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Abstract

The problem being analyzed is based on linear elasticity equations that describe displace-

ment in soft tissue under applied body forces in biomedical applications, specifically in the

case of identifying soft tissue cancers. Breast cancer is one of the most common cancers

in women and the second leading cause of death among women in the United States. Early

detection is a key component in the treatment of cancer and can lead to drastic improvement

of patient survival rates. One of the most common methods for early detection of breast

cancer is manual examination, also called palpation. Since cancerous tissue is stiffer on

average than healthy soft tissue, in the presence of a compressive force, the stiffer regions

tend to deform less than the softer regions. Though it is a standard diagnosis technique,

there are drawbacks to using palpation to detect the presence of tumors. Elasticity imaging,

or elastography, can be employed as a method of tumor identification by using imaging

systems such as an ultrasound to measure tissue deformation. The idea behind elastography

is to reconstruct material parameters of the tissue, specifically the tissue stiffness, from mea-

surements of the tissue displacement. The degree of tissue displacement will depend on its

elasticity since changes in tissue stiffness generally correlate to pathological changes in the

tissue. Using this knowledge along with an imaging system, regions that have contrasting

material properties can be identified and quantified.

The task of identifying the tissue stiffness parameter is formulated as an optimization

problem with a system of partial differential equations (PDEs) as a constraint. The optimiza-

tion problem of estimating the tissue stiffness parameter, or the shear modulus, is solved

using iterative methods that require repeated solving of the underlying PDE system (linear

elasticity system). This results in a high computational cost in general and makes these

methods less feasible in clinical applications. The primary goal of this work is to develop

a computational framework based on finite elements for the identification of a distributed

parameter in a system of PDEs where the inverse problem is formulated as an optimiza-
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Elastography Inverse Problem

tion problem. We also propose an adaptive mesh refinement framework that provides the

resolution needed for the recovery of the spatially varying parameter while improving the

computational efficiency.

Chapter 1 introduces the problem, going into both the background and the underlying

linear elasticity system. The finite element method (FEM) for the forward version of this

problem is constructed in Chapter 2, and numerical experiments are run to show that the

underlying linear elasticity system can be solved accurately. Chapter 3 focuses on the

inverse problem, where various numerical experiments explore how well the framework

captures the behavior of stiff inclusions, as well as why an adaptive mesh is desired over a

uniform mesh. Chapter 4 discusses use of measurement data from experiments with tissue

phantoms, as well as data smoothing and some quantitative results/analysis of the estimation

error. Finally, a model extension with a stochastic tissue stiffness parameter is considered

in Chapter 5. A stochastic approximation scheme for identifying a stiffness parameter in a

stochastic elasticity system is also discussed, and numerical results are presented.
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Chapter 1

Introduction

This chapter contains motivations for the study, a brief review of the literature, and an

introduction to an isotropic linear elasticity model for displacement as well as the direct and

inverse (or parameter identification) problems associated with the model.

1.1 Motivation

Early detection is key in the treatment of cancer and improving patient survival rates. The

current most common and effective methods for early detection of breast cancer, for example,

are palpation and mammography. Though it is a standard diagnosis technique in the medical

community, there are several drawbacks to using palpation, or a manual examination, to

detect the presence of tumors. Palpation depends strongly on the experience and expertise

of the examiner, as well as having tumors that are significantly stiffer than healthy tissue and

are close to the surface of the skin. It gives a qualitative assessment of the underlying tissue

stiffness, rather than a quantitative one. Tumors that are small or deep within the tissue may

be unable to be detected using only palpation. Tumors found deeper in the tissue may also

lack the acoustic properties necessary to be detected by ultrasound alone. Another drawback

of a manual exam/palpation is that it does not provide recordable results for comparison over

time (see [1]). Mammography, on the other hand, exposes the patient to radiation, which

is not ideal. To reduce that risk, mammograms are typically only given regularly to certain

groups of patients deemed to be at higher risk. The current recommendation is that all

women receive annual mammograms beginning at age 40. However, for women with dense

breast tissue, mammography may not be a viable screening tool. Ultrasound elastography
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could be a viable alternative in such cases and does not have the same limitations as

mammography. It can be used to give doctors and patients a quantitative assessment for

tumor detection not available using current palpation techniques. This research does not

look to replace mammograms, but would allow early screening for a wider population (also

addressed in [1]).

Elasticity imaging, or elastography, can be employed as a method of tumor identification

by using imaging systems such as an ultrasound to measure tissue deformation. The idea

behind elasticity imaging is to reconstruct material parameters of the tissue, specifically the

tissue stiffness, from measurements of the tissue displacement. When an external, quasi-

static compression is applied to the tissue, the images before and after the compression can

be compared to measure the internal displacement. For example, as in Figure 1.1, the soft

tissue is being compressed by an ultrasound transducer.

Figure 1.1: Tissue being compressed by an ultrasound transducer.

The device sends sound waves and receives echoes as they bounce off the body tissue

and organs of the patient. These echoes are used by a computer to create an image, and

those images can then be used to generate displacement data. Comparing these pre- and

post-compression images to determine displacement is often done by finding the minimum

or maximum of a pattern matching function, the most common of which is cross-correlation,

as mentioned in [2]. The degree of tissue displacement will depend on its elasticity since
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changes in tissue stiffness generally correlate to pathological changes in the tissue (see [3]).

Cancerous tissue is stiffer on average than healthy soft tissue. Thus, in the presence of a

compressive force, the stiffer areas tend to deform less than the softer areas. Using this

knowledge along with an imaging system, regions that have contrasting material properties

(i.e. healthy versus cancerous tissue) can be identified and quantified.

1.2 Literature Review

The field of elastography emerged in the early 1990’s, with contributions from many different

authors such as Barbone, Gokhale, Oberai, and Ophir, to name a few. There are two types

of elastography, static (or quasi-static), where a constant force is applied to the tissue, and

dynamic, where the force applied to the tissue varies with time. For this research we are

focusing on the isotropic, nearly incompressible, quasi-static elasticity problem. One of the

first reported clinical applications of quasi-static elastography was strain imaging of breast

tissue as discussed in [4]. Initial methods for solving the elasticity problem focused on strain

imaging, which worked under the assumption of uniform internal stress and were obtained

from differentiating the displacement data. However, while it can improve diagnosis over

ultrasound alone, strain imaging is prone to artifacts in the resulting images, in part, because

of the assumption of a uniform internal stress, which is also not valid in clinical settings

(see [5] and [6]). Over time, it was realized that there were better, potentially more accurate

methods that could be explored. There are two main approaches in elastography, direct and

iterative. The direct approach involves solving the strong form of the equilibrium equations,

while an iterative method reformulates the problem as a nonlinear optimization problem

that uses the weak form of the equilibrium equations (see [6]). In this research we will be

taking an iterative approach.

Many researchers from the mathematics and the biomedical engineering communities

contributed to the advancement of the problem with deterministic models over the years.

A review of the various approaches to the inverse elasticity problem can be found in

[7] as well as the different types of elastography in [8]. Barbone and Oberai [9] also
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gave a comprehensive review of both the mathematics and the computational foundation

behind biomechanical imaging in general. As discussed in [10], one of the earliest efforts

towards solving the inverse problem came from Raghavan and Yagle [11] in 1994 where

they used finite differences and measured strains to reconstruct the elasticity. Others

such as Kallel and Bertrand [12] and Doyley and Bamber [13] also had success obtaining

good reconstructions using an optimization approach. Work by Goenzen et al. [14]

addresses reconstruction of linear and nonlinear elastic parameters for the purpose of

identifying tumors in patients with known breast lesions, and Tyagi et al. [15] studied

the reconstruction of shear modulus images using force data. Jadamba, Khan, Oberai,

and Sama [16] proposed a computational framework with first- and second-order adjoint

methods using finite elements for the solution of the elasticity imaging inverse problem.

Arnold et al. [17] proposed methods to improve the computational efficiency by mesh

adaptation and a clustering technique for the parameters describing tissue stiffness.

In recent years, inverse problems involving stochastic partial differential equations

(PDEs) have become increasingly popular, and though the idea of solving a stochastic

version of this problem is relatively recent, stochastic PDEs have been around for quite

some time. In our case, the motivation behind considering a stochastic model is that the

range for the tissue stiffness parameter is varied from patient to patient and this allows a

natural uncertainty to be incorporated into the linear elasticity model we consider. On the

forward problem front, one such model with nearly incompressible elasticity is considered

in [18] where Young’s modulus (one of the characteristic measures of tissue properties) is a

spatially varying random field. The tissue stiffness parameter is therefore a random variable

in such models. We consider a stochastic model similar to this in our inverse problem

and use the so-called stochastic approximation method for the solution of the optimization

problem under consideration.

The inverse problem of identifying stochastic parameters in stochastic PDEs (SPDEs)

from the measurement of the SPDE solution attracted a great deal of attention in recent

years. The most commonly adopted approach for this type of problem is a Bayesian approach

which conditions a prior distribution on the coefficient function on observations of the PDE
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solution. The variational approach that is suitable for estimating distributed and spatially

correlated parameters in SPDEs consists of formulating a stochastic optimization problem

whose solution can give us information on the unknown parameter’s stochasticity/statistics.

The main advantage of this approach is the access to a wide-ranging collection of efficient

and reliable optimization algorithms. Another advantage is a framework for convergence

analysis, and easy inclusion of the parameter’s structural characteristics into the inversion

process. There are two main approaches for obtaining a stochastic optimization formulation

in the variational case; the first one is to define an unconstrained stochastic optimization

problem and the second one is to introduce a constrained stochastic optimization problem

where the underlying PDE is a constraint.

The stochastic approximation method and its variations have been used in many types

of optimization problems. An overview of the stochastic approximation method is found

in [19] where the focus is on Kiefer–Wolfowitz (KW)-like methods which are gradient-free

or stochastic zero-order algorithms, Robbins–Monro (RM)-like methods, and stochastic

gradient or stochastic first-order algorithms. Notable recent works where the application

is focused on optimization problems with PDEs are by Geiersbach and Pflug [20] and

Martin et al [21]. A projected-gradient-type stochastic approximation algorithm was also

proposed in [22] for identifying a deterministic parameter in a stochastic partial differential

equation. This approach was expanded upon in [23] where a convex stochastic optimization

formulation of the underlying problem is introduced and together with a stochastic Galerkin

method is applied for the finite element discretization. We aren’t aware of other works where

stochastic approximation methods are applied along with adaptive mesh refinements in a

stochastic elastography inverse problem. Much of the research works in inverse problems in

stochastic partial differential equations so far have been concentrated on the various cases

where the underlying PDE is scalar. The problem that we study is a vector problem and it

involves a system of partial differential equations.

For both the deterministic and the stochastic versions of the model under consideration,

we use a finite element method discretization and adaptively refined meshes where the mesh

refinement is based on a heuristic error indicator. Adaptive mesh refinements are crucial in

5
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improving the resolution and the error in distributed parameter identification. The iterative

algorithm that we use for the solution requires repeated solving of the forward problem.

Hence, overall computational efficiency is greatly improved by the use of adaptive mesh

refinement. Other areas for improvement in the field include data smoothing, an optimal

choice of the regularizer and the regularization parameter, and error estimates for the

optimization problem.

1.3 Isotropic Linear Elasticity System

This section will focus on the model parameters and the equations for the isotropic, nearly

incompressible linear elasticity system related to deformation in solid objects under applied

loads that are relevant to the application of the inverse problem in the deterministic setting.

If a body force, 𝑓 (𝑥, 𝑦), is applied to an elastic object, there will be some kind of

deformation. Now assume that there is a point (𝑥, 𝑦) inside the object. When the force is

applied, it will move from the point (𝑥, 𝑦) to the point (𝑥 + 𝑢1(𝑥, 𝑦), 𝑦 + 𝑢2(𝑥, 𝑦)), where

the vector 𝒖 = 𝒖(𝒙) =

𝑢1(𝑥, 𝑦)

𝑢2(𝑥, 𝑦)

 is the displacement vector. The forward problem, also

known as the direct problem, is to solve the system to be considered for the displacement

vector, 𝒖, i.e. the goal is to know how every point in the domain displaces when the applied

forces and material properties are known. Specifically, things that are known in the forward

problem are the boundary conditions, the Lamé parameters, 𝜇 and 𝜆, which are material

properties or properties of the body, and the force applied to the body.

This system is considered isotropic because the elastic response is the same in every

direction. Under the assumption of an isotropic object, the displacement satisfies the

following equations:

−∇ · 𝜎 = 𝒇 in 𝐷

𝒖 = 𝒈 on Γ1 (1.1)

𝜎 · 𝒏 = 𝒉 on Γ2

6
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where 𝐷 ∈ R2 is the domain and the boundary, 𝜕𝐷, is partitioned into two parts, Γ1 and

Γ2. Interpretation of the Dirichlet boundary conditions imposed on Γ1 is the prescribed

displacement on this part of the boundary. For the time being, we confine ourselves to

homogeneous Dirichlet boundary conditions, 𝒈 = 0 (the boundary is pinned), on the whole

boundary for simplicity.

Figure 1.2: Generic domain showing a partition of the boundary.

In general, mixed boundary conditions are considered on 𝜕𝐷 = Γ1 ∪ Γ2 (see Figure 1.2,

for example) where 𝒖 is specified on Γ1 and the so-called traction boundary condition

𝜎 · 𝒏 = 𝒉 is imposed on Γ2 as shown above, where 𝒏 is the outward normal vector, and 𝒉

is the rule for how points along the boundary move in the normal direction.

The stress tensor 𝜎 is a matrix that depends on the displacement, 𝒖. It is given as

𝜎 = 2𝜇𝜀𝒖 + 𝜆tr(𝜀𝒖)𝐼 . (1.2)

Elastic properties of the object are described by the shear modulus 𝜇 = 𝜇(𝒙), also called the

tissue stiffness parameter, and the bulk modulus 𝜆 + 𝜇. The shear modulus 𝜇 describes the

object’s response to the shearing motion and the parameter 𝜆 describes its compressibility.

It is also common to work with Young’s Modulus, 𝐸 , and the Poisson ratio, 𝜈, rather

than 𝜇 and 𝜆. Expressions for these parameters are as follows

𝐸 =
𝜇(3𝜆 + 2𝜇)
𝜆 + 𝜇 , 𝜈 =

𝜆

2(𝜆 + 𝜇) (1.3)

𝜇 =
𝐸

2(1 + 𝜈) , 𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) . (1.4)

7
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The linearized strain tensor, 𝜀𝒖, is also a matrix and is given as

𝜀𝒖 =
1
2

(
∇ 𝒖 + (∇ 𝒖)𝑇

)
, (1.5)

where ∇ 𝒖 is the Jacobian of 𝒖. The strain tensor represents the elastic response of the body.

We can use this linearized version if we assume the displacement is reasonably small. Then,

since 𝜀𝒖 is linearized, 𝜎 is also linearized. The matrices associated with this component

can be considered as well,

∇ 𝒖 = ∇

𝑢1

𝑢2

 =


𝜕𝑢1
𝜕𝑥

𝜕𝑢1
𝜕𝑦

𝜕𝑢2
𝜕𝑥

𝜕𝑢2
𝜕𝑦


𝜀𝒖 =


𝜕𝑢1
𝜕𝑥

1
2

(
𝜕𝑢1
𝜕𝑦

+ 𝜕𝑢2
𝜕𝑥

)
1
2

(
𝜕𝑢1
𝜕𝑦

+ 𝜕𝑢2
𝜕𝑥

)
𝜕𝑢2
𝜕𝑦

 .
Notice that the trace of 𝜀𝒖 is equivalent to the divergence of 𝒖, which is a scalar equal to

the sum 𝜕𝑢1
𝜕𝑥

+ 𝜕𝑢2
𝜕𝑦

. So, equation (1.2) can be rewritten as

𝜎 = 2𝜇𝜀𝒖 + 𝜆div(𝒖)𝐼, (1.6)

and the model equations become

−∇ · (2𝜇𝜀𝒖 + 𝜆div(𝒖)𝐼) = 𝒇 .

To focus specifically on the problem involving tumors in soft tissue, cancerous tissues

tend to be stiffer and have larger 𝜇 values than healthy tissues. The parameter 𝜇, the so-

called tissue stiffness, is the parameter that needs to be identified in the inverse problem.

It is a common practice in the biomedical engineering field to model the human body to

be nearly incompressible. This implies that the bulk modulus will be very large compared

to the shear modulus (𝜆 is considered to be ∞ for fully incompressible materials). Nearly

incompressible materials are also characterized by a Poisson ratio 𝜈 =
𝜆

2(𝜆 + 𝜇) close to 0.5.

A Poisson ratio value of exactly 0.5 implies that a material is incompressible, meaning the

volume does not change when it is compressed, and materials with values approaching 0.5

are considered nearly or approximately incompressible. Rubber, for example, has a Poisson

8
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ratio of 0.4999, clay can have a Poisson ratio of 0.30-0.45, steel of 0.27-0.30, and concrete

of 0.1-0.2. When 𝜆 is very large (𝜆 ≫ 𝜇), it can be shown that ∇ · 𝒖 → 0 (incompressibility

is characterized by div(𝒖) = 0).

It is well-known that mesh locking (inaccurate representations of small displacements,

or spurious oscillations) may occur when using linear Lagrange finite elements with the

formulation described thus far. To prevent mesh locking, a mixed formulation (with elements

of the Navier-Stokes equations) with a pressure variable is considered. The pressure variable

𝑝 is defined by 𝑝 = −𝜆 div(𝒖) and the system takes the following form: Find 𝒖 = (𝒖, 𝑝)

such that

−∇ · (2𝜇𝜀𝒖 − 𝑝𝐼) = 𝒇 in 𝐷 (1.7a)

−div(𝒖) − 1
𝜆
𝑝 = 0 in 𝐷 (1.7b)

𝒖 = 0 on 𝜕𝐷 (1.7c)

when the force function 𝒇 and parameters 𝜇 and 𝜆 are given. As mentioned previously,

we chose a particular set of boundary conditions, which are displayed in equation (1.7c).

However, in a general setting we would have mixed boundary conditions such as those given

in the system of equations (1.1), where 𝒖 = 𝒈 on Γ1 and 𝜎 · 𝒏 = 𝒉 on Γ2 and 𝜕𝐷 = Γ1 ∪ Γ2.

The parameter 𝜆 can be considered as constant (it is often set to a large value such as 106 in

numerical computations).

1.4 Inverse Problem

As mentioned previously, the so-called direct or forward problem associated with the

system in Section 1.3 is to find the displacement 𝒖 and pressure 𝑝, provided that the

material parameters 𝜇 and 𝜆, the force function 𝒇 , and the boundary functions 𝒈 and 𝒉 are

given either analytically or in a discrete form such as on a finite element mesh. The inverse

problem associated with the isotropic linear elasticity model revolves around identifying

the tissue stiffness parameter 𝜇 from measurement(s) of the displacement 𝒖.

9
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Parameter identification problems with partial differential equations (PDEs) are very

common in various application problems that arise in engineering, physics, material science,

and medicine. Some of these parameter identification problems focus on identifying a

spatially varying parameter (or a set of scalar parameters) in a model that is governed by

partial differential equations using measurements of certain quantities in the model. In

addition, these parameter identification problems are often formulated as an optimization

problem of minimizing a loss (or misfit) function where the underlying PDE is a constraint.

Furthermore, the problems are almost always solved by employing numerical methods that

provide an estimate of the unknown parameter. The inverse problem associated with the

model given in (1.7a)-(1.7c) is to estimate/recover the tissue stiffness parameter 𝜇(𝒙) from

measurement(s) of the displacement 𝒖(𝒙), where the force function 𝒇 and the boundary

data 𝒈, 𝒉 are known. We formulate the problem as a minimization problem with a scalar

objective functional.

Numerical methods for direct problems using models with PDEs often require some

sort of discretization (such as in finite differences, finite elements, finite volume, etc) with

a computational mesh. Hence, in this discrete setting, the problem of estimating a spatially

varying parameter becomes a large-scale optimization problem with thousands of unknowns

as the parameter of interest is also discretized using a computational mesh. Many iterative

methods for optimization problems with a PDE constraint require the numerical solution

of the underlying PDE to be computed at every step. Therefore, for a high-dimensional

optimization problem, it is crucial to have an accurate and efficient method for finding the

numerical solution of the direct problem (the discretized PDE problem).

There are many gradient-based iterative methods available, which include methods such

as steepest descent (or gradient descent) and LBFGS (limited memory Broyden–Fletcher-

Goldfarb–Shanno). In these iterative methods, the updates to the approximation of 𝜇

are computed using the gradient of the objective functional. The flowchart in Figure 1.3

provides a description of a general gradient-based iterative optimization method for solving

the inverse problem.

10
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Start

Provide tolerance

Provide initial

approximate for 𝜇

Solve direct/forward

problem for 𝒖

Evaluate gradient, update 𝜇

Tolerance reached? Adjust 𝜇

Output stiffness map

Stop

yes

no

Figure 1.3: Process for solving the elastography inverse problem using a general

gradient-based optimization algorithm.

The main factors that influence computational complexity for this problem are the

high-dimensional discrete direct/forward problem being solved at every iteration and the

dimension of the optimization problem which are both directly related to the resolution of

the stiffness parameter. Another factor that we need to keep in mind is the accuracy of

recovery and the resolution of the often sharp boundary transition between stiff tissue and

11
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surrounding soft tissue.

Our main goal is to capture this variation in the tissue stiffness parameter values, for

which it is important to have a fine computational mesh capable of recovering this variation.

Uniformly refining the computational mesh increases the computational cost drastically

at each refinement cycle, as the dimension of the discrete PDE model and the related

optimization problem increase with the refinement. Improving computational efficiency

of the whole process by employing a suitable optimization method along with an adaptive

mesh refinement strategy is one of the main goals of this work.

1.5 Adaptive Mesh Refinement

In this section, we provide more details on an important aspect of the problem which is

the refinement of the computational mesh. We develop a framework using a finite element

method for the solution of both the direct and inverse problems, and the computational

mesh here refers to the discretization of the domain into quadrilaterals. The number of

quadrilaterals in the domain is directly proportional to the dimension of the underlying

constrained optimization problem. Our goal is to keep the dimension of the optimization

problem as low as possible without compromising the quality of the estimation. The

adaptive mesh refinement strategy is based on refining/coarsening the mesh based on the

behavior of the solution (i.e. the computational mesh "adapts" to the solution) through

an iterative process. The tissue stiffness parameter 𝜇 often changes rapidly between the

cancerous (stiff) areas and the surrounding healthy parts of soft tissues. In order to properly

capture this behavior, it may be necessary to have a very fine mesh in places where the

solution of these problems are changing rapidly. However, in other places where the solution

is relatively constant or not changing rapidly, such a fine mesh would be unnecessary and

computationally expensive.

This is also true for the solution of the direct problem, capturing the significant changes

in the displacement components. For a successful application of elastography in detecting

tumors in soft tissues, we need to have an efficient algorithm for the solution of the problem

12
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in question. For the direct problem, which we explore in Chapter 2, the mesh can be refined

according to the displacement. The mesh should be more refined where the displacement

is changing rapidly. For the inverse problem, the mesh is refined according to the tissue

stiffness parameter, 𝜇, because that is truly the quantity of interest. The use of adaptive

mesh refinements not only improves the resolution of the tissue stiffness parameter in the

whole domain, but also contributes to drastic savings in the the overall computational cost

compared to the case where the same uniform mesh is used throughout.

Figure 1.4: A mesh with hanging nodes (image

from [24]).

We use the finite element library

deal.II (see [24]) which offers built-

in mesh refinement tools for our nu-

merical experiments. The library uses

rectangular elements (hence the tis-

sue stiffness parameter 𝜇 is approxi-

mated by bilinear functions on each

element/cell of the mesh). This tool

refines the rectangular elements by us-

ing grids in such a way that neighbor-

ing elements will only differ by at most

one level of refinement. This may result in what are called "hanging nodes", which are

nodes that are part of a more refined grid on one side and a less refined grid on another.

This means that the number of edges connected to that node or vertex are unbalanced, see

Figure 1.4.

The process of obtaining a numerical solution with mesh refinement is as follows: (a)

solve the optimization problem on a mesh, (b) estimate the error on each cell using an error

indicator of choice and mark cells with large errors for refinement and with those with

smaller errors for coarsening (use thresholds for both), (c) carry out the refinement process

and get a new mesh, (c) repeat the process until the maximum number of refinement cycles

is reached or the overall value of the total error indicator is sufficiently small. Since we

13
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don’t have an error estimator at hand, we opt to use a pre-programmed feature of the deal.II

library for the mesh refinements called the "Kelly refinement indicator". In this heuristic

error indicator (originally derived for the Poisson equation), a cell error is the integral of

the jump of the gradient of the function along the faces of the cell. In the future it may be

possible to use a posteriori error estimates to refine the mesh. However, without an exact

solution, the previously mentioned criterion is a viable option. Another variation of this

process would be to refine/coarsen the finite element mesh each time after a fixed number

of iterations are completed.

We can also use different finite element meshes: one to represent the state variable (the

displacement 𝒖) and another for the parameter of interest (the tissue stiffness 𝜇), where each

mesh could be refined according to their respective error indicators. Another possibility is

to use the same finite element mesh for both the state variable and the parameter, and refine

the mesh by using an error indicator for the parameter or use some sort of combination of

error indicators for the parameter and the state variable.

14



Chapter 2

Finite Element Discretization

In this chapter, we discuss the foundation for the computational framework for solving

the forward and inverse problems. The various components of the finite element method

(FEM) for the specific problem will be constructed, including weak formulation of the

forward problem, computational mesh, basis functions, and discretization. We also present

the results of numerical experiments for the forward problem to show that the underlying

linear elasticity system can be solved accurately using an adaptive mesh refinement scheme.

2.1 Weak Formulation

We now discuss the variational form, or weak form, of the system. This is the form that

is used in the finite element discretization. To find the weak form, the system of equations

will be multiplied on both sides by test functions and integrated over the domain. Thus, it

is necessary to multiply equation (1.7a) by 𝒗 and equation (1.7b) by 𝑞 and then integrate

over the domain, 𝐷. Focusing on one equation at a time, the system of equations

−∇ · 𝜎 = 𝒇

will be considered first. Note that we will derive the weak form for mixed boundary

conditions and we choose

𝒗 ∈ 𝑉 = {𝒗 ∈
[
𝐻1 (𝐷)

]2 : 𝒗 = 0 on Γ1},

which means, in particular, that both components of 𝒗 belong to the Hilbert space 𝐻1(𝐷).

Then, multiplying by the test function and integrating over the domain yields the equation

−
∫
𝐷

(∇ · 𝜎) · 𝒗 =

∫
𝐷

𝒇 · 𝒗. (2.1)
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2.1. Weak Formulation Elastography Inverse Problem

This equation needs to be transformed to take advantage of the symmetry of the stress

tensor. The stress tensor is symmetric because the problem is isotropic. Green’s Theorem,

the multidimensional version of integration by parts, will be used to derive the weak form.

We first need to calculate a few quantities that will help simplify the weak form. In

two-dimensions,

∇ · (𝜎𝒗) = ∇ ·
©«

𝜎11 𝜎12

𝜎21 𝜎22



𝑣1

𝑣2


ª®®¬ = ∇ ·


𝜎11𝑣1 + 𝜎12𝑣2

𝜎21𝑣1 + 𝜎22𝑣2


=
𝜕

𝜕𝑥
(𝜎11𝑣1 + 𝜎12𝑣2) +

𝜕

𝜕𝑦
(𝜎21𝑣1 + 𝜎22𝑣2) .

This can be expanded using the product rule.

=
𝜕𝜎11
𝜕𝑥

𝑣1 + 𝜎11
𝜕𝑣1
𝜕𝑥

+ 𝜕𝜎12
𝜕𝑥

𝑣2 + 𝜎12
𝜕𝑣2
𝜕𝑥

+ 𝜕𝜎21
𝜕𝑦

𝑣1 + 𝜎21
𝜕𝑣1
𝜕𝑦

+ 𝜕𝜎22
𝜕𝑦

𝑣2 + 𝜎22
𝜕𝑣2
𝜕𝑦

=

(
𝜕𝜎11
𝜕𝑥

+ 𝜕𝜎21
𝜕𝑦

)
𝑣1 +

(
𝜕𝜎12
𝜕𝑥

+ 𝜕𝜎22
𝜕𝑦

)
𝑣2 + 𝜎11

𝜕𝑣1
𝜕𝑥

+ 𝜎12
𝜕𝑣2
𝜕𝑥

+ 𝜎21
𝜕𝑣1
𝜕𝑦

+ 𝜎22
𝜕𝑣2
𝜕𝑦

=


𝜕𝜎11
𝜕𝑥

+ 𝜕𝜎21
𝜕𝑦

𝜕𝜎12
𝜕𝑥

+ 𝜕𝜎22
𝜕𝑦

 ·

𝑣1

𝑣2

 +

𝜎11 𝜎12

𝜎21 𝜎22

 ·

𝜕𝑣1
𝜕𝑥

𝜕𝑣2
𝜕𝑥

𝜕𝑣1
𝜕𝑦

𝜕𝑣2
𝜕𝑦


=

(
∇ · 𝜎𝑇

)
· 𝒗 + 𝜎 · (∇ 𝒗)𝑇 .

So, ∇ · (𝜎𝒗) =
(
∇ · 𝜎𝑇

)
· 𝒗 +𝜎 · (∇ 𝒗)𝑇 . Since 𝜎 is symmetric, 𝜎 = 𝜎𝑇 and ∇ ·𝜎 = ∇ ·𝜎𝑇 .

Also, because the dot product is just a number, 𝜎 · (∇ 𝒗)𝑇 = 𝜎 · ∇ 𝒗. Then, 𝜎 · ∇ 𝒗 could

be rewritten as,

𝜎 · ∇ 𝒗 =
1
2
𝜎 · ∇ 𝒗 + 1

2
𝜎 · ∇ 𝒗

=
1
2
𝜎 · ∇ 𝒗 + 1

2
𝜎𝑇 · (∇ 𝒗)𝑇

=
1
2
𝜎 · ∇ 𝒗 + 1

2
𝜎 · (∇ 𝒗)𝑇

= 𝜎 · 1
2

(
∇ 𝒗 + (∇ 𝒗)𝑇

)
= 𝜎 · 𝜀𝒗,
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2.1. Weak Formulation Elastography Inverse Problem

where 𝜀𝒗 is the strain. Recall that the strain tensor represents the elastic response of the

body. Note that 𝜀𝒖 and 𝜀𝒗 have similar forms because 𝒗 is the test function. Now,

∇ · (𝜎𝒗) = (∇ · 𝜎) · 𝒗 + 𝜎 · 𝜀𝒗 .

This equation can then be integrated over 𝐷,∫
𝐷

∇ · (𝜎𝒗) =
∫
𝐷

(∇ · 𝜎) · 𝒗 +
∫
𝐷

𝜎 · 𝜀𝒗 .

The goal is to write the first term on the right-hand side in terms of the other two terms

because that is the left hand side of equation (2.1), which is where the derivation of the

weak form was left. The divergence theorem states
∫
𝐷
∇ · 𝜎 =

∫
𝜕𝐷
𝜎𝒏 𝑑𝑆. So, using the

divergence theorem, the previous equation becomes∫
𝜕𝐷

(𝜎𝒗) · 𝒏 𝑑𝑆 =

∫
𝐷

(∇ · 𝜎) · 𝒗 +
∫
𝐷

𝜎 · 𝜀𝒗 .

Using again the fact that 𝜎 is symmetric,∫
𝜕𝐷

(𝜎𝒏) · 𝒗 𝑑𝑆 =

∫
𝐷

(∇ · 𝜎) · 𝒗 +
∫
𝐷

𝜎 · 𝜀𝒗 .

Rearranging the terms yields,

−
∫
𝐷

(∇ · 𝜎) · 𝒗 =

∫
𝐷

𝜎 · 𝜀𝒗 −
∫
𝜕𝐷

(𝜎𝒏) · 𝒗 𝑑𝑆.

Next, 𝜎 can be rewritten in terms of (1.7a) in the first term on the right.

−
∫
𝐷

(∇ · 𝜎) · 𝒗 =

∫
𝐷

(2𝜇𝜀𝒖 − 𝑝𝐼) · 𝜀𝒗 −
∫
𝜕𝐷

(𝜎𝒏) · 𝒗 𝑑𝑆

−
∫
𝐷

(∇ · 𝜎) · 𝒗 =

∫
𝐷

2𝜇𝜀𝒖 · 𝜀𝒗 −
∫
𝐷

𝑝𝐼 · 𝜀𝒗 −
∫
𝜕𝐷

(𝜎𝒏) · 𝒗 𝑑𝑆

Another portion of this equation can be simplified since,

𝑝𝐼 · 𝜀®𝑣 =

𝑝 0

0 𝑝

 ·


𝜕𝑣1
𝜕𝑥

1
2

(
𝜕𝑣1
𝜕𝑦

+ 𝜕𝑣2
𝜕𝑥

)
1
2

(
𝜕𝑣1
𝜕𝑦

+ 𝜕𝑣2
𝜕𝑥

)
𝜕𝑣2
𝜕𝑦


= 𝑝

(
𝜕𝑣1
𝜕𝑥

)
+ 𝑝

(
𝜕𝑣2
𝜕𝑦

)
= 𝑝

(
𝜕𝑣1
𝜕𝑥

+ 𝜕𝑣2
𝜕𝑦

)
= 𝑝 div (𝒗) .
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Thus, rearranging slightly and using equation (2.1),∫
𝐷

2𝜇𝜀𝒖 · 𝜀𝒗 −
∫
𝐷

𝑝 div (𝒗) =
∫
𝐷

𝒇 · 𝒗 +
∫
𝜕𝐷

(𝜎𝒏) · 𝒗 𝑑𝑆. (2.2)

Since 𝒗 = 0 on Γ1 due to the homogeneous Dirichlet boundary condition, the second integral

on the right-hand side of equation (2.2) will be zero on Γ1. Now, the problem is to find 𝒖

such that the equation∫
𝐷

2𝜇𝜀𝒖 · 𝜀𝒗 −
∫
𝐷

𝑝 div (𝒗) =
∫
𝐷

𝒇 · 𝒗 +
∫
Γ2

(𝜎𝒏) · 𝒗 𝑑𝑆

is true for all 𝒗 ∈ 𝑉 .

Note that the second term on the right only matters with nonhomogeneous traction

boundary conditions; the term will vanish if no boundary traction is applied to Γ2. In the

case where homogeneous Dirichlet boundary conditions are applied on the whole boundary,

the test function 𝒗 would belong to the space 𝑉 =
[
𝐻1

0 (𝐷)
]2. This boundary condition

is also known as a clamped boundary condition because it implies no displacement, or no

movement, along the boundary of the object. The weak form, in this case, would be that 𝒖

satisfies ∫
𝐷

2𝜇𝜀𝒖 · 𝜀𝒗 −
∫
𝐷

𝑝 div (𝒗) =
∫
𝐷

𝒇 · 𝒗

for all 𝒗 ∈
[
𝐻1

0 (𝐷)
]2.

Next, the weak form of equation (1.7b) becomes∫
𝐷

−𝑞 div(𝒖) − 1
𝜆
𝑝𝑞 = 0.

Combining the two equations, with mixed boundary conditions, the weak form is∫
𝐷

(
2𝜇𝜀𝒖 · 𝜀𝒗 − 𝑝 div (𝒗) − 𝑞 div(𝒖) − 1

𝜆
𝑝𝑞

)
=

∫
𝐷

𝒇 · 𝒗 +
∫
Γ2

𝒉 · 𝒗 𝑑𝑆. (2.3)

With homogeneous Dirichlet boundary conditions the second term on the right of (2.3)

will disappear. Therefore, the weak formulation of the problem (1.7a)-(1.7c) is to find

𝒖 = (𝒖, 𝑝) ∈ 𝑉 ×𝑄 = [𝐻1
0 (𝐷)]

2 × 𝐿2(𝐷) such that∫
𝐷

2𝜇𝜀𝒖 · 𝜀𝒗 −
∫
𝐷

𝑝 div (𝒗) =
∫
𝐷

𝒇 𝒗 for all 𝒗 ∈ 𝑉, (2.4)∫
𝐷

𝑞 div(𝒖) +
∫
𝐷

1
𝜆
𝑝𝑞 = 0 for all 𝑞 ∈ 𝑄, (2.5)
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where 𝑉 =
{
𝒗 ∈

[
𝐻1(𝐷)

]2
, 𝒗 = 0 on 𝐷

}
and 𝑄 = 𝐿2(𝐷). We also define a trilinear form

𝑇 by

𝑇 (𝜇, 𝒖, 𝒗) = 𝑎(𝜇, 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) − 𝑏(𝒖, 𝑞) + 𝑐(𝑝, 𝑞) (2.6)

which will be used later, and the weak formulation is rewritten as

𝑎(𝜇, 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = 𝑚(𝒗)

𝑏(𝒖, 𝑞) − 𝑐(𝑝, 𝑞) = 0
(2.7)

where

𝑎(𝜇, 𝒖, 𝒗) =
∫
𝐷

2𝜇𝜀𝒖 · 𝜀𝒗, 𝑏(𝒗, 𝑝) = −
∫
𝐷

𝑝 div (𝒗)

𝑐(𝑝, 𝑞) =
∫
𝐷

1
𝜆
𝑝𝑞, 𝑚(𝒗) =

∫
𝐷

𝑓 𝒗.

Note that 𝑎(𝜇, 𝒖, 𝒗), 𝑏(𝒗, 𝑝), and 𝑐(𝑝, 𝑞) are linear in all of their components, and in order to

get the trilinear form shown in equation (2.6) we simply subtract the second equation in (2.7)

from the first since adding or subtracting by zero will not make a difference mathematically.

2.2 Mesh

Our mesh, or triangulation, will beTℎ, where ℎ is the mesh size. Each element is labeled𝑇𝑖 for

𝑖 = 1, 2, ..., 𝑁𝑡 , where 𝑁𝑡 it the total number of elements (e.g. 𝑇1 is element 1). The vertices

or nodes are also labeled, 𝑧𝑖 for 𝑖 = 1, 2, ..., 𝑁𝑝 where 𝑁𝑝 is the total number of vertices. If

triangular elements are chosen, the step size can be defined as ℎ = max(diam(𝑇𝑖)), or the

maximum of the diameters from all of the triangles. The diameter of a triangle is defined by

the triangle’s longest side. This definition is important if the mesh is made up of triangles

of different sizes. For rectangular elements, which are the type of elements we use, the step

size is defined as the longest distance between vertices, or the diagonal length.

For second-order boundary value problems (in one dimension), the function 𝑢(𝑥) is

typically approximated as a piecewise linear function on each element or interval 𝐼𝑖. In

elliptic PDEs in two dimensions, each component of the displacement vector 𝑢 𝑗 (𝑥, 𝑦) can

still be approximated as a piecewise linear function, but this time it will be linear on each
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triangular element 𝑇𝑖, for example, so the approximations consist of triangular planes. The

representation of 𝑢 𝑗 on 𝑇𝑖 is 𝑢 𝑗 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 for (𝑥, 𝑦) ∈ 𝑇𝑖. Each triangle will have

an equation like this. However, that is a significant amount of unknowns. Fortunately,

with the way the mesh was set up, each triangle shares at least one common edge, and the

functions must match on the common edges in order to represent 𝑢 𝑗 continuously. This

will reduce the number of unknowns. Thus, because of this continuity restriction, only 𝑁𝑝
unknowns (the number of vertices) are needed to represent the function, rather than three

unknowns per triangle. Furthermore, if there are Dirichlet boundary conditions along the

entire boundary, then those values along the boundary will be known. The explanation and

reasoning is similar for rectangular elements. So the number of unknowns in each case

would be the number of interior nodes. Similar to the one-dimensional case, all that is

needed to completely define the function 𝑢 𝑗 are the values at the nodes.

2.3 Basis Functions

Now the basis functions need to be considered. In two dimensions the basis functions, 𝜓𝑖,

are tent-shaped and have a value of 1 at 𝑧𝑖 (vertex 𝑖) and a value of 0 at every other node.

Another way to divide the domain into a mesh is with rectangular, or bilinear, elements

instead of triangular ones. These elements can be labeled similarly to the triangular ones.

The difference will be in the degrees of freedom. Since a rectangle has four vertices, a

polynomial with four degrees of freedom is needed, rather than the three degrees of freedom

necessary for triangular elements. The representation of 𝑢 𝑗 on each element will now have

the form 𝑢 𝑗 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 + 𝑑𝑖𝑥𝑦. This is referred to as a bilinear polynomial, and gives

the equation for a rectangular plane on each element. This bilinear function will reduce to a

linear function of one variable on the edges of the rectangular element. Again, the fact that

most of the elements share common edges will reduce the number of unknowns. Only 𝑁𝑝
unknowns are still necessary to uniquely represent the function, just as with the triangular

elements. In both cases, only the nodal values are needed to completely define the function

𝑢 𝑗 . The basis functions for rectangular elements are similar to those for triangular elements
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in that they will still have a value of 1 at the node 𝑧𝑖, and a value of zero everywhere else,

but will be pyramid shaped instead of being tent-shaped.

For quadratic tent-shaped basis functions, 𝑢 𝑗 is now represented on 𝑇𝑖 with the equation

𝑢 𝑗 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 + 𝑑𝑖𝑥2 + 𝑒𝑖𝑥𝑦 + 𝑓𝑖𝑦
2 for (𝑥, 𝑦) ∈ 𝑇𝑖. Now, the triangular plane on each

element is represented by a quadratic equation of two variables, where each edge of the

plane will be a parabola. However, now it is no longer sufficient to represent the element

using only the values at the nodes. While a line can be fully represented with two points, a

parabola cannot. So, the midpoints of each edge of the element are also needed. Thus, six

points are needed to completely define a single element. There will be six unknowns per

element, but this can be reduced due to the continuity restriction discussed in Section 2.2.

2.4 Direct Problem

In order to implement this problem numerically, the components of the linear system that

will be solved by the finite element method must be compiled. As a reminder, the problem

being considered is

−∇ · (2𝜇𝜀(𝒖) − 𝑝𝐼) = 𝒇 in 𝐷

−div(𝒖) − 𝑝

𝜆
= 0 in 𝐷

𝒖 = 0 on 𝜕𝐷.

We choose a finite element mesh and define finite dimensional subspaces 𝑉ℎ = 𝑉ℎ × 𝑄ℎ,

and �̃�ℎ, where 𝑉ℎ is the space for 𝑢 and 𝑣, 𝑄ℎ is the space for 𝑝 and 𝑞, and �̃�ℎ is the

space for 𝜇. Finite dimensional subspaces 𝑉ℎ and 𝑄ℎ are defined as such that they satisfy

the Ladyzhenskaya-Babuska-Brezzi (LBB) conditions. The discrete version of the problem

reads: Given 𝜇ℎ ∈ �̃�ℎ, find (𝒖ℎ, 𝑝ℎ) ∈ 𝑉ℎ ×𝑄ℎ such that for every 𝒗ℎ = (𝒗ℎ, 𝑞ℎ) we have∫
𝐷

2𝜇ℎ𝜀(𝒖ℎ) · 𝜀(𝒗ℎ) −
∫
𝐷

𝑝ℎ div (𝒗ℎ) =
∫
𝐷

𝑓 𝒗ℎ for 𝒗ℎ ∈ 𝑉ℎ∫
𝐷

𝑞ℎ div(𝒖ℎ) +
∫
𝐷

1
𝜆
𝑝ℎ𝑞ℎ = 0 for all 𝑞ℎ ∈ 𝑄ℎ

(2.8)
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To simplify notation, the weak form could be written abstractly using the bilinear forms and

linear functional defined earlier. Thus, the discrete variational form can be written as

𝑎(𝜇, 𝒖ℎ, 𝒗ℎ) + 𝑏(𝒗ℎ, 𝑝) = 𝑚(𝒗ℎ)

𝑏(𝒖ℎ, 𝑞) − 𝑐(𝑝, 𝑞) = 0.
(2.9)

The basis functions need to be reconsidered next. In Section 2.3, the basis functions

introduced were for the scalar case. This problem involves vector equations, so the basis

functions must be adjusted accordingly. In the scalar case, there were 𝑁 𝑓 basis functions,

where 𝑁 𝑓 is the number of free nodes. A free node is any node not included in a Dirichlet

boundary condition. These nodes are considered "free" because, in the forward problem,

the value of the function 𝒖 is unknown. The nodes contained within a Dirichlet boundary

are considered constrained nodes, 𝑁𝑐, because the values of 𝒖 will be known.

Since there are two components in the vector 𝒖, the basis functions must have two

components as well in order to properly represent the displacement. Thus, there will be

twice as many basis functions as the scalar case. The set of basis functions for this problem

is
{
𝜓1, ..., 𝜓𝑁 𝑓

, 𝜓𝑁 𝑓 +1 , ..., 𝜓2𝑁 𝑓

}
, where

𝜓𝑖 =


𝜓𝑖

0


𝜓𝑁 𝑓 +𝑖 =


0

𝜓𝑖


for 𝑖 = 1, ..., 𝑁 𝑓 and 𝜓𝑖 is the typical tent- or pyramid-shaped basis function for 2D problems

discussed in the previous sections. So, 𝜓𝑖 is the first component of the solution function and

𝜓𝑁 𝑓 +𝑖 is the second component of the solution function. Since the discrete solution 𝒖ℎ ∈ 𝑉ℎ,

it can be expressed as a linear combination of the basis functions. So, 𝒖ℎ =
2𝑁 𝑓∑︁
𝑖=1
𝑈𝑖𝜓𝑖 where

𝑼 is the solution vector.

The structure and basis functions for each piece of that linear system will be examined

next. The discrete representation for the solution vector, the pressure 𝑝, and the load vector
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have the forms

𝑼 =


𝑈1

...

𝑈𝑛


, 𝑷 =


𝑃1

...

𝑃𝑘


, 𝑭 =


𝑭

0


where the basis functions for 𝒖ℎ are 𝜓𝑖, with 𝑖 = 1, ..., 𝑛, and 𝒖ℎ =

𝑛∑︁
𝑖=1
𝑈𝑖𝜓𝑖, the basis

functions for 𝑝ℎ are 𝜒𝑖, with 𝑖 = 1, ..., 𝑘 , and 𝑝ℎ =
𝑘∑︁
𝑖=1

𝑃𝑖𝜒𝑖, both 𝜓𝑖, 𝜒𝑖 are the basis for the

finite dimensional subspace 𝑉ℎ of 𝑉 corresponding to a chosen finite element mesh, and 𝑭

is a block vector. One possible combination of basis functions is piecewise quadratic basis

functions for the displacement 𝒖 and piecewise linear basis functions for the pressure 𝑝.

This is the combination used in most of the numerical experiments included in this work,

but there are other stable combinations. For example, a piecewise quadratic – piecewise

constant combination of elements was used for some numerical experiments in one of the

later chapters. In order to define the discrete versions of both the objective functional and

the gradient in later chapters, we need to discuss the basis functions for one more piece of

the linear system. We need a representation 𝜇ℎ =
𝑚∑︁
𝑖=1

𝑀𝑖𝜙𝑖, where 𝜙𝑖 are the basis functions

corresponding to the finite-dimensional subspace �̃�ℎ, 𝑀𝑖 are the nodal values of the stiffness

variable, with 𝑖 = 1, ..., 𝑚, and therefore the discrete representation for 𝜇ℎ is

𝑴 =


𝑀1

...

𝑀𝑚


.

Note that 𝑼 ∈ R2𝑁 𝑓 , 𝑭 ∈ R2𝑁 𝑓 , and 𝐾 ∈ R2𝑁 𝑓 × 2𝑁 𝑓 . For a given vector 𝑴 representing

𝜇ℎ, the forward problem is then to find the solution vector 𝑼 = [𝑼, 𝑷]⊤ of a linear system

𝐾 (𝑴)𝑼 = 𝑭. The stiffness matrix 𝐾 depends on 𝑴 and, due to the structure of the basis
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functions, will be a block matrix defined by

𝐾 (𝑴) =

𝐴(𝑴) 𝐵

𝐵𝑇 𝐶


where we emphasized the dependence of the top-left block 𝐴 of matrix 𝐾 on the vector 𝑴

corresponding to the discretization of 𝜇ℎ. Note that 𝐴(𝑴) is 𝑛 × 𝑛, 𝐵 is 𝑛 × 𝑘 , and 𝐶 is

𝑘 × 𝑘 . Entries of the block matrix 𝐾 (𝑴) and the block vector 𝑭 = [𝑭, 0]⊤ are defined using

the basis functions and forms 𝑎(·, ·, ·), 𝑏(·, ·), 𝑐(·, ·), 𝑚(·) defined earlier. For example,

[𝐴(𝑴)]𝑖 𝑗 = 𝑎(𝜇ℎ, 𝜓𝑖, 𝜓 𝑗 ) for 𝑖, 𝑗 = 1, ..., 𝑛

Thus, the linear system in block matrix form is
𝐴(𝑴) 𝐵

𝐵𝑇 𝐶



𝑼

𝑷

 =


𝑭

0


where the entries of the matrix blocks correspond to different pieces of the weak form

(equations (2.4) and (2.5)). The matrix 𝐴(𝑴) corresponds with the first term on the left of

(2.4) (the first part of the weak formulation), block 𝐵 corresponds with the second term on

the left of that same equation, 𝐵𝑇 with the first term on the left of (2.5) (the second part of

the weak formulation), and𝐶 with the second term on the left of (2.5). Those entries would

then have the form,

𝐴𝑖 𝑗 =

∫
𝐷

2𝜇𝜀𝜓 𝑗
· 𝜀𝜓𝑖

, 𝐵𝑖 𝑗 = −
∫
𝐷

𝜒 𝑗div(�̄�𝑖), 𝐶𝑖 𝑗 = −1
𝜆

∫
𝐷

𝜒 𝑗 𝜒𝑖

where 𝜓𝑖 and 𝜓 𝑗 are the basis functions corresponding to the displacement 𝒖 and its test

function 𝒗, and 𝜒𝑖 and 𝜒 𝑗 are the basis functions corresponding to the pressure 𝑝 and its

test function 𝑞.

This linear system will be solved component by component by using the Schur comple-

ment as follows. Expanding of the left-hand side of the system yields the equations

𝐴𝑼 + 𝐵𝑷 = 𝑭

𝐵𝑇 𝑼 + 𝐶𝑷 = 0
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The first equation will then be solved for 𝑼 and plugged into the second equation to solve

for 𝑷. Thus,

𝑼 = 𝐴−1(𝑭 − 𝐵𝑷)

𝐵𝑇 𝐴−1(𝑭 − 𝐵𝑷) + 𝐶𝑷 = 0

𝐵𝑇 𝐴−1𝑭 − 𝐵𝑇 𝐴−1𝐵𝑷 + 𝐶𝑷 = 0

(𝐵𝑇 𝐴−1𝐵 − 𝐶)𝑷 = 𝐵𝑇 𝐴−1𝑭

where (𝐵𝑇 𝐴−1𝐵 − 𝐶) is the Schur complement. Finally, the last equation is solved for 𝑷,

which is then plugged into the equation 𝑼 = 𝐴−1(𝑭 − 𝐵𝑷) to solve for 𝑼.

2.5 Numerical Experiments

In this section, we make a series of numerical experiments that are aimed towards com-

puting the displacements accurately given the specific tissue stiffness parameter 𝜇 and the

body force 𝒇 where the mesh is refined locally by using a heuristic error estimator. All

simulations are done using the finite element library deal.II (again, see [24]).

Experiment 1. In this example, modified from [25], the domain is 𝐷 = [0, 1]2 and

homogeneous Dirichlet boundaries were chosen for the whole boundary. This indicates that

there is no movement on the boundaries (i.e. they are pinned). We chose a problem with

an analytical solution, so that the error in the solution could be accurately computed. The

displacement vector is given by 𝒖 =


𝑢1(𝑥, 𝑦)

𝑢2(𝑥, 𝑦)

 where

𝑢1(𝑥, 𝑦) = 0.5𝜋 cos(𝜋𝑦) sin(𝜋𝑦) sin2(𝜋𝑥)

𝑢2(𝑥, 𝑦) = −𝜋 cos(𝜋𝑥) sin(𝜋𝑥) sin2(𝜋𝑦).

Setting the constant 𝜈, we compute 𝜇 and 𝜆 as well as the expression for the body force

𝒇 (𝑥, 𝑦) and supply these as data for the problem. The values chosen for these numerical

experiments represent the nearly incompressible case, meaning we will choose a Poisson
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ratio value, 𝜈, approaching 0.5. Components of the displacement 𝒖 as well as a vector view

are shown in Figure 2.1.

Figure 2.1: Components of the displacement vector 𝒖 (top) and a vector view of 𝒖

(bottom) for Experiment 1.

The 𝐿2-norm error of the difference of the approximate solution and the exact solution

was computed for a range of 𝜈 values. For example, 𝜈 = 0.4999 corresponds to 𝜇 ≈ 0.3334

and 𝜆 ≈ 1666.4, and 𝜈 = 0.49999 corresponds to 𝜇 ≈ 0.333336 and 𝜆 ≈ 16666.4. Young’s

modulus 𝐸 is set to the constant 1 in all computations. Tables 2.1 and 2.2 show the 𝐿2-norm

errors for the displacement 𝒖 and the error reduction factors for simulations with 𝜈 = 0.4999

and 𝜈 = 0.49999. The mesh is refined uniformly in each cycle so that the mesh size is

decreased by a factor of 2 in each cycle. The purpose of this example is to ensure the

accuracy of the solver.
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cycle # cells ℎ/
√

2 # dofs 𝐿2-norm error factor

0 64 1/8 659 1.065e+00 -

1 256 1/16 2467 6.503e-02 16.37

2 1024 1/32 9539 4.040e-03 16.10

3 4096 1/64 37507 2.532e-04 15.96

4 16384 1/128 148739 1.645e-05 15.39

Table 2.1: 𝐿2-norm errors for the displacement 𝒖 for Experiment 1, where 𝜈 = 0.4999.

cycle # cells ℎ/
√

2 # dofs 𝐿2-norm error factor

0 64 1/8 659 1.065e+01 -

1 256 1/16 2467 6.504e-01 16.37

2 1024 1/32 9539 4.040e-03 16.10

3 4096 1/64 37507 2.532e-03 15.96

4 16384 1/128 148739 1.645e-04 15.39

Table 2.2: 𝐿2-norm errors for the displacement 𝒖 for Experiment 1, where 𝜈 = 0.49999.

We observe that the error decreases, as expected, as the mesh is refined. When using

quadratic elements to represent the displacement 𝒖, the 𝐿2-norm error in the displacement

𝒖 decreases by a factor of about 16 as ℎ is decreased by a factor of 2. In general, for smooth

data and solution, the approximation 𝒖ℎ of the displacement 𝒖 satisfies the error estimate

∥𝒖 − 𝒖ℎ∥ ≤ 𝐶ℎ3 (2.10)

with a constant 𝐶 independent of the mesh size ℎ when using 𝑄2 − 𝑄1 elements (see, for

example, [26]) (the notation 𝑄2 −𝑄1 simply means that piecewise quadratic elements were

used to represent the displacement and piecewise linear elements were used to represent

the pressure). However, for this particular example, we observe that the error behaves more

like O(ℎ4). This is due to the superconvergence phenomenon where the finite element
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approximation of the solution converges to the true solution at a higher rate than the

expected. The occurrence of superconvergence may be due to properties of the domain,

solution properties, the finite element approximation, or the quadrature formulas used.

For the next several experiments, taken from a tutorial example in deal.II [24], we

consider the linear elasticity system on the domain 𝐷 = [−1, 1]2. The component 𝑓1(𝑥, 𝑦)

of the force on the body, 𝒇 , is defined by

𝑓1(𝑥, 𝑦) =


1, if (𝑥 + 0.5)2 + 𝑦2 ≤ 0.22 or (𝑥 − 0.5)2 + 𝑦2 ≤ 0.22

0, else

and the component 𝑓2(𝑥, 𝑦) is defined by

𝑓2(𝑥, 𝑦) =


1, if 𝑥2 + 𝑦2 ≤ 0.22

0, else.

This type of body force implies pressure being uniformly applied on the disks shown in

Figure 2.2. For the two disks in the left figure, a unit force in the 𝑥-direction is applied. For

the disk centered at the origin (figure on the right), a unit force is applied in the 𝑦-direction.

Figure 2.2: Components of the body force function 𝒇 .
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Experiment 2. The tissue stiffness parameter 𝜇 for this example is a constant 1

everywhere in the domain. In Figure 2.3, we show the components of the displacement

vector 𝒖 and vector view of the displacement which show the effects of the applied body

force 𝒇 .

Figure 2.3: Components of the displacement vector 𝒖 (top), and a vector view of 𝒖

(bottom) for Experiment 2.

Homogeneous Dirichlet boundary conditions were applied to the entire boundary. For

this numerical experiment, we set the Poisson ratio 𝜈 to be a constant 0.4999 over the

whole domain, which corresponds to 𝜆 = 4999. The figures are from computations using a

uniform 256 × 256 mesh on which the displacement and pressure variables are represented

by a total of 592387 degrees of freedom. Again, the purpose of this experiment was to show

the effects of the body force on a uniform tissue stiffness.
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Experiment 3. The tissue stiffness parameter 𝜇 for this experiment is given by

𝜇(𝑥, 𝑦) =


8, if 𝑥2 + 𝑦2 ≤ 0.25

1, else

an image of which can be seen in Figure 2.4. As mentioned previously, cancerous tissues

are often stiffer than surrounding healthy tissues, and the values of 𝜇 in cancerous areas can

be five to ten times that of those in healthy tissues. On the disk of radius 0.5 at the origin,

we take the value of 𝜇 to be 8 in order to resemble this situation. For this experiment, we

also have 𝜈 = 0.4999 and homogeneous Dirichlet boundary conditions were applied on the

entire boundary.

Figure 2.4: Tissue stiffness parameter 𝜇 for Experiment 3.

In Figure 2.5, we show the components of the displacement vector 𝒖 in the top left and

right figures. Here, we can clearly see the effects of the tissue stiffness parameter 𝜇 in the

components of the displacement 𝒖. The simulations were started with 256 elements in the

domain (mesh size
√

2/16) and we refine the mesh adaptively 7 times using the heuristic

error estimator (or indicator) described in the first chapter.
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Figure 2.5: Components of the displacement vector 𝒖 (top) and a vector view of 𝒖

(bottom) for Experiment 3.

cycle # cells # dofs (𝒖 and 𝑝 )

0 256 2467

1 640 6231

2 1600 15395

3 3856 37323

4 9016 86215

5 20872 196203

6 47656 449483

7 110272 1042963

Table 2.3: Experiment 3: Number of de-

grees of freedom in each refinement cycle are

shown in the last column. The second col-

umn shows the number of cells (or square el-

ements) in the mesh.
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The number of cells and total degrees of freedom needed to represent both 𝒖 and 𝑝 are

shown in Table 2.3. At each refinement cycle, 30% of the cells are marked for refinement

and 3% of the cells are marked for coarsening. We note that the heuristic error estimator

used in the computations works well for the problem. The mesh is more refined in the areas

where the displacement is changing rapidly (near the boundary of the disk where the tissue

stiffness parameter abruptly changes) which this is exactly what we would like to have.

Computational meshes for the last 4 refinement cycles are shown in Figure 2.6.

Figure 2.6: Adaptively refined meshes for Experiment 3.
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Experiment 4. For this experiment, we changed the tissue stiffness 𝜇 in the following

way and repeated the computations. We choose the tissue stiffness parameter as

𝜇(𝑥, 𝑦) =


8, if (𝑥 + 0.25)2 + (𝑦 − 0.25)2 ≤ 0.42 or (𝑥 − 0.5)2 + (𝑦 + 0.5)2 ≤ 0.22

1, else.

This choice of 𝜇 corresponds to two circular regions of stiffer tissues (to resemble a situation

where multiple tumors of different sizes are present) in the domain (see Figure 2.7).

Figure 2.7: Tissue stiffness parameter 𝜇 for Experiment 4.

At the start of the computation, we have a coarse, uniform mesh that consists of 1024

cells (a 32 × 32 mesh). The mesh is then refined adaptively 5 times. Table 2.4 shows the

number of cells in the mesh and the corresponding degrees of freedom needed to represent

𝒖 and 𝑝 for each refinement cycle.

Components of the displacement 𝒖 and the adaptively refined mesh for one of the last

refinement cycles are shown in Figure 2.8. Again, we can see the effects of the tissue

stiffness parameter 𝜇 in the displacement components, and the local refinements are present

in the parts of the domain where we expect them to be.
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cycle # cells # dofs (𝒖 and 𝑝 )

0 1024 9539

1 2668 25361

2 6880 66343

3 14488 132593

4 31504 292721

5 62476 571921

Table 2.4: Experiment 4: Number of degrees of freedom (dofs) in each refinement level

are shown in the last column. The second column shows the number of cells in the mesh.

Figure 2.8: Components of the displacement vector 𝒖 (top), a vector view of 𝒖 (bottom

left), and the mesh (bottom right) for Experiment 4.
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Experiment 5. This experiment is almost the same as Experiment 3. The only change

that is made is in the boundary conditions. In this case, homogeneous Dirichlet boundary

conditions are applied on the left, top, and right boundaries, and a traction boundary

condition 𝜎 · 𝒏 = [0,−0.0001]𝑇 is applied to the bottom boundary. The traction boundary

condition specifies the applied pressure on the boundary in the normal direction. Figure 2.9

shows results of a simulation with 𝜈 = 0.4999. We observe the movement of the points

along the bottom boundary caused by the force applied to it in the figures. The adaptively

refined mesh for this example is also shown in the bottom right.

Figure 2.9: Components of the displacement vector 𝒖 (top), a vector view of 𝒖 (bottom

left), and the mesh (bottom right) for Experiment 5.
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Experiment 6. We then modify Experiment 5 slightly by applying the traction boundary

conditions 𝜎 ·𝒏 = [0,−0.0001]𝑇 on both left and right boundaries. Homogeneous Dirichlet

boundary conditions are imposed on the top and bottom boundaries (meaning they are

pinned). Figure 2.10 shows results of a simulation with 𝜈 = 0.4999. Effects of the

traction on the left and the right boundaries are now clearly seen in the figures showing the

displacement components (top row), as well as the vector view of the displacement (bottom

left). The adaptively refined mesh is displayed in the figure on the bottom right.

Figure 2.10: Components of the displacement vector 𝒖 (top), a vector view of 𝒖 (bottom

left), and the mesh (bottom right) for Experiment 6.

An additional experiment is explored as an example of how traction boundary conditions

such as those seen in Experiments 5 and 6 could affect the computational mesh. Figure 2.11

shows the results of what the displacement in the computational mesh would look like

when a traction boundary condition similar to that of Experiment 5 is applied to the bottom
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boundary in another numerical experiment. For this particular example, we have a setup

with no body force present and there is a circular stiff inclusion at the center of the domain.

The top boundary is pinned and there is no traction (also called zero traction) on the left and

right boundaries, meaning those sides are free to move. Traction at the bottom boundary

is given by 𝜎 · 𝒏 = [0, 0.5]𝑇 . The figure on the left shows the computational mesh that is

refined adaptively. The figure on the right shows the computational mesh displaced by the

vector field 𝒖 (the displacement in the elasticity system).

Figure 2.11: Mesh representation of the displacement.
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Chapter 3

Elastography Inverse Problem

In this chapter, we discuss the optimization approach for the parameter identification prob-

lem. We include descriptions of two different objective functionals, a characterization of

the derivative, and discrete formulas for implementation for a choice of objective functional.

We also discuss stochastic variations of the gradient descent method for the problem and

include the results of numerical experiments with synthetic data.

3.1 Objective Functionals

In parameter identification problems, minimization of the so-called output least-squares

(OLS) functional is the most commonly used approach for solving parameter identification

problems. The optimization problem is to find 𝜇 = 𝜇(𝒙) ∈ �̃� such that

𝐽1(𝜇) =
1
2
∥𝒖(𝜇) − 𝒛∥2

𝑉
+ 1

2
∥𝑝(𝜇) − 𝑧∥2

𝑄 (3.1)

is minimized. Here, another possible formulation is to find 𝜇 ∈ �̃� such that the modified

output least-squares (MOLS) objective functional

𝐽 (𝜇) = 1
2
𝑇 (𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛), (3.2)

where the trilinear form 𝑇 is defined as in (2.6), is minimized. In (3.1) and (3.2), 𝒛 = (𝒛, 𝑧)

stands for a measurement of (𝒖, 𝑝), 𝒖(𝜇) − 𝑧 = (𝒖(𝜇) − 𝒛, 𝑝(𝜇) − 𝑧), where 𝒖(𝜇) is

the solution to the direct problem (2.4)-(2.5) for a specific 𝜇, and �̃� is the set of feasible

parameters. Due to the ill-posedness of the problem, a regularized version

𝐽𝛽 (𝜇) = 𝐽 (𝜇) +
1
2
𝛽𝑅(𝜇) = 1

2
𝑇 (𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) + 1

2
𝛽𝑅(𝜇),
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where 𝑅(𝜇) is a regularization term and 𝛽 is the regularization parameter, is used in practice.

For the numerical experiments in this chapter, we will use 𝐻1-norm regularization, i.e

𝑅(𝜇) = ∥𝜇∥𝐻1 . Using (2.6) to rewrite 𝐽 (𝜇), we get

𝐽 (𝜇) = 1
2
[𝑎(𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) + 𝑏(𝒖(𝜇) − 𝒛, 𝑝(𝜇) − 𝑧)

− 𝑏(𝒖(𝜇) − 𝒛, 𝑝(𝜇) − 𝑧) + 𝑐(𝑝(𝜇) − 𝑧, 𝑝(𝜇) − 𝑧)]

=
1
2
𝑎(𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) + 1

2
𝑐(𝑝(𝜇) − 𝑧, 𝑝(𝜇) − 𝑧).

Thus, the MOLS objective functional is given explicitly as

𝐽 (𝜇) = 1
2

∫
𝐷

2𝜇𝜀(𝒖(𝜇)−𝒛) · 𝜀(𝒖(𝜇)−𝒛) +
1
2

∫
𝐷

1
𝜆
(𝑝(𝜇) − 𝑧)2. (3.3)

The regularized discrete optimization problem is

arg min
𝜇ℎ∈�̃�ℎ

𝐽 (𝜇ℎ) = 𝐽 (𝜇ℎ) +
1
2
𝛽𝑅(𝜇ℎ)

𝐽𝛽 (𝜇ℎ) =
1
2

∫
𝐷

2𝜇ℎ |𝜀(𝒖ℎ−𝒛) |
2 + 1

2

∫
𝐷

1
𝜆
|𝑝(𝜇ℎ) − 𝑧 |2 +

1
2
𝛽𝑅(𝜇ℎ),

where (𝒖ℎ (𝜇ℎ), 𝑝(𝜇ℎ)) is the solution to (2.8) for the parameter 𝜇ℎ, 𝑅(𝜇ℎ) is a regularization

term, and 𝛽 is a regularization parameter.

3.2 Derivative Characterization

Next, we move on to a discussion of the gradient of the objective functional. To get a

derivative characterization we must differentiate (2.7) with respect to 𝜇. Using the product

rule gives

𝑎(𝛿𝜇, 𝒖, 𝒗) + 𝑎(𝜇, 𝛿𝒖, 𝒗) + 𝑏(𝒗, 𝛿𝑝) = 0

𝑏(𝛿𝒖, 𝑞) − 𝑐(𝛿𝑝, 𝑞) = 0

Note that 𝛿𝒖 = (𝛿𝒖, 𝑝) = (𝐷𝒖(𝜇)𝛿𝜇, 𝐷𝑝(𝜇)𝛿𝜇), where 𝐷𝑝(𝜇)𝛿𝜇 is the derivative of 𝑝

with respect to 𝜇 in the direction 𝛿𝜇 and the notation 𝛿𝒖 is the shorthand way of writing

𝐷𝒖(𝜇)𝛿𝜇.
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Rearranging the first equation above gives the characterization for the parameter-to-

solution map,

𝑎(𝜇, 𝛿𝒖, 𝒗) + 𝑏(𝒗, 𝛿𝑝) = −𝑎(𝛿𝜇, 𝒖, 𝒗)

𝑏(𝛿𝒖, 𝑞) − 𝑐(𝛿𝑝, 𝑞) = 0.

Now we need the derivative of (3.3), 𝐽 (𝜇), with respect to 𝜇 in the continuous setting.

𝐷𝐽 (𝜇)𝛿𝜇 =
1
2
𝑎(𝛿𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) + 1

2
𝑎(𝜇, 𝛿𝒖, 𝒖(𝜇) − 𝒛) + 1

2
𝑎(𝜇, 𝒖(𝜇) − 𝒛, 𝛿𝒖)

+ 1
2
𝑐(𝛿𝑝, 𝑝(𝜇) − 𝑧) + 1

2
𝑐(𝑝(𝜇) − 𝑧, 𝛿𝑝)

=
1
2
𝑎(𝛿𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) + 𝑎(𝜇, 𝛿𝒖, 𝒖(𝜇) − 𝒛) + 𝑐(𝛿𝑝, 𝑝(𝜇) − 𝑧).

Using the differentiation of (2.7) given above, 𝑎(𝜇, 𝛿𝒖, 𝒗) = −𝑎(𝛿𝜇, 𝒖, 𝒗) − 𝑏(𝒗, 𝛿𝑝) and

𝑐(𝛿𝑝, 𝑞) = 𝑏(𝛿𝒖, 𝑞). Keeping in mind that the test functions are now 𝒖(𝜇) − 𝒛 and 𝑝(𝜇) − 𝑧,

𝐷𝐽 (𝜇)𝛿𝜇 can be rewritten as

𝐷𝐽 (𝜇)𝛿𝜇 =
1
2
𝑎(𝛿𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) − 𝑎(𝛿𝜇, 𝒖(𝜇), 𝒖(𝜇) − 𝒛)

− 𝑏(𝒖(𝜇) − 𝒛, 𝛿𝑝) + 𝑏(𝛿𝒖, 𝑝(𝜇) − 𝑧).

Next, the 1
2 can be brought inside since the function is linear. Then, since the function is

linear in each argument those terms can be combined.

𝐷𝐽 (𝜇)𝛿𝜇 = 𝑎(𝛿𝜇, 1
2
(𝒖(𝜇) − 𝒛), 𝒖(𝜇) − 𝒛) − 𝑎(𝛿𝜇, 𝒖(𝜇), 𝒖(𝜇) − 𝒛)

− 𝑏(𝒖(𝜇) − 𝒛, 𝛿𝑝) + 𝑏(𝛿𝒖, 𝑝(𝜇) − 𝑧)

= 𝑎(𝛿𝜇,−1
2
𝒖(𝜇) − 1

2
𝒛, 𝒖(𝜇) − 𝒛) − 𝑏(𝒖(𝜇) − 𝒛, 𝛿𝑝) + 𝑏(𝛿𝒖, 𝑝(𝜇) − 𝑧).

Pulling the 1
2 out in front again gives the continuous version of the gradient.

𝐷𝐽 (𝜇)𝛿𝜇 = −1
2
𝑎(𝛿𝜇, 𝒖(𝜇) + 𝒛, 𝒖(𝜇) − 𝒛) − 𝑏(𝒖(𝜇) − 𝒛, 𝛿𝑝) + 𝑏(𝛿𝒖, 𝑝(𝜇) − 𝑧).

3.3 Discrete Formulas

The discrete version of the objective functional is

𝐽 (𝑴) = 1
2

[
𝑼(𝑴) − 𝒁

]𝑇
𝐴(𝑴)

[
𝑼(𝑴) − 𝒁

]
+ 1

2

[
𝑃(𝑴) − 𝑍

]𝑇
𝐶

[
𝑃(𝑴) − 𝑍

]
. (3.4)
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The discrete version of the gradient is

𝐷𝐽 (𝑴)𝛿𝑀 = − 1
2

[
𝑼(𝑴) + 𝒁

]𝑇
𝐴(𝛿𝑀)

[
𝑼(𝑴) − 𝒁

]
+1

2

[
𝑃(𝑴) − 𝑍

]𝑇
𝐵∇𝑼(𝑴)𝛿𝑀 −

[
𝑼(𝑴) − 𝒁

]𝑇
𝐵∇𝑃(𝑴)𝛿𝑀

(3.5)

where ∇𝑼(𝑴)𝛿𝑀 is just 𝛿𝒖, ∇𝑃(𝑴)𝛿𝑀 is just 𝛿𝑝, 𝐷𝐽 (𝑴)𝛿𝑀 can be written as ∇𝐽𝛿𝑀 ,

and the regularization term is ignored for now because of its simplicity.

We want to extract the direction, 𝛿𝑀 , from the equation for the gradient to get ∇𝐽 alone.

And since the 𝛿𝑀 is already extracted in the second two terms, only the first term needs to

be manipulated. This manipulation is done using the the so-called adjoint stiffness matrix

𝑆 = 𝑆(𝑼) defined by

𝐴(𝑴)𝑼 = 𝑆(𝑼)𝑴 ∀𝑴 ∈ R𝑚 and ∀𝑼 ∈ R𝑛.

Note that 𝐴(𝑴) is 𝑛×𝑛,𝑼 is 𝑛×1, and 𝑴 is𝑚×1, meaning 𝑆(𝑼) is 𝑛×𝑚. When manipulating

the adjoint stiffness matrix, we only need to work with the upper left block, 𝐴, not the entire

stiffness matrix 𝐾 . The 𝐴(𝛿𝑀)
[
𝑼(𝑴) − 𝒁

]
part of the first term will be transformed using

the adjoint stiffness matrix to get 𝐴(𝛿𝑀)
[
𝑼(𝑴) − 𝒁

]
= 𝑆(𝑼(𝑴) − 𝑍)𝛿𝑀 . Plugging this

into the formula for ∇𝐽𝛿𝑀 will yield the gradient formula since the 𝛿𝑀’s will cancel out

on both sides. Thus,

∇𝐽 (𝑴) = −1
2

[
𝑼(𝑴) + 𝒁

]𝑇
𝑆(𝑼(𝑴) − 𝒁)

+1
2

[
𝑃(𝑴) − 𝑍

]𝑇
𝐵∇𝑼(𝑴) −

[
𝑼(𝑴) − 𝒁

]𝑇
𝐵∇𝑃(𝑴).

(3.6)

3.4 Stochastic Gradient Descent Type Methods

We consider several variations of the (stochastic) gradient descent method (see, for example,

[27]) for the solution of the optimization problem in this section. Our goal is to investigate

the applicability of these methods to our problem. The first variation of these types of

methods is given in Algorithm 1.
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Algorithm 1 A variation of the gradient descent method.
1: Choose an initial guess 𝑴 (0) and a positive step size 𝛼.

2: while the stopping criterion is not satisfied do

3: 𝑴 (𝑘+1) = 𝑴 (𝑘) − 𝛼∇𝐽 (𝑴 (𝑘))

4: end while

The difference between this algorithm and the commonly used gradient descent (or

steepest descent) is the choice of the step size 𝛼. Normally, a step size 𝛼𝑘 is chosen (by

using some kind of line search algorithm) so that the maximum possible decrease is achieved

in the functional that is being minimized. However, in this algorithm, the step size is kept

constant. When dealing with large-scale problems such as ours, where the dimension of the

optimization problem is in the tens or hundreds of thousands, savings in the computational

costs associated with the line search step can be quite significant.

Other variations of the stochastic gradient descent method that help reduce the compu-

tational cost are the stochastic (batch) gradient descent method. The idea here is to use a

partial gradient ∇𝐽𝑝 (𝑴 (𝑘)) instead of the (full) gradient ∇𝐽 (𝑴 (𝑘)) when making an update

of the iterate 𝑴 (𝑘+1) . At every iteration, we can compute one randomly chosen component

of the gradient or a set of components of the gradient and use that to update the iterates. In

this case, there are existing examples (linear and nonlinear optimization problems) where

the method is applied successfully at least for small- to medium-scale problems. The step-

sizes 𝛼𝑘 would be decreasing in every iteration. There are other versions of these algorithms

as well. For example, in a semi-stochastic version of the gradient descent method, a certain

(randomly chosen) number of components are computed at every iteration and the full gra-

dient is computed once in every fixed number of iterations to speed up the convergence. We

plan to investigate applications of this and other variations of stochastic gradient descent to

large-scale problems such as ours in the future.
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3.5 Numerical Results

In this section, we present results of some numerical experiments with both continuous and

discontinuous stiffness parameters. Figure 3.1 shows examples of such stiffness parameters.

The image on the left shows a situation where the stiffness parameter 𝜇 has a smooth

transition between tissue stiffness values; the two peaks represent stiffer tissue relative to

the areas surrounding them.

Figure 3.1: Smooth and discontinuous tissue stiffness parameters.

The other two images correspond to the situation where there are two stiffer inclusions

within the domain and where the interfaces between the tissue regions with different values

(5 for stiffer tissues and 1 for soft tissues for the image in the center, and 1 for soft tissues and

5 and 2 for stiffer inclusions in the right image) are sharp. Clinically, a discontinuous tissue

stiffness parameter represents a tumor that has defined edges and a continuous stiffness

parameter represents a tumor that is still growing into the surrounding healthy tissue.

3.5.1 Continuous transition on a uniform mesh

We create an analytical example to test the application of a stochastic gradient descent

method for recovering a tissue stiffness parameter where the values of the parameter tran-

sition smoothly between areas of stiffer tissue and softer tissue. The stiffness parameter

given in this subsection represents a tissue region with two round, stiffer inclusions (shown

on the left in Figure 3.1).

43



3.5. Numerical Results Elastography Inverse Problem

We choose the parameter as

𝜇(𝑥, 𝑦) = 15 − 8 tanh
(
(𝑥 − 0.35)2 + (𝑦 − 0.65)2

0.04

)
− 6 tanh

(
(𝑥 − 0.75)2 + (𝑦 − 0.3)2

0.02

)
and choose a displacement field by

𝑢1(𝑥, 𝑦) = sin(2𝜋𝑦) (−1 + cos(2𝜋𝑥)) + 1
1 + 𝜆 sin(𝜋𝑥) sin(𝜋𝑦)

𝑢2(𝑥, 𝑦) = sin(2𝜋𝑥) (1 − cos(2𝜋𝑦)) + 1
1 + 𝜆 sin(𝜋𝑥) sin(𝜋𝑦).

The force field 𝒇 is then computed from the constitutive equations using the 𝜇 and 𝒖

provided above. The pressure 𝑝 is computed using equation (1.7b) where 𝜆 =
2𝜈

1 − 2𝜈
with

a Poisson ratio of 𝜈 = 0.49995. Homogeneous Dirichlet boundary conditions are used on

the whole boundary of the computational domain [0, 1]2. We have step size 𝛼 = 0.01 as in

Algorithm 1, and regularization parameter 𝛽 = 10−5 for the modified output least-squares

objective functional.

Figure 3.2 shows the exact and recovered tissue stiffness parameters. The top left image

in Figure 3.2 corresponds to the exact parameter representation on a uniform 32 × 32 mesh

and the remaining figures show the estimated parameter at various stages of the iterative pro-

cess on the same uniform mesh. The mesh has 1024 cells and 1089 nodes and, with the use

of linear Lagrange elements for 𝜇, the dimension of the constrained optimization problem

is 1089. We observe that the quality of the approximation is excellent for the gently varying

(smooth) parameter (shown in Figure 3.1 on the left) on this relatively coarse mesh. The

regions of stiffer tissue are clearly distinguishable after just 500 iterations (top right) and this

could be sufficient for diagnostic purposes. For an accurate recovery/estimation, however,

we provided a maximum number of 20000 iterations along with a tolerance of 10−8 for the

𝐿2-norm of the gradient of the objective functional. The bottom right image corresponds

to the estimated parameter after 10000 iterations and it is nearly indistinguishable from the

exact parameter shown in the top left.
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Figure 3.2: Exact stiffness parameter (top left), estimated parameter after 500 itera-

tions (top right), estimated parameter after 5000 iterations (bottom left), and estimated

parameter after 10000 iterations (bottom right).

3.5.2 Continuous transition on adaptive mesh

Using the same continuous inclusion as in subsection 3.5.1, the results of computation

on adaptively refined meshes are explored. The mesh is refined using the heuristic error

indicator for the tissue stiffness parameter (see Section 1.5). We start the iteration with a

coarse, uniform mesh and specify the maximum number of refinement cycles. At every

refinement cycle, approximately 30% of the cells were marked for refinement and 3% of the

cells were marked for coarsening. Frequency of the refinement is a run-time parameter that

is provided. Figure 3.3 shows the resulting adaptive meshes overlaid on the tissue stiffness

maps for some intermediate iterations.
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Figure 3.3: Adaptively refined meshes in two consecutive refinement cycles.

For a smooth stiffness parameter, we observe that the estimated stiffness parameter is

qualitatively a very close match to the exact stiffness parameter (see the upper left panel of

Figure 3.2). In Figure 3.3, the mesh is more refined around the boundaries of the stiffer

regions as expected. The minimum cell diameters ℎmin are 0.0442 and 0.0221 respectively.

The key takeaway here is that we can obtain a very good estimate of the parameter on a

relatively coarse mesh if changes in the parameter values are gradual. Obtaining the same

level of resolution for a uniform mesh would be much more computationally expensive (we

would have more degrees of freedom to represent the parameter as the mesh would need to

be sufficiently fine on the entire domain).

3.5.3 Discontinuous transition on a uniform mesh

For this numerical experiment, we test the algorithm for an example with a discontinuous

tissue stiffness parameter. The goal is to examine the performance and accuracy of the

method for parameters that correspond to cases where the stiffer regions are more localized,

i.e. transitions between soft and hard tissues are sharp. For the first experiment, we choose

a tissue stiffness parameter 𝜇 given as

𝜇(𝑥, 𝑦) =


5, (𝑥 − 0.35)2 + (𝑦 − 0.65)2 ≤ 0.22 or (𝑥 − 0.75)2 + (𝑦 − 0.3)2 ≤ 0.12

1, else.
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A surface view of the function is shown in the middle of Figure 3.1, and there are two

circular stiff inclusions within the domain.

Figure 3.4: Exact parameter (left) and the estimated parameter after 20000 iterations.

Figure 3.4 shows the exact parameter and the estimated parameter side by side. The

exact parameter is shown on a 200 × 200 mesh. For the estimated parameter, the mesh

has 4096 cells (corresponding to a 64 × 64 mesh) and mesh size ℎ =
√

2/64. For linear

Lagrange elements, this corresponds to 4225 degrees of freedom for the representation of

the tissue stiffness parameter. We notice that while the use of the coarse mesh leads to a

good identification of the parameter, the discontinuous transition around the boundaries of

the stiffer inclusion isn’t captured well. We would have to use a very fine mesh to accurately

capture this transition, which would lead to a significant increase in the dimension of the

optimization problem. A dramatic increase in the overall computational time would be

unavoidable in this situation. To mitigate this, our goal in the next subsection is to show

the results of computations where the mesh is adaptively refined as the iterative process

progresses, i.e. the computational mesh will be adapted to the estimated stiffness parameter.

At each refinement/coarsening cycle, the mesh is locally refined in the regions where the

parameter values change significantly and coarsened where changes in parameter values are

relatively small.
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3.5.4 Discontinuous transition on adaptive mesh

The computation is explored for the same discontinuous inclusion as in subsection 3.5.3, now

on adaptively refined meshes. For adaptive refinements, the goal is to be able to capture

the discontinuous transition accurately by using significantly fewer degrees of freedom

compared to a computation with a very fine uniform mesh. This is achieved by the local

refinement strategy described in Section 1.5. Figure 3.5 shows the estimation process, and

computational meshes corresponding to each of these images are shown in Figure 3.6.

Figure 3.5: Approximations of a discontinuous stiffness parameter on adaptively re-

fined meshes after 5000 iterations (top left), 10000 iterations (top right), 15000 iterations

(bottom left), and 20000 iterations (bottom right).
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The number of cells for each mesh in Figure 3.6 are 1957 (top left), 4627 (top right),

10903 (bottom left), and 25759 (bottom right) respectively. In the top right image in the

figure corresponding to 10000 iterations, we have 4627 cells, 2141 degrees of freedom used

in representing the parameter, and a minimum cell diameter corresponding to ℎmin = 0.0221.

A similar accuracy can be achieved by using a uniform mesh of the same cell diameter

(ℎ =
√

2/64 ≈ 0.0221) and would have required 64 × 64 = 4096 cells and 4225 degrees

of freedom. Thus, the dimension of the optimization problem is halved when using an

adaptive, rather than a uniform, mesh.

Figure 3.6: Successively refined meshes. Number of cells in each mesh: 1957 (top

left), 4627 (top right), 10903 (bottom left), 25759 (bottom right).

Similarly, for the bottom left image corresponding to 15000 iterations, we have ℎmin ≈

0.0055 and 11741 degrees of freedom. A uniform mesh with ℎ =
√

2/256 ≈ 0.0055

would have 256× 256 = 65536 cells and would have required 66049 degrees of freedom to
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represent the parameter. So, at this point in the iterative process, using an adaptive mesh

improves the degree of the optimization problem by a factor of about 6.

Our next numerical experiment is the recovery of a discontinuous parameter given by

𝜇(𝑥, 𝑦) =


5, (𝑥 − 0.35)2 + (𝑦 − 0.65)2 ≤ 0.22

2, (𝑥 − 0.75)2 + (𝑦 − 0.3)2 ≤ 0.12

1, else.

The exact parameter is shown in Figure 3.1 (right) and in Figure 3.7 (top left).

Figure 3.7: Exact stiffness parameter (top left) and approximations for another discon-

tinuous inclusion on adaptively refined meshes after 5000 iterations (top right), 10000

iterations (bottom left), and 15000 iterations (bottom right).
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The results of the simulation are shown in Figure 3.7 at various stages of the iterative

process and it is evident that the combination of the stochastic gradient method and adaptive

mesh refinement works very well for detecting inclusions stiffer than the surrounding

regions, including those with varying degrees of stiffness. As can be seen from Figures 3.5

and 3.7, we are able to capture the solution behaviour in the regions of transition much more

accurately with an adaptive mesh than with a uniform mesh. We also note in this last set

of experiments that the tissue stiffness parameter has a value close to that of the soft tissue

in the region where the smaller inclusion is located and our method is able to distinguish

between these regions that have similar values quite well.
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Chapter 4

Displacement Data, Error Analysis

In this chapter, we will discuss the use of measurement data and the dependence of the

estimation error on the computational parameters. In particular, we examine the efficacy

of our methods on more realistic data that is obtained in a lab where the experiments were

conducted using tissue-mimicking phantoms.

4.1 Displacement Measurement Data and Numerical

Results

As mentioned previously, we would like to see how our solution methods handle more

realistic data. The displacement data used in these experiments comes from the Image Pro-

cessing and Characterization of Tissues (IMPACT) lab, https://users.encs.concordia.ca/ im-

pact/database/. An extensive description of the process of obtaining the ultrasound images

and displacement data is found in Tehrani and Rivaz [28] and Rivaz et al [29]. The phan-

toms used for data collection were 40 mm × 32 mm tissue-mimicking breast phantoms

which contained hard inclusions with Young’s Modulus values at least twice that of the sur-

rounding tissue. In particular, the values of Young’s Modulus representing the surrounding

healthy tissue were about 20 kPa, the hard inclusions ranged from 45-60 kPa depending on

the experiment, and the Poisson ratio used by the authors was 0.49.

The displacement data from the database is separated into axial and lateral components,

with both data sets having size 10 × 256 × 2048, where the dimensions are 256 × 2048

and the other 10 layers of the data are increasing compression levels with average strain

ranging from 0% − 4.5%. Displacement in the phantom was measured by comparing the
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current image to the first image taken, meaning the first of the ten layers of the data set

has zero displacement because it is being compared to itself and the tenth layer of the data

set should have the most displacement. Figure 4.1 shows the displacement components

corresponding to a strain of 4.5% (layer 10) for both the lateral field (𝑥-displacement) and

axial field (𝑦-displacement). Note that the axial direction is oriented down into the tissue or

tissue-mimicking phantom, parallel to the beam of the ultrasound, and the lateral direction

is side to side, perpendicular to the ultrasound beam. Thus, when we read the displacement

data into our code, we used the lateral field as the 𝑥-component of the displacement, 𝑢1(𝑥, 𝑦),

and the axial field as the 𝑦-component of the displacement, 𝑢2(𝑥, 𝑦). The figures included

in this section correspond to a 64 × 128 compressed version of the original data of size

256 × 2048 in order to make the size of the problem more reasonable.

Figure 4.1: Displacement data (from IMPACT lab) for model experiment 2 with a single

stiff inclusion.
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Note that for the 𝑦-axis on both plots the labels are inverted, with a value of 0 at the top and

a value of 2 at the bottom. This is because in [28], the axial direction (𝑦-axis) represents the

depth into the tissue or phantom, meaning the top of the figure corresponds to the surface

of the phantom and the labeled values on the 𝑦-axis increase as you go deeper into the

phantom. Additionally, as the boundary conditions were not provided in the work cited, we

chose a set of boundary conditions which we consider to be physiologically realistic. Zero

traction boundary conditions were imposed on the left and the right boundaries, meaning

the tissue on those boundaries is free to move. A zero Dirichlet condition is considered for

the bottom, indicating that there is no movement along that boundary (i.e. it is pinned). For

the top boundary, a traction condition was chosen to mimic a uniform compression of the

surface of the tissue phantom. As such, the vertical component of the function 𝒉 was set to

a small constant value.

Figure 4.2: Displacement data (from IMPACT lab) for model experiment 10 with two stiff

inclusions.
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Figure 4.1 shows the displacement data obtained from a measurement with a tissue

phantom that has one stiff inclusion centered approximately at (0.5, 1.25) and Figure 4.2

shows the displacement components from a phantom with two stiffer inclusions located

approximately at (0.25, 1) and (0.75, 1).

Figure 4.3 shows the results of numerical experiments using these two sets of data (one

and two stiff inclusions respectively). The image on the left shows the stiff inclusion in

the phantom corresponding to the displacement data shown in Figure 4.1, and the image

on the right shows the two stiff inclusions corresponding to the displacement data shown

in Figure 4.2. The inclusions are clearly identified and the location of the stiffer tissues in

each case match those shown on the IMPACT lab webpage (referred to earlier).

Figure 4.3: Estimated stiffness parameter 𝜇 corresponding to the displacement data

shown in Figures 4.1 and 4.2 respectively.
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4.2 Data Smoothing

One aspect of parameter identification methods that is relevant to the application is the

presence of noise in the data. If it is known that the data is contaminated with a significant

amount of noise, there are smoothing methods that can be applied to the measurement

data before the iterative process starts. Fortunately, there are many data smoothing meth-

ods/techniques that could be used for this pre-processing of the data and to help mitigate

problems in the identification. Among them are the methods of Moving Averages (MA),

Local Polynomials (LP), and kernel smoothers. The most commonly used method for data

smoothing is Moving Averages, its extension Moving Weighted Average (MWA), and their

modifications. These algorithms involve replacing each data point with the average of all

the data points within some window. The larger the window, the stronger the smoothing

effect. An extension of this method is to use a Moving Weighted Average where the data

points in the center of the window are given larger weights (i.e. original data is followed

more closely). One disadvantage of the method is that it is not as robust in the presence of

outliers.

Local Polynomials is another common method where the data within a window is fit

to some polynomial, typically of first- or second-degree. The level of smoothing can be

controlled both by the size of the window and the degree of the polynomial. Though LP

handles patterns in the data better than MA or MWA, it also does not handle outliers in

a robust manner. A popular extension of the LP method is Locally Weighted Scatterplot

Smoothing (LOWESS or LOESS). The idea behind the LOWESS [30] method is to fit

the data in the window to a polynomial and then assign weights to those points such that

the weights get smaller as the data points get farther from the point being estimated. The

reasoning behind such an idea is points close to one another are more likely to be related.

Though the flexibility of this method is desirable, one other drawback of LOWESS is its

computational expense.

The MWA and LOWESS algorithms can be considered kernel smoothers. Kernel

smoothing is a general data smoothing technique that is defined by weighting the data
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points within a window according to some shape function, or kernel. Typically, the kernel

assigns larger weights to data points that are close by and decreases smoothly towards

assigning smaller weights to points that are farther away. Another potential method touted

specifically for inverse problems is data smoothing by regularization such as in [31] and

[32].

In a problem similar to the one that we consider, Albocher et al. [33] consider two

methods of smoothing for an incompressible linear elasticity inverse problem. They consider

both an averaging method and a down-sampling method where points are removed to reduce

the influence of the noise. While information is lost with the second method, one way to

improve those results is to interpolate the remaining points to obtain a repopulated estimate.

Through experimentation they determined that the averaging method provided much better

results which were reasonably close to a target solution [33]. They also obtained good

results when employing a smoothing method along with adding a regularization term.

Finally, research for smoothing methods specific to ultrasound data is advancing. For

example, de Araujo et al. [34] presented an averaging method for ultrasound images that

yielded promising results. The idea behind this method is to identify the pixels along the

border of an area of interest. These pixels would be subjected to a lower level of smoothing

than the pixels in the rest of the image, a technique called low-pass filtering. The authors

claim that this method outperforms other methods commonly used because it is able to

adapt to the contents of the image. As indicated by many authors, the efficacy of the

smoothing algorithm may depend on the type of problem it is being applied to. Thus, it will

be necessary to explore which of these methods will best fit our problem of interest. Based

on the preliminary literature study, however, an averaging method would be a reasonable

place to start. The displacement data used in computations in Section 4.1 is obtained from

measurements in a lab, and therefore contains measurement errors (noise). The results

shown in Figure 4.3 capture the characteristics of the underlying phantom quite well and it

is difficult to conclude if or how the computational framework, or the choice of the objective

functional, is influenced by the measurement noise in the data.
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4.3 Quantitative Analysis

This set of analyses were performed for the numerical example in Section 3.5.1 where the

transition between the background tissue and the inclusion was continuous and the problem

was solved using a uniformly refined mesh (see Figure 3.2). Simply looking at the figures

to determine the quality of the approximation, while informative, is a very qualitative

approach. It is helpful to also have more quantitative analyses of how the computational

framework is performing, as well as being able to compare various modifications of that

framework.

One of the most common quantitative measures to examine is error in the recovered

coefficient. It is sufficient to use an error measure for the recovered parameter such as

𝐸 = ∥𝜇 − 𝜇ℎ∥𝐿2 .

Besides the mesh size or minimum cell diameter, ℎ, there are a few other computational

parameters that contribute to the error in our framework. These are the regularization

parameter, 𝛽, and the step size in the stochastic gradient algorithm, 𝛼. In order to quantify

contributions of these parameters in the total error 𝐸 , we carry out multiple numerical

experiments on uniform meshes for a problem with an analytical solution. In addition to

error, we record the number of iterations, degrees of freedom (dofs), and the computational

times. Several experiments were run, the first of which was varying the mesh size, and the

error versus the number of iterations was plotted.

In Figure 4.4, we display the number of iterations needed and the 𝐿2-norm error. In this

set of experiments, the only parameter that changes is the mesh size ℎ. The code was run

until a norm of the objective functional gradient falls below 5 · 10−6 (a stopping criterion);

due to this criterion, the total number of iterations was different for various mesh sizes.

Without a theoretical error estimate, it is difficult to predict and quantify the contributions

of a chosen set of parameters in the total error. Nevertheless, we collect our observations

from the numerical experiments conducted. In Figure 4.4, we notice that the decrease in

error is more rapid and a smaller error is achieved for coarser meshes when compared at the

same number of iterations. This is not what is expected intuitively, however, we need to take
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into account that the errors in the solution are not only due to the discretization of the PDE

itself but also from the optimization method used in the recovery of the parameter. As the

mesh gets finer, it is typically the case that more regularization (i.e. a larger regularization

parameter 𝛽) is necessary. In this particular set of experiments, the regularization parameter

is kept constant at 𝛽 = 10−5 regardless of the varying mesh size and this would explain the

aforementioned error behaviour.

Figure 4.4: Error vs iteration plot for 32-64 subdivisions of the mesh with piecewise

quadratic elements for 𝒖 and piecewise linear elements for 𝑝.

We repeat the same set of experiments (varying mesh sizes and all other parameters

kept the same) using another stable finite element combination for the mixed formulation

of the system, piecewise quadratic elements for the displacement 𝒖 and piecewise constant

elements for the pressure 𝑝 (a 𝑄2 − 𝑄0 combination). The results of this experiment are

shown in Figure 4.5. Recall that all numerical experiments in Chapters 2 and 3, as well

as those resulted in Figure 4.4 used piecewise quadratic elements for 𝒖 and piecewise

linear elements for 𝑝 (the so-called 𝑄2 − 𝑄1 combination). With the piecewise constant

representation of the pressure variable, we reduce the dimension of the forward problem

that we solve in every iteration, which leads to savings in computational time.
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Figure 4.5: Error vs iteration plot for 32-64 subdivisions of the mesh with piecewise

quadratic elements for 𝒖 and piecewise constant elements for 𝑝.

Comparisons of the two combinations of elements are shown more clearly in Figures 4.6-

4.8 where the error vs iteration curves are directly compared for various mesh sizes.

Figure 4.6: Error vs iteration plot for 32 subdivisions of the mesh (a 32 × 32 mesh)

comparing the two different combinations of elements, 𝑄2 −𝑄1 and 𝑄2 −𝑄0.
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We see that the combination with 𝑄0 elements for the pressure routinely needs fewer

iterations and leads to a smaller error in the solution than the combination with𝑄1 elements.

Figure 4.7: Error vs iteration plot for 48 subdivisions of the mesh (a 48 × 48 mesh)

comparing the two different combinations of elements, 𝑄2 −𝑄1 and 𝑄2 −𝑄0.

Figure 4.8: Error vs iteration plot for 64 subdivisions of the mesh (a 64 × 64 mesh)

comparing the two different combinations of elements, 𝑄2 −𝑄1 and 𝑄2 −𝑄0.
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Tables 4.1 and 4.2 show the computational times along with the degrees of freedom for

the pressure variable after a fixed number of iteration steps are completed for the 𝑄2 − 𝑄1

and 𝑄2 −𝑄0 element combinations respectively for various subdivisions of the mesh.

subdivisions # dofs (𝑝) CPU time (s)

32 1089 15309.17

48 2401 38019.75

56 3249 53219.09

64 4225 71480.37

Table 4.1: Degrees of freedom (dofs) for the pressure and computational time (seconds)

after 5000 iterations for the piecewise quadratic/piecewise linear (𝑄2−𝑄1) element com-

bination for various mesh sizes.

subdivisions # dofs (𝑝) CPU time (s)

32 1024 12814.77

48 2304 30821.35

56 3136 43501.81

64 4096 57999.97

Table 4.2: Degrees of freedom (dofs) for the pressure and computational time (seconds)

after 5000 iterations for the piecewise quadratic/piecewise constant (𝑄2 − 𝑄0) element

combination for various mesh sizes.

Table 4.3 gives a direct comparison between these two element combinations for one

mesh size. The degrees of freedom used in representing the pressure variable decrease from

1089 to 1024 when switching from a piecewise linear to a piecewise constant representation

and we observe a decrease of about 16% in the total computational time after a fixed number

of (5000) iterations are completed.
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element combination # dofs (𝑝) CPU time (s)

𝑄2 −𝑄1 1089 15309.17

𝑄2 −𝑄0 1024 12814.77

Table 4.3: Degrees of freedom (dofs) for the pressure and computational time (seconds)

after 5000 iterations for the two combinations of elements on a 32 × 32 mesh.

Next, we explore the effects of varying the regularization parameter, 𝛽, for two different

(fixed) mesh sizes. Notice in Figures 4.9 and 4.10 that, though it requires more iterations

overall to achieve a certain prescribed accuracy (i.e. the process is terminated after the norm

of the gradient of the objective functional falls below a fixed tolerance), the simulation with

the largest 𝛽 value, 𝛽 = 5 · 10−5, leads to the smallest error when compared with the trends

for the other values of 𝛽 after the same number of iterations are completed. This is consistent

with the expectations stated previously, that a larger regularization parameter yields better

results for finer meshes.

Figure 4.9: Error vs iteration plot for 48 subdivisions of the mesh (a 48 × 48 mesh) for

various 𝛽 values for the 𝑄2 −𝑄1 element combination.

63



4.3. Quantitative Analysis Elastography Inverse Problem

Figure 4.10: Error vs iteration plot for 64 subdivisions of the mesh (a 64 × 64 mesh) for

various 𝛽 values for the 𝑄2 −𝑄1 element combination.

The results discussed here are a preliminary study on understanding the accuracy of

the solver from the problem parameters as well as the computational parameters. A more

thorough and systematic theoretical and numerical study that contributes to understanding

the complex interplay of these computational parameters in the error is necessary.
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Chapter 5

Stochastic Model of Elastography

This chapter is focused on a stochastic linear elasticity system and the inverse problem of

identifying a random stiffness parameter in the system. The goal is to develop an adaptive

finite element solution framework for the identification of a distributed parameter in a

system of stochastic partial differential equations. A convex optimization framework is

applied in this setting, and we use a stochastic approximation method with finite element

discretization for the numerical solution of the problem. A description of a finite element

discretization that fits the optimization framework and stochastic approximation scheme

used in the numerical solution is given. We also propose an adaptive mesh refinement

framework that provides the resolution needed for the recovery of the spatially varying

parameter while improving computational efficiency.

5.1 An Example of a Stochastic Model

The motivation behind using a stochastic parameter for tissue stiffness is that the parameter

can be different for each patient. This would allow natural uncertainty to be inserted into the

model, as the parameter would be allowed to take on a range of values. Using a statistical

method would give a probability distribution for the parameter, rather than a single fixed

value. The authors of [18] considered a model of nearly incompressible elasticity where

Young’s modulus 𝐸 is a spatially varying random field given by

𝐸 (𝒙, 𝒓) = 𝑒0(𝒙) +
𝑀∑︁
𝑘=1

𝑒𝑘 (𝒙)𝑟𝑘
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where 𝒓 = [𝑟1, 𝑟2, . . . , 𝑟𝑀] and 𝑟𝑘 , 𝑘 = 1, . . . , 𝑀 are random parameters whose distributions

are known. The tissue stiffness parameter 𝜇 is therefore a random variable in this model (see

also equations (1.3) and (1.4)). The authors analyzed the model and introduced a solution

strategy that uses the stochastic Galerkin method (see also [25] where the authors presented

a posteriori error estimates for the stochastic Galerkin formulation of the problem).

To turn the PDE into a stochastic PDE (SPDE), the stiffness parameter will now be

𝜇(𝑥, 𝑦, 𝜔), meaning 𝜇 will depend on the random variable 𝜔. Since 𝜇 depends on this

random variable, and 𝒖 depends on 𝜇, the displacement will depend on𝜔 as well, 𝒖(𝑥, 𝑦, 𝜔).

For example, we can assume that the tissue stiffness parameter 𝜇 has the expansion

𝜇 = 𝜇1(𝑥, 𝑦) + 𝜇2(𝑥, 𝑦)𝑌1(𝜔) + 𝜇3(𝑥, 𝑦)𝑌2(𝜔)

where𝑌1(𝜔) and𝑌2(𝜔) are random variables and 𝜇1, 𝜇2, 𝜇3 are the deterministic parts of 𝜇.

Due to the appearance of random variables 𝑌1(𝜔) and 𝑌2(𝜔) in the stiffness parameter and

the force function 𝒇 , we have a random displacement 𝒖(𝑥, 𝑦,𝑌1(𝜔), 𝑌2(𝜔)) in the model.

We assume that the distributions of random variables 𝑌1(𝜔) and 𝑌2(𝜔) are known. Then

the inverse problem that we have is to recover 𝜇𝑖 (𝒙), 𝑖 = 1, 2, 3 in the system.

The stochastic model with homogeneous Dirichlet boundary conditions in its original

form is given by

∇ · 𝜎(𝜔, 𝒙) = 𝒇 (𝜔, 𝒙) on Ω × 𝐷 (5.1)

𝒖(𝜔, 𝒙) = 0 on 𝜕𝐷 (5.2)

where 𝜎 = 2𝜇(𝜔, 𝒙)𝜀𝒖 (𝜔, 𝒙) + 𝜆div(𝒖(𝜔, 𝒙))𝐼, 𝐷 is the domain, and Ω is the set of

elementary events in the probability space.

There are two types of variational forms that could be used for solving the stochastic

forward problem, a pathwise formulation and an integral formulation. In the integral

formulation, we would have a double integral where the inner integral is with respect to the

space variable just like the weak problem for the deterministic case and the outer integral

is with respect to the probability measure. The pathwise version utilizes a fixed realization

of the random variable 𝜔, and it is considered a deterministic problem parameterized by
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the random variable 𝜔. This is the version we need for the type of solution methods we are

proposing.

5.2 Stochastic Forward Problem

A commonly used numerical method for solving stochastic PDEs is the sampling-based

Monte-Carlo method. For this method, 𝑠 number of realizations of the random variables 𝑟𝑘
are generated, and for each realization the solution 𝒖(𝒙, 𝒓) is obtained where the data are

the (random) material parameters and the force 𝒇 (𝒙, 𝒓) (as well as boundary conditions).

Similar to the deterministic case, the stochastic version of the model equations can be

written as

−∇ · (2𝜇(𝜔, 𝒙)𝜀𝒖 (𝜔, 𝒙) + 𝜆div(𝒖(𝜔, 𝒙))𝐼) = 𝒇 (𝜔, 𝒙) (5.3)

where the solution 𝒖, and the data 𝜇 and 𝒇 belong to appropriate spaces. The data

𝜇 = 𝜇(𝜔, 𝒙) (or the Young modulus 𝐸 = 𝐸 (𝜔, 𝒙)) and 𝒇 (𝜔, 𝒙) are random fields with

specified distributions and our task is to find 𝒖(𝜔, 𝒙) such that the equations hold (almost

everywhere) in the weak sense. Equation (5.3) can easily be rewritten using the equations

from the mixed formulation where the pressure 𝑝 = 𝑝(𝜔, 𝒙) is also random. In the Monte

Carlo Finite Element Method (MCFEM), if we have, for example, a deterministic 𝒇 = 𝒇 (𝒙),

we transform the weak problem to a deterministic one using realizations of the shear modulus

𝜇(𝜔, 𝒙).

The main idea of MCFEM is that given i.i.d samples of approximate shear modulus

𝜇𝑟 = 𝜇(𝜔𝑟 , 𝒙), 𝑟 = 1, . . . , 𝑄1, we generate𝑄1 i.i.d samples of 𝒖ℎ,𝑟 = 𝒖ℎ (𝜔𝑟 , 𝒙) of the finite

element solution 𝑢ℎ (𝜔, 𝒙) by solving 𝑄1 variational problems. The mean E[𝒖(𝜔, 𝒙)] is

then estimated by
1
𝑄1

𝑄1∑︁
𝑟=1

𝒖ℎ,𝑟 .

Other methods that are commonly used by researchers include stochastic Galerkin and

stochastic collocation methods (see, for example, [35]).
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We discuss the results of a numerical experiment where we chose an example where

Young’s modulus 𝐸 = 1 in a deterministic problem with a known solution (see Experiment

1 in Chapter 2) is changed to a random Young’s modulus given as

𝐸 = 1 + 𝑟1

where 𝑟1 is a random variable distributed uniformly on [−0.1, 0.1]. Recall that the relation

between the shear modulus (tissue stiffness parameter) and Young’s modulus 𝐸 is given

by 𝜇 =
𝐸

2(1 + 𝜈) . Figure 5.1 shows the approximation of the mean E[𝒖(𝜔, 𝒙)], where we

used 100 samples of 𝑟1 for the computation of the approximate mean. The results of the

numerical experiment have shown that the mean of the tissue stiffness parameter agrees

nicely with the solution of the corresponding deterministic problem whose solutions are

known.

Figure 5.1: Componentwise view of an approximation of E[𝒖(𝜔, 𝒙)] computed using

MCFEM with 100 samples.

5.3 Stochastic Optimization Problem

We describe an optimization formulation for the inverse problem with a stochastic linear

elasticity system in this section. We consider the case where the tissue stiffness parameter

is considered as a random field 𝜇(𝜔, 𝒙), where 𝜔 is a random variable from a probability

space with the set of elementary events Ω.
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The forward problem is to find a random field 𝒖 : Ω × 𝐷 → R satisfying (5.1) - (5.2)

almost surely for given functions 𝒇 (𝜔, 𝒙) and 𝜇(𝜔, 𝒙). The following discrete form of

the forward problem will be needed for computations: Find 𝑼 = 𝑼(𝜔,𝑴) that satisfies

𝐾 (𝑴)𝑼(𝜔,𝑴) = 𝑭(𝜔) where the block matrix 𝐾 = 𝐾 (𝑴) is defined by

𝐾 (𝑴) =

𝐴(𝑴) 𝐵

𝐵𝑇 𝐶

 .
The matrix is the parameterized version of the deterministic case since we use a pathwise

formulation of the problem in the solution method we propose. We consider the trilinear

form 𝑇 (𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) where 𝒖(𝜇) = 𝒖(𝜇) (𝜔, 𝒙) is the solution to the forward

problem for a given parameter 𝜇(𝜔, 𝒙). Using (2.6), we get

J(𝜇) = 𝑎(𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) + 𝑏(𝒖(𝜇) − 𝒛, 𝑝(𝜇) − 𝑧)

−𝑏(𝒖(𝜇) − 𝒛, 𝑝(𝜇) − 𝑧) + 𝑐(𝑝(𝜇) − 𝑧, 𝑝(𝜇) − 𝑧)

= 𝑎(𝜇, 𝒖(𝜇) − 𝒛, 𝒖(𝜇) − 𝒛) + 𝑐(𝑝(𝜇) − 𝑧, 𝑝(𝜇) − 𝑧)

=

∫
𝐷

2𝜇𝜀𝒖(𝜇)−𝒛 · 𝜀𝒖(𝜇)−𝒛 +
∫
𝐷

1
𝜆
(𝑝(𝜇) − 𝑧)2.

We define a set of admissible parameters 𝜇 by

M =
{
𝜇 ∈ 𝐿2(Ω, 𝐷), 0 < 𝜇0 < 𝜇(𝜔, 𝒙) ≤ 𝜇1 < ∞ a.e. in Ω × 𝐷

}
.

Then the optimization problem is formulated as follows: Find 𝜇 ∈ M such that the modified

output least-squares (MOLS) functional J defined by

J(𝜇) :=
1
2
E

[∫
𝐷

2𝜇𝜀𝒖(𝜇)−𝒛 · 𝜀𝒖(𝜇)−𝒛 +
∫
𝐷

1
𝜆
(𝑝(𝜇) − 𝑧)2

]
(5.4)

is minimized. Here, E stand for the expectation with respect to the probability space and

𝒛(𝜔, 𝒙) = (𝒛, 𝑧) are the data (measurements of (𝒖, 𝑝)). The regularized version of the

modified output least-squares functional needed for stable identification is given by

J𝛽 (𝜇) :=
1
2
E

[∫
𝐷

2𝜇𝜀𝒖(𝜇)−𝒛 · 𝜀𝒖(𝜇)−𝒛 +
∫
𝐷

1
𝜆
(𝑝(𝜇) − 𝑧)2 + 𝛽

2
𝑅(𝜇)

]
, (5.5)

where 𝑅(𝜇) is the regularization term (to be specified later), and 𝛽 is a regularization

parameter.
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Given 𝑟 random variables 𝜉𝑡 : Ω ↦→ Γ𝑡 , for 𝑡 = 1, . . . , 𝑟 , a function 𝑣 ∈ 𝐿2(Ω; 𝐿2(𝐷))

of the form 𝑣(𝜉 (𝜔), 𝒙) for 𝒙 ∈ 𝐷 and 𝜔 ∈ Ω, where 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑟) : Ω ↦→ Γ ⊂ R𝑟

and Γ := Γ1 × Γ2 · · · × Γ𝑟 is called a finite-dimensional noise (see [35]). Most solution

methods for stochastic PDEs require an assumption that is called the finite-dimensional

noise assumption involving a finite number of real-valued random variables. With the

assumption, the expectation is expressed as an integral over an observation space. If a

random field 𝑣(𝜉, 𝒙) is a finite-dimensional noise, a change of variables can be made for

evaluating expectations. Using finite-dimensional noise representations for the random

fields involved helps transform the stochastic system into a high-dimensional parametric

system. Under the assumption, the random field 𝜇 takes the form

𝜇(𝜔, 𝒙) = 𝜇0(𝒙) +
𝑟∑︁
𝑡=1

𝜇𝑡 (𝒙)𝑌𝑡 (𝜔) =
𝑟∑︁
𝑡=0

𝜇𝑡 (𝒙)𝑌𝑡 (𝜔)

where 𝑌0(𝜔) = 1 by convention and 𝑌𝑡 (𝜔), 𝑡 = 0, 1, ..., 𝑟 are real-valued random variables.

With the finite dimensional expansion for 𝜇, the variational form can be written as

E

[∫
𝐷

2

(
𝑟∑︁
𝑡=0

𝜇𝑡 (𝒙)𝑌𝑡 (𝜔)
)
𝜀𝒖 · 𝜀𝒗 −

∫
𝐷

𝑝 div (𝒗)
]
= E

[∫
𝐷

𝒇 𝒗

]
,

E

[∫
𝐷

𝑞 div(𝒖) +
∫
𝐷

1
𝜆
𝑝𝑞

]
= 0,

where 𝒖 = 𝒖(𝜔, 𝒙), 𝑝 = 𝑝(𝜔, 𝒙), 𝒗 = 𝒗(𝜔, 𝒙), and these functions live in appropriate

Bochner spaces. Therefore, J(𝜇) = E [J(𝜔, 𝜇)] where

J(𝜔, 𝜇) :=
1
2

𝑟∑︁
𝑡=0
𝑌𝑡 (𝜔)

∫
𝐷

2𝜇𝑡 (𝒙)𝜀𝒖(𝜇)−𝒛 · 𝜀𝒖(𝜇)−𝒛 +
∫
𝐷

1
𝜆
(𝑝(𝜇) − 𝑧)2. (5.6)

Furthermore, it can be shown that 𝐷J(𝜇) (𝛿𝜇) = E[𝑇 (𝜔, 𝜇) (𝛿𝜇)] where

𝑇 (𝜔, 𝜇) (𝛿𝜇) :=
𝑟∑︁
𝑡=0

[
−1

2
𝑎(𝛿𝜇𝑡 (𝒙), 𝒖(𝜇) + 𝒛, 𝒖(𝜇) − 𝒛)

]
𝑌𝑡 (𝜔)

− 𝑏(𝒖(𝜇), 𝛿𝑝) + 𝑏(𝛿𝒖, 𝑝(𝜇) − 𝑧).

Consequently, ∇𝜇J(𝜇) = ∇𝜇E [J(𝜔, 𝜇)] = E
[
∇𝜇J(𝜔, 𝜇)

]
and

∇𝜇J(𝜔, 𝜇) = ∇𝜇𝑇 (𝜔, 𝜇) =
(
𝜕𝑇

𝜕𝜇𝑡
(𝜔, 𝜇)

)
𝑡=0,...,𝑟
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where we have

𝜕𝑇

𝜕𝜇𝑡
(𝜔, 𝜇) (·) =

[
−1

2

∫
𝐷

𝑎(·, 𝒖(𝜇) + 𝒛, 𝒖(𝜇) − 𝒛)
]
𝑌𝑡 (𝜔) (5.7)

for 𝑡 = 0, ..., 𝑟 .

5.4 Stochastic Approximation Scheme

In this section, we discuss details of the discretization that are needed for a numerical

implementation. Discretization of the forward problem is standard and found in existing

literature, therefore we focus on the relevant details for the inverse problem. The stochastic

approximation method that we consider uses the pathwise formulation of the forward

problem and we provide a brief description of the discrete version needed for numerical

implementation. We propose a regularized projected stochastic approximation scheme and

provide discrete formulas for the objective functional along with its gradients needed for

implementation.

Due to the expansion 𝜇(𝜔, 𝒙) = 𝜇0(𝒙) +
𝑟∑︁
𝑡=1

𝜇𝑡 (𝒙)𝑌𝑡 (𝜔) =
𝑟∑︁
𝑡=0

𝜇𝑡 (𝒙)𝑌𝑡 (𝜔), the matrix

𝐴(𝑴) can be decomposed as follows: For 𝑖, 𝑗 = 1, . . . , 𝑛,

𝐴(𝑴 (𝜔))𝑖, 𝑗 = 𝑎(𝜇(𝜔, 𝒙), 𝜓 𝑗 , 𝜓𝑖) = 𝑎
(
𝑟∑︁
𝑡=0

𝜇𝑡 (𝒙)𝑌𝑡 (𝜔), 𝜓 𝑗 , 𝜓𝑖

)
=

𝑟∑︁
𝑡=0
𝑌𝑡 (𝜔)𝑎(𝜇𝑡 (𝒙) 𝜓 𝑗 , 𝜓𝑖) =

𝑟∑︁
𝑡=0
𝑌𝑡 (𝜔)𝐴(𝑴𝑡), (5.8)

where

(𝐴(𝑴𝑡))𝑖, 𝑗 := 𝑎(𝜇𝑡 (𝒙), 𝜓 𝑗 , 𝜓𝑖) for 𝑖, 𝑗 = 1, . . . , 𝑛.

With 𝑴𝑡 , the discrete representation of 𝜇𝑡 (𝒙), we will use a stochastic approximation

scheme in terms of the spatial components 𝑴 (𝑘) = (𝑴 (𝑘)
0 , ...,𝑴 (𝑘)

𝑟 ). From (5.7), we get the

discrete form of the gradient

𝜕𝑇

𝜕𝑴𝑡

(𝜔,𝑴) = −1
2

[
𝑺

(
𝑼(𝜔,𝑴) + 𝒁(𝜔)

)]𝑇 [
𝑼(𝜔,𝑴) − 𝒁(𝜔)

]
𝑌𝑡 (𝜔) (5.9)

for 𝑡 = 0, . . . , 𝑟 where 𝑺 ∈ R𝑛×𝑚 is the adjoint stiffness matrix defined by the condition that

𝑺(𝑽)𝑴 = 𝐴(𝑴)𝑽 for every 𝑽 ∈ R𝑛 and 𝑴 ∈ R𝑚 .
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We emphasize that the 𝑴 used here only for the purposes of this definition is a vector

of dimension 𝑚 and is different from the vector 𝑴 we’ve been using elsewhere, which

has dimension (𝑟 + 1)𝑚. Block vectors 𝒁 and 𝑼(𝑴) stand for displacement data and the

computed/simulated displacement (corresponding to a given parameter represented by 𝑴)

respectively. Given the random vector (𝑌0(𝜔), ..., 𝑌𝑟 (𝜔)), we will use the notation

𝑴 (𝑘) (𝜔) =
𝑟∑︁
𝑡=0

𝑴 (𝑘)
𝑡 𝑌𝑡 (𝜔).

for the corresponding realization. We propose the following projected-gradient-type stochas-

tic approximation scheme, applicable for general variational inequalities. For a similar

stochastic optimization problem, stemming from a scalar PDE model, the modified output

least-squares objective functional is known to be convex in the interior of the setM (see [36]

and [37]) and a necessary and sufficient optimality condition for the stochastic optimiza-

tion problem is a stochastic variational inequality. For the variational inequality of finding

𝜇 ∈ M such that ⟨𝐹 (𝜇), 𝑣 − 𝜇⟩ ≥ 0 for all 𝑣 ∈ M, the scheme takes the following form:

(i) Start with 𝜇0 ∈ M with E
[
∥𝜇0∥2] < ∞.

(ii) At step 𝑘 , compute 𝜇𝑘+1 ∈ M by

𝜇𝑘+1 = 𝑃M [𝜇𝑘 − 𝛼𝑘 (𝐹 (𝑘𝑛) + 𝛽𝑘𝜇𝑘 + 𝜔𝑘 )] (5.10)

where 𝛼𝑘 is the variable step size, 𝛽𝑘 is the regularization parameter, 𝜔𝑘 is a realization

of the random variable 𝜔, and 𝑃M is the projection onto the set of admissible parameters

M. Sequences for step lengths {𝛼𝑘 }, regularization parameters {𝛽𝑘 }, and the sample rate

{𝑠𝑘 } ⊂ N, are updated at every iteration. Additional details of the regularized stochastic

approximation method can be found in [22] and [38], including the conditions on the

parameter sequences and a proof of convergence of the following algorithm:

1. Choose an initial guess 𝑴 (0) , step length 𝛼0, sample rate 𝑠0, and initial samples

{𝜔0
𝑗
}𝑠0
𝑗=1 of the random variable 𝜔.

2. Generate a random vector (1, 𝑦1(𝜔𝑘 ), ..., 𝑦𝑟 (𝜔𝑘 )).

3. Compute 𝑼(𝑘) = 𝑼(𝜔𝑘 ,𝑴 (𝑘)) by solving the system

𝐾 (𝑴 (𝑘) (𝜔𝑘 ))𝑼(𝑘) = 𝑭(𝜔𝑘 ).
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4. Given 𝑴 (𝑘) in the admissible set M, generate samples {𝜔𝑘
𝑗
}𝑠𝑘
𝑗=1 of 𝜔 and compute

𝑴 (𝑘+1) ∈ M by

𝑴 (𝑘+1) = 𝑃M

𝑴 (𝑘) − 𝛼𝑘

𝑠𝑘

𝑠𝑘∑︁
𝑗=1
𝐺𝛽𝑘

(
𝜔𝑘𝑗 ,𝑴

(𝑘)
) , (5.11)

where 𝐺𝛽𝑘 is the discrete variant of the gradient of the regularized MOLS objective

functional. Here, 𝑃M stands for the projection into the admissible parameter set.

Note that in the process above, we modify the classical stochastic gradient scheme by

sampling the regularized gradient at a given sampling rate. As for the regularizer, for

example, we can take the derivative of the discrete form of the 𝐻1-norm regularizer and

add to the gradient components given in (5.9).

5.5 A Numerical Example

In this section, we address some elements of the adaptive mesh refinement we use in

computations and present a numerical example. We created a simple analytical example to

test the accuracy and correctness of the parameter estimation process. The components of

the exact displacement 𝒖 are chosen as

𝑢1(𝑥, 𝑦) = 𝑌1(𝜔) sin(2𝜋𝑦) (−1 + cos(2𝜋𝑥)) + 𝑌2(𝜔)
1 + 𝜆 sin(𝜋𝑥) sin(𝜋𝑦) (5.12)

𝑢2(𝑥, 𝑦) = 𝑌1(𝜔) sin(2𝜋𝑥) (1 − cos(2𝜋𝑦)) + 𝑌2(𝜔)
1 + 𝜆 sin(𝜋𝑥) sin(𝜋𝑦) (5.13)

with 𝜆 =
2𝜈

1 − 2𝜈
where 𝜈 is the Poisson ratio (chosen to be close to 0.5 to indicate near

incompressibility),

𝜇(𝑥, 𝑦) = 2 + 3 exp(−10(𝑥 − 0.35)2 − 10(𝑦 − 0.45)2),

and compute the corresponding force vector 𝒇 using equation (1.1). Figure 5.2 shows the

exact parameter 𝜇 and the mean of 𝒖. The spatial domain 𝐷 is [0, 1]2 and we have 𝑟 = 0

(i.e. the parameter to be identified is deterministic). Random variables 𝑌1(𝜔) and 𝑌2(𝜔)

are uniformly distributed on [0, 1].
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(a) Exact parameter 𝜇 (b) Mean displacement vector

Figure 5.2: Parameter 𝜇, mean displacement of 𝒖 (i.e. 𝑌1(𝜔) = 𝑌2(𝜔) = 0.5).

Our initial approximation is the block vector 𝑀 (0) ,

𝑴 (0) =


𝑴1

𝑴2

𝑴3


where the blocks 𝑴1,𝑴2,𝑴3 correspond to the initial approximations of 𝜇1(𝒙), 𝜇2(𝒙), and

𝜇3(𝒙) respectively. At every iteration, the gradient of the objective functional at 𝑴 (𝑘) is

computed using 𝑠𝑘 realizations of the random variable 𝜔 and is then used in computing the

next iterate 𝑴 (𝑘+1) . At iteration 𝑘 , we generate a set of realization
{
𝜔 𝑗

}𝑠𝑘
𝑗=1 of the random

variable, and we compute the step length 𝛼𝑘 . For the step lengths 𝛼𝑘 , we use the initial step

length 𝛼0 provided at the beginning of the iterations and make sure that the sequence 𝛼𝑘
satisfies ∑︁

𝑛∈N
𝛼𝑛 = ∞,

∑︁
𝑛∈N

𝛼2
𝑛 < ∞.

The projection to the admissible set is necessary so the stiffness parameter values stay

between the two positive scalar bounds 𝜇0 and 𝜇1. Displacement data 𝒁 needed in the

gradient computation (5.9) are nodal interpolants of the analytical solution 𝒖 without any

additional noise. The constraint set we choose in the projection step is {𝑴 ∈ R𝑚 |𝜇0 ≤ 𝑴 ≤

𝜇1} where 𝜇0 and 𝜇1 are constant upper and lower bound vectors. We choose 𝜈 = 0.49995
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which corresponds to a 𝜆 value of 9999. In each mesh refinement cycle, 3% of the cells are

marked for coarsening and 30% of the cells are marked for refinement, and the refinement

process is completed in a way that any two neighboring cells in the mesh do not differ by

more than one level of refinement. For simplicity, we used the same finite element mesh

for both the displacement and the parameter, and an error indicator based on the parameter

values only. In the stochastic approximation algorithm (see Section 5.4), we used the sample

rate 𝑠𝑘 = 1 and regularization parameter 𝛽𝑘 = 10−6 in every iteration. The algorithm is set

to terminate when the 𝐿2-norm of the gradient falls below 10−7.

Figure 5.3 shows the estimated parameter 𝜇ℎ for three cycles of refinement (the initial

mesh is uniform), along with the computational meshes which are refined adaptively every

1000 iterations.

(a) cycle 0 (b) cycle 1 (c) cycle 2 (d) cycle 3

(e) cycle 0 (f) cycle 1 (g) cycle 2 (h) cycle 3

Figure 5.3: Estimated parameter 𝜇ℎ for 3 refinement cycles and the computational

meshes.

Figure 5.4 shows the simulated displacement vector 𝒖ℎ (𝜇ℎ) together with the exact

displacement vector on a coarse (16 × 16) mesh where 𝑌1(𝜔) and 𝑌2(𝜔) are set to their

mean values (0.5 in each case, see formulas (5.12) and (5.13)). Table 5.1 shows the number

of cells, degrees of freedom (dofs) for the parameter 𝜇, and minimum cell diameter for each

refinement cycle of the mesh.

75



5.5. A Numerical Example Elastography Inverse Problem

(a) Exact displacement 𝒖(𝜇) (b) Simulated displacement 𝒖ℎ (𝜇ℎ)

Figure 5.4: Simulated and exact displacements for 𝑌1(𝜔) = 𝑌2(𝜔) = 0.5 on a coarse

grid.

cycle # cells # dofs (𝜇) minimum cell diameter

0 64 81 0.1768

1 160 191 0.0884

2 400 449 0.0442

3 1024 1113 0.0221

4 2752 2937 0.0110

5 7492 7951 0.0055

Table 5.1: Number of cells in the mesh, degrees of freedom (dofs) for 𝜇, and minimum

cell diameters for 5 refinement cycles.
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Conclusion

Here, we include discussions of the work completed so far and mention some thoughts on

future directions for this work. All of our codes were written in C++ using the finite element

library deal.ii and post-processing was completed using both MATLAB and VisIt. We

studied a parameter identification problem in deterministic and stochastic linear elasticity

systems that stem from the recovery of the tissue stiffness parameter from measurements

of the displacement in the tissue under prescribed forces. In order to properly model the

isotropic linear elasticity problem where 𝜆 is large, a mixed formulation is necessary. A

formulation which was derived by incorporating an additional equation with a new pressure

variable to the existing linear elasticity system. A mixed finite element method with an

adaptive mesh refinement framework within the proposed method provides the accuracy

and resolution needed for the recovery of the tissue stiffness parameter.

Numerical experiments described in Chapter 2 show the accuracy and efficiency of the

forward problem solver which is crucial when solving the inverse problem using iterative

methods. We demonstrated the differences in displacement fields due to various body forces,

boundary conditions, and locations of stiffer regions. In Chapter 5 we compared solutions

of the forward problem from the deterministic model with those from the stochastic model

by comparing the mean displacement field in the stochastic model with the displacement

field in the deterministic model.

We have also explored variations of the stochastic gradient-descent method for tissue

stiffness identification problems with a deterministic model, results of which were shown in

Chapter 3. We demonstrated that our framework, which combines the stochastic gradient

method with adaptive mesh refinement, is able to to estimate the tissue stiffness parameters

accurately for both smoothly and sharply varying transitions. Future directions could

include exploring and analyzing other variations of the stochastic gradient descent method

for inverse problems with deterministic and stochastic models.
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In Chapter 4 we demonstrated that the computational framework is able to handle

a parameter identification problem where measurement (displacement) data is collected

from experiments with tissue-mimicking phantoms in a lab. Ultrasound data such as this,

however, tends to be noisy, so we also explored some data smoothing methods. Some

quantitative results and analyses of the estimation error were presented as well in an initial

study for the purpose of better understanding how the problem parameters and computational

parameters affect the accuracy of the solver.

In Chapter 5 we studied the parameter identification problem in a stochastic linear

elasticity system and set up a general framework for solving the elasticity inverse problem

in a stochastic setting. Preliminary results of a larger study underway are presented in order

to demonstrate the feasibility of the approach.

In terms of other future directions for this work, we would like to continue to examine

the efficacy of our methods on more realistic data both through synthetically generated data

from tissue-mimicking phantoms and through any available clinical data. In particular, a

study of what boundary conditions yield the most physiologically realistic results would be

useful. A systematic study of the interplay of various parameters involved in the algorithm

such as the sequence of step lengths 𝛼𝑘 , stopping criteria, number of degrees of freedom of

the computational mesh, the sequence of regularization parameters 𝛽𝑘 , and their effects on

the convergence of the algorithm, as well as the quality of the numerical solution, should

also be undertaken.
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