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Abstract 
 

DDoS attacks, which stand for Distributed Denial of Service attacks, play a significant role in 

impacting the reliability and availability of online services and networks. Since no system is 

completely immune to cybersecurity threats, which evolve daily with new techniques, studying 

this topic is crucial for exploring machine learning methods that can effectively detect DDoS 

attacks. An approach has been utilized to conduct Exploratory Data Analysis (EDA) to identify 

patterns suggesting the presence of DDoS attacks. Multiple machine learning models have been 

employed, such as Random Forest, K-Nearest Neighbors (KNN), XGBoost, and Logistic 

Regression. These models have undergone training and testing to identify abnormal network 

activity linked to DDoS attacks. Performance analysis measures, such as accuracy, recall, F1-

score, and precision, are used to assess the efficiency of each model. The ML-based solution has 

demonstrated excellent performance in detecting DDoS attacks, as evidenced by the accurately 

labeled network traffic examples that determine whether they are legitimate or malicious, 

resulting in a calculated accuracy from the test results. Moreover, among the models used, the 

Random Forest and XGBoost models show exceptional accuracy, recall, and F1-score 

measurements, with an accuracy rate over 99%. On the other hand, while KNN shows 

praiseworthy performance, Logistic Regression yields somewhat lower accuracy and recall 

ratings. 

 

Key Words: Distributed Denial of Service (DDoS), Machine Learning, Cy- bersecurity, 

Random Forest, K-Nearest Neighbors (KNN), XGBoost, Logistic Regression. 
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Chapter 1: Introduction  

 

 1.1  Problem Statement 
 

Imagine a future where information is freely shared, enabling us to do multiple things. 

The extraordinary reality of the internet era is just that! However, great power also comes 

with great responsibility, and the internet is no different. Similar to how a busy 

metropolis may draw both tourists and troublemakers, malevolent actors pose a hazard to 

worldwide online communities.  

 

A distributed denial of service attack is one of the biggest hassles for everyone who uses 

the internet. It prevents real consumers from accessing the website, which results in 

website crashes and financial losses for businesses.  

 

The truth is that professionals in cybersecurity are always creating new strategies to fight 

back. Historically, we have relied on devices like intrusion detection systems and 

firewalls to keep attackers out. However, these techniques might be tricked by extremely 

skilled attackers. This is an instance when machine learning is applicable.  

 

The main goal of this research is to investigate whether or not machine learning may act 

as a last line of defense against DDoS attacks. The plan is to gather a significant amount 

of data on network traffic, including the number, size, and transit time of messages. Next, 

we will train unique device mastery models to become adept at identifying DDoS 

attempts. We will put all of these models to the test, including   XGBoost and Random 

Forest. We'll identify the most suitable method for the task by putting them through their 

paces and evaluating their overall performance.  
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1.2 Background of the problem  
 

A Distributed Denial of Service (DDoS) attack occurs when a malicious individual 

coordinate an attack by flooding the targeted system or network with an enormous 

amount of traffic, making it unreachable to authorized users. This attack exploits 

weaknesses in the network infrastructure. Attackers often use botnets, which are 

networks of compromised devices, to launch attacks on target systems by inundating 

them with excessive traffic. This overwhelms the systems' capacity to handle legitimate 

requests, resulting in service disruptions, financial losses, and reputational harm for 

enterprises. Due to the evolving characteristics of DDoS attacks, it is essential to develop 

detection technologies that are capable of handling increased demands. 

1.3  Project Goals 
 

Addressing cyber threats such as Distributed Denial of Service (DDoS) attacks is an 

essential focus. The objective of this research is to assist network administrators in 

addressing these threats. The development of advanced methods for identifying and 

reducing the impact of DDoS attacks will be achieved via thorough study and new 

approaches. These state-of-the-art solutions enable administrators to protect networks 

against malicious traffic overloads. The study investigates advanced techniques for 

rapidly identifying  

 

• The project goals encompass several key aspects, including: 

 

• A comparison of how well various ML models perform in detecting DDoS 

attacks.  

 

• Knowledge of the advantages and disadvantages of any assessed machine learning 

model. 

 

• Suggestions about the best machine learning models to use in DDoS attack 

detection systems.  
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• A deeper understanding of how machine learning strengthens cybersecurity 

defenses against attacks using DDoS.  

1.4  Aims and Objectives  
 

The project aims to enhance cybersecurity. It will provide network administrators with 

intelligent tools to detect and prevent Distributed Denial of Service (DDoS) attacks. The 

objective is to evaluate the efficacy of machine learning (ML) in detecting and mitigating 

distributed denial-of-service (DDoS) attacks. The primary objectives are: 

The objective is to investigate the ability of machine learning models to detect abnormal 

network traffic. This might indicate the occurrence of a Distributed Denial of Service 

(DDoS) attack.  

 

• We will conduct tests on these machine learning models. We will evaluate their 

proficiency in detecting attacks by using metrics such as precision, recall, F1-

score, and accuracy. 

 

• The findings will determine the most effective machine learning models for 

identifying attacks using DDoS. 

 

• The work has the potential to enhance cyber defenses. It will demonstrate the 

effectiveness of machine learning in protecting networks from constantly 

changing cyber threats.  

1.5 Research Methodology 
 

Machine learning (ML) is an effective method for detecting and preventing Distributed 

Denial of Service (DDoS) attacks. This methodology uses specialized computer 

algorithms to analyze vast quantities of data related to network traffic. It searches for 

patterns that might indicate the occurrence of an attack. Machine learning has the ability 

to identify these patterns and respond rapidly, without requiring explicit instructions 

provided by humans.  
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Adaptability: Machine learning models have the ability to adjust and conform to 

changing attack patterns and acquire knowledge from fresh data, enhancing their 

effectiveness in identifying previously unknown threats. 

 

Scalability: ML algorithms have the capacity to effectively handle substantial amounts of 

network traffic data, allowing for real-time analysis 

 

 

Automation: Machine learning-based detection systems have the capability to 

automatically identify and mitigate DDoS attacks, therefore minimizing the need for user 

involvement. 

 

 Accuracy: Machine learning models may use advanced algorithms to identify tiny 

irregularities that are indicative of DDoS attacks, leading to improved detection accuracy 

and a reduction in false positives.  

 

1.6  Limitations of the Study  

 
Data quality: Machine learning algorithms need substantial quantities of well annotated, 

high-caliber data. Obtaining a comprehensive dataset that encompasses many types of 

attacks using DDoS may be challenging and may have an impact. The efficacy and 

precision of the model are strongly linked to the caliber and inclusiveness of the training 

data. 
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Chapter 2 : Literature Review 
 

2.1 Literature Review 
    

Nalayini & Katiravan (2022) aimed to determine the various parameters that should be 

considered for comparing and evaluating DDoS attack detection and prediction. These 

parameters include accuracy, precision, recall, and the false positive alarm rate, as each 

of these plays a crucial role in assessing the effectiveness of detection. Accuracy provides 

a comprehensive view of how well the detection system is performing and how reliable it 

is in distinguishing between normal and attack traffic. Precision helps reduce false alarms 

by ensuring that when an alert appears, it indicates an actual attack rather than a false 

positive. Recall indicates how effectively a system performs in detecting attacks, even 

when they are hidden or partially obscured. The false positive rate is important for 

avoiding unnecessary disruptions to normal operations. All these mentioned parameters 

help understand the advantages and constraints of a detection system, enabling informed 

decision-making about where and how to use it. 

 

Priyadarshini & Devi (2020) asserted that detecting DDoS attacks is possible using the 

NAIDA method, an older model that identifies abnormal network traffic in a system 

using a network sniffer. However, the recommended model involves utilizing a dataset 

trained on Support Vector Machine (SVM) through the Weka JAR. SVM works based on 

the types of attacks, namely volume-based attacks, protocol attacks, and application layer 

attacks. Implementing SVM for detecting attacks enhances the identification of DDoS 

attacks, categorizing their nature, implementing preventive measures to block them, and 

generating reports on the identified types of detected worms. 

 

Suresh & Anitha (2011) observed in their research that current detection mechanisms 

experience limited success. This is attributed to two challenges. The first challenge is that 

attacks typically employ legitimate requests to flood the target, complicating the 

distinction between normal and attack traffic. The second challenge is the difficulty of 

swift real-time detection due to the substantial data flow in computer networks. In their 

research paper, they also mentioned utilizing chi-square and information gain feature 



6 

 

selection mechanisms to identify essential attributes. Once they selected the attributes, 

various machine learning models such as Naive Bayes, C4.5, SVM, KNN, K-means, and 

Fuzzy c-means clustering were enhanced for DDOS attack detection. Through their 

experimentation, they found that Fuzzy c-means clustering provided superior accuracy 

for attack identification. 

 

Johnson & George (2022) emphasize that the utilization of traffic analytics tools enables 

the detection of various warning signals indicating a potential DDoS attack. Examples of 

these warning signals include an excessive amount of traffic originating from a single IP 

address or a group of IPs, a high volume of traffic from users exhibiting similar behavior 

(such as using the same device or browser), a sudden surge in requests directed at a 

specific page or endpoint, and peculiar traffic patterns, such as abrupt spikes during 

unconventional times or patterns that appear fake (e.g., a spike occurring every 10 

minutes). It's important to note that specific indicators of a DDoS attack may vary 

depending on the nature of the attack. 

 

Robinson & Thomas (2015) conducted a study in which they aimed to evaluate and rank 

the performance of machine learning algorithms for detecting DDoS attacks. To achieve 

this, they utilized three distinct datasets and employed various algorithms, including 

Naïve Bayes, RBF network, Multi-layer Perceptron, etc. Their focus was specifically on 

key attributes such as False Negative (FN) rate, False Positive (FP) rate, precision, and 

recall for each algorithm. This emphasis aimed at reducing error types and enhancing 

precision and recall. Furthermore, the researchers applied a criteria-driven approach using 

Visual PROMETHEE, which stands for Preference Ranking Organization Methods for 

Enrichment Evaluation, along with MCDE software. 
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Gu et al. (2019) discovered that a semi-supervised k-means machine learning algorithm is 

effective for classifying DDoS attacks. They applied a hybrid feature selection algorithm 

to enhance detection results, implementing this approach across various datasets, 

including DARPA, CAIDA, and CICIDS datasets. Additionally, he successfully 

implemented a real-world scenario dataset by employing a tool to simulate both attacker 

and normal traffic. 

 

Filho et al. (2019) stated that there is a smart detection for DDOS attacks , as it is main 

purpose for detecting DDOS attacks that is with both high volume and low volume, it 

worked as a sensor that it can be installed anywhere on network and it figures out internet 

traffic by using an MLA strategy . This strategy looks at random bits of data taken from 

devices on the network through a stream protocol to make predictions. 

 

Pei et al. (2019) reported that a common DDoS attack tool can be employed for 

implementing local attacks. In this approach, the packet capture tool is used to compare 

captured attack packets with normal data packets. The authors proposed a new machine 

learning method, the random forest algorithm model. This involves extracting attack 

packets for three protocols: TCP flood, UDP flood, and ICMP flood, using the DDoS 

attack tool. Two essential processes are carried out to extract DDoS attack traffic 

characteristics: feature extraction and format conversion. Subsequently, the extracted 

features are utilized as input for machine learning, specifically to train and create the 

DDoS attack detection model using the random forest algorithm. For testing the model, 

normal traffic data is mixed with attack traffic data. 

 

Devi et al. (2014) proposed a method to counteract DDOS attacks by employing a 

prevention system designed to block any harmful traffic that deviates from the service's 

normal behavior or matches a known attack signature in the database. Additionally, 

mitigation systems are utilized to push back against attacks, restoring the server's normal 

functioning by rejecting unintended requests, connections, or reducing data flow from 

suspicious sources. Furthermore, they introduced a model known as HCF-SVM, which 
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was evaluated alongside Random Forest and Decision Tree models. HCF-SVM 

demonstrated a 98.99% detection rate, with the added benefit of reducing false positives. 

 

Chen et al. (2018) posited the existence of a new type of cloud known as SDN-based 

cloud, employed to gain control over network infrastructure and provide Networking as-

a-Service (NaaS). They highlighted that notable companies, such as Google, have 

incorporated SDN into their cloud infrastructure. However, the integration of SDN and 

Cloud has brought about potential cybersecurity vulnerabilities. Consequently, there is a 

crucial need to develop an accurate detection method for Distributed Denial of Service 

(DDoS) attacks in SDN controllers. Furthermore, within the SDN architecture, a pivotal 

component is the controller, acting as the brain of SDN. They emphasized that if the 

controller is compromised, the entire network becomes susceptible to attacks. They 

proposed the utilization of the XGBoost algorithm as an accurate method for detection 

due to its higher accuracy and lower false positive rates compared to other machine 

learning algorithms implemented in their research, such as Support Vector Machines 

(SVM), Gradient Boosted Decision Trees (GBDT), and Random Forest. 

 

Qin et al. (2015) highlighted the efficacy of clustering techniques for enhancing the 

modeling of different aspects of traffic. They found that employing clustering methods 

provides valuable insights into the complex and varied nature of traffic patterns. In 

particular, for their modeling strategy, they chose to incorporate clustering along with an 

automatic thresholding mechanism. 

 

Bandara et al. (2016) reported that intrusion prevention systems (IPS) and intrusion 

detection systems (IDS) typically struggle to identify new DDoS attack techniques, as 

these attacks become increasingly sophisticated each year. To address this challenge, the 

utilization of machine learning algorithms and pattern recognition is employed to enable 

systems like IPS and IDS to analyze emerging types of DDoS attacks and implement 

preemptive measures for mitigation without necessitating user intervention. 
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Sanjeetha et al. (2021) stated that the utilization of the CatBoost machine learning 

algorithm results in significantly faster predictions, approximately 8 times quicker than 

XGBoost. The reason behind this is its proven reliability and effectiveness in detecting 

DDoS attacks with a 98% accuracy rate and a considerably shorter training duration. 

 

Sofi et al. (2017) underscored the effectiveness of MLP-ANN, also known as Multi-

Layer Perceptron Artificial Neural Networks, in detecting DDoS attacks. MLP-ANN 

operates by learning patterns and relationships in data, proving efficient in tasks like 

pattern recognition, feature extraction, and real-time monitoring to identify and mitigate 

DDoS attacks. It is considered a machine learning algorithm that can be combined with 

other algorithms. 

 

Kadam & Sekhar (2021) aimed to determine a machine learning approach, specifically a 

hybrid KSVM scheme based on both KNN and SVM algorithms. This approach was built 

as a secure framework for detecting DDoS attacks. The study demonstrates its 

effectiveness in enhancing performance and adapting scenarios in VANETs, referring to 

vehicular networks. VANETs have garnered significant attention from both industry and 

academia. However, they encounter various challenges, including security, traffic 

congestion, which have not been adequately addressed in recent years. 

 

Sambangi & Gondi (2020) stated that the issue of the DDoS attack might be considered 

as a classification problem in machine learning. Specifically, when it comes to cloud 

computing, the main challenge that security analysts might consider is whether the attack 

is present or not, due to the computational complexity. 

 

Mihoub et al. (2017) underscored that nowadays, various systems—specifically IoT 

systems, which stand for Internet of Things systems—are considered one of the most 

frequent victims of DDoS attacks. In their study, they focused on a main component 

called a multi-class classifier that adopts the "Looking-Back" approach. "Looking-Back" 

machine learning techniques are effective in several aspects such as enhancing detection 

accuracy, providing real-time responses, and enabling adaptive learning. 
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Khuphiran et al. (2018) highlighted that the use of DFF, a new learning algorithm that 

stands for Deep Feed Forward, achieves higher accuracy compared to the traditional 

SVM. With DFF, the accuracy reaches approximately 99.63%, whereas with SVM, it 

achieves 99.01%. This indicates that DFF is effective when accuracy is a major concern 

for security analysts. 

 

Sumathi et al. (2022) reported that there is a model called the Intrusion Detection System 

(IDS), which might be effectively utilized to detect DDoS attacks depending on different 

machine learning algorithms such as C4.5, SVM, and KNN classifiers, along with a 10-

fold cross-validation technique. Additionally, in their study, they used a 10-fold cross-

validation technique to select trend features and avoid obtaining biased outputs. 

 

Tayyab et al. (2020) noted that the primary difficulties encountered by ML-based IDS 

models in identifying ICMPv6-based attacks. Among these difficulties is a real-time 

performance bottleneck that affects real-time accuracy since it is hard to train models in 

offline situations and large-scale networks also have scaling challenges, where a 

cooperative approach based on ensemble learning is required to minimize false positives 

due to an increase in alarms. 

 

Zhai et al. (2018) highlighted that they utilized a framework called PCA-RNN, which 

stands for Principal Component Analysis-Recurrent Neural Network, to detect DDoS 

attacks. This indicates that when comparing PCA-RNN to other DDoS attack detection 

techniques currently in use, a significant increase in accuracy, sensitivity, precision, and 

F-score can be achieved. Additionally, another algorithm used is the PCA algorithm, 

which serves to reduce the dimensions of features, thereby decreasing the complexity of 

detection time. The PCA algorithm is considered a preprocessing step to enhance the 

performance of the machine learning model. 
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Hou et al. (2018) emphasize that the combination of utilizing machine learning and 

adaptive feature extraction from NetFlow data is effective for detecting DDoS attacks. 

For example, when used with real-world NetFlow records obtained from a major Internet 

Service Provider (ISP), the system accurately assessed DDoS attacks, providing valuable 

information about the frequency, magnitude, and specific services targeted by the attacks. 

This underscores the importance of using NetFlow analysis, as it helps to extract flow-

based features such as the number of packets, bytes, and duration of flows, and also helps 

to extract pattern-based features that capture the behavior of traffic. 

 

Wang et al. (2020) asserted that Distributed Denial of Service (DDoS) attacks continue to 

be a major obstacle in the field of network security. While there have been advancements 

in machine learning-based methods for detection, the crucial task of choosing the most 

efficient features still remains. Wang observes that current techniques often depend on 

manually selected characteristics, which may not adequately represent the dynamic 

nature of network traffic. Wang proposes a resolution to this problem by integrating 

multilayer perceptrons (MLP) with sequential feature selection. This methodology 

employs a dynamic method to identify the most significant characteristics throughout the 

training phase and integrates a feedback system to adjust the detector based on detection 

mistakes. 

 

Lee et al. (2008) discovered that proactive techniques for detecting DDoS attacks 

emphasize the need to comprehend the attack's lifecycle. It identifies key characteristics 

that indicate an incoming attack by evaluating the choices of handlers and agents, 

communication patterns, and attack patterns. By using cluster analysis, this technique 

efficiently divides each stage of the attack scenario, allowing for the identification of 

early indicators prior to the occurrence of the attack. 

 

 Ye et al. (2018) investigates the detection of Distributed Denial of Service (DDoS) 

attacks specifically in the framework of software-defined networking (SDN). Although 

prior studies have investigated the use of deep learning algorithms to simulate attack 

behavior, the actual implementation of these methods is still difficult. Ye develops a 
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robust DDoS attack model by combining SVM classification methods and extracting 6-

tuple characteristic variables from switch flow tables. The experimental results provide 

encouraging average accuracy rates, highlighting the potential significance of this method 

for identifying attacks using DDoS in SDN systems. 

 

Zekri et al. (2017) reported on the creation and validation of a machine learning-based 

DDoS detection system. The system employs the C4.5 decision tree method and signature 

detection to identify attacks using DDoS in cloud computing environments both precisely 

and effectively. The C4.5 algorithm was evaluated against other machine learning 

methods and demonstrated superior accuracy and detection times. 

 

Wankhede & Kshirsagar (2022) aimed to determine if another machine learning 

algorithm, the Multi-Layer Perceptron (MLP), could be utilized. In their study, they 

applied two different algorithms: Random Forest and Multi-Layer Perceptron. It was 

found that Random Forest is more effective than MLP for detection, achieving higher 

accuracy. 

 

Saghezchi et al. (2022) observed in their research that there are various challenges in 

detecting DDoS attacks in industrial CPPSs, which stands for Cyber-Physical Production 

Systems, when utilizing machine learning techniques. These challenges include: the 

network traffic data in industrial contexts exhibits a high level of variety and complexity. 

The research highlighted the challenge of accurately representing such data because of 

the variety of traffic patterns, which may impact the effectiveness of machine learning 

models.  

 

Patel et al. (2024) reported the integration of machine learning techniques into advanced 

firewalls to improve the identification of attacks using DDoS. The researchers discussed 

the use of several machine learning methods, such as binary decision trees, XGBoost, and 

the Support Vector Machines (SVM). These algorithms have a significant impact on the 

functionality of next-generation firewalls. They aid in the identification of traffic patterns 

by examining traffic volumes, frequency, distribution, and packet headers. In addition, 
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they enhance real-time processing and decision-making by evaluating traffic data in real-

time, allowing for rapid decisions on traffic characteristics. 

 

 

Santos et al. (2019) observed in their research that detecting DDoS attacks in an SDN 

environment might be difficult due to the three different types of attacks: controller 

attacks, flow-table attacks, and bandwidth attacks. Therefore, it is important to 

understand the pattern to detect in each attack. 
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2.2 Key Takeaways 
 

• Multiple machine learning algorithms have been explored for DDoS attack 

detection, including Support Vector Machines (SVM), Naive Bayes, Decision 

Trees, K-Nearest Neighbors (KNN), Fuzzy c-means clustering, Random Forest, 

and deep learning methods like Multi-Layer Perceptrons (MLP) and Deep Feed 

Forward networks. Each has its strengths and weaknesses in terms of accuracy, 

speed, and handling different types of attack patterns. 

 

• Efficient feature selection is vital for improving model performance. Methods 

such as chi-square, information gain, and hybrid algorithms have been used to 

determine the most significant characteristics for identifying DDoS assaults. 

Effective feature selection reduces complexity and enhances the speed and 

accuracy of detection. 

 

• Continuous updates and learning from fresh data are necessary to react to the 

dynamic nature of DDoS assaults. Several researches have investigated the use of 

semi-supervised learning and adaptive algorithms to effectively respond to 

constantly changing assault techniques. 

 

• Obstacles like as the need for substantial computing resources, the necessity for a 

large amount of training data, and the potential vulnerability to adversarial attacks 

pose major challenges. In order to enhance the practicality of using these 

technologies, it is essential to tackle these difficulties.
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Chapter 3: Project Description                    
 

Multiple stages may be used to provide a detailed project description for this project 

focused on establishing a machine learning-based system for detecting and mitigating 

DDoS attacks. It offers a comprehensive overview of the many phases of the project, 

starting with the gathering of data to the implementation of the model. It provides a well -

defined plan of the activities that need to be completed, covering fundamental elements 

such as data preparation, exploratory data analysis, feature engineering, model training, 

evaluation, hyperparameter tuning, and model selection, all of which are vital for the 

effective execution of this project. 

3.1 Data Collection 
 

Employ a Kaggle resource to acquire data that includes diverse properties like packet 

counts, byte counts, duration, flow characteristics, and protocol information. The dataset 

should additionally include a target variable that indicates whether the traffic is classed as 

Attacks or Normal.  

3.2  Data Preprocessing 
 

Conduct data cleaning and preprocessing to remove any irrelevant or unwanted data, 

address any missing values, convert the data types of the features, and manage any 

outliers in the data. 

3.3 EDA (Exploratory Data Analysis) 
 

Conduct a thorough analysis of the dataset using both univariate and bivariate analytical 

methods to uncover underlying patterns and features that indicate DDoS assaults.  
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3.4. Feature Engineering 
 

Identify and extract relevant features from the dataset to accurately represent the unique 

characteristics of both normal and malicious network traffic.  

3.5 Model Training:  
 

Employ the preprocessed dataset to train machine learning models such Random Forest, 

K-Nearest Neighbors (KNN), Support Vector Machine (SVM), XG-Boost, and Logistic 

Regression.  

 

3.6  Model Evaluation 

Evaluate the performance of each model by quantifying criteria like as accuracy, 

precision, recall, and F1-score.  

 

3.7  Hyperparameter Tuning:  

Enhance the performance of the models by adjusting the hyperparameters using 

techniques like grid search cross-validation.  

 

3.8 Model Selection 

Select the most efficient model according to assessment criteria and deploy it to detect 

and mitigate DDoS assaults. 
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Chapter 4 : Analysis     

4.1 Detailed description  
 

Sections on data preparation, exploratory data analysis, feature engineering, model 

training, assessment, hyperparameter tuning, and model selection will cover each project 

stage. 

 

4.2 Data Loading and Exploration 
 

The dataset entitled 'dataset sdn.csv' was imported into the Python environment using the 

Pandas package during this step. An examination was conducted to get a deeper 

understanding of the structure and characteristics of the dataset, which would aid in doing 

additional analysis. The dataset was imported into a Pandas DataFrame called 'data' using 

the pd.read_csv() method.  

 

This method processes the CSV file and generates a DataFrame that encapsulates the 

dataset. Upon importing the dataset, a first examination was performed to get insight into 

its structure and contents. The following actions were executed: 

4.3 Displaying the first few rows 
 

The initial rows of the dataset were presented using the head() function, which offered an 

overview of its structure and the contents of every column. 

 

4.4  Checking the dataset dimensions 
 

The DataFrame shape property determined the dataset's rows and columns, indicating its 

size. The original dataset shape was (104345,23), where 23 represents the number of 

columns or and 104345 represents the records. 
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4.5 Inspecting column information 
 

For each dataset column, the info() method displayed its name, data type, and quantity of 

non-null entries. 

4.6 Distribution in Target Class 
 

The 'label' column was subjected to the unique() method to identify the distinct classes 

found in the dataset. The 'label' column in this example consists of two distinct classes: 0 

(Benign) and 1 (Malicious). The counts() method was employed to determine the 

frequency of every class in the 'label' column, offering an understanding of the 

distribution of classes. 

4.7 Summary statistics 
 

For numerical columns in the dataset, the describe method generated summary statistics 

like mean, median, minimum, maximum, and quartiles. The statistical overview of 

numerical columns is shown in Figure 4.1. 

4.8 Identification of Numeric and Object Columns 
 

In order to get started with the analysis, the dataset was partitioned into two distinct 

segments based on the data types: numeric and object. The `select_dtypes()` method was 

utilized to specifically identify columns with certain data types. The columns that 

included numbers were designated for numerical analysis, while the columns that 

contained objects were designated for either categorical or textual analysis. The outcomes 

of this phase provided significant insight into the structure, content, and attributes of the 

dataset. 

 

4.9  Exploratory Data Analysis (EDA) through Univari- ate Analysis 
 

The dataset entitled 'dataset sdn.csv' was imported into the Python environment using the 

Pandas package during this step. An examination was conducted to get a deeper 
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understanding of the structure and characteristics of the dataset, which would aid in doing 

additional analysis. The dataset was imported into a Pandas DataFrame called 'data' using 

the pd.read_csv() method.  

 

This method processes the CSV file and generates a DataFrame that encapsulates the 

dataset. Upon importing the dataset, a first examination was performed to get insight into 

its structure and contents. The following actions were executed: 

 

 

 

 

 

 

 

 

 

Figure 4. 1: Summary Statistics of Data 

 

Univariate Analysis 
 

Univariate analysis entails scrutinizing individual variables within the dataset to 

comprehend multiple aspects, such as their characteristics, outliers, and distribution. 

 

1- Histogram for Numerical Columns 
 

A visual depiction of the dataset's numerical variable distribution is provided by 

histograms. To comprehend the frequency distribution of every numerical column and 

spot trends or abnormalities, histograms were created for each of them in this study 
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Figure 4. 2: Histogram of packet count 

 

• The histogram shown in Figure 4.2 demonstrates that most observations in 

'pktcount' have a comparatively small number of packets, with a prominent peak 

appearing at the lower end of the value range. 

 

• In certain cases, there are fewer packets; however, these packets exhibit much 

larger counts. This indicates the presence of likely outliers or unexpected trends. 

 

 

 

 

 

 



21 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 3: Histogram of Bytes count 

 

 

• A right-skewed distribution is shown by the histogram of "bytecount" in figure 

4.3, where the bulk of observations have smaller byte counts. 

 

• A long tail towards higher byte counts might be an indication of outliers or 

anomalies in the data, since it implies the existence of a small number of cases 

with noticeably higher byte counts. 
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Figure 4. 4: Histogram of duration 

• The histogram in Figure 4.4 displays the distribution of the variable 'dur' 

(duration). It shows a fairly even distribution, with data spread throughout a broad 

range of duration values. 

 

• There is no obvious peak or skewness in the distribution, suggesting an even 

distribution of duration values throughout the sample. 
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Figure 4. 5: Histogram of Total duration 

 

• The histogram of 'tot dur' in figure 4.5, which represents the total duration, shows 

a distribution that is comparable to 'dur'. The observations are uniformly spread 

over the range of total duration values. 

 

• Similar to the term 'dur', the distribution of total duration values does not exhibit a 

clear peak or skewness, indicating a balanced distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 6: Histogram of flows 

 

• The histogram in the following figure 4.6 displays a distribution that is tilted to 

the right, with most observations having lower flow counts. 
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• Some occurrences had greater flow counts, indicating possible deviations or 

abnormalities in the data distribution. 

 

Analysis: 
 

The distribution and characteristics of the numerical variables in the dataset are very 

well-represented by histograms. It is crucial to comprehend the distribution of variables 

like "pktcount," "bytecount," "dur," and "flows" in order to spot patterns, outliers, or 

anomalies that might affect further modeling. 

 

2- Bar Plot for Categorical Columns 
 

For the purpose of visualizing the frequency distribution of categorical variables, bar 

plots are deployed. For the purpose of this research, bar plots were created for every 

category column in order to get an understanding of the distribution of categories and to 

determine which categories were dominant or common within every column. 

 

 

 

 

 

 

 

 

Figure 4. 7: Bar plot of Switch 

 

• Figure 4.7 shows a balanced distribution of'switch' across categories (4 and 3), 

indicating a similar representation of switch status in the dataset. The dataset 
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exhibits a minimal occurrence of switch categories 9 and 10. The remaining 

switches exhibit a moderate level of data range. 

 

 

 

 

 

 

 

 

Figure 4. 8: Bar plot of Source IP 

 

• The bar plot of the variable 'src' displays the distribution of source addresses in 

the dataset. 

 

• There are several source addresses in the dataset, with just one IP address 

accounting for a large number of observations 
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Figure 4. 9: Bar plot of Destination IP 

 

• In Figure 4.9, the bar plot of 'dst' displays the frequency distribution of destination 

addresses in the dataset. 

 

• The dataset displays a wide variety of destination dresses, much as the'src' 

column, with only the address shown in the plot dominating the distribution.  

 

-  

 

 

 

 

 

 

Figure 4. 10: Bar plot of Protocol 

 

• A better understanding of the distribution of network protocols within the dataset 

may be gained from the bar plot of 'Protocol' that is shown in figure 4.10. 

 

 

• The Transmission Control Protocol (TCP) is the protocol that is used the least, 

then the User Datagram Protocol (UDP) and the Internet Control Message 

Protocol (ICMP), which shows that these protocols are the most prevalent in 

network communication that is captured by the dataset. 
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Figure 4. 11: Bar plot of Label 

 

• The distribution of labels (0 and 1) that reflect benign and malicious occurrences, 

respectively, is shown in figure 4.11 

 

• Given that the number of benign examples (label 0) is greater than the number of 

malicious instances (label 1), it is evident that the target class in the dataset is 

distributed in an imbalanced manner. When it comes to the performance of 

classification models that have been trained on this dataset, this will have a 

significant influence. 

 

3- Box Plot for Identifying Outliers 
 

Visualizing numerical data using box plots helps spot outliers. Box plots were created for 

every numerical column to detect outliers and extreme values. 
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Figure 4. 12: Box plot of Packet Count 

 

• The distribution of packet counts throughout the dataset is shown in figure 3.12 

by the box plot of the 'pktcount' variable. 

 

• The box plot identifies outliers as data points outside the whiskers. 

 

• This dataset contains outliers with abnormally high packet counts relative to the 

bulk of observations.  
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Figure 4. 13: Box plot of Byte Count 

 

• Figure 4.13 'bytecount' box plot shows the dataset's byte counts. No outliers 

beyond the whisker indicate uncommon values. 

 

 

 

 

 

 

 

 

 

Figure 4. 14: Box plot of Duration 

 

• Figure 4.14's "box plot" of "dur" (duration) shows how the durations are spread 

out across the data set. 

 

• The box plot illustrates that the duration values are mostly spread out evenly, with 

only a few outliers being found. 

 

 

• Outliers in "dur" are observations with lengths that are longer than the overall 

amount of data. 
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Figure 4. 15: Box plot of Total Duration 

 

• The box plot of 'tot dur' (total duration) that can be seen in figure 4.15 provides an 

illustration of the distribution of total durations that are included within the dataset. 

 

• Comparable to the 'dur' , the box plot exhibits a distribution of total duration values 

that is largely stable, with the exception of a few outliers that are identified. 
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Figure 4. 16: Box plot of Flows 

 

• The distribution of flow counts throughout the dataset is shown in figure 3.16 by 

means of a box plot of the 'flows' variable. 

 

• It is clear from the box plot that there are outliers that extend beyond the whiskers, 

which indicates there are cases with very high flow counts. 

 

• One possible interpretation of these outliers is that they are unusual variations in flow 

counts in comparison to the bulk of data.  

 

 

 

 

 

 

 

 

Figure 4. 17: Box plot of packet-In 

 

• The distribution of packet insertions throughout the dataset is shown by the box plot 

of "packetins" in figure 4.17. 

 

• The box plot displays outliers outside of the whiskers, which are indicative of 

excessive packet insertion counts, much as other features. 
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Figure 4. 18: Box plot of Packet Per Flow 

 

• Figure 4.18's "pktperflow" box plot shows the distribution of packet per flow 

counts throughout the dataset. 

 

• The box plot displays outliers that extend over the whiskers, indicating instances 

of very low packet counts each flow. 

 

• Outliers in the "pktperflow" column indicate occurrences when the packet-per-

flow rate is unusual in relation to the bulk of observations.  
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Figure 4. 19: Box plot of Byte Per Flow 

 

• The box plot in Figure 4.19 depicts the distribution of byte per flow counts in 

the dataset. 

 

• The box plot displays outliers beyond the whiskers, showing occurrences with 

very low byte per flow counts, much like other features. 

 

• Outliers in the 'byteperflow' variable indicate occurrences that have 

significantly lower byte per flow rates relative to the majority of the dataset.  
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Figure 4. 20: Box plot of Packet Rate 

 

• The box plot in figure 4.20 shows the distribution of packet rates in the 

dataset. 

 

• The box plot displays outliers that are located outside the whiskers, showing 

instances with very low packet rates. 

 

• Outliers in the 'pktrate' variable indicate cases with packet transmission rates 

that are significantly different from the bulk of data.  

 

Analysis: 

 

Box plots provide useful insights into the distribution of numerical features and aid in 

determining the presence of outliers or excessive values in the dataset. Outliers in 

features like 'pktcount', 'bytecount', 'flows', 'packetins', 'pk-tperflow', 'byteperflow', and 

'pktrate' may suggest instances with aberrant behavior or characteristics. 
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4- Kernel Density Estimate (KDE) Plot 

 

Kernel Density Estimate (KDE) plots assess a continuous random variable's probability 

density function easily. This research used KDE plots for every numerical column to 

examine data distribution and discover patterns or structures. 

 

 

 

 

 

 

 

 

 

 

Figure 4. 21: Density Estimation of Packet Count 

 

• The KDE plot of the variable 'pktcount' displays the distribution of packet counts 

throughout the dataset. 

 

• The figure exhibits a maximum point in the lower range of values, suggesting a 

greater concentration of observations with lower packet counts. 

 

• As the number of packets increases, the distribution slowly declines, indicating a 

lower density of observations. 
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Figure 4. 22: Density Estimation of Byte Count 

 

• The KDE plot of the variable 'bytecount' displays the distribution of byte counts in 

the dataset. 

 

• As with 'pktcount', the figure peaks at lower byte counts, suggesting a larger density 

of observations with lesser transmission. 

 

• The density falls steadily as the number of bytes increases, indicating a decline in the 

frequency of observations with larger byte transmission.  

 

 

 

 

 

 

 

 

 

Figure 4. 23:Density Estimation of Duration 
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• An illustration of the distribution of durations throughout the dataset is shown by the 

KDE plot of the variable 'dur' (duration). 

 

• The graph shows that the duration values are distributed in a smooth manner, with the 

exception of a few apparent peaks on the lowest points. 

 

• This distribution indicates that the durations within the dataset are distributed in a 

manner that is rather uniform, and there are no noticeable patterns or structures that 

the dataset contains. 

 

 

 

 

 

 

 

Figure 4. 24: Density Estimation of Total Duration 

 

• A representation of the distribution of total durations within the dataset is shown by 

the KDE plot of "tot dur," which stands for "total duration. 

 

• The plot displays a smooth distribution of total duration values, with clear peaks and 

valleys, much as the 'dur'  

 

• The data set does not exhibit any noteworthy patterns or structures, and its 

distribution suggests that the total ratio values are distributed in a manner that is 

reasonably equal over the whole dataset.  
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Figure 4. 25: Density Estimation of Flows 

 

• The KDE plot of 'flows' provides a representation of the distribution of flow counts 

throughout the dataset. 

 

• A peak may be seen in the plot around flow counts that are lower, which indicates 

that there is a larger density of observations with flow rates that are lower. 

 

• The frequency distribution steadily drops as flow counts increase, which suggests that 

there is a reduction in the frequency of observations with increasing flow rates.  
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Figure 4. 26: Density Estimation of Packet In’s 

 

 

 

• The KDE plot of 'packetins' displays the distribution of packet insertions in the 

dataset. 

 

• A peak in the graphic indicates a larger density of observations with lower packet 

insertion rates, like other features. 

 

• As packet insertion rates rise, the density falls, indicating a reduction in observation 

frequency.  

 

 

 

 

 

 

 

 

 

 
 

Figure 4. 27: Density Estimation of Packet Per Flow 

 

• The KDE plot of 'pktperflow' displays the distribution of packet counts 

throughout the dataset. 

 

• The figure shows a peak at higher packet per flow rates, indicating a larger 

density of observations with higher counts. 

 



40 

 

• As packet per flow rates rise, density declines, indicating fewer observations with 

greater counts. 

 

 

 

 

 

 

 

Figure 4. 28: Density Estimation of Byte Per Flow 

 

• This KDE plot displays the distribution of byte per flow counts in the dataset. 

 

• The figure shows a peak at higher byte per flow rates, suggesting a larger density 

of observations with higher counts. 

 

• As byte per flow rates rise, density declines, suggesting fewer observations with 

greater counts.  
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Figure 4. 29: Density Estimation of Packet Rate 

 

• The KDE plot of 'pktrate' shows the distribution of packet rates in the dataset. 

 

• The figure shows a peak at lower packet transmission rates, supporting a larger 

observation density. 

 

 

• As packet rates rise, density falls, indicating fewer observations at greater rates.  

 

Analysis: 

Kernel Density Estimate (KDE) plots visualize numerical feature distributions by 

predicting their probability density functions easily. KDE plot patterns and structures 

reveal dataset characteristics and help explain feature data distribution. 
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5- Pie Chart for Exploring the Distribution of Categorical Variables 
 

Pie charts are used to represent the distribution of categorical information in a visual 

manner. To get insight into the distribution of protocols in the dataset, we generate a pie 

chart just for the 'Protocol' column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 30: Protocol Distribution in Dataset 

 

Observations: 

• The pie chart in figure 4.30 shows the distribution of protocols within the dataset. 

It demonstrates the proportion for every protocol type, with ICMP having the 

greatest percentage, accounting for almost 40%. 
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• This graphic facilitates comprehension of the comparative occurrence of every 

protocol in the dataset. 

 

• The pie graphic indicates that TCP is the least common protocol, representing 

about 28% of the sample. 

4.10 Exploratory Data Analysis (EDA) through Bi-variate Analysis 
 

Bivariate analysis examines the relationships between two variables in a dataset, 

providing insights into how these variables affect or interact with one another. This 

analysis is essential for analyzing the hidden patterns and connections in the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 31: Correlation heatmap of numerical columns 

 

• Figure 4.31 correlation heatmap detailed the dataset's numerical column 

associations. The correlation coefficient between two numerical variables is 
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shown in each heatmap cell. A correlation coefficient around 1 shows a 

significant positive connection, meaning one variable rises as the other rises. A 

correlation value around -1 suggests a high negative connection, indicating that 

one variable grows as the other decreases.  

 

Pairplot for Selected Numerical Columns 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: Pairplot of selected numerical columns 

 

 

Figure 4. 32: Pairplot of selected numerical columns 

 

• "pktcount," "bytecount," "dur," and "tot dur" are the four numerical columns that 

are shown in Figure 4.32's pairplot, which provides a visual representation of the 

relationships that exist between the chosen pairings of these columns. Every 

scatterplot in the pairplot illustrates the correlation between two quantitative 

variables, with one variable shown on the x-axis and another displayed on the y-

axis. 
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• The connection between two numerical variables is represented by each 

scatterplot in the pairplot. One of the variables is drawn on the x-axis, while 

another variable is displayed on the y-axis. In addition to this, the diagonal panels 

provide the distribution of each individual numerical column, which offers 

insights into the distributions of the columns themselves as well as probable 

outliers.  

 

4.11 Data Pre-Processing 
 

 

 

 

 

 

 

 

 

Figure 4. 33: Features with Null Values 
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Figure 4. 34: Number of Requests from All IP Addresses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 35:  Number of Attack Requests 

 

 

Figure 4. 36: Comparison of Requests between All and Malicious IP Addresses 
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In the process of data analysis and modeling, the pre-processing of data is an essential 

phase, Before anything else, it is essential to fix any missing values. It is possible to get 

insight into the level of missingness throughout several columns via the visualization of 

features that have null values for themselves. 

 

 

On display in Figure 4.33 is a bar plot that illustrates the features that include null values. 

In addition, we use the isnull().sum() function to determine the precise number of null 

values that are present for every column. The missing values in certain columns, such as 

"rx kbps" and "tot kbps," are then imputed by replacing them with the mean values of the 

respective columns. This process is repeated until all of the data columns are 

complete.Following this, the distribution of IP addresses within the dataset is analyzed, 

with a particular emphasis placed on the number of requests that originate from certain IP 

addresses. Visualization is a useful tool for determining whether or not there are any 

patterns or irregularities in the distribution of network traffic. The purpose of this 

comparison is to identify any substantial differences that may exist between the request 

frequencies of all IP addresses and those that are related with suspicious behavior inside 

network. 

 

The number of requests coming from all IP addresses is shown in Figure 4.34, whereas 

the number of requests coming solely from IP addresses linked with malicious behavior 

is shown in Figure 4.35. By doing an analysis of these visualizations, we are able to 

recognize any trends or irregularities in the distribution of requests 

 

The comparison of request frequencies between all IP addresses and those associated 

with malicious activity is shown in a thorough manner in Figure 4.36. 

4.12  Feature Engineering and Selection 
 

Feature engineering and selection are crucial data preparation steps for enhancing 

machine learning models. These techniques refine and curate the data set in order to 

choose its most relevant attributes for model training. 
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4.12.1   Data Splitting 

 

The first stage involves dividing the dataset into separate components: the feature 

matrix X and the target variable y. The target variable, often referred to as 'label', 

is the key element in classification tasks, indicating whether a network activity is 

harmless or harmful. Simultaneously, columns that are considered useless for the 

modeling process, such as 'rx kbps', 'tot kbps', and 'dt', are excluded from the 

feature set. 

 

Subsequently, categorical variables are subjected to ordinal encoding to convert 

them into a numerical representation that is suitable for machine learning 

techniques. Afterwards, the data is divided into training and testing sets using 

stratified splitting, with a ratio of 75-25. This division allows for the training of 

the model using the provided training data and the subsequent assessment of its 

performance on new, unseen test data. 

 

4.12.2   ML Model Training 

 

Machine learning models are used to categorize network activity as either benign 

or malicious, depending on the collected attributes. We use four distinct models 

for training: Random Forest, K-Nearest Neighbors (KNN), XGBoost, and 

Logistic Regression. Every model has specific features that make it appropriate 

for this particular challenge. 

 

4.12.3   Random Forest 

 

Random Forest is a type of ensemble learning that uses more than one decision 

tree to generate predictions. It doesn't get too good at fitting data and works well 

with data that has a lot of dimensions. Random Forest can be used in this case 

because it can handle a lot of features and figure out complicated relationships 

between those features and the goal variable.  
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Hyperparameters:  

n _estimators stands for the number of trees in the forest. Higher numbers can 

make things work better, but they may also make training take longer.  

 

4.12.4   K-Nearest Neighbors (KNN) 

 

The K-Nearest Neighbors (KNN) algorithm is a straightforward and intuitive 

classification method. It operates by identifying the k closest data points in the 

training set and categorizing the test data according to the most common class 

among its neighboring points. The KNN algorithm is appropriate for our situation 

due to its ability to handle non-linear decision boundaries and its lack of 

assumptions about the underlying distribution of the data. 

 

Hyperparameters:  

n_neighbors: The number of neighbors to consider. Increasing this value may 

enhance robustness, but it can also lead to excessive smoothness. We use a value 

of k equal to 3 for our dataset and issue classification. 

 

4.12.5  XGBoost 

 

XGBoost is a very efficient and scalable implementation of gradient boosting 

machines. The algorithm operates by iteratively incorporating decision trees to 

reduce the loss function. XGBoost is an ideal choice for this challenge because to 

its ability to effectively manage enormous datasets and provide accurate 

predictions. 

 

Hyperparameters:  

Different hyperparameters, including learning rate, maximum tree depth, and 

regularization parameters, were adjusted to enhance performance.  

 

 

4.12.6  Logistic Regression 
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Logistic Regression is a linear classification approach that estimates the 

likelihood of a binary outcome. Due to its computing efficiency and 

interpretability, this method is well-suited for situations involving huge datasets.  

 

Hyperparameters:  

The regularization parameter, C, was changed to mitigate overfitting.  

 

 

 

4.12.7  Model  Evaluation 

 

We assess the efficacy of each machine learning model by using diverse criteria, 

such as accuracy. 

 

 

 
Model Accuracy 

Random Forest 0.998 
KNN 0.963 

XGBoost 1.000 
Logistic Regression 0.850 

 

               Table 4. 1: Model Evaluation Result  

 

The results shown in table 4.1 demonstrate that the Random Forest and XGBoost 

models attained the maximum level of accuracy, with scores of 0.998 and 1.000, 

respectively. These models exhibit exceptional performance in categorizing 

network activity as either benign or malicious. The KNN model demonstrated 

strong performance, with an accuracy rate of 0.963. Nevertheless, Logistic 

Regression demonstrated worse accuracy in comparison to the other models, 

attaining a score of 0.850. 

 

In summary, the findings suggest that the Random Forest, XGBoost, and KNN 

models are very effective in identifying malicious network behaviors in this 
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dataset. Our technique involves a thorough approach to addressing the 

complexities of network intrusion detection. We start by doing data preparation, 

where we carefully address any missing values and encode categorical variables 

to ensure that the dataset is prepared for modeling. Feature engineering and 

selection are crucial processes in which we carefully choose essential features 

and divide the data into training and testing sets for future model training and 

assessment. By using a diverse range of machine learning methods such as 

Random Forest, KNN, XGBoost, and Logistic Regression, we develop powerful 

models that can accurately differentiate between harmless and harmful network 

behavior.  

 

In the next part, we will examine the findings generated from our trained models 

and conduct a thorough comparative study. Through careful examination of 

diverse performance indicators such as accuracy, precision, recall, and F1-score, 

our objective is to acquire profound understanding of the efficacy of each 

algorithm and choose the most appropriate technique for network intrusion 

detection. This thorough assessment will provide useful insights into the merits 

and limitations of each model, informing future efforts to improve the security 

and resilience of network systems.  
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Chapter 5 : Results  
 

The following classification reports give a comprehensive examination of the 

performance of each machine learning model in categorizing network activity as either 

benign (0) or malicious (1). 

 

 
5.1  Random Forest Classification Report 
 

 

 Precision Recall F1-score Support 

Benign (0) 1.00 1.00 1.00 15807 

Malicious (1) 1.00 1.00 1.00 10280 

 
Table 5. 1: Random Forest Classification Report 

 

Precision, recall, and F1-score of 1.00 for both classes were excellent for the Random 

Forest model. This shows that the model categorized all benign and malicious network 

events. The Random Forest model's accuracy was 1.00, proving its ability to discriminate 

the two groups.  

 
5.2  KNN Classification Report 

 
 Precision Recall F1-score Support 

Benign (0) 0.97 0.97 0.97 15807 
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Malicious (1) 0.95 0.95 0.95 10280 

 

Table 5. 2: KNN Classification Report 

 

The KNN model performed well, with accuracy, recall, and F1-scores of 0.97, 0.97, and 

0.97 for benign and 0.95, 0.95, and 0.95 for malicious. A 0.96 accuracy rate indicates 

good KNN model effectiveness in categorizing network activity.  

 

 

 
 
5.3  XGBoost Classification Report 

 

 

 Precision Recall F1-score Support 

Benign (0) 1.00 1.00 1.00 15807 

Malicious (1) 1.00 1.00 1.00 10280 

 
Table 5. 3: XGBoost Classification Report 

 

Like the Random Forest model, the XGBoost model has flawless precision, recall, and 

F1-score of 1.00 for both classes. This shows that the XGBoost model correctly identified 

all benign and malicious internet activity. The XGBoost model detected malicious 

activity with 1.00 accuracy.  

 
 

5.4  Logistic Regression Classification Report 

 
 Precision Recall F1-score Support 

Benign (0) 0.86 0.90 0.88 15807 

Malicious (1) 0.84 0.77 0.80 10280 

 
Table 5. 4: Logistic Regression Classification Report 
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Logistic Regression performed somewhat worse than Random Forest and XGBoost. The 

benign class had 0.86, 0.90, and 0.88 precision, recall, and F1-score, whereas the 

malicious class had 0.84, 0.77, and 0.80. The Logistic Regression model classified 

network activity moderately with an accuracy of 0.85.  

 

After analyzing the outcomes derived from our trained models, it is clear that each 

approach has unique advantages and disadvantages when used to network intrusion 

detection. The Random Forest model exhibits outstanding accuracy, precision, and recall, 

reaching classification performance that is close to flawless.  

 

 

The KNN model, albeit less accurate than Random Forest, nonetheless demonstrates 

commendable performance across all measures. The simplicity and convenience of 

implementation of this option make it suitable for contexts that have low processing 

resources. However, the XGBoost model is notable for its exceptional accuracy and 

adaptability, demonstrating perfect classification performance in all areas. The software's 

capacity to manage intricate information and adjust to shifting circumstances makes it 

highly suitable for dynamic network environments with developing threat landscapes. 

However, the Logistic Regression model, while providing satisfactory performance, is 

not as accurate or effective as its rivals in terms of accuracy and recall. However, its 

simplicity and ability to be understood make it a desirable option for situations where the 

transparency and ease of understanding of the model are of utmost importance. 

 

It can be inferred that each model offers distinct benefits, addressing various needs and 

limitations in network intrusion detection. Organizations may make educated decisions 

on the most suitable model for enhancing network security by carefully considering the 

trade-offs between accuracy, complexity, and interpretability, and how they fit with their 

unique goals and objectives.  
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Chapter 6 : Conclusions & Recommendations 

 
6.1 Conclusions 

 

The objective of this study was to create and assess machine learning models that can 

identify network intrusions. This was done by using a varied dataset that includes 

information on network traffic and activity. By following a methodical procedure that 

includes data preparation, feature engineering, model training, and assessment, we have 

effectively built many classification models, such as Random Forest, KNN, XGBoost, 

and Logistic Regression. 

 

The assessment of these models demonstrated significant levels of accuracy, precision, 

and recall, especially when using the Random Forest and XGBoost methods. The results 

emphasize the effectiveness of ensemble learning methods and gradient boosting 

algorithms in distinguishing between harmless and harmful network traffic, thereby 

improving cybersecurity defenses.  

 

Professionals in the field of cybersecurity may use the knowledge acquired from this 

study to improve their defensive strategies by integrating machine learning-powered 

intrusion detection systems into their current infrastructure. The interpretability of certain 

models, such as Logistic Regression, provides valuable understanding of the underlying 

elements that contribute to network intrusions. This understanding allows firms to build 

focused countermeasures and tactics to mitigate risks. 
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6.2 Recommendations and Future Work 
 

Despite the encouraging outcomes of our research, it is crucial to acknowledge several 

limitations that may limit the generalizability of our conclusions. These include the 

possibility of overfitting with complicated models, biases present in the dataset, and the 

dynamic nature of cyber threats that might change over time. In order to overcome these 

obstacles, future research should make use of more representative and varied datasets, 

sophisticated ensemble methodologies, and real-time monitoring to stay up to date with 

evolving threat environments. 
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