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Abstract

The rapid development of artificial intelligence (AI) in computer vision has garnered
considerable attention across diverse research fields (e.g., image classification [1,2], image
segmentation [3, 4], object detection [5, 6], optical flow [7–12], depth estimation [13, 14]).
However, this progress is met with an array of challenges that hinder them from real-
world deployments. In this paper, three major challenges are discussed: ❶ Low Task
Generalizability. Current visual models are often specifically designed for targeted tasks,
constraining their generalizability with varying adaptation scenarios; ❷ Weak Model Inter-
pretability. Within the paradigm of connectionism [15], most of these models are frequently
regarded as “black-box” systems, making them challenging for humans to understand and
control; ❸ High Computational Consumption. As the quest for superior performance per-
sists, there is a prevailing trend towards scaling up visual models, which consequentially
incurs significant computational costs. Human visual intelligence, on the other hand, pro-
vides natural solutions to these challenges. I thus seek to embody and mimic capabilities
with human visual intelligence. Consequently, three primary contributions are covered in
this paper in response to these challenges.

Universal Visual Learner. While current computer vision techniques provide spe-
cialized solutions for different vision tasks (e.g., optical flow, depth estimation), human
understands and explores the world by complex visual stimuli, unbound by task-specific
constraints. To bridge this gap, I propose the Prototypical Transformer (ProtoFormer), a
general and unified framework that addresses various motion tasks from a prototype-based
perspective. ProtoFormer seamlessly integrates prototype learning with the Transformer
architecture by thoughtfully incorporating motion dynamics through two innovative de-
signs. First, Cross-Attention Prototyping identifies prototypes based on distinct motion
patterns, enhancing transparency in the interpretation of motion scenes. Second, Latent
Synchronization steers feature representation learning via prototypes, effectively reducing
motion uncertainty.
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Interpretable Visual Intelligence. Due to the connectionism nature of the current
deep neural networks, how to explain the network behaviors becomes a critical topic. In
light of this view, I first introduce DNC (Deep Nearest Centroids)—a rejuvenation of the
classic Nearest Centroids classifier, envisioned for large-scale visual recognition. In contrast
to conventional deep models, which often overlook latent data structures, DNC employs a
non-parametric, case-based reasoning approach. By utilizing sub-centroids of training sam-
ples to represent class distributions, DNC classifies by measuring the proximity of test data
to these sub-centroids within the feature space. This distance-based approach provides un-
paralleled flexibility, allowing complete knowledge transfer across diverse recognition tasks.
Moreover, DNC’s inherent simplicity, combined with its intuitive decision-making process,
ensures explainability when sub-centroids are actual training images. Another promising
direction for interpretable visual intelligence is to provide explicit symbols at each pro-
gramming stage, enabling users to intuitively interpret and modify results. Recognizing
that current approaches in Image-to-Image translation [16–18] are generally unexplainable,
I propose a novel Diffusion Visual Programmer (DVP), a neuro-symbolic image translation
framework. The proposed DVP seamlessly integrates a condition-flexible diffusion model
within the GPT architecture, orchestrating a coherent sequence of visual programs (i.e.,
computer vision models) for various pro-symbolic tasks, such as RoI identification, style
transfer, and position manipulation. This integration facilitates transparent and control-
lable image translation processes. Several key features contribute to DVP’s success: First,
DVP achieves condition-flexible translation through instance normalization, which elimi-
nates sensitivity caused by manual guidance and allows the model to optimally focus on
textual descriptions for high-quality content generation. Second, the framework enhances
in-context reasoning by transforming complex high-dimensional concepts in feature spaces
into more accessible low-dimensional symbols (e.g., [Prompt], [RoI object]), enabling lo-
calized, context-free editing while maintaining overall coherence. Lastly, DVP improves
system controllability and explainability by providing explicit symbolic representations
at each programming stage, empowering users to intuitively interpret and modify results.
This research marks a significant advancement towards harmonizing artificial image trans-
lation processes with cognitive intelligence, promising broader applications.

Carbon-Efficient Visual Intelligence System. During my study, the heavy train-
ing burden appears with high frequency. When considering human visual intelligence
system, they can efficiently and effectively realize vision tasks with low energy cost, this
phenomenon inspires me to make investigation on parameter-efficient training to net-
works. Transformer-based models are nowadays trend in visual related tasks, however,
their size continue to grow, and fine-tuning these large-scale pretrained vision models for
new tasks has become increasingly parameter-intensive. While parameter-efficient learn-
ing emerges as a solution, it often lags behind full fine-tuning in performance. To address
this challenge, I study and introduce an Effective and Efficient Visual Prompt Tuning
(E2VPT) mechanism. E2VPT incorporates learnable key-value prompts, enhancing the
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model’s fine-tuning efficiency. Furthermore, a strategic prompt pruning approach main-
tains performance while significantly reducing parameters. Another promising avenue
toward carbon-efficient visual intelligence system is knowledge distillation. I focus on
studying the transformer-based architectures since they are the de-facto standard models
for diverse vision tasks owing to their superior performance. As the size of the models,
especially transformer-based models, continue to scale up, model distillation becomes ex-
tremely important in various real-world applications, particularly on devices limited by
computational resources (i.e., edge devices). However, prevailing knowledge distillation
methods exhibit diminished efficacy when confronted with a large capacity gap between the
teacher and the student, e.g., 10× compression rate. I thus present Automatic Multi-step
Distillation (AMD) for large-scale vision model compression. In particular, the distillation
process unfolds across multiple steps. Initially, the teacher undergoes distillation to form
an intermediate teacher-assistant model, which is subsequently distilled further to the
student. An efficient and effective optimization framework is introduced to automatically
identify the optimal teacher-assistant that leads to the maximal student performance.

To sum up, by drawing inspiration from the innate capabilities of human visual in-
telligence, this research underscores the necessity of fostering models that are not just
proficient but also versatile, interpretable, and parameter-efficient. My endeavors, rang-
ing from the development of universal visual learners to carving paths for carbon-efficient
AI systems, manifest my commitment to driving AI research that resonates with real-
world intricacies. It is my fervent hope that the foundations laid in this paper serve as a
prompting avenue to the AI community on continually striving for models that seamlessly
bridge the gap between machine efficiency and human intuitiveness.
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Chapter 1

Introduction

1.1 Universal Visual Learner

“All is flux, nothing is stationary.”
− Heraclitus [54]

The aphorism attributed to Heraclitus underscores the foundation of physics in the natural
world. Understanding motion has the potential to unveil the intricate secrets of intelli-
gence, shedding light on the systematic construction of artificial entities [55]. However,
the proliferation of excessively granular motion tasks has shifted the focus towards spe-
cialized models within deep learning. This shift contrasts sharply with the longstanding
scientific tradition of seeking general solutions to elegantly describe physical phenomena
in the universe. This raises the following question: ① Can we discover a unified model
that serves as a comprehensive motion learner?

Motion learning tasks fundamentally involve pixel-level dynamics and correspondences,
such as optical flow and depth scene estimation. A prevalent challenge is the presence of
photometric and geometric inconsistencies, such as shadows and occlusions, which intro-
duce significant uncertainty during the matching process [56,57]. Consequently, the accu-
racy of pixel-wise feature matching is compromised, detrimentally impacting the learning
of the underlying motion representation. A promising solution to this challenge is pro-
totype learning [58, 59], which categorizes motion measurements into discrete exemplars.
Within each exemplar, a prototype serves as a central archetype, encapsulating the essen-
tial attributes of its associated motion patterns observed in the data. Clustering similar
patterns around prototypes can effectively reduce the impact of noise and outlier pixels
in feature matching, thereby significantly mitigating uncertainty. In this context, we can
address question ① by asking: How can we design a model that incorporates the principles
of prototype learning in motion tasks?

17
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Depth

Flow

Figure 1.1: ProtoFormer as a unified framework considers motion as different levels
of dynamics granularity (e.g., instance-driven flow, pixel-anchored depth, etc.).
are prototypes.

Recently, the Transformer architecture has attained ubiquitous adoption, enjoying un-
ambiguous acclaim in both the domains of vision and language [60–62]. Its accomplish-
ments are underpinned by the attention mechanism, endowing models with the capabil-
ity to selectively attend to salient entities within input data. The capacity to generate
context-aware feature representations represents a substantial enhancement of the model’s
effectiveness, enabling it to apply as a general solution to diverse vision tasks. Inspired
by its encouraging success, our inquiry naturally delves into a more specific dimension: ③

How to incorporate the prototype learning capacity into the architecture of Transformer?
To this demand, we employ Prototypical TransFormer (ProtoFormer), a unified mo-

tion solution. Specifically, ProtoFormer incorporates prototype learning with Transformer.
The method first tokenizes images features into patches, where the features are initialized
into distinct prototypes. These prototypes are recursively updated via Cross-Attention
Prototyping (§3.1.1) to capture representative motion characteristics through clustering.
After assignments and updates, Latent Synchronization (§3.1.1) builds up prototype-
feature association, which helps denoise and mitigate motion ambiguity. The refined
features are finally fed into the decoder for task-specific predictions.

ProtoFormer exhibits several compelling attributes. ❶ Architectural elegance:
ProtoFormer leverages a prototype-guided Transformer architecture, allowing it to handle
heterogeneous motion tasks with different levels of dynamic granularity in a unified man-
ner (see Fig. 1.1). ❷ Predictive robustness: Prototype learning inherently diminishes
noisy outliers through its density criterion (§2.1.2). By anchoring on recursively refined
prototypes, feature learning is guided towards more robust representations (§3.1.1), thus
offering a viable solution to the challenge of motion ambiguity (see Fig. 4.1 and Fig. 4.2).
❸ Systemic explainability: The density-based nature of recursive prototyping provides
intuitive visual demonstrations of motion prototypes (see Fig. 4.3), enabling direct inter-
pretation of various dynamic patterns captured by the system.
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1.2 Interpretable Visual Intelligence

In §1.1, I investigate a unified approach for various visual comprehension tasks, under
the spirit of clustering. Its transparency is built upon the post-hoc explainability. While
various studies [63–66] have shown that such explanations might not be sufficient enough
for higher-level transparency, I thus study the possibility of ad-hoc explainability, integrat-
ing case based reasoning to network design in §1.2.1. Furthermore, I investigate another
promising path to network controllability and explainability in §1.2.2.

1.2.1 Towards Network Explainability

Deep learning models, ranging from convolutional networks (e.g., VGG [67], ResNet [68])
to Transformer-based architectures (e.g., Swin [49]), have significantly advanced the field
of visual recognition. With these advancements, parametric softmax classifiers, which
learn a set of class-specific parameters, i.e., weight vector, and bias term, have become
the de facto regime in the area (Fig. 1.2(b)). However, due to their parametric nature, these
classifiers encounter several limitations: First, they are non-tangible because their pa-
rameters are abstract and not inherently linked to the physical nature of the modeled
problem [69]. Thus, these classifiers pose challenges in providing explanations that can be
easily interpretable by humans [70]. Second, these linear classifiers primarily focus on op-
timizing classification accuracy, with less emphasis on capturing the latent data structure.
For each class, only one single weight vector is learned in a fully parametric manner, assuming
unimodality for each class [71, 72] and exhibiting less tolerance for intra-class variation.
Third, deep parametric classifiers, where each class has its own set of parameters, require
the output space to have a fixed dimensionality equal to the number of classes [73]. This
fixed output space restricts their transferability when trying to utilize ImageNet-trained
classifiers to initialize segmentation networks (i.e., pixel classifiers). Consequently, the
knowledge retained in the form of trainable parameters from the image classification task
must be discarded.

To address these limitations of parametric softmax classifiers, we introduce deep nearest
centroids (DNC), a powerful and nonparametric classification network (Fig. 1.2(d)). Near-
est Centroids, which has historical roots dating back to the dawn of artificial intelligence [74–
79], is arguably the simplest classifier. Nearest Centroids operates on an intuitive principle:
A test sample is directly classified to the class of training examples whose mean (centroid)
is closest to it. Apart from its internal transparency, Nearest Centroids is a classical form of
exemplar-based reasoning [70,76], which is fundamental to our most effective strategies for
tactical decision-making [80] (Fig. 1.2(c)). Numerous past studies [19, 20, 81] have shown
that humans learn to solve new problems by utilizing past solutions to similar problems.
Despite its conceptual simplicity and empirical support in cognitive sciences [82–84], the
utility of Nearest Centroids in large datasets with high-dimensional input spaces remains
largely unexplored or overlooked by the current community. Building upon the intuitive
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Figure 1.2: (a) Visual recognition setup. (b) Prevalent visual recognition models ,
built upon parametric softmax classifiers, suffering from few limitations, such as their
non-transparent decision-making process. (c) Humans can use past cases as models
when solving new problems [19, 20] (e.g., comparing with a few familiar/exemplar ani-
mals). (d) DNC makes classification based on the similarity of to class sub-centroids
(representative training examples) in the feature space. The class sub-centroids are vital for
capturing underlying data structure, enhancing interpretability, and boosting recognition.

strength of Nearest Centroids, the proposed DNC serves as a strong yet interpretable back-
bone for large-scale visual recognition. It fully addresses the aforementioned limitations
of parametric classifiers while demonstrating superior performance.

Specifically, DNC condenses each class into a collection of sub-centroids (sub-cluster
centers) by clustering the training data within the same class. Each test sample is then
assigned to the class with the nearest sub-centroid. DNC operates as an experience-
/distance-based classifier by relying solely on the proximity of test query to the local means
of training data (“quintessential” past observations) in the deep feature space. As such, DNC
learns visual recognition by directly optimizing the representation, eliminating the need for
deep parametric models that require an additional softmax classification layer after feature
extraction. During training, DNC alternates between two steps: i) class-wise clustering for
automatic discovery of class sub-centroids, and ii) classification prediction for supervised
representation learning by retrieving the nearest sub-centroids. However, as the feature
space evolves continually during training, computing the sub-centroids becomes computa-
tionally expensive – it requires a pass over the full training dataset after each batch update,
which limits the scalability of DNC. To overcome this problem, we employ a Sinkhorn
Iteration [85] based clustering algorithm [86] for fast cluster assignment. We further adopt
momentum update with an external memory for estimating online the sub-centroids (whose
amount is more than 1K on ImageNet [40]) with small-batch size (e.g., 256). Consequently,
DNC can be trained efficiently by simultaneously conducting clustering and stochastic
optimization on large datasets with small batches, with only a minor reduction in training
speed (e.g., ∼5% on ImageNet).

Overall, DNC enjoys several appealing qualities: First, improved simplicity and trans-
parency. The intuitive working mechanism and statistical interpretation of class sub-
centroids make DNC elegant and intuitive to understand. Second, automated discovery
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of the underlying data structure. Through within-class deterministic clustering, the
latent distribution of each class is automatically discovered and captured as a set of rep-
resentative local means. In contrast, parametric classifiers learn a single weight vector per
class and are oblivious to rich intra-class variations. Third, direct supervision of rep-
resentation learning. DNC make classification decisions by comparing data samples
and class sub-centroids in the feature space. Its distance-based nature allows DNC to
blend unsupervised sub-pattern mining (class-wise clustering) and supervised representa-
tion learning (nonparametric classification) synergistically. Local significant patterns are
automatically mined to facilitate classification decision-making, and the supervisory signal
from classification directly optimizes the representation, which in turn boosts meaningful
clustering. Fourth, strong modularity and transferability. DNC learns by optimiz-
ing only the feature representation, eliminating the need for the output dimensionality
to match the number of classes. With this algorithmic merit, all useful knowledge (pa-
rameters) learned from a source task (e.g., ImageNet classification) is stored in the rep-
resentation space and can thus be completely transferred to target tasks (e.g., Cityscapes
segmentation). Demonstrating versatility across diverse tasks and datasets, DNC exhibits
robust performance via a plug-and-play approach, underscoring its inherent modularity.
Fifth, ad-hoc explainability. By restricting the class sub-centroids to be samples (im-
ages) of the training set, DNC gains the ability to explain its predictions based on IF · · ·
Then rules. This allows users to intuitively view the class representatives and appreciate
the similarity of the test data to the representative images. Such ad-hoc explainability [87]
is valuable in safety-sensitive scenarios and differentiates DNC from most existing network
interpretation techniques [88–90] that only investigate post-hoc explanations and thus fail
to elucidate precisely how a model works [64,91,92].

1.2.2 Neural Symbolic Approach for Network Explainability and Con-
trollability

Current state-of-the-art image translation methods predominantly adhere to the connec-
tionism paradigm [93], focusing on answering the question of “what” — specifically, trans-
lating an image from the source domain to the target domain with high fidelity. These
methods can be broadly categorized into Generative Adversarial Network (GAN)-based
and Diffusion-based approaches (see §2.2.5). Diffusion-based methods often exhibit supe-
rior performance compared to their GAN-based counterparts, particularly in terms of im-
age quality and coherence, training stability, and fine-grained control [94]. Consequently,
diffusion-based approaches are perceived to have greater potential in the field of image
translation [29].

Despite their significant success [94, 95], these diffusion-based methods exhibit sev-
eral limitations: ① Condition-rigid learning. Existing methods based on the principles of
classifier-free guidance [29, 96] face a significant challenge in achieving a harmonious bal-
ance between unconditional and conditional predictions. Typically, these approaches rely
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on manually crafted guidance scale parameters to control the translation process for each
individual image. This inherent limitation restricts algorithmic scalability, thus hindering
their potential for fully automated applications in real-world scenarios; ② Context-free
incompetence. Current methods predominantly focus on the global manipulation of var-
ious attributes (e.g., stylistic and content-related elements) within images, prioritizing
the preservation of contextual integrity over local modifications. However, the lack of
context-free reasoning impedes the precision needed for specific RoI modifications while
maintaining overall coherence. Achieving such contextual understanding requires a high
degree of semantic acuity and a robust comprehension of image structure, which contem-
porary image translation solutions [97–99] largely lack; ③ System opacity. Due to their
black box nature, diffusion-based methods — rooted in connectionism [1] — often exhibit
a level of abstraction that detaches them from the intrinsic physical characteristics of
the problems they aim to model [69]. Consequently, users have limited control over the
model’s behaviors prior to obtaining the final outputs, making it challenging to establish
trustworthiness in decision-making or pursue systematic improvements.

“change 
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middle dog to duck/
right kitten to pig”
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Figure 1.3: Working pipeline showcase.
DVP represents a solution rooted in visual
programming, demonstrating pronounced ca-
pabilities in-context reasoning and explain-
able control, in addition to its remarkable ef-
ficacy in style transfer.

In this work, we revolutionize the fo-
cus of “what” into a more flexible and
controllable image translation paradigm of
“where-then-what.” Under this paradigm,
we first answer the question of “where”
by finding the instructed target region ac-
curately. After getting the target region
(i.e., Region of Interest (RoI)), we an-
swers the question of “what” by trans-
lating it into the targeted domain with
high-fidelity. Considering the aforemen-
tioned discussions, we are approaching the
task of image translation from a fresh
neuro-symbolic perspective, presenting a
novel method named the Diffusion Vi-
sual Programmer (DVP). More concretely,
we architect an condition-flexible diffusion
model [100], harmoniously integrated with the foundation of GPT [101], which orchestrates
a concatenation of off-the-shelf computer vision models to yield the coveted outcomes. In
Fig. 1.3, we present a possible procedure of DVP execution process. Given an input in-
struction that specifies the translation from the “left dog” to a “sheep,” DVP first utilizes
GPT as an AI agent to plan a sequence of programs with operations, subsequently in-
voked in the following procedure. It first addresses the fundamental question of “where”
by identifying and segmenting the RoI of the “dog.” After getting the segmentation result,
the background undergoes an inpainting to restore the regions obscured by the “dog,” and
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our condition-flexible diffusion model translates → , addressing the query of “what.”
DVP, leveraging spatial data, positions the “sheep” in the instructed spatial location, and
further enables various context-free manipulations (see §3.2.2).

DVP is an intuitive and potent image translation framework, showing superior per-
formance qualitatively and quantitatively (§4.3.1) over state-of-the-art approaches [16–18,
29, 102–106]. It enjoys several attractive qualities: ❶ Condition-flexible translation.
Our proposed condition-flexible diffusion model creatively utilizes instance normalization
guidance (see §3.2.2) to mitigate the global noises in the unconditional embeddings by
adaptive distribution shifting, and ensure that the model remains optimally conditioned
based on the textual descriptions without any parameter engineering. It offers a stream-
lined solution tackling the challenge of hand-crafted guidance sensitivity on condition-rigid
learning. This innovation addresses the “what” inquiry and enables a generalized learning
paradigm for diffusion-based solutions. ❷ Effective in-context reasoning. By de-
coupling the high-dimensional, intricate concepts in feature spaces into low-dimensional,
simple symbols (e.g., [Prompt], [RoI object]), we enable context-free manipulation of im-
agery contents via visual programming (see §3.2.2). It essentially includes a sequence of
operations (e.g., segmentation, inpainting, translation) to establish in-context reasoning
skills. Such a neuro-symbolic design fortifies our method with the capability to discern
the concept of “where” with commendable precision. ❸ Enhanced controllability and
explainability. Our modulating scheme uses explicit symbolic representations at each
intermediate stage, permitting humans to intuitively interpret, comprehend, and modify.
By leveraging a step-by-step pipeline, we introduce not only a novel strong baseline but
also a controllable and explainable framework to the community (see §4.3.2). Instead of
requiring the redesign of networks for additional functions or performance enhancement,
our approach is distinguished by its user-centric design, enabling the seamless integration
of future advanced modules.

1.3 Carbon-Efficient Visual Intelligence System

1.3.1 Visual Prompt tuning

The development of artificial intelligence (AI) should prioritize not only performance ad-
vancements but also sustainable deployment [107–110]. Despite the compelling pursuit
of performance improvements in visual-related tasks, the size of current models has been
rapidly increasing, leading to energy-intensive and computationally expensive training
processes [111–113]. Currently, Transformer-based architectures dominate visual-related
models (e.g., ViT-Huge [24] (632M) and Swin-Large [49] (197M)) with significantly more
parameters than the Convolutional Neural Networks (CNN) like ResNet [68] (25M). Train-
ing such large models from scratch poses challenges, including limited data [101,114,115]
and slow convergence at low accuracy [116, 117]. A prevalent approach to overcoming
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Figure 1.4: E2VPT (ours) vs concurrent arts (i.e., partial tuning [21], extra
module [22], and prompt tuning [23] methods) under pretrain-then-finetune paradigm.
Our method yields solid performance gains over state-of-the-art fine-tuning methods and
competitive to full fine-tuning on a wide range of classification tasks adapting the pre-
trained ViT-Base/16 [24] as backbone with considerable lower parameter usage.
colors represent results on VTAB-1k [25] Specialized, Natural and Structure, respectively.

these challenges is pretrain-then-finetune, which diminishes the need for extensive training
data and accelerates the processing of various visual tasks. However, the traditional full
fine-tuning involves storing and deploying a complete copy of the backbone parameters for
every single task [23], which remains computationally expensive and unsuitable for fast
model deployment.

To address this issue, various approaches have been developed, which can be divided
into three main categories (see Fig. 1.4): partial tuning, extra module, and prompt tuning
methods. Partial tuning methods [51, 118–121] only fine-tune part of the backbone, such
as the classifier head or last few layers, while freezing the others. Extra module methods
insert learnable bias term [22] or additional adapters [122, 123] to the network for adap-
tation. Prompt tuning methods add prompt tokens [23, 124–127] to the input layer of
the transformer without altering or fine-tuning the backbone itself. All of these methods
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operate within the pretrain-then-finetune paradigm, which reduces the number of learn-
able parameters compared to full fine-tuning [51,118,119,122,123]. However, despite their
promising results, there are two main limitations in existing parameter-efficient meth-
ods. First, they do not examine the core architecture of the transformer’s self-attention
mechanism, resulting in a significant performance gap compared to full fine-tuning. Sec-
ond, they typically require fine-tuning a relatively large number of parameters to achieve
reasonable performance, failing to explore the extremes of parameter efficiency.

The perspective outlined above raises two fundamental questions: ❶ How can we es-
tablish the effectiveness of prompt tuning for large-scale Transformer-based vision models?
❷ How can we explore the extremes of parameter efficiency to minimize the number of tun-
able parameters? These questions form the cornerstone of our research. Our approach is
guided by the intuition that, rather than merely modifying inputs as in traditional prompt
tuning methods, we should explicitly investigate enhancing the self-attention mechanism
during fine-tuning and push the boundaries of parameter efficiency.

To address question ❶, we discuss and analyze the self-attention mechanism of the
transformer, which is vital for capturing long-range token dependencies within a global
context [128–130]. Beyond traditional input visual prompts, we introduce learnable key-
value prompts that are integrated into the Key and Value matrices of the self-attention
layers. These key-value prompts are jointly learned with the input visual prompts during
fine-tuning. This innovative approach capitalizes on the sophisticated prompt architec-
ture of transformers, leading to substantial performance enhancements. Furthermore, it
offers a versatile plug-and-play prompt module for existing transformer architectures, pre-
senting a fine-tuning solution that is conceptually distinct from all previously mentioned
methods in the vision domain. Motivated by ❷, We propose a pruning strategy to further
reduce the number of parameters while maintaining model performance. Our approach
is inspired by the lottery ticket hypothesis (LTH) [131, 132], which suggests that for any
given task, there exists a sub-network capable of matching the test accuracy of the original
over-parameterized network without the extraneous weights [133–137]. Building on this
concept, we re-evaluate the core design of prompt tuning methods to reduce the number
of learnable parameters. Specifically, we aim to retain only those prompt tokens that
significantly contribute to performance, pruning those that are redundant or unnecessary
during fine-tuning. This pruning process enhances the efficiency of prompt tuning while
preserving the model’s overall performance.

To this end, we propose E2VPT, namely Effective and Efficient Visual Prompt
Tuning. E2VPT is a novel prompt tuning framework that is both architecture-aware
and pruning-anchored (see Fig. 1.4). In §2.3, we conduct a literature review and discuss
relevant works. Our proposed approach is presented in §3.3, where we describe in detail
how we design visual and key-value prompts to achieve superior performance with fewer
parameters.
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Figure 1.5: A preliminary study on the impact of teacher-assistants with dif-
ferent scales and performance w.r.t. the performance of the student. In (a)
and (b), ViT-Tiny and ViT-Base are used as the teacher models, and distilled to a 10%
student via teacher-assistants [26] at different scales on CIFAR-10 and CIFAR-100 [27] re-
spectively. There are several key observations: ❶ The performance of the teacher assistant
degrades when its scale decreases (see green curve); ❷ The performance of the student
varies with different teacher-assistants in scales (see yellow curve); ❸ We ascertain that
the Negative Performance-Scale Derivative (NPSD) metric (see §3.3.2) exhibits a positive
correlation with the performance of student models (see red curve).

1.3.2 Knowledge Distillation

Recent advancements in foundation models for vision, such as BiT [138], ViT [24], Swin [49],
and Florence [139], have garnered considerable attention due to their groundbreaking per-
formance across a range of tasks. Transformer-based architectures like ViT-Large [24] (61.6
GFlops) and Swin-Large [49] (103.9 GFlops) exemplify this new class of visual foundation
models [140], showcasing significantly more complex operations compared to traditional
Convolutional Neural Networks (CNNs) such as ResNet18 [68] (1.8 GFlops). However, as
these models scale up to achieve higher performance, their inherent complexity becomes
a bottleneck, posing significant challenges for deployment on low-power processors and
mobile devices, which often have constrained computational resources [2, 53,141,142].

A conventional method for leveraging the high performance of large-scale models while
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managing limited computational resources is knowledge distillation [143]. This technique
involves transferring the knowledge acquired by large teacher models to smaller, more
deployable student models. Although effective in numerous applications, recent stud-
ies [26,144] have shown that traditional distillation methods experience significant perfor-
mance drops when there is a substantial capacity gap between teacher and student models.
To address this, multi-step distillation approaches [145, 146] have been proposed, where
the teacher model is first distilled into an intermediate teacher-assistant model, which
then aids in transferring knowledge to the student model. While multi-step distillation
generally enhances student model performance, our preliminary study (Figure 1.5) indi-
cates that the effectiveness of the teacher-assistant model greatly influences the final stu-
dent performance. However, selecting the appropriate scale/size for the teacher-assistant
model often lacks clear guidance, necessitating trial training. This process, which involves
evaluating all possible scales to identify the optimal teacher-assistant, incurs significant
computational costs.

To address this challenge, we introduce an Automatic Multi-step Distillation (AMD)
approach for large vision model compression. AMD employs a cascade strategy that in-
cludes three phases. First, Structural Pruning utilizes a grating and pruning algorithm to
create a range of teacher-assistant architectures at different scales. Second, Joint Opti-
mization involves a framework that efficiently identifies the best teacher-assistants across
all scales in a single run. Finally, Optimal Selection chooses the most suitable teacher-
assistant from the candidates using the Negative Performance-Scale Derivative (NPSD)
metric, which assesses the performance-scale optimality of each candidate. In summary,
the results we present hold particular significance given the limited research on compressing
vision models with substantial capacity differences. We believe that this study advances
the foundational understanding of this domain and opens new avenues for future research.



Chapter 2

Background

This chapter describes important preliminaries on the universal visual learner (§1.1), in-
terpretable visual intelligence (§1.2) and carbon-efficient visual intelligence system (§2.3).

2.1 Universal Visual Learner

2.1.1 Motion Task

Motion tasks encompass the identification, modeling, and prediction of movement pat-
terns in objects and scenes, serving as the cornerstone for a wide array of computer vision
applications. These include vehicle and pedestrian motion detection [147–150], abnormal
activity detection [151–153], and video compression [154–156]. Within this domain, optical
flow [7–9] and depth estimation [10, 11, 157] are particularly influential, significantly im-
pacting motion-related downstream tasks such as object tracking and video stabilization.
Current research efforts largely focus on task-specific solutions, leading to duplicated work
and inefficient hardware usage. In contrast, ProtoFormer represents a novel approach by
striving to integrate motion tasks under a unified paradigm. This conceptual innovation
sets ProtoFormer apart from existing methods in the field, offering a more cohesive and
efficient framework for tackling motion-related challenges in computer vision.

2.1.2 Prototype Learning

Traditionally, prototype learning in machine learning involves establishing a metric space
where features are differentiated by calculating their distances or densities relative to
prototypical representations [158]. Early techniques included classical methods such as
support vector machines [159], random forests [160], and logistic regression [161]. With
the rise of deep neural networks (DNNs), prototype-based models have found extensive
applications in areas such as few-shot learning [162–166], zero-shot learning [167,168], and
explainable classifiers [1,4,72]. In this context, we propose that movements within the same

28
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object or nearby regions exhibit significant similarities, forming clusters of prototypes. By
integrating prototype learning into model design, we can naturally encapsulate diverse
dynamic characteristics, thereby enhancing the model’s capacity to understand motion
across various contexts. This integration facilitates a more nuanced comprehension of
motion patterns, improving the overall performance and interpretability of motion-related
tasks.

2.1.3 Transformer Architecture

The groundbreaking success of Transformers in natural language processing (NLP) [101,
169–172] has led to their widespread adoption in vision-related tasks, such as image classifi-
cation [1,24,49,173] and image segmentation [174–177]. Transformers have proven to excel
in these visual applications, often surpassing convolutional neural networks (CNNs) [140].
This advantage stems from their capability to capture extensive token dependencies in
a global context, addressing a key limitation of CNN-based methods that primarily fo-
cus on local interactions within convolutional layers [128–130, 140, 178]. The distinctive
attention mechanism in Transformers facilitates the comprehension of global spatial re-
lationships, making them particularly suitable for motion-related tasks where extensive
spatial interconnections are crucial. By integrating the attention mechanism with proto-
type learning, we aim to leverage the representational strength of Transformers to unravel
complex patterns in motion tasks, providing a unified, Transformer-based solution.

2.2 Interpretable Visual Intelligence

2.2.1 Distance-/Prototype-based Classifiers

Among the various classification algorithms, such as logistic regression [179], Naive Bayes
[180], random forest [160], support vector machines [159], and deep neural networks
(DNNs) [181], distance-based methods are distinguished by their intuitive mechanism.
Distance-based classifiers are nonparametric and exemplar-driven, relying on similarities
between samples and stored exemplars or prototypes. They employ case-based reason-
ing that mimics the natural problem-solving approach of humans, making them both
appealing and interpretable [19, 66]. One prominent example is the k-Nearest Neighbors
(k-NN) algorithm [74, 75], which utilizes all training data as exemplars [182, 183]. Signif-
icant progress has been made in implementing k-NN within neural networks [184–186],
notably by Wu et al. [187], whose k-NN network outperforms the parametric softmax-
based ResNet [68] and excels in few-shot learning scenarios. However, k-NN classifiers,
including their deep learning counterparts, require substantial storage and computational
resources, as they must retain the entire training dataset and perform full-dataset retrieval
for each query [188,189]. Additionally, the nearest neighbors may not always serve as good
class representatives [66]. Nearest Centroids classifier [76–79] can mitigate some of k-NN’s
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deficiencies. Nearest Centroids uses representative class centers as exemplars instead of
all training data [66, 83]. Guerriero et al. [190] explored incorporating Nearest Centroids
into DNNs. However, their approach abstracts each class into one single mean, failing to
capture complex class-wise distributions and producing suboptimal results even on small
datasets like CIFAR [39].

The concept of distance-based classification has also inspired the development of proto-
typical networks, which are particularly prominent in few-shot [162,191] and zero-shot [167,
168] learning. These networks typically associate a single representation (prototype) with
each class [192], and these prototypes are often either flexible parameters [168, 189, 191]
or predefined before training [73, 167]. In DNC, a prototype (sub-centroid) serves as a
generalization of several observations or a representative training example. By leverag-
ing clustering-based sub-class mining, DNC addresses two key properties of prototypical
exemplars: sparsity and expressivity [193, 194]. This approach enables the representation
to capture the intrinsic structure of each class, facilitating large-scale visual recognition
while maintaining transparency and interpretability.

2.2.2 Neural Network Interpretability.

Given the constraints of the black-box nature of deep neural networks (DNNs) in decision-
critical tasks, there has been a growing interest in enhancing the interpretability of DNNs.
Most existing interpretability techniques, however, offer post-hoc explanations for already-
trained models. These techniques typically involve analyzing reverse-engineered impor-
tance values [88–90, 195–200] and input sensitivities [201–204]. As highlighted in the
literature, these post-hoc explanations can be problematic and misleading [63–66], as they
often fail to elucidate the actual reasoning process behind a DNN’s decisions [205]. In pur-
suit for ad-hoc explainability, recent efforts have focused on developing inherently inter-
pretable DNNs by incorporating more transparent mechanisms into the models [206–208].
These approaches include regularizing representations with specific properties, such as
sparsity [209], decomposability [210], and monotonicity [211], to enhance the transparency
and comprehensibility of the decision-making process.

DNC fundamentally relies on the retrieval of class sub-centroids, offering theoretical
simplicity and clarity. Anchoring these sub-centroids to available observations provides
a natural criterion for measuring the similarity between a test sample and representa-
tive data. This dual function of representation learning and case-based reasoning enables
DNC to be inherently self-explainable, eliminating the need for post-hoc analysis [87]. DNC
shares similarities with concept-based explainable networks [69,70,205–207,212–214] that
integrate human-friendly concepts or prototypes into the decision-making process. How-
ever, these methods typically require significant architectural modifications and often rely
on pre-trained models, which serve as backbone networks. In stark contrast, DNC in-
troduces minimal architectural changes to parametric classifier-based DNNs and demon-
strates exceptional performance on ImageNet [40] through training from scratch, all while
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providing ad-hoc explainability. To our knowledge, this is the first instance of solid em-
pirical evidence showcasing the effectiveness of case-based reasoning in large-scale visual
recognition.

2.2.3 Metric Learning

The objective of metric learning, also known as distance learning, is to develop a dis-
tance metric or embedding that clusters similar samples while separating dissimilar ones.
This concept has a long history, with its roots extending back several decades [215, 216].
Over the years, various objective functions for metric learning have been introduced, in-
cluding contrastive loss [217–219], triplet loss [220], quadruplet loss [221], and n-pair
loss [222]. These functions have been instrumental in measuring similarity in the feature
space for representation learning and have demonstrated significant benefits in numer-
ous applications such as image retrieval [223], face recognition [220, 224–227], and person
re-identification [228]. Recently, metric learning has achieved notable success in deriving
transferable deep representations from large-scale unlabeled data [229]. A category of
instance-based methods employs contrastive loss [230, 231] to directly compare pairs of
image representations [231–235]. Another approach utilizes a clustering-based strategy,
learning unsupervised representations by distinguishing between groups of images without
the need for costly pairwise comparisons [86,236–243]. More recently, there has been a re-
newed focus on applying metric learning within supervised learning settings [219,244–246].

Distance- and similarity-based classifiers utilize the similarity between samples and
class representatives for classification, naturally relating them to the fields of metric learn-
ing and distance-based classification. The choice of an appropriate distance measure is
crucial to the success of these classifiers [247]. Historically, metric learning and class center
discovery have been fundamental research topics in distance-based classification. DNC,
a nonparametric, distance-based classifier, can be viewed as a learnable metric function
that compares data samples based on the corresponding semantic labels. While existing
distance learning algorithms optimize the feature space by comparing data samples, they
often rely on parametric softmax for classification. Consequently, these models function
as black-box parametric classifiers, lacking interpretability. In contrast, DNC assigns ob-
servations to the class of the nearest centroids directly, without the need for parametric
softmax. This distance-based decision-making approach allows DNC to seamlessly incor-
porate existing metric learning techniques. In fact, its training process can already be
considered a form of metric learning.

2.2.4 Clustering-based Self-supervised Representation Learning

There is a growing trend to integrate self-supervised representation learning with cluster-
ing. Clustering-based self-supervised representation learning offers significant advantages
in efficiency for large-scale training data and resilience to the similarity in semantic struc-
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tures among data samples, compared to instance-level approaches. More specifically, early
methods [86,236,238,239,242,248,249] focused on learning image representations and clus-
ter assignments in an alternating manner. This involved grouping features into clusters
to generate pseudo supervisory signals, which were then used to guide the representa-
tion learning process. More recently, efforts have shifted towards simultaneous clustering
and representation learning. These newer approaches leverage techniques such as data
reconstruction [237,250], mutual information maximization [248,251,252], and contrastive
instance discrimination [240,241,243,253–255].

Our work is closely related to clustering-based unsupervised representation learning
methods, particularly those that utilize the fast Sinkhorn-Knopp algorithm [85] for robust
clustering [86, 240]. These methods aim to learn transferable representations from large
amounts of unlabeled data. Although DNC also employs a clustering procedure for auto-
matic sub-pattern mining, it is designed to establish a robust similarity-based classification
network within a supervised learning setting. In DNC, the automatically discovered class
sub-centroids serve as informative class representatives, explicitly capturing the latent data
structure of each class and providing clear physical meaning as classification evidence. The
entire training process in DNC is a hybrid approach that integrates two key components:
class-wise online clustering for unsupervised sub-class discovery and sub-centroid-based
classification for supervised representation learning.

2.2.5 Image-to-Image Translation

Image-to-Image (I2I) translation focuses on mapping images from a source domain to a
target domain while retaining the domain-invariant context of the input image [256,257].
Current data-driven methods for I2I tasks can be classified into two main groups: GAN-
based and Diffusion-based approaches.

GAN-based methods, though achieving high fidelity in translation performance [258–
261], pose significant challenges in training [262,263] and often suffer from mode collapse
in the output distribution [264, 265]. In addition, these models frequently struggle to
produce diverse translation outcomes [266].

Diffusion-based methods, on the other hand, have recently demonstrated competitive
performance in generating high-fidelity images. Conditional diffusion models [16–18] show
promising results by integrating the encoded features of a reference image during the
generation process [267]. However, while successful, these methods typically offer only
coarse guidance in embedding spaces, leading to ambiguity in more complex scenarios [102].
In contrast, our approach leverages in-context reasoning to decompose complex scenes into
low-dimensional concepts, effectively addressing these challenges.
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2.2.6 Text-guided Diffusion Models

Several concurrent works contribute to text-guided diffusion models. DreamBooth [104]
and Textual Inversion [105] develop pre-trained text-to-image diffusion models that re-
quire several provided images. Prompt-to-Prompt [29, 106] manipulates local or global
details by adjusting the text prompt. By injecting internal cross-attention maps, these
methods preserve the spatial configuration and geometry of images, enabling regeneration
and modification through prompt editing. However, [106] does not use an inversion tech-
nique, restricting it to synthesized images [29]. Both methods introduce an extra hyper-
parameter, w (i.e., guidance scale parameter), which significantly impacts the translated
performance (see Fig. 4.7). In light of these considerations, our approach rethinks the de-
sign of classifier-free guidance [96] prediction and eliminates such an oscillating parameter
for more robust, fully-automatic predictions. Further details of our findings are included
in §4.3.2.

2.2.7 Visual Programming

Visual programming serves as an intuitive method for specifying programmatic opera-
tions and data flows to tackle complex visual tasks [30], grounded in the neuro-symbolic
paradigm. The integration of Large Language Models (LLMs) into visual programming
has demonstrated exceptional performance across various vision tasks, such as visual re-
lationship understanding [268,269], visual question answering [99,270,271], commonsense
reasoning [272], and image translation [30]. This approach holds significant potential to
revolutionize the field of image translation by enhancing transparency and explainability,
as well as in-context reasoning.

We recognize several insightful approaches, notably AnyDoor [102], Inst-Inpaint [273]
and VISPROG [30] are particularly relevant to our work. However, [102] involves manually
selecting an object’s location in a scene, classifying objects with an additional ID extractor,
and extracting detail maps for hierarchical resolutions. Similarly, [273] requires additional
training on the GQA-Inpaint dataset [274]. These processes remain opaque and necessitate
additional training, making them unsuitable for manual modifications or training-free
paradigms. [30] introduces visual programming for compositional visual tasks but primarily
focuses on building a modular neuro-symbolic system, overlooking strong editing abilities
for compositional generalization. Moreover, it replaces original objects with text-to-image
generation, disregarding the preservation of content from the original image.

Our DVP, on the other hand, provides a nuanced framework that delineates each inter-
mediate step in a comprehensible and modifiable manner for human users (see §4.3.2). By
translating complex feature spaces into lower-dimensional symbols, DVP enables effective
context-free manipulations (see §3.2.2).
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2.3 Carbon-efficient Visual Intelligence System

2.3.1 Vision Transformers

Inspired by the remarkable success of transformers in natural language processing (NLP) [1,
101, 169–172], researchers have extended the transformer architecture for various super-
vised vision tasks, including image classification [24,49,173,275], image segmentation [174–
177, 276, 277, 277–281], object detection [282–287], and pose estimation [288–291]. Addi-
tionally, self-supervised pretraining paradigms [50, 51, 292] have been explored, achiev-
ing state-of-the-art results. Transformers have become dominant in visual-related fields
due to their superior performance and scalability compared to convolutional neural net-
works (CNNs) [23, 293]. However, the substantial computational and parameter over-
head required to adapt transformers to various vision tasks remains a significant chal-
lenge [294–296]. Recent transformer-based models such as MViTv2-Large [297] (218M
parameters), ViT-G [298] (1.8B parameters), SwinV2-G [173] (3.0B parameters), and V-
MoE [299] (14.7B parameters) incur considerable computational costs.

To address these challenges, we propose E2VPT, a solution designed to reduce the com-
putational burden of transformer-based architectures while maintaining high performance
within the pretrain-then-finetune paradigm.

2.3.2 Parameter-efficient Fine-tuning

Efficient model training has become a significant focus within the vision community, par-
ticularly with the rise of Vision Transformers [24, 49, 300–302]. Despite their efficacy and
widespread adoption, these models are often too large for practical deployment and adap-
tation. Consequently, the pretrain-then-finetune paradigm is frequently employed. While
full fine-tuning guarantees strong performance, it is a costly approach that requires updat-
ing all network parameters [115,293]. To overcome this challenge, researchers are exploring
alternatives that strike a balance between parameter efficiency and robust performance.
These alternatives can be broadly classified into three categories: partial tuning, extra
module, and prompt tuning methods.

Partial tuning techniques are commonly employed for parameter-efficient fine-tuning.
These approaches involve keeping the majority of the backbone network unchanged and
fine-tuning only a small subset of the parameters. This subset typically includes elements
such as linear layers [48], MLP heads [233], or specific blocks or layers within the back-
bone [21, 50, 303, 304]. Although these methods are simple to implement and relatively
straightforward [51, 118, 119], they frequently exhibit a significant performance gap when
compared to full fine-tuning. Extra module methods involve designing additional learnable
architectures that can be plugged into existing networks for fine-tuning. For instance, [123]
introduces an alternative side structure while keeping the original network frozen. Simi-
larly, [22] and [122] add extra residual units into the backbone architecture. However, a
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significant drawback of these approaches is that the inserted modules are often tailored to
specific architectures, limiting their generalizability to other models. Furthermore, these
extra modules typically require more parameters than partial tuning methods.

Prompt tuning or prompting [127,305–307] was initially introduced for fast model adap-
tation in the language domain. These approaches involve prepending a set of learnable
vectors to the input of the backbone, with only these task-specific prompts being updated
during fine-tuning. Recently, visual-related prompting [23, 308, 309] has been applied to
the vision domain, incorporating visual prompts into the input sequence and demonstrat-
ing competitive performance with full fine-tuning. However, existing methods typically
overlook the internal design of transformer-based architectures, leading to less effective
prompting solutions. In contrast, our approach takes into account the architectural intri-
cacies of transformers and is anchored in pruning strategies, fundamentally differentiating
it from the previously discussed methods.

2.3.3 Large-scale Vision Models

Building on the significant advancements of transformers in natural language processing
(NLP) [101, 169–172], researchers have successfully adapted the transformer architecture
for various vision tasks, including image classification [1, 24, 49, 173], image segmenta-
tion [174–177], and object detection [282, 283, 285–287]. Transformers have emerged as
dominant models in vision-related disciplines due to their superior performance and scal-
ability compared to convolutional neural networks (CNNs) [23, 293]. However, the signif-
icant computational complexity of transformers [140, 294–296] poses challenges for their
deployment in real-world scenarios with limited computational resources. For instance, the
well-known transformer-based architecture ViT-Base [24] requires 2.23 times more compu-
tational overhead than ResNet101 [68] (i.e., 17.6 GFlops v.s. 7.9 GFlops). While there is a
strong desire to leverage the capabilities of large-scale vision models, much of the current
research has focused on knowledge distillation within traditional CNNs, neglecting the
growing need for scale reduction in transformer-based architectures. To address this gap,
we propose AMD, a knowledge distillation approach designed to reduce the computational
overhead of large-scale vision models while maintaining strong performance.

2.3.4 Model Pruning

Model pruning can be generally classified into unstructured [140,310–312] and structured
pruning [137, 313–317]. The primary distinction between these approaches lies in their
impact on the neural network architecture. Structured pruning modifies the network by
physically removing groups of parameters, while unstructured pruning zeros out specific
weights without changing the network’s inherent structure [315]. Although unstructured
pruning allows for more fine-grained parameter reduction, it typically requires specialized
hardware or software to be effective. In contrast, structured pruning reduces memory
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usage and computational overhead without the need for specialized accelerators or frame-
works [318, 319], making it suitable for a wider range of practical applications. Within
transformer-based architectures, various strategies have been proposed to achieve efficient
designs at the desired scale, including dynamic search [320], layer dropping [321], and prun-
ing [322]. In our research, we adopt structured pruning to derive candidate structures due
to its advantages in facilitating distillation.

2.3.5 Knowledge Distillation

Knowledge distillation [143] has garnered significant attention in the vision community,
particularly in the area of model compression [146, 323, 324]. The core idea involves
transferring the knowledge from a large-scale model (i.e., the teacher) to a smaller, more
computationally efficient model (i.e., the student). Recent research in this field can be
broadly categorized into single-step and multi-step distillation methods. Single-step dis-
tillation methods, initially inspired by [143], involve using the teacher model’s predictions
as ”soft” labels [325, 326], which the student model mimics to reproduce the teacher’s
final predictions [327]. These methods include logit-based approaches [328–330] and
feature-mimicking techniques [331–336], which utilize spatial-wise knowledge to transfer
intermediate features directly or indirectly [337–339]. Additionally, relation-based stud-
ies have explored the relationships between different layers or data samples [340, 341],
leveraging various forms of relational knowledge such as FSP matrices [342], instance rela-
tions [343–345], similarity matrices [346], and mutual information flows [347]. Multi-step
distillation methods gained prominence when researchers observed that a significant ca-
pacity discrepancy between large-scale teacher models and smaller student models could
hinder effective knowledge transfer [26,348]. These methods address the challenge by using
intermediate teacher-assistant models to bridge the gap. For instance, [146] employs mul-
tiple teacher-assistants and introduces “random drop” to enhance efficiency, while [349]
constructs a gradual mimicking sequence. Despite mitigating performance degradation,
these methods are often computationally expensive due to the overhead associated with
multiple teacher-assistants, especially as teacher model sizes increase. Moreover, current
methods [350–352] seldom consider the needs of large-scale vision models, which require
higher compression ratios due to their substantial size compared to traditional convolu-
tional architectures. Although recent research, such as CSKD [353], DeiT [354], CviT [355],
and DearKD [351], has achieved impressive performance, their primary focus is on enhanc-
ing large-scale models through knowledge distillation rather than on model compression
and deployment on resource-constrained devices. In contrast, our approach prioritizes
both computational efficiency and achieving a high compression ratio, while preserving
the superior performance of the teacher models.



Chapter 3

Method

3.1 Universal Visual Learner

3.1.1 Prototypical TransFormer (ProtoFormer)

After reviewing the existing literature (§2.1), we find that integrating prototype learn-
ing with the Transformer architecture offers a promising approach for addressing various
motion tasks. In this section, we first revisit the Transformer architecture and reinter-
pret its attention mechanism through the lens of prototype learning (§2.1.2). Building on
this foundation, we introduce ProtoFormer, which includes two key innovations: Cross-
Attention Prototyping (§3.1.1) and Latent Synchronization (§3.1.1). These contributions
directly address question ③. We elaborate our approach below.
Preliminary. In our study, we re-conceptualize the Transformer’s attention mechanism
through the framework of classical clustering. Traditionally, attention maps are gener-
ated by computing the similarity between all query-key pairs [356, 357]. Our approach,
on the other hand, introduces a density-based cross-attention estimation, tailored to ac-
commodate motion characteristics by aggregating local rigid motion patterns into distinct
prototype clusters.

Classic clustering, a widely recognized paradigm, involves partitioning m observations
into k distinct groups. Each observation is assigned to the cluster it most closely associates
with, based on the highest likelihood or minimal distance (e.g., proximity to the cluster
mean). Formally, the clustering process can be optimized iteratively through two phases:

• Assignment Phase assigns each observation to the cluster for which it has the highest
probability of membership or the shortest spatial distance.

• Centroid Recalculation Phase updates the centroids of the clusters to accurately
represent the current distribution of observations within each cluster.

These two phases continue until convergence is achieved, which is indicated either by
the stabilization of assignments or when the changes in assignments fall below a predefined
threshold, implying that the clusters have stabilized.

37
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Figure 3.1: (a) Overall pipeline of ProtoFormer. Movement of a small part of an object within
an image is being considered as a rigid motion. In our approach, we use prototypes to understand
or predict this kind of motion pattern. (b) In each layer of the Cross-Attention Prototyping
(see §3.1.1), there are N sequential iterations encompassing the assignment of feature-prototypes
(i.e., E-step) and the subsequent updating of these prototypes (i.e., M -step) via Eq. 3.5. (c) Con-
currently, the Latent Synchronization process (see §3.1.1) associates the feature representations
via the freshly updated motion prototypes, (see Eq. 3.6). For (b) and (c), we apply optical flow
for illustration, which demonstrates straightforward systemic explainability.

From a mathematical perspective, let θ denote the centroids [1] of the clusters, and
consider x ∈ X as an individual observation:

θ(n+1) = arg max
θ

E(px∼X (x|θ(n))). (3.1)

Here, θ(n) refers to the centroid calculated during the n-th iteration, while p(·) denotes
the posterior probability associated with the data assignments.
Methodology. The main objective of ProtoFormer is to optimize the expected likelihood
function within the framework of clustering as part of a unified motion solution as:

θ̂k =
K∑

j=1
p(X|θj) · P (θk, θj). (3.2)

Here θ denotes the centroid representations, which we identify as Prototypes, our opti-
mization targets. The total number of clusters is represented by K. The probabilities
p(X|θk) ∈ (0, 1) are the mixing coefficients for each cluster k ∈ K, adhering to the con-
straint∑k p(x|θk) = 1. The projected prototype representation P (·) refers to the learnable
dense vector derived from a shared parametric family associated with the k-th prototype.

This function aggregates information across all clusters K, with each projected proto-
type P (θk, θj) representing the new projected representation for its respective cluster. θ̂k

indicates the updated prototype, taking into account the prototype representation θ and
the posterior probability p(X|θk), which is the conditional likelihood of assigning the data
X to the prototype parameterized by θk.



CHAPTER 3. METHOD 39

Cross-Attention Prototyping via EM clustering

To develop a unified motion solution utilizing Transformers, we redefine the traditional
Transformer’s self-attention mechanism [172] into an innovative prototypical cross-attention
mechanism. This new mechanism is optimized using Expectation-Maximization (EM)
clustering. The optimization process employs density-based estimation to compute the
maximum likelihood for pk and θk, leveraging posterior probabilities.

E-Step: For each observation xi ∈ X , E-Step computes the n-th iteration posterior
probabilities pk(xi). These probabilities represent the likelihood of xi being associated
with center θk with the logit vector sxi,k as:

p
(n)
k (xi) =

s
(n)
xi,k
· P (xi, θ

(n)
k )∑K

j=1 s
(n)
xi,j
· P (xi, θ

(n)
j )

. (3.3)

s
(n)
xi,k

, θ(n)
k are the parameters estimated at the n-th iteration.

M-Step: For each cluster θk, it obtains the maximum likelihood estimations p(n)
k and

θ
(n)
k from projected sub-sample representations P ′, updated as:

θ
(n+1)
k = 1

N

N∑
i=1

K∑
j=1

p
(n)
k (xi) · P ′(θ(n)

k , θ
(n)
j ). (3.4)

In practice, given feature embeddings I ∈ RHW ×D and initializing P (0) as K prototype
cluster centers, we incorporate the EM clustering process within a Cross-Attention Pro-
totyping layer (see Fig. 3.1(b)) that iterates N times as:

E-step: M̂ (n) = softmaxK(QP (n)(KI)⊤),
M -step: P (n+1) = M̂ (n)V I ∈RK×D,

(3.5)

where n ∈ {1, · · · , N}. M̂ ∈ [0, 1]K×HW represents the “soft” pixel-prototype assignment
matrix, serving as the probability maps of prototypes. QP ∈ RK×D is the query vector
projected from the prototype representation P , and V I ,KI ∈ RHW ×D are the value and
key vectors projected from the image features I, respectively. Overall, our proposed layer
iteratively updates the prototype membership M̂ (i.e., E-step) and the prototypes P
(i.e., M -step).

The key characteristic of this approach is its assurance of incremental convergence in
the likelihood function with each iteration (see Eq. 3.4). Essentially, the E-step assesses the
current membership of data representations based on existing prototypes, while theM -step
refines these prototypes to better match the pixels, ensuring steady progression towards
optimal clustering. By applying cross-attention prototyping to the source and target
images separately, our method effectively handles the complexities of motion uncertainty
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and photometric inconsistency. Additionally, we modify the default softmax operator from
HW to K, emulating the EM clustering process.

The proposed layer enjoys various compelling characteristics:

• Convergence: EM clustering consistently enhances the marginal likelihood with
each iteration and has been empirically shown to converge to a local optimum, given
a sufficient number of iterations [358–360]. In this context, our proposed Cross-
Attention Prototyping leverages the power of recursive clustering, iterated over N
steps, to enhance the probability of achieving an optimal configuration for motion
partitioning (see §4.1.3).

• Transparency: Prototyping serves as a crucial mechanism for contextual understand-
ing in motion scenes, recognizing and grouping similar patterns and movements. It
clusters pixels into prototypes that exhibit homogeneity in characteristics such as
flow or depth. By aggregating entities with shared attributes, these prototypes ef-
fectively describe the intrinsic dynamics of the scene. Moreover, prototyping offers a
foundational framework for motion comprehension, with each prototype represent-
ing a microcosm of the objects within the scene, encapsulating their unique elements
and interrelations.

• Efficiency: Cross-Attention Prototyping operates with O(NKHWD) time complex-
ity, offering a substantial improvement over the self-attention O(H2W 2D) complex-
ity (see §4.1.3). The efficiency gain stems from the relationship NK ≪ HW (for
example, 60 v.s. 25, 920 in the first stage with an image resolution of 960×432). This
difference becomes even more pronounced in pyramid architectures [49,276,302,361],
where the cumulative NK value is significantly smaller than HW , especially in the
early stages of the network. In each iteration, only the query matrix Q needs to be
updated, while the key K and value V matrices are computed once. This selective
updating process greatly reduces the computational burden, making it particularly
advantageous for handling large-scale data in high-dimensional feature spaces.

Prototype-Feature Corresponding by Latent Synchronization

We further enhance feature representations by synchronizing the projection of K proto-
types into an H ×W feature space. This approach aligns the prototype representations
with the motion features (see Fig. 3.1(c)).

The core method involves a Feed-Forward Network (FFN) integrated with a masked
cross-attention mechanism as:

Î = FFN(Cross-Attention(QI ,KP , V P ,MP )), (3.6)

where MP denotes the feature assignment mask maps based on the similarity to the
corresponding prototypes P . The term Î represents the refined feature, QI indicates the
query projection derived from the input image feature, and KP and V P indicates the
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key and value projections obtained from the learning prototypes, respectively. Latent
Synchronization is designed to enhance feature learning for prototype-feature association,
thereby reducing motion ambiguity. This process enables the extraction and encapsulation
of the latent distribution of each feature representation within its respective prototype.

Latent Synchronization also enjoys several appealing characteristics:

• Blended Paradigm: Latent Synchronization elegantly combines unsupervised pro-
totype mining (§3.1.1) and supervised feature representation learning (§3.1.1) in a
synergy manner. It autonomously identifies significant local motion patterns to fa-
cilitate density-based prototyping. Concurrently, task-specific supervisory signals
directly optimize the feature representations, enhancing the effectiveness of proto-
typing.

• Prototype-Anchored Learning: Density-based prototype learning recursively calcu-
lates dependable probabilities for prototype assignment (Eq. 3.5). Anchored by the
updated prototypes, features are further refined through prototype-feature associa-
tions (Eq. 3.6). This process ensures that motion patterns tend to cluster in regions
of high data density, which in turn enhances robustness against motion ambiguities.

3.2 Interpretable Visual Intelligence

3.2.1 Deep Nearest Centroids (DNC)

Problem Statement. Under the standard visual recognition setting, let X represent the
visual space (e.g., image space for recognition, pixel space for segmentation), and let Y =
{1, · · · , C} be the set of semantic classes. Given a training dataset {(xn, yn) ∈ X ×Y}Nn=1,
the objective is to use the N training examples to fit a model (or hypothesis) h : X 7→ Y
that accurately predicts the semantic classes for new visual samples.
Parametric Softmax Classifier. Current common practices implement h as DNNs and
decompose it into h = l ◦ f . Here, f : X 7→ F serves as a feature extractor (e.g.,
convolution-based or Transformer-based networks) that maps an input sample x ∈ X into
a d-dimensional representation space F ∈ Rd, i.e., x = f(x) ∈ F . The function l : F 7→ Y
is a parametric classifier (e.g., the final fully-connected layer in visual recognition or the
final 1×1 convolution layer in segmentation tasks) that takes x as input and produces a
class prediction ŷ = l(x) ∈ Y. Specifically, l assigns a query x ∈ X to the class ŷ ∈ Y by:

ŷ=arg maxc∈Y s
c, sc =(wc)⊤x+bc, (3.7)

where sc∈R represents the unnormalized prediction score (i.e., the logit) for class c, and
wc ∈Rd and bc ∈R are the learnable parameters | specifically, the class weight and bias
term for class c. The parameters of both l and f are optimized by minimizing the softmax
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Figure 3.2: DNC uses a distance-/case-based criterion to combine unsupervised sub-pattern
discovery and supervised representation learning in a synergistic fashion.

cross-entropy loss:
L= 1

N

∑N

n=1
− log p(yn|xn),

p(y|x)=softmaxy(l◦f(x))= exp(sy)∑
c∈Y exp(sc) .

(3.8)

Though highly successful, the parametric classifier l has several limitations: i) The weight
matrix W = (w1,· · ·,wC) ∈ RC×d and bias vector b = (b1,· · ·, bC) ∈ Rd in l are learnable
parameters that do not offer any transparency into the decision-making process of the
model h. ii) The loss function L depends solely on the relative relationships among the
logits, i.e., {sc}c, and does not directly supervise the representation x [362, 363]. iii)
The weight matrix W and bias vector b are learned as flexible parameters, which do
not explicitly model the underlying data structure. iv) The dimensionality of the final
output is limited to the number of classes, i.e., C. During transfer learning, as different
visual recognition tasks typically involve distinct semantic label spaces (i.e., with varying
numbers of classes), the classifier from a pretrained model often needs to be discarded
(i.e., the valuable knowledge encapsulated in the learned parameters W and b from the
source task). In the following part, we demonstrate that not only can these limitations
of the parametric classifier be effectively addressed, but they can also be resolved while
achieving superior performance via our proposed DNC.
DNC Classifier. DNC (Fig. 3.2) is founded on the intuitive concept of Nearest Centroids,
i.e., assign a sample x to the class ŷ∈Y with its closest class center as:

ŷ=arg minc∈Y⟨x, x̄c⟩, x̄c = 1
N c

∑
xc

n: yc
n=c

xc
n, (3.9)

where ⟨·, ·⟩ is a distance measurement (i.e., we use cosine-similarity in our settings),
given as: ⟨u,v⟩ = −u⊤v/∥u∥∥v∥. For simplicity, all the features are defaulted to ℓ2-
normalized from this point forward. Furthermore, x̄c represents the mean vector of class
c, xc

n denotes a training sample of c, i.e., yc
n = c, and N c is the number of training samples

in c. Consequently, the feature-to-class mapping F 7→ Y is achieved in a nonparametric
and more interpretable manner from user’s view, contrasting with the parametric classifier
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l that learns “non-transparent” parameters for each class. In many challenging visual
recognition tasks, complex intra-class variations cannot be fully captured with a simple
unimodal distribution for the samples in each class. These variations, however, can be
successfully addressed by introducing multiple sub-centroids (local means) for each class.
When representing each class c with K sub-centroids, denoted as {pc

k∈Rd}Kk=1, the C-way
classification for a sample x follows a winner-takes-all rule as:

ŷ=c∗, (c∗, k∗) = arg min c ∈ Y,k ∈ {1,··· ,K}⟨x,pc
k⟩. (3.10)

To intuitively estimate class sub-centroids, we need to cluster training samples within each
class. Since class sub-centroids are sub-cluster centers in the latent feature space F , they
encapsulate locally significant visual patterns and comprehensively represent class-level
characteristics. DNC can be interpreted as the process of selecting and storing prototypical
exemplars for each class and identifying classification evidences for a previously unseen
sample by retrieving the most similar exemplar. This approach aligns with the prototype
theory in psychology [81,364,365], which posits that prototypes constitute a typical form of
cognitive organization for real-world objects. For instance, ornithologists classify a given
bird by comparing it to relevant exemplars from known bird species [87]. The distance-
based criterion of DNC mirrors this process [66].
Sub-centroid Estimation. Given the representation space F , we conduct deterministic
clustering for each class to identify informative sub-centroids that optimally represent each
class. More specifically, for each class c, we cluster all the representations {xc

n∈Rd}Nc

n=1 into
K clusters with the cluster centers serving as the sub-centroids for c, i.e., {pc

k∈Rd}Kk=1.
Let Xc = [xc

1, · · ·,xc
Nc ] ∈ Rd×Ncand P c = [pc

1, · · ·,pc
K ] ∈ Rd×K denote the feature and sub-

centroid matrix, respectively. The deterministic clustering, i.e., the mapping from Xc to
P c, can be represented by Qc=[qc

1, · · ·, qc
Nc ]∈{0, 1}K×Nc, where n-th column qc

n∈{0, 1}K
is an one-hot assignment vector of n-th sample xc

n w.r.t. the K clusters. Qc is designed
to maximize the similarity between Xc and P c, leading to the following binary integer
programming (BIP) as:

maxQc∈QcTr
(
(Qc)⊤(P c)⊤Xc),

Qc ={Qc∈{0, 1}K×Nc |(Qc)⊤1K =1Nc},
(3.11)

where 1K is a K-dimensional all-ones vector. Following [86], we relaxQc to a transportation
polytope [85]: Q′c = {Qc∈ RK×Nc

+ |(Qc)⊤1K =1Nc ,Qc1Nc = Nc

K 1K}, casting BIP (3.11) into an
optimal transport problem. In Q′c, we incorporate not only the one-hot assignment con-
straint (i.e., (Qc)⊤1K=1Nc), but also an equipartition constraint (i.e., Qc1Nc= Nc

K 1K). This
ensures that the N c samples can be evenly distributed among the K clusters, efficiently
avoiding degeneracy (i.e., mapping all the data to the same cluster). The solution can then
be obtained using a fast version of the Sinkhorn-Knopp algorithm [366], as a normalized
exponential matrix:

Qc∗ = diag(α) exp
((P c)⊤Xc

ε

)
diag(β), (3.12)
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where the exponentiation is performed element-wise, α∈RK and β ∈RNc are two renor-
malization vectors, which can be computed with a small number of matrix multiplications
via Sinkhorn-Knopp Iteration [85], and ε = 0.05 balances the trade-off between conver-
gence speed and the accuracy of the approximation to the original transport problem. In
summary, by mapping data samples into a limited numbers of clusters under the constraints
Q′c, we aim to achieve both sparsity and expressivity [193, 194], while assigning the class
sub-centroids as the representatives of the dataset.
Training of DNC = Supervised Representation Learning+Automatic Sub-class
Pattern Mining. Ideally, based on class-wise cluster assignments {Qc}Cc=1, a total of CK
sub-centroids {pc

k}
C,K
c,k=1 can be calculated, i.e., mean feature vectors of the training data

within the CK clusters. The training objective then becomes:

L= 1
N

∑N

n=1
− log p(yn|xn),

p(y|x)=
exp

(
−min({⟨x,py

k⟩}Kk=1)
)∑

c∈Y exp
(
−min({⟨x,pc

k⟩}Kk=1)
) . (3.13)

Comparing (3.8) and (3.13), we can see that since the class sub-centroids {pc
k}c,k are de-

rived solely from data representations, DNC learns visual recognition by directly optimiz-
ing the representation f , rather than the parametric classifier l. Moreover, with this non-
parametric, distance-based scheme, DNC establishes a closer link to metric learning [218,
219,222,229,244,245,367]. Consequently, DNC can be viewed as learning a metric function
f to compare data samples {xn}n, guided by their corresponding semantic labels {yn}n.

During training, DNC alternates between two steps iteratively: i) class-wise clustering
(3.11) to automatically discover sub-centroids, and ii) sub-centroid based classification
to supervise the learning of representations (3.13). Through clustering, DNC explores
the underlying data distribution of each class, and generates informative sub-centroids
by aggregating statistics from data clusters. This automatic sub-class discovery process
also shares a similar philosophy with recent clustering-based unsupervised representation
learning methods [86, 236–243]. However, DNC operates in a class-wise manner, utilizing
class labels. In this way, DNC optimizes the representation by adjusting the alignment
between sub-centroids and data samples. The enhanced representation, in turn, helps
identify more informative sub-centroids, benefiting classification performance. As such,
DNC conducts unsupervised sub-class pattern discovery during supervised representation
learning, setting it apart from most current visual recognition models.

As the latent representation f continually evolves during training, it is essential to
keep class sub-centroids synchronized. This requires performing class-wise clustering on all
training data after each batch update. However, this step can be computational expensive,
especially on large-scale datasets, even considering the high efficiency of the Sinkhorn-
Knopp iteration [85] based clustering presented in (3.12). To avoid the costly offline sub-
centroid estimation, we implement momentum update and online clustering. Specifically,
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at each training iteration, we perform class-wise clustering on the current batch and update
each sub-centroid as:

pc
k←µpc

k + (1− µ)x̄c
k. (3.14)

Here µ ∈ [0, 1] is a momentum coefficient, and x̄c
k ∈ Rd is the mean feature vector of

data assigned to (c, k)-cluster in current batch. This ensures that the sub-centroids remain
updated with parameter changes. Although this batch-wise clustering is effective in most
cases, it may not scale well to a large number of classes. For example, when training
on ImageNet [40] with 1, 000 classes using a batch size of 256, not all classes/clusters are
visited in a single batch (at most 256 classes are visited). To mitigate this, we store features
from several prior batches in a memory, and perform clustering on both the memory and
the current batch. Overall, DNC can be trained by gradient backpropagation in a small-
batch setting with minimal delay (∼5% training overhead on ImageNet).

In the context of point cloud segmentation, we encounter a prevalent class imbalance
issue, a phenomenon not typically shown in image classification and semantic segmenta-
tion. This often leads to sub-optimal sub-centroids, especially for rare classes. To counter
this, we propose a calibration strategy with a learnable factor, capable of assessing the
representational capacity of each class sub-centroid. Specifically, the calibration factor for
class c, denoted as zc, is defined by a rectified sigmoid function that adjusts the distance
between the sub-centroids matrices P c and the point embedding feature matrices Xc:

zc = 1
NcK

∑Nc

i=1

∑K

k=1
1

1 + exp((xc
i )⊤pc

k) , zc ∈ [0, 1]. (3.15)

Thus, the modified Eq. 3.14 with calibration turns into:

pc
k ← µpc

k + zc(1− µ)x̄c
k, (3.16)

in point cloud segmentation settings.
Versatility.DNCisageneral framework that canbeeffortlessly integrated intoanyparametric
classifier based DNN with minimal architectural change by simply replacing the parametric
softmax layer. However, DNC changes the classification decision-making mode, reforms the
training regime, and makes the reasoning process more transparent, without slowing down
the inference speed. DNC can be seamlessly applied to various visual recognition tasks.
Transferability. As a nonparametric scheme, DNC can handle an arbitrary number of
classes with fixed output dimensionality (d); all the knowledge learnt on a source task (e.g.,
ImageNet classification with 1K classes) are stored as a fixed number of parameters in f ,
and thus can be completely transferred to a new task (e.g., Cityscapes [43] segmentation
with 19 classes), under the “pre-training and fine-tuning” paradigm. Under a similar setting,
its parametric counterpart has to discard around 2M parameters during transfer learning
(d=2, 048 when using ResNet101 [68]).
Ad-hoc Explainability. DNC is a transparent classifier containing a built-in case-based
reasoning process, as the sub-centroids are summarized from real observations and are
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Figure 3.3: Diffusion Visual Programmer (DVP) overview. Our proposed frame-
work contains two core modules: is the condition-flexible diffusion model (see §3.2.2),
augmented by the integration of instance normalization (see Fig. 3.4), aimed to achieve a
more generalized approach to translation; stands for visual programming (see §3.2.2),
fulfilled by a series of off-the-shelf operations (e.g., Segment operation for precise RoI seg-
mentation). The overall neuro-symbolic design enables in-context reasoning for context-
free editing. We also enjoy enhanced controllability and explainability by intuitively ex-
plicit symbols (e.g., [Prompt], [RoI object], [Scenario], [Translated object]) at each inter-
mediate stage, facilitating human interpretation, comprehension and modification.

referenced during classification. So far we have investigated the scenario where the sub-
centroids are the mean feature vectors of several training samples with similar patterns.
When we further constrain the sub-centroids to be elements of the training set (i.e.,
representative training images), DNC naturally portrays human-tangible explanations for
each prediction. The explanations stay true to the internal decision mode and do not
create a post-hoc justification.

3.2.2 Image Translation as Diffusion Visual Programmer (DVP)

In this part, we present Diffusion Visual Programmer (DVP), a visual programming
pipeline for image translation (see Fig. 3.3). Our framework decomposes image translation
into two distinct sub-objectives: ① style transfer, which involves translating RoIs within
images while maintaining contextual coherence; and ② context-free editing, which allows
for unrestricted yet judicious modifications. To address①, we introduce the Condition-
flexible diffusion model, designed for autonomous, non-human-intervened translation (§3.2.2).
For ②, we propose In-context Visual Programming, which breaks down high-level concepts
into human-understandable symbols, enabling adaptable manipulation (§3.2.2). We elab-
orate on our techniques below.
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Condition-flexible Diffusion Model

Preliminaries. Text-guided diffusion models convert a stochastic noise vector zt and a
textual prompt embedding P into an output image z0 that aligns with the specified con-
ditioning prompt. To accomplish step-by-step noise reduction, the model ϵθ is calibrated
to estimate synthetic noise as:

min
θ
Ez0,ϵ∼N(0,I),t∼Uniform(1,T )||ϵ− ϵθ(zt, t,P)||2, (3.17)

where P represents the conditioning prompt embedding and zt is a hidden layer perturbed
by noise, which is introduced to the original sample data z0 based on the timestamp t.
During inference, the model progressively reduces the noise over T steps starting from a
noise vector zT . To accurately reconstruct a given real image, the deterministic diffusion
model sampling [100] is defined as:

zt−1 =
√
αt−1
αt

zt +
(√

1
αt−1

− 1−
√

1
αt
− 1

)
· ϵθ(zt, t,P), (3.18)

where αt := ∏t
i=1(1 − βi), and βi ∈ (0, 1) is a hyper-parameter for the noise schedule.

Inspired by [106], we generate spatial attention maps corresponding to each textual to-
ken. Specifically, a cross-attention mechanism is incorporated for controllability during
translation, facilitating interaction between the image and prompt during noise prediction:

ϵθ(zt, t,P) = Softmax(lQ(ϕ(zt))lK(ψ(P))√
d

)lV (ψ(P)), (3.19)

where lQ, lK , lV are learned linear projections. ϕ(zt) is the spatial features of the noisy
image, and ψ(P) stands for the textual embedding.
Instance Normalization Guidance. Text-guided generation often encounters the chal-
lenge of magnifying the influence of the conditioning text during the generation pro-
cess [100]. To address this, [96] proposed a classifier-free guidance approach. In this
method, an initial prediction is generated without any specific conditioning. This uncon-
ditioned output, modulated by the guidance scale parameter w, is then linearly combined
with predictions influenced by the conditioning text scaled by (1 − w). Formally, given
∅ = ψ(·) as the feature representation from the null text, we have:

ϵ̃θ(zt, t,P,∅) = w · ϵθ(zt, t,P) + (1− w) · ϵθ(zt, t,∅). (3.20)

In practice, we observe that the scaling factor w is extremely sensitive. Even slight vari-
ations in its value can significantly impact the final images. This necessity for meticu-
lous fine-tuning on a per-image basis renders it impractical for widespread adoption in
real-world applications. In the light of this view, we introduce the concept of adaptive
distribution shift for the condition-flexible translation. Specifically, we examine the roles
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of two types of embeddings: the conditional prediction, ϵθ(zt, t,P), and the unconditional
noise prediction, ϵθ(zt, t,∅). We propose that these embeddings require distinct treatment,
moving beyond a rudimentary linear combination from Eq. 3.20.

In the works of [368, 369], it is suggested that the success of instance normalization
in style transfer is due to its resilience to variations in the content image. Similarly,
classifier-free guidance [96] employs a similar form by merging stable predictions from a
conditional embedding with those from a concurrently trained unconditional embedding.

Figure 3.4: Instance Normalization
Guidance.

We, therefore, employ instance normaliza-
tion, which aligns effectively with the in-
tended translation direction by mitigating
the influence of unconditional embeddings
(see Fig. 3.4). This ensures that the diffu-
sion model remains strictly conditioned on
the prompt, thereby eliminating any un-
wanted variations. The implementation of
instance normalization not only improves translation performance but also strengthens
the model’s ability to manage variations from the input distribution, regardless of po-
tential discrepancies in unconditional distributions (see Fig. 4.7). Formally, the instance
normalization guidance is:

ϵ̃θ(zt, t,P,∅) = σ(ϵθ(zt, t,∅))conv(ϵθ(zt, t,∅)− µ(ϵθ(zt, t,P))
σ(ϵθ(zt, t,P)) ) + µ(ϵθ(zt, t,∅)), (3.21)

Intuitively, the network ϵ̃θ is rescaled by σ and shifted by µ, where µ and σ represent
the mean of the unconditional embedding and the standard deviation of the conditional
embedding, respectively. Since both µ and σ are known values derived from predictions,
this approach allows us to avoid operations influenced by human intervention for further
tuning of unconditional textual embeddings.

In-context Visual Programming

Condition-flexible diffusion model in §3.2.2 offers a generalized solution for image transla-
tion, addressing the “what” aspect as the neural embodiment in our proposed framework.
Additionally, we introduce in-context visual programming, which employs a symbolic rea-
soning process to bridge the understanding of visual concepts and text instructions, effec-
tively tackling the concept of “where” (see Fig. 4.8). By decomposing the rich complexity
of high-dimensional concepts into simpler, low-dimensional symbolic forms, we enable a
cascade of logical operations. This approach fosters the development of nuanced, in-
context reasoning capabilities. The core components are articulated below.
Symbols. Our framework generates intermediate steps, including [Prompt], [RoI object],
and [Scenario]. These intermediary outcomes enhance transparency and explainability,
allowing for human interpretation, understanding, and modifications. Additionally, these
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steps can be viewed as symbols [370], which serve as low-dimensional data that enable
structured operations. This approach bridges the gap between raw data-driven methods
and symbolic reasoning.
Operations. We carefully grounded five operations, {GPlan, PG, Segment, Inpaint, PM},
in in-context visual programming (see Fig. 3.3). We first leverage the capabilities of the
advanced language model GPT-4 [371] as an AI agent for perceiving, planning, and gen-
erating program directives [372,373]. This component, named as the GPT-driven Planner
module, manages the creation of programs based on a few examples of similar instructions
and initiates the necessary operations through the GPlan function during the reason-
ing process. All programs are constructed following first-order logic principles, enabling
the articulation of more complex statements than those possible with propositional logic
alone [99]. Specifically, these programs feature a hierarchical structure of symbolic, func-
tional operations (e.g., PG, Segment, Inpaint, PM), directing collections of modules such as
the Prompter, RoI Segmenter, Inpainter, and Position Manipulator at each phase. These
operations can be executed in parallel, allowing for flexible combinations and systemic
controllability via program execution (see Fig. 4.9). The Prompter module uses GPT-4 to
generate detailed descriptions of any given input image through the PG operation. This ca-
pability extends beyond human-annotated images, allowing for random unlabeled images
as inputs and thus broadening application scenarios and enhancing data efficiency. The
RoI Segmenter module, leveraging a pre-trained Mask2former [374], performs flexible RoI
segmentation, aligning with the Segment operation. The Inpainter module operates based
on the logic of ¬RoI, facilitating the completion of foreground or background elements via
stable diffusion v1.5 [17, 375], and is associated with the Inpaint operation. Addition-
ally, the Position Manipulator module categorizes rational concepts (e.g., position, scale)
and translates programmed human language instructions into a domain-specific language
(DSL) designed for positioning tasks. The DSL includes fundamental operations such as
Enlarge, Shrink, Left, Right, Up, and Down. These intuitive commands share a common
input format and output interface, ensuring programming flexibility (see Fig. 4.9).
Program Execution. The programs are managed by the Compiler [30], which estab-
lishes a mapping between variables and values. It processes the program step-by-step,
executing the appropriate operations line-by-line. At each stage of execution, the pro-
gram activates the specified operation, producing intermediate outputs (e.g., [prompts],
[RoI object]) in human-interpretable symbols. This approach enhances the system’s ex-
plainability, allowing for direct visual evaluations of the outputs. Users can choose to
either repeat the current step or proceed to the next, thereby improving the system’s
controllability and usability (see §4.3.2).
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Figure 3.5: Overview of our E2VPT framework. Under the pretrain-then-finetune
paradigm, only the prompts in the transformer’s input and backbone (§3.3.1), are updated
during the fine-tuning process, while all other components remain frozen. We further
introduce pruning (§3.3.1) at two levels of granularity (i.e., token-wise and segment-wise)
in (d) to eliminate unfavorable input prompts during rewinding.

3.3 Carbon-efficient Visual Intelligence System

3.3.1 An Efficient and Effective Approach for Visual Prompt Tuning
(E2VPT)

We present E2VPT, an innovative visual prompt tuning approach for the effective and
efficient fine-tuning of large-scale transformer-based models. The problem definition and
relevant notations are introduced in §3.3.1. In §3.3.1, we discuss effective prompt tuning,
focusing on the design of visual and key-value prompts. This is followed by a detailed
explanation of efficient prompt pruning in §3.3.1. The overall framework is illustrated in
Fig. 3.5.

Problem Definition

In this section, we define the problem of E2VPT and introduce the relevant notations. We
start with a backbone vision transformer model T, pretrained on a large set of data
and tasks. The input to the vision transformer is a sequence of image patches I =
{I1, I2, . . . , Im}, wherem is the total number of image patches. Each patch is projected into
a d-dimensional embedding with positional encoding, denoted as E = {Ej | 1 ≤ j ≤ m},
where Ej = Emb(Ij). The vision transformer T comprises N identical transformer layers,
represented as:

Z1 = L1(E)
Zi = Li(Zi−1) i = 2, 3, . . . , N

(3.22)
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Each transformer layer consists of a stack comprising a multi-head self-attention (MSA)
mechanism and a feed-forward network (FFN):

L(·) = FFN ( MSA (·) ) (3.23)

For a new vision task, the objective is to fine-tune a model T̂ that performs well on the
task while minimizing the number of parameters that need to be tuned. In the context of
visual prompt tuning, T̂={T,P} comprises a frozen backbone T and trainable prompts
P, which include only a small number of tunable parameters.

Effective Prompting

Most existing prompt tuning methods focus on tuning a set of visual prompts by prepend-
ing them to the input sequence in transformer layers, largely ignoring the internal archi-
tecture of the transformers. To enhance the effectiveness of prompt tuning and achieve
optimal fine-tuning performance, we propose a novel approach that integrates key-value
prompts (PK and PV ) along with the traditional input visual prompts (PI) within our
visual prompt tuning framework. In our approach, input visual prompts are added to the
input sequence of each encoder layer to learn representations for the new task. Concur-
rently, key-value prompts are concatenated with the key and value parameter matrices in
the self-attention module, enabling the model to capture new attention patterns from the
data.
Visual Prompts. Visual prompts are a set of d-dimensional embedding vectors that
match the dimensionality of the input visual tokens. These prompts are prepended to the
input sequence at each transformer encoder layer, allowing them to interact with all input
tokens. Similar to prompt tokens in prompt tuning methods [23,306], visual prompts learn
task-specific embeddings to guide the model in performing new tasks. Formally, these
visual prompts are defined as PI = {P 1

I , P
2
I , . . . , P

N
I }, where P i

I denotes the learnable
visual prompts in the ith encoder layer, and N is the total number of layers. The encoder
layers can then be represented as:

Z1 = L1(P 1
I , E)

Zi = Li(P i
I , Z

i−1) i = 2, 3, . . . , N
(3.24)

where Zi denotes the contextual embeddings computed by the ith encoder layer. Different
colors are used to distinguish between trainable and frozen parameters. The embeddings
for the input image patches E are initialized using a frozen Emb projection derived from
the backbone.
Key-Value Prompts.

Visual prompts are effective for learning knowledge about new tasks, but they fall
short in guiding information interaction within transformer encoder layers. This limitation
arises because, during fine-tuning, the image distribution can differ significantly from the
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examples used for pretraining the backbone model. Consequently, it is essential to enhance
the model’s ability to capture new information from the fine-tuning data and to facilitate
more effective attention among input tokens to learn new patterns.

To this end, we introduce a novel set of key-value prompts, PK and PV , incorporated
into the attention module within each encoder layer (see Fig. 3.5(a)). These key-value
prompts are small matrices with only a few columns, but they share the same number of
rows as the key and value matrices in the original attention module. The key and value
matrices are concatenated with their corresponding PK and PV prompts, respectively, to
perform new attention computations. This process is defined as:

L(·) = FFN (MSA (·))

MSA(·) = concat(softmax(QhK
′
h

T

√
d

)V ′
h)

(3.25)

where FFN is the feed-forward network and MSA is the multi-head attention inside the
encoder layer. h represents the hth head. K ′ and V ′ are the new key and value embedding
matrices defined as:

K
′ = concat(K, PK), V

′ = concat(V , PV ) (3.26)

where K and V represent the original key and value matrices in the backbone. The
key-value prompts facilitate the model’s adaptation to new data by providing additional
guidance. In our implementation, we extend this approach by enabling parameter sharing
of the PK and PV prompts within each transformer layer, rather than tuning separate
learnable vectors for each instance. Our motivation is twofold: First, our experimental
results indicate that using shared prompts consistently enhances fine-tuning performance
across various instances. Second, shared prompt vectors significantly reduce the number
of parameters in the learnable transformer component by half, increasing parameter effi-
ciency. We will further discuss the exploration of prompt locations, specifically whether
they should be placed before or after K and V .

It is important to note that the query matrix Q is another crucial component in the
self-attention mechanism. However, additional prompting on Q is not desirable for two
reasons: First, prompting on Q is akin to prepending on K for computing attention scores
between each pair of Q and K. Therefore, prompting on both Q and K is redundant.
Second, alterations in Q impact the output shape of the attention map, necessitating an
additional linear projection to match dimensions in the subsequent layer, which is not
feasible under a parameter-efficient design.

Efficient Prompting

Our approach to effective prompting seeks to enhance the performance of fine-tuned mod-
els. However, a pertinent question arises: Can we reduce the number of tunable prompts
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without compromising model performance? The lottery ticket hypothesis (LTH) [131,132]
suggests that for a given task, there exists a sub-network capable of achieving the same
test performance as the original over-parameterized network, without the need for redun-
dant weights. Inspired by this hypothesis, we conducted an experiment where we masked
different visual prompts. Our findings revealed that various prompts have distinct effects
on model performance, with some even negatively impacting it. This observation aligns
with prior research [136,307].

Based on our findings, we propose a prompt pruning method for visual prompts. The
primary objective of this method is to retain the most influential prompts while eliminating
redundant or unnecessary ones. By removing less important prompts, we can significantly
enhance the efficiency of prompt tuning without compromising performance. To achieve
this goal, we design a cascade pruning strategy that operates at two levels of granularity:
token-wise pruning and segment-wise pruning (see Fig. 3.5(d)). Token-wise pruning first
identifies and removes the least important visual prompts. Following this, segment-wise
pruning divides each remaining prompt into multiple segments and filters out the negative
segments. By jointly reducing the parameter usage in learnable visual prompts, our two-
level pruning approach creates soft-filtered prompts that can be re-trained during the
rewinding stage.
Token-wise Pruning. We introduce a learnable mask variable ρ = {ρ1, ρ2, . . . , ρM} (i.e.,
M is the length of visual prompts) and associate it with the input visual prompts in each
transformer layer. Here ρk ∈ {0, 1}, where 0 means the corresponding learnable input
prompt is pruned (i.e., “masked” with zero value). Then the masked version of the visual
prompts updates into P̃k = ρk ·Pk. In order to determine the pruning position, we calculate
the importance score [131, 307] of each prompt token and eliminate those positions with
lowest scores. The importance score is defined as the anticipated sensitivity of the model
to the mask variables ρk [322]:

SPk
= Ex∼Dx

∣∣∣∣∂L(x)
∂ρk

∣∣∣∣ (3.27)

where L is the loss function, Dx is the training data distribution [322]. The importance
score assigned to each visual prompt indicates its contribution to the fine-tuning perfor-
mance. A low score signifies that the prompt has minimal or potentially negative impact
on the fine-tuning process. In contrast, a high importance score denotes that the prompt
is valuable and significantly enhances the fine-tuning process.
Segment-wise Pruning. We extend our investigation to segment-wise pruning to elim-
inate ineffective segments within each prompt. Initially, the embedding of each prompt
token is divided equally into R parts, with each part treated as a distinct unit subject
to joint optimization. Similar to token-wise pruning, a mask variable is assigned to each
segment within the prompt token. Segments with low importance scores are then filtered
out.
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Figure 3.6: Overview of different approaches on knowledge distillation. (a) Traditional
distillation methods directly distill the teacher to the student (i.e., without considering
additional teacher-assistant models). (b) Multi-step distillation methods first distill the
teacher to a teacher-assistant (requires a large search), which is then further distilled to the
student. (c) Manual Multi-step Distillation (MMD) effectively identifies a set of teacher-
assistants with different scales and performs multi-step distillation. However, MMD still
requires separate distillations with different-scale teacher assistants. (d) Automatic Multi-
step Distillation (AMD) efficiently and effectively selects the optimal teacher-assistant
through one single optimization, which include three stages: Structural Pruning, Joint
Optimization and Optimal Selection.

Rewinding. Following the execution of the two-level cascade pruning, the weight rewind-
ing phase centers on re-training the softly filtered prompt tokens. This process entails
ranking the importance scores for each layer obtained during pruning and assigning a
value of 0 to the corresponding mask variables for tokens with relatively low importance
scores. Subsequently, the softly filtered input prompts are re-trained alongside other learn-
able parameters, utilizing the original learning rate and weight decay settings during the
fine-tuning.

3.3.2 Automatic Multi-step Distillation of Large-scale Vision Models
(AMD)

In this section, we begin by formally defining the multi-step distillation problems and
establishing the necessary notations. We then introduce the Negative Performance-Scale
Derivative (NPSD) metric, which serves as a criterion for evaluating the optimality of
intermediate teacher-assistant models. Our preliminary study illustrates the efficacy of
NPSD in assessing teacher-assistant performance. Following this, we present our proposed
automatic multi-step knowledge distillation approach — AMD.
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Problem Formulation

Within the multi-step distillation paradigm (see Fig. 3.6), the primary objective is to
identify an optimal teaching-assistant, denoted as TA(Sta, Pta), to facilitate the distilla-
tion of knowledge from a fully-scaled teacher model, T (St, Pt) where St = 100%, to a
student model, S(Ss, Ps). Here P and S represent the performance and scale of the mod-
els, respectively. This process aims to enhance the student model’s performance, Ps, by
leveraging the appropriate teaching assistant (i.e., T → TA → S). In practice, the scale
Sta and performance Pta of the teacher assistant must fall within two boundaries: for
scalability, Ss < Sta < St, and for performance, Ps < Pta < Pt.

Negative Performance-Scale Derivative

In this work, we propose a method to identify an optimal teacher-assistant for multi-
step distillation by balancing performance and scale. Finding an appropriate objective
function to simultaneously optimize these factors is challenging. Ideally, we seek a teacher-
assistant with maximum performance and minimal scale. However, this scenario is often
impractical. As the scale of the teacher-assistant approaches that of the student model, its
performance typically decreases, making complete knowledge transfer difficult. Conversely,
a larger-scale teacher-assistant may still have a significant scale gap with the student
model, resulting in a notable performance drop during distillation. Therefore, it is essential
to find a teacher-assistant that achieves an optimal balance between performance and scale.

To address this challenge, we introduce the Negative Performance-Scale Derivative
(NPSD) as our optimization objective. NPSD evaluates the benefits, assessing how closely
the teacher-assistant’s scale matches that of the student, against the costs, considering
the associated performance drop. A higher NPSD indicates a more favorable benefit-cost
ratio. Our preliminary studies confirm that NPSD positively correlates with downstream
student performance across various tasks and backbones (refer to Figure 1.5). Based on
this finding, our goal is to maximize NPSD while maintaining manageable time complexity.

Definition of NPSD. Formally, NPSD stands for the negative derivation of perfor-
mance to scale, which is:

NPSDta = − Pt − Pta

St − Sta
(3.28)

where t and ta refer to the teacher and teacher-assistant, respectively. Pt and Pta indicate
the performances of these models, while St and Sta denote their corresponding model
scales. Importantly, for a given teacher model, Pt and St are constants. Intuitively,
a teacher-assistant that achieves high performance with a small scale results in a high
NPSD value.
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Preliminary Results. To evaluate the effectiveness of NPSD as an optimality measure,
we conducted multi-step distillation experiments on CIFAR-10 and CIFAR-100 [27] using
various teacher models. These teacher models are distilled into a 10% student through
teacher-assistants [26] at different scales ranging from 10% to 90% in 10% increments. The
architecture of each teacher-assistant model is derived through structural pruning [319,
322], which involved pruning the least important parameters based on their importance
scores from the teacher model.

The results for ViT-Tiny on CIFAR-10 and ViT-Base on CIFAR-100 are presented
in Fig. 1.5. Notably, as the size of the teacher-assistant approaches that of the student,
its performance steadily declines. Conversely, the performance of students distilled from
different teacher-assistants fluctuates based on the scales of the teacher-assistants. Addi-
tionally, we observe a positive correlation between the NPSD measure and the performance
of the student models. The highest performance is achieved when students are distilled
with teacher-assistants having the maximum NPSD values, demonstrating the effectiveness
of the NPSD metric.

Automatic Multi-step Distillation

The objective mentioned above is thus transformed into an optimization problem, where
the goal is to identify the optimal teacher-assistant with the highest NPSDta value. How-
ever, identifying an optimal teacher-assistant presents several significant challenges. First,
the number of potential teacher-assistants is theoretically infinite due to the continuous
nature of the search space. Even within a fixed-scale model, there can be substantial
architectural variations. Second, the computational expense of identifying the highest-
performing teacher-assistants at every scale becomes prohibitive when performing multi-
step distillation for each one. Lastly, selecting the best teacher-assistant from among all
candidates adds another layer of complexity to the process.

To tackle these challenges, we break the problem down into three distinct stages. In the
Structural Pruning stage, we generate a series of candidate teacher-assistants at various
scales using gridding and pruning techniques. Next, we introduce a Joint Optimization
framework to identify the highest-performing teacher-assistants across all scales within a
single optimization process. Finally, in the Optimal Selection stage, we select the best
teacher-assistant based on the highest NPSD score.

Structural Pruning. We utilize gridding and pruning to construct teacher-assistants
at various scales. Initially, gridding is introduced to limit the number of candidates by
converting a continuous search space into a discrete one. Ideally, generating candidates at
every possible scale would be necessary to continuously find the “perfect” teacher-assistant.
However, this approach is impractical (due to infinite subdivisions) and inefficient (as
it would require optimizing numerous teacher assistants simultaneously). Therefore, we
evenly divide the scales into m parts, with the gap between each candidate defined as
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δ = St−Ss
m , resulting in m candidates between the teacher and student. Next, to determine

the architecture of each candidate at different scales, various pruning techniques can be
applied. In this study, we adopt the structural pruning method [319, 322] due to its well-
documented advantages in knowledge distillation [376]. This method gradually prunes the
network by removing the least important parameters based on their importance scores,
which are obtained by introducing learnable mask variables during the teacher’s inference
stage. The resulting teacher-assistant candidates are represented as {Mi | i = 1 to m}.

Joint Optimization. The straightforward approach to identifying the optimal teacher-
assistant involves maximizing the performance of each candidate and then using NPSD
to evaluate their optimality. However, this process remains computationally intensive
due to the large number of candidates. To further reduce computational complexity, we
investigate parameter sharing among teacher-assistant candidates across different scales by
leveraging the incremental property inherent in candidates derived from structural pruning.
The incremental property asserts that for two candidates, Mi and Mj , if Si < Sj , the
parameters of Mi are a subset of those in Mj . This allows a larger candidate to be
transformed into a smaller one through continuous pruning of less significant parameters,
thus enabling efficient parameter sharing across different candidates.

By utilizing parameter sharing, the total number of parameters to be optimized is
reduced to that of the largest candidate model. We therefore develop a joint optimization
framework that simultaneously handles the distillations from the teacher to all candidate
models in a single run. This approach effectively consolidates the memory requirements of
all candidates to match that of the largest model. Additionally, the computational costs
are significantly lowered due to the parameter-sharing mechanism. The overall objective of
this optimization includes the cross-entropy loss, logit-based loss, and feature-based loss:

L =
m∑

i=1
(Lce(T ,Mi) + αLlogit(T ,Mi) + βLfeat(T ,Mi)) (3.29)

where Lce=CE(yT , yM ) is the cross-entropy loss, Llogit=KL[softmax( lt

γ )||Softmax( ls

γ )] is
the kullback-leibler divergence loss [377,378] measured between the softened output logits,
and Lfeat = MSE(HT , HM ) is the mean squared error measured between the last layer of
hidden states. y, l, γ, H are the labels, output logits, temperature value, and last layer
of hidden states, respectively.

Optimal Selection. The optimal teacher-assistant is then chosen based on the highest
NPSD value among all candidates. Subsequently, an additional distillation is performed
between the selected teacher-assistant and the student, adhering to the training objective
outlined in Eq. 3.29. It is worth noting that, in the domain of NLP, there is substan-
tial research [319, 379] that defines the training objective through empirical analysis of
training curves and hyper-parameter adjustments. In contrast, our method emphasizes
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the relationship between the teacher and teacher-assistant, allowing for the examination
of robustness across a wide range of datasets and models. This approach enhances our
understanding of knowledge distillation dynamics, offering nuanced insights into the pro-
cess.



Chapter 4

Results

4.1 Experiment for ProtoFormer

We comprehensively evaluate the performance and coherence of our proposed ProtoFormer
on two key motion tasks: optical flow (see §4.1.1) and scene depth estimation (see §4.1.2).
By striving for a unified solution for motion-related tasks, we highlight the advantages of
this integration while demonstrating superior performance.

4.1.1 Experiments on Optical Flow
Quantitative Results. Table 4.1 presents the evaluation results of our model on the
Sintel and KITTI datasets. Under the ‘C+T’ setting, ProtoFormer demonstrates its gen-
eralization capability, achieving scores of 1.04 and 2.43 on the clean and final passes of
Sintel, respectively, surpassing the recently popular CRAFT [157] by 0.23 and 0.36. Fol-
lowing training in the mixed ‘C+T+S+K+H’ setting, our prototype-based model attains
scores of 1.06 and 2.07 on the clean and final passes of Sintel, and 4.35 F1-epe on KITTI.
Qualitative Results. Figure 4.1 presents qualitative results on the Sintel flow dataset.
ProtoFormer demonstrates superior performance by capturing more global and finer details
in both object and motion boundaries, without being affected by shadows and textureless
surfaces. In the first and fourth examples, our model excels at recovering full shapes and
intricate details, e.g., bamboo and weapons, contrasting sharply with other methods that
struggle with clear predictions due to occlusions and variations in illumination. In the
second and third examples, ProtoFormer consistently estimates occluded and textureless
regions, such as the backpack and birds in the sky, with significant accuracy. The red-
highlighted regions prove ProtoFormer’s effectiveness in object clustering and mitigating
motion ambiguity.

59
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Table 4.1: Quantitative results on standard Sintel and KITTI flow benchmarks. ‘A’
denotes the Autoflow dataset; ‘C + T’ denotes training on the FlyingChairs and FlyingThings
datasets only; ‘C + T + S + K + H’ fine-tunes on a combination of Sintel, KITTI, and HD1K
training sets. Error metrics are lower is better with “↓”, and accuracy metrics are higher is better
with “↑”. Same for Table 4.2.

Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)Training Method Clean ↓ Final ↓ F1-epe ↓ F1-all ↓ Clean ↓ Final ↓ F1-all ↓

A Perceiver IO [380] 1.81 2.42 4.98 - - - -
RAFT-A [381] 1.95 2.57 4.23 - - - -

C+T

RAFT [9] 1.43 2.71 5.04 17.4 - - -
Separable Flow [382] 1.30 2.59 4.60 15.9 - - -
GMA [383] 1.30 2.74 4.69 17.1 - - -
AGFlow [384] 1.31 2.69 4.82 17.0 - - -
KPA-Flow [385] 1.28 2.68 4.46 15.9 - - -
DIP [386] 1.30 2.82 4.29 13.7 - - -
GMFlowNet [387] 1.14 2.71 4.24 15.4 - - -
GMFlow [388] 1.08 2.48 7.77 23.4 - - -
CRAFT [157] 1.27 2.79 4.88 17.5 - - -
FlowFormer [10] 1.01 2.40 4.09 14.7 - - -
SKFlow [389] 1.22 2.46 4.27 15.5 - - -
MatchFlow [28] 1.14 2.71 4.19 13.6 - - -
ProtoFormer (Ours) 1.04 2.43 4.08 14.6 - - -

C+T+S+K+H

RAFT [9] 0.76 1.22 0.63 1.5 1.61 2.86 5.10
RAFT-A [381] - - - - 2.01 3.14 4.78
Separable Flow [382] 0.69 1.10 0.69 1.60 1.50 2.67 4.64
GMA [383] 0.62 1.06 0.57 1.2 1.39 2.47 5.15
AGFlow [384] 0.65 1.07 0.58 1.2 1.43 2.47 4.89
KPA-Flow [385] 0.60 1.02 0.52 1.1 1.35 2.36 4.60
DIP [386] - - - - 1.44 2.83 4.21
GMFlowNet [387] 0.59 0.91 0.64 1.51 1.39 2.65 4.79
GMFlow [388] - - - - 1.74 2.90 9.32
CRAFT [157] 0.60 1.06 0.58 1.34 1.45 2.42 4.79
Flowformer [10] 0.48 0.74 0.53 1.11 1.20 2.12 4.68
SKFlow [389] 0.52 0.78 0.51 0.94 1.28 2.23 4.87
MatchFlow [28] 0.51 0.81 0.59 1.3 1.33 2.64 4.72
ProtoFormer (Ours) 0.48 0.69 0.50 1.09 1.06 2.07 4.35

4.1.2 Experiments on Scene Depth

Quantitative Results. Table 4.2 presents the test results on the Sintel and KITTI
datasets. ProtoFormer outperforms others on most error and accuracy metrics, demon-
strating its robust feature representation and generalization capabilities across different
scenarios. Compared to recent directly supervised depth estimation methods [13, 35, 37],
ProtoFormer shows significantly superior performance, thanks to the integration of pro-
totypical learning and cross-attention architecture. Remarkably, even without using ad-
ditional constraints and priors, such as surface normal and piecewise planarity [14, 38],
our model surpasses concurrent P3Depth in error reduction on KITTI by a substantial
margin. Moreover, our approach also outperforms methods utilizing self-supervised consis-
tency and strategies [36,390]. This highlights the effectiveness of our model, which exhibits
exceptional adaptability and learning capacity, making it highly suitable for fine-tuning
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Figure 4.1: Qualitative results on the Sintel. The red boxes highlight the regions com-
pared. Matchflow [28] appears blurry and ambiguous on textureless and occluded objects, while
Flowformer [10] fails to recover complete and detailed information. Ours can estimate clear and
complete flow motion, which is closer to ground truth.

across a broad range of motion-related tasks.

Table 4.2: Quantitative results on Sintel and KITTI depth datasets. With both test
data unseen by the model, we can achieve leading performance over state-of-the-art methods
[13,14,35–38].

Sintel KITTIMethod Abs Rel ↓ RMSE ↓ Sq Rel ↓ Abs Rel ↓ RMSE ↓ δ1 ↑
Eigen et al. 0.797 0.834 0.703 0.203 6.307 0.702
Godard et al. - - - 0.114 4.935 0.861
Fu et al. - - - 0.072 2.727 0.932
Yin et al. 0.746 0.611 0.652 0.072 3.258 0.938
AdaBins 0.730 0.572 0.647 0.067 2.960 0.949
P3Depth 0.653 0.396 0.571 0.071 2.842 0.953
Ours 0.594 0.486 0.538 0.062 2.716 0.949

Qualitative Results. Figure 4.2 presents a qualitative comparison of depth estimation
on the KITTI Eigen depth datasets. ProtoFormer exhibits superior capability in delin-
eating object surface contours, especially in dynamic scenarios involving pedestrians and
vehicles, as well as capturing fine details of objects like traffic signs and light poles. For
instance, in Sample 1 and Sample 3, ProtoFormer provides more consistent and complete
depth estimations on moving pedestrians and vehicles, offering clearer boundaries com-
pared to P3Depth [14] and AdaBins [13]. In Samples 2, 3, and 4, our method effectively
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Figure 4.2: Qualitative depth comparison results on the KITTI. The red boxes indicate the
highlighted regions. P3Depth [14] and AdaBins [13] have limited receptive fields and do not consider
conceptual object-level groupings, thus producing discontinuous and ambiguous predictions. While
ours can estimate consistent and sharp depths, which is closer to ground truth.

Table 4.3: A set of ablative studies on optical flow (see §4.1.3). The best performances are
marked in bold.

Algorithm Component #Params Sintel clean Sintel final
Base 9.63M 0.55 0.81

+ Cross-Attention Prototyping 11.57M 0.51 0.74
+ Latent Synchronization 10.26M 0.53 0.77

ProtoFormer (All included) 11.90M 0.48 0.69

(a) Key Component Analysis

Variant Prototype Updating Strategy #Params Sintel clean Sintel final
Cosine Similarity 10.28M 0.51 0.75
Vanilla Cross-Attention [172] 14.88M 0.50 0.73
Criss Cross-Attention [391] 14.56M 0.50 0.72
K-Means [392] 11.81M 0.49 0.71
Cross-Attention Prototyping (Eq. 3.5) 11.90M 0.48 0.69

(b) Cross-Attention Prototyping

#Iterations (N) #Params Sintel clean Sintel final
1

11.90M

0.52 0.75
2 0.49 0.71
3 0.48 0.69
4 0.48 0.68

(c) Number of Iterations

#Prototypes (K) #Params Sintel clean Sintel final
10 8.95M 0.53 0.78
50 9.78M 0.51 0.73

100 11.90M 0.48 0.69
200 14.21M 0.49 0.71

(d) Number of Prototypes

Latent Synchronization #Params Sintel clean Sintel final
None 11.27M 0.51 0.74
Vanilla FC Layer 11.64M 0.50 0.73
FC w/ Similarity [393] 11.76M 0.49 0.71
Ours (Eq. 3.6) 11.90M 0.48 0.69

(e) Latent Synchronization

distinguishes the plant stand and traffic poles from the noisy and complex backgrounds,
highlighting its proficiency in such environments. These results demonstrate the advan-
tages of incorporating prototype learning into depth estimation, allowing for geometric
consistency and improved handling of motion ambiguity.

4.1.3 Diagnostic Experiments

This section evaluates the key components and configurations of ProtoFormer.
Key Components Analysis. We study the key components of ProtoFormer: Cross-
Attention Prototyping (§3.1.1) and Latent Synchronization (§3.1.1). We designed a Base
model that does not incorporate prototype updating or prototype-feature assignment. As
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shown in Table 4.3a, the Base model achieves an average EPE of 0.55 and 0.81. When
Cross-Attention Prototyping is added, significant improvements are observed (0.55→ 0.51
in the clean pass), indicating the effectiveness of prototype updating even without explicit
prototype-feature assignment. Adding Latent Synchronization to the Base model results
in a noticeable performance gain (0.81 → 0.77 in the final pass). Ultimately, integrating
both techniques leads to optimal performance.
Cross-Attention Prototyping. We then examine the effectiveness of Cross-Attention
Prototyping by comparing it with various updating methods, including cosine similarity,
conventional cross-attention [172], Criss cross-attention [391], and K-Means [392]. From
both efficiency and effectiveness perspectives, Cross-Attention Prototyping surpasses these
competitive methods (see Table 4.3b). Additionally, we analyze the iteration step N in
Table 4.3c, finding that the error decreases progressively from 0.52 to 0.48 as N increases
from 1 to 4, stabilizing at 4. Considering computation time, we set N = 3 to balance
performance and computational cost. The number of prototypes K is crucial in defining
the central grouping points for motion features. Therefore, we investigate the impact of
varying K in Table 4.3d.
Latent Synchronization. Next, we study our Latent Synchronization as presented in
Table 4.3e. In the standard setting, without any prototype-feature correspondence (i.e.,
None), the model achieves a final accuracy of 0.74. Introducing a basic fully-connected
layer to update the features reduces the error to 0.73. Though pretty inspiring, our pro-
posed Latent Synchronization, which incorporates carefully anchored prototypes, demon-
strates superior performance, achieving an accuracy of 0.69 across all ablative methods.
Systemic Explainability. Finally, we examine the prototype-feature correspondence
map for optical flow in Fig. 4.3. The systemic explainability relies on the Prototypes,
which are generated through the integration of probability density estimation within our
cross-attention prototyping layer. These recursively optimized prototypes capture the
most representative features of motion patterns at their respective density centers. By
visualizing the feature correspondence derived from these updated prototypes, we improve
the interpretability of the network and the transparency of the model’s decision-making
process.

4.2 Experiment for DNC

4.2.1 Experiments on Image Classification

Dataset. The evaluation for image classification is conducted on CIFAR-10 [39], CIFAR-
100 [39] and ImageNet [40] datasets, respectively. Specifically, CIFAR-10 contains 60K
(50K/10K for train/test) 32×32 colored images of 10 classes; CIFAR-100 dataset contains
100 classes with 500 training and 100 testing images per class; and ImageNet contains 1.2M
images for train and 50K images for validation of 1K classes.
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Figure 4.3: Visualization of proto-feature mapping, which demonstrates distinct prototypes
with similar representations.

Table 4.4:Classification top-1 accuracy on CIFAR-10 [39] test. #Params: the number of
learnable parameters (same for other tables).

Method Backbone #Params top-1

ResNet [68] ResNet50 23.52M 95.55%
DNC-ResNet 23.50M 95.78%

ResNet [68] ResNet101 42.51M 95.58%
DNC-ResNet 42.49M 95.82%

Network Architecture. In order to evaluate the robustness of DNC, we integrate it
into both CNN-based and Transformer-based architectures. Specifically, we replace the
final linear classification layer of ResNet50/101 [68], which has a dimensionality of 2, 048,
and the final layers of Swin-Small/Base [49], with dimensionalities of 768 and 1, 024,
respectively, with DNC.
Training. We utilize the mmclassification1 as our codebase and adhere to the default
training settings used by its discriminative counterparts. For the CIFAR-10 and CIFAR-
100 datasets, ResNet models were trained for 200 epochs with a batch size of 128. The
memory size for DNC models was set to 100 batches. For the ImageNet dataset, we
trained ResNet for 100 epochs and Swin for 300 epochs, with a batch size of 16. The
initial learning rates for ResNet and Swin were set to 0.1 and 0.0005, respectively, with
a step policy and polynomial annealing policy for learning rate scheduling. Due to GPU
capacity limitations, the memory sizes were set to 1, 000 batches for the DNC version of
ResNet and 500 batches for Swin. Other hyperparameters were empirically set to K = 4
and µ = 0.999 (see §4.2.6). All models were trained from scratch on eight V100 GPUs.
Results on CIFAR datasets. Table 4.4 and Table 4.5 compare the performance of DNC
with its parametric counterparts using the ResNet architecture on CIFAR-10 and CIFAR-
100 datasets, respectively. As seen, DNC outperforms the parametric models on both
datasets. For instance, on CIFAR-10, DNC achieves a 0.23% higher accuracy on ResNet50
and a 0.24% higher accuracy on ResNet101, with fewer learnable parameters. Similar

1https://github.com/open-mmlab/mmclassification
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Table 4.5: Classification top-1 accuracy on CIFAR-100 [39] test.

Method Backbone #Params top-1

ResNet [68] ResNet50 23.71M 79.81%
DNC-ResNet 23.50M 79.91%

ResNet [68] ResNet101 42.70M 79.83%
DNC-ResNet 42.49M 79.99%

Table 4.6: Classification top-1 and top-5 accuracy on ImageNet [40] val.

Method Backbone #Params top-1 top-5

ResNet [68] ResNet50 25.56M 76.20% 93.01%
DNC-ResNet 23.51M 76.49% 93.08%

ResNet [68] ResNet101 44.55M 77.52% 93.06%
DNC-ResNet 42.50M 77.80% 93.85%

Swin [49] Swin-S 49.61M 83.02% 96.29%
DNC-Swin 48.84M 83.26% 96.40%

Swin [49] Swin-B 87.77M 83.36% 96.44%
DNC-Swin 86.75M 83.68% 97.02%

trends are seen on the CIFAR-100 dataset. These results indicate that with identical
backbone architectures and training schemes, the performance improvement can be safely
attributed to DNC, specifically due to its robust modularity.
Results on ImageNet dataset. Table 4.6 illustrates our outstanding results across
various vision network architectures on ImageNet. In terms of top-1 accuracy, DNC
surpasses the parametric classifier by 0.29% and 0.28% on ResNet50 and ResNet101, re-
spectively. Additionally, DNC achieves remarkable results with Transformer architecture:
83.26% vs 83.02% on Swin-S, and 83.68% vs 83.36% on Swin-B. These results are par-
ticularly notable given DNC’s transparent, case-based reasoning nature. It is also worth
mentioning that another nonparametric classifier, k-NN [187], reports a top-1 accuracy
of 76.57% based on ResNet50. However, [187] was trained with 130 epochs, under which
DNC achieves 76.64%. As discussed in §2.2.1, [187] demands substantial storage, retain-
ing the entire ImageNet training set (i.e., 1.2M images) to perform the k-NN decision
rule, and suffers from low efficiency due to the extensive comparisons required between
each test image and all training images. These limitations hinder the practical application
of [187] in real, complex scenarios. In contrast, DNC relies only on a small set of class
representatives (i.e., 4 sub-centroids per class) for decision-making in classification tasks
and does not require any additional computational resources during network deployment.
Analysis on Transferability. We further evaluate transfer learning performance by
applying ImageNet-trained weights to the Caltech-UCSD Birds-200-2011 (CUB-200-2011)
dataset [31], following [394–396]. The CUB-200-2011 dataset consists of 11, 788 bird pho-
tographs divided into 200 categories, with 5, 994 images for training and 5, 794 images for
testing. All models utilize the ResNet50 architecture [68] and are trained for 100 epochs.
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We employ an SGD optimizer with an initial learning rate of 0.01, following a polyno-
mial annealing policy. Standard data augmentation techniques such as flipping, cropping,
and normalizing are applied. The experimental results are presented in Table 4.7. As ob-
served, DNC achieves a Top-1 acc. improvement of 0.73% and a Top-5 acc. improvement
of 0.39%. For a parametric softmax classifier, both the feature network and the softmax
layer are fully learnable parameters. This implies that for a new task, it is necessary to
finetune both the feature network and train a new softmax layer. In contrast, DNC re-
quires only the feature network to be learnable. The class centers are not freely learnable
parameters but are instead directly computed from the training data in the feature space.
For a new task, DNC needs to finetune only the feature network, while the class centers
are recalculated from the training data based on clustering assignments, without requir-
ing end-to-end training. This characteristic grants DNC superior transferability during
fine-tuning.

Table 4.7: Classification top-1 and top-5 accuracy on CUB-200-2011 test [31].

Model (ImageNet-trained) Backbone top-1 top-5

ResNet [68] ResNet50 84.48% 96.31%
DNC-ResNet 85.21% 96.70%

Analysis on adaptive overfitting. We further evaluate DNC-ResNet50 on ImageNetv2
[41] test sets (i.e., “Matched Frequency”, “Threshold0.7” and “Top Images”) to investigate
the presence of adaptive overfitting to ImageNet [40] during training. Specifically, each
test set contains 10 images for each ImageNet class, collected from MTurk. Each worker
is asked to select images belonging to their target class, from several candidate images
sampled from a large image pool as well as the ImageNet validation set. The output
is a selection frequency for each image, i.e., the fraction of MTurk workers selected the
image in a task for its target class. Then three test sets are developed according to
different principles defined on the selection frequency. For “Matched Frequency”, [41] first
approximated the selection frequency distribution for each class using those “re-annotated”
ImageNet validation images. According to these class-specific distributions, 10 test images
are sampled from the candidate pool for each class. For “Threshold0.7”, [41] sampled 10
images from each class with selection frequency at least 0.7. For “Top Images”, [41]
selected the 10 images with the highest selection frequency for each class. The results on
these three test sets are shown in Table 4.8. As seen, our DNC exceeds the parametric
softmax based ResNet50 by +0.52-0.89% top-1 and +0.26-0.47% top-5 acc., showing
its generality and remaining free from adaptive overfitting during the training process.

4.2.2 Experiments on Semantic Segmentation

Dataset. The evaluation for semantic segmentation is conducted on three datasets:
ADE20K [42], Cityscapes [43], and COCO-Stuff [44]. ADE20K comprises 20K/2K/3K



CHAPTER 4. RESULTS 67

Table 4.8: Classification top-1 and top-5 accuracy on Im-
ageNetv2 test sets [41].

Dataset Method Backbone top-1 top-5

MatchedFrequency ResNet [68] ResNet50 63.30% 84.70%
DNC-ResNet 63.96% 85.17%

Threshold0.7 ResNet [68] ResNet50 72.70% 92.00%
DNC-ResNet 73.59% 92.26%

TopImages ResNet [68] ResNet50 78.10% 94.70%
DNC-ResNet 78.62% 94.96%

general scene images for train/val/test, respectively, covering 150 semantic categories.
Cityscapes includes 2,975/500/1,524 urban scene images for training, validation, and test-
ing, respectively, encompassing 19 classes. COCO-Stuff consists of 9K/1K images for
train/test, respectively, featuring 80 object classes and 91 stuff classes.
Segmentation Network Architecture. For a comprehensive evaluation, we integrate
DNC into three famous segmentation models: FCN [397], DeepLabV3 [398], and Uper-
Net [399], using two backbone architectures: ResNet101 [68] and Swin-B [49]. The only
architectural modification to the segmentation models is the removal of the “segmentation
head,” specifically the 1× 1 convolution-based, and the pixel-wise classification layer. For
the backbone networks, we adopt both the traditional parametric classifier-based versions
and our nonparametric, DNC-based versions, which are both trained on ImageNet [40]
from Table 4.6, for initialization. Thus, for each segmentation model, we derive four vari-
ants from the different combinations of parametric and DNC versions of the backbone and
segmentation network architectures.
Training. We utilize the mmsegmentation2 codebase and adhere to the default training
configurations. For training, we use FCN and DeepLabV3 with ResNet101, employing the
SGD optimizer with an initial learning rate of 0.1. UperNet with Swin-B is trained using
AdamW with an initial learning rate of 6e-5. For all models, the learning rate follows a
polynomial annealing policy. Following common practices [3,400], we train the models on
ADE20K train with a crop size of 512×512 and a batch size of 16; on Cityscapes train
with a crop size of 769×769 and a batch size of 8; and on COCO-Stuff val with a crop size
of 512×512 and a batch size of 16. Models are trained for 160K iterations on ADE20K
and Cityscapes datasets, and for 40K iterations on the COCO-Stuff dataset. Standard
data augmentation techniques are employed, including scale and color jittering, flipping,
and cropping. The hyper-parameters of DNC are set to the default values as: K=10 and
µ=0.999.
Performance on Segmentation. Shown Table 4.9, our DNC-based segmentation mod-
els, regardless of the specific DNC-based backbone used, consistently outperform their

2https://github.com/open-mmlab/mmsegmentation
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Table 4.9: Segmentation mIoU score on ADE20K [42] val, Cityscapes [43] val and
COCO-Stuff [44] val, respectively (top-1 acc. on ImageNet [40] val of backbones are also
reported for reference).

ImageNet ADE20K Cityscapes COCO-StuffMethod Backbone
top-1 acc. #Params

mIoU mIoU mIoU

ResNet101 [68] 77.52% 68.6M 39.9% 75.6% 32.6%FCN [397] DNC-ResNet101 77.80% 68.6M 40.4%↑0.5 76.3%↑0.7 32.9%↑0.3

ResNet101 [68] 77.52% 68.5M 41.1%↑1.2 76.7%↑1.1 33.0%↑0.4DNC-FCN DNC-ResNet101 77.80% 68.5M 42.3%↑2.4 77.5%↑1.9 33.5%↑0.9

ResNet101 [68] 77.52% 62.7M 44.1% 78.1% 36.0%DeepLabV3 [398] DNC-ResNet101 77.80% 62.7M 44.6%↑0.5 78.7%↑0.6 36.3%↑0.3

ResNet101 [68] 77.52% 62.6M 45.0%↑0.9 79.1%↑1.0 36.5%↑0.5DNC-DeepLabV3 DNC-ResNet101 77.80% 62.6M 45.7%↑1.6 79.8%↑1.7 36.8%↑0.8

Swin-B [49] 83.36% 90.6M 48.0% 79.8% 42.7(7)%UperNet [399] DNC-Swin-B 83.68% 90.6M 48.4%↑0.4 80.1%↑0.3 42.8(4)%↑0.07

Swin-B [49] 83.36% 90.5M 48.6%↑0.6 80.5%↑0.7 43.1%↑0.3DNC-UperNet DNC-Swin-B 83.68% 90.5M 50.5%↑2.5 80.9%↑1.1 43.3%↑0.5

parametric counterparts, such as FCN + ResNet101, DeepLabV3 + ResNet101, and Uper-
Net + Swin-B, across various segmentation tasks and backbone architectures. For instance,
the original FCN model achieves 39.91%, 75.6%, and 32.6% mIoU on ADE20K, Cityscapes,
and COCO-Stuff, respectively. In comparison, using the same ResNet101 backbone, DNC-
FCN improves these scores to 41.1%, 76.7%, and 33.0%. Further improvements are ob-
served when using the DNC pre-trained backbone, DNC-ResNet101. Our DNC-FCN
model continues outperforming its parametric counterpart, achieving 42.3% vs. 40.4% on
ADE20K, 77.5% vs. 76.3% on Cityscapes, and 33.5% vs. 32.9% on COCO-Stuff. Similar
trends are observed for DeepLabV3 and UperNet, demonstrating the robust performance
gains provided by the DNC approach.
Analysis on Transferability. A notable feature of DNC is its robust transferability,
as it learns to classify by directly comparing data samples within the feature space. The
results presented in Table 4.9 further support this point. For instance, even the parametric
classifier-based segmentation model DeepLabV3 can demonstrate significant performance
improvements when fine-tuned with DNC-ResNet101: 44.6% vs. 44.1% on ADE20K,
78.7% vs. 78.1% on Cityscapes, and 36.3% vs. 36.7% on COCO-Stuff. Additionally,
when using DNC-DeepLabV3, performance further improves after replacing ResNet101
with DNC-ResNet101, achieving 45.7% vs. 45.0% on ADE20K, 79.8% vs. 79.1% on
Cityscapes, and 36.7% vs. 36.5% on COCO-Stuff. This improvement can be attributed
to the fact that when both the backbone and the segmentation networks are built upon
DNC, the model only needs to adapt the original representation space to the target task,
eliminating the need to learn additional new parameters.
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Table 4.10: Semantic segmentation results
on S3DIS [45] Area 5 and ScanNet v2 [46]
(Ranked by S3DIS’s results).

S3DIS [45] ScanNet v2 [46]Method
OAcc mAcc mIoU mIoU Test mIoU Val

JSNet [401] [AAAI’20] 87.7% 61.4% 54.5% - -
SegGCN [402] [CVPR’20] 88.2% 70.4% 63.6% 58.9% -
SCF-Net [403] [CVPR’21] 88.4% 71.6% 82.7% - -
PAConv [404] [CVPR’21] – - 66.6 - -
RepSurf-U [405] [CVPR’22] 90.2% 76.0% 68.9% - -
CBL [406] [CVPR’22] 90.6% 75.2% 69.4% - -
PTv1 [407] [ICCV’21] 90.8% 76.5% 70.4% - 70.6%
FastPT [408] [CVPR’22] – 77.9% 70.3% - -
PointMixer [409] [ECCV’22] – 77.4% 71.4% - -
PTv2 [410] [NeurIPS’22] 91.1% 77.9% 71.6% 75.2% 75.4%
StratifiedFormer [411] [CVPR’22] 91.5% 78.1% 72.0% 73.7% 74.3%
RandLA-Net [412] [CVPR’20] - - - 64.5% -
PointASNL [413] [CVPR’20] - - - 66.6% 63.5%
RPNet [414] [ICCV’21] - - - 68.2% -
FusionNet [415] [ECCV’20] - - - 68.8% -
JSENet [416] [ECCV’20] - - - 69.9% -
RepSurf-U [405] [CVPR’22] - - - 70.2% –
PointNeXt [417] [NeurIPS’22] - - - 71.2% 71.5%
DCR-PointTransformer V2 92.0% 78.5% 72.2% 76.1% 75.9%

Table 4.11: Instance segmentation
results on S3DIS [45] Area 5 and Scan-
Net v2 [46].

Method Evaluation Metric
S3DIS [45] mCov mWCov mPrec mRec

JSNet [401] [AAAI’20] 48.7 51.5 62.1 46.9
PointGroup [418] [CVPR’20] – – 61.9 62.1
MaskGroup [419] [ICME’22] – – 62.9 64.7
SSTNet [420] [ICCV’21] 42.7 59.3 65.5 64.2
DyCo3D [421] [CVPR’21] 63.5 64.6 64.3 64.2
HAIS [422] [ICCV’21] 64.3 66.0 71.1 65.0
DKNet [423] [ECCV’22] 64.7 65.6 70.8 65.3
DCR-PointTransformer V2 66.5 68.1 69.6 66.3

Test Val.ScanNet v2 [46] mAP mAP50 mAP mAP50
3D-MPA [424] [CVPR’20] 35.5 61.1 35.5 59.1
DyCo3D [421] [CVPR’21] 39.5 64.1 35.4 57.6
PointGroup [418] [CVPR’20] 40.7 63.6 34.8 56.7
MaskGroup [419] [ICME’22] 43.4 66.4 42.0 63.3
HAIS [422] [ICCV’21] 45.7 69.9 43.5 64.1
OccuSeg [425] [CVPR’20] 48.6 67.2 44.2 60.7
SoftGroup [426] [CVPR’22] 50.4 76.1 46.0 67.6
SSTNet [420] [ICCV’21] 50.6 69.8 49.4 64.3
DCR-PointTransformer V2 51.1 77.9 47.7 68.3

Table 4.12: Panoptic segmentation results on SemanticKITTI [47] test.

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt

LPSAD [427] [IROS’20] 38.0% 47.0% 48.2% 76.5% 25.6% 31.8% 76.8% 47.1% 60.1% 76.2%
Panoster [428] [RAL’21] 52.7% 59.9% 64.1% 80.7% 49.4% 58.5% 83.3% 55.1% 68.2% 78.8%
Panoptic-PolarNet [429] [CVPR’21] 54.1% 60.7% 65.0% 81.4% 53.3% 60.6% 87.2% 54.8% 68.1% 77.2%
DS-Net [430] [CVPR’21] 55.9% 62.5% 66.7% 82.3% 55.1% 62.8% 87.2% 56.5% 69.5% 78.7%
EfficientLPS [431] [TR’21] 57.4% 63.2% 68.7% 83.0% 53.1% 60.5% 87.8% 60.5% 74.6% 79.5%
GP-S3Net [432] [ICCV’21] 60.0% 69.0% 72.1% 82.0% 65.0% 74.5% 86.6% 56.4% 70.4% 78.7%
SCAN [433] [AAAI’22] 61.5% 67.5% 72.1% 84.5% 61.4% 69.3% 88.1% 61.5% 74.1% 81.8%
Panoptic-PHNet [434] [CVPR’22] 61.5% 67.9% 72.1% 84.8% 63.8% 70.4% 90.7% 59.9% 73.3% 80.5%
DCR-PointTransformer V2 62.1% 68.4% 74.2% 83.5% 65.4% 72.1% 89.0% 61.6% 75.3% 79.2%

4.2.3 Experiments on Point Cloud Segmentation

We further extend DNC to point cloud segmentation tasks, including semantic, instance
and panoptic segmentation, to validate the high versatility of DNC. PointTransformer
V2 [410] is applied as the encoder for all three tasks for consistency. The original “seman-
tic head” is replaced by the proposed nonparametric, DNC based version.
Dataset. For point cloud semantic and instance segmentation, we utilize two datasets
for training and evaluation (i.e., S3DIS [45], ScanNet V2 [46] datasets). S3DIS [45] is a
commonly applied large-scale indoor point cloud dataset, including point clouds from 271
rooms across 6 areas. Each room is represented by a medium-sized point cloud, annotating
each point with a semantic label. ScanNet V2 [46] covers over 1, 500 indoor scenes and
2.5 million annotated RGB-D images with 90% surface coverage. It is evaluated on 20
semantic classes, which includes 18 different object classes. For point cloud panoptic seg-
mentation, we follow common practice [429,435] and apply SemanticKITTI [47], which is
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a developed version of the well-known KITTI Vision [436] benchmark on complex outdoor
traffic scenarios. Specifically, it contains 22 data sequences, consisting of 43, 552 frames of
outdoor scenes. For train/val/test split, 23, 201 frames with panoptic labels are applied
for training and validation, and the remaining frames without labels are used for testing.
Point-wise labels in 20 classes are annotated for segmentation tasks, 8 of which are “thing”
classes.
Metric. Point cloud segmentation tasks (i.e., semantic, instance and panoptic) require
different evaluation metrics to provide meaningful comparisons. Specifically, to evaluate
on point cloud semantic segmentation, we apply the mean Intersection-over-Union (mIoU),
the overall accuracy (OAcc) taking all points into consideration and the average class ac-
curacy (mAcc). For point cloud instance segmentation, mean coverage (mCov), mean
weighed coverage (mWCov), mean precision (mPrec), and mean recall (mRec) are applied
as the evaluation metrics for S3DIS [45]. Additionally, ScanNet V2 [46] is evaluated by
mean average precisions (mAPs) under different IoU thresholds. For point cloud panoptic
segmentation, the panoptic quality (PQ) [437] is utilized as our main metric for evaluation.
PQ is defined as the multiplication of segmentation quality (SQ) and recognition quality
(RQ). Furthermore, these three metrics can be extended to things and stuff classes, de-
noted as PQTh, PQSt, RQTh, RQSt, SQTh, SQSt, respectively. PQ† replaces PQ with IoU
for stuff classes.
Performance on Point Cloud Segmentation. As summarized in Table 4.10, DNC
achieves superior performance on point cloud semantic segmentation over previous ap-
proaches on both S3DIS [45] and ScanNet v2 [46] datasets, respectively. For instance,
DNC outperforms PTv2 [410] by 0.9% and 0.5% mIoU on the ScanNet v2 [46] test and
val, respectively. It also surpasses other methods across all discussed evaluation metrics
on the S3DIS [45] dataset. We further evaluate DNC on point cloud instance segmen-
tation and present the corresponding results in Tables 4.11. DNC surpasses most of the
concurrent approaches on the S3DIS [45] Area 5 dataset by achieving scores of 66.5%,
68.1%, 69.6% and 66.3%, respectively, on mCov, mWCov, mPrec, and mRec metrics.
We also observe similar trends on ScanNet V2 [46] test and val. Table 4.12 presents
the results on point cloud panoptic segmentation on the SemanticKITTI [47] test. DNC
demonstrates large performance gap to best-performing baseline approach, with a PQ
score of 62.1%. The results further validate the superior performance of the proposed
DNC on both the “things” and the “stuff” classes, as DNC outperforms the second best
method, Panoptic-PHNet [434], in 7 of the 10 relevant metrics. In summary, DNC dis-
plays a robust performance improvement across various point cloud segmentation tasks on
both indoor and outdoor datasets. These impressive results also underscore the potential
of applying DNC to more downstream visual-related tasks, either as a new classification
network architecture or as a transferable backbone.
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4.2.4 Experiments on Sub-Categories Discovery

Through unsupervised, within-class clustering, DNC represents each class as a set of auto-
matically discovered class sub-centroids (i.e., cluster center). This allows DNC to better
describe the underlying, multimodal data structure and robust depict for rich intra-class
variance. In other words, the proposed DNC can effectively capture sub-class patterns,
which is conducive to algorithmic performance. Such a capacity of sub-pattern mining is
also considered crucial for good transferable features – representations learned on coarse
classes are capable of fine-grained recognition [438].

In order to quantify the ability of DNC for automatic sub-category discovery, we follow
the experimental setup posed by [438] – learning the feature embedding using coarse-
grained object labels, and evaluating the learned feature using fine-grained object labels.
This evaluation paradigm enables us to assess the degree to which the deep model can
discover variations within each category. A conjecture is that performance on this test
correlates well with the network’s ability to identify and mine sub-class patterns during
training, which the proposed DNC seeks to rigorously establish.

In particular, the network is first trained on coarse-grained labels with the baseline
parametric softmax and the non-parametric DNC using the same network architecture.
After training on coarse classes, we use the top-1 nearest neighbor accuracy in the final
feature space to measure the accuracy of identifying fine-grained classes. The classifica-
tion performance evaluated in such setting is referred to [438] as induction accuracy.
Results on CIFAR100 [39] and ImageNet [40] are presented, respectively.
Performance of Sub-category Discovery on CIFAR100. CIFAR100 includes both
fine-grained annotations in 100 classes and coarse-grained annotations in 20 classes. We
examine sub-category discovery by transferring representation learned from 20 classes
to 100 classes. As shown in Table 4.13, DNC consistently outperforms the parametric
counterpart: DNC increases 0.12%, in terms of the standard top-1 accuracy, on both
ResNet50 and ResNet101 architectures. Nevertheless, when transferred to CIFAR100
(i.e., 100 classes) using k-NN, a significant loss occurs on the baseline: 53.22% and 54.31%
top-1 acc. on ResNet50 and ResNet101, respectively. Our features, on the other hand,
provide 14.24% and 13.82% improvement over the baseline, achieving 67.46% and 68.13%
top-1 acc. on 100 classes on ResNet50 and ResNet101, respectively. In addition, in
comparison the parametric model, our approach results in only a smaller drop in trans-
fer performance, i.e., -18.87% vs -32.99% on ResNet50, and -18.47% vs -32.17% on
ResNet101.
Performance of Sub-category Discovery on ImageNet. Table 4.14 provides ex-
perimental results of sub-category discovery on ImageNet val. As in [438], 127 coarse
ImageNet categories are obtained by top-down clustering of 1K ImageNet categories on
WordNet tree. Training on the 127 coarse classes, DNC improves the performance of
baseline by 0.10% and 0.03%, achieving 84.39% and 85.91% on ResNet50 and ResNet101,
respectively. When transferring to the 1K ImageNet classes using k-NN, our features
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Table 4.13: Top-1 induction accuracy on CIFAR-100 [39] test using CIFAR-20 pre-
trained models. Numbers reported with k-nearest neighbor classifiers. See §4.2.4.

Method Backbone 20 classes 100 classes
ResNet [68] ResNet50 86.21% 53.22%

DNC-ResNet 86.33% 67.46%
ResNet [68] ResNet101 86.48% 54.31%

DNC-ResNet 86.60% 68.13%

Table 4.14: Top-1 induction accuracy on ImageNet [40] val using ImageNet-127 pre-
trained models. Numbers reported with k-nearest neighbor classifiers. See §4.2.4.

Method Backbone 127 classes 1000 classes
ResNet [68] ResNet50 84.29% 43.23%

DNC-ResNet 84.39% 52.21%
ResNet [68] ResNet101 85.88% 45.31%

DNC-ResNet 85.91% 54.60%

provide huge improvements, i.e., 8.98% and 9.29%, over the baseline.
The promising transfer results on CIFAR100 and ImageNet serve as strong evidence

to suggest that the proposed DNC is capable of automatically discovering meaningful sub-
class patterns – latent visual structures that are not explicitly presented in the supervisory
signal, and hence handle intra-class variance and boost visual recognition.

4.2.5 Study of Ad-hoc Explainability

As demonstrated empirically in §4.2.1-4.2.3, DNC combines the intuitive effectiveness of
Nearest Centroids with the robust representation learning capabilities of DNNs, making it
a transparent and powerful tool for visual recognition tasks with enhanced transferability.
When the class sub-centroids are anchored to real observations (i.e., actual images from
the training dataset) rather than selected as cluster centers (i.e., mean features of a set
of training images), DNC gains improved ad-hoc explainability. Our results indicate that
this approach is promising and incurs a negligible performance cost.
Experimental Setup. Following the same experimental settings in §4.2.1, we train the
DNC version of ResNet50 on the ImageNet train dataset for 100 epochs. During the first
90 epochs, the model is trained in the standard manner, calculating the class sub-centroids
as cluster centers. After this, we anchor each sub-centroid to its closest training image
based on the cosine similarity of their features. In the final 10 epochs, the sub-centroids
are updated solely based on the features of their anchored training images. Apart from
this adjustment, all other training settings remained unchanged. This approach results in
a more interpretable DNC-ResNet50.
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IF ([I,        ]>[I,        ] AND   AND [I,        ]>[I,        ])
    OR ([I,        ]>[I,        ] AND   AND [I,        ]>[I,        ])
        OR ([I,        ]>[I,        ] AND   AND [I,        ]>[I,        ])
             OR ([I,        ]>[I,        ] AND   AND [I,        ]>[I,        ]) THEN (goose)

Figure 4.4: Top: sub-centroid images. Bottom: rule created for “goose”.
Table 4.15: Classification top-1 and top-5 accuracy on ImageNet [40] val, using
clustercenter vs resembling real observation as class sub-centroids, based on DNC-ResNet50
architecture.

Sub-centroid Architecture top-1 top-5

cluster center DNC-ResNet50 76.49% 93.08%
real observation 76.37% 93.04%

- ResNet50 [68] 76.20% 93.01%

Interpretable Class Sub-centroids. The top of Fig. 4.4 displays our identified sub-
centroid images for four ImageNet classes. These representative images exhibit diversity in
appearance, viewpoint, illumination, scale, and various other attributes. They effectively
capture the richness of their respective classes, offering human users a comprehensible
perspective of their varied representatives.
Performance with Improved Interpretability.We then present the performance of our
DNC-ResNet50, based on interpretable class representatives, on the ImageNet val. As
shown in Table 4.15, enforcing class sub-centroids as actual training images results in only
a marginal performance decrease (e.g., 76.49% to 76.37% top-1 acc.), while significantly
enhancing interpretability. Notably, the explainable DNC-ResNet50 still outperforms the
standard black-box ResNet50, achieving 76.37% compared to 76.20%.
Explain Inner Decision-Making Mode based on IF · · ·Then Rules. Using the simple
Nearest Centroids mechanism, we can utilize representative images to form a set of IF · · ·
Then rules [69], providing an intuitive way to interpret the inner decision-making process
of DNC for human users. Specifically, let Î represent a sub-centroid image for class c, Ǐ1:T
denote representative images for all other classes, and I be a query image. One linguistic
logical IF · · · Then rule that can be generated for Î:

IF
(
[I, Î]> [I, Ǐ1] AND [I, Ǐ]> [I, Ǐ2] AND · · ·

AND [I, Î]> [I, ǏT ]
)
THEN (class c),

(4.1)

where [·, ·] stands for similarity, given by DNC. The final rule for class c is created by
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Figure 4.5: DNC can provide (dis)similarity-based interpretation. For the two test samples,
we only plot the normalized similarities for their corresponding closest sub-centroids from
top-4 scoring classes.

combining all the rules of K sub-centroid images Î1:K of class c (see Fig. 4.4 bottom):

IF
(
[I, Î1]> [I, Ǐ1] AND · · ·AND [I, Î1]> [I, ǏT ]

)
OR

(
[I, Î2]> [I, Ǐ1] AND · · ·AND [I, Î2]> [I, ǏT ]

)
OR · · ·OR

(
[I, ÎK ]> [I, Ǐ1] AND · · ·AND [I, ÎK ]> [I, ǏT ]

)
THEN (class c).

(4.2)

Interpret Prediction Based on (Dis)similarity to Sub-centroid Images. Based on
interpretable class representatives, DNC can explain its predictions by allowing users to
view and verify the computed (dis)similarity between the query and class sub-centroid im-
ages. Shown in Fig. 4.5(a), an observation is correctly classified because DNC determines
it closely resembles a specific exemplar of a “toucan.” Conversely, in Fig. 4.5(b), DNC
struggles to assign the observation between exemplars from “white wolf” and “kuvasz,” ul-
timately making an incorrect decision. Although users may not fully understand how DNC
maps an image to its feature space, they can easily grasp the decision-making process [66]
(e.g., why one class is predicted over another) and verify the calculated (dis)similarity,
which serves as the evidence for the classification decision.

4.2.6 Diagnostic Experiment

We further present extensive ablation studies on ResNet101 image classification, DeepLabV3
semantic segmentation and PointTransformer V2 [410] point cloud semantic segmentation
models, respectively.
Class Sub-centroids. Table 4.16a examines the impact of varying the number of class
sub-centroids (K) for each class. When K = 1, each class is represented by its centroid,
the average feature vector of all the training samples of the class (Eq. 3.9), without any
clustering. The corresponding baseline achieves a top-1 acc. of 77.31% and a mIoU of
43.2% for classification and segmentation, respectively. For classification, increasing K
from 1 to 4 results in improved performance (i.e., 77.31% → 77.80%), supporting our
hypothesis that a single class weight/center is insufficient to capture the underlying data
distribution. This validates the effectiveness of our clustering-based sub-class pattern
mining approach. We did not use K > 4 due to the memory constraints of our hardware.
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Table 4.16: A set of ablative experiments on ImageNet [40] val, ADE20K [42] val and
S3DIS [45] Area 5.

ImageNet ADE20K S3DIS
K

top-1 top-5
K

mIoU
K

OAcc

1 77.31% 93.01% 1 43.2% 1 91.1%
2 77.54% 93.32% 5 44.0% 5 91.4%
3 77.68% 93.63% 10 44.3% 10 92.2%
4 77.80% 93.85% 20 44.0% 20 91.8%

(a) Number of
sub-centroids (K) for

each class

Memory ImageNet
(#batch) top-1 top-5

0 77.49% 93.09%
700 77.58% 93.16%
800 77.64% 93.35%
900 77.75% 93.67%

1000 77.80% 93.85%

(b) Memory size

ImageNet ADE20K S3DIS
µ

top-1 top-5 mIoU OAcc

0 73.82% 93.02% 42.7% 87.5%
0.9 76.41% 93.07% 43.6% 90.8%
0.99 77.33% 93.51% 44.0% 91.2%

0.999 77.80% 93.85% 44.3% 92.2%
0.9999 77.31% 93.48% 44.2% 91.7%

(c) Momentum coeffi-
cient (µ)

Output ImageNet
dimensionality top-1 top-5

640 76.23% 92.83%
1024 76.28% 92.90%
1280 76.61% 93.12%
2048 76.49% 93.08%

(d) Output dimen-
sionality

ImageNet
ϵ

top-1 top-5

0.01 76.34% 92.97%
0.05 76.49% 93.08%
0.1 76.40% 93.02%

(e)
Temperature

parameter ε in
(3.12)

Balancing S3DIS
strategy OAcc

w/o 91.4%
zc 92.2%
Extp 91.6%
Extn 91.3%

(f) Class
balance factor
zc in (3.15)

A similar trend is observed in segmentation; increasing the number of sub-centroids (K :
1 → 10) yields a noticeable performance improvement (i.e., 43.2% → 44.3%). However,
increasing K beyond 10 provides marginal or even negative gains. This could be due to
over-clustering, which may identify insignificant patterns that are trivial or detrimental to
decision-making.
External Memory. We then investigate the impact of external memory, utilized solely
in image classification. As illustrated in Table 4.16b, DNC’s performance progressively
improves with the expansion of memory size, achieving 77.80% top-1 acc. at a memory
size of 1, 000. However, the results have not yet reached a saturation point in performance,
but are instead constrained by the upper limits of our hardware’s computational capacity.
Momentum Update. We also ablate the impact of the momentum coefficient µ (Eq. 3.14),
which governs the speed of sub-centroid online updating. As shown in Table 4.16c, the
behavior of µ is consistent across both tasks. Notably, DNC achieves optimal performance
with higher coefficients (i.e., µ ∈ [0.999, 0.9999]), highlighting the importance of slow up-
dates. Performance declines when µ ∈ [0.9, 0.99], and there is a significant drop when
µ = 0 (i.e., only batch sub-centroids are used as approximations).
Output Dimensionality. As discussed in §4.1, the final output dimensionality of our
DNC is set to match that of the last layer of the parametric counterpart to ensure a fair
comparison. However, due to its distance- and similarity-based nature, DNC has the flexi-
bility to accommodate any output dimensionality. In Table 4.16d, we further examine the
impact of DNC’s output dimensionality. Notably, when the final output dimensionality is
set to 1280, we achieve a 76.61% top-1 acc., which surpasses the initial 2048-dimensional
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configuration’s 76.49%. This improvement can be attributed to a better balance between
memory capacity and feature dimensionality within the constraints of hardware computa-
tional budgets. By reducing the final output dimensionality, the expressiveness of the final
feature is slightly diminished, but more image features can be stored in external memory,
allowing for more accurate sub-centroid estimation.
Temperature Parameter. Next, parameter ε in (3.12) trades off convergence speed
with closeness to the original transport problem [85,86]. In Table 4.16e, we further study
the impact of ε on ImageNet [40] val. We observe that the default ε = 0.05 reaches the
best result among all selected values.
Class Balance. Lastly, we validate the effectiveness of our strategy on mitigating cate-
gory imbalance discussed in §3.2.1. Shown in Table 4.16f, the baseline (w/o) fixes zc = 1
in Eq. 3.15, reducing Eq. 3.16 to the form of Eq. 3.14. Extp [235] and Extn [439] are
two alternative strategies employing parametric and non-parametric external memory for
class balancing, respectively. The reported results suggest that our proposed calibration
strategy outperforms all related class balancing strategies [235, 439], as well as the non-
calibrated baseline.

4.3 Experiment for DVP

4.3.1 Comparisons with Current Methods

Qualitative Results. To ensure a fair comparison, we include six state-of-the-art base-
lines, including SDEdit [440], Prompt-to-Prompt [106], DiffuseIT [441], VQGAN-CLIP
[442], Text2LIVE [443], and VISPROG [30], on various prompt-guided image translation
tasks. The visualization results with DVP are presented in Fig. 4.6. For style trans-
fer, integrating instance normalization enables our translated images to achieve a balance
between closely adhering to the guidance layout and maintaining high fidelity to the tar-
get prompt. For instance, DVP vividly transfers the “young boy”, “church”, etc. into
“robot”, “sandcastle”, etc. in Fig. 4.6. In contrast, other methods often produce cor-
rupted translations in these RoIs or introduce excessive variations. DVP, on the other
hand, demonstrates robust in-context reasoning by accurately recognizing and transfer-
ring objects as specified by the user. For instance, DVP selectively modify the “right
fox” to the “arctic wolf,” while leaving other foxes and the background unaffected (see
Fig. 4.6 fifth row). Though VISPROG enables local editing, it falls short in cultivating
the context reasoning skills, and result in translating all “foxes” into “arctic wolves” (see
§2.2.7). The overall results indicate that SDEdit and VQGAN-CLIP compromises between
maintaining structural integrity and enabling significant visual modifications. DiffuseIT
and Prompt2Prompt preserve the shape of the guidance image but introduce only mini-
mal changes to its appearance. Text2Live demonstrates some correlation between textual
descriptions and visual elements (e.g., object shapes); however, transforming objects into
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“Change the 
cartoon to 
real photo”

“Change the 
church to the 
sandcastle on 

beach”

Input Image

“Change the 
young boy to a 

robot”

DVP (ours) VQGAN-CLIP Text2Live SDEDIT Prompt2PromptDiffuseIT

“Change the plane 
scratch to a plane 

in the sky”

“Change the 
right fox to 
arctic wolf”

“Change the 
fossil to real 
dinosaur”

“Change the two 
random oranges 

to apples”

VISPROG

Figure 4.6: Qualitative results with the state-of-the-art baselines. DVP exhibits
rich capability in style transfer, achieving realistic quality while retaining high fidelity.
Owing to the context-free manipulation (see §3.2.2), the DVP framework is capable of
flawlessly preserving the background scenes while specifically targeting the translation of
the RoI. Note that while VISPROG also enables context-free editing, it exhibits consid-
erable limitations in rational manipulation (see Fig. 4.8).
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“Change the 
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“Change the 
Parthenon to 
Himeji castle”

Instance Norm W=2.5 W=5 W=7.5 W=10

“Change the woman 
to golden buddha 

in a temple”

Figure 4.7: Visualization results of instance normalization compared with various
guidance scales w.

Table 4.17: User study, CLIP-Score, and DINO-Score on the comparison be-
tween our proposed framework and state-of-the-art baselines. The metrics are detailed
in §5.2.2.

User Study Quantitative ResultsMethod Quality Fidelity Diversity CLIP-Score DINO-Score
VQGAN-CLIP [442] 3.25 3.16 3.29 0.749 0.667

Text2Live [443] 3.55 3.45 3.73 0.785 0.659
SDEDIT [440] 3.37 3.46 3.32 0.754 0.642

Prompt2Prompt [106] 3.82 3.92 3.48 0.825 0.657
DiffuseIT [441] 3.88 3.87 3.57 0.804 0.648
VISPROG [30] 3.86 4.04 3.44 0.813 0.651

DVP (ours) 3.95 4.28 3.56 0.839 0.697

completely new ones often does not produce visually satisfactory results. Conversely, DVP
effectively manages all examples across diverse scenarios and instructions.
Quantitative Comparisons. Discussed in §5.2.2, we present the user study, CLIP-
Score, and DINO-Score results in Table 4.17. These results align with our visual evidence,
showing that DVP significantly outperforms other competitors in both fidelity and qual-
ity, particularly in fidelity. While existing methods focus solely on semantic consistency,
DVP advances further by incorporating visual programming understanding with cognitive
reasoning, which preserves instance identity and background scenarios. This approach in-
herently enhances performance in terms of fidelity, making our model more versatile and
applicable across various scenarios.

4.3.2 Systemic Diagnosis

This section analyzes the core design elements of DVP, focusing on instance normalization
guidance in translation (§3.2.2) and in-context reasoning in visual programming (§3.2.2).
Additionally, we explore the systemic advantages of our approach, highlighting its explain-
able controllability and label efficiency, coined by the neuro-symbolic paradigm.
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Figure 4.8: Visualization results of in-context reasoning against attention-based
Prompt2Prompt [29] and programming-based VISPROG [30].

Instance Normalization. Ourcondition-flexiblediffusion modeldiverges fromconventional
approaches [29, 96] by employing instance normalization guidance to enhance the robust-
ness of translations and capacity to manage variations in the input distribution (see §3.2.2).
To verify diffusion model methods with instance normalization and guidance scale [29],
we conduct extensive experiments in Fig. 4.7 and Table 4.18(a) qualitatively and quanti-
tatively.

Our condition-flexible diffusion model differentiates itself from conventional approaches
[29,96] by utilizing instance normalization guidance to improve the robustness of transla-
tions and better handle variations in input distribution (see §3.2.2). To validate diffusion
model methods incorporating instance normalization and guidance scales [29], we conduct
extensive qualitative and quantitative experiments in Fig. 4.7 and Table 4.18(a), respec-
tively. To ensure fairness, these comparisons are conducted without integrating in-context
visual programming into our approach. We select a guidance scale parameter w centered
around 7.5 for the linear combination, as recommended by the default settings in [29,96].
To examine its impact on the translated images, we vary the parameter in increments of
2.5. While the guidance scale baseline shows significant variations in translated images (see
Fig. 4.7, right 4 columns) with w ∈ {2.5, 5, 7.5, 10}, instance normalization achieves high
fidelity and natural, stable translation without the need for manually tuned parameters.
In-context Reasoning. DVP employs a set of visual programming operations for image
translation, thereby facilitating a powerful in-context reasoning capability during image
manipulation. DVP utilizes a series of visual programming operations to achieve image
translation, enabling robust in-context reasoning capabilities during image manipulation.
To better demonstrate our claim, we present and compare our translated results with the
robust cross-attention map baseline method, Prompt2Prompt [29] in Fig. 4.8. Specifi-
cally, in the first row of Fig. 4.8, our goal is to translate only the right pigeon into an
eagle. The cross-attention map on Prompt2Prompt reveals that it recognizes both pi-
geons, albeit with a notable failure to discern the positional information accurately. As a
result, the model incorrectly translates both pigeons as eagles. In contrast, our approach
demonstrates a strong in-context understanding of the scene and accurately translates the
designated pigeon as instructed. In the second row example in Fig. 4.8, we design more
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Figure 4.9: Explainable controllability during program execution, which is easy for
error assessment and correction.
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Figure 4.10: Human-annotated and Prompter-generated descriptions. Descrip-
tions generated via the Prompter yield finer reconstructions, as well as subsequent trans-
lated outputs, suggesting a relaxation of label dependency.

sophisticated instructions. For Prompt2Prompt, the ambiguous cross-attention on the ele-
phant results in erroneous artifacts across various animals in the translation. This method
also shows limitations in performing RoI relation editing (i.e., Swap, Enlarge). We further
compare DVP with VISPROG [30], a visual programming approach that facilitates local
image editing (see §2.2.7). Although both DVP and VISPROG support instructive object
replacement (Fig. 4.8 right section), VISPROG falls short in translation fidelity (e.g., the
translated duck appears too yellow, and the lion assumes a different pose). Moreover,
VISPROG fails to support relation manipulations, whereas DVP consistently produces
commendable results across all examples, following strictly to human instructions.
Explainable Controllability. Next, we explore the explainable controllability during
program execution (see §3.2.2). In this framework, we enable multiple operations to work
in parallel, allowing for different program plans that can accommodate diverse sequences
of operations. As shown in Fig. 4.9 (left section), the task “change the left woman to an
astronaut” can be accomplished using either Plan-1 or Plan-2. During execution, the pro-
gram runs line-by-line, triggering specified operations and producing human-interpretable
intermediate outputs at each step. This approach facilitates systemic explainability for
error correction. For instance, as shown in Fig. 4.9 (right section), Plan-1 mistakenly
segments only the head of the “left horse,” resulting in an incomplete transformation to a
“zebra.” Thanks to the explainable outputs provided at each step, we can identify specific
issues and then employ Plan-2 as a more suitable strategy for translating the “left horse.”
Label Efficiency. Prompter generates detailed image descriptions for arbitrary input
images, reducing dependency on human annotations (see §3.2.2). To verify its efficacy,
we conducted a user study (Table 4.18(b)) and provided visual evidence (Fig. 4.10), com-
paring human-generated annotations with those produced by Prompter. This ablative
study focuses on investigating the impact of labels on translated images, hence visual
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Table 4.18: Ablative results on instance normalization guidance and label efficiency.

Metrics w = 2.5 w = 5 w = 7.5 w = 10 Inst. norm
CLIP-Score 0.833 0.795 0.742 0.686 0.839
DINO-Score 0.664 0.681 0.712 0.678 0.697

(a) Instance normalization

Methods CLIP-Score DINO-Score
Human-annotated 0.817 0.688

Prompter 0.839 0.697
(b) Label efficiency

programming is excluded from the experimental design. In Fig. 4.10, 60% of the optimiza-
tion steps are bypassed to ensure that the reconstructed images do not closely resemble
the input images, even when prompts are entirely erroneous. The results indicate that
the GPT-4 generated annotations lead to superior performance in both CLIP-Score and
DINO-Score (Table 4.18(b)), suggesting that these annotations enhance the quality of
translated images. The visual evidence in Fig. 4.10 supports this claim: with detailed
image descriptions, the reconstruction phase yields finer results, improving the quality of
the final translated images.

4.4 Experiment for E2VPT
4.4.1 Comparison with State-of-the-Arts

We rigorously evaluate the performance and robustness of E2VPT on ViT [24], Swin [49],
as well as on two self-supervised learning objectives: MAE [50] and MoCo v3 [51].
E2VPT on ViT. We present the average accuracy scores on VTAB-1k and FGVC bench-
marks across four diverse task groups, based on three runs, in Table 4.19. This compar-
ison includes E2VPT and eight other tuning protocols under the pretrain-then-finetune
paradigm. Specifically, Full [48] updates both the backbone and classification head, while
Linear [48], Partial-1 [21] (top layer), and MLP-3 [233] (3 MLP layers) are partial tun-
ing methods that update only a subset of parameters. Sidetune [123], Bias [122], and
Adapter [22] are extra module methods that introduce new trainable parameters to the
backbone for adaptation. VPT [23] is the most recent visual prompt tuning method.
From these results, several key observations emerge. First, E2VPT outperforms the full
fine-tuning method in most cases, specifically in 21 out of 24 tasks. For instance, our
model achieves a 0.68% improvement on FGVC and a 9.75% improvement on VTAB-1k
Structured, demonstrating the effectiveness of our approach for rapid large-scale vision
model adaptation. Additionally, our model trains only 0.39% of the backbone parame-



CHAPTER 4. RESULTS 83

Table 4.19: Image classification accuracy for ViT-Base/16 [24] pretrained on su-
pervised ImageNet-21k. Following [23], we report the average test accuracy (three runs)
on FGVC [23] and VTAB-1k [25] benchmarks, and “Number of Wins” in [·] compared to
full fine-tuning (Full) [48]. “Tuned/Total” is the average percentage of tuned parameters
required by 24 tasks. “Scope” indicates the tuning scope of each method. “Additional
parameters” is the existence of parameters in addition to the pretrained backbone and
linear head. The highest accuracy among all approaches except FULL are shown in bold.
E2VPT outperforms the full fine-tuning in 19 of 24 instances with far fewer trainable
parameters. More impressively, we further report “Number of Wins to VPT” in {·}. Our
method beats VPT in 21 of 24 cases with considerably lower parameters. Same for Table
4.20 and 4.21.

ViT-Base/16 [24] Tuned/ Scope Extra VTAB-1k [25] [19]
(85.8M) Total Input Backbone params FGVC [23] [5] Natural [7] Specialized [4] Structured [8]

Full [CVPR22] [48] 100.00% ✓ 88.54% 75.88% 83.36% 47.64%
Linear [CVPR22] [48] 0.08% 79.32% [0] 68.93% [1] 77.16% [1] 26.84% [0]

Partial-1 [NeurIPS14] [21] 8.34% 82.63% [0] 69.44% [2] 78.53% [0] 34.17% [0]
MLP-3 [CVPR20] [233] 1.44% ✓ 79.80% [0] 67.80% [2] 72.83% [0] 30.62% [0]

Sidetune [ECCV20] [123] 10.08% ✓ ✓ 78.35% [0] 58.21% [0] 68.12% [0] 23.41% [0]
Bias [NeurIPS17] [122] 0.80% ✓ 88.41% [3] 73.30% [3] 78.25% [0] 44.09% [2]

Adapter [NeurIPS20] [22] 1.02% ✓ ✓ 85.66% [2] 70.39% [4] 77.11% [0] 33.43% [0]
VPT [ECCV22] [23] 0.73% ✓ ✓ 89.11% [4] 78.48% [6] 82.43% [2] 54.98% [8]

Ours 0.39% ✓ ✓ ✓ 89.22% [4] {4} 80.01% [6] {5} 84.43% [3] {4} 57.39% [8] {7}

Table 4.20: Image classification accuracy for Swin-Base [49] pretrained on super-
vised ImageNet-21k.

Swin-Base [49] Tuned/ VTAB-1k [25] [19]
(86.7M) Total Natural [7] Specialized [4] Structured [8]

Full [ICLR23] [444] 100.00% 79.10% 86.21% 59.65%
Linear [ICLR23] [444] 0.06% 73.52% [5] 80.77% [0] 33.52% [0]

Partial-1 [NeurIPS14] [21] 14.58% 73.11% [4] 81.70% [0] 34.96% [0]
MLP-3 [CVPR20] [233] 2.42% 73.56% [5] 75.21% [0] 35.69% [0]
Bias [NeurIPS17] [122] 0.29% 74.19% [2] 80.14% [0] 42.42% [0]
VPT [ECCV22] [23] 0.25% 76.78% [6] 83.33% [0] 51.85% [0]

Ours 0.21% 83.31% [6] {6} 84.95% [2] {3} 57.35% [3] {7}

ters, significantly enhancing parameter efficiency compared to the full fine-tuned model.
Second, prompt tuning approaches generally surpass other parameter-efficient methods,
such as partial fine-tuning (Partial-1) and extra modules (Adapter), highlighting the su-
perior adaptability of prompt tuning methods for large-scale vision models. Moreover,
the number of tunable parameters in prompt tuning methods is smaller compared to
other methods. Third, our approach consistently outperforms the strong VPT model
with fewer tunable prompts, illustrating the effective design of key-value prompting and
efficient prompt pruning. This is because VPT focuses solely on designing input visual
prompts, which fail to capture accurate interactions between image patches in new data.
In contrast, the key-value prompts in E2VPT effectively bridge this gap.
E2VPT on Hierarchical Transformer. To demonstrate the effectiveness and generaliz-
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Table 4.21: Image Classification accuracy for different pretrained objectives
— MAE [50] and MoCo v3 [51] with ViT-Base [24] as backbone. Our method enjoys
significant performance gains to VPT [23] while having lower parameter usage.

Pretrained objectives MAE [50] MoCo v3 [51]
Tuned/ VTAB-1k [25] [19] Tuned/ VTAB-1k [25] [19]Method Total Natural [7] Specialized [4] Structured [8] Total Natural [7] Specialized [4] Structured [8]

Full [CVPR22] [48] 100.00% 59.31% 79.68% 53.82% 100.00% 71.95% 84.72% 51.98%
Linear [CVPR22] [48] 0.04% 18.87% [0] 53.72% [0] 23.70% [0] 0.04% 67.46% [4] 81.08% [0] 30.33% [0]

Partial-1 [NeurIPS14] [21] 8.30% 58.44% [5] 78.28% [1] 47.64% [1] 8.30% 72.31% [5] 84.58% [2] 47.89% [1]
Bias [NeurIPS17] [122] 0.16% 54.55% [1] 75.68% [1] 47.70% [0] 0.16% 72.89% [3] 81.14% [0] 53.43% [4]

Adapter [NeurIPS20] [22] 0.87% 54.90% [3] 75.19% [1] 38.98% [0] 1.12% 74.19% [4] 82.66% [1] 47.69% [2]
VPT [ECCV22] [23] 0.10% 36.02% [0] 60.61% [1] 26.57% [0] 0.06% 70.27% [4] 83.04% [0] 42.38% [0]

Ours 0.07% 59.52% [4] {6} 77.80% [1] {2} 44.65% [3] {8} 0.13% 76.47% [4] {7} 87.28% [2] {4} 54.91% [6] {8}

Table 4.22: Impact of different components in E2VPT on two instances: VTAB-1k
Natural SVHN [34] and FGVC NABirds [52].

Fine-tuning Techniques VTAB-1k Natural SVHN [34] FGVC NABirds [52]
Visual Prompts Key-Value Prompts Pruning & Rewinding Pruning Tuned / Total Accuracy Pruning Tuned / Total Accuracy

✓ 0.0% 0.54% 78.1% 0.0% 1.02% 84.2%
✓ ✓ 0.0% 0.55% 83.8% 0.0% 1.05% 84.5%
✓ ✓ 56.3% 0.42% 79.0% 34.4% 0.63% 84.2%
✓ ✓ ✓ 62.5% 0.43% 85.3% 40.0% 0.65% 84.6%

ability of our architectural design, we extend E2VPT to a hierarchical transformer model
— Swin Transformer [49]. In this model, the MSA layer operates within local shifted
windows, and patch embeddings are merged at deeper layers. To maintain generality,
we adhere to the same settings as in the ViT [24] architecture by prepending learnable
Key-Value pairs and following the approach in [23] for modifying input vectors (i.e., these
learnable vectors are attended within the local windows but ignored during patch merg-
ing). During pruning, we observed a performance drop when incorporating pruning within
the deeper local windows. Consequently, we restricted the pruning stage to the first stage
only. Since Swin does not utilize [CLS] tokens and employs global pooling for the classifi-
cation head [23,49], we adopted this design when adapting our method. The experiments
were exclusively conducted on the ImageNet-21k supervised pretrained Swin-Base [49].
Our E2VPT consistently outperformed all other parameter-efficient methods across all
three VTAB-1k problem classes. Notably, for the first time, it surpassed full fine-tuning
on VTAB-1k Specialized and Structured tasks using significantly fewer parameters (i.e.,
0.21%).
Different Pretraining Methods. We conducted experiments using two self-supervised
objectives, MAE [50] and MoCo v3 [51], on backbones pretrained without labeled data,
following VPT [23]. While VPT yielded inconclusive results with these objectives, our
proposed method, E2VPT, outperformed other methods and achieved performance com-
petitive with full fine-tuning. Specifically, E2VPT excelled in 8 out of 19 instances under
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Table 4.23: Prompt location and Initialization results on VTAB-1k [25] in three runs.
ViT-Base/16 [24] VTAB-1k [25] [19]

(85.8M) Natural [7] Specialized [4] Structured [8]
After 80.67% [6] 84.30% [3] 56.76% [8](a) Before 80.01% [6] 84.43% [3] 57.39% [8]

Trunc. Norm. [445] 79.77% [6] 84.30% [3] 56.36% [8](b) He [446] 80.01% [6] 84.43% [3] 57.39% [8]

MAE and 12 out of 19 instances under MoCo v3, while using significantly fewer model pa-
rameters (0.07% for MAE and 0.13% for MoCo v3). Additionally, our method surpassed
VPT by a substantial margin (59.52% vs. 36.02% under MAE on VTAB-1k Natural).
Leveraging the insights from VPT, which suggest that self-supervised ViTs are fundamen-
tally different from supervised ones, we demonstrated the versatility and effectiveness of
our method across both pretraining objectives.

4.4.2 Diagnostic Experiments

Impact of Different Components. We first study the impact of different components
in E2VPT, including visual prompts, key-value prompts, and pruning and rewinding.
As shown in Table 4.22, we propose two example instances in FGVC [23] and VTAB-
1k [25] benchmarks respectively for reference. For SVHN [34], the model with visual
prompts alone achieves 78.1% in accuracy. Adding key-value prompts or pruning and
rewinding technique brings additional gains (i.e., 5.7%/0.9%), validating the effectiveness
of our prompt tuning technique in self-attention module as well as the pruning mechanism.
It is not surprising to see that combing all the components together leads to the best
performance, yielding 85.3% in accuracy. We find similar trends on FGVC NABirds [52].
Prompt Location. A fundamental distinction between E2VPT and other methods is the
introduction of learnable key-value prompts to self-attention. In our implementation, we
prepend these key-value prompts to the sequence of Key and Value matrices. Thus, further
investigation is necessary to determine the optimal placement of the learnable prompts.
We provide comprehensive ablation results on VTAB-1k in Table 4.23(a), demonstrating
that both prepending the learnable prompts before or after the Key and Value matrices
yield competitive results. This validates the robustness of our approach regarding prompt
locations. We adopt the “Before” placement as our baseline method in all experiments,
as it achieves slightly better average results (73.94% vs. 73.91%).
Initialization. Table 4.23(b) presents the performance of our approach using two widely
adopted initialization methods: truncated normal [445, 447] and He initialization [446],
evaluated on the VTAB-1k benchmark. The results indicate that He initialization gener-
ally provides more stable and favorable performance on average. However, in some spe-
cific tasks, such as Diabetic Retinopathy Detection in the VTAB-1k Specialized category,
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FGVC CUB-200-2011

VPT Ours

FGVC Oxford Flowers

VPT Ours VPT Ours

FGVC Stanford Dogs

Figure 4.11: Hyperbolic visualization results from VPT [23] and ours on 3 FGVC
tasks (i.e., FGVC CUB-200-2011 [31], Oxford Flowers [32] and Stanford Dogs [33]). Our
method shows consistently better clustering pushed to the border of the Poincaré disk.
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Figure 4.12: Sensitivity of input prompt and key-value prompt lengths. We vary
the number of prompts for different combinations, and show their results on VTAB-1k
Natural SVHN [34].

truncated normal outperforms He by 1.1% in accuracy. Overall, E2VPT demonstrates ro-
bustness across different initialization methods and achieves consistent performance com-
parable to full fine-tuning.
Prompt Length. The only hyper-parameter that needs tuning in E2VPT is the prompt
length. To analyze the impact of different prompt lengths on model performance, we
conducted a comprehensive study on the lengths of visual prompts and key-value prompts,
specifically focusing on their characteristics on the VTAB-1k Natural SVHN dataset [34].
The lengths of visual prompts are tested at [5, 10, 20, 30, 50], while key-value prompts
are tested at [1, 5, 10, 50], which is a standard configuration for most datasets. The
results of model performance with different combinations of prompt lengths are shown in
Fig. 4.12. The results indicate that when using 50 visual prompts, a relatively shorter
key-value prompt can significantly improve performance (e.g., 84.7% with one key-value
prompt compared to 78.1% without key-value prompts). However, further increasing the
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length of the key-value prompt provides only a small performance gain (e.g., 85.3% with
five key-value prompts). Additionally, using a large number of key-value prompts results
in subpar performance (e.g.„ 80.2% with 20 key-value prompts). Similar patterns were
observed with other visual prompt lengths. We hypothesize that excessive parameter
engineering in the self-attention layer might distort the original attention map, adversely
affecting adaptation performance.

4.4.3 Visualization

Following [448–452], we present hyperbolic visualization results on the training sets for
both VPT and our approach across three FGVC tasks (i.e., CUB-200-2011 [31], Oxford
Flowers [32], and Stanford Dogs [33]). Hyperbolic space, a Riemannian manifold with
constant negative curvature, is used in our visualizations. Among several isometric mod-
els of hyperbolic space, we adhere to the Poincaré ball model, following [449,450]. Similar
to [449], we employ UMAP [453] with the “hyperboloid” distance metric to reduce dimen-
sionality to 2D. ViT-Base serves as the encoder with two types of pretraining (i.e., tuned
models under VPT, and our models post-rewinding). During fine-tuning, the models are
frozen, and the output embeddings are mapped to hyperbolic space. For all settings, we
use the Adam optimizer [454] with a learning rate of 3× 10−5, a weight decay of 0.01, and
a batch size of 900. All models are trained for 50 steps with gradient clipping by norm 3
to ensure a fair comparison.

Figure 4.11 illustrates the arrangement of learned embeddings on the Poincaré disk.
In E2VPT, samples are clustered according to their labels, with each cluster pushed closer
to the disk’s border, demonstrating effective class separation by the encoder. In contrast,
VPT shows some samples moving towards the center and intermixed [449], suggesting
potential confusion during projection.
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4.5 Experiment for AMD

Table 4.24: The results of knowledge distillation methods on CIFAR-10 [27] and CIFAR-
100 [27] datasets. All results are reported using the same teacher and student (10% scale).
The best results are highlighted in bold, and the second best are shown in underline. Fol-
low [53], as our student design via Structural Pruning is orthogonal to current approaches
(see §3.3.2), we rerun and reproduce the results of all methods based on author-provided or
author-verified code, and report the average performance over five runs. The GPU hours
are estimated with respect to their conventional counterparts. ↓ denotes the performance
lost with respect to their teacher models, a smaller gap represent a superior performance.

Method FLOPs CIFAR-10 [27] top-1 CIFAR-100 [27] top-1 GPU hours
ViT− Tiny100% (teacher) 1.3G 95.98% 76.12% -
ViT− Tiny10% KD [arXiv15] [143] 0.1G 78.75%↑17.23% ± 0.32 48.85%↑27.27% ± 0.21 1×
ViT− Tiny10% DKD [CVPR22] [330] 0.1G 80.72%↑15.26% ± 0.37 62.21%↑13.91% ± 0.30 1×
ViT− Tiny10% CRD [ICLR20] [455] 0.1G 91.94%↑4.04% ± 0.35 70.42%↑5.70% ± 0.33 1×
ViT− Tiny10% ADKD [ACL23] [319] 0.1G 84.29%↑11.69 ± 0.42 66.43%↑9.69 ± 0.37 1×
ViT− Tiny10% TAKD [AAAI20] [26] 0.1G 81.57%↑14.41% ± 0.67 62.89%↑13.23% ± 0.54 20×
ViT− Tiny10% DGKD [ICCV21] [146] 0.1G 88.13%↑7.85 ± 0.60 69.38%↑6.74 ± 0.52 84×
ViT− Tiny10% MMD 0.1G 93.76%↑2.22% ± 0.53 73.12%↑3.00% ± 0.47 20×
ViT− Tiny10% AMD 0.1G 93.83%↑2.15% ± 0.32 73.10%↑3.02% ± 0.30 2.2×
ViT− Small100% (teacher) 4.6G 97.69% 87.82% -
ViT− Small10% KD [arXiv15] [143] 0.5G 79.21%↑18.48% ± 0.35 57.38%↑30.44% ± 0.33 1×
ViT− Small10% DKD [CVPR22] [330] 0.5G 85.17%↑12.52% ± 0.37 64.42%↑23.40% ± 0.34 1×
ViT− Small10% CRD [ICLR20] [455] 0.5G 93.12%↑4.57% ± 0.36 77.36%↑10.46% ± 0.34 1×
ViT− Small10% ADKD [ACL23] [319] 0.5G 88.71%↑9.56 ± 0.42 72.84%↑14.98 ± 0.39 1×
ViT− Small10% TAKD [AAAI20] [26] 0.5G 86.10%↑11.59% ± 0.69 64.98%↑22.84% ± 0.63 20×
ViT− Small10% DGKD [ICCV21] [146] 0.5G 91.85%↑5.84 ± 0.56 76.57%↑11.25 ± 0.48 84×
ViT− Small10% MMD 0.5G 95.14%↑2.56% ± 0.57 79.22%↑8.60% ± 0.52 20×
ViT− Small10% AMD 0.5G 95.12%↑2.57% ± 0.34 79.17%↑8.65% ± 0.33 2.2×
ViT− Base100% (teacher) 17.6G 98.01% 89.33% -
ViT− Base10% KD [arXiv15] [143] 1.8G 79.63%↑18.38% ± 0.38 59.47%↑29.86% ± 0.37 1×
ViT− Base10% DKD [CVPR22] [330] 1.8G 85.71%↑12.30% ± 0.39 69.53%↑19.80% ± 0.36 1×
ViT− Base10% CRD [ICLR20] [455] 1.8G 94.18%↑3.83% ± 0.41 78.29%↑11.04% ± 0.39 1×
ViT− Base10% ADKD [ACL23] [319] 1.8G 88.45%↑9.56 ± 0.35 73.69%↑15.64 ± 0.38 1×
ViT− Base10% TAKD [AAAI20] [26] 1.8G 87.43%↑10.58% ± 0.68 70.89%↑18.44% ± 0.64 20×
ViT− Base10% DGKD [ICCV21] [146] 1.8G 92.78%↑5.23 ± 0.55 78.33%↑11.00 ± 0.53 84×
ViT− Base10% MMD 1.8G 95.54%↑2.47% ± 0.54 80.11%↑9.22% ± 0.53 20×
ViT− Base10% AMD 1.8G 95.52%↑2.49% ± 0.38 80.19%↑9.14% ± 0.37 2.2×
Swin− Base100% (teacher) 15.1G 98.80% 92.68% -
Swin− Base10% KD [arXiv15] [143] 1.5G 80.29%↑18.51% ± 0.37 61.05%↑31.63% ± 0.37 1×
Swin− Base10% DKD [CVPR22] [330] 1.5G 86.16%↑12.64% ± 0.41 72.13%↑20.55% ± 0.32 1×
Swin− Base10% CRD [ICLR20] [455] 1.5G 94.23%↑4.57% ± 0.39 79.71%↑12.97% ± 0.32 1×
Swin− Base10% ADKD [ACL23] [319] 1.5G 89.58%↑9.22 ± 0.44 76.64%↑16.04 ± 0.37 1×
Swin− Base10% TAKD [AAAI20] [26] 1.5G 86.72%↑12.08% ± 0.59 73.86%↑18.82% ± 0.61 20×
Swin− Base10% DGKD [ICCV21] [146] 1.5G 93.54%↑5.26 ± 0.58 79.15%↑13.53 ± 0.46 84×
Swin− Base10% MMD 1.5G 96.07%↑2.73% ± 0.50 83.61%↑9.07% ± 0.47 20×
Swin− Base10% AMD 1.5G 96.02%↑2.78% ± 0.31 83.55%↑9.13% ± 0.28 2.2×
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4.5.1 Main Results

Results on CIFAR-10 and CIFAR-100. Table 4.24 presents the top-1 accuracy
scores on CIFAR-10 and CIFAR-100 datasets across five runs. Several key findings can
be observed. First, AMD surpasses existing knowledge distillation methods with a sig-
nificant performance gap on both CIFAR-10 and CIFAR-100 datasets. For instance, our
model achieves a 1.34-15.89% improvement in top-1 accuracy on ViT-Base knowledge
distillation on CIFAR-10. Second, the suboptimal performance of logit-based methods
(e.g., KD, DKD, and TAKD) across various scales and datasets suggests that these ap-
proaches may not be the best solution for knowledge distillation in transformer-based
architectures. In contrast, methods utilizing feature-space supervision, such as CRD,
ADKD, and our proposed AMD, demonstrate commendable performance. This indicates
a need for feature-mimicking studies in knowledge distillation, particularly as transformer
architectures become deeper and wider, to maintain the integrity and effectiveness of the
distilled models. Third, AMD achieves a significantly faster training speed compared
to multi-step methods, highlighting the effectiveness of structural pruning and joint op-
timization. Finally, our approach consistently outperforms other knowledge distillation
methods across various transformer-based architectural designs, suggesting a promising
direction for future model deployment.

Table 4.25: Comparison results on ImageNet [40] dataset.

Method ImageNet [40] top-1

ViT− Base100% (teacher) 77.90%
ViT− Base10% CRD [ICLR20] [455] 69.66%↑8.24% ± 0.31

ViT− Base10% ADKD [ACL23] [319] 68.40%↑9.50% ± 0.39

ViT− Base10% DGKD [ICCV21] [146] 69.25%↑8.65% ± 0.44

ViT− Base10% MMD 72.43%↑5.47% ± 0.27

ViT− Base10% AMD 72.27%↑5.63% ± 0.22

Swin− Base100% (teacher) 83.50%
Swin− Base10% CRD [ICLR20] [455] 74.83%↑8.67% ± 0.28

Swin− Base10% ADKD [ACL23] [319] 72.38%↑11.12% ± 0.32

Swin− Base10% DGKD [ICCV21] [146] 74.39%↑9.11% ± 0.37

Swin− Base10% MMD 76.86%↑6.64% ± 0.24

Swin− Base10% AMD 76.81%↑6.69% ± 0.21

Results on ImageNet. To
further demonstrate the ef-
fectiveness and generalization
of our approach, we follow
established practices [26,146,
456] and extend AMD to the
ImageNet dataset [40] in Ta-
ble 4.25. As shown in Ta-
ble 4.24, logit-based methods
result in inferior performance
on transformer-based archi-
tectures for both CIFAR-
10 and CIFAR-100 datasets.
Consequently, we only com-
pare our method against the feature-mimicking method CRD in this experiment on ViT
and Swin architectures. Our method achieves over 2.61% higher top-1 accuracy than
CRD on ViT-Base.

4.5.2 Diagnostic Experiments

We conducted a series of ablation studies to assess the robustness and effectiveness of
our proposed AMD approach. The majority of experiments were performed using ViT
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Table 4.26: Impact of student model scalability ranging from 5% to 20%. In our
study, we deliberately exclude models of a higher scale, taking into full account the con-
straints imposed by computational capacities.

Student scalability Method FLOPs Performance GPU hours

ViT− Base5%
ADKD 0.88G 68.44% 1×
AMD 75.88% 2.2×

ViT− Base10%
ADKD 1.76G 73.69% 1×
AMD 80.19% 2.2×

ViT− Base15%
ADKD 2.64G 75.17% 1×
AMD 80.23 % 2.2×

ViT− Base20%
ADKD 3.52G 77.09% 1×
AMD 81.09% 2.2×

trained on CIFAR-100. Additionally, to evaluate the adequacy of employing a single
teacher-assistant, we present supplementary results with ViT trained on CIFAR-10 for
comprehensive analysis.
Impact of Student Model Scalability. To assess whether AMD can enhance per-
formance across different student model scales, we report the results for AMD at scales
ranging from 5% to 20% of ViT-Base in Table 4.26. Specifically, the 20% ViT-Base model,
with a computational demand of 3.52G FLOPs, closely matches the performance of a full-
sized ResNet34 model, which requires 3.68G FLOPs and achieves a 77.94% top-1 accuracy
on CIFAR-100 [457]. We deliberately avoid expanding the student model to a larger scale,
as the main goal of this paper is to maintain a compact student model. Enlarging the
student model would significantly increase inference costs, posing challenges for deploy-
ment flexibility and requiring more computational resources. The results demonstrate that
AMD consistently delivers strong performance across various model scales.
Sufficiency of a Single Teacher-Assistant. To evaluate the efficiency of using a single
teacher-assistant, we conducted an ablation study involving multiple teacher-assistants
in our method. Figure 4.13(a) illustrates that omitting the teacher-assistant leads to
a significant drop in performance (i.e., 79.77%), consistent with the findings in Table
4.24. Additionally, we observed that the performance improvement is minimal when more
than one teacher-assistant is used (i.e., 80.19% → 80.24%), despite a substantial increase
in GPU hours (i.e., tripled and quadrupled for two- and three-step teacher-assistants,
respectively). The results from training on the ViT-Base CIFAR-10 dataset corroborate
this observation (see Figure 4.13(b)). Consequently, we opted for a single teacher-assistant
in AMD, balancing training efficiency and performance adequacy.
Benefit on Training Schedule. Formally, we follow common practices and set 160
epochs as standard training schedule. However, we notice that AMD enjoys a fast con-
vergence in early epochs. For example, in Figure 4.14, with only 40 epochs, our AMD
exhibits competitive performance (i.e., 70.82% in CIFAR-100) in comparison to other
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Figure 4.13: The sufficiency of using one teacher-assistant. colors rep-
resent the performance of AMDMin using zero, one, two, and three teacher-assistants,
respectively. The results from the training on the ViT-Base CIFAR-100 is posited at (a),
CIFAR-10 at (b).
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Figure 4.14: Efficient training schedule. Our proposed AMD enjoys superior perfor-
mance among the overall training scene.

prevalent methods (see Table 4.24). Note that though KD [143] exhibits narrow perfor-
mance gap between epochs (i.e., 7.05%), it can hardly reach a satisfying result under the
setting of transformer-based architectures. AMD, on the other hand, performs consis-
tently well even with a reduced number of epochs. This underscores the potential of our
approach as an efficacious strategy for training in limited training schedule.
Impact of Candidate Sampling Rate. We further study the variation of candidate
sampling rate by changing the number of sampled candidates m ∈ {1, 3, 6, 9, 15}. A
higher value of m signifies a more refined granularity in the sampling rate. This increased
granularity is directly correlated with an extended duration of training time. The GPU
hours and their corresponding student performance are reported in Table 4.27. We set
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Table 4.27: Impact of candidate scaling m.

Method Performance GPU hours
ViT− Base100% (teacher) 89.33% -

– MMD 80.11% 20×
– AMD (m = 1) 78.39% 2×
– AMD (m = 3) 79.46% 2×
– AMD (m = 6) 79.84% 2.1×
– AMD (m = 9) 80.19% 2.2×
– AMD (m = 15) 80.22% 2.6×
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Figure 4.15: Weight values from different loss objectives. We present the perfor-
mance on different values of α and β from Eq. 3.29. The highest performance is marked
in red (i.e., α = 0.2, β = 100). colors represent performance with respect to
different β ∈ {1, 10, 50, 100}.

m = 9 for a satisfying tradeoff between performance and computational overhead. An
increased sampling rate invariably leads to a longer training time, which yields marginal
enhancements in performance. For example, when having m = 15, we observe 0.03%
performance gain can be achieved with 18% GPU hour increment. We argue that this is
inefficient for training schedule.
Impact of different Hyper-Parameters. In Eq. 3.29, two hyper-parameters, α and β,
are introduced to balance the cross-entropy loss, logit-based loss, and feature-mimicking
based loss. Figure 4.15 illustrates the impact of different values of α and β on performance.
The results demonstrate substantial robustness to variations in these hyper-parameters,
as evidenced by a low standard deviation of 0.42. During the experiments, a consistent
pattern emerge across various datasets: a larger α correlates with a reduced influence over
the teacher-assistant’s logit responses, leading to suboptimal performance. Additionally,
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increasing the value of β progressively enhances supervision efficacy. Unlike previous
studies in NLP, which suggest varying β values depending on the task [319], β remained
relatively stable across several datasets in our experiments. Overall, a hyper-parameter
pairing of α = 0.2 and β = 100 is attained for the best performance, which are consistently
applied across all experiments.

Table 4.28: Impact of
different loss compo-
nents, including three
variants from original
training objectives (see
Eq. 3.29)

Method Performance
AMD 80.19%

– w/o LCE 78.32%
– w/o Llogit 78.01%
– w/o Lfeat 75.24%
– w/ Ldkd 80.22%

Impact of Different Loss Components. To examine
the impact of different loss components, we conducted ab-
lation studies on three variants of AMD: ❶ AMD without
the cross-entropy loss Lce, ❷ AMD without the logit-based
loss Llogit, and ❸ AMD without the feature-mimicking loss
Lfeat. As shown in Table 4.28, removing the supervision
on hidden states (i.e., Lfeat) result in a significant perfor-
mance drop (80.19%→ 75.24%). This finding aligns with our
results in §4.5.1, indicating that performance is suboptimal
when relying solely on logit-based methods. Similarly, remov-
ing Lce and Llogit lead to noticeable performance decreases
(i.e., 80.19%→ 78.32% and 80.19%→ 78.01%, respectively),
highlighting the essential roles these losses play in improving
model effectiveness. It is worth noting that eliminating Llogit

has a more pronounced impact on performance, consistent with our previous ablation
study findings (i.e., α = 1).

For completeness, we also conduct experiments combining the DKD loss [330], which
introduces target class knowledge distillation (TCKD) and non-target class knowledge
distillation (NCKD) to further decompose Lce. Specifically, the combined loss is defined
as Ldkd = ζTCKD + ηNCKD, with balancing parameters ζ and η. Our results indicate
that the DKD loss marginally improves model performance (i.e., from 80.19% to 80.22%).
However, it is crucial to note that incorporating the DKD loss introduces additional hyper-
parameters, leading to increased fluctuations in the pursuit of optimal results. Therefore,
to maintain stability in the model’s performance, we adhere to the original design outlined
in Eq. 3.29. Table 4.29: Discussion

on NPSD metric. We
further introduce a general
form of NPSD metric as λ-
NPSD.

CIFAR-100Metric
top-1

NPSD (λ = 0) 80.19%
λ = 0.5 80.19%
λ = 1 80.14%

Effectiveness of NSPD metric. To demonstrate the ef-
fectiveness of the NSPD metric, we also incorporate the
combination of the negative derivatives between teacher and
teacher-assistant, and teacher-assistant and student, i.e.,
−( Pt−Pta

St−Sta
+ λ · Pta−Ps

Sta−Ss
), defined as a general form of NSPD

metric (i.e., λ-NPSD). We report the results with varying
λ values in Table 4.29. The results indicate that λ-NSPD
achieves comparable performance to the original NSPD (we
have tested other λ values as well). However, incorporating
λ introduces additional complexity and necessitates an extra
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distillation step to determine the student’s performance. Therefore, we opt to use the
original NSPD as defined in Eq. 3.28.



Chapter 5

Research Plan

In this chapter, I will discuss the experimental setup (i.e., datasets (§5.1) and evaluation
metrics (§5.2)), and research timeline (§5.3) based on the three tasks I am focusing on.
It should be noted that the evaluated datasets and evaluation metrics will undergo repli-
cation. I will provide a singular comprehensive overview, and subsequent discussions will
reference the established formal introductions.

5.1 Datasets

5.1.1 Universal Visual Learner

We evaluate our methods over two vision tasks viz. optical flow and depth estimation.
For optical flow, following previous research [10, 28], we first train our approach on

FlyingChair [458] and FlyingThings [459], and then fine-tune it on a large combination of
datasets (C+T+S+K+H) to allow evaluation on the Sintel and KITTI-2015 benchmarks.

For depth estimation, we evaluate ProtoFormer on both real and synthetic datasets,
utilizing KITTI [460] and MPI Sintel [461]. As an autonomous driving dataset consisting
of 61 outdoor scenes of various modalities, we use the KITTI Eigen depth split, which
contains a standard depth estimation split proposed by Eigen et al. [35] consisting of 32
scenes for training and 29 scenes for testing. MPI Sintel is a synthetic dataset featuring
long stereo sequences with significant motion and depth variations, containing a total of
35 rendered sequences.

5.1.2 Interpretable Visual Intelligence

Two sub-tasks are included in the discussion of generalizable, interpretable visual intelli-
gence (i.e., see DNC and DVP).
DNC. The evaluation for image classification is carried out on CIFAR-10 [39], CIFAR-
100 [39] and ImageNet [40] datasets, respectively. CIFAR-10 contains 60K (50K/10K
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for train/test) 32×32 colored images of 10 classes. CIFAR-100 dataset contains 100
classes with 500 training and 100 testing images per class. ImageNet-1K [40] includes
high-resolution images spanning distinct categories (e.g., animals, plants, and vehicles).
Following conventional procedures, the dataset is split into 1.2M/50K/100K images for
train/ validation/test splits.
DVP. For quantitative and qualitative results, we conduct a new benchmark, consisting
of 100 diverse text-image pairs. Specifically, we manually pick images from web, gen-
erated images, ImageNet-R [462], ImageNet [40], MS COCO [463], and other previous
work [104, 256]. To ensure a fair comparison and analysis, we construct a list of text
templates including 20 different classes for translating, each containing five images of
high-resolution and quality. For each originating class (e.g., building), we stipulate cor-
responding target categories and stylistic attributes , thereby facilitating the automated
sampling of various permutations and combinations for translating and evaluation.

5.1.3 Carbon-efficient Visual Intelligence System

E2VPT. Our experiments are carried out on two image classification benchmarks. VTAB-
1k [25] collects 19 benchmarked Visual Task Adaptation, categorized into three groups:
(1) Natural contains natural images captured by standard cameras, (2) Specialized includes
images taken by specialized equipment, and (3) Structured covers tasks requiring geomet-
ric comprehension (i.e., counting, distance). Each task of VTAB-1k contains 1000 training
examples. Following [23,25], we apply the 800-200 split for training set on hyperparameter
tuning. The final evaluation is run on the full training data. FGVC contains 5 bench-
marked Fine-Grained Visual Classification, including CUB-200-2011 [31], NABirds [464],
Oxford Flowers [32], Stanford Dogs [33] and Stanford Cars [465]. Following [23], the train-
ing set is randomly split into 90% train and 10% val. We use val for hyperparameter
tuning.
AMD. The evaluation is evaluated on CIFAR-10 [27], CIFAR-100 [27] and ImageNet [466],
which are specifically discussed in §5.1.2.

5.2 Evaluation Metrics

5.2.1 Universal Visual Learner

As introduced in §1.1, a universal visual learner enjoys handling several tasks (i.e., optical
flow, depth estimation), which in turn covers several evaluation metrics.

For optical flow, to ensure a fair comparison, we employ standard metrics: the average
end-point-error (F1-epe), which measures the average l2 distance between the predicted
values and the ground truth, and the percentage of outliers over all pixels (F1-all). F1-all
quantifies the proportion of errors that exceed 3 pixels or 5% relative to the ground truth
in optical flow estimation.
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Table 5.1: User study on controllability and user-friendliness.

Method Controllability User-friendliness
VISPROG 25.1% 39.7%
DVP (ours) 74.9% 60.3%

For depth estimation, we adhere to the standard metrics of absolute relative error
(Abs Rel), root mean square error (RMSE), and the percentage of inlier pixels with δ1 <
τ (τ = 1.25).

5.2.2 Interpretable Visual Intelligence

DNC. DNC covers two fundamental image tasks: image classification, and image semantic
segmentation. To evaluate its performances, I introduce accuracy (see §5.2.1) for image
classification, and mIOU (see §5.2.1) for image semantic segmentation.
DVP. We follow [102, 104], and calculate the CLIP-Score [467] and DINO-Score [468].
These metrics enable the similarity between the generated image and the target prompt.
We further conduct user studies involving 50 participants to evaluate 100 sets of results
from multiple viewpoints, such as fidelity, quality, and diversity. Each set comprises a
source image along with its corresponding translated image. To facilitate the evaluation,
we establish comprehensive guidelines and scoring templates, where scores range from 1
(worst) to 5 (best). In Table 4.17, we design user study including “Quality,” “Fidelity” and
“Diversity,” respectively. Specifically, we employ user study on Likert scale [469], a well-
established rating scale metric utilized for quantifying opinions, attitudes, or behavioral
tendencies [470–473]. This scale typically presents respondents with either a statement or
a question. In our case, the questions are measuring the overall harmony of the translated
image (i.e., “Quality”), the preservation of the identity in the image (i.e., “Fidelity”), and
variations between the original and translated images (i.e., “Diversity”) rated by users
from 1 (worst) to 5 (best), Respondents then select the choice that most closely aligns with
their own perspective or sentiment regarding the given statement or question. We further
provide user study in Table 5.1, focusing on the usability of explainable controllability
discussed in §4.3.2. The results demonstrate that our approach facilitates user-friendly
error correction and permits the intuitive surveillance of intermediate outputs.

5.2.3 Carbon-efficient Visual Intelligence System

Since I am mostly focusing on the conventional image classification tasks, I thus introduce
accuracy as the evaluation matrix (see §5.2.1 and §5.2.2) for both E2VPT and AMD.
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Table 5.2: Overall timeline for the Ph.D. research dissertation.

2023 2024Task Timeline Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
Universal Visual Learner ProtoFormer

Interpretable Visual Intelligence DNC
DVP

Carbon-efficient Visual Intelligence E2VPT
AMD

5.3 Research Timeline

The plans for my future work are shown in Table 5.2. I am planning to graduate in
Summer 2024.
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