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Abstract 

 Colloidal quantum dots (CQDs), and especially HgTe CQDs, have the potential to disrupt 

traditional solid-state manufacturing of sensitive infrared photodetectors. Here we produce a 

surface model for (111) HgTe surfaces present in tetrahedral CQDs and attempt to use density 

functional theory (DFT) to explore various issues in the fabrication and performance of HgTe 

CQD photodetectors. One such concern is the presence of mid-gap trap states that can hurt 

device performance. In this work, we demonstrate that an abundant source of these trap states is 

unpassivated mercury at the surface of the nanocrystal, which can be corrected with passivation 

procedures. Furthermore, we are able to show that mercury vacancies, which contribute under-

coordinated tellurium sites on the surface, do not appear to have an outsized impact on mid-gap 

states, unlike other II-VI CQD systems. This is likely a unique effect of the geometry of the 

tetrahedral nanocrystal. While tellurium vacancies were also explored, and preliminary results 

would indicate the presence of trap states, further simulation is warranted to verify this effect. 

 We are also able to demonstrate a universal control of conduction type in the CQDs 

regardless of the synthesis employed. The use of mercury substitution reveals the ability of 

indium species to induce n-type doping, while silver tends to accumulate on the FCC sites of 

mercury rich surfaces and induces p-type doping. We expect that experimental procedures can be 

devised to adapt many common syntheses to exploit this effect. Furthermore, we confirm the 

observation of a ligand dipole dependent Fermi level, highlighting the need for further 

investigation, and potentially enabling higher performing devices with shorter ligands and 

precisely engineered band alignments.
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Chapter I. A Brief Introduction to HgTe CQD Devices 

 Due to quantum confinement effects, colloidal quantum dots (CQCs) can exhibit size 

dependent band gaps, and provide a potential path to solution-based, highly tunable 

optoelectronic devices. Because of the large surface area to volume ratio, these structures are 

very surface dependent, allowing for a high degree of control over their electronic structure and 

conduction type. Recent investigations have suggested that silver chloride on the surface of HgTe 

quantum dots induced significant p-type doping and cited the use of HgCl2 to passivate trap 

states [1]. In this work, we attempted to validate these claims through density functional theory 

(DFT) simulation of HgTe systems in the Vienna Ab Initio Simulation Package (VASP). Special 

attention was paid to the thermodynamic stability of substitutions and defects on the HgTe 

surface. Furthermore, the development of n-type doping is obtained with substitutional methods, 

suggesting a simple avenue for the development of PN-junctions within HgTe CQD layers. 

 This introductory chapter will provide a brief overview of solid-state physics as 

applicable to the results presented here and PN-junctions. Furthermore, the basic quantum 

mechanical principles and surface effects dominating a quantum dot will be discussed, and a 

widely adopted method of HgTe fabrication will be presented. 

I.1 Solid-State Principles: From DOS to the Photodiode 

 It is well understood that the interaction between atomic orbitals that form molecules 

leads to the energy splitting of atomic orbitals into distinct molecular orbitals with higher energy 

“anti-bonding” and lower energy “bonding” states. Following the Aufbau principle, we should 

expect the bonding states to be filled with electrons first. When applied to bulk systems, or 

equivalently, a system periodic in real space and momentum or k-space, this results in the 

manifestation of quasi-energy continuous bands. In semiconductor systems, there is a small finite 
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energy separation between the highest occupied ground state and the lowest energy unoccupied 

excited state – the “band gap.” Plotting the molecular orbitals energy as a function of their wave 

vector 𝒌 yields a band diagram which can be used to the evaluation of the band gap. In Kohn-

Sham DFT, discussed in more detail in Chapter II, these molecular orbitals originate from the 

interaction of well-defined atomic orbitals, allowing for the “projection” of the atomic 

contribution onto particular molecular orbitals [2]. This will be used later in our analysis. 

  The density of states (DOS) results from the integration the available states of the 

molecular orbitals per unit energy over all 𝒌-space. In practical terms, the available states with a 

given energy can be plotted as a 3D surface in 𝒌-space, and the integration is reduced to 

summing the difference in surface area between surfaces separated by an infinitesimal energy. In 

the band gap, no states exist, and the resulting integral will be 0 states/eV. This provides another 

avenue for the determination of the band gap, and similar atomic orbital projections can be done 

to yield a projected-DOS or PDOS. For a more rigorous exploration of the fundamentals of band 

theory, the reader is directed to Kittel’s Introduction to Solid State Physics (8th ed. 2005), or 

McIntyre’s Quantum Mechanics (2012) referenced here [3, 4]. 

     In traditional semiconductor device engineering, the picture is somewhat simplified. 

Rather than a quasi-continuous collection of orbitals, a typical “band diagram” is reduced to flat 

lines in real space representing the conduction band minimum (CBM) and valence band 

maximum (VBM) across the active device layers. At room temperature there will naturally be a 

small fraction of electrons that are promoted from the valence band into the conduction band, 

leaving positively charged available states, or holes. In pristine semiconductors, the 

electrochemical potential (or Fermi energy) of the Fermi distribution governing the statistical 

behavior of fermions is put in the center of the band gap to represent the equivalent number of 
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electrons and holes in either band. This electrochemical potential can be tuned through a variety 

of methods, but substitution is the method most relevant here. 

 In semiconductor manufacturing, it is common for foreign atoms to be introduced to a 

semiconductor lattice either by direct ion beam exposure or thermal diffusion. Once within the 

lattice, “activated” dopants most often take the place of host atom sites. These dopants are 

specifically chosen to increase or decrease the ratio of electrons to holes, resulting in an n-type or 

p-type semiconductor, respectively. In a more fundamental sense, n-type dopants or donors 

contribute filled states very close to the CBM and require very little energy to liberate the 

electron into the continuous CBM states. Similarly, p-type dopants or acceptors introduce states 

near the VBM and can accept electrons from the valence band, preventing them from becoming 

mobile in the conduction band, and introduce holes. To represent this change in the relative 

number of charge carriers, the Fermi distribution is shifted by raising or lowering the 

electrochemical potential in n-type or p-type semiconductors, respectively.  

When interfacing materials, the electrochemical potential must remain constant: in a PN 

junction where p-type and n-type semiconductors are interfaced, the electrochemical potential is 

left flat, which the CBM and VBM are shifted and bend to accommodate the transition. This 

band bending manifests as an electric field that empties a small “depletion region” around the 

junction of free carriers. In a PN photodiode, this strong electric field is exploited to extract 

excited photocarriers. Electrons in the valence band can absorb light matching or exceeding the 

band gap and be promoted into the conduction band, forming an exciton, or a bound 

quasiparticle. The electric field present in photodiodes is capable of quickly separating these 

charges, leading to a measurably elevated current through the device under proper irradiation. 
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I.2 Quantum Dot Films and HgTe 

 In the previous section we described a generic PN photodiode. Light that is absorbed by 

the photodiode must at least have an energy equal to the band gap of the junction material. With 

less energy, the light can simply be transmitted through the film with no detectable signal. In 

most cases for traditional semiconductors, this band gap is fixed. With scientific and consumer 

applications spanning the electromagnetic spectrum, plenty of materials science research is done 

to identify materials suitable for use in optoelectronics. IR sensitive films in particular are 

valuable for communications, astronomy, and spectroscopy techniques. Many of these films, 

including HgCdTe, InGaAs, and InP are fabricated with ALD and other slow vacuum processes 

that inflate cost [1]. By comparison, CQD films are often solution processed, allowing for active 

layers of devices to be made using high throughput fabrication techniques, significantly lowering 

costs.  

Quantum dots exploit also quantum confinement to provide a size tunable band gap. 

Compared to bulk systems, an ideal CQD system would be able to span many regions of the 

electromagnetic spectrum by changing the growth conditions to yield different sized crystals. 

The main principle of this behavior is identical to the infinite wells commonly introduced in 

undergraduate quantum mechanics: the 1D infinite square well has eigenenergies inversely 

proportional to the square of the length of the well [4]. In a less abstract sense, quantum dots add 

a constraint to the dynamics of excitons, increasing the quasiparticle energy and expanding the 

band gap [5]. HgTe as a bulk material is a semimetal: its conduction band and valence band 

slightly overlap, leading some to say HgTe has a negative band gap. Quantum confinement 

through the fabrication of CQDs then is significant for HgTe as it allows for the tunable 

exploitation of the infrared spectrum. 
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I.3 HgTe CQD Devices and Potential Improvements 

While HgTe is theoretically an ideal system for infrared applications, issues have 

emerged when attempting to make high performance IR photodiodes. In CQD systems, charge 

transport occurs through a charge hopping mechanism, rather than the band-like transport in bulk 

films [6]. The low mobility and highly localized states make the recombination of electrons and 

holes likely and reduces the overall efficiency of the device. To mitigate this, the extraction of 

charge and suppression of recombination current can be augmented with the use of an electron 

transport layer (ETL) [7]. The ETL effectively blocks the movement of holes, reducing the dark 

current, while providing a pathway for electrons to escape the CQD film and undergo fast band-

like transport to the electrodes. Crucially, the alignment of the CBM of the CQD film and the 

ETL should closely match to ensure the efficient transmission of electrons. A similar hole 

transport layer (HTL) can also be incorporated into devices, but to our knowledge no such device 

has been made with HgTe CQDs, likely owing to its high CMB. 

The precise alignment of the CBM/VBM for ETL and HTL layers in devices could be 

tuned through ligand engineering. CQDs are fabricated with surfactants and ligand species that 

hold the particles in suspension and these ligands are exchanged during the formation of the solid 

film. However, as demonstrated by Brown et. al the precise ligands used can have a profound 

impact on the alignment of the CBM/VBM [8]. A similar survey has not been performed for 

HgTe and its relevant ligands. While not heavily featured, work by Kroupa et. al also suggests 

that the choice of ligands can influence the relative position of the electrochemical potential 

within the CBM/VBM, indicating a potential effect on the effective doping of the CQD layer [9]. 

Effective tuning of the Fermi energy is imperative for the development of efficient PN 

junction diodes. An abundance of literature cites the p-type character of HgTe colloidal quantum 
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dots, and many such cases use Ag2Cl as an external p-type dopant source [1,7, 10, 11]. A cation 

exchange reaction with Ag2Cl can be performed to convert the CQD layer into HgTe 

nanocrystals, releasing silver species into the surroundings and improving the p-type character, 

and the exact manifestation of silver-induced doping will be explored in Chapter VII. To 

supplement this, n-type films are sometimes formed through heterojunctions, but these introduce 

more synthesis optimization problems and band offset effects [10]. N-type character within HgTe 

nanocrystals has proven to be more elusive but has been demonstrated with unique syntheses 

[12]. However, this effect is tightly correlated to the size of the nanocrystal, and even changes 

the CBM/VBM positions of the film, further complicating the formation of a homojunction. This 

emphasizes the need for a more universal method for inducing n-type conduction within CQD 

layers: the use of indium species is most heavily explored in this work. 

   When constructing the model for a HgTe nanocrystal, many of the arguments are rooted 

in the crystal’s synthesis. Throughout this work, a popular hot-injection method is assumed [13]. 

A solution of HgCl2 is made with oleylamine at 100 °C. After choosing and reaching a reaction 

temperature, a solution of tri-octylphosphine telluride (TOPTe) and oleylamine is rapidly 

injected into the HgCl2 solution, forming HgTe quantum dots suspended with oleylamine 

ligands. The dots are allowed to grow to a specific size, before quenching with a chloride 

solution. After casting the solution onto device layers, the films undergo a ligand exchange 

process to decrease the interdot distance and improve conductivity. This is most often done with 

ethanedithiol (EDT), although adding HCl and HgCl2 to the ligand exchange solution has been 

shown to improve device performance [1]. The low reactivity of TOPTe compared to other 

tellurium precursors, and especially the readily reactive metal chloride precursors is well known 

[14]. With this understanding, it is assumed in this work that HgTe CQDs will primarily have 
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mercury exposed surfaces. Furthermore, this hot injection technique frequently readily forms 

tetrahedral nanocrystals with {111} surfaces, which are modelled here in Chapter IV [13].
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Chapter II. An Overview of Density Functional Theory 

 Density functional theory (DFT) is amongst the most powerful computational tools 

developed for materials science. The general concept is presented in this chapter, highlighting a 

few important fundamental equations as well as methods employed in the Vienna Ab Initio 

Simulation Package (VASP) simulations detailed in later chapters. In principle, DFT can serve as 

an ab initio technique, meaning any results are based on very few assumptions and come directly 

from physical law. For the simulation of materials like HgTe surfaces, this can be treated as 

solving the many-bodied Schrödinger equation (MBSE). As detailed below, this is very 

impractical in most cases, and a few important approximations are discussed to significantly 

reduce the computational complexity. 

II.1 MBSE and the Born-Oppenheimer Approximation 

 The Schrödinger equation is often represented as 𝐻̂𝜓 = 𝐸𝜓 where 𝐻̂ is the Hamiltonian 

matrix acting on the wave function 𝜓. The Hamiltonian operation on a wave function will return 

the total energy 𝐸 as an eigenvalue of 𝐻̂. The Hamiltonian then is frequently constructed as a 

series of energy contributions. All materials are built up of atoms, which in turn can be 

deconstructed into nuclei and electrons. These components together will determine the energy 

components needed for a many-bodied Hamiltonian 𝐻̂𝑀𝐵 that can determine the energy of any 

bulk system with a wave function Ψ: the kinetic energy of every electron and nucleus, and the 

Coulombic potentials between each electron-nucleus, electron, and nucleus pair. The full form of 

𝐻̂𝑀𝐵 is given in equation (1): note that electrons are indexed 𝑖, nuclei are indexed 𝐼, and the 

terms appear in order as listed above. Equation (1) is also expressed in “Hartree units” assuming 

the elementary charge 𝑒 = 1, and the energy evaluated is given in Hartree: 𝐸𝐻𝑎 =
𝑒2

4𝜋𝜖0𝑎0
. 
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 This Hamiltonian quickly becomes unwieldy at a computational level. Even with an 

impractical, small system evaluating the wave function at a few key points would still result in 

an unmanageably large Hamiltonian due to the repeated non-local evaluations of the Coulomb 

potential. Even for purely local calculations at one point, solving the eigenvalue equation means 

constructing a matrix whose size scales by (𝑁𝑖 + 𝑁𝐼)
2. For computational viability then, a series 

of approximations can be performed to reduce this many-bodied Hamiltonian into a series of 

local, single-bodied 𝑁𝑖 × 𝑁𝑖 Hamiltonians. To begin this process, we should recognize that there 

are substantial differences in the kinetic and potential energies of electrons and their nuclei. Due 

to their enormous mass relative to electrons, in a crystal system it is often a decent enough 

approximation to assume nuclei are fixed. In this scheme electrons first settle into their ground 

states, atomic positions may change slightly due to electrostatic forces, but the electrons can 

nearly instantaneously respond and occupy ground states that are not radically different from the 

original states. This separation of electron and nuclei dynamics is the Born-Oppenheimer 

approximation [15]. 

 The Born-Oppenheimer approximation is sometimes presented as a decoupling of the 

electron and nuclear wave functions with separation of variables, but in this case, it is more 

practical to assume the nuclei to be fixed. The dynamics of the nuclei will be explored further in 

Chapter III but, in general, one does not need to consider nuclei to be quantum particles at all for 

simple relaxations. In the “clamped-nuclei” approximation then, the nuclear kinetic energy of 

𝐻̂𝑀𝐵 → 0 as the masses tend to infinity. Furthermore, the Coulomb potential between pairs of 

nuclei will also be unchanging. It is useful then to remove this energy from the Hamiltonian, 
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evaluate purely the electronic contribution, then add the nuclear potential back as a global 

correction. To finish eliminating the invocation of nuclear coordinates 𝑹 we can recognize that 

the potential experienced by the electrons from the nuclei now only depends on the electronic 

coordinates 𝒓𝑖, allowing equation (2) to be substituted into 𝐻̂𝑀𝐵. Finally, we can present the 

many-electron Hamiltonian in equation (3). 

 ∑𝑉𝑛(𝒓𝑖) = −∑
𝑍𝐼

|𝒓𝑖 − 𝑹𝐼|
𝑖,𝐼𝑖

 (2) 

 

(3) 
𝐻̂𝑀𝐸 = −∑

∇𝑖
2

2
𝑖

+ ∑𝑉𝑛

𝑖

(𝒓𝑖) +
1

2
∑

1

|𝒓𝑖 − 𝒓𝑗|𝑖≠𝑗

 (3) 

II.2 Independent Electrons and Towards Hartree-Fock 

 Equation (3) describes a collection of electrons that strongly interact via the Colomb 

force. While being independent of nuclear dynamics, it still maintains a degree of non-locality by 

summing over dissimilar electrons. Further approximations made by Hartree [16], Slater [17] and 

Fock [18] lend themselves to the optimization of the Hamiltonian by eliminating this non-

locality. We can take the first step by assuming that the electrons are independent, and do not see 

the direct Coulombic interaction of every other electron. Attempts to correct this rough 

approximation will follow, but here we can now say that the Hamiltonian in equation (3) is 

merely the sum of a series of single electron Hamiltonians. This implies that in some way we can 

represent the many-bodied wave function Ψ as a series of independent electron wave functions 

𝜙𝑗(𝒓𝑖 ) . The exact separation of 𝜙𝑗 is intuitively captured in a Slater determinant, as written in 

equation (4). By separating out 𝜙𝑗 in this way, the Pauli exclusion principle can be abided: 

swapping electrons between two states results in a change of sign in Ψ. 
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Ψ =
1

√𝑁!
|
𝜙1(𝒓1) … 𝜙1(𝒓𝑁)

⋮ ⋱ ⋮

𝜙𝑁(𝒓1) … 𝜙𝑁(𝒓𝑁)
| (4) 

 

A natural consequence of this formulation is that the total (electronic) energy 𝐸 is the sum 

of the eigenenergies 𝜀 of each of the independent electron states. In addition, the probability of 

finding an electron at a position 𝒓 then becomes the inner product of its occupied state at position 

𝒓. Taken to the extreme, the charge density 𝑛(𝒓) is then the probability of finding any electron at 

position 𝒓, or the sum of all independent probabilities at 𝒓. This charge density is critical to 

density functional theory, as will be explored later. However more immediately it allows us to 

start correcting the purely independent approximation. For instance, we can generalize the 

Coulomb potential from each foreign electron as an average. Generically, we can describe the 

potential of a charge density through Poisson’s equation [19]. The solution written here in 

equation (5) is again in Hartree units, is the Hartree potential, and can be added into the 

Hamiltonian alongside 𝑉𝑛(𝒓). 

(5) 𝑉𝐻 = ∫
𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ (5) 

 
 

 

Combined with the independent electron Schrodinger equation and the determination of 

the charge density, the evaluation of the Hartree potential forms a self-consistent loop in the 

Hartree-Fock equations. This is the basis of the self-consistent field (SCF) problem: the wave 

functions 𝜙𝑖 must yield a charge density that results in the correct Hartree potential to again 

return 𝜙𝑖. However, the formulation of the Hartree-Fock equations is not yet complete. Namely, 

in the independent electron Schrodinger equation, we should recognize that we have not imposed 

that the energy be minimized with respect to the wave functions 𝜙𝑖, and the Pauli exclusion 

principle further stipulates that these states should be orthogonal to prevent occupation of states 
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with identical eigenvalues. With such a scheme, Fock derived the Hartree-Fock independent 

electron Schrödinger equation, given in equation (6) [18]. This formulation effectively removes 

the projection of all other electron states 𝜙𝑗 from 𝜙𝑖, ensuring orthogonality. Ultimately, the 

Hartree-Fock equations are limited by the re-introduction of non-locality into the Schrodinger’s 

equation with the evaluation of an integral over 𝒓′. 

(6) 
[−

∇2

2
+ 𝑉𝑛(𝑟) + 𝑉𝐻(𝑟)]𝜙𝑖(𝑟) − ∫𝜙(𝑟′)∑

𝜙𝑗
∗(𝑟′)𝜙𝑗(𝑟)

|𝑟 − 𝑟′|
𝑗

𝑑𝑟′ = 𝜀𝑖𝜙𝑖(𝑟) (6) 

II.3 Kohn-Sham Equations and Density Functional Theory 

 The central idea to DFT is that the ground state energy of the system is purely a 

functional (or a scalar function of a function) of the electron density. This is already hinted at in 

the Hartree-Fock equations above: only the last exchange potential term does not explicitly 

invoke the charge density, since the kinetic energy is dependent on the wave function and 

therefore the charge density. This concept is known as the Hohenberg-Kohn theorem and was 

more rigorously argued by proving that the charge density 𝑛 uniquely determines the nuclear 

potential 𝑉𝑛, and therefore Ψ [20]. Instead of assuming the total electronic energy was minimized 

with the independent electron orbitals then, Kohn and Sham enforced that the total electronic 

energy be minimized with the charge density 𝑛(𝒓) explicitly. Practically speaking, this allowed 

them to evaluate the total electronic energy with largely independent and local energies, summed 

with an unknown exchange and correlation energy 𝐸𝑥𝑐[𝑛]. This functional remains unknown and 

describes the discrepancy between the independent and many-electron models. The Kohn-Sham 

equations, and their dependencies which complete the SCF, are given in equations (7a-7e) [21]. 

(7a) 
[−

1

2
∇2 + 𝑉𝑛(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑥𝑐(𝒓)]𝜙𝑖(𝒓) = 𝜀𝑖𝜙𝑖(𝒓) (7a) 
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𝑉𝑛(𝑟) = ∑

𝑍𝐼

|𝑟 − 𝑅𝐼|
𝐼

 
(7b) 

 ∇2𝑉𝐻(𝑟) = −4𝜋𝑛(𝑟) (7c) 

 
𝑉𝑥𝑐(𝑟) =

𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛
 (7d) 

 𝑛(𝑟) = ∑|𝜙𝑖(𝑟)|
2

𝑖

 (7e) 

 

 Ultimately, DFT as presented in the Kohn-Sham equations offers a perfect ab initio 

approach to a system of many electrons, but the lack of a known exchange-correlation potential 

prevents its ideal performance. Instead, many functionals are given as empirical or theoretical 

approximations. The local density approximation (LDA) for instance evaluates the theoretical 

exchange energy and empirical correlation energy of a homogenous electron gas in discrete 

volume elements of the total electron density [21]. The generalized gradient approximation 

(GGA) in general improves over LDA by incorporating dependence on the gradient of the charge 

density. The work presented here is done exclusively with the Perdew-Burke-Ernzerhof (PBE) 

exchange and correlation functionals. The PBE functionals improve over previous GGA 

functionals in that they are purely grounded in theory (rather than fit empirically to one system) 

and only rely on two fundamental constants [22]. 

 While PBE functionals are widely used in DFT for materials science and condensed 

matter studies for their broad applicability, all non-perturbative Kohn-Sham based DFT methods 

are well known to underestimate the optical band gap. This is intuitive with the understanding 

that DFT, which relies on the Hohenberg-Kohn theorem, is only valid for the ground state of 

electrons; excitations are beyond the scope of the proof [20]. More rigorously, we can consider 

the band gap to be the energy difference of the topmost occupied state 𝜀𝑉 and the bottommost 

unoccupied state 𝜀𝐶. Ideally, in an equivalent expression, we can evaluate the electronic band gap 
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as the difference between the ionization energy and electron affinity, as shown in equation (8) 

[21]. 

 𝐸𝑔 = 𝜀𝐶 − 𝜀𝑉 = (𝐸𝑁−1 − 𝐸𝑁) − (𝐸𝑁 − 𝐸𝑁+1) (8) 

 In the Kohn-Sham formulation of DFT, there is a subtle difference between the two 

expressions in equation (8). While the difference in energy between the neutral and ionized 

systems is large and sufficiently calculable for small systems, in bulk systems with ~1023 

electrons, this difference in energy is exceedingly small, such that we should evaluate equation 

(8) in the Δ𝑛 → 0 limit. Ultimately, the difference between the two expressions in equation (8) 

when using the Kohn-Sham equations is the difference in the exchange and correlation 

functionals as Δ𝑛 → 0. Many formulations of LDA and GGA functionals are continuous, 

prohibiting the evaluation of this subtle difference and resulting in catastrophic underestimations 

of the band gaps of semiconductors and insulators. While corrections to the band gap exist, they 

will not be rigorously explored here. As a qualitative demonstration, DFT with Hubbard-like 

corrections (DFT+U) is shown in Chapter V. 

II.5 VASP as a DFT Package 

 The previous sections have described, heuristically, the mechanics of DFT. The Viena ab 

initio Simulation Package (VASP) is a robust commercial application capable of applying the 

Kohn-Sham equations, solving the SCF loop, and determine the independent electron orbitals 𝜙𝑖. 

This section will briefly discuss the particulars of VASP and its calculations. While Chapter III 

will cover ionic relaxation and the movement of nuclei independent of electrons, this section 

aims to clarify the construction of the wave functions 𝜙𝑖. Fundamentally, a Fourier 

transformation can decompose a given function in real space into plane waves of an arbitrary 
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parameter space [19]. In this case, it is most useful to move into momentum or 𝒌-space. We can 

construct the “plane-wave basis” which maintains periodicity in 𝒌 and 𝒓 in equation (9). 

(9) 𝜙𝑖,𝒌(𝒓) = ∑𝑐𝒌𝑮 exp(𝑖(𝒌 + 𝑮)𝒓)

𝑮

 (9) 

 

Equation (9) suggests that the wave functions for a particular value of 𝒌 are summations 

of plane waves that span a momentum space 𝑮, which corresponds to a sum of higher frequency 

an energy plane waves in real space. It is often impractical to construct perfect representations of 

electron orbitals with plane waves, so some approximations are introduced. The one parameter 

that is both easily available to VASP users and important to energetic convergence is the “cut-off 

energy” or the highest magnitude of 𝑮 + 𝒌 allowed into the summation of equation (9). The 

pseudopotentials included with VASP have a default value ENMAX, and in this work the cut-off 

energy was left above this value at 300 eV to ensure convergence and comparability between 

calculations [23]. Furthermore, the evaluation of core electron states and other states with high 

frequency oscillatory behavior, the evaluation of 𝜙𝑖,𝒌(𝒓) would mandate the summation of many 

more states than necessary for smoother, more chemically relevant states. The solution, as 

presented by Kresse and D. Joubert, is to slightly adapt the projector augmented-wave (PAW) 

method to the plane wave basis [2]. 

(10) |Ψ𝑛⟩ = |Ψ̃𝑛⟩ + ∑(|𝜙𝑖⟩ − |𝜙̃𝑖⟩)⟨𝑝̃𝑖|Ψ̃𝑛⟩

𝑖

 (10) 

 

 Equation (10) above describes the all-electron (AE) wave function Ψ𝑛 in the PAW 

scheme. Central to the PAW method is the concept of a PAW sphere; within some critical radius 

around an atomic site, the true AE wave function begins to deviate from the pseudo-wave 

function denoted with the tildes. Within this radius, the pseudo-wave function is corrected by a 
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projector function 𝑝𝑖 and it is identical to the AE wavefunction outside of this radius. By 

employing the pseudo-wave function and projector function, the AE solution can be 

approximated with considerably fewer plane waves.  Additionally, one can assume that electrons 

within the PAW sphere are tightly bound to the nucleus and will not change in position or energy 

much when considering nuclear orbitals. The frozen-core approximation then assumes these 

electrons to have their wave functions fixed, and instead screen the nuclear charge [24]. In the 

frozen-core PAW scheme there are effectively 3 key sources of charge density: point charges due 

to nuclei, the fixed charges within the PAW sphere due to the pseudo-wave function, and the 

accurate charge outside of the PAW sphere. To correct the multipole within the PAW sphere, 

some compensation charge is introduced when evaluating the charge density. The 

pseudopotential then, as implemented in VASP is description of the Hartree, exchange and 

correlation functionals that depend on the pseudo-wave function charge and the compensation 

charge.
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Chapter III. Ionic Relaxation 

 In the previous chapter we have established how DFT is used to obtain the total energy of 

a system through the relaxation of the electronic structure. Until this point, it has proven useful to 

consider the nuclei as fixed. However, the Coulombic forces generated by the electrons and 

neighboring nuclei on a particular nucleus are likely not zero in the first iteration. We could then 

choose to move the nuclei in a particular path that relates to this force, in the hope that the energy 

will further decrease towards a ground state. Choosing the path along which nuclei travel is not 

trivial, and many such algorithms exist. In this chapter, we will introduce a method using 

conjugated gradients, which is most similar to the proprietary method employed in VASP in later 

chapters. 

III.1 Forces on Nuclei 

In the scheme discussed previously, our nuclei were assumed to be fixed; this allowed us 

to neglect their kinetic energy and let us calculate a total energy assuming the Coulombic 

potential between nuclei to be constant. These arguments are still useful, and when determining 

the electronic configuration, they will still be in place. When determining nuclear forces 

however, the coulombic potential especially will have an outsized role. From classical 

mechanics, we understand the force 𝑭 at point 𝒅 to be related to the potential energy 𝑈: 

(9) 
𝑭 = −

𝜕𝑈

𝜕𝒅
 (1) 

 Determining this derivative with respect to every change in nuclear positions with the 

nuclear Hamiltonian from the Born-Oppenheimer approximation is inherently time consuming 

since the derivative of the electronic energy with respect to every shift in nuclear positions would 
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need to be calculated. It would be helpful to instead consider the entire many bodied 

Hamiltonian, reprinted here for convenience: 

(9) 
𝐻̂ = −∑

∇𝑖
2

2
𝑖

− ∑
∇𝐼

2

2𝑀𝐼
𝐼

− ∑
𝑍𝐼

|𝒓𝑖 − 𝑹𝐼| 
𝑖,𝐼

+
1

2
∑

1

|𝒓𝑖 − 𝒓𝑗|𝑖≠𝑗

+
1

2
∑

𝑍𝐼𝑍𝐽

|𝑹𝐼 − 𝑹𝐽|
𝐼≠𝐽

 (2) 

 Notice that only two terms in the Hamiltonian will change with respect to the nuclear 

coordinate 𝑹𝐼: the Coulombic interaction between nuclei and electrons, and the Coulombic 

interaction between nuclei. This is directly analogous to 
𝜕𝑈

𝜕𝑹𝐼
 since it lacks any terms contributing 

to kinetic energy. We can now quickly attempt to evaluate the derivative of the total energy, or 

the expectation value of the Hamiltonian. This derivative can be with respect to any useful 

variable, but 𝑹𝐼 is most useful here. 

(9) 𝜕𝐸

𝜕𝑹𝐼
=

𝜕

 𝜕𝑹𝐼
∫𝜓∗𝐻̂𝜓 𝑑𝒓 = ∫

𝜕𝜓∗

𝜕𝑹𝐼
𝐻̂𝜓 + 𝜓∗𝐻̂

𝜕𝜓

𝜕𝑹𝐼
+ 𝜓∗

𝜕𝐻̂

𝜕𝑹𝐼
𝜓 𝑑𝒓  (3) 

 Since 𝐻̂𝜓 = 𝐸𝜓, the first and second terms can be combined via the product rule. The 

derivative will cause the combined term to vanish, since the integral is constant via 

normalization. This means that 
𝜕𝐸

𝜕𝑹𝐼
= ∫𝜓∗ 𝜕𝐻̂

𝜕𝑹𝐼
 𝜓 𝑑𝒓, which is generally true for any derivative 

[25]. Below is the derivative of the Hamiltonian with respect to 𝑹𝐼. We can determine the forces 

on a given nucleus by negating the expectation value of this derivative. 

(9) 𝜕𝐻̂

𝜕𝑹𝐼
= −∑

𝑍𝐼(𝒓𝑖 − 𝑹𝐼)

|𝒓𝑖 − 𝑹𝐼|3
+ ∑𝑍𝐼𝑍𝐽

𝑹𝐽 − 𝑹𝐼

|𝑹𝐽 − 𝑹𝐼|
𝟑

𝐽≠𝐼𝑖

 (3) 

 
𝑭𝐼 = −⟨𝜓 |

𝜕𝐻̂

𝜕𝑹𝐼
| 𝜓⟩ = 𝑍𝐼 [∫𝑛(𝒓)

𝒓 − 𝑹𝐼

|𝒓 − 𝑹𝐼|3
 𝑑𝒓 − ∑𝑍𝐽

𝑹𝐽 − 𝑹𝐼

|𝑹𝐽 − 𝑹𝐼|
𝟑

𝐽≠𝐼

] (4) 
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 This result indicates that the forces on a given nucleus are only due to the classical 

electrostatic interaction between itself and the surrounding electrons and nuclei. These forces 

will be the starting point of our ionic relaxation.  

III.2 The Line Search 

 Fundamentally, when minimizing a multidimensional function (like a 3-dimensional 

energy surface) is a series of line searches – or minimizations in a specified direction along the 

multidimensional function. When starting a search in DFT, we cannot know exactly what the 

energy landscape 𝑓(𝑥) is, but we do have key starting points of information: the energy at the 

starting ionic positions 𝑓(𝑥0) in 1 dimension, and the forces −𝑓′(𝑥0). Using this information, we 

can surmise whether to search in the +𝑥 or −𝑥 direction depending on the sign of 𝑓′(𝑥). The 

issue now is that we cannot know how far to search to successfully locate the minimum. In VASP 

this is solved manually: the length of the first “trial step” in a line minimization is scaled by the 

user with the POTIM parameter [26]. 

 We now have two points: 𝑥0 and an arbitrary guess 𝑥1, which is based on the sign of 

𝑓′(𝑥0). To evaluate 𝑓(𝑥1) is to reevaluate the total energy of the system i.e., go through the self-

consistent electronic relaxation as covered in Chapter II. This computational limitation is why 

developing fast, and reliable minimization algorithms is incredibly important for materials 

science research, and especially when using DFT. However, as covered in the previous section, 

the evaluation of the energy 𝑓(𝑥1) provides the forces −𝑓′(𝑥1) with relative ease. As a result, we 

have gained two key pieces of information with one self-consistent cycle. Collectively, 𝑓(𝑥0), 

𝑓(𝑥1), 𝑓′(𝑥0), and 𝑓′(𝑥1) allow us to determine a better guess for what the minimum in the 𝑥 

direction might be. 
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 In describing the oscillations of atoms around their equilibrium bond lengths, we use a 

parabolic approximation to describe their potential energy in one dimension. It makes sense then 

that we could do something similar here. The standard form of the quadratic   

𝑔(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 has three parameters. We can solve these parameters by letting  

𝑔(𝑥1) = 𝑓(𝑥1), 𝑔′(𝑥0) = 𝑓′(𝑥0), and 𝑔′(𝑥1) = 𝑔′(𝑥1). With these conditions, we have created a 

system of three linear equations which can be easily solved with, for example, Cramer’s rule. 

Our next best guess for the minimum of 𝑓(𝑥) is the minimum of this parabola. This system is 

demonstrated in Figure 3.1. 

 

Figure 3.1 An example energy surface with initial guess 𝑥0, “trial step” 𝑥1, and the parabolic 

interpolation of the two. The minimum position of the parabola is the next “corrector step” 𝑥2. 

 

 It is important to note however that we are only enforcing one constraint on the actual 

value of 𝑔(𝑥). This means that 𝑓(𝑥0) is not necessarily equal to 𝑔(𝑥0). In cases where    

𝑓(𝑥0) ≠ 𝑔(𝑥0) the best-case scenario is that we have wasted a data point and produced a subpar 

estimation for the minimum, as demonstrated in Figure 3.2. In the worst case however, this can 
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lead to an estimation for the minimum that falls outside the bounds of the local potential well, 

which could result in the simulation relaxing into a metastable state. To prevent this scenario 

then, when 𝑓(𝑥0) ≠ 𝑔(𝑥0) it might make sense to use a cubic approximation, where all four (two 

energetic, two sets of forces) points of reference are utilized. In solving, this is can be done in a 

similar manner to the parabolic case, but with a 4x4 matrix when using Cramer’s rule: 

 

[
 
 
 
 

𝑥0
3 𝑥0

2

𝑥1
3 𝑥1

2

𝑥0 1
𝑥1 1

3𝑥0
2 2𝑥0

3𝑥1
2 2𝑥1

1 0
1 0 ]

 
 
 
 

[

𝑎
𝑏
𝑐
𝑑

] =

[
 
 
 
𝑓(𝑥0)
𝑓(𝑥1)

𝑓′(𝑥0)

𝑓′(𝑥1)]
 
 
 

 (5) 

 
Figure 3.2 The energy surface, 𝑥0 and 𝑥1 are consistent with Figure 3.1. The point 𝑥2 however is 

moved to the minimum of the cubic fit, which utilizes all energy and force data available. 

  

 Our next best guess 𝑥2 is the local minimum of either the parabolic or cubic fit using 𝑥0 

and 𝑥1. This can simply be found using 𝑔′(𝑥) = 0 which necessitates solving a linear or 

quadratic equation. After determining 𝑥2, we can then evaluate 𝑓(𝑥2) and 𝑓′(𝑥2) through 

another self-consistent cycle. With a set of function evaluations and their derivatives, we now 
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have a wealth of information at our disposal. Provided 𝑥2 is not the minimum of 𝑓(𝑥) or close to 

within some tolerance, we have enough information to enter a variation of Brent’s algorithm that 

takes the derivatives into account. 

 Brent’s algorithm uses a set of points (𝑥0, 𝑥1) that bind the minimum. The point 𝑥2 

should lie within this interval and yield the lowest value of 𝑓(𝑥) of the three. For the sake of our 

example in Figures 3.1 and 3.2, these conditions were met, but if this is not the case some 

preliminary reindexing can occur. In a traditional Brent’s algorithm scheme, new points are 

assumed using a parabolic interpolation of the three points, similar to the procedure above. 

Unlike the above case, with three points, the parabola should be uniquely identified. With the 

addition of derivative information, however, we can likely improve our performance. For 

instance, the signs of the derivatives at each point will uniquely determine which inner interval 

[𝑥0, 𝑥2] or [𝑥2, 𝑥1] the minimum lies in [27]. The minimum is also the point in this uniquely 

determined interval where 𝑔′(𝑥) = 0. This means we can use robust root finding methods, like 

the secant method, where the new point 𝑥3 is determined by a linear interpolation of the 

derivatives: 

(9) 𝑥3 = 𝑥2 − 𝑓′(𝑥2)
𝑥2 − 𝑥0/1

𝑓′(𝑥2) − 𝑓′(𝑥0/1)
 (6) 

 The second term in equation (6) is the change between 𝑥𝑖+1 and 𝑥𝑖, and can serve as a 

measure of convergence; ideally this distance should continually decrease [27]. If this is not the 

case, Brent’s algorithm defaults to a slower, more guaranteed minimum finding algorithm. Figure 

3.3 demonstrates the next guess 𝑥3 given through this algorithm. This procedure is then simply 

repeated until the minimum of 𝑓(𝑥) is obtained within some tolerance.  
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Figure 3.3 The small region of the energy surface 𝑓(𝑥) is plotted. Based on the signs of 𝑓′(𝑥0), 

and 𝑓′(𝑥2), a minimum must exist between the region, and a linear interpolation of the 

derivatives is made. The point where this interpolation is zero becomes the new guess 𝑥3.  

 

III.3 Successive Search Directions and Conjugated Gradients 

 At this point, we have taken what essentially amounts to one step in our ionic relaxation 

process, even though we needed to determine the total energy of the system 3 or more times. 

While this first step minimized the force exerted on a given nucleus in the direction indicated by 

the starting gradient −𝛁𝐸, the force overall is not likely to be minimized. Initially, it feels 

intuitive that the next search direction should be along the new energy gradient. This method 

would be considered a “method of steepest descent.” While this method will bring the system 

towards convergence, we can demonstrate that it is likely not the most efficient way of doing so. 

Indeed, given that we minimized the force along this initial gradient, the new gradient felt by the 

nucleus must be (within some tolerance) orthogonal to the previous one. This is true of every 
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repeated step, implying that we must take repeated steps along the same few orthogonal 

directions to reach the minimum of an elliptical parabolic well [27]. 

 We can imagine a better method that only steps in a given search direction 𝒉𝑖 once. With 

some finite 𝑛 number of directions, the algorithm would perfectly converge after 𝑛 steps. To 

generate a series of orthogonal basis vectors, we would nominally use the Gram-Schmidt 

process. A series of orthogonal search vectors however would be identical to the steepest descent 

case: the negative gradients 𝒈𝑖 are already orthogonal. Instead, we can imagine a quadratic 

matrix representation of the energy landscape 𝑓 ≈ 𝑐 + 𝒃 ∙ 𝒙 +
1

2
𝒙 ∙ 𝐀 ∙ 𝒙. In truth, our search 

directions should be 𝐀-orthogonal or conjugate, meaning 𝒉𝑖𝐀𝒉𝑗 = 0 to guarantee convergence to 

a minimum in the energy landscape [28]. The set of conjugate search directions given by 

Fletcher and Reeves is as follows: 

𝒉𝑖+1 = 𝒈𝑖+1 + 𝛽𝑖𝒉𝑖 

 Here 𝛽𝑖 is the remaining conjugate Gram-Schmidt coefficient after considering the 

linearly independent vectors to instead be the negative gradients 𝒈𝑖. For the parabolic 

approximation of 𝑓(𝒙) denoted above, it has many equivalent derivations, but each may progress 

differently depending on the exact form of 𝑓(𝒙). Polak and Ribiére proposed the form in 

equation (8), which can reduce to zero, restarting the conjugation procedure [29].  

𝛽𝑖 =
(𝒈𝑖+1 − 𝒈𝑖) ∙ 𝒈𝑖

𝒈𝑖 ∙ 𝒈𝑖
   

 The ionic relaxation procedure can now be summarized. The initial ionic positions loaded 

into the POSCAR goes through electronic relaxation, and an initial total energy and set of ionic 

forces are obtained. The ions are allowed to shift in the direction given by the initial force 
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vectors by an amount scaled by POTIM, and the energies and forces are recalculated. This new 

set of points is used in a parabolic or cubic fit to determine a likely minimum, and the energies 

and forces are recalculated at that estimate. If necessary, further line searches through a 

derivative based version of Brent’s algorithm proceed. When the forces in the initial direction are 

minimized, a new direction determined through the conjugate gradients method is used, and the 

cycle continues until the difference in total energy between two ionic steps is below EDIFFG 

[30].
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Chapter IV. Development of the Surface Model 

 The study of fully realized nanocrystals with density functional theory proved to be 

inherently difficult. To an extent, this is to be expected. The VASP software package used here is 

a plane-wave DFT suite utilizing methods described in Chapter II. Plane-wave methods rely on 

periodicity in the unit cell, which is automatically introduced with VASP. If we wanted to isolate 

a cluster of atoms, such as in a HgTe nanocrystal, we must introduce some vacuum space into the 

unit cell itself to minimize interactions between the simulated cluster and the assumed copies that 

exist along each of the lattice directions (𝐚, 𝐛, 𝐜). Furthermore, ideally one would simulate 

enough atoms to build a nanocrystal with relevant optoelectronic properties. In our case, 

tetrahedral SWIR sensitive HgTe nanocrystals might have an edge size of 10 nm, or about 4300 

atoms. Combined, an extremely large unoptimized vacuum spacing and thousands of atoms each 

with 6 or 12 simulated electrons makes for an exceptionally complicated system. We argue here 

that a surface model is a more tenable solution. 

IV.1 Initial Simulation of a Nanocluster 

 Initially undeterred by the computational difficulty of nanocluster simulation, we 

developed a Python package capable of reading and writing VASP POSCAR files which describe 

the positions and types of each atom in the unit cell, along with the lattice vectors. In our initial 

approach, we elected to generate 𝑁 × 3 ion position arrays beginning with a unit cell POSCAR 

as an input. Included as a part of this Crystal Generation Utilities (CGU) package was a 

relatively fast method for developing large bulk systems by replicating this unit cell using a 

parallelized layer-wise method. A tetrahedral supplement was added to the CGU to allow for this 

bulk system to be trimmed into {111} tetrahedra. Ultimately, the CGU multiprocessing method 

was overbuilt for the small (~0.27 nm) crystal systems needed. However, auxiliary functions 
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added simple vector movements, atomic layer parsing, and other functionality that made the 

CGU invaluable for quickly making edits to POSCAR files. 

 

Figure 4.1 Generated tetrahedral HgTe structure with a Hg-facing surface. This model was 

assumed based on fabrication methods discussed in Chapter I. 

 

Using the CGU, we generated a tetrahedral nanocrystal with a 27-angstrom edge size, or 

140 atoms shown in Figure 4.1 above. The structure was generated with simple cubic lattice 

vectors with a cell parameter of approximately 54.8 nm. With the tetrahedron centered, the 

distance between edges of the simulated structure and its assumed periodic copies was 3.54 nm. 

This is potentially far more than necessary, but ultimately the smallest needed distance was not 

optimized. When starting a DFT simulation in VASP, the initial charge density in the unit cell is 

assumed to be a superposition of each atom’s atomic charge density. This poor guess at the initial 

charge density necessitated 43-44 blocked Davidson steps to establish the initial charge density 

with which to begin ionic relaxation. Ultimately, only two to three complete ionic steps were 

allowed to complete in the maximum allowed 24-hour runtime, which is potentially less than one 

complete line search (see Chapter III). Because these runs were terminated prematurely, full 
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charge density output files would not be recorded. Similarly, wave function output files meant 

for restarting successive runs were disabled due to limited disk space. As a consequence, to 

continue ionic relaxation for another 24 hours would have necessitated the extremely long 

optimization of the initial charge density. For this reason, no fully relaxed structure was 

generated, and we re-examined the simulated system. 

IV.2 Initial Surface Model Generation 

Surface states on a quantum dot system have an outsized impact on their properties due to 

their extremely large surface area to volume ratio. As we will later demonstrate, the qualitative 

trends that can be observed through modification of a colloidal quantum dot surface can then be 

observed using a simple surface model rather than the full isolated nanocrystal. This method has 

precedent in literature, being used to study the effects of different ligand polarizations on the 

band alignment of quantum dot films [8]. Some limitations on this method are the loss of 

complete 3-dimensional confinement and the asymmetry in surfaces generated with HgTe; 

without modification, a Hg-facing and a Te-facing surface is shown in the method described 

below. The mitigation of these issues is described later in this chapter. 

 HgTe in the bulk phase can be described as a diamond structure with cubic lattice vectors. 

Experimentally, it is understood that HgTe nanocrystals fabricated with high temperature hot-

injection techniques will display {111} surfaces [13]. The <111> direction by definition cannot 

be described by one of the cubic lattice vectors and necessitates some transformation of our unit 

cell.  The transformation matrix that was most useful to us is given in equation (1), and the new 

cell vectors are visualized in Figure 4.2. 

 (𝐚′, 𝐛′, 𝐜′) = (𝐚, 𝐛, 𝐜) [
𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

] = (𝐚, 𝐛, 𝐜) [
1 0 0
0 1 0
1 1 1

] = (𝐚 + 𝐜, 𝐛 + 𝐜, 𝐜) (1) 
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Figure 4.2 Visualization of the original cubic lattice vectors and the transformed vectors with a 

tetrahedral surface normal to 𝐛′ and 𝐜′. 

 

 We can see that the plane spanned by 𝐛′ and 𝐜′ is the (11̅̅̅̅ 1) plane, which is equivalent to 

(111) with a 180° rotation about z and is indeed present on the tetrahedra previously simulated 

(see Figure 4.1). After this transformation, the unit cell was transformed into a 2x2x4 supercell, 

such that the simulated structure had 4 AB (HgTe) layers. This final structure included 64 atoms 

of either species for a total of 128, and the final 𝐜′ lattice vector was extended by 2.5 nm to 

isolate the slab when considering periodicity. This simulated structure is given in Figure 4.3. Of 

note is that the two surfaces on either side of the structure are different. To preserve the 

stoichiometry within the slab, each Hg layer must be accompanied by a Te layer. In such a 

configuration, to consider a Hg-facing layer the Te-facing layer must also be included. For the 
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determination of surface energy, as will be demonstrated in the next section, this is not an issue. 

However, for calculations of electronic structures, this will need to be accounted for. 

 

Figure 4.3 Final simulated structure with 4 HgTe layers and a vacuum region that defines the 

surface. 

 

IV.3 Surface Energy and Initial Electronic Structure 

 The 4 layer unpassivated surface was allowed to fully relax using the conjugate gradients 

method described in Chapter III. In their bulk configuration, atoms are arranged such that they 

have the lowest potential energy and are their most stable. Intuitively, there must be an energy 

associated with the cleaving of a bulk material and exposing a surface to, in this case, a vacuum. 

DFT is well suited to calculating the surface energy 𝜎, as denoted in equation (2) [31]. The 

surface energy is normalized to 2𝐴, representing both of the slab’s surfaces, where 𝐴 in this case 

is the area of the parallelogram formed by surface atoms. 

 𝜎 =
1

2𝐴
(𝐸𝑠𝑙𝑎𝑏 − 𝑛𝐸𝑏𝑢𝑙𝑘) (2) 
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 Here 𝐸𝑏𝑢𝑙𝑘 is the calculated energy of a bulk material, and 𝑛 denotes the equivalent 

number of units of the bulk material in the slab. Our comparison was made to a bulk 2x2x2 

supercell, meaning there are 𝑛 = 2 units in the slab. By determining the fully relaxed structure to 

have energy 𝐸𝑠𝑙𝑎𝑏 = −223.2795 eV, the single surface energy was evaluated as 2.850 J/m2. 

However, as noted above, the slab as constructed has two distinct surfaces. To accommodate this 

asymmetry, Tian et al. proposed a “cleaving energy” method [32]. Equation (3) describes the 

simplest form of the method. The cleaving energy 𝐸𝐶 is the energy associated with removing the 

slab from the bulk, without any surface relaxation taking place: it is the difference between a 

fully frozen slab 𝐸𝐹 and the bulk. This energy is assumed to be evenly distributed across the two 

surfaces, and this is a reasonable assumption for compounds whose constituent elements have 

similar electronegativities [32]. The relaxation energy of surface 𝑖, 𝐸𝑅,𝑖 is the difference between 

(one half of) the cleaving energy and the energy of the slab when only the subject surface is 

allowed to relax 𝐸𝑟,𝑖. This is achieved through Selective Dynamics in the POSCAR file [33]. 

Finally, the surface energy can be determined through the difference between the cleaving energy 

and the relaxation energy of the subject surface. Fundamentally, the cleaving energy method 

isolates the energy of forming a particular surface by removing the effects associated with an 

asymmetric relaxation.  

 𝜎𝑖 = 𝐸𝐶 − 𝐸𝑅,𝑖 =
1

𝐴
(𝐸𝐹 + 𝐸𝑟,𝑖 − 2𝑛𝐸𝑏𝑢𝑙𝑘) (3) 
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Figure 4.4 Side profile of the fully relaxed 4 layered structure. 

  

Using this method and equation (3), the surface energy of the Hg-facing surface was 

determined to be 2.735 J/m2, which is not too dissimilar to the original value of 2.850 J/m2. 

Qualitatively, this could be explained by considering the relaxation of the Hg-facing and Te-

facing surfaces at the top and bottom of Figure 4.4, respectively. The Hg-facing layer shows an 

appreciable change in the angle between Hg and neighboring Te atoms just beneath the surface 

when compared to the bulk. However, this same effect is not observed in the Te-facing layer, 

implying that the relaxation energy of the Te-facing surface may be small enough to not skew the 

surface energy obtained by the single surface model too significantly. While the energetics of the 

HgTe surface have not been significantly explored previously, the majority of this work is 

concerned with the electronic structure of the slab system, which is being used to model the 

quantum dot. 
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Figure 4.5 DOS plots of the entire spectrum of the 4 layered HgTe slab. The Hg (top) and 

Te (bottom) contributions are plotted independently. Energies are given relative to the Fermi 

energy. 

 

The initial electronic structure, and in particular the density of states (DOS), of the 4 

layered slab system is shown in Figure 4.5. While the entire spectrum is given in Figure 4.5, 

going forward we will focus entirely on the states within 2 eV of the Fermi energy. Based on the 

Te projections, the s-orbital contributes most strongly to the low energy core bands separate from 

the rest of the electronic structure. The most significant contribution to these bands from the 

mercury atoms are the diffuse d-orbitals. The d-orbitals also dominate the spectrum below -6 eV. 

Around the Fermi energy we can make a few more observations. Immediately noticeable is the 

lack of the band gap around the Fermi energy. The p-orbitals in the Te projection contribute 

significantly to both the valence and conduction bands. This will be more thoroughly explored in 

later chapters when band diagrams are presented, but this shared contribution can be attributed to 

bands primarily from tellurium that bridge an otherwise positive band gap. The small overlap in 
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the conduction and valence bands gives HgTe it is colloquial “negative” band gap. However, the 

nanosheet simulated here should show considerable quantum confinement effects, giving rise to 

a positive band gap like in the nanocrystal case. The “band gap problem” with DFT discussed in 

Chapter II makes the vanishing band gap in this case very likely. However, there are still more 

considerations we could make. For instance, surface states and dangling bonds with energies near 

the Fermi level could fill the otherwise clear band gap. Additionally, while we initially simulated 

4 AB layers since they terminate most similarly (i.e. a Hg-Te pair in the top layer identical to that 

of the bottom layer through periodicity) further quantum confinement, and a growth in the band 

gap, can be achieved by limiting the slab to 3 or fewer layers.
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Chapter V. Correction to the Implemented Surface Model  

During the evaluation of the effects of mercury vacancies in Chapter VI, after all the simulations 

presented here were completed, we noticed that the trap states apparently induced were very close to the 

valence band. This would make HgTe somewhat defect tolerant, since the defect states could very easily 

allow for holes to escape, and less likely to behave as recombination sites in optoelectronic applications. 

It also naturally urges the investigation of Te vacancies to see if there would be a more pronounced effect. 

Such a realization would be significant, since previous studies suggest that under-coordinated chalcogen 

sites, rather than metals, are the most likely contributors to surface traps in II-VI semiconductors [34]. To 

investigate this, a structure with a tellurium vacancy was produced and allowed to relax using the quasi-

Newton algorithm. Concurrently, a structure with 3 AB HgTe layers was made, and the Hg-facing surface 

was passivated with Z=1.5 pseudohydrogens. The Te-facing layer was left unpassivated, essentially 

reversing the passivation first introduced in Section VI.1. This structure originally was not considered 

since, compared to HgCl, the tellurium precursor trioctylphosphine telluride is much less reactive, making 

a Hg-rich surface much more likely, as mentioned in Chapter I. 
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Figure 5.1 Band diagram of the unpassivated tellurium surface superimposed with the inverse 

participation ratio of the bands. 
 

Figure 5.1 shows the band diagram of the structure with an unpassivated tellurium surface. The 

bands are colored by the “inverse participation ratio” (IPR). The IPR is a normalized figure that 

represents the weight of a molecular orbital on a particular atom; it ranges from 1 at the atomic orbital 

limit, and 1/N representing an entirely delocalized band distributed over all N atoms. The band diagram in 

Figure 5.1 demonstrates that the bands above the Fermi level are unoccupied surface states. This 

intuitively makes sense since, from an oxidation state perspective, we would expect mercury to donate 

electrons and reduce tellurium to Te-2. Interestingly, the removal of the passivating pseudohydrogens fully 

restores spin-symmetry in the band diagram. The introduction of spin-asymmetry with the Z=1.5 

pseudohydrogens on the tellurium surface is not well understood. Furthermore, we note the existence of a 

strong band gap, ranging from the top of the surface states to the bottom conduction band, or about 0.4 

eV. This made the possibility of filling or otherwise eliminating the tellurium surface states attractive, 

leading to further investigations. Using pseudohydrogens was already attempted to dubious effect in 

Chapter VI, so regular Z=1 hydrogens were added. While breaking the stoichiometry of the slab was 

avoided up until this point, using pseudohydrogens has proven effective at passivating mercury associated 
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surface states. In a second trial then, a mercury layer was added below the unpassivated tellurium, which 

itself was passivated with 3x16 pseudohydrogens to retain the tetrahedral coordination. 

 
Figure 5.2 Band diagram of the structure with a hydrogen passivated Te-facing surface. 

 

The attempted passivation to “fill” the surface states resulted in band diagrams more familiar to 

bulk HgTe, with a small band inversion at the Γ-point. While the Te-passivating hydrogen solution drew 

the Fermi level far into the conduction band, the structure with a passivating mercury layer, as depicted in 

Figure 5.3b, places the Fermi level predicably at the valence band maximum. Note that in the band 

diagram above, symmetry was disabled in the supercell, which likely resulted in the artifacts near band 

crossings. These simulations also do not result in any spin-asymmetry, suggesting that any splitting is not 

linked to the passivation of Te-facing layers, but instead to the interaction between exposed Te surfaces 

and Z=1.5 pseudohydrogens specifically. The DOS plots of these trials bear some resemblance to the 3-

layered HgTe structure used throughout this work, as demonstrated in Figures 5.3a and 5.3b. Below the 

Fermi level, the down-spin states are similar, and the same is true for up-spin states above the Fermi level. 
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Figure 5.3 DOS plots for (a) the base 3-layered HgTe model and (b) the mercury passivated Te-

facing layer. The band diagram (c) highlights the most localized states in deep red. 
 

This realization prompted the examination of the IPR of the bands in the base 3-layered HgTe 

model, shown in Figure 5.3c. The color scaling is intentionally dramatic; bands with an IPR 

corresponding to localization to <40 atoms are pushed to the top of the scale. Immediately apparent is 

that, barring what appears to be simple energy splitting between the same band with opposite spins, the 

down-spin states below the Fermi level, and the up-spin states above the Fermi level are the most 

delocalized states. This matches the asymmetric behavior noted in the DOS plots and suggests that the 
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down-spin (up-spin) states below (above) the Fermi level are related to the surface interactions between 

Te and pseudohydrogens, rather than the true conduction or valence band. This behavior is even hinted at 

in Figure 6.4 where the atomic projections of the bottom AB layer of HgTe make up the vast majority of 

what we now understand to be spin-asymmetric surface states.  

 
Figure 5.4 Band diagram of the new, mercury passivated structure when using DFT+U, where             

𝑈 = 8.4  eV. 
  

When considering the lack of a band gap first noticed in Chapter IV, one of the first methods 

thought of to induce separation in the bands was a Hubbard parameter U to restore the electronic gap 

expected in the confined HgTe system. This has some precedent in studying HgCdTe quantum wells [35]. 

We elected a rather large U parameter of 8.4 eV that would act on the d-orbitals of mercury. With this 

simple correction, we were able to demonstrate a considerable band gap with the mercury passivated 

model. The Fermi level in this case falls just below the valence band edge, indicating innate p-type 

behavior. This could likely be tuned by the choice of U and should be investigated further.    

Ideally, the calculations presented elsewhere in this document should be performed with the 

excess-Hg passivation method demonstrated above. Utilizing DFT+U would also allow for less 
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ambiguous investigations of mid-gap states caused by vacancies. However, many of the qualitative 

observations made here remain valid. Bands introduced through Hg substitutions align with a theoretical 

understanding of acceptor and donor states, have the “correct” spin for their position relative to the Fermi 

level, and the substitution successfully nullifies electrical effects due to the Hg vacancy. Furthermore, the 

shifts in Fermi level demonstrated through ligand substitution agree well with surface dipole trends and 

previous studies concerning the effect. Care should be taken however regarding the effects of mercury 

vacancies. While the bands introduced around the Fermi level due to the vacancy do appear to elevate the 

Fermi level, they are still up-spin states which could correspond to a relation between these states and the 

Te-H interaction states. To solve this, the atomic orbital projections of the top two layers of atoms were 

taken and are presented in Figure A.5. 

 
Figure 5.5 Band diagram of the Hg vacancy structure, with atomic orbital projections 

highlighting the two AB layers closest to the defect site. 

The projections demonstrate that the up-spin states close to the Fermi level are disproportionally 

weighted to atoms other than the top two atomic layers, which includes the defect site. We can conclude 

then that it is likely related to the Te-H interaction. However, the valence band and states just beneath it, 
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including select up-spin bands, do show a large share of top-layer character. These states could constitute 

acceptor states, as noted in the main text. This, and the geometry of a tetrahedral nanocrystal that makes 

2-coordinated Te sites less likely compared to less strongly-faceted geometries, provides some evidence 

that tetrahedral {111} HgTe nanocrystals should be somewhat tolerant of Hg vacancy defects, and instead 

develop more p-type conduction. 

 
Figure 5.6 Band diagram of the Te vacancy structure, with atomic orbital projections highlighting 

the top two AB layers (which does not include the Te-facing surface). 

The tellurium vacancy, mentioned at the beginning of this section but not yet discussed, is more 

ambiguous. Figure 5.6 shows a similar projection to that of Figure 5.5, but for the tellurium vacancy 

structure. As expected, most of the flat, down-spin bands around the Fermi level are not related to the 

atomic orbitals of the top two layers of atoms. The states nearest to the Fermi level have evidently shifted 

up relative to the true conduction/valence down-spin bands. However, there are two up-spin bands that 

appear to be the conduction/valence bands shifted down in energy. This makes assigning vacancy states 

around a theoretical band gap dubious, since it’s unclear if the bands are merely spin shifted, in which 

case neutral tellurium vacancies have no discernible impact around the Fermi level, or if a true vacancy 
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band exists that crosses between the conduction and valence bands, with catastrophic effects to IR 

sensitive HgTe CQDs. Further investigation, particularly with an appropriately passivated system, is 

warranted. 
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Chapter VI. Surface and Defect Model Electronic Structures 

 In Chapter IV, we discussed the initial electronic structure obtained for a 4 AB (HgTe) 

layered structure. In particular, we noted that no band gap was achieved. As a potential remedy, 

the density of states (DOS) and band diagrams for 𝑛-layered structures will be explored. Having 

𝑛 < 4 should lead to increased confinement effects and lead to a wider separation between the 

conduction and valence bands. Furthermore, the initial structure simulated displayed surface 

relaxation, and dangling bonds on the surfaces of the slab could be contributing to states around 

the Fermi energy, potentially bridging the band gap. This allows for comparisons between bare 

surfaces and those with single- and double-sided passivation techniques. Ultimately, we find that 

while a positive band gap in many-layered HgTe (111) surfaces does not appear, the monolayer 

form does have a positive band gap. We can utilize the trends with decreasing layer counts to 

make assumptions about the effects of modifications to the (111) surfaces on colloidal quantum 

dots. The first of these studies presented here is that of a surface mercury vacancy. 

VI.1 Passivation of (111) HgTe Surfaces 

 The first attempts made at achieving a positive band gap in our structures were through 

passivation. The simulated (111) HgTe slab is isolated by a vacuum region on either side of the 

cell through periodic boundary conditions. The slab, separated from a bulk material, must 

theoretically break bonds that would have otherwise been at the slab’s surface. This 

rearrangement of charge density at the surface can manifest as dangling bonds, which typically 

have energies close to that of the Fermi energy. This makes any potential dangling bonds a prime 

candidate for hiding an otherwise already narrow band gap. To begin exploring this issue then, 

pseudohydrogens were added to the tellurium facing surface. While the relaxation of this surface 

was shown to involve considerably less energy than that of the mercury surface, we assumed that 
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the mercury-facing surface would be most likely to be realized experimentally due to the relative 

reactivities of the mercury and tellurium reactants. Since the VASP pseudopotential of tellurium 

models six electrons (2s and 4p) and we assume these to be equally shared across the four 

tetrahedral bonds in the diamond HgTe lattice, we selected a pseudohydrogen with Z=1.5, though 

this proved to be a suboptimal approach, as noted in Chapter V. 

  
Figure 6.1 Density of states of the 4 AB layered structure with Te-facing passivation. 

 

The DOS of the tellurium-passivated structure again does not have a band gap. We should 

note that in the previous chapter where we presented a DOS plot of the entire spectrum of an 

unpassivated slab, we had Gaussian smearing enabled. This smearing calculates the band 

energies (and in turn, the DOS) at each k-point by assuming the occupation of a Kohn-Sham 

eigenstate to be, in this case, Gaussian about the eigenenergy. For metals with many bands 

around the Fermi energy, this can reduce the effects of bands alternating from above and below 

the Fermi energy and preventing electronic convergence [36]. The tetrahedral method with 

higher order (Blöchl) corrections instead divides a k-point mesh into tetrahedra, calculates the 
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energies at the vertices, and interpolates the eigenenergies between them. The tetrahedral method 

prevents charge sloshing since the energy is calculated by integrating the interpolation, rather 

than the step function about the Fermi energy [37]. Furthermore, this method has been shown to 

improve the overall accuracy of energy calculations when not using k-mesh optimization. For 

this and future DOS plots then, the tetrahedral method with higher order corrections was used. 

In the tellurium-passivated structure, special attention was paid to two features: a broad 

peak centered around –0.15 eV, and another peak around 0.07 eV. In Chapter IV we noted a 

continuum of states and attributed them to primarily a band with primarily tellurium behavior. 

This band, which exists with or without passivation and is mentioned in Chapter V, contributes to 

the down-spin states. For that reason, our analysis here is limited to the up-spin states. To 

demonstrate that these states around the Fermi level are indeed a result of states originating on 

the surface of the slab, a series of projections on the DOS were calculated. These projections 

considered the slab as layers, with projection 1 being the passivated bottommost Te-facing layer 

and projection 4 being the unpassivated topmost Hg-facing layer. Projections 1 and 4 are given in 

Figure 6.2. While the bottommost layer of HgTe contributes strongly to the presumed up-spin 

dominated conduction band and down-spin dominated valence band, the topmost layer sees 

notable increases in the DOS around the features of interest, which suggests that these states are 

indeed local dangling bond states. When considering a HgTe nanocrystal then, it is important to 

recognize that even pristine stoichiometric surfaces are prone to developing traps near the Fermi 

level. This effect could be more pronounced in colloidal systems which are initially passivated 

and held in suspension with large organic ligands whose steric hinderance could limit the overall 

passivation of a quantum dot. 
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Figure 6.2 Projected DOS plots of the Te-passivated structure considering the bottommost AB 

layer of atoms (left) and the topmost (right). Special attention should be paid to features around 

–0.15 eV and 0.07 eV. 

 

 With the understanding that passivating only the nominally interior layer of the slab still 

allows for the formation of surface traps, we then moved to passivate the Hg-facing layer. 

Despite the increase in modeled electrons in the Hg pseudopotential, the same Z=1.5 

pseudohydrogens were used. This configuration maintained the tetrahedral bonding structure 

while also, as demonstrated below, providing effective passivation of the surface states. This can 

also be demonstrated in the projected DOS plots: in the projections 1 and 4, there is no 

noticeable increase in the up-spin states around the Fermi energy when using the fully passivated 

structure as opposed to the Te-passivated one. This confirms the elimination of the surface states 

and is demonstrated in Figures 6.3 and 6.4. However, the original motivation for this passivation 

was to observe a positive band gap. As demonstrated in Figure 6.4, the up-spin states show a 

sizeable discontinuity between filled and unfilled states, spanning around 0.25 eV. This is 
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nullified by the down-spin states that extend far from the conduction band and into the valence 

band, which is the origin of the “negative” band gap reported for HgTe previously. 

 

 
Figure 6.3 Density of states of the fully passivated 4 AB layered structure. 
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Figure 6.4 Projected DOS for the fully passivated structure considering the bottommost AB layer 

(left) and topmost AB layer (right). Notably, there are no significant increases in the up-spin 

states between the two projections.  

 

The Fermi energy also considerably changes between the two structures. The Te-

passivated structure has a Fermi energy of –1.4537 eV, while the fully passivated structure 

shifted down by approximately 1 eV with a Fermi energy of –2.4881 eV. This downward shift 

has two main causes. The Fermi energy as determined by VASP is the highest energy of the 

occupied eigenstates, or the top of the valence band in semiconductors. For the Te-passivated 

system then that has occupied surface trap sites above the presumptive valence band maximum 

around –0.2 eV in Figure 6.1, this would skew the Fermi energy upwards. Furthermore, with the 

introduction of hydrogen near the surface of the HgTe, the formation of bonds results in a net 

withdrawal of charge from the surface. Without any other strong dipole effects (see Chapter VII), 

this decrease in charge density directly relates to the decrease in the Fermi energy when 

passivating the structure. The overall band energies of the Te-passivated and fully passivated 

structures were –63.5752 eV and –74.8127 eV, respectively. Even when considering the added 
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chemical potential of the added pseudohydrogens, the Hg passivation still results in a net 

reduction of 6.7443 eV compared to the unpassivated Hg surface. This large energy decrease 

does include effects due to the reconfiguration of Hg on the surface, but otherwise suggests that 

exposed Hg will readily react to eliminate any dangling bonds. 

VI.2 Band Diagrams and Reduction of Layer Count 

Lacking a discernible band gap in the fully passivated system, we then sought to increase 

the quantum confinement of the simulated structure. Decreasing the number of layers included in 

the slab further constrains a theoretical exciton and increases its energy. This increase in 

quasiparticle energy manifests as an increase in the energetic separation of the unoccupied and 

occupied states. The system was allowed to remain passivated due to the reduction of surface 

states indicated by the previous section. Overall, structures with 1-4 layers were simulated, and 

the DOS for each is given in Figure 6.5. 
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Figure 6.5 DOS plots comparing structures made with (a) 4, (b) 3, (c) 2, and (d) 1 AB layer of 

atoms. 

 

The plots in Figure 6.5 reveal a few general trends. For instance, we notice that the gap 

between the up-spin dominated valence band and the corresponding down-spin conduction band 

broadens as expected when decreasing the layer count. If the down-spin states were to be 

neglected, this would emulate a reasonable band gap for this system. However, while the down 

spin dominated conduction band does indeed shift upwards in energy with decreasing layer 

count, it is not at the same amount, nor does it reveal a band gap until reaching the monolayer 

phase. The conduction band edge shows a very large increase in energy when going from 4 to 3 

layers, but the shifts are relatively small thereafter. This behavior could be explained by 

acknowledging that the 4-layered structure is the only one in this series that has AB layers that 

do not interact with both surfaces: the middle two layers can interact with each other in a manner 

similar to that of the bulk material. This interaction could result in semi-metallic character 
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similar to bulk HgTe. The structures with n>1 layers also have a non-zero number of states in the 

up-spin valence band above the Fermi level. This effect is not seen in the monolayer structure, so 

while large HgTe clusters that approach the bulk phase that see a vanishing band gap may see 

these states, it is unlikely that when the conduction and valence bands are well isolated in a 

quantum dot that this effective p-type character would manifest. The monolayer structure 

predicts that a pristine, well passivated quantum dot would instead behave intrinsically (however, 

this is complicated by observations made in Chapter V).  

In Chapter IV we noted that the conduction and valence band DOS had a large 

contribution from p-orbitals in the tellurium projection. This can also be confirmed with band 

diagrams and atomic orbital projections. Figure 6.6 includes band diagrams for the 3-layered and 

the monolayer structures, which are colored by the fractional contribution of tellurium orbitals. 

The dashed lines represent down-spin bands. Most prominent of these is the band that descends 

from the conduction band and, in the case of the 3-layered system, crosses into the valence band 

around the gamma point. The dotted lines in this plot represent the Fermi energy as calculated 

during the band diagram calculation. This calculation is anomalous since it relies on a k-point 

path, rather than a mesh, and still employs Gaussian smearing rather than the tetrahedral method, 

leading to some anomalously high occupations. The band diagrams given here are corrected, 

with 0 eV representing the tetrahedral method obtained Fermi energy. While Figure 6.6 does 

confirm that the largest contribution to the states around the Fermi energy are from tellurium 

orbitals, we can also observe a trend hinted at by Figure 6.5. With decreasing layer counts, the 

relative share of the p-orbitals in the projected DOS plots also decreases. In Figure 6.6 this 

manifests as a decrease in the relative contribution of the tellurium orbitals. Instead, the states in 

the conduction and valence band are more heavily reliant on hydrogen orbitals, and the 
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interloping band from the valence band is roughly equally contributed to by mercury and 

hydrogen orbitals. While this could simply be a representation of the relative amounts of HgTe 

and passivating molecules, it nonetheless emphasizes the need for an investigation into how 

other ligands can affect band alignment (see Chapter VII). 

Figure 6.6 Band diagrams for a monolayer (left) and a 3-layered (right) structure. The bands are 

colored by relative tellurium orbital contribution. 
 

VI.3 Development of the Mercury Vacancy Structure 

The previous sections detail the electronic structure of a pristine HgTe (111) surface. 

Passivation allows for the removal of dangling bonds that manifest as states around the Fermi 

energy, and a reduction of layer count produces noticeable quantum confinement effects. This 

system should serve as a suitable model for a HgTe quantum dot, since the relative shifts in the 

bands and the development of the band gap in a monolayer regime is directly analogous to the 

reduction in edge size of the quantum dots. Moving forward then, the passivated 3-layered 

structure will be used. This reduces the computational load and any potential bulk-like 

interactions from the 4-layered model as noted in Figure 6.5 while still providing two subsurface 
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layers for relaxations due to defects and substitutions on the top surface. Our primary subject will 

be a mercury vacancy on the Hg-facing surface of the slab. Previous studies on other transition 

metal chalcogenides suggest that the removal of the metal species will bring about mid-gap traps 

[38] The substitution of surface mercury atoms with other metals in Chapter VII also makes the 

mercury vacancy structure valuable. 

The starting structure used during the ionic relaxation was the fully relaxed 3-layered 

passivated structure with one mercury atom and the corresponding passivating hydrogen 

removed. The initial ionic relaxation did not converge, even after five successive 24 hour runs. In 

retrospect, this is due to excessive unbounded line searches in the conjugant gradient 

minimization scheme. In scenarios when the energy landscape across the searched direction is 

relatively flat, it is sometimes possible for the interpolated energy minimum to have the same or 

a slightly higher energy than the binding points. In this case, the algorithm extends the search 

area by taking another trial point further along in the search direction. This can be repeated, 

pushing the atom further away from its starting position until a new energy minimum is detected. 

During the simulation, this new minimum was outside of the energy convergence criterion, 

allowing the run to continue indefinitely. The final obtained structure is provided in Figure 6.7. 

While ideally this extended search function allows for the conjugate gradient algorithm to locate 

minima far from the starting positions, the large distortion throughout the structure and near 

homogenization of the bottom layer is likely an overcorrection.  
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Figure 6.7 Profile of the initial simulated structure, with 3 layers and a surface mercury defect, 

after 5 successive runs. 

 

With this deep distortion and fragility in mind, the structure was relaxed in a more 

cautious manner. “Selective Dynamics” was enabled in the initial POSCAR file, which allows 

the specification of which lattice vectors a given atom is allowed to move along. Since the 

greatest amount of distortion was witnessed in the bottom layer of the structure, the top two 

layers were allowed to freely relax, while the bottom was fixed. This step converged quickly but, 

as noticeable in Figure 6.7 as well, a hydrogen at the top of the structure was displaced, and now 

lies within the defect itself. The reduction of the angle between the subsurface tellurium layer 

and the newly unpassivated mercury atom indicates that it has undergone a similar surface 

relaxation to those previously covered and could introduce surface states into the electronic 

structure. Two branches were allowed to proceed: in the first, the hydrogen was reset to an 

appropriate distance above the newly relaxed mercury while keeping the original constraints in 

place (ReH). In the second the hydrogen misplacement was ignored, and the bottom tellurium-

facing layer was allowed to relax while the rest of the structure was frozen (Te-relax).  

Both the ReH and Te-relax trials converged. The constraints were then removed on the 

ReH structure, but again, the structure destabilized due to unbounded line searches. This was also 
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the case when just allowing the bottom layer to relax, like in the Te-relax trial. The Te-relax trial, 

however, did converge with the constraints removed. The unpassivated mercury however was 

still a concern. The unpassivated mercury and the hydrogen atom that fell into the defect were 

fully reset to be in line with the other surface atoms. This pair of atoms was then allowed to relax 

with the rest of the structure constrained. Once again, the top two AB layers of atoms were 

allowed to relax with the bottom Te-facing layer constrained. This structure is arguably similar to 

the starting structure, with the possibility of the bottom layer destabilizing with unbounded line 

searches. Instead, a quasi-Newton algorithm explored at the end of Chapter AA was used, with 

all the atoms allowed to relax. Up until this point, the criterion for convergence was based on a 

converging energy between trial steps of the conjugate gradient algorithm. Instead, when using 

the quasi-Newton algorithm, we elected to use a force-based convergence criterion: the 

magnitude of the force on each atom must be less than 0.03 eV/A. This criterion is more suitable 

for the quasi-Newton algorithm that does not consider the total energy of the system. This 

process yielded the well converged structure in Figure 6.8. 

Figure 6.8 The final, fully relaxed 3-layered structure with a surface mercury vacancy. 
 

The final structure in Figure 6.8 shows some reasonable differences compared to its 

stoichiometric counterpart. On the Hg-facing surface itself, the passivating hydrogens on the six 

mercury atoms nearest to the vacancy site have bent away from the site, indicating a lack of 
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electrons in the region. Similarly, in the second layer, mercury atoms beneath the site have been 

pulled towards the tellurium subsurface layer. This effect can also be seen in the third layer, 

where the tellurium atom directly beneath the site has been pulled upwards, and its passivating 

hydrogen has become more tightly bound. Having calculated the total energy of the defect-free 

structure and the chemical potentials of bulk Hg and gaseous H2, we can determine the formation 

energy of this defect to be 1.3757 eV. We should acknowledge that this is an upper bound for the 

true formation energy since the chemical potentials were taken to be the unit total energy of 

Hg/H2 in the simulated supercell, which themselves are an upper bound to the true chemical 

potentials [39]. 
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Figure 6.9 Band diagrams and DOS plots for both the pristine (b, d) and mercury vacancy (a, c) 

structures. 

 

The band diagram and DOS plots of the defective structure in Figure 6.9 reveal that the 

HgTe surface appears to be somewhat defect tolerant. In the band diagram we notice an 

appreciable separation of bands in the valence band when compared against the pristine 

structure. This splitting manifests as a substantial increase in the number of states available just 

above the Fermi level. As noted above, the Fermi level in VASP is chosen by the energy of the 
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highest occupied orbital. Both the pristine and the defective structure have very similar Fermi 

levels: –3.0794 eV and –3.0673 eV respectively. This does not distinguish between the true top 

of the valence band that we would expect in the pristine system and the possible filled vacancy 

states near the top of the valence band, which would explain the minor but noticeable contraction 

of the conduction band towards the Fermi level. While single, neutral mercury vacancies appear 

to be shallow trap states, these could be more problematic in LWIR applications, where these 

trap states would appear closer to the midgap. For applications approaching NIR however, these 

available states would likely act as acceptor states, leading to more p-type character in a 

nanocrystal system. 

Previous DFT studies of metal vacancies in other II-VI colloidal quantum dot systems 

have suggested that the removal of metal vacancies, which result in a 2-coordinated chalcogen 

center induce midgap trap states [34]. These trap states are highly localized and attributable to 

the 2-coordination chalcogen center. The model simulated by Houtepen et al. Included three 

unique faces of CdSe in a nanocluster, which allowed the 2-coordinated Se center to appear with 

a Cd vacancy. This model suggests that tetrahedral {111} HgTe CQDs, with uniform faces, 

edges, and surface stoichiometry would be uniquely defect tolerant compared to spherical 

nanoclusters, since a minimum of two metal vacancies must form adjacent to the same Te site for 

the 2-coordinated Te center to manifest.
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Chapter VII. Ligand and Surface Atom Substitutions 

The neutral mercury vacancy in the 3-layered (111) HgTe model produced defect states 

that would lead to unintentional p-type doping or charging effects under electric fields. The trap 

states also have the potential to contribute to recombinative losses in optoelectronic devices, 

especially in the LWIR regime. Having a higher degree of control over the conduction type of 

HgTe quantum dot films is imperative for improved device performance. Presently, reports of p-

type doping through the use of an Ag2Te CQD film and a cation exchange reaction have already 

demonstrated competitive performance [1]. This is attributed to the accumulation of silver 

species on the surface of otherwise pure HgTe colloidal quantum dots. DFT should be able to 

provide an ab initio confirmation of this mechanism. Furthermore, potentially in part because of 

single mercury vacancies, a single substitutional model for inducing n-type doping within HgTe 

CQD films has not been demonstrated. Previous reports that induce n-type doping demonstrate 

the shift of the Fermi level towards the conduction band with reduction of dot size [12], but the 

effect is small and, in devices, disallows precise wavelength tuning due to the reliance on dot 

size.  

Here, heteroatoms are explored as a universal method of tuning the Fermi level position 

for n-type doping. Ligands also have the potential to have an outsized impact on device 

performance by manipulating the alignment of the conduction/valence band edge positions, as 

discussed in Chapter I. While a full qualitative study cannot be presented, as noted in Chapter V, 

here, relative shifts in the Fermi level due to various ligands involved in HgTe CQD processing 

is presented. It should be noted that throughout this chapter, we will frequently compare energies 

of different structures to evaluate the thermodynamic stability of reaction/doping pathways. For 

the sake of clarity, all calculations will take the form of equation (1) below: 
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 𝐸𝑟𝑥𝑛 = 𝐸𝑓 − 𝐸𝑖 + ∑𝑛𝑖𝜇𝑖

𝑖

 (1) 

 

 Here 𝐸𝑟𝑥𝑛 is the net energy change from going from the initial simulated structure 𝐸𝑖 to 

the final simulated structure 𝐸𝑓. If the structures have dissimilar numbers of atoms of a given 

species, their chemical potentials 𝜇 will need to be taken into account (where 𝑛 > 0 and 𝑛 < 0 

correspond to adding and removing atoms, respectively).The meaning of 𝐸𝑟𝑥𝑛 will be context 

dependent; it is used in the context of adsorption (adsorption energy) and the occupation of Hg 

vacancy sites (formation energy). Regardless of context, a 𝐸𝑟𝑛𝑥 > 0 should be understood to 

represent an endothermic, thermodynamically unfavorable pathway, with the opposite being true 

for 𝐸𝑟𝑥𝑛 < 0. 

VII.1 Silver Chloride 

To investigate the mechanism for silver-induced p-type doping in HgTe CQDs, we 

explored two pathways. Cation exchange from Ag2Te to HgTe quantum dots acts as the source of 

silver to the system. In one pathway, we model a system in which the cation exchange is 

incomplete, and AgCl remains chemically associated with the surface. This would be akin to 

substituting a Hg-H atomic pair at the surface with AgCl. In the second pathway, the cation 

exchange is complete and silver chloride species are entirely liberated. However, after 

subsequent drying of a CQD film, AgCl remains adsorbed to the highly coordinated FCC site on 

the Hg rich surface. A subtle difference between these two mechanisms is that the Ag substitution 

pathway should be highly localized to the original Ag2Te application. While secondary ion mass 

spectrometry indicates the presence of silver throughout a HgTe film capped with cation 

exchanged Ag2Te, the authors note that the ion beam could have pushed silver ions through the 

porous CQD layers [11]. Without an adequate understanding of the silver distribution through 
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device layers, both mechanisms presented here are valid. The quasi-Newton algorithm with 

force-based convergence was used in the relaxation of these structures.  

Figure 7.1 Band diagrams for the silver chloride in a substituted (left) and an adsorbed (right) 

configuration. The bands are colored by the atomic orbital projection of the added silver atom. 

 

Presented in Figure 7.1 are the band diagrams of the substituted and adsorbed silver 

structures. Highlighted in the color bar is the atomic orbital projection for the silver atom. As 

demonstrated above, in both cases, bands that lie below the valence band are noticeable. These 

states should act as acceptor states and contribute holes to the system. As noted in Chapter V, 

many of the states near the Fermi level are surface states due to the Te-H interaction. That these 

surface bands are partially emptied serves to demonstrate the ability for the silver states to act as 

acceptors (although the contribution of filled states well below the Fermi level would also act as 

acceptors, even at 0 K). We should also acknowledge that regardless of the completeness of the 

cation exchange reaction, silver species will be liberated into the HgTe film, meaning that it is 

possible for both pathways for p-type doping to exist and contribute. The ability of adsorbed 

silver to induce p-type doping also suggests that devices with graded effective doping 
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concentrations are possible if silver diffuses through underlying HgTe layers. This concentration 

difference in a band-like understanding of device physics would induce an electric field allowing 

for low voltage operation of photodiodes.  

While both pathways induce bands near the valence band to contribute to p-type doping, 

thermodynamics suggests that the adsorbed silver pathway is heavily favored. The total energy 

of the silver substitution structure was –240.4513 eV, compared to the defect structure’s              

–235.8164 eV. Taking the difference, and then considering the chemical potential of both the 

silver and the chlorine atoms, the formation energy of this substitution is 0.0269 eV. This would 

make the silver substitution model rather unstable, with the system preferring to exclude the 

silver from the topmost mercury layer. This might be expected when considering that the cation 

exchange preferentially swapped mercury in place of silver. The adsorbed model, by comparison, 

yields an adsorption energy of –0.3620 eV. This indicates that the FCC sites on the Hg-rich 

surface are suitable locations for the aggregation of silver ions, and this aggregation can 

influence p-type doping in HgTe CQDs. Assuming the complete conversion of Ag2Te to HgTe, 

this could make for an extremely high doping density. The surface here assumes a silver density 

of about 1014 cm-2, and there are 8 more identical sites in the simulated cell. We cannot assume a 

1:1 silver adatom-to-charge ratio, but it is clear that the dopant density can be rather high. 

VII.2 Indium Species 

Indium as a group III element is a prime candidate for contributing electrons directly to 

the conduction band of HgTe through donor states. Indium in particular, with an atomic radius of 

155 pm, was chosen because of its similar size to mercury (150 pm). Furthermore, indium salts 

like indium chloride could be introduced to a HgTe CQD film during solid state ligand exchange; 

indium chloride for instance is soluble in ethanol. Similar to the previous section, we assumed 
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that indium species, in this case an indium atom passivated with pseudohydrogen, could 

contribute to the dispersion of a HgTe surface through substitution (and passivation of surface 

mercury vacancies), and adhesion to FCC sites. The substitution very quickly converged using 

the quasi-Newton algorithm and force-based convergence. The same was true for the adatom 

structure. Unlike in the silver chloride case however, the adatom delaminated from the surface, 

with or without the passivation of the nearest mercury atoms. This delamination and strong force 

near the surface stopped any further investigation into the adatom solution. While it is possible 

that indium may occupy other sites on the Hg surface, we found that it is much more likely to 

occupy Hg vacancies. 

To model the passivation of surface Hg vacancies, we modeled the transition of a free 

indium atom separate from a defect to the indium occupying the vacancy site. Ideally, this might 

be performed with the nudged elastic band (NEB) method implemented in VASP or its 

derivatives. The NEB method relies on interpolations, or images, between the reactant and 

product structures to find the minimum energy path of the transition. The images are “connected” 

with elastic bands, and the forces due to these bands can be used to maintain the spatial 

separation of the images and prevent the images from sliding towards either local energy 

minimum. This allows for structural minimization along a transition pathway, approximating the 

minimum energy path. In preparation for an NEB calculation, well converged end points must be 

interpolated to form images. The end point of the calculation was the simple substitutional In-H 

structure made previously. Before the transition, the In-H molecule was placed directly over the 

vacancy site of the structure modeled in Chapter VI. A single self-consistent electronic 

minimization was performed to evaluate the forces on the molecule. The forces on the In-H 

system were well within our convergence criterion 0.6 nm from the vacancy site. Initially, 5 
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images were made between the two endpoints with a simple, linear interpolation (resulting in a 

spacing of approximately 0.1 nm).  

A full NEB minimization was not completed; the computational cost of the procedure is 

very high and was not close to converging after the first 48 hours. Instead, we elected to use an 

approximation of the minimum energy path. Beginning with the endpoints and each of the 

images, a self-consistent electronic minimization was performed. This was done using the 

tetrahedral method as described in Section VI.1 with a fine k-point mesh to obtain the most 

accurate energy possible while still being comparable to other calculations made thus far. The 

highest energy was found when the InH molecule was 2 Å above the vacancy site. Four more 

images, from 2.35 Å to 1.65 Å were added, and their energies were calculated. The energies are 

plotted in Figure 7.2. 

 

Figure 7.2 Estimation of the minimized energy path for an indium atom falling into a surface 

mercury vacancy. 
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An exponential fit was made for points further than 2.35 Å to estimate the energy of an 

infinitely separated InH molecule and slab. Likewise, a parabolic fit was made for points closer 

than 2.35 Å to identify the energy maximum. The energy approaches –240.9 eV at infinity, and 

reaches its maximum of –240.2 eV at an InH distance of 2.02 Å. This results in an activation 

energy of 0.7 eV, or about 67.5 kJ/mol. This result indicates that the reaction may proceed rather 

quickly, especially at elevated temperatures during CQD synthesis – the decomposition of 

peroxide for instance has an activation energy of around 75 kJ/mol [40]. In addition to the 

qualitative observation of the exothermic behavior of the reaction in Figure 7.2, the estimation of 

the formation energy is –1.9806 eV, when considering the chemical potentials of the added 

indium and hydrogen atoms. Plotted at 7 Å in Figure 7.2 is the combined total energy of the 

defective surface and the chemical potentials of indium and hydrogen. It is clear that the In-H 

interaction is very strong, leading to the drop in energy towards –240.9 eV observed when 

simulating the InH molecule. This suggests that the activation energy and formation energy 

presented here would likely be modified by the specific indium species used in the reaction. 
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Figure 7.3 Band diagram for a HgTe surface with an indium substitution. The bands are colored 

by the atomic orbital projection of the indium atom. 
 

The band diagram of the indium substitution reveals the appearance of bands above the 

conduction band minimum. As noted in Chapter V, this should be the down-spin state that dips 

below the relatively flat surface state bands near the bottom of Figure 7.3. The Fermi level in this 

structure is near the top of the first conduction band dispersion, indicating that the inclusion of 

indium on the surface has successfully donated electrons to the system. This would manifest as 

n-type character in a CQD film. Ideally, as mentioned above, indium could easily be 

incorporated into the CQD film during ligand exchange steps where it could serve to occupy 

mercury vacancies. This would lead to a stronger correction of the electrochemical potential 

compared to a simple indium exchange if mercury vacancies prove to impart p-type behavior. 

Another possible route not explored here is the homogeneous incorporation of indium into the 

nanocrystals during synthesis, which may offer a higher degree of control over the active doping 

level. 
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VII.3 Ligand Surface Modifications 

In CQD photodiodes the fast extraction of charge from the CQD film and into 

electron/hole transport layers is vital for high efficiencies. This makes the relative position of the 

conduction and valence bands extremely important to the performance of devices. The use of 

different passivating ligands in lead-based quantum dots has been shown to greatly modify the 

conduction/valence band edges, as well as the electrochemical potential [9]. A large variety of 

ligands are used in the hot-injection synthesis of HgTe colloidal quantum dot films, but these 

effects have not been theoretically explored. Here, the base 3-layer structure is again modified to 

simulate a quantum dot surface with ligand modifications. As noted in Chapter V, the presence of 

surface states makes the true position of the Fermi level and conduction/valence band edges 

difficult, but we expect that the relative shift in the Fermi level would be informative, allowing 

for an approximate determination of the conduction/valence band edge shifts.  

For this study, four different ligands were used: chlorine, ethanedithiol (EDT), ethyl 

mercaptan (EM), and acetic acid (AA). At first, a single pseudohydrogen on the Hg-facing 

surface was substituted. In the case of AA, it has been generally found that it is more 

thermodynamically favorable for both oxygens of the carboxyl group to be bound to the metal 

surface, so two pseudohydrogens were substituted in that case [41]. Initially, the structures 

generated with the 3-layered structure used the same 2x2 supercell detailed in Chapter IV. The 

structures proved to be difficult to converge with force-based convergence with the quasi-

Newton method. For instance, one of the first ligands attempted was AA, which took over 230 

ionic steps to fully converge. To increase our throughput, we opted to use energy-based 

convergence with the conjugate gradients (CG) algorithm. We ultimately found that this ligand 

density (about 1/16th of all available sites) produced a very small shift in the Fermi level – 
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around 0.12 eV. It is important to note however that the use of an energy-based convergence 

criterion with the CG algorithm meant that the converged structure is very sensitive to our 

starting conditions and parameters and could allow for different conformations to exist with 

lower forces and total energies. So, while a small shift is possible for these ligand densities, we 

sought to elevate the effect well beyond any possible computational inconsistencies. 

 
Figure 7.4 Relative shifts of the Fermi level with different ligands compared to the nominally 

pseudohydrogen passivated slab. The conduction and valence band positions are illustrative 

only. 

 
To augment the Fermi level shifting effect, we elected to substitute all possible ligand 

sites on the surface. For AA, this meant 8 total molecules were present, and 16 for all others. 

Adding in some cases hundreds of atoms to the system was deemed too impractical, so the lattice 

vectors a and b were halved in magnitude, making a 1x1 supercell and leaving 4 sites (2 for AA). 

This greatly reduced the computational cost of the calculations, and for simple Fermi level 

calculations in neutral systems, relying more heavily on the periodic boundary conditions should 

not sacrifice much accuracy. The Fermi level shifts, relative to the structure passivated with 
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hydrogen, are shown in Figure 7.4. Collectively, the ligands span a 1.6 eV range. The Fermi level 

shift is tightly correlated by the induced surface dipole and the dipole of the ligand itself. 

Chlorine ligands for instance yield a slab with the highest work function: the strong ionic 

behavior of the Cl-H bond induces an electric potential near the surface of the slab, causing a 

downward shift in the conduction and valence bands. Likewise, while we note that the thiol-

based ligands show a similar upward shift in the Fermi level compared to pseudohydrogen 

(likely owing to sulfurs large size and low electronegativity) this shift is smaller for EM than 

EDT. The thiol group at the end of EDT is likely partially compensating for and screening the 

overall dipole experienced by the slab’s surface. We should expect that these screening effects 

would be more complicated in solid films, where ligands can become interdigitated between 

individual nanocrystals.  

Overall, the shifts demonstrated here align well with a surface dipole understanding of 

ligands. While many ligand exchange techniques form aggregated films using EDT, we have 

demonstrated here that a wealth of other small organic materials could potentially be used to 

induce shifts in the conduction/valence band edge positions. Acetic acid for instance 

demonstrated a downward shift of up to 0.89 eV. While contacts for HgTe CQD materials are 

often made from silver and gold materials, a downward shift in the conduction band could make 

lower work function alternatives like Al available to ohmic contact. This study is however 

limited by the surface states discussed in Chapter V. A more complete review would ideally be 

able to identify the conduction/valence band edge positions relative to the Fermi level explicitly. 

Furthermore, the survey of ligands here is incomplete, as amines are also often used in HgTe 

CQD fabrication. Care should also be taken to examine interdigitation screening effects, and it is 
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unlikely that a 100% ligand exchange would be achieved; hybrid systems could also be 

investigated.
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Chapter VIII. Conclusions and Future Work 

 Overall, the work performed here represents a considerable contribution to the theoretical 

understanding of mercury telluride CQDs, especially those with {111} tetrahedral faces. Herein, 

we presented some of the first calculations of the surface energy of the (111) surface in HgTe and 

demonstrated the validity of a relatively new method [32]. We argued that the successes of this 

method could be explained by the similar electronegativities of mercury and tellurium, and that 

the overall slab’s surface energy was dominated by the mercury rich face. This trend is clearly 

based on the deformation of the mercury rich surface, as shown in Figure 4.4. Furthermore, we 

determined the formation energy of several defects and substitutions to the mercury rich surface, 

which led to a theoretical understanding of both p-type and n-type doping using heteroatoms in 

HgTe CQDs, and presented qualitative insights to ligands frequently used in HgTe nanocrystal 

fabrication. In particular, the doping mechanisms we identified offer some key potential 

improvements to the state of the art in HgTe CQD technology. 

We would first like to highlight the identification of the theoretically preferred 

mechanism of p-type doping in cation exchanged Ag2Te. Through a DFT study, we have shown 

that while substituting Ag for Hg on the mercury rich surface was unstable, silver readily 

adsorbed to FCC sites on the surface. This is significant since it suggests that the local p-type 

doping sought through a sacrificial Ag2Te layer may be lost; instead, the diffusion of silver ions 

can lead to various distributions of p-type behavior, since adsorbed silver can act as an active 

dopant. Interestingly, the use of free silver ions in a solution of silver nitrate was shown to 

destroy photodiode characteristics in HgTe photodiodes, likely attributable to the rapid diffusion 

of a solution with a high dopant potential [11]. Overall, limiting the diffusion of silver species 

will be imperative for the local doping of HgTe nanocrystals, which naturally invites further 
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investigation. Moving from this introductory study, one may be interested in evaluating the 

stability of silver in an ionic form aggregating on the surface, instead of immediately forming 

AgCl. Also of interest would be the movement of silver species themselves across the HgTe 

surface, made possible through molecular dynamics or transition state DFT, and the stability of 

different sites than the one studied here. An in-depth study of the diffusion dynamics may also 

necessitate thermal effects which are not considered in the ground state 0 K DFT calculations 

performed here. 

 We also demonstrated the capacity of indium species to readily occupy mercury vacancy 

sites and induce n-type doping, which offers a significant opportunity for device fabrication with 

HgTe CQDs. N-type doping is most often achieved through modification of syntheses that 

prohibit well behaved homojunctions with uniform optical properties through a device, so a 

potential avenue for a universal doping method is deserving of further study. Not considered here 

for instance is the possibility of a mercury exchange process in which indium favorably 

substitutes mercury on the surface of the CQD. This could be investigated thermodynamically, as 

well as with transition state DFT. An indication that indium species will readily undergo cation 

exchange with mercury would suggest that rapid quenching of the reaction or a very well 

controlled amount of indium should be implemented when introducing indium after the CQD 

synthesis. As another pathway, subsurface indium should also be investigated for stability and n-

type character. If proven viable, this could allow for the direct incorporation of a small amount of 

indium into the CQD during synthesis, where both indium and mercury precursors are present 

during hot injection. This method also has the advantage of being highly tunable and localized, 

since subsurface indium would be unlikely to diffuse into neighboring layers.  
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Also relevant to n-type doping were our investigations of the Te-H interactions in Chapter 

V. We would like to highlight that the correctly passivated three-layer structure with an ideal 1:1 

Hg:Te ratio did readily display n-type character (see Figure 5.2), which can then be made 

increasingly p-type with the addition of a mercury layer below the bottommost tellurium facing 

layer. This behavior is generally opposite to what’s observed experimentally, where excess 

mercury can result in n-type behavior [12]. This effect should be explored further to confirm its 

origins, but it is possible that a global dipole exists across the slab in the 1:1 Hg:Te configuration 

that is corrected with the addition of the bottom mercury layer. The manifestation of n-type 

doping with excess mercury could also be explored theoretically through the modelling of 

mercury containing ligands and adatoms. Important to this study would be the development 

alternative HgTe faces, since nanocrystals synthesized with n-type doping are typically more 

spherical in shape due to the use of a different tellurium precursor [12]. 

The obvious limitation of the work presented here was the presence of spin-splitting and 

surface states due to the Te-H interaction discussed in Chapter V. As discussed in that chapter, 

none of the qualitative observations made here should be impacted through the correction of the 

passivation, but for the sake of clarity and thoroughness our calculations should be repeated with 

the new passivation scheme. This would also allow us to clarify a few points and expand on our 

present work. For instance, the vacancy models developed here focus on neutral mercury 

vacancies, which appear to show little impact on the states closest to the Fermi level, and could 

instead introduce acceptor-like states in the valence band. This small p-type effect was noticeable 

in the DOS plots for the vacancy structure and could contribute to an innate p-type doping in hot-

injection synthesized CQDs. An observable band gap obtained with DFT+U and the lack of spin-

splitting and Te-H states would allow for this to be proved definitively. Building on this, if the 
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{111} tetrahedral HgTe CQDs prove to be somewhat electrically tolerant of single neutral 

mercury vacancies as our study suggests, two or more vacancies could be introduced. The model 

for traps in CdSe suggests that having 2-coordinated chalcogen sites leads to midgap states in II-

VI semiconductors, which could be modeled here through neighboring pairs of mercury 

vacancies. 

The development of a clear, observable band gap also enables studies of different changes 

to the (111) surface. For instance, the tellurium vacancy was introduced in Chapter V and no 

conclusions were drawn about its character. A clear band gap would allow us to determine if 

{111} tetrahedral CQDs are tolerant to both kinds of single vacancies. When using the slow-

reacting TOPTe tellurium precursor, it’s possible that these tellurium vacancies would be more 

common, due to the rapid reaction of mercury species which prevents access to underlying 

tellurium sites. Building on this 𝛽-HgS, which has a zincblende crystal structure similar structure 

to HgTe has been shown to exhibit semiconductor behavior with a positive band gap [42]. 

Introducing Te-vacancies would invite studies into substitutions, like with sulfur atoms to create 

alloyed HgTeS CQDs. The effect of sulfur substitutions could be similar to that of HgCdTe and 

result in the growth of the band gap with no change in the overall dot size. This in turn could 

enable films with a large shift in conduction band energy, while maintaining a consistent valence 

band energy, like an ideal hole transport layer. 

The use of a clear band gap would also allow us to explore the effects that the various 

ligands presented here have on the DOS and band diagrams, rather than the position of the Fermi 

level alone. While we were still able to demonstrate the clear dipole-dependent shift of the Fermi 

level, this would clarify any potential doping pathways presented by the alternative ligands. We 

should also stress that the ligands used in this work are very well suited to the final ligand 
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exchange step to reduce interdot distance and improve conductivity. The ligands we selected 

were purposefully small to minimize the computational load but were still able to demonstrate 

large changes in the Fermi level position. This could allow for solid films with decent 

conductivity that interact with one another to form heterojunctions, or are used to form ohmic 

contacts with metals with previously inaccessible work functions like aluminum. Of note 

however is that the ligand studies we performed here are not complete. For instance, oleylamine 

frequently used in HgTe CQD synthesis does not have a good analog in our simulations. 

Furthermore, it is highly unlikely that when undergoing a ligand exchange process the 

nanocrystal completely exchanges ligands from one species to another. The effects of hybrid 

ligands, especially if any are shown to contribute dopant-like behavior, should be explored.  
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