
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

7-2012

A Covert Channel Over Transport Layer Source Ports A Covert Channel Over Transport Layer Source Ports

James Gimbi
Rochester Institute of Technology

Daryl Johnson
Rochester Institute of Technology

Peter Lutz
Rochester Institute of Technology

Bo Yuan
Rochester Institute of Technology

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
Gimbi J., Johnson D., Lutz P., and Yuan B. A Covert Channel Over Transport Layer Source Ports. In SAM'12
- The 2012 International Conference on Security and Management (Las Vegas, NV, USA, July 2012)

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Covert Channel Over Transport Layer Source Ports

James R. F. Gimbi, Daryl Johnson, Peter Lutz, Bo Yuan

B. Thomas Golisano College of Computing & Information Sciences

 Rochester Institute of Technology, Rochester, NY, USA

Abstract – Covert communication is a rapidly expanding field

of research with significant impact on the security theater.

These communication methods, or “covert channels”, can be

applied in a number of ways, including as a mechanism for an

attacker to leak data from a monitored system or network.

This paper sets out to contribute to this field by introducing a

new covert channel which operates over transport layer

protocols. The mechanism is flexible, covert, and has the

potential to operate at relatively high bandwidth. In addition,

this paper proposes a number of encoding schemes which can

be used in conjunction with this channel to improve its

bandwidth and covertness.

Keywords: Network Covert Channels, Information Hiding,

Network Security

1 Introduction

A covert channel can be defined as any communication

method where both the data being transmitted and the

existence of the channel itself are hidden from network and

system authority figures. The field has generated much

interest because of its applications on both sides of the

information security industry; while covert channels are useful

for defensive security applications and collaboration between

legitimate security teams, they can also be used by attackers to

covertly leak data from a secure environment.

This paper presents a novel method for leveraging

transport layer source ports as a medium for covert

communication. The technique is flexible and can be applied

in a wide variety of environments. The paper then discusses a

number of possible implementations of this channel. It will

also introduce a collection of encoding mechanisms to use in

conjunction with the channel and will review their utility.

Some of these encoding techniques provide data integrity and

obfuscate the channel from a would-be investigator.

2 Related Work

Covert channels have been the subject of research for

some time. They were originally defined in [1] as any

communication medium not designed or intended for data

transfer but could be used as such. Multiple types of covert

channels have been defined, including storage channels,

timing channels and behavioral channels. This topic was

explored in depth in [2]. A storage channel is essentially any

channel where a shared storage medium is used to encode and

transmit information. A timing channel is any communication

which relies on the time between particular events to encode

and transmit information, instead of shared storage media.

Behavioral channels are broadly defined as any channel where

the mechanism is non-stored and time independent.

The channels covered in [1] are exclusively single

system process-to-process examples. Since then, the definition

of a covert channel has gradually expanded to include

channels between processes on two separate machines over a

computer network. [3] provided solid groundwork for creating

TCP/IP timing channels. The approach encoded data in the

amount of time between to the arrival of two packets. TCP/IP

storage channels were thoroughly examined in [4]. In this

work, data is transmitted in header fields of TCP/IP packets.

Two known works have identified transport layer source ports

as a potential channel medium in passing but did not discuss

how it might be accomplished [5] [6].

3 Covert Channel Over Source Ports

This section defines and outlines a method for using

transport layer source ports as a covert channel. A technical

background will be provided in subsection 3.1. The method

itself is introduced in 3.2. The final subsection will propose a

number of different technical implementations.

3.1 Technical Background

Communication between two computers over modern

network protocols requires the use of what is known as a

network socket. A socket is a tuple of data used to identify

each unique and active connection on a particular machine,

and a socket pair is a tuple containing information for both the

local and remote sockets [7]. While the exact contents of this

tuple will vary depending on which transport protocol is being

used, the TCP socket pair includes the IP addresses of both

machines as well as the port numbers each machine has

committed to the session. The IP addresses help the computer

keep track of which remote machine it is communication with,

while the port numbers help keep track of individual sessions

for that machine. This 4-tuple allows two computers to

manage thousands of unique conversations between them

without risk of data loss on any one session. For example, a

web client can make two distinct GET requests to a particular

the web server for different page elements at port 80. Because

they are two separate requests, different source port numbers

are selected by the client (i.e. port 1,111 for one socket pair,

and port 2,222 for the second socket pair) so the server knows

which remote socket to feed the appropriate HTML response.

While most services are given a dedicated port number

with which to manage all connections, client ports are not

static and will not always be the same under normal

operation. Instead, the source port is generally a pseudo-

random number selected from a given range. Ports selected

like this are known as ephemeral or temporary ports. This

gives the client operating system flexibility when establishing

new connections. There is technically nothing to prevent a

client from using any port within the 16 bit port range (ports 0

through 65,535) but there are suggested standard ranges

which most transport layer protocol implementations observe.

A commonly observed range is maintained by the Internet

Assigned Numbers Authority (IANA) which mandates that

the two most significant bits must be registered as ones,

giving a usable ephemeral range of 49,152 through 65,535 for

a total of 16,384 available ports [8]. While Microsoft

operating systems now follow the recommended IANA range,

legacy Microsoft systems, such as Windows XP and 2000,

use the range 1,025 through 5,000 for a total of 3,976

available ports [9]. Linux systems tend to vary from

distribution to distribution but most use either the IANA

mandate or the range 32,768 through 61,000 for a total of

28,233 available ports.

3.2 Transport Layer Covert Channel

The following method takes advantage of the flexibility

provided by layer four protocols in source port selection and

can be applied to any type of network environment that uses a

layer four protocol, such as TCP and UDP. It consists of a

sender, which will transmit data over the channel, and a

receiver, which will collects the transmitted data. The sender

and receiver must be able to communicate in some legitimate

fashion without being flagged by a security appliance. For

example, this pair might be a web server and client (TCP), a

streaming media server and client (UDP), or some proprietary

protocol.

Each time a new source port is needed there is an

opportunity to transmit up to sixteen bits of information from

the client to the server in that source port field. A one-way

channel is established when a user or process manipulates the

source port to send data. Because all that is modified for this

channel is the contents of a mandatory static length field, it

can easily be piggybacked on top of legitimate traffic. The

channel lends itself to a large number of different encoding

mechanisms, two of which will be outlined in the next section.

While it is possible to use these bits to transmit

absolute data (i.e. sending an ASCII ‘A’ by using port 65), the

channel is made more covert and robust by using the delta

between two consecutive source ports. Using a delta scheme,

no data is actually stored in a given source port; an analyst

could investigate the totality of a guilty packet and find no

leaked data. By contrast, absolute data transmission can easily

be detected by an analyst reviewing a packet. Further, delta

schemes lower the likelihood of colliding consecutive source

ports because repeated characters will not use the same port

number. These collisions could cause problems if the channel

is run over legitimate traffic [10].

Bandwidth for this channel might appear to be limited

because of the tendency of most transport layer protocols,

particularly TCP, to use one socket per session. However, it is

not atypical for multiple sessions to be generated per task. For

example, when a typical web browser retrieves the HTML

document, style sheet, images and other elements from a

single web page it will frequently establish several sessions

with the remote server so that it can make many requests at a

time, enhancing protocol performance. Each of those requests

uses a different ephemeral source port, meaning that simply

accessing a lone web site with many elements can provide

adequate cover for this channel at high bandwidths. Similarly,

any protocol that takes advantage of parallel network sessions

could support high bandwidths with this channel.

If the sender and receiver communicate on a regular

basis the channel does not need to generate any new traffic. If

they do not normally communicate, there is much flexibility

in the traffic that can be used because of the application-

neutral nature of the channel. Virtually any protocol can be

selected for packet generation. This makes the channel simple

to customize for any number of environments without raising

the suspicions of common security appliances or analysts.

The channel does have a number of inherent

weaknesses. For instance, the prolific use of network address

translation technology (NAT) stands to limit the utility of the

channel as described. This is because many NAT

implementations modify the socket pair so that the source port

received by the receiver cannot be reliably controlled. As

such, if the sender lays behind a NAT box this channel is

limited to communicating with other machines behind the

NAT box. Similarly, proxy servers typically change the socket

pair, again limiting the applicable scope of the channel.

Sometimes the use of proxy servers is enforced even within a

LAN, potentially crippling the channel. Legitimate traffic

from the sender can possibly interfere with the channel in two

separate ways. First, if another unrelated process makes use of

an ephemeral port, that port will be locked from other

processes until the TIME_WAIT timer expires. This timer,

built into TCP with RFC793, is designed to ensure that the

socket can still properly handle traffic arriving late from a

closed connection [10]. If the source port required for the next

data transmission is still in TIME_WAIT, a poorly written or

light implementation might crash. While it is possible to work

around this issue, higher level permissions are generally

required. Second, if the sender and receiver communicate for

some legitimate reason outside of the channel process it is

possible that the receiver misinterprets the source port used in

that exchange as part of the message, corrupting the data and

calling to question the integrity of data received over this

channel. This last problem can be effectively eliminated by

using a robust encoding mechanism like the one discussed in

subsection 4.2.

3.3 Potential Implementations

This method can be implemented in any number of

ways ranging from the very clumsy to the very elegant. A

simple implementation might generate false traffic with no

real purpose other than providing a medium for the channel.

Such an implementation would have high bandwidth but

would be easy to identify as it would carry no changing data

except for the source port. A more sophisticated version might

act as a local wrapper for applications to use which would

replace source port addresses for packets it receives and map

it back to the original address, not unlike the basic

functionality of NAT. Legitimate client applications could be

a modified to take advantage of the channel. For example, a

web browser can be modified to use the proper ephemeral port

unless it is communicating with the intended receiving server,

in which case it would use encoded delta ports instead of

standard ephemeral ports.

A much more elegant approach than these might

include a kernel level modification on the sender. For

instance, every time any application communicates with the

intended receiver, the sender kernel selects encoded delta

ports. An implementation like this would eliminate the need to

manage redundancy checking (discussed in section 4.2),

greatly improving bandwidth while only using legitimate user

traffic to transmit data.

4 Encoding Mechanisms

4.1 Simple Encoding Schemes

One example of a simple delta encoding scheme for

this channel is to use the difference between two raw

consecutive port numbers as the value to be transmitted. For

example, if a user wanted to transmit the message “ABC”

over the channel, they might first start a session with the

source port 50,000, followed by 50,065, then 50,131, and

finally 50,198. The differences between each port are 65, 66,

and 67 respectively, which are the values of the ASCII

decimal representations of the above message. This is

represented visually in table 1 where the non-italicized bits

carry the encoded data.

Table 1: Basic 8-bit Encoding of “ABC”

Port Binary Representation

50,000 1100 0011 0101 0000

50,065 1100 0011 1001 0001

50,131 1100 0011 1101 0011

50,198 1100 0100 0001 0110

As mentioned above, IANA recommends that the first

two bits be set to one for ephemeral ports and, although the

range is not a technical limit, traffic coming from any port not

adhering to this rule may trigger a signature in an intrusion

detection system or fail to pass through an internal firewall

[11]. For that reason this encoding scheme should comply

with IANA recommendations, giving the scheme a port range

between 49,152 and 65,535. Once the upper limit of this range

has been reached, the numbers can loop around to the bottom

range picking up where they left off. This function is

described in Equation 1 where and are the range

limits, V is the value to be transmitted, is the current port

and is the next port to be used. For example, if the last port

used was 65,500 () and the next value to be transmitted is

65 (V), it is clear that the port number is going to need to loop

as the port 65,565 is beyond the upper limit. The difference of

the 65,535 () and the last port used should be subtracted

from the value to be transmitted. The sum of that difference

and 49,152 (minus 1 is the next port to be used. In this

case, the next port would be 49,181 ().

 (() (1)

This encoding scheme is somewhat inefficient. The

problem is that no more than eight of the sixteen bits are ever

being used at a time as the difference will never exceed 256.

To increase efficiency while staying within the guidelines set

forward by IANA, twelve or fourteen bits could be used on a

rolling basis. Table 2 illustrates how a twelve bit

implementation might encode the ASCII message “ABC”.

Note that the first four bits, shown in italics, are ignored. The

remaining bits are concatenated with the other port bits and

interpreted as a single binary string. A twelve bit encoding

mechanism such as this would enjoy 50% better throughput

that the eight bit counterpart outlined earlier, and a 14

fourteen bit representation would have 75% better throughput.

Table 2: Basic 12-bit Encoding of “ABC”

Port Binary Representation

49,156 1100 0000 0000 0100

49,539 1100 0001 1000 0011

52,320 1100 1100 0110 0000

In some cases an implementation might not need to

worry about the IANA port standard and would be free to use

all sixteen bits. It may seem logical to simply divide the port

bits in half and use the difference between them, but this

method would forfeit the major benefit of delta encoding

because the data would be completely contained in a single

port number, making it easier for an analyst or security

appliance to identify the channel and discover the data being

transmitted. If a full sixteen bit scheme is selected, a better

solution would be to use the delta between the first byte from

two ports, followed by the delta between the first byte from

the second port and the second byte of the first port. Finally,

the delta between the second byte of the first port and the

second byte of the second port is considered. At that point the

pattern can be reversed and the cycle can continue. This is

demonstrated in table 3.

Table 3: Simple 16-bit Encoding of “ABC”

Port Binary Representation

131 0000 0000 1000 0011

19,654 0100 1100 1100 0110

4.2 Advanced Encoding Schemes

While functional, the above basic encoding methods

can be problematic. The first major issue with these schemes,

especially the eight bit scheme in particular, is that they are

easy to identify. Second, they are all prone to data corruption.

As discussed above, there is a risk that legitimate, unrelated

communication between the sender and received could

interfere with the channel by using source port numbers

within the next delta range. There are 16,384 available

ephemeral ports in the IANA suggested range, meaning the

above eight bit implementation of the channel could be

disrupted by an ephemeral selection of anywhere between 256

and 512 ports. This translates to a chance of data corruption

between 1.56% and 3.13% for every unrelated source port

number. While some practical implementations might be

willing to call this acceptable loss in exchange for simplicity

and bandwidth, there may be cases where a more robust

approach is needed. In these cases improvements can be made

to the encoding mechanism. One such improvement is defined

below.

This more advanced encoding method uses the

available bits left over from the data encoding scheme to help

verify the contents of the next packet. In the previously

discussed eight-bit scheme there remain eight bits in the

sixteen bit port number which is further cut to six bits due to

the IANA ephemeral port definition discussed above. The

ones in the following bit string represent the bits in question:

0011 1111 0000 0000.

These bits will be used as a redundancy check (RC) to

verify that the next source port received is, indeed, part of the

message. To achieve this, an “exclusive or” (XOR) operation

is run between the data bits of the current source port and the

data bits of the previous source port. The resulting bit string is

truncated to fit the available RC bits, depending on

implementation. This method leaves the very first source port

in the chain without data to XOR. To address this problem,

both machines will share a key the same length as the RC bits.

The RC bits in the first source port sent will be the result of an

XOR between that key and the data bits to be transmitted.

When these port numbers are considered in context, it is very

easy to identify and ignore ports that are not a part of the

message, greatly increasing data integrity. This process is

illustrated in figure 1 and an 8 bit example is given in table 4.

Note that the two leading IANA bits are in italics and ignored.

The six bold bits for a given port are the result of an XOR

operation between the data bits in that port and the data bits of

the previous port or the initialization key.

Table 4: Advanced 8-bit Encoding of "ABC"

Port Binary Representation

Key 10101010

49,643 11 000001 11101011

50,478 11 000101 00101110

57,201 11 011111 01110001

Figure 1: Advanced Encoding Process

This method allows only two bits worth of remaining

offending ephemeral ports, or four ports total. This lowers the

chance of data corruption to 0.02%. It should also be noted

that this modified encoding scheme has the additional

advantage of being more difficult for an analyst or security

appliance to detect as it maintains the advantage of being

present only in the delta while making the delta harder to

discover and making the raw source ports jump around.

Once again, this encoding scheme stands functional but

imperfect. If an implementation has no need to adhere to the

IANA port standard, a much improved scheme can be

developed. While maintaining eight data bits a full set of eight

RC bits could be committed to the channel, leaving no chance

of data corruption by unrelated traffic due to a perfect XOR. If

the next legitimate port happens to be selected by an unrelated

program, the real source port would be ignored due to

incorrect RC bits, leaving no corruption. An example of this

can be seen in table 5.

Table 5: Advanced 8-bit Encoding of "ABC"; not IANA

Compliant

Port Binary Representation

Key 10101010

16,875 01000001 11101011

50,478 11000101 00101110

24,433 01011111 01110001

Even if IANA standards must be adhered to, an

improved implementation is possible with an encoding

implementation which uses seven data bits instead of eight.

There would be seven RC bits remaining to ensure integrity,

leaving no chance of data corruption by unrelated traffic for

the same reason outlined above. An example of this can be

seen in table 6.

Table 6: Advanced 7-bit Encoding of "ABC"

Port Binary Representation

Key 10101010

61,429 11 1011111 1110101

57,163 11 0111110 1001011

49,870 11 0000101 1001110

61,200 11 1011110 0010000

5 Conclusion and Future Work

This work presented a new method for leveraging

transport layer source ports as a covert channel. A number of

implementation models were discussed, including an efficient

and covert kernel modification. Additionally, a wide variety

of encoding schemes were proposed and reviewed on their

merit. These contributions open the door to a number of new

methods that warrant further work.

One method that may be worth exploring for future

work is a channel which duplicates regular network traffic

while changing the source port in the duplicate packet. Instead

of using live packets as the medium for the channel, a local

listener on the sender could wait for outgoing traffic destined

for the receiver. Once the traffic is identified, the sender will

create duplicate packets of the legitimate traffic, changing the

source port in each packet to encode the leaking data. In this

instance, the encoded delta is between the legitimate packet

and the modified packet, as opposed to the delta between two

modified packets. This approach has some advantages. First,

legitimate traffic will not have any effect on the channel;

whatever ephemeral source port is selected, the modified

duplicate packet will be able to use whatever port it needs for

the encoding as it will not actually open the socket advertised

locally. Similarly, there is no need to worry about

TIME_WAIT status of the sockets because the socket is never

actually opened. Finally, this approach will allow a much

higher bandwidth in a TCP environment as it will not need to

establish a connection for each delta. The primary

disadvantage to this technique is that it dissolves the features

that make source port delta channels appealing from the

perspective of covertness. There would be a high amount of

unusual traffic over the network, making it easy to tell that

some sort of communication is going on. Further, the new

packets are exact duplicated of legitimate traffic except for the

source port, making it easy for an analyst to identify the

source ports as suspicious and possibly leading to the

discovery of the transmitted data.

Another promising method involves using destination

ports in UDP as a way to transmit data. On many UDP

protocols, when a server receives a connection from a client it

replies back with a new port listed for this particular client to

use. This method allows UDP protocols to keep track of

different “connections” without the benefit of TCP

connectivity facilities. However, there is no limit to this port

switching technique and it may be feasible to leverage rapid

port switching deltas as a covert channel. There would be

some distinct advantages to this method, including that the

channel would survive NAT and proxy interference. Further,

since the role of the sender and receiver is swapped, this

method shows promise as a medium for covert command and

control. A disadvantage associated with this method is that it

would be inherently lossy.

Detection of this channel has yet to be researched. One

approach could be comparing the rapidly changing port

numbers to ordinary network traffic patterns. It may be

possible to identify or prevent this channel by noting source

port selection outside a standard variance.

6 References

[1] B. W. Lampson, “A note on the confinement problem,”

Communications of the ACM, vol. 16, no. 10, pp. 613–615,

1973.

[2] Johnson, D., Lutz, P. and Yuan, B., “Behavior-based

covert channel in Cyberspace,” In: Vanhoof, K., et al (eds)

Intelligent Decision Making Systems. World Scientific, New

Jersey, pp. 311-318, 2009.

[3] S. Cabuk, C. E. Brodley and C. Shields, “IP covert timing

channels: Design and detection”, in Proceedings of the 11th

ACM Conference on Computer and Communication Security,

Washington DC, USA, 2004.

[4] S. J. Murdoch and S. Lewis, “Embedding Covert Channels

into TCP/IP”, in Information Hiding Workshop Proceedings,

Berkeley CA, USA, 2005

[5] R. Bidou, F. Raynal, “Covert Channels,” (2009)

[6] J. Thyer, “Covert Channels Using IP Packet Headers”,

presented at DerbyCon, 2011, Louisville, Kentucky.

[7] Stevens, W. R., B. Fenner, and A. M. Ruddof. UNIX

Network Programming: The sockets networking API. Boston,

MA: Pearson Education, 2004.

[8] Cotton, M., et. al. Internet Engineering Task Force ,

"Request for Comments: 6335 ." Last modified 2011.

Accessed May 1, 2012. http://tools.ietf.org/html/rfc6335.

[9] Microsoft Corporation, "Important notice for users of

Windows XP (SP3)." Last modified 2009

.http://support.microsoft.com/default.aspx?scid=kb;en-

us;196271.

[10] Rfc 793: Transmission control protocol. (1981,

September). Retrieved from http://tools.ietf.org/html/rfc793

[11] Firewall intrusion detection system signature

enhancements. (n.d.). Retrieved from

http://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/

guide/ft_fwIDS.pdf

http://tools.ietf.org/html/rfc793

	A Covert Channel Over Transport Layer Source Ports
	Recommended Citation

	WORLDCOMP'12 Typing Instructions for Preparation of Final Camera-ready Papers

