rotation of the ellipse is then determined by calculating the angle between u and v to align
it with the displacement vector, D (Figure 3.1). Note that the stretches are mathematically calcu-
lated before the rotation of the ellipse. Once the rotation occurs, the stretches are affected by the
rotation and are adjusted. In this way, the major and minor axes of the ellipse are affected by both
directional wind vectors once the rotation has been applied.

In matrix notation, we can use projective coordinates to illustrate the process by which each of
the original points within the unit circle move to their new coordinates in the transformed space.
In equation 3.9 the first matrix on the left represents the displacement, the second the rotation, and

the third the aligned and perpendicular stretches:

V(x,y) exXr+y><1:
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I 0 Dy| |cos® —sin® Of |rmgjor 0 of |x
0 1 Dy| |sin6

0 0 1 0 0O I{| O 0 1|1

cos@ O 0 Fminor O | Y| =

(3.9)

This series of matrices can be expressed as AX = E where X is any coordinate within the unit circle,

E is the corresponding coordinate within the transformed elliptical space, and

Ymajor€0SO  —Tpinorsin® Dy
A= TrinorSINO  Finorcos @ D,

0 0 1

To find each point on the edge of the elliiptical region, we use

¢ I 7 - 7] B n A
X X cos @
1 1 1

\ L . L i /

and we find the equations for the edge of the rotated and displaced ellipse:

VO0<o¢o<2r:
EX<¢> |I’maj0r‘COS¢COSQ— |rmin0r|5in¢ sin @ + Dy
Ey(9) | Fminor|SiN @ €08 O + | g jor|cOs @ sin 0 + D,

54

(3.10)

(3.11)

(3.12)



(Ex(¢), Ey(¢h)

minor

}nla_/m‘

Figure 3.3: Rotated elliptical region for litter dispersal with 6 = the rotation of the ellipse, ¢
defined as all radians between 0 and 21, E, and E, as the displaced coordinates at the specific
angle ¢, and the radii defined using the wind information in equation 3.8

Figure 3.3 shows the rotated ellipse and the locations of the angles and measurements for these

equations.

3.2.2 Mass dispersal within the elliptical region

Once the elliptical region is defined, DUET disperses a portion of the mass for each species
from a canopy voxel to a particular location in the elliptical region. Each species drops a fraction
of the mass within the voxel that is shed per year, £4,,, or per time period during the year when
foliage is shed, 4,0p. 4rop is calculated using the inverse of the number of years a species requires
to shed its entire canopy, agyp; €.g., longleaf pine (Pinus palustris) needles are retained for two
years (Stowe 2019). We chose to use ag,,,=2 which makes édrop:1/2-

As foliage falls along a mean trajectory, we assume that the distribution of the foliage within
the deposition region is at its maximum at the center. Since the ellipse defines the outer limit of

the potential deviation from the mean fall trajectory the foliage may achieve during its descent, we
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assume that the deposition load declines linearly from the center to any location on the perimeter
of the deposition region. This means that the distribution of the foliage takes on a conical shape, so
that the peak of the cone is located at the center of the ellipse, where the mean trajectory intersects
the ground, and the distribution reaches zero at the perimeter of the elliptical fall pattern. In the
absence of wind, as the dispersal region is circular, this process creates a circular cone distribution;
in the presence of a wind field, the cone takes on the elliptical base for surface deposition.

Since the integrated mass over the elliptical area is ﬁdmp times the mass within the source
canopy cell, m., we can solve for the maximum mass of the conical distribution, m,,,,, which
occurs at the center point of the ellipse, (cy,cy). We use the equation for the volume of a cone

using the elliptical radii, 74 jor and Fiminor:

1 3édropmc
édropmc = gnrmajorrminormmax 7 Mpax =

(3.13)

TV majorYminor

Once the maximum of the conical distribution is known, the deposited mass of the litter at any
given point within the elliptical region can be calculated using a linear function with m,,,, as the
y-intercept. See section 3.2.5 for the numerical calculation of the mass dispersal.

For each year since the region was last burned, the elliptical deposition region is identified for
foliage falling from all canopy voxels with foliage in them, and the resulting mass depositions are
accumulated in appropriate ground-level voxels. This produces a layering effect with each layer
tracked separately, representing the litter fall per year within the simulation where total litter load

is the sum of the layers in one voxel.
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3.2.3 Litter decay

Decay is an important process controlling litter mass. Olson (1963) illustrates well how vari-
ables decay among ecosystems. We postulate that the loss of litter mass accumulated in year,

Myitter.year> With a decay rate for species S, Dy yeqr, can be written:

aWllitter
.year
T = _DS,yearmlitter,year (3 14)

For mass accumulated in a single year, this becomes

Mijtter,year = (1 —exXp _DS.,year) Miitter,year—1 (3 15)

Litter is dispersed per year with various wind conditions, which results in heterogeneous spatial
deposition each year. We can imagine this as laying down variably thick litter layers across the
forest floor, a layer for each year (or potentially season, depending on the species and location).
As annual layers build up in different areas, the decay rate for each of these layers is affected by
the number and thickness of layers that have accumulated above it (older layers are likely to have
more mass above them). Thus, Dg y.,- might be greater due to moisture retention and compaction
when greater mass of litter is stacked above a specific year’s layer by litter falling in more recent
years (Stephens, Finney, and Schantz 2004; Mueller et al. 2021).

For this proof-of-concept demonstration, we approximate the annual decay of year layer, Dy year,

with the most recent year of deposition defined as Y,, with the linear function:

Vr
DS,year = Z CPsmliller.,j (3.16)
Jj=year+1
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where CP; is a species- and area-specific compaction rate, and myjy,,; is the mass of the litter

deposited in this area during year j. Then we have:

amliller,year . i
ot - Z CPsmlittenj Mijtter,year (3.17)
Jj=year+1
Vr
amassaccum d Z i—1 Mitter,j Jr Yr
]J= 5J
ot - ot - Z Z CPsmliUer>k Miitter, j +mliller,yr (3.18)
J=1 [k=j+1

There are two long-term effects that result from this increasing decay rate with increasing depth:
1) the rate of change of the litter mass with time since last burn decreases with time and can stop

changing when

Yr

Z CPsmlittenk Mijtter,j = Mijtter,y, (319)
k=j+1

:

j=1

and 2) over many years there is an homogenization of litter loads over time as locations where
large amounts of litter falls also eventually gain higher decay rates (Stephens, Finney, and Schantz

2004).

3.2.4 Grass production

Grass production is affected by light availability, belowground competition, and inhibition from
accumulated tree litter (Hiers et al. 2007; Pecot et al. 2007; Montgomery, Reich, and Palik 2010).
The amount of grass is influenced by a litter cover factor, A; (Eq. 3.20), determined by the amount
of litter covering the ground in a particular voxel, along with a shade factor, A, (eq. 3.21), de-
termined by the voxel with the maximum density located above the voxel (x,y). Each of these

factors are divided by Puax species, the maximum density of a given species that can exist within a
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particular voxel.

A= MIN Pjisrer, Pmax,species (3.20)

Pmax,species

_ max; Pspecies,x,y (Z)

pmax,species

A

(3.21)

Once these factors are determined, grass growth is calculated by taking a fraction of the maximum

annual grass growth for the area, grassaum, max in mass/year:

grassy,y = exp — (giA + gsAs) (3.22)

For maximum litter and shade cover, ; = A; = 1 and eq. 3.22 simplifies to exp — (g; + g5), where
g; and g, represent the maximum inhibition of grass growth within the given area for litter cover or
shade, respectively. Note that if Py, and max; Pspecies x,y(2) are equal to 0, we have exp—0 = 1,
and there is no reduction in grass growth.

For circumstances in which only the average value of grass growth is known, we normalize
these values by finding the average value for the grass across the entire domain using the sum of
all of the grass values for every voxel, grass, y, and dividing by the number of cells in the domain,
H\H,, with H, = total voxels in the domain in the x direction, and H, = total voxels in the domain

in the y direction:

Y xy8Tassy,y

3.23
L, (3.23)

8rassy,y =

3.2.5 Numerical implementation

DUET has been designed to create numerical simulations of litter and grass for a designated

virtual environment. The inputs for the system include a canopy voxel array and information
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regarding species and stems per hectare for the area to be simulated. The outputs for the system

were designed to be usable by various existing fire or ecosystem models.

Model Inputs

DUET simulations begin the year of the last burn, in which the previously existing grass and
litter have been consumed, leaving no grass or litter on the ground. This can potentially be adjusted
for existing grass and litter in future work. The provided density array for the shrub or canopy
fuels that exist in the area, pr, must be four-dimensional with three spatial dimensions per species
(fourth index is species), assuming no litter or grass. The first layer of this array may contain shrub
or canopy fuel, however, as some species stretch into the ground-level voxels (depending on height
to foliage on plants and vertical extent of the first cell).

A list of species-specific characteristics, and a list of wind values must also be provided. The
species-specific values required include the maximum density of a species, Ppmax,species» average
crown bulk density within the tree, pug, an average mass for a single leaf or needle, my,;, an
average surface area for a single leaf or needle, Ay, a drag coefficient for the leaf or needle,
Cp, a compaction rate, CP;, a moisture level for the live leaf, M, and a timestep during which
the leaves will be dropping from the tree, 74,,,. For instance, the drag coefficient, Cp, can be
approximated based on the shape of the leaf: a pine needle resembles a thin cylinder which could
be approximately, Cp = 0.6, whereas a broadleaf resembles a piece of paper, which could be
approximately Cp = 2.43.

Wind information must be provided for the area per time step. Although typically we use
year-length time steps, the model can also use shorter time steps to account for the various times

during the year that a particular species will lose its canopy. The wind file must list the year,
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year, the step during the year, year;, and the corresponding average wind speeds in the x and
y directions at canopy height, u and v, along with their standard deviations, ¢, and ¢,. These
can be directly measured for the area, or obtained from gridded meteorological datasets based
either on observations [e.g. Livneh, (Livneh et al. 2013) or the Gridded surface Meteorological
dataset (Gridmet) (Abatzoglou 2013)], downscaled climate model simulations [e.g. Multivariate
Adaptive Constructed Analogs Comparison Project Phase 5 (MACA CMIPS) (Abatzoglou and
Brown 2012)], or fine-scale atmospheric simulations [e.g. HIGRAD (Dupuy et al. 2011; Koo et
al. 2012)]. If a fine-scale atmospheric model is used, the wind field presents as u and v values for
each voxel in the domain array based on the vegetation structure itself, and DUET will calculate
the u,v, 0,,ando, values for the vertical column corresponding to the canopy voxel dropping its

leaves.

Numerical density calculations

Once the deposition distribution pattern for foliage originating from a particular canopy voxel
and species has been defined by the equations in the previous sections, the mass of the foliage is
added to the appropriate ground-level voxel. The mass contribution from each canopy or shrub
voxel that contains m, foliage bulk density to each of these ground voxels, m, , is calculated using

a weighting system based on the conical distribution model discussed above:

lﬂ(xay)
Myy = —g=E gy (3.24)
e h(xy)

where [, is the relative height of the cone distribution pattern within voxel (x,y), and E, is the total

number of surface voxels contained within the entire elliptical deposition region associated with
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this source canopy voxel. [,,(x,y) is defined as:

Ve =0 (o)
V(ex—Ex)?+ (cy — Ey)? (3.25)

ln(x7y) =1-

with (cy,cy) as the coordinate of the center of the ellipse and (Ey, Ey) as the corresponding coor-
dinate for the edge of the ellipse such that there exists a straight line that passes through (cy, cy),
(x,y), and (Ex, Ey). See the complete description for how (Ey, Ey) is calculated in section 3.2.1.
To illustrate how the numerical model applies the conical distribution for a given ellipse, Fig.
3.4 shows the predicted litter bulk density at each of the surface voxels within the defined elliptical
region from a single canopy voxel located 20m high with wind values of u = 9m/s, v = —9m/s,

o, =5m/s, and o, = 12m/s:

40
0.020
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; o015 5
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30 40 50 60
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Figure 3.4: Voxelated density array produced by the program for use within HIGRAD/FIRETEC
fire behavior simulations; the star is the location of a canopy voxel with coordinates (35,35,10)
and wind values of u =9, v= -9, 6, =5, and 6, = 12m/s
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3.3 Results
3.3.1 Simulation setup
Tree maps

We consider four synthetic forests to examine the effects on litter dispersal of several species
and environmental characteristics including the impact of tree height, drag coefficients, wind influ-
ence, average leaf surface area, and decay factors. To show the impact of tree height, we developed
two maps with generalized species characteristics (a conifer species and a broadleaf species), each
with a single small tree and a single large tree. Table 3.1 reports the specific measurements used
in these short versus tall simulations. Note that the drag coefficients, compaction rates, and drop

rates are nondimensional parameters.

Table 3.1: Species specific parameters for short versus tall tree simulations

Height
to max Canopy Drop
Height base Mol A¢y  Decay  Drag
Tree (m) crown heicht (2) (sz) (% /yr) Coeff Compact per
Type radius & § Y year
(m)
(m)

Short, 10 7 5.5 1 0.5 1 0.6 0.2 1/2
Conifer
Tall, 20 14 11 1 0.5 1 0.6 0.2 1/2
Conifer
Short, 10 0 0 2.04 168 0.5 2.43 0.2 1
Broadleaf
Short, 20 0 0 2.04 168 0.5 2.43 0.2 1
Conifer

These parameter values represent average relative relationships developed from a dataset col-

lected at Eglin Air Force Base in Florida, described in further detail below.
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Drag coefficients are used to distinguish fall trajectories for coniferous needles versus broadleaves.

We use a drag coefficient of 2.43 for the broadleaf described above, a relatively flat leaf that will
have more oscillations due to the larger surface area than the conifer. For a coniferous needle,
which has less surface area and therefore will oscillate less as it falls through the air, we use a
drag coefficient of 0.6. A map using two identical trees at 10m tall, Sm height to maximum crown
radius, and Om canopy base height with drag coefficients 0.6 and 2.43 compares drag coefficient
effects.

We also test the model in a domain populated using tree measurements collected at Eglin
Air Force Base in Florida in 2008, a xeric longleaf pine sand-hill forest and grass area with a
subtropical climate (Ottmar et al. 2015). The recorded tree locations span an area of approximately
67m x 106m. The terrain in this area was without slope at that scale. We used this tree dataset to
populate a 400m x 400m domain at 2m lateral resolution using random sampling of the original
dataset while preserving measured stem density for a total of 2163 trees in the domain. This dataset
included two species of trees: longleaf pine (Pinus palistrus) and turkey oak (Quercis laevis). We

used this tree map to test various decay factors and wind field effects.

Wind conditions

To test the effect of winds on the litter deposition, several of the simulations used extreme wind
conditions. Using the standard deviation of the winds as a metric for variability, we evaluated four
idealized wind scenarios, including (1) a “no wind, no standard deviation” (NWNS) scenario where
the litter deposition is solely reliant on height from the tree and atmospheric drag, and represents
the circle with radius rg,unq; (2) a “high wind, no standard deviation” (HWNS) scenario with

strong winds of 15m /s coming directly from the southwest with no standard deviation in trajectory,
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(3) a “no wind, high standard deviation” (NWHS) scenario where wind speeds average spatially to
Om/s, but standard deviation is high at 8m /s in all directions, and (4) a “high wind, high standard
deviation” (HWHS) scenario with high average wind speeds (15m/s), and high standard deviation
(8m/s) in all directions.

Then, we examined litter deposition using a more realistic wind profile to incorporate wind
gusts that likely cause the leaves to fall from the tree. For this purpose, we first spun up a wind field
in HIGRAD using the same Eglin tree plot with a starting wind speed of 13.4112m/s at a height of
34m, which is approximately 10m above the highest tree in the dataset. We used cyclic boundary
conditions as described in Pimont et al. (2016). After allowing the wind to find a relatively steady
state over 600 seconds, we then recorded and averaged the mean wind values and variances in each
voxel over all time steps to find the average wind speeds and the standard deviation at any given
voxel within the three-dimensional domain. We applied DUET using wind information averaged
over all voxels from the ground up to the height of the given canopy voxel, Hc. The values for the

wind scenarios ranged as:

1.1872m/s < u < 13.8865m/s (3.26)
—1.04651m/s <v <0.9614m/s (3.27)
0.0m/s < 6, < 24.3431m/s (3.28)
0.0m/s < 0, <7.4149m/s (3.29)

within the areas that contained the canopy voxels. Tables 3.2 and 3.3 include a list of all the

simulations performed to test the functionality of DUET.
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3.3.2 Basic model functionality

Effects of tree height

To test the model’s ability to distinguish litter dispersal from short versus tall trees, we used

a small domain with 1-m resolution and two general tree types, conifer and broadleaf (CTH and

BTH simulations described in Table 3.2). We applied species characteristics as defined in table

3.1, with wind descriptions as defined in section 3.3.1 and table 3.2. Figures 3.5 and 3.6 show the

results of the tree height comparison.

(a) BTH_NWNS

Tall
L ]
Short
(c) BTH_NWHS
Tall
L ]
Short
0.05 0.15

(b) BTH_HWNS
.
Tall
.
Short
(d) BTH_HWHS
Tall
.
Short
0.25 0.35

Density (kg/m?3)

Figure 3.5: Short versus tall broadleaf tree dispersal for four generalized wind events; a) no wind
or standard deviation (NWNS), b) wind at 15m /s with no standard deviation (HWNS), c¢) no wind
but 8m/s standard deviation (NWHS), and d) 15m /s winds with 8m /s standard deviation (HWHS);
BTH = Broadleaf tree height; black dots are tree bole locations
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The broadleaf tree canopy represented here stretches down to the ground, while conifer trees
have height to live crown distances of Sm and 10m for the short and tall trees, respectively. When
no mean wind is present, litter accumulates primarily below and around trees. Taller trees result in
a broader dispersal area (compare Figs. 3.5a, 3.5¢c, 3.6a, and 3.6¢). With a positive mean wind, the
dispersal area is stretched in the direction of the mean wind. For broadleaf trees, it begins closer
to the base of the tree than for the conifer trees (compare figure 3.5b and 3.5d, and 3.6b and 3.6d).
Figures 3.5c¢, 3.5d, 3.6¢, and 3.6d also show that high wind standard deviations disperse the limited

amount of litter from short trees leading to low litter bulk densities in any given voxel.

(a) CTH_NWNS (b) CTH_HWNS

s
i *

Tall Tall

-
[ ] *
Short Short
(c) CTH_NWHS (d) CTH_HWHS
*
Tall Tall .
* *
Short Short
0.01 0.04 0.07 0.10

Density (kg/m3)

Figure 3.6: Short versus tall conifer tree dispersal for four generalized wind events; a) no wind or
standard deviation (NWNS), b) wind at 15m /s with no standard deviation (HWNS), c) no wind but
8m/s standard deviation (NWHS), and d) 15m/s winds with 8m/s standard deviation (HWHS);
CTH = conifer tree height; black stars are tree bole locations
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Drag coefficient comparison

To demonstrate the influence of the drag coefficient on the litter dispersal region, we used a
small domain with two trees, each of which were 10m tall, 5m maximum radius, Om height to live

crown, with drag coefficients 0.6 and 2.43. Figure 3.7 shows the results of the drag coefficient test.

(a) DCO_NWNS (b) DCO_HWNS
* *
Cp=0.6 Cp=0.6
[ ] *
Cp=2.43 Cp=2.43
(c) DCO_NWHS (d) DCO_HWHS
= *
Cp=0.6 Cp=0.6
* *
Cp=2.43 Cp=2.43
0.01 0.05 0.10 0.15 0.19

Density (kg/m?3)

Figure 3.7: Effect of the Drag Coefficient (DCO) on the dispersal region; all tree characteristics
are identical except for the drag coefficient as labelled on the image where one drag coefficient is
2.43 which represents a flat leaf and the other is 0.6 which represents a needle falling; black stars
are tree bole locations

With the absence of wind influence, the drag coefficient does not affect the dispersal region,
as shown in Fig. 3.7a. A larger drag coefficient expands the dispersal region due to the inverse
relationship with terminal velocity, Viermina (EQ. 3.2). AS Vierminar increases, the time it takes for

the foliage to fall (z7,) increases, which in turn increases the maximum horizontal distance that
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the foliage can be transported and the greater dispersion that can occur, broadening the dispersal

region. Figures 3.7b-d show these expansions clearly.

Decay factor comparison

To show the long-term effects of the decay factor on litter buildup, we ran three five-year sim-
ulations on a 400m x 400m tree map using the two species described in table 3.1. The simulation
tracks how the litter decays when deposited in the first of the five years with no other litter placed

for the duration of the simulation (Fig. 3.8).

Decay Year 1

: . -

Year 2

0.29

Density (kg/m3)

Figure 3.8: Litter decay using (a) DECAY_1.0 = a decay rate of 1.0 in which there is a 63% loss
of mass in one year, and (b) DECAY_0.1 = a decay rate of 0.1 in which there is a 63% loss of mass
per 10 years, or approximately a 10% loss of mass per year
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To develop Fig. 3.8, we calculated the litter deposit for a single year with zero wind influence,
and then applied the decay function with three different decay factors for 5 years without adding
litter after the initial year. With a decay factor of 0.1, we lose 1 —e~%! ~ 10% of the mass each
year; a decay factor of 0.5 results in a loss of 1 —exp~%3 ~ 40% mass per year; and a decay factor

10 ~ 63% mass per year. In the figure, we begin with the same

of 1.0 results in a loss of 1 —exp™
amount of litter dispersal for the first year, which is why the litter maps in the column for year 1
are identical.

Since the decay factor of 0.1 only results in 10% loss of mass per year, the mass on the ground
remains for several years after the initial dispersal. In Fig. 3.8, the top row of year 5 is only
slightly lighter than the top row of year 1, indicating only a slight loss of mass, or approximately

~0.15) ~ 40% mass loss. In contrast, the decay factor of 1.0 resultsina 1 — exp_l'o(s) 99%

1 —exp
loss of mass over five years, which can be seen in Fig. 3.8 in the bottom row on the right, which is

almost completely devoid of litter.

3.3.3 Idealized forest area representation
Litter Buildup Under Randomized Wind Conditions

We performed simulations on a 400m by 400m domain with 2 — m resolution to examine litter
dispersion from trees of variable size and shape. We populated the domain with 2163 trees with
heights ranging from 6.7m to 23.2m, heights to live crown ranging from Om to 17.7m, and height
to maximum crown radius ranging from 1.2m to 12.8m. We chose random wind velocities that

ranged as:

—8.998m/s <u <5.308m/s (3.30)

70



—8.805m/s <v <7.433m/s (3.31)

—7.871m/s < 0, < 8.785m/s (3.32)

—7.396m/s < 0, < 7.330m/s (3.33)

(a) Year 2 (b) Year 4 (c) Year 6 (d) Year 8 (d) Year 10
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Figure 3.9: Output for 10 years of litter deposition with random winds to show accumulation of

surface litter over time

Figure 3.9 shows the litter accumulation over ten years with overlapping ellipses. The layering

effect for these elliptical dispersal regions is clearly shown in this figure. By year 10, there occurs

a clear and direct connection with the canopy structure which is strengthened over time.

Litter deposition under gusty wind conditions

Because litter deposition from the canopy is sensitive to the variation in the wind fields, we next

explored the influence of variation in winds through the large eddy simulation model HIGRAD,

results of which are shown in Fig. 3.10.
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Figure 3.10: WFIELD simulation; Litter deposition for (a) pine and (b) oak, and (c) grass biomass
results from a DUET simulation using wind fields generated by HIGRAD, which captures wind
gusts that cause the leaves to detach from the tree

This more realistic wind field represents how we can account for the fully variable wind condi-
tions for each spatial grid cell within the domain. Since the wind fields in these simulations are a
function of the stand-scale drag, and include minimal wind speeds close to the ground, we can see
that the dispersal regions are restricted closer to the tree locations. Within denser stands, the atten-
uation of mean windspeed dominates the distribution of litter, with occasional gusts distributing

litter farther from originating voxels.

3.4 Discussion

The DUET model is capable of producing a heterogeneous surface litter and grass layer through
a mechanistic representation of leaf litter and herbaceous spatial distribution based on tree canopy
structure. Simulations explore critical phenomena that lead to the surface fuel deposition and

growth patterns, and results agree with expected sensitivities to various canopy and wind parame-
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ters. However, there are processes that affect fuel distribution that are not yet included and contin-

ued efforts to validate the model are necessary.

3.4.1 Opverstory Structure and composition

DUET produces modeled tree litter accumulation that is directly affected by overstory structure
including the height and species-specific characteristics of the trees, in agreement with observa-
tions (Staelens et al. 2003; Nickmans et al. 2019). The model uses the height from which foliage
is falling along with the average mass, surface area, and drag coefficient for the foliage (leaves
or needles) to calculate the fall time for the foliage based on a terminal velocity approximation.
In conjunction with the average wind speeds associated with the time period in which the foliage
falls, this fall time helps to define the breadth of the dispersal pattern possible when falling needles
or leaves reach the ground. The orientation of the wind-influenced fall path elongates the other-
wise circular pattern into an elliptical region if the path is not straight down. Figures 3.5 and 3.6 in
section 3.3.2 show effects of the height of the tree on the deposition region. Species foliage char-
acteristics also influence the width of the deposition pattern. We compare oak leaves, which have
a larger surface area and thus greater drag/mass, to pine needles. This slows down the fall speed
of oak leaves relative to pine needles, increases the time aloft and allows for more lateral disper-
sion; therefore, the spread is generally broader for a given tree height (see Fig. 3.7). Since access
to information on canopy structure is more readily available than understory structure, having a
model that bases the understory on the canopy may provide the necessary precision for improving

fire and ecosystem model inputs (Silva et al. 2016).
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3.4.2 Wind influence

Wind events in the area directly affect when and how the litter falls from the tree (Staelens
et al. 2003). In DUET, we use average wind speeds and standard deviations for the area to define
the shape and size of the dispersal region. As wind is a main driver for mean horizontal movement
of litter while it is falling, we use average wind speed to determine horizontal displacement as
well as the orientation, and length of the ellipse in line with the horizontal trajectory. The standard
deviation of wind speed affects how wide or narrow the ellipse becomes perpendicular to the
displacement vector. We treat the influences of the wind standard deviations as having a diffusion
type effect on the leaves or needles, resulting in a conical distribution of leaves when they land.
While the majority of the leaves follow the mean path, the net pattern of foliage deposition from
any single canopy source is a maximum at the center of the deposition pattern and the loadings fall
off to zero linearly at the perimeter. While currently these wind trajectories are static inputs to the
model, we hope to connect to a database in which we can implement recorded wind information for
various time periods throughout the year and potentially expand DUET to include dynamic wind
inputs. Figures 3.5, 3.6, 3.7, and 3.10 all show the effect wind conditions have on the elliptical
regions and the heterogeneity of the result. In low wind conditions, the dispersal regions remain
close to the tree boles, while high wind conditions result in wider spread. Future iterations of the
model should incorporate a wind intensity vector that accounts for higher rates of litter drop during

high wind events.

3.4.3 Decay Processes

Within DUET, decay processes affect how the bulk density, moisture level, and depth of litter

changes over the years after deposition, as well as the inhibition of grass growth. With the layering
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effect created over years of litter accumulation, the decay processes are affected both by species-
specific decay factors and depth of litter on top. Figure 3.8 shows three different decay factors
and the resulting effect on the litter accumulation through the years after they fall. When a smaller
decay factor is applied, the litter does not decay and reduce as much as a higher decay factor. When
coupled with the layering effect shown in Fig. 3.9, the decay factor has a high influence on the

spatial heterogeneity of litter on the ground over years.

3.4.4 Model Assumptions

As with any mathematical model, several assumptions were made within the design of DUET.
First, we assumed that leaves reach their terminal vertical velocity immediately during the descent,
whereas in reality, the time required to reach terminal velocity is typically reached asymptotically
and depends on the air resistance and weight of the object. The latter assumption may be less
critical for litter resulting from broad leaves than needles as drag forces lead needles to reach
terminal velocity in a shorter time, but a full consideration of velocity is needed in future work.

Further, the decay functions used in DUET are appropriate for shorter timeframes and xeric
sites of the southeastern U.S., but don’t include nutrient cycling, including carbon:nitrogen, detri-
tivore effects as described in De Smedt et al. (2018) and climatic effects on litter decomposition
rates as described in Gavazov (2010). Further expanding the decay function and adding live and
dead fuel moisture information, and grass senescence and decay to the model, would improve
model accuracy and expand the range of ecosystems to which the model can be applied.

DUET does not currently include redistribution of litter by the wind or animal tracking once
on the ground, which is observed predominantly in hardwood litter (Wade and Lunsford 1989).

Many shrub species or trees in shrub stature contribute to the understory characteristics of many
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surface fire regimes, which are currently included as regular trees but can be added as an additional

component to the model.

3.4.5 The need for validation

While the model produces heterogeneity that meets expected patterns for wind, tree height,
and litter type, there is a need for both verification and validation. While verification of a model
confirms that the model is correctly implemented, validation ensures that the model represents the
real system it was built to represent accurately. In this study, we have presented verification of
the DUET model by testing the model’s representation of various idealized scenarios. However,
validation must occur through spatially explicit field data, which are just now becoming available
as scales to test DUET (Hawley et al. 2018). We view DUET as a series of hypotheses that brings
together the basic influential processes involved in how the canopy affects litter buildup, which

will be evaluated against these high-resolution observations in the future.

3.5 List of simulations
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Table 3.2: List of all simulations performed to test various attributes of DUET: PHT = Pine Height,
OHT = Oak Height, DCO = Drag Coefficient, DECAY = Decay rate tests, LD = Large Domain,
and WFIELD = Windfield; NWNS = No Winds, No Standard deviation;, HWNS = High Winds,
No Standard deviation;, NWHS = No Winds, High Standard deviation;, and HWHS = High Winds,

High Standard deviation

Simulation Perturbed Pa- Domain Size  m/cell Trees Winds
Name rameter
CHT_NWNS  Tree height 35 x 35 x25 1Im Conifers: 1@10m, u,v,0,,0,=0
cells 1@20m
CHT_HWNS  Tree height 35 x 35 x25 1m Conifers: 1@10m, u,v,0,,0, =
cells 1@20m 20,20,0,0
CHT_NWHS  Tree height 35 x 35 x25 1m Conifers: 1@10m, u,v,0,,0, =
cells 1@20m 0,0,10,10
CHT_HWHS  Tree height 35 x 35 x25 1Im Conifers: 1@10m, u,v,0,,0, =
cells 1@20m 20,20,10,10
BHT_NWNS  Tree height 35 x 35 x25 1Im Broadleaf: u,v,0,,0, =0
cells 1@10m, 1@20m
BHT_HWNS  Tree height 35 x 35 x25 1m Broadleaf: u,v,0,,0, =
cells 1@10m, 1@20m 20,20,0,0
BHT NWHS  Tree height 35 x 35 x25 1m Broadleaf: u,v,0,,0, =
cells 1@10m, 1@20m 0,0,10,10
BHT_HWHS  Tree height 35 x35x25 1m Broadleaf: u,v,0,,0, =
cells 1@10m, 1@20m 20,20,10,10
DCONWNS Drag Co = 35 x35x25 1m 2 identical Conifers u,v,0,,0, =0
1.28 and 0.6  cells
DCOHWNS Drag Co = 35 x35x25 1m 2 identical Conifers u,v,0,,0, =
1.28 and 0.6  cells 20,20,0,0
DCONWHS Drag Co = 35 x35x25 1Im 2 identical Conifers u,v,0,,0, =
1.28 and 0.6  cells 0,0,10,10
DCOHWHS Drag Co = 35 x35x25 1m 2 identical Conifers u,v,0,,0, =
1.28 and 0.6  cells 20,20,10,10
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Table 3.3: List of all simulations performed to test various attributes of DUET; PHT = Pine Height,
OHT = Oak Height, DCO = Drag Coefficient, DECAY = Decay rate tests, LD = Large Domain,
and WFIELD = Windfield; NWNS = No Winds, No Standard deviation;, HWNS = High Winds,
No Standard deviation;, NWHS = No Winds, High Standard deviation;, and HWHS = High Winds,
High Standard deviation

Simulation Perturbed Pa- Domain Size ~ m/cell Trees Winds

Name rameter

DECAY 0.1 Decay rate = 200 x 200 x 2m 2163 trees - Oak Various winds
0.1 41 cells and Pine for 5 years

DECAY'1.0 Decay rate = 200 x 200 x 2m 2163 trees - Oak Various winds
1.0 41 cells and Pine for 5 years

DECAY 0.5 Decay rate = 200 x 200 x 2m 2163 trees - Oak u,v,0,,0,=0
0.5 41 cells and Pine

WFIELD wind field 200 x 200 x 1m 2163 trees - Oak Windfield de-

41 cells and Pine veloped in HI-

GRAD
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CHAPTER 4. Detecting Chaos in Fire

The material presented below is part of the article that is in preparation for Chaos: An

Interdisciplinary Journal of Nonlinear Science.

4.1 Introduction

For this project, we use a CFD model, HIGRAD-FIRETEC (Linn et al. 2002; Linn et al. 2005),
a coupled atmospheric-fire behavior model (which we shall refer to as “FIRETEC” from here on)
that has been utilized in numerous studies, including those examining fire propagation (Pimont
et al. 2011), fire effects (Linn et al. 2002; Pimont et al. 2016), and the impact of fuel treatments
(Marshall et al. 2020). We choose this model for our study due to the high-fidelity mass and energy
resolutions present in FIRETEC.

Clements et al. (2015) demonstrated that low intensity fires are sensitive to shifts in near-surface
wind dynamics through field collected data during nine burns on different plots. Linn et al. (2021)
used one of those experimental burns to inform a FIRETEC simulation to further illustrate that
small changes in the wind field can have a broad effect on fire behavior. Jonko et al. (2021) used
an ensemble approach with FIRETEC simulations that focused on low-intensity fires in which they
compared 45 simulations with identical conditions except for small perturbations in the ambient
wind field. All of these studies clearly indicate that macroscopic fire behavior is sensitive to small
perturbations in wind conditions. This sensitivity to small perturbations in initial conditions is a

hallmark feature of chaos and nonlinear dynamics.
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There have been several studies done on the nonlinear dynamics of fire behavior. Turcotte
et al. (2007) found self-organized criticality in the frequency of forest fires relating to the area
burned, promoting the concept of scale-invariance in fire occurrence. Similarly, Ricotta, Avena,
and Marchetti (1999) also examined self-organizational trends in wildfire occurrence in Ligurnia,
showing that the ignition mechanism may have the most impactful effect on how it organizes. The
most recent example of chaos theory applied to fire behavior presents a discrete set of equations
developed from a reaction-diffusion equation, similar to the derivation of Lorenz equations for
wind dynamics (Mampel, Egorova, and Pagnini 2023; Lorenz 1963). We employ nonlinear time
series analysis to detect the presence of chaos in model-derived fire behavior data (Kantz and
Schreiber 2003; Malik 2020).

Although there is still some debate on specific mathematical properties of chaotic systems, a
system can be defined as chaotic if it presents sensitivity to initial conditions and deterministic
behavior (Lorenz 1963; Sander and Yorke 2015). Deterministic implies that if we input a unique
input into the system, we will always see a corresponding unique output from the system. Sen-
sitivity to initial conditions implies that if we introduce an arbitrarily small perturbation to that
unique input, the corresponding output may change considerably. There are several methods for
detecting the presence of deterministic chaos in a time series. The most well-known among these
is estimating the maximal Lyapunov exponent, for which there exist several algorithms (Grass-
berger and Procaccia 1983; Wolf et al. 1985; Eckmann et al. 1986; Sato, Sano, and Sawada 1987;
Rosenstein, Collins, and De Luca 1993; Touzé and Chaigne 2000; Akemann, Burda, and Kieburg
2019; Strogatz 2019). These methods measure the divergence between two trajectories that begin
infinitesimally close together, with the maximal Lyapunov exponent representing the rate of this

divergence. Another typical testing method involves calculating several different types of frac-
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tal dimensions. Each fractal dimension offers insights into the system dynamics over time and
gives a measurement of complexity (Lai and Lerner 1998; Sprott and Rowlands 2001; Lacasa and
Gomez-Gardenes 2013; Strogatz 2019).

Accurately estimating Lyapunov exponents and fractal dimensions to determine the presence
of chaos can be challenging when the time series have limited lengths since the existing methods
fail to converge in such situations (Decoster and Mitchell 1991; Gencay and Dechert 1992). The
techniques used in calculating Lyapunov exponents and some fractal dimensions require determin-
ing two parameters: the embedding dimension, the minimum dimension needed to reconstruct a
topologically equivalent attractor to the attractor in the underlying data, and a time delay which
removes any temporal correlations in the time series to avoid oversampling of the data which could
suppress any chaotic signals. These parameters form the basis for phase-space reconstruction of
the dynamical system underlying the time series, and Lyapunov exponents and fractal dimensions
can be highly sensitive to the choices of these parameters. Reliable evaluation of the values for
these parameters can be challenging for shorter time series with limited knowledge of the system,
especially in the presence of noise (Wolf et al. 1985; Eckmann et al. 1986; Rosenstein, Collins,
and De Luca 1993). Also, with a short time series, a time delay embedding can reduce the length
of the series even further which increases the potential for lack of convergence in the method. On
the other hand, without the embedding, we risk oversampling the data which flattens out the dy-
namics and can lead to false results. These methods are also computationally expensive, and often
require manual investigation and adjustment of parameters for every series under study. However,
as this project involves thousands of time series and will therefore require automation, individual

time-series adjustments are not feasible.
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Instead of these more classic chaos detection methods, we use the recently developed Chaos
0-1 test (COI) that uses ergodic theory and Fourier analysis to find the asymptotic growth rate
of the mean squared displacement in a given time series (Gottwald and Melbourne 2004). We
couple this test with an artificial neural network (ANN) that distinguishes between deterministic
and stochastic series using ordinal analysis and permutation entropy (Boaretto et al. 2021). For our
data, we develop a simulation using FIRETEC, with homogeneous fuels, moderate moisture levels,
and low winds. Employing four variables produced by FIRETEC for each cell in the domain, we
design several thousand one-dimensional time series from the curated simulation that we test for
chaotic qualities using the CO1 and ANN tests. We examine these results by variable and series
format, and compare them to known phenomena in physical fire behavior. We show that all four
variables modeled in FIRETEC display a wide range of behavior from stochastic to deterministic

with chaos expressed through the majority of the results.

4.2 Data and Methods

We design these time series with “marginal” fire conditions defined as a fire whose condi-
tions are designed to be just on the tipping point of extinguishment and sustainable combustion
to propagate through the domain. The transition between these states tends to be highly sensitive
to atmospheric and surface conditions. Since our time series are designed with this sensitivity
in mind, we assume the simulation is straddling this transition point and will produce both non-
chaotic and chaotic regimes. In addition, we know that fire behavior is nonlinear. The sensitivity to
wind dynamics viewed in low-intensity fire field experiments (Clements et al. 2015) and previous
FIRETEC simulations (Jonko et al. 2021; Linn et al. 2021) inspires the possibility that a transition

into chaos is possible in these types of fires.
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In this study, we generate time-series from simulations using FIRETEC, a coupled fire-atmosphere
behavior model, to evaluate the chaotic qualities in simulated fire behavior. To assess the presence
of chaos, we use the chaos 0-1 test developed by Gottwald and Melbourne (2004) and an artificial

neural network developed by Boaretto et al. (2021) each of which is described in detail below.

4.2.1 Data
FIRETEC

Although there are various options within the FIRETEC model, we design our series to re-
move any stochastic functions, configuring the program to be fully deterministic. This includes
removing the monte-carlo based radiation program and replacing it with a simpler radiation sink
since convective heat transfer is the main fire spread mechanism, and turning off the options for
firebrands or spotting as this phenomena is minimal in grass fires.

FIRETEC is a Eulerian CFD model simulating the spatio-temporal behavior of fire using Carte-
sian (X, Y, Z) spatial coordinates. We use a domain size of X = 200 and Y = 1200 with horizontal
resolution of 2 m x 2 m for each cell. We have Z = 41 vertical cells employing a cubicly stretched
grid ranging from ~ 1.5 m tall near the surface to ~ 40 m tall near the top of the atmosphere,
resulting in a total domain height of 615 m as defined in Linn et al. (2005). Fuels (vegetation) are
resolved in 3 dimensions at the model’s grid resolution, and characterized by species variables such
as moisture, height, and density. We limit our fuel to homogeneous grass to reduce the number of
variables that could affect the fire behavior and change our results. Our grass is 0.3 m tall at 0.3
kg/m? with 15% moisture as designed in Jonko et al. (2021).

The advantage of using FIRETEC for this analysis is the large amount of information produced

from the simulation. For this analysis, we use two fire variables: the temperature of the solid
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(T) and the convective heat transfer (Q); and two wind variables: the horizontal wind magnitude
v = \/m), and the vertical wind velocity (W). T is measured in Kelvin (K) and is defined
as the temperature of the combination of the grass and the enclosed water (the “solid”), and is
representative of the energy consumed by the fuel. The convective heat transfer, Q, can be defined
as the energy transferred from the gas to the solid fuel in a cell and has units W/m?. The wind
variables are both defined in m/s. Each of these are recorded per cell for every time step. For a
detailed description of the governing equations in FIRETEC for the variables we choose to study,
please see Appendix A.

We simulate a wind field where the primary wind direction flows along the long side (Y) of the
domain with an average speed of 6 m/s at ~ 150 m high in the domain. Turbulence is generated
through randomly placed blocks of vegetation in the lowest five layers of the domain (1 <z <5)
in which the number of blocks exponentially reduce as we get higher in the domain. These blocks
interrupt the flow field, causing turbulence in the winds. Boundary conditions are defined to be
cyclic perpendicular to the primary wind direction. Cyclic boundary conditions essentially make
the domain laterally infinite as described in Linn et al. (2012), allowing flow to pass through the
boundary on one side, and back into the domain on the other side and allows us to consider each x-
coordinate as a separate “fire event” for our time series. To avoid any influence from the boundary
conditions at the lower edge of the domain, we define an ignition transect two cells thick at 100
cells away from ¥ = 0. We “ignite” each x € X along this transect by removing all fuel moisture
and linearly increasing 7' to 1000K over the first 3.5 seconds of the simulation (Linn et al. 2005).
The laterally infinite domain coupled with an ignition line that spans the entire width creates an
“infinite fireline,” which virtually eliminates any edge effects for the simulation that may interfere

with the study.
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Figure 4.1: Average fireline widths for each time step; vertical line at 250 s shows the starting
point for each time series developed. Note that at 250 s, we have reached a level average state
after the initial ramping of the fire behavior due to ignition.

To avoid sampling any unusual fire behavior due to the non-physical ignition, we record sim-
ulation data from 250 seconds to 950 seconds, creating 7001 time steps per series with each time
step representing 0.1 seconds of the simulation. This timing is chosen to allow for the full for-
mation of the fire after the ignition, which can be determined by examining the average fireline
width for each time step. The fireline width is defined as the distance between the cell that has a
temperature 7 > 500K and is farthest from the ignition, and the cell that is closest to the ignition
to reach the same threshold. Once the average fireline width ceases growth beyond the noise of the
simulated environment, we consider it to no longer reflect the non-physical characteristics of the
ignition. Figure 4.1 shows the average fireline width for each time step of our simulation with a
vertical line at 250 s, after which point the fireline width has stabilized. The end of the simulation

is defined to be before the fireline reaches the end of the domain space.
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Figure 4.2: Diagram to illustrate the difference between Lagrangian and Eulerian time series.
Eurlerian series track how the fluid at a particular spatial location changes through time. La-
grangian style series track how a particular fluid parcel changes in space over time.

FIRETEC output is Eulerian (values recorded for each cell per time step). To determine the
presence of chaotic behavior in the changes for each variable through time and space, we choose
a Lagrangian style time series (Fig. 4.2) to track how the energy moves through the domain in the
form of heat. To convert the Eulerian data to a Lagrangian format we track the movement of the
fireline through time for individual x-coordinates in the domain. The fireline, referred to hereafter
as Ys(x), is defined as the series of spatial y-coordinates farthest from the ignition line that achieve
a temperature of the solid 7 > 500K for each time step s € § = {250.0,250.1,...,950.0}. Figure
4.3 shows a top down view of time step s = 2800 = 280 s from the simulation. Note the broad area
that is actively on fire (T > 500K) in black. The off-white line at the top of the black area depicts

the leading edge of the fire as it progresses upward.
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Table 4.1: Table showing the various time series types we developed that use each x-coordinate as
a separate fire event. v represents the variable for the time series, n shows the offset from Y;(x), for
all time steps s. See Egns. 4.5 through 4.8.

Name Description
F,(x) Values of each variable v € V for the fireline locations
L, (x) Values of each variable for cells in front and behind in line with F;(x)

Difference between the values at the fireline and cells in front and behind in

Cun(%) line with F,(x)

Lun(x) Values of each variable for the fireline locations and lateral cells to the left and
’ right, perpendicular to F,(x)

Oy (%) Difference between the fireline and cells to the left and right, offset along the

fireline

Comparison Series

M Fireline Location Y,(x)

Unburnt Fuel Area
Fire Area
Burnt Area

Figure 4.3: Top down visualization of the time step related to 280 s from the FIRETEC simulation.
The fireline location is defined as Ys(x) for the y-coordinate at location x € X = {5,10,15,...,195}
at time s € S = {250.0,250.1,...,950.0}. F,(x) is the value of the variable v eV ={Q,T,UV,W}
at location Y(x). The fireline location is in off-white, the unburnt fuel area is in green, the burnt
area is in brown and the locations that are actively on fire are in black. The small white box is
blown up on either side to show the Direct time series and the Comparison time series. Direct
takes values directly from the variable matrices;, comparison finds the difference between F,(x)
and the values at the particular offset (n) location

Using the fireline, Y;(x), we develop a variety of time series that investigate the fire behavior
from several perspectives. Table 4.1 gives a list of the time series developed from the x-coordinates
in the domain and Fig. 4.3 shows visual representations. A full description of each style of time

series is below.
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To reduce computational expense for our analysis, the four series described in Table 4.1 are
created using every 5 cells from 5 < x < 195 and each of the four variables are described at the top

of this section and in Appendix A. For the equations that follow, we define these sets:

V={0,W,UV,T}, 4.1)

which defines the matrices of variables that are used in each of the series. Each of these variable
matrices are 200 x 1200 cells, recorded from the FIRETEC simulation for each time step in the

bottom vertical layer (Z = 1). Then we have,

X ={5,10,15,...,195}, 4.2)

that defines the 39 x-coordinates used in this analysis. Likewise, the offset coordinates for each

time series N, are defined such that:

N={-3,-2,-1,1,2,3}. (4.3)

As defined above, Y;(x) is the y-coordinate for the fireline at time step s for a particular x-coordinate.

The base set of time series are built from the values of each variable at the fireline, (x,Y;(x)):

Fy(x) = {v(x, Y5(x)) }yes (4.4)
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We include a modified version of F, defined as ¥, in which we only consider every other time
step in S, such that $* = {250.0,250.2,...,949.9} and £, (x) = {v(x,Y,(x))},c¢ for test validation
purposes.

The first “Direct” series, 1, ,(x), tracks each variable for the three coordinates in line with the

movement of F,(x), in front and behind F,(x) Vn € N:

Lon(x) = {0, Ys(x) +1) J e - (4.5)

The second “Direct” series, L,,,(x) shows the value at corresponding lateral coordinates to the left

or right of each specific F,(x) forallve V andn € N:

Lyn(x) = {v(x+n,Yy(x)) }ses- (4.6)

The first “Comparison” series, C, »(x), Finds the difference in the value at the fireline, F;(x), and

those corresponding coordinates in front or behind F,(x) for allv € V and n € N:

Con(x) = {v(x, Ys(x) +n) — F(x) }ses- 4.7)

O,»(x) shows the difference between the value at the fireline and corresponding coordinates to the

left or right of each coordinate, following the path of the fireline for all v € V and n € N:

Oy (x) = {v(x+n,Fs(x+n)) — F,(x) }ses. (4.8)
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Note that each v € V, n € N, and x € X produce different series for each of these types, resulting in
a total of 3900 different time series (975 per variable) used in this study. The above equations are
visualized in Fig. 4.3. Since the I and L series are built directly from the variable values, we refer

to them as the “Direct” series; then C and O are considered the “Comparison” series.

4.2.2 Chaos Detection Methods

We analyze each of the time series described in Sec. 4.2.1 using the chaos 0-1 test (CO1) cou-
pled with an artificial neural network (ANN) for distinguishing between stochastic and determin-
istic chaotic behaviors. An advantage of the two tests we use for this project is that they provide
several different insights into the underlying system. The CO1 test can identify whether the system
is chaotic (K > 0.5) or non-chaotic (K < 0.1), and it is inconclusive when K € [0.1,0.5). The
inconclusive range for the CO1 test does not necessarily infer the absence of chaotic dynamics in
the system but that the results require a more in-depth analysis of the series before concluding the
level of chaos present (Gottwald and Melbourne 2008). As designed, the CO1 test was developed to
identify deterministic chaos (Gottwald and Melbourne 2004, 2016). Thus, some of our results that
indicate chaos may be stochastic as described in Sec. 4.2.2, and require an additional test to rule
out stochasticity. The ANN test recognizes stochasticity with two results, classifying dynamics as

stochastic (2 < 0.1) or deterministic (Q > 0.1).

The 0-1 Test

The chaos 0-1 test (CO1) has been successfully applied for various time series of experimental
data, demonstrating its robustness in identifying chaotic phenomena in different real-world settings

(Litak et al. 2009; Litak, Syta, and Wiercigroch 2009; Savi et al. 2017; Ouannas et al. 2020). CO1
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analyzes the asymptotic growth rate between time steps in a given series (Gottwald and Melbourne
2004, 2009, 2016). The growth rate is defined as the slope of a line fit to changes in the mean
squared displacement as the duration between time steps increases. When the series is chaotic,
the rate will be close to 1, and the translated data will appear disorganized. If the series is non-
chaotic, the growth rate will be close to or less than 0 and the translated data appears bounded and
symmetric. For values that lie in between 0.1 and 0.5, an inspection of the visualizations for each
step should be included to verify the existence of weak chaos or the presence of stability (Gottwald
and Melbourne 2008).

The test involves four steps to calculate the asymptotic growth rate between values through
time. For this description, we have reproduced all equations from Gottwald and Melbourne (2016).
The first step translates each of the time series data points using sin and cos functions, similar to

using the power spectra. Consider a time series ¢(s), s = 1,...,n. Then we translate for each

ce{C}:
pe(n) =Y ¢(s)cos(sc)  qe(n) =) ¢(s)sin(sc) (4.9)
s=1 s=1
where we define {C, }:
4
(G}, p [g?”] (4.10)

where values are randomly chosen from a uniform distribution and applied to this interval, then
sorted from smallest to largest.

The second step in the process is to calculate the mean squared displacement for the p’s and
q’s for each ¢ € {C, }. Using the first tenth of the p and ¢ values to avoid undersampling, we define
new as the closest integer to the total number of time steps divided by 10: ny,; = N//10 and for

eachn € [1,...,ny,|, we calculate:
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We then normalize the mean squared displacement using the squared mean of the series and an

oscillation factor:

—cos(c)

2
Voscl(e,n) = (}V y ¢<s>) TLS(C") (4.12)
s=1

such that:

D (n) = Mc(n) — Vose(c,n). (4.13)

Finally, we calculate the asymptotic growth rate for the normalized mean squared displacement

using a correlation method. Assuming we have 7 = {1,2,3,....n¢,} and D, = {D.(n)}",, we

calculate:
- i, D,
K. = corr (7, 5,) = ——2 L) (4.14)
\/var (#) ,var ( HC)
where we use a typical covariance equation:
1 Neut _
cov(a,b) = — Y (a(s) —a)(b(s) — b) (4.15)
Neur (=1

and var(a) = cov(a,a). To avoid possible resonance for various ¢, we define the K value to be the
median value of all calculated K. which discounts any outliers in the results.

The advantage of the 0-1 test lies within the single value output and the visualizations for each
step in the process. To illustrate the usefulness of the method, we used the Logistic map with a
parameter known to be stable (¢t = 3.5), and one known to be chaotic (4 = 3.91). In Fig. 4.4, the

column on the left corresponds to the stable parameter, and the column on the right to the chaotic.
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Figure 4.4: Visual representation of four steps in the Chaos 0-1 test process. Top row relates
to a chaotic parameter, L = 3.91 and bottom row relates to a non-chaotic parameter, L = 3.5.
Left column is the visual graph of p. versus q.. Second column is the mean squared displacement
between values for each c and each n, the third column represents the asymptotic growth rate of the
mean squared displacement. The right column is the K results for each c, and the median value.
Note the differences in each visual representation for each step.
Each row represents a step in the process and the graphs clearly depict different behaviors for
chaotic or stable systems, showing how easy this method is to interpret.

Figures 4.4a and b show graphs of the translated data for 4 = 3.5 (4.4a) and u = 3.91 (4.4b).
In Fig. 4.4a, the stable behavior is structurally symmetric and organized, where in 4.4b we see the
disorganization of the time series caused by the chaos. The second row from this image shows the
mean squared displacement in blue and the normalized version in red. Figure 4.4c shows the stable
case and Fig. 4.4d the chaotic. Note that if we fit a line to either the blue or red lines they will have
the same slopes which indicates that this normalization process does not affect the growth rate we
seek.

The third row of graphs in this figure (Fig. 4.4e and f) show the calculation of the growth rate.

We can see that the growth rate in the stable case is declining which indicates stability, and the

growth rate for the chaotic case is increasing, confirming the presence of chaos. The test translates
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the data using a variety of different translation variables between 7 /5 and 47 /5. We then use the
median growth rate for all of the transition variables so as to avoid resonance or outliers. The last
row in Fig. 4.4 shows the calculated growth rate for several translation variables. We can see in
Fig. 4.4¢g that the calculated growth rate for stable behavior in the Logistic map is below 0 when we
discount the outlier. For the chaotic case in Fig. 4.4h, all of the values are within [0.95, 1] which
clearly indicates chaos as the values are all close to 1. Note that Fig. 4.4g shows the benefit of

using the median value to avoid any effect caused by outliers.

Chaotic or Stochastic

Stochastic and chaotic time series have similar characteristics, which creates challenges in
distinguishing between the two (Ddmmig and Mitschke 1993; Rosso et al. 2007). A variety of
methods have been developed for distinguishing these states, including using the Shannon entropy,
using a Horizontal Visibility Graph method in conjunction with the correlation dimension, or in-
corporating machine learning algorithms (Rosso et al. 2007; Lacasa and Gomez-Gardenes 2013;
Boaretto et al. 2021). As with the Lyapunov exponent estimation, many of the above methods
require phase-space reconstruction using the time delay embedding parameters. In our case, deter-
mining these parameters is challenging due to the short length of individual time series in our data
and the lack of algorithms that can estimate these parameters for a large number of time series in
an automatized way. Therefore, we choose to use the open source artificial neural network (ANN)
that is designed to make this distinction using permutation entropy (PE) and does not require de-
termination of time delay embedding parameters (Boaretto et al. 2021). PE finds ordinal relations

between the values of time series and calculates the probability of these patterns. This approach
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gives a quantity of complexity or irregularity of the system and how it changes between time steps
(Henry and Judge 2019).

Permutation entropy is calculated by investigating different sequences in each time series and
finding the probability of each permutation. As an example, consider the series {B,D,A,C,E}.
If we use ordinal analysis and split the series into sequences of length r = 3, we have {B,D,A},
{D,A,C}, and {A,C,E} (Bandt and Pompe 2002; Henry and Judge 2019). We assign a permuta-
tion to each sequence based on the order of the letters and which come before or after the others
in alphabetical sequence. The list of permutations for » = 3 includes r!= 3!= 6 possibilities:
123, 231, 312, 213, 321, 132.

Consider our first permutation: {B,D,A}. Since A is the lowest letter in alphabetical order, we
assign it a 1. B is the next highest letter, so it becomes 2, and then D is now 3. This makes the
permutation, {B,D,A} = 231. Similarly, we have {D,A,C} =312 and {A,C,E} = 123. We then
calculate the permutation entropy of order r for the series as Z{!zl —pilog,(p;i). where r! is the
total possible permutations of r and p; = the probability of the ith permutation (Bandt and Pompe

2002).
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Figure 4.5: Output for the artificial neural network (ANN) that detects determinism to distinguish
between chaotic and stochastic behavior. The Logistic results show deterministic behavior for
each run in which the run number relates to evenly spaced parameter values for L € [3.5,4.0]. The
Random results show that all 50 normally random series accurately showed stochastic behavior.

The ANN is trained on flicker noise to find the permutation entropy of the noise (Boaretto
et al. 2021). Flicker noise is a well known stochastic process where the noise is generated from a
power spectra in which the frequency is inversely proportional to the spectral density (Barnes and
Allan 1966). The ANN then calculates the permutation entropy of the time series of order r = 6
and compares the entropy to that of the noise. If the values are similar, (< 0.1 difference) then the
time series is stochastic. If the values differ (> 0.1), the time series is deterministic.

We validate the ANN using 50 normally distributed random series and the Logistic map with
50 parameter values evenly spaced in 3.5 < u <4.0. Fig. 4.5 shows that the ANN output is close to
0 for the normal random series, strongly indicating stochasticity. The logistic map also accurately
presents as deterministic for all runs with p € [3.5,4] in which the system toggles between deter-
ministic chaos and stability. Note that in Fig. 4.5 we can see that there are spikes in the Q output

when the corresponding Lyapunov exponents are negative. Since negative Lyapunov exponents
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indicate highly deterministic non-chaotic behavior, this figure validates that the test is accurately

distinguishing between deterministic and stochastic behaviors.

4.3 Results and Discussion

In the following figures, we represent all 975 series for each variable v € V = {Q,W,UV, T} di-
vided into 39 series at the Fireline, F;,(x), one for each x-coordinate withx € X = {5,10,15,...,195},
and 234 for the 1, ,(x) and L, ,(x) “Direct” series, and the “Comparison” series, C, ,(x) and O, ,(x),
one for each offset coordinate n € {—3,—2,—1,+1,+2,43} (Sec. 4.2.1).

Figure 4.6 summarizes the results for all 3900 time series and shows how each result for the
tests is distributed among the variables. We see that the series are highly chaotic with 79.4% of
the results showing chaos from the CO1 test. The results are also highly deterministic with 84.9%
of the series showing determinism from the ANN test. The highest variance in results from the
CO1 test occurs in UV and T, while the stochasticity is only showing in the winds, UV and W. Q
exhibits the most deterministic chaos among the four variables. In the following sections, we dive

into these results and hypothesize about the motivating factors for some of these outcomes.

4.3.1 Determinism and Stochasticity

If a series is deterministic, we can construct a map that inputs the value at a particular time
step, applies the map, and outputs the value of the next time step with reasonable accuracy. Given
that we designed our FIRETEC simulation to be fully deterministic, we expect that determinism to
show in our results. We can see from the bar charts in Fig. 4.6 that the fire-induced variables are
entirely deterministic. The wind variables, however, show stochasticity in 43% of the time series

from W and 18% of all series using UV
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Figure 4.6: Pie charts showing results for all 3900 time series per test. Top pie shows the results
of the COI test (K), and the distribution of the results by variable in the corresponding bar charts
for each result. Bottom pie shows Q values from the ANN test and their distribution across the
variables. Bar charts show how many series of the 975 developed per variable that had the corre-
sponding result.
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Figure 4.7: Results for Fyy and Fyy with the regular time series and another in which only every
other time step was used ( Fyy and Fy ). Note that the COI test does not show sensitivity to the
length of the series whereas both shorter time series for these variables shows significantly more
stochasticity than the longer series.

To investigate this phenomenon, we test a time series built from every other time step for each
x-coordinate in F,,, doubling the length of the time step, 07 from 0.01 seconds to 0.02. These series,
F;,, have only 3500 time steps instead of the original 7001. When we run the CO1 and ANN tests
on these new series, we see that the CO1 test results are very similar for the short and longer series
as can be seen in the top panel of Fig. 4.7. The ANN test results, however, change significantly

(Fig. 4.7 bottom panel). In fact, the average difference in value for the CO1 test is an order of

magnitude less than the average difference for the ANN test. This indicates two things: (1) the
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CO1 test is less sensitive to the length of the series and the sampling rate than the ANN test and
(2) the design of our time series in conjunction with the structure of the FIRETEC model is likely
breaking the determinism in the system.

FIRETEC is deterministic in three spatial dimensions. However, we construct our time series as
one-dimensional series through the domain. We hypothesize that due to the structure of FIRETEC,
only knowing the variable values for one specific spatial location may not be enough to be able
to map how the system will evolve moving forward. As a three-dimensional system, each cell is
affected by the surrounding cells for atmospheric flow fields as well as fire-related dynamics. The
interval between time steps, Ot influences the radius around the specific cell that will affect the
behavior for the next time step. That is, a smaller time step will require a limited amount of spatial
information surrounding the target step because the three-dimensional flow fields and combustion
processes will not progress as much in a shorter period of time. Alternatively, a longer time step
requires knowledge of a correspondingly bigger spatial region since the amount of movement in the
atmosphere will be much larger. Since our time series only represent the surface z-layer and a single
x-coordinate, we do not include the spatial information for the surrounding cells. This is causing a
break in the determinism of the series. Thus, as the time step gets smaller, the series reflect more
of the deterministic behaviors, whereas the larger time step in £, show more stochasticity as more
information is missing from the deterministic map.

It is not surprising that the wind variables are most affected by the broken determinism, as they
are intricately involved in the three-dimensional flow field and turbulence in the atmosphere. Since
we limited our fuels to grasses that only exist in the surface layer of the domain, the fire will be
more concentrated within that fuel area, and thus require less information from the surrounding

spatial coordinates for prediction. Therefore, the fire variables are less affected by the 7. We
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Figure 4.8: Two-dimensional histogram plot for each variable. Red dotted lines delineate the two
output results for the ANN test () with deterministic when Q > 0.1 and stochastic when Q < 0.1.
Black dotted lines delineate the three output results for the COI test (K) with Non-Chaotic when
K < 0.1, Inconclusive when K € [0.1,0.5), and Chaotic when K > 0.5. Each variable set contains

975 total series.

expect that a canopy fire may have more influence from all three dimensions and therefore may be

Non-Chaotic_E Incon Chaotic Non-Chaotic? Incon Chaotic
5 20 40 60 5 20 40 60
I | [

Number of Points

T

Determinisétic

Number of Points

Q

Stochasticé : : :

5 202 402 60 5 20 ;40 ;60
s n
s H-——t— il

0.1 0.5 1L(I)( 0.1 0.5 1.0

more sensitive to the Of.

4.3.2 Variable and spatial analysis

The results are separated by variable in Fig. 4.8 where we observe a cluster in the bottom

right corner of each panel. This clustering indicates some consistency within the results for each
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variable. The W variable is the most tightly clustered in the bottom right of the graph, showing that
those series were 100% chaotic from the CO1 test with 57% of them being deterministic. The Q
series has two clusters with 97% chaotic from the CO1 test and 100% deterministic, which means
Q has the most deterministic chaos in our set. 7 and UV are laterally spread out across the graph
indicating a variety of CO1 results. As stated above, the UV and W results are much lower on
the graphs due to the lack of three-dimensional information for the map which likely caused a
breakdown in the determinism for the system.

The four variables we investigated for this project are not entirely independent. Convective
heat transfer (Q) is defined as the transfer of heat from one location to another due to the move-
ment of air. Therefore, the behavior of Q is heavily dependent on the wind variables UV and W.
Similarly, the temperature of the solid (7') is directly affected by the convective heat transfer from
the surrounding fuel (see Appendix A.0.3). Thus, although we have separated these components
to develop the time series for testing, we must also investigate the results of all four variables to-
gether for each type of series to evaluate our conclusions. Even though we have 64.3% of all of
the series that are both deterministic and chaotic, we found that only 9% of the time series had
all four variables simultaneously exhibit determinism and chaos, translating to only 88 series in
each variable. Of those sets of 4 that have either non-chaotic or stochastic behavior for at least
one variable, 41% are stochastic in at least one of the wind variables from the ANN test but the
CO1 test shows chaotic behavior in all 4. Based on the discussion above regarding the stochasticity
caused by the length of time step, we may assume that many of those series are actually chaotic,
but require a smaller time step for an accurate diagnosis.

Figure 4.9 shows the percentage of the deterministic chaos results for each spatial location per

series type. In general, we see more correlation with the fireline within the direct series, except
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Figure 4.9: Percentage of results for each series type and offset coordinate. Left column repre-
sents a deterministic ANN test (2 > 0.1). Right column represents a chaotic COI test (K > 0.5).
Rows correspond to variables and the colored borders relate to the series. Axes represent offset
coordinates from the fireline F, asn € N = {-3,-2,...2,3}.
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in the case of Tx. We know the spatial coordinates immediately in front of the fireline are being
heated by convection and are organizing to raise the temperature and begin the combustion process.
Thus, we expect there to be less chaos present in the area immediately in front of the fireline. On
the other hand, just behind the fireline we are fully engulfed in the fire and thus, we expect to have
chaotic behavior as the wind and fuel interact with the ongoing combustion. Panel 7k in Fig. 4.9
shows this spatial phenomenon in our results as the spatial coordinates in front of the fireline (41,
+2, and +3) exhibit very little chaos while those spatial coordinates located behind the fireline
(=1, —2, and —3) show highly chaotic results. The effect is less dramatic in panel Qg as the
percents of series showing chaos is still in the 90s in front of the fireline, but there is still a clear
difference in front and behind the line. This is an indication that the variables within the fire are
indeed chaotic, while those cells undergoing heating before combustion have a broader range of
possible results.

The comparison series have much stronger results than the direct series and do not show the
same correlation with the corresponding firelines. Only 14 series of type C are inconclusive and
only 1 show non-chaotic behavior. This style of series is where the stochasticity shows in the winds.
Wk in Fig. 4.9 shows that both comparison series are highly stochastic while the direct series are
highly deterministic. We note in Fig. 4.9 that the stochasticity of W for the comparison series (Wq)
increases as the spatial coordinates approach the fireline. Although these percentages are small
(15% in Cy 13, 28% in Cy r—_3, and 35% for both Ow r+3), the difference as we approach the
fireline is significant with 0% determinism for Cy 41, and 30% and 15% for Ow r_1 and Ow r41
respectively. For the C series, we find something more pronounced in UV where we have 53% for
Cyv,r+3 and 5% or less for Cyy r+1. Since these are series built from the difference between each

coordinate and the fireline itself, we assume the fireline is affecting the stochasticity of the winds
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Figure 4.10: Results per variable for F,(x) for all 39 spatial coordinates x € X =
{5,10,15,...195}. Panel (a) represents the COI output (K) and (b) shows ANN output (Q).

at the point of ignition, but as we get spatially farther away the values are less affected by the active
combustion of that fireline cell.

We observe strong spatial similarity in the complexity of the fire variable dynamics, leading
to high correlations in the outcomes. When we compare the two fireline time series Fr and Fp
in Fig.4.10, we see this high level of correlation; that is, when we see a local maximum in Fyp
there is often a corresponding local maximum in Fr. The magnitude of these spikes in the CO1
K (Fig. 4.10, top panel) result values are much larger in Fr, but the changes in values between
neighboring spatial coordinates have similarities. Since the Fp values are all close to 1, which is
the maximum boundary result for this test, we hypothesize that the magnitude of changes between

spatial coordinates are suppressed when the values approach that maximum. In the lower panel of

105



Fig. 4.10, we can see similar local maximum and minimum correspondence for these two variables
as well in the ANN Q output. For this determinism result, the magnitudes of the changes are more
closely related, presumably because neither set of results is approaching a boundary for the test

results.

4.3.3 Organizing Dynamics

We design these series in relation to the fireline, the point of transition between the combustion
processes and the area being heated in front of the line. All of the Fyy series are non-chaotic or
inconclusive and the other three variables are clustered with Fp showing all deterministic chaos
and the most clustered values for all series, as can be seen in Fig. 4.10. Fyy is also all chaotic from
the CO1 test, but 4 series show stochastic behavior. Fr shows a high level of determinism from the
ANN test, but 5 of the 39 series have an inconclusive CO1 test. In Fig. 4.9, we see that Fyyy shows
no chaotic behavior at all at the fireline and very little in the surrounding cells from 7 and L, while
these same spatial coordinates are 100% chaotic in W. We assume that this lack of chaos in the
horizontal wind magnitude is due to the effects of entrainment. As the heat from the flames push
the winds upwards during combustion, winds are drawn in from the surrounding atmosphere (Linn
2019). Since the domain is cyclic to create an infinite fireline, these winds are only drawn in from
in front and behind the line. As a result, the horizontal winds close to the fireline self-organize into
these indrafts, reducing the chaotic dynamics (Linn et al. 2012; Canfield et al. 2014).

From the work of Drossel and Schwabl (1992), Ricotta, Avena, and Marchetti (1999), and
Turcotte et al. (2007) we know that fire is a self-organizing system. This implies that the system
tends toward certain organizational patterns. In fire dynamics, this includes fire whirls and the

development of counter-rotational vortices which lead to towers and troughs (Banerjee et al. 2020;

106



Lareau et al. 2022). The high level of correlation between F, and the I, series indicates that there is
a relationship between the fireline and those corresponding coordinates in front and behind the line.
This could be an indication of self-organizing behavior. In particular, our work recognizes some
spatial commonalities in the series among the fire-induced variables 7" and Q. These commonalities
may indicate new organizing dynamics that will need to be investigated further.

There are several previous publications regarding the “towers and troughs™ organizational be-
havior in fire (Finney et al. 2015; Banerjee et al. 2020). This phenomenon shows the relationship
between the atmospheric turbulence and the heat from the fire creating counter-rotational vortices
in the area of the flames. The towers are large updrafts of wind that push the flames upwards, cou-
pled with troughs in which the flames are suppressed by the drawing of that updraft into the tower
(Banerjee et al. 2020). This is one example of a self-organizing behavior within fire dynamics. It
is plausible that since we are using univariate time series, the variance in behavior is showing these
towers and troughs inside the fireline. We postulate that if we could track the towers and troughs
as the fire moves through the domain, we could begin to see how each of these series are affected

by their position within this phenomenon.

4.3.4 Conclusions

This study produced a broad range of results, with implications that the dynamics represented

in FIRETEC within the fire are indeed chaotic and not random. In particular, we find:

* Stochasticity Comes From Series and Program Design. Although we design the configu-
ration of FIRETEC to be a deterministic algorithm, the time series for this project show some

stochasticity. After investigation we find the determinism of the system to be sensitive to the
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length of the time step interval due to dimension reduction methods. More investigation into

different time step intervals is needed.

Fire Variables are Chaotic. Fire induced variables for the temperature of the fuel (7") and

the convective heat transfer (Q) are deterministic and highly chaotic.

Spatial Relationships Affect Chaotic Signals. In front of the fireline there is a significant
decrease in chaotic dynamics from the fireline itself. This is not surprising as the chaotic

qualities of the fire behavior are most likely not present until the moment of ignition.

More Work is Needed. We discussed a variety of hypotheses in this paper, each of which
should be investigated more thoroughly. In particular, more investigation into the stochastic
signals using finer time step data may help to define the sensitivity of the determinism within

the program.
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CHAPTER 5. Conclusions

We set out to enhance existing fire models by providing support models and research to advance
the field of fire science through mathematical modeling. We address how each of these projects

accomplishes our goals in the following sections.

5.1 SERF

SERF uses a five-stage approach to how the radiant temperature changes through the life cycle
of a given fuel cell. Stage one, stable, occurs before any temperature changes in the cell, and
stage two represents the warming of each cell based on the radiant temperature of the surrounding
eight cells. After ignition, stage three represents the rising of the radiant heat in the cell and
stage four represents the falling of the heat after the fuel has been mostly consumed. The final
stage represents the cooling off of the cell back to base temperature. This approach offers the
opportunity to simplify the physical processes of fire behavior to save computational time while
maintaining the relationships between stages of the burning process.

The significant contribution of this work is a novel, low-complexity, data-driven, spatially ex-
tended fire model that employs a coupled map lattice to increase the information provided by the
model and inform the basic CA with continuous radiant heat output levels. This model can ac-
curately represent the speed of the fire as it moves through the area. Moreover, it can accurately
capture the unburnt proportion of land in the SERF simulations, the presence of lingering embers,

the heat coefficients of the fuel on the ground, and the probability of transition between stages.
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5.2 DUET

DUET provides complex, realistic and adjustable representations of tree leaf litter and grass
distributions that directly relate to canopy structure, litter decay, and wind dynamics. Potential
applications of this model include developing realistic heterogeneous surface fuel representations
for spatially explicit fire behavior models and ecological examinations of ecosystem dynamics
dependent on variable representation of litter biomass, including nutrient cycling within senescence
processes and fine-scale fire behavior (Hiers et al. 2009). DUET can also be used to examine finer
scale litter and grass dynamics that can influence coarser scale fuel and fire dynamics in current
stand and landscape level ecosystem models (e.g. (Keane, Loehman, and Holsinger 2011; E. L.
Loudermilk et al. 2011; Scheller et al. 2019)).

DUET has the flexibility to be calibrated for any forest type through the tree species character-
istics, as well as environmental inputs and parameters. By representing leaf fall within an ellipse,
the model allows for approximations within leaf traits, such as surface area and mass, and coarse
dispersal functions. Using DUET, one could vary wind speeds and direction through time and
characterize several possible surface fuel representations for simulating ecosystem or fire behavior
within the area. Our results show how the drag coefficient, wind dynamics, and decay factors affect
litter accumulation though space and time. Through species specific parameterization, the model
can be calibrated for specific species or generalized for a broad range of species (e.g., conifer vs.
broadleaves). Similarly, wind inputs can represent specific wind events or averaged values across
a given area. Such mechanistic models are critical for representations of fine-scale heterogeneity
driven by canopies, their influence on patterns of energy release from fires and resulting patterns

of fire effects, as well as ecosystem renewal applications (R. J. Mitchell et al. 2006).
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5.3 Detecting Chaos in Fire

A broad range of behaviors have been observed in low-intensity fires. Some experience sudden
extinction, while others transition into high-intensity fire. This sensitivity has been studied with
respect to initial wind conditions and moisture content (Wilson Jr. 1985; Jonko et al. 2021; Linn
et al. 2021). In our study, we attempt to capture this potential transition point to test the system
for the emergence of chaotic dynamics using a FIRETEC simulation, a coupled hydrodynamic-fire
behavior model. We find the model presents a broad range of dynamical behaviors with 64.3%
of all 3900 series as deterministically chaotic - a solid result that FIRETEC presents fire behavior
with strong chaotic tendencies. The vast array of results that we found in this study supports the
hypothesis that subtle differences in winds, fuel, or other environmental factors affect fire behavior.
Many of the hypotheses that we make in this paper require significant research and comparison to

real-life data.

5.4 Summary

These projects presented work to provide models and research to better understand low-intensity
fire behavior. SERF provides the mathematical modeling community a novel combination of two
modeling formats (cellular automata and coupled map lattice) in an effort to enhance the infor-
mation that can be gained through a computationally inexpensive fire behavior model. The model
provides the fire science community the potential to develop larger data sets of small-scale fire be-
havior to gain a better understanding of how the radiant heat moves through the area during a fire
at very small-scales. DUET is a mechanistic model that ties the canopy arrangement to the forest
floor by examining litter deposition according to tree species and placement and wind behavior.

This enhances the abilities for large-scale fire behavior models to represent low-intensity fire by
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offering a more heterogeneous surface fuel arrangement for the fire to interact with in the modeling
programs. DUET is a versatile tool for the fire science community and is currently being used by
the Forest Service for investigating surface vegetation heterogeneity and the effect on fire behav-
ior. The chaos study is the first step in examining whole system dynamics to better understand
the motivating factors in fire behavior using FIRETEC. The project presented a variety of gaps in
knowledge regarding how to examine large numbers of series efficiently and may lead to further
work that will provide the mathematics community an expansion of the testing capabilities for
data-driven chaos theory. The fire science community could benefit from the advanced knowledge

that this project could lead to in the future.
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CHAPTER 6. Deliverables

6.1 Articles

6.1.1 First Author

McDanold, Jenna S., and Nishant Malik. “Spatially Extended Radiant Heat Fire Model.” Physical

Review E 107, no. 3 (March 23, 2023): 034133. https://doi.org/10.1103/PhysRevE.107.034133.

McDanold, Jenna S., Rodman R. Linn, Alex K. Jonko, Adam L. Atchley, Scott L. Goodrick, J.
Kevin Hiers, Chad M. Hoffman, E. Louise Loudermilk, J.J. O’Brien, Russ A. Parsons, Carolyn
Sieg, Julia A. Oliveto. “DUET - Distribution of Understory Using Elliptical Transport: A
Mechanistic Model of Leaf Litter and Herbaceous Spatial Distribution Based on Tree Canopy
Structure.” Ecological Modelling (September 1, 2023): 110425.

https://doi.org/10.1016/j.ecolmodel.2023.110425.

McDanold, Jenna S., Alex Jonko, Rod Linn, Sophie Bonner, and Nishant Malik. ”Finding Chaos

in Fire.” Chaos: An Interdisciplinary Journal of Nonlinear Science. In Prep.

6.1.2 Other

Wang Qing, Matthias Thme, Rod R. Linn, Yi-Fan Chen, Vivian Yang, Fei Sha, Craig Clements,
Jenna S. McDanold, and John Anderson. “A High-Resolution Large-Eddy Simulation Framework
for Wildland Fire Predictions Using TensorFlow.” International Journal of Wildland Fire 32, no.

12 (October 18, 2023): 1711-25. https://doi.org/10.1071/WF22225.
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Banesh, Divya, Jonas Lukasczyk, Jenna McDanold, and David Rogers. ”An Image-based
Exploration of Prescribed Fire Simulation Ensembles.” IEEE Transactions on Visualization and

Computer Graphics. Submitted to IEEE VIZ 2024 Conference in March, 2024. In Review.

6.2 Software

6.2.1 SERF

For SERF, we coded the simulation program in MATLAB and created visualizations of the
dataset and output simulations using the MATLAB plotting programs. To begin the project, we
cleaned the dataset described in section 2.2.1, by first taking the 3.1 million matrices of infrared
data recorded and determining which contained heat by searching for a 30% variance in the values
within each matrix through the terminal. We then used the time indexes for the fires to “stack™ each
matrix into a time series tensor for each individual fire in MATLAB, producing over 300 potential
fires. We then visualized these fires to find useful fires without various impurities like condensation
on the lens or a viewing area that was cut off by the end of the burn zone, resulting in the usable
dataset of 74 fires. We calculated various metrics on the dataset fires and translated the data into

several different forms, which can be seen in tables 6.1, 6.2, and 6.3.

6.2.2 DUET

For DUET, we programmed the equations in Fortran90 and Python. The Fortran90 program
has been implemented into the LANL Tree-building program that creates the input files necessary
for FIRETEC or QUIC-Fire. The code takes either a list of trees for a particular area, or generalized
data involving trees per hectare and species information to create a fuel bed for these models and
record them into four .dat files, one each for bulk density per cell, moisture level per cell, fuel depth
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per cell, and sizescale per cell. Sizescale is a parameter related to how the program recognizes fuel
within a cell and allows atmospheric interaction with the fuel (i.e. how the wind moves through
a field of grass). To accentuate the DUET part of the program, I added a section of the code that
takes a given tree list that has a particular domain size, calculating the trees per hectare and general

requirements for the species of trees, and expands the given tree list to cover a larger domain.

* A patent application has been submitted for the methodology of DUET as per the
suggestion from the Intellectual Property Department of the Los Alamos National
Laboratory. Currently, a copyright has been approved for the release of the DUET

program.

6.2.3 Chaos

This project was programmed in Python, using a variety of packages including numpy, mat-

plotlib, scipy, pandas, ordpy, pypsr, 0s, sys, and csv.

The ANN test used in the project is open source at the following link:

https://github.com/brunorrboaretto/chaos_detection ANN/ (Boaretto et al. 2021)
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Table 6.1: All data analysis performed on the dataset received from the USDA Forest Service;
Each line contains information regarding how the data was analyzed and the resulting outputs for

each fire

Cell Label Description

1 Main tensor Flux values for a single fire: z-direction is time

2 File Names List of file names for each time step (z-layer) in the tensor
- correlates to original files within directories and subdirec-
tories for the original raw data

3 Video Info - side Side video information for the flux video of each fire from
the dataset

4 Video info - top Top video information for the flux video of each fire from
the dataset

5 Original fire number Correlates to the first number from the original array of 191
fires after reducing the number of fires to 114

6 Min, Thresh, Max Minimum flux value from tensor, threshold value, maxi-
mum flux value - values determined over all values in the
tensor

7 0-1-2 Matrix Translates the original tensor into a 3-color matrix using
the threshold value from cell 6 with unburnt, burning, and
burnt as the three values

8 0-1-2 Video Video created from 3-color array within cell 7

9 Total Flux Sum of flux values from all cells and all time steps for each
fire

10 Single Cell Array Each fire split into vectors for each cell across all time steps

11 Max Position Matrix First layer: matrix of all max values for each cell through-
out all time steps
Second layer: x-value of corresponding max value
Third layer: y-value of corresponding max value
Fourth layer: time step of corresponding max value

12 Surface Plot Info Information regarding saved surface plot of all max values
for each cell

13 Previous fire number Fire number relating to the list of 114 fires after switch to

75 fires
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Table 6.2: All data analysis performed on the dataset received from the USDA Forest Service;
Each line contains information regarding how the data was analyzed and the resulting outputs for
each fire

Cell Label Description

14

Max Time Matrix

First layer: time step for first “burning” moment in each
cell

Second layer: time step for max flux in each cell

third layer: time step for last “burning” moment in each
cell

15  Max Value Differences = Matrix of Value differences within the max flux matrix:
finds the difference between each cell and its neighbor; 8
layers for the 8 neighbors of each cell:
1=N,2=NE,3=E,4=SE,5=S5,6=SW,7=W, 8=
NW, 9 = firenum, 10 = x-value, 11 = y-value

16  Max Time Differences Matrix of Value differences within the max flux matrix:
finds the difference in time steps between the max value
for each cell and its neighbor’s max cell ; 8 layers for the 8
neighbors of each cell:
1=N,2=NE,3=E,4=SE,5=S5,6=SW,7=W, 8=
NW, 9 = firenum, 10 = x-value, 11 = y-value

17  Change Matrix Value differences for each time step for each cell and its
neighbors: 1 =N,2=NE,3=E,4=SE,5=S,6=SW,7
=W, 8§ =NW, 9 = firenum, 10 = x-value, 11 = y-value

18  Temp Matrix New tensor with Celsius values correlating to infrared val-
ues

19  Final Burned Area The last time step of the 0-1-2 tensor

20  Flux Difference Finds the difference in flux values from one time step to the
next for each cell

21 Flux Statistics Minimum and maximum flux values per cell

22 Temp Statistics Corresponding temperatures for cell 21

23 Temp Difference Transforms the flux values from cell 20 into temperatures

24 Max Temps Lists only the maximum temperatures for each cell

25  K-matrix Finds the highest maximum temp for all cells and finds the

proportion of that maximum that each cell reaches
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Table 6.3: All data analysis performed on the dataset received from the USDA Forest Service;
Each line contains information regarding how the data was analyzed and the resulting outputs for
each fire

Cell Label Description

26  State matrix Finds the state for each timestep in each cell
1 = Basetemps
2 = Warming

3 = Burning and rising
4 = Burning and falling
5 = Cooling

27 Transition Matrix Finds the Markov chain transition matrix for the fire
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APPENDIX A. HIGRAD-FIRETEC

Here we describe the governing equations for calculating the variables we used within FIRETEC
and it’s coupled hydrodynamic solver HIGRAD. HIGRAD-FIRETEC is, in its essence, a modified
Navier-Stokes system that takes an ignition sequence and a fuel bed or canopy arrangement as
inputs. FIRETEC works with HIGRAD to track the fire movement throughout the domain space.
HIGRAD is an atmospheric simulator that uses a Method of Averages scheme to decrease compu-

tational expense (Reisner et al. 2000).

A.0.1 Definitions

Solid: The combination of the fuel and the water within a given material.

Fuel: The dry portion of the solid.

Cell: The three-dimensional cube at a given coordinate in the FIRETEC domain space.

Cylinder: The basic building blocks of the fuel within a particular FIRETEC cell; all fuel
is modeled to be made up of several cylinders such that environmental factors may move

through the area in between each cylinder.

A02 Q

O stands for Convective Heat Transfer and is used in FIRETEC to describe the transfer of heat
from the gas to the solid within a given cell. It is positive when the gas in the cell is hotter than the

solid in the cell as it is measured from the perspective of the solid. The equation is related to the
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basic convective heat transfer formula from Cengel and Ghajar (Cengel and Ghajar 2019):

Q=hy(T,—T) (A.D)

where

h is the convective heat transfer coefficient (units = W /m=2- K1),

* yis a scaling coefficient based off of the relationship of the bulk density to the true density,

T, is the temperature of the gas in the cell, and

T is the temperature of the solid.

Note that since we are subtracting T from Ty, this value can be negative when the gas in the cell is
hotter than the solid. We define each of these parameters below.

The parameter 4 can be derived from using the Nusselt number, which in thermodynamics can
be defined as the ratio of the convective heat transfer to the conductive heat transfer:

ho L

Nu = -
"¢l G,

(A.2)

where C), is the thermal conductivity or specific heat of the air (units = W/ m~'.-K~1),and Lis a
characteristic length which we define as the radius of the cylinder (units = m). When we solve for

h in this equation, we find:

B NuC,
L

h

(A.3)

In practice, we define the Nusselt number as a function of the Reynold’s number to represent
forced convection within the fire. In FIRETEC, the vegetation is modeled as a collection of cylin-
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ders of ranging sizes (i.e. 0.005 m for grass) so that the wind may travel through the cylinders and
spread the fire. Thus, we use a Nusselt number associated with crossflow wind across a cylinder

(Edge and LLC, ):

Nu = 0.683Re"46° (A.4)
and altogether we get:
C
h = 0.683Re400 =L (A.5)
L

with units of W /m~=2- K1,

For the parameter ¥, we use an area per volume and define it as the ratio of the bulk density of
the fuel in the cylinder to the true density of the fuel, multiplied by the radius of the cylinder, L.
The bulk density of the fuel ps is defined as the mass of the fuel to the volume of the cell, and the

true density of the fuel pg is defined as the mass of the fuel to the volume of the fuel.

Prlt

A.6
oL (A.6)

Y=2a

where a is a dimensionless correction factor for a change in orientation of the cylinder. This
equation can be expressed as being the surface area of the cylinder to the volume of the cell and
has units 1/m.

AO03 T

T stands for the temperature of the solid. Using conservation of energy laws, this quantity is

calculated using the specific internal energy of the solid (Ej) divided by the heat capacity for the
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solid material at a constant pressure (Cp 5):

E
T =5 (A7)
Cp7s
We use the Kopp-Neumann Law (Kauwe et al. 2018) to define C,, ;:
C C
Pw+pr

where we take the density of the water within the solid, p,,, and multiply it by the specific heat
of the water at constant pressure, Cp,,. We add that to pr, the density of the fuel within the
solid, multiplied by the specific heat of the fuel at constant pressure, C,, r; and divide that sum by

Pw+ Pr = Ps, the total density of the solid. We define the change in the energy of the solid (Eys) as:

dE;
dt

= Qcomv + O,AHRxN — Ef,m +AHEpyap — Ew,m + Ry (A9)

where we have:

* (O = the convective heat transfer (see Appendix A.0.2)

* O5AHgxn = the amount of energy from combustion returning to the solid with:

— 05 = the proportion of the combustion energy that returns to the solid and

— AHpgxy = the total energy generated through the combustion reaction

e Ef =mysCy ¢Trxy is the loss of energy attributed to mass loss during combustion with

— my = mass of fuel lost
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— C, r = heat capacity of the fuel

— Trxn = temperature of the combustion reaction
* AHgyap = amount of energy lost due to evaporation of the water in the solid
* £, » = the loss of energy attributed to water loss through evaporation

* Ry=—0.80y(T*—T}) is the energy added to the solid through radiation with

—0.8 is an emissivity constant for the fuel

o = 5.678e — 8 is the Stefan-Boltzmann constant,

Y is defined as in Eqn. A.6

T = the temperature of the solid and

T, = the ambient temperature

A.0.4 WIND VARIABLES

The horizontal wind magnitude we are using, UV = v/u? +v? and the vertical wind velocity
W are calculated using HIGRAD, the hydrodynamics solver coupled with FIRETEC. A complete

description and all equations associated with these variables can be found in Reisner et al. (2000).
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APPENDIX B. Limited Glossary

B.1 Fire and Thermodynamics Terminology

Convective Heat Transfer High-to-low temperature transport of energy between a moving fluid

(gas or liquid) and a solid surface (Quintiere 1998).

Fire Behavior The manner in which a fire reacts to the influences of fuel, weather and topography
(“USDA Forest Service Fire Terminology Web Page” 2024); The way a fire burns, such as

how quickly it spreads, how much energy it gives off, and how much vegetation it consumes.

Fireline AKA Fire Front The part of a fire within which continuous flaming combustion is taking
place. Unless otherwise specified the fire front is assumed to be the leading edge of the
fire perimeter (“USDA Forest Service Fire Terminology Web Page” 2024); in FIRETEC, the
fireline is the cells farthest from the ignition source that has a temperature of the solid of

500K or greater.

Heat Coefficient AKA Thermal Conductivity The property of matter that represents the ability to

transfer heat from high-to-low within a substance (Bergman et al. 2011).

Heat Flux The transfer rate per unit area perpendicular to the direction of transfer and it is pro-

portional to the temperature gradient; in a direction defined as x:

i 1.dT
x kdx

* k = thermal conductivity

. ‘é—z = temperature gradient
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(Bergman et al. 2011)

Low-Intensity Fire Flames with an upper bound on the output power range such that the heat
consumes the fuel and produces char, but does not burn hot enough to become a crown fire
(when the flames encroach on the canopy). These types of fires generally move slower than
high-intensity fires and rely on surface fuels as their main driver. Many prescribed burns are
designed to be low-intensity fires as they are easier to control and char increases soil fertility

for ecosystem management (Linn et al. 2021).
Newton’s Law of Cooling The equation for convective heat flux (W /m?):

Q// — h(T:s‘ _ Too)
e h = convective heat transfer coefficient
* Ty = temperature of the surface

* T, = temperature of the fluid
Prescribed Fire is defined by the USDA Forest Service as:

fire applied in a knowledgeable manner to forest fuels on a specific land
area under selected weather conditions to accomplish predetermined, well-defined

management objectives (Wade and Lunsford 1989).

Some examples of these objectives include removing invading species, reducing fuel loads
to minimize wildfire risk, perpetuating fire-dependent species, controlling disease, restoring

ecosystem balance, and nutrient cycling, among other things.

Radiant Heat Transfer Transfer of heat due to electromagnetic energy transfer such as light (i.e.
infrared light) (Quintiere 1998).
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B.2 Ecological Terminology

Broadleaf Trees or plants having leaves that are not needles (Broadleaf 2024)

Conifer Any of an order of mostly evergreen trees and shrubs having usually needle-shaped or
scalelike leaves and including forms (such as pines) with true cones and others (such as

yews) with an arillate fruit (Conifer 2024).

Decay Factor The total mass loss of a plant per unit of time due to decay; decay factors are

affected by moisture levels (Etheridge 1958).

Drag Coefficient A dimensionless quantity used to quantify the resistance of an object moving
through a fluid (gas or liquid); ratio of the drag force on an object to the dynamic pressure

of the free-stream flow times frontal area of the object (Cengel and Ghajar 2019)

I
Cd - %puzA
» F; = drag force on the object in the direction of the flow velocity
* p = mass density of the fluid

* u = flow speed of the object relative to the fluid

* A = the reference area
(Bergman et al. 2011)
Duff The partly decayed organic matter on the forest floor (Duff 2024)

Litter Fallen leaves and other decaying organic matter that make up the top layer of a forest floor

(Litter 2022).
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Overstory The highest layer of vegetation in a forest, usually forming the canopy; the trees in a

forest whose crowns constitute this layer (Overstory 2022)

Understory An underlying layer of [live and dead] vegetation; the plants that grow beneath a

forest’s canopy (Understory 2022).

Xeric : Of, characterized by, or adapted to an extremely dry habitat (Xeric 2022).
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B.3 Mathematical Terminology

Artificial Neural Network A massively parallel combination of simple processing units which
can acquire knowledge from environment through a learning process and store the knowl-

edge in its connections loosely based on the structure of the brain (Haykin 1998).

Cellular Automata A discrete mathematical model or dynamical system of an infinite, regular
lattice in a finite number of dimensions, which consists of cells, each in a finite number of
states. The cells evolve in discrete time steps according to a set of rules based on the state of

both the cell and its neighboring cells (Cellular Automata 2022).

Chaos Aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence

on initial conditions (Strogatz 2019).

Coupled Map Lattice A discrete mathematical model or dynamical system of an infinite, regular
lattice in a finite number of dimensions, which consists of cells, each of which is assigned a
real number from a continuous set of state variables. The cells evolve in discrete time steps

according to a set of rules based on the state of both the cell and its neighboring cells.

Deterministic Causally determined and not subject to random chance; the system has no random

or noisy inputs or parameters (Strogatz 2019).

Embedding Dimension / Time Delay AKA Phase Space Reconstruction Parameters The mini-
mum dimension needed to reconstruct a topologically equivalent attractor to the attractor in
the underlying data by the technique of time-delay embedding; Time delay assists in remov-
ing the temporal correlations that exist in time series due to the sampling rate that one would

like to remove (Malik 2024).
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Eulerian An analysis of fluid flow developed from a frame of reference through which the fluid

particles move (Cengel and Ghajar 2019).

Fractal Dimension An index for characterizing fractal patterns or sets by quantifying their com-

plexity as a ratio of the change in detail to the change in scale (Mandelbrot 1982).

Lagrangian : An analysis of fluid flow developed from a frame of reference attached to moving

material particles (Cengel and Ghajar 2019).

Permutation Entropy A measure of complexity for a system that finds ordinal relations between
the values of time series and calculates the probability of these patterns (Henry and Judge

2019). The Permutation Entropy is defined as:

{!:1 —pilog, (pi)
* r = length of possible permutations
e r!= total number of possible permutations
* p; = probability of the ith permutation
(Bandt and Pompe 2002)
Phase-Space Reconstruction AKA Attractor Reconstruction A data analysis technique in which
the full phase space dynamics of a system governed by an attractor are reconstructed from

a single time series (Strogatz 2019). The reconstruction requires an embedding dimension

and a time delay which are defined above.

Self-Organization The appearance of structure or pattern in the evolution of a nonlinear dynami-

cal system without an external agent imposing it (Heylighen 2001).
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Spatially Extended : A dynamical system that evolves in space as well as time (Malik 2024).

Stochastic Involving or containing a random variable or process (Stochastic 2022).

Transition Matrix AKA Markov Matrix, Probability Matrix, Stochastic Matrix For a system that
could be in n discrete states, a n X n matrix in which the abth element, p,, is the probability

for a cell in state a to transition to state » (Asmussen 2003).
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