
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-1-2024

Geo-SLAM: Using Geometric Hierarchies to Support Localization Geo-SLAM: Using Geometric Hierarchies to Support Localization

and Mapping in Forest Environments and Mapping in Forest Environments

Daniel Castellarin

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Castellarin, Daniel, "Geo-SLAM: Using Geometric Hierarchies to Support Localization and Mapping in
Forest Environments" (2024). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11822?utm_source=repository.rit.edu%2Ftheses%2F11822&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Geo-SLAM: Using Geometric Hierarchies to Support

Localization and Mapping in Forest Environments

by

Daniel Castellarin

A thesis submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Department of Computer Science
in partial fulfillment of the requirements for the

Master of Science Degree in Computing and Information Sciences
at the Rochester Institute of Technology

on July 1, 2024

Abstract

Robust mapping and localization can be challenging in environments like
forests where easily observable landmarks are virtually indistinguishable from
each other. In such environments, GPS or robot odometry may also be com-
promised by the landscape, tree cover, or method of locomotion. Prior work
discussed a method for creating geometric hierarchies to describe the relative
positions of unlabeled landmarks. Notably, the polygons from these hierarchies
were used to perform accurate place recognition from observations containing
partial overlap and sensor noise. Here, we use geometric hierarchies to perform
robust data association for collections of virtually identical 2D landmarks in
direct support of SLAM. Our system, GeoSLAM, utilizes polygon matching
to aggregate landmark positions across consecutive observations, reducing the
noisiness of input data. We also maintain a global geometric hierarchy of the
environment to enable fast and accurate robot pose estimation. Simulation
results empirically demonstrate that this system facilitates accurate, real-time
localization for robots experiencing significant sensor noise when exploring
environments that contain varying densities of indistinguishable landmarks.

i

ii

Committee Approval:

Date of Signature

Zach Butler
Interim Department Chair, Department of Computer Science
Thesis Advisor

Reynold Bailey
Professor, Department of Computer Science
Thesis Committee Reader

Fawad Ahmad
Assistant Professor, Department of Computer Science
Thesis Committee Observer

Contents

1 Introduction 1

2 Related Work 4
2.1 Simultaneous Localization and Mapping 4
2.2 Loop Closure and Place Recognition 6
2.3 Loop Closure in Forest Environments 7

3 Background 10
3.1 Frame Transformations . 10
3.2 Geometric Hierarchies . 12

3.2.1 Geometric Hierarchy Construction 12
3.2.2 Polygon Descriptors . 13
3.2.3 Matching Observations and Deriving Frame Transforms 15

3.3 GraphSLAM Optimization . 16

4 System Architecture 17
4.1 Input . 18
4.2 Local Bundle Adjustment . 18

4.2.1 Differential Pose Estimation 18
4.2.2 Keyframe Construction 21

4.3 Global Mapping . 23
4.3.1 Map Initialization . 23
4.3.2 Initial Landmark Association 25
4.3.3 Global Pose Estimation & Data Association Filtering . 25
4.3.4 New Landmark Discovery 27
4.3.5 GraphSLAM and Geometric Hierarchy Maintenance . . 29

4.4 Parameter Tuning . 30
4.4.1 Setting Parameters for Polygon Matching 30
4.4.2 Setting Parameters for Local Bundle Adjustment 31

iii

CONTENTS iv

4.4.3 Setting Parameters for Global Mapping 32
4.5 Practical Implementation Details 33

4.5.1 Overall System Architecture 34
4.5.2 Simulated Forest Generation 34
4.5.3 Robot Observation Simulation 36
4.5.4 Geometric Hierarchy . 37
4.5.5 Local Bundle Adjustment 38
4.5.6 GraphSLAM . 39
4.5.7 Visualizations . 40
4.5.8 Computing Results . 43

5 Evaluation 45
5.1 Path Type . 47
5.2 Forest Density . 47
5.3 Noise Levels . 48
5.4 Localization in Large Environments 51
5.5 GeoSLAM Efficiency . 51

6 Discussion 53

7 Future Work 55
7.1 Incremental Geometric Hierarchy Updates 55
7.2 Global Map Initialization . 56

7.2.1 Correcting the Global Map 56
7.2.2 Deleting False Landmarks 56
7.2.3 Merging Disjoint Maps 57

7.3 Other SLAM Back-ends . 57
7.4 Realistic Data . 57

8 Conclusion 59

List of Figures

2.1 Front and back end of typical SLAM system. The back end can
provide feedback to the front end for loop closure detection and
verification [2]. 5

2.2 The robot explores an environment resembling two parallel hall-
ways connected by three separate paths. Left: map built from
odometry, which represents a single long corridor from posi-
tions A to B. This map fails to convey that points B and C
are actually close in reality. Right: map built using SLAM; by
leveraging loop closures, recognizes unique locations in the map
to estimate the actual topology of the environment [2]. 6

2.3 (a) The selected triangle Tselected in the local observation with a
candidate matched triangle Tcandidate from the global map. (b)
Identify an initial point A in Tselected with the corresponding
point M in Tcandidate by comparing the triangles’ side lengths.
(c) Match the remaining points B, C with their correspond-
ing points H, N . (d) Extrapolate correspondences to neighbor
points E, D, F and Q, R, T [18]. 8

3.1 Depiction of a robot’s pose (with components xR, yR, θ) relative
to some fixed-reference frame. 10

3.2 Illustration of the translation (left) and rotation (right) of a
rigid body. 11

3.3 Example of robot movement. 12
3.4 Given a Delaunay triangulation, Nardari et al. use Algorithm

1 to drop the longest edge for each triangle to produce an
Urquhart graph, which also creates many-sided polygons repre-
senting the merged triangles across dropped edges [23]. 13

v

LIST OF FIGURES vi

3.5 Sampling points around the perimeter of a polygon and com-
puting its distance to the polygon’s centroid. Sampling begins
at a random vertex. The value of s determines how many points
will be sampled to create the polygon’s initial descriptor. . . . 14

3.6 An example of the structure of a geometric hierarchy. Polygons
are composed of a set of triangles, which are composed of a set
of edges, which are defined from a set of vertices. 15

4.1 The structure of GeoSLAM. Raw sensor data is preprocessed
into noisy 2D landmark positions for input. GeoSLAM ini-
tially aggregates a series of observations to reduce noise. Then,
GeoSLAM localizes the robot by matching the geometric hi-
erarchies of the less-noisy local observation and global map.
Using the resulting landmark associations, GeoSLAM updates
its understanding of the environment. 17

4.2 Demonstration of landmark association rejection during local
bundle adjustment. When the distance between the observed
positions of two matched landmarks exceeds λ, that correspon-
dence is assumed to be incorrect and excluded when computing
the transformation between observations. 21

4.3 Case study on keyframe construction. Observations are sorted
by the order of their arrival. The fixed reference frame of the
keyframe is the robot’s position in the observation used as the
base frame. Every other observation in the keyframe stores a
transformation to describe its landmark positions relative to the
base frame. In this example, before the keyframe was initial-
ized, observations {9, 10, 11} were not able to align with each
other. Once observation 12 was created, the following sequence
of events ensues to construct the keyframe shown above: (1) 12
matched with 10 (2) 10 established as keyframe base, (3) 12
linked to 10, (4) 9 matched and linked to 12 (5) 13 could not
match with keyframe observations (6) 14 matched and linked
to 12 (7) 11 matched and linked to 14. 22

4.4 A clique is a subgraph where each vertex is connected to every
other vertex. In this example, if GeoSLAM was looking for a
4-clique to find a consensus in the association network, it would
find one after landmark 7 is added. 29

4.5 GeoSLAM ROS Node Architecture. 34

LIST OF FIGURES vii

4.6 Illustration of Bridson’s algorithm. All points are stored in a
grid, where each tile is assigned (at most) one point. When
sampling a new point, the program first checks if there is a
point assigned to the tile where it will be placed. If that tile is
available, the program will evaluate the distances to the points
assigned to the surrounding eight tiles to ensure that no point
is within the user-defined minimum distance between points. In
the above example, one of the points in an adjacent tile violates
the minimum distance constraint, meaning that the sampled
point would not be kept in the grid. 35

4.7 Five path options for the simulated robot. The robot starts at
the green circle and follows the path in the direction indicated
by the orange arrow. 36

4.8 An example of how the current implementation matches vertices
of triangles. After the edges A,B,C are matched between two
triangles, the program will extend those matches to the vertices
opposite to each edge. For instance, when the ”A” edges match,
the ”1” vertices match, too. 38

4.9 Offline display of initial polygon matching results between a
keyframe and the global map, depicted as blue lines. This
display could be toggled to show the improved landmark as-
sociation results (green) and the positions of potentially new
landmarks (purple) instead of the initial polygon matching re-
sults. 41

4.10 Real-time display of GeoSLAM’s graph state. In this example,
the robot has travelled more than one-quarter of a circular path.
From its most recent keyframe, GeoSLAM was able to find 34
associations with previously mapped landmarks (green) and es-
tablish the position of 2 new landmarks (purple). The black
triangle, blue triangles, and red dots represent the robot’s cur-
rent estimated pose, the robot’s previous poses, and the other
existing landmark positions respectively. The error statistic
represents the cumulative error, or ”disagreement”, between
the constraints in the graph, which can signal when the graph
should be rolled back (see Section 4.5.6). 42

LIST OF FIGURES viii

4.11 GeoSLAM ROS Node Architecture modified for scalable exper-
imentation. Data that was originally passed over the network is
instead directly read from log files. Strings containing the path
to the run’s log files are transmitted along the chain of nodes
to indicate when the run’s data is ready for further processing. 43

5.1 GeoSLAM Runtimes per Incoming Keyframe 52

List of Tables

4.1 Polygon Matching Parameters 31
4.2 Local Bundle Adjustment Parameters 31
4.3 Global Mapping Parameters . 32
4.4 Parameters used to generate each type of simulated forest. Each

forest is a 2D point cloud representing 1km2 of trees. 35

5.1 Default Simulation Parameter Values (*experiment-dependent) 45
5.2 Local Bundle Adjustment Parameter Values 46
5.3 Global Mapping Parameter Values 46
5.4 Path Type Experiment Results 47
5.5 Landmark Density Experiment Results 48
5.6 Noise Level Experiment: RPE Results. Noise profiles with re-

sults in gray cells indicate that observations were taken every
10cm to sample landmarks more frequently. Accuracy values
in bold indicate that some runs resulted in noticeably fewer
successful map updates. 49

5.7 Noise Level Experiment: LPE Results. Noise profiles with re-
sults in gray cells indicate that observations were taken every
10cm to sample landmarks more frequently. Accuracy values
in bold indicate that some runs resulted in noticeably fewer
successful map updates. 49

ix

Chapter 1

Introduction

Localization is the concept of understanding one’s position relative to sur-
rounding objects. It is required for autonomous systems to successfully im-
plement localization so that they can accurately and precisely act on their
environment. For robotics applications, this task is usually performed while
the robot creates a map of its environment using a process called Simultaneous
Localization and Mapping (SLAM).

For SLAM to work as intended, the robot must use its sensors to find fre-
quent, easily detectable, and, most importantly, distinguishable landmarks in
its environment [2]. In the absence of these landmarks, robots will often find
distinct patterns (i.e. features) within its raw sensor data to describe unique
locations in its environment. These functions are often called perception tasks.
Regardless of how a robot performs these tasks, their success is vital for en-
abling the robot to maintain an accurate understanding of its position in the
environment over time. Most importantly, robots must be precise when iden-
tifying unique locations across observations, because if it makes a mistake, it
most likely will cause the system to crash.

Therefore, most of the development of autonomous systems goes towards
robots that operate in highly controlled environments. Autonomous systems
have become especially popular in the manufacturing and logistics industries
[20] [16]. In these settings, engineers benefit from implementing infrastructure
to improve the robot’s understanding of the environment. For example, unique
QR codes could be placed on various walls of a large warehouse. The position
of each QR code would be known beforehand, so when the robot observes a QR
code, it can easily confirm its location in the environment. Another common
approach is implementing fixed active beacons in the environment, which also
enable the robot to determine its own position relative to those beacons.

1

CHAPTER 1. INTRODUCTION 2

Even so, autonomous systems are being designed for a wide variety of
environments. Robots that automatically perform cleaning and landscaping
tasks are becoming more prominent on large campuses. Car manufacturers
are in the process of designing and testing autonomous vehicles for use on
public roadways. In indoor environments or on highways, there is typically a
wide assortment of uniquely identifiable landmarks for autonomous systems
to choose from.

Not all environments contain easily distinguishable landmarks, though.
For example, forests are filled with assortments of trees, fallen logs, and other
land formations. These objects are often hard to tell apart from each other
and occur frequently enough that autonomous systems will not be able to
accurately create associations between the landmarks they observe over time.
On top of this, other methods of precise localization, like GPS, are not useful
for robots that operate under the forest canopy due to interference caused by
tree leaves and branches.

Recently, Nardari et al. [23] proposed a novel method for recognizing
unique places in environments with virtually identical landmarks (like forests).
They construct a single geometric hierarchy from the observed positions of
landmarks in a 2D-plane. This hierarchy defines polygons from the spatial
relationships between landmarks, which are ultimately used to identify unique
locations in the environment. These polygons tend to be both unique and
noise-resilient, making them ideal for localizing autonomous systems in envi-
ronments where perception is difficult.

Although promising, their implementation of place recognition had certain
weaknesses. First, their algorithm did not perform well in the presence of
significant detection noise. In addition, its performance was only evaluated for
observations of environments that have a density of landmarks similar to the
density of trees in an average forest. Most importantly, when polygons from
each observation’s geometric hierarchy are stored separately, the computation
time for place recognition will grow linearly with respect to the number of
stored observations instead of the size of the map.

We believed that Nardari et al.’s methodology could be used to construct
and maintain a global representation of a robot’s environment filled with vir-
tually identical landmarks. We sought to create an algorithm that would
build a global geometric hierarchy, thus enabling real-time place recognition
in environments where perception is difficult. In addition, we thought that
by leveraging SLAM to improve the estimated positions of landmarks in the
global map, we could ensure the map would continue to support accurate place
recognition as the robot makes more noisy observations of its environment.

CHAPTER 1. INTRODUCTION 3

This thesis describes how we incorporated the place recognition technique
developed by Nardari et al. into a complete SLAM algorithm called GeoSLAM.
We explain what type of input this system expects, how we perform local bun-
dle adjustment to reduce noise across observations, and how we maintain a
global representation of the environment within SLAM. We also review various
nuances found within our particular implementation. In order to demonstrate
the stability and effectiveness of GeoSLAM, we evaluate its ability to accu-
rately estimate the robot’s pose and the positions of landmarks over time. We
investigated the dependence of landmark density on GeoSLAM’s localization
accuracy and scalability. We also tested GeoSLAM across various detection
and position noise levels to evaluate its adaptability when receiving input
from low-precision sensing systems. Afterwards, we discuss the implications
of GeoSLAM’s performance and how it could be improved in the future.

Chapter 2

Related Work

GeoSLAM was developed after obtaining a deeper understanding of the con-
cepts behind and applications of place recognition in the field of robotics.
We first discuss the implementation of simultaneous localization and map-
ping (SLAM), how it utilizes place recognition through loop closure, and how
loop closure detection was implemented to support the operation of systems
belonging to forest environments.

2.1 Simultaneous Localization and Mapping

One of the most important developments in the field of autonomous robotics
was simultaneous localization and mapping (SLAM). It enables robots that
cannot make accurate individual observations of an unknown environment to
build an increasingly accurate and cohesive map over time. Most importantly,
it allows the robot to understand its own position in that environment. There
are two major components to a SLAM system: a back-end and a front-end.
Fig. 2.1 illustrates the interaction between these components in a SLAM
system.

The SLAM back-end is designed to estimate the state of the robot and its
environment. There are a few available approaches to performing this task.
Filter-based methods which utilize concepts from probability theory, like ones
that use an extended Kalman filter (EKF) or the FastSLAM algorithm, have
classically been chosen for this component of the system [7]. Methods based
on graph optimization are now the standard because they have been proven
to have superior accuracy and efficiency [2].

The SLAM front-end is designed to take raw sensor input and extract
important features from it so that the back-end can model the environment.

4

CHAPTER 2. RELATED WORK 5

Figure 2.1: Front and back end of typical SLAM system. The back end can
provide feedback to the front end for loop closure detection and verification [2].

The front-end is also tasked with associating measurements taken from these
features with landmarks (i.e., unique locations in the environment) over mul-
tiple observations in the short-term (feature tracking) and long-term (loop
closure). For example, if a single image was considered an observation for a
simple Visual SLAM system, the front-end would identify pixels that repre-
sent a few distinguishable points (landmarks) in the environment and then
extract measurements associated with those points to give to the back-end for
processing.

The design of a SLAM system’s front-end is often tied directly to what
sensors the robot will be using. The two main contemporary methods are
Visual SLAM and LiDAR-SLAM, developed around obtaining input data from
cameras and LiDAR sensors respectively. Visual SLAM implementations can
be further broken down into how they interact with the data, splitting them
into feature-based methods [6] [22] and dense methods [24] [9] [8]. There
are also implementations designed around the use of the RGB-D camera [33].
LiDAR SLAM techniques utilize point cloud data, which is a series of scattered
points with accurate angle and distance information [15]. LiDAR sensors can
interpret the environment in either two or three dimensions, and the front-
end components of SLAM will differ depending on the dimensionality of the
input [12] [32] [3]. In recent years, advances in deep learning have led to
the integration of neural networks to solve specific tasks in front-end SLAM
systems like extracting descriptors [19] and semantic interpretation of a scene
[21].

CHAPTER 2. RELATED WORK 6

Figure 2.2: The robot explores an environment resembling two parallel hall-
ways connected by three separate paths. Left: map built from odometry,
which represents a single long corridor from positions A to B. This map fails
to convey that points B and C are actually close in reality. Right: map built
using SLAM; by leveraging loop closures, recognizes unique locations in the
map to estimate the actual topology of the environment [2].

2.2 Loop Closure and Place Recognition

As part of the SLAM front-end, loop closure implementations must associate
feature measurements from new observations with old landmarks. Practically,
this is what allows loop closure to correct previously misunderstood notions
about an environment (see Fig. 2.2). The most important aspect of a loop
closure system is its ability to recognize when the robot has arrived at a
location it has already seen (often called place recognition). Just like any other
software algorithm in the field of robotics, it is expected that the method of
loop closure is fast and computationally inexpensive.

The simplest possible approach to performing loop closure would be a
brute-force analysis of eligible features, which is impractical for most robotics
applications. One of the most popular techniques involves quantizing the fea-
ture space using bag-of-words models [27] to allow for more efficient searches.
These can be improved using more complex vocabulary trees to organize de-
scriptors hierarchically [25]. For systems that rely on visual information, ac-
cumulated words may not be matchable when illumination levels vary in the
environment. Consequently, other techniques have been developed to account
for this, such as gathering measurements for an object from different per-
spectives [4] and including spatial information in the descriptors [14]. Some
descriptors are built for describing features that are given by different sensors,
like FLIRT features for 2D LiDAR data [28].

There are a few things to consider when benchmarking loop closure sys-

CHAPTER 2. RELATED WORK 7

tems. Detection outcomes can be categorized in four ways: true-positive,
true-negative, false-positive, false-negative. Generally, loop closure detection
systems attempt to achieve high precision across all recall values. The most
common performance indicator of loop closure systems is the highest possi-
ble recall score with the least number of false-positive detections (as close
to perfect precision as possible). This metric is very important since a sin-
gle false-positive detection can often cause the SLAM system’s back-end to
break [30].

2.3 Loop Closure in Forest Environments

Solutions to the loop-closure task often rely on the environment having fre-
quent, unique landmarks. However, in environments where the features that
describe landmarks are virtually indistinguishable, like in a forest, methods like
the bag-of-words approach are not viable [29]. Instead, systems would need to
rely on spatial information to describe distinct places, which is traditionally
acquired using LiDAR sensors. Methods like Geometrical Landmark Rela-
tions (GLARE) [13] transform 2D laser scans into pose invariant histogram
representations. They compute a global descriptor for each observation and a
local descriptor for each landmark. When matching observations, the global
descriptors would be compared first, and then landmarks would be associated
using the local descriptors. Although these methods were proven effective in
some outdoor environments [13] [17], they can be susceptible to noise since
they rely on space discretization, potentially causing a landmark to fall into
different bins when matching observations.

Local methods of loop closure would not have this issue, though. Since
they compute descriptors for regions around features, they can make success-
ful landmark associations in the presence of partial overlap or occlusion. For
example, Gawel et al. demonstrate how to use structural descriptors of the
density of features’ neighboring points to merge point cloud maps from differ-
ent sensory systems [10]. Similarly, fast point feature histograms (FPFH) [26]
compute surface normals of nearby points to create descriptors for each point.
The normals are represented as angular features then stored in histogram bins.

One novel approach proposed by Li et al. [18] represented local LiDAR
point cloud observations using Delaunay Triangulations to match landmarks
in a global map. For each triangle, they create a descriptor by concatenating
the area and perimeter values of itself and the triangles that share its sides.
Delaunay Triangulations of noisy point sets maximize the minimal angle for
all vertices, reducing the noise in angular values. They also inherently create

CHAPTER 2. RELATED WORK 8

Figure 2.3: (a) The selected triangle Tselected in the local observation with a
candidate matched triangle Tcandidate from the global map. (b) Identify an
initial point A in Tselected with the corresponding point M in Tcandidate by
comparing the triangles’ side lengths. (c) Match the remaining points B, C
with their corresponding points H, N . (d) Extrapolate correspondences to
neighbor points E, D, F and Q, R, T [18].

local neighborhoods for every vertex (its set of connected vertices along the
triangle edges). Notably, this method is relatively immune to point detection
noise, because if some points are missed, most triangles will still be present so
the system can recognize a previously seen location. The process of matching
two descriptors is illustrated in Fig. 2.3.

The major disadvantage these local methods have is that they are lim-
ited by their computational complexity. The number of comparisons to be
performed will grow with the number of points or landmarks in an observa-
tion. Since mobile robotics systems require real-time performance with limited
resources, these solutions often become impractical.

In parallel to the work of Li et al., Nardari et al. [23] proposed a lo-
cal method that uses fewer descriptors than its contemporaries while being
robust to noise and partial overlap. The details of this method will be fur-
ther discussed in Section 3.2. Nardari et al. tested this methodology against
GLAROT [17], a rotation invariant version of GLARE [13], and Li et al.’s [18]
in map merging and simulated loop closure detection experiments, where it
outperforms the others in both accuracy and robustness. The approach of Li

CHAPTER 2. RELATED WORK 9

et al. performed the best when only detection noise was introduced, but it did
not hold up in the presence of position noise.

Despite displaying promising results, Nardari et al.’s methodology had
some key weaknesses. Its performance has yet to be tested in denser environ-
ments, which would require the storage and comparison of more polygons per
observation. More importantly, in worst case scenarios, the number of poly-
gon comparisons would be quadratic (for two observations). Even though the
number of comparisons should be less than similar methods of loop-closure
(which need to compare two sets of landmarks together), in practical scenar-
ios, the number of observations to compare against will scale linearly, too.
Nardari et al. experimented with randomly sampling the polygons in each
observation, but this decreased the accuracy of the method. Additionally, if
some landmarks are not detected successfully in an observation, the perfor-
mance of the method will drop. Altogether, implementing this method of loop
closure by itself is not enough to guarantee adequate performance in practical
robot applications.

Chapter 3

Background

The following sections describe fundamental concepts that are utilized in the
implementation of GeoSLAM.

3.1 Frame Transformations

When mapping a robot’s motion through 2D space, its instantaneous pose
has three components: xR, yR, θ. This pose describes the robot’s position
and orientation relative to some fixed-reference frame, commonly known as
the origin (see Fig. 3.1). In the domain of robot navigation, the origin of the
robot’s map is its starting position and orientation when it powers up.

Figure 3.1: Depiction of a robot’s pose (with components xR, yR, θ) relative
to some fixed-reference frame.

10

CHAPTER 3. BACKGROUND 11

Figure 3.2: Illustration of the translation (left) and rotation (right) of a rigid
body.

In this context, the robot could also be described as a rigid body. When
rigid bodies move through 2D space, they are capable of three degrees of free-
dom: translation along the x-axis, translation across the y-axis, and rotation
about the normal of the 2D plane, as seen in Fig. 3.2. These are called pure
transformations, and they can be defined mathematically using homogeneous
transformation matrices.

A series of pure transformations can be combined to describe one complex
movement between two poses. For example, in Fig. 3.3, robot R is initialized
at pose (2,3,π). It then moves along forward by 3, turns π

2 to the left, and then
moves forward again by 2. Intuitively, the robot’s new pose would be (-1,1,3π2).
Similarly, we can represent this movement as a single homogeneous matrix by
multiplying the pure transformations together (assuming +x is forward):1 0 3

0 1 0
0 0 1

 ·
0 −1 0
1 0 0
0 0 1

 ·
1 0 2
0 1 0
0 0 1

 =

0 −1 3
1 0 2
0 0 1

 (3.1)

We can then multiply the combined transformation with the matrix rep-
resenting the robot’s previous pose to obtain its new pose:−1 0 2

0 −1 3
0 0 1

 ·
0 −1 3
1 0 2
0 0 1

 =

 0 1 −1
−1 0 1
0 0 1

 (3.2)

CHAPTER 3. BACKGROUND 12

Figure 3.3: Example of robot movement.

3.2 Geometric Hierarchies

Nardari et al. [23] developed the methodology of using geometric hierarchies
for place recognition in environments filled with identical landmarks. The
important concepts are summarized in the following subsections.

3.2.1 Geometric Hierarchy Construction

The expected input to create a geometric hierarchy is a set of noisy 2D land-
mark locations. A Delaunay triangulation is then constructed from these
points. This can be described as the set of triangles where the vertex of any
triangle is not in the circumcircle of any other triangle. Triangles have the
useful geometric property of being relatively robust to noise. In a Delaunay
triangulation, the smallest angle of each triangle is maximized. Because of this,
(assuming general position) there is only one valid Delaunay triangulation for
a given set of points.

Despite these useful properties, using a Delaunay triangulation alone is not
enough to accurately make associations between noisy observations. As the
number of triangles grows, there is a greater possibility for similar triangles to
appear in the same observation. These triangles must be grouped into regions

CHAPTER 3. BACKGROUND 13

Figure 3.4: Given a Delaunay triangulation, Nardari et al. use Algorithm 1 to
drop the longest edge for each triangle to produce an Urquhart graph, which
also creates many-sided polygons representing the merged triangles across
dropped edges [23].

Algorithm 1: Urquhart Graph with Cycle Detection [23]

Data: Delaunay triangulation graph GD, Set of triangles T
1 C = T // cycle basis; accumulated polygons

2 GU = GD // Urquhart graph

3 foreach t ∈ T do
4 Identify longest edge e ∈ t
5 Identify triangle n that shares e with t
6 Drop e from GU

7 Ct = t∆n // symmetric difference

8 end
9 return C,GU

to minimize the chance of finding false-positive correspondences between tri-
angles. This can be executed deterministically by constructing an Urquhart
graph from the Delaunay triangulation [31]. The prior work defines Algorithm
1, which summarizes the process of computing the Urquhart graph while also
deriving a unique set of polygons, which serve as the top level of the geometric
hierarchy (see Fig. 3.4). The asymptotic complexity of constructing a geomet-
ric hierarchy is bounded by the computation of the Delaunay triangulation,
taking O(n log(n)) time (where n is the number of landmarks).

3.2.2 Polygon Descriptors

Instead of using the Urquhart graph to find correspondences between obser-
vations, it is possible to match observations using the polygons derived from

CHAPTER 3. BACKGROUND 14

Figure 3.5: Sampling points around the perimeter of a polygon and computing
its distance to the polygon’s centroid. Sampling begins at a random vertex.
The value of s determines how many points will be sampled to create the
polygon’s initial descriptor.

them. To do so, they must have descriptors that can be used to uniquely
identify each other. When computing the descriptor, it is assumed that obser-
vations will not be sheared or have differences in scale, which should be true
for LiDAR data.

A polygon’s descriptor is initialized as the distances between some collec-
tion of points on the perimeter of the polygon and the centroid [5]. Because
each polygon can have different numbers, a constant number of points are
sampled relative to the perimeter of each polygon. The ratio of the perime-
ter between each point sampled for the descriptor is given by 0 < s < 1. A
large value for s will create lower-resolution descriptors for the polygon, while
a small value will likely capture more details such as sharp corners in the
polygon. An optimal value for s would balance these properties to maximize
descriptor precision while also enabling matching to be robust to noise. This
concept is illustrated in Fig. 3.5.

This initial descriptor is invariant to translation within the local observa-
tion since it only uses relative distances within the polygon. However, if the
order of the descriptor elements is different between polygons (depending on
where along the polygon’s perimeter sampling begins), it would be possible
for identical polygons to not successfully match with each other. This prob-
lem is addressed by applying a Discrete Fourier Transform to obtain a new
descriptor [5]. Taken from the frequency domain, this new descriptor has the
property that its magnitude will be the same regardless its order, making it
invariant to where sampling was started.

CHAPTER 3. BACKGROUND 15

Figure 3.6: An example of the structure of a geometric hierarchy. Polygons
are composed of a set of triangles, which are composed of a set of edges, which
are defined from a set of vertices.

3.2.3 Matching Observations and Deriving Frame Transforms

The descriptor for each polygon and triangle is stored in the geometric hier-
archy. Conceptually, the hierarchy is organized into three tiers: the polygons,
the triangles, and the edges of the triangles (see Fig. 3.6). The matching
process consists of finding similar elements within the same tier across two
observations. To start, the polygon are matched together. To increase ro-
bustness and speed, polygons are only compared if the difference in number
of points between polygons is less than or equal to ∆N . If the difference be-
tween the magnitudes of their descriptors is less than τ , two polygons would
be successfully matched.

For each pair of matching polygons, the set of triangles that composes each
polygon are matched with each other. The process for matching two trian-
gles is identical to the process used for polygons. However, successful triangle
matches between two polygons are only accepted if the ratio of matched trian-
gles exceeds η. Otherwise, any triangle matches found for the pair of polygons
will not be considered valid.

For the final phase of matching, the edges from the remaining correspond-
ing triangles are matched together. This is performed by finding the per-
mutation of edges that minimizes the differences between the lengths of the

CHAPTER 3. BACKGROUND 16

triangles’ edges. Ultimately, these edge correspondences are extended to the
triangles’ vertices, which represent the positions of individual landmarks in
each observation.

Using these resulting landmark associations, a frame transformation is esti-
mated between the two observations. Since these observations are made within
the 2D plane and the data does not suffer from shear and scale variations, this
transformation takes the form of a three-degree-of-freedom Euclidean (as seen
in Section 3.1).

3.3 GraphSLAM Optimization

We chose to implement GraphSLAM to optimize the estimated state of the
environment. Conceptually, the construction of the GraphSLAM problem
is quite intuitive. The global map is defined as a graph. Every node in
the graph represents the estimated position of an object in the environment.
For example, nodes may represent either the estimated pose of a robot at a
particular instance in time or the estimated position of a landmark. Every
edge in the graph represents an observed (potentially noisy) measurement.
These are usually referred to as ”constraints”. When a constraint links two
robot pose nodes together, it represents an odometry measurement. When
a constraint links a robot pose node to a landmark node, it represents the
observed position of the landmark relative to the robot’s pose. GraphSLAM
utilizes every historical sensor measurement to reduce cumulative errors in its
map. Therefore, as the robot makes more observations of its environment,
more pose nodes constraints will be added to the graph.

Ultimately, GraphSLAM tries to find the position of each node that will
minimize the error (or disagreement) between the constraints in the graph.
This is achieved by constructing a linear system to compute corrections to the
positions of nodes in the graph. This can be performed iteratively to further
reduce the graph’s error over time.

Chapter 4

System Architecture

The following sections will explore the design decisions and overall architecture
of GeoSLAM. The first section explains what type of input this system expects.
The next section describes how local bundle adjustment is implemented. The
section after that explains how the SLAM problem is solved. The last section
reviews GeoSLAM’s various parameters and how the system was implemented.
Fig. 4.1 depicts how observation data flows through GeoSLAM.

Figure 4.1: The structure of GeoSLAM. Raw sensor data is preprocessed into
noisy 2D landmark positions for input. GeoSLAM initially aggregates a se-
ries of observations to reduce noise. Then, GeoSLAM localizes the robot
by matching the geometric hierarchies of the less-noisy local observation and
global map. Using the resulting landmark associations, GeoSLAM updates its
understanding of the environment.

17

CHAPTER 4. SYSTEM ARCHITECTURE 18

4.1 Input

GeoSLAM expects its input to be in the form of a noisy 2D point cloud.
These points should represent the positions of static, repeatably observable
landmarks in the environment with an average nearest-neighbor (NN) distance
of at least λ meters. It is expected for some landmarks to be absent, have the
wrong position, or not actually represent a real landmark. In other words,
perfection is not required from the front-end of GeoSLAM.

Observations should be given to GeoSLAM proportional to the speed of
the observer. In other words, GeoSLAM should receive multiple observations
(or samples) of the landmarks in its vicinity. A key factor that enables this
GeoSLAM to function in the presence of much noise is that it can recognize
places even with partial overlap between observations. Since GeoSLAM relies
solely on the spatial relationship between landmarks to recognize places, if
there is a lot of detection noise in a given environment, GeoSLAM would
expect more input frames to counteract the data loss per observation.

4.2 Local Bundle Adjustment

Before we can use our observations to update our global map of the environ-
ment, we want to remove as much of the noise from it as possible. Like all
SLAM back-ends, our system will break if any incorrect data associations are
committed to the graph. Our mapping algorithm is robust enough to filter out
these bad associations, but if the local observations do not remotely represent
what we have in the global map, then none of our observations will be used
to update the global map in the first place. We utilize the place recognition
technique developed by Nardari et al. to find transformations between obser-
vations (Section 4.2.1). We match these frames in a specific order maximize
the potential of preserving the data from each observation while minimizing
the amount of times we need to match (Section 4.2.2). Our system is going
to require as many de-noisied observations as it can to have the most accu-
rate and up-to-date robot position. Algorithm 2 defines the procedure for
aggregating the data from sequential observations into a single keyframe.

4.2.1 Differential Pose Estimation

In order to compute an estimated transformation between observations, we
build a geometric hierarchy for each input point cloud. Matches are found
between hierarchy elements, starting with polygons, then the triangles that

CHAPTER 4. SYSTEM ARCHITECTURE 19

Algorithm 2: Local Bundle Adjustment

Data: kfObsv, otherObsv, keyframeCloud, s, τ,∆N , η, γ, λ, σ, n, f
/* kfObsv is a set ordered by id, otherObsv is FILO list */

1 Function LocalBundleAdjustment(frameID, pointCloud):
2 notMatched←− true
3 obsvToMatch←− (kfObsv = ∅ ? otherObsv : kfObsv)
4 struct {
5 id ←− frameID
6 cloud ←− pointCloud
7 geoHier ←− constructGeoHier(pointCloud, s)
8 tf ←− NULL

9 } thisObs
10

11 while (obs1←− obsvToMatch.next()) ̸= ∅ and notMatched :
12 ptMatches ←− hierMatching(thisObs, obs1, τ,∆N , η)
13 Keep ptMatches with pairwise distance < λ
14 if |ptMatches| > γ then
15 notMatched←− false
16 if kfObsv = ∅ then // initialize keyframe

17 obs1.tf = Identity()
18 keyframeCloud = obs1.cloud
19 Move obs1 from otherObsv into kfObsv

20 thisObs.tf = getTf(ptMatches)× obs1.tf
21 keyframeCloud += transformCloud(thisObs)
22 kfObsv.add(thisObs)
23 for each obs2 ∈ otherObsv : // ignore any repeats

24 ptMatches ←− hierMatching(obs2, thisObs, τ,∆N , η)
25 Keep ptMatches with pairwise distance < λ
26 if |ptMatches| > γ then
27 obs2.tf = getTf(ptMatches)× thisObs.tf
28 keyframeCloud += transformCloud(obs2)
29 Move obs2 from otherObsv into kfObsv

30 if notMatched then otherObsv.append(thisObs)
31 if otherObsv.first().id < thisObs.id− f then otherObsv.pop()
32 if |kfObsv| ≥ n or kfObsv.last().id < thisObs.id− f then
33 Publish centroids of clustering(keyframeCloud, σ)
34 Clear kfObsv and keyframeCloud

CHAPTER 4. SYSTEM ARCHITECTURE 20

compose the matched polygons, and lastly individual landmarks which define
each matched triangle (see full explanation in Section 3.2).

Even though the landmark associations resulting from polygon matching
can be quite reliable in the presence of some noise, they are not perfect. There
is the potential for false-positive associations to be included in the matching.
Left unattended, these mistakes will cause us to calculate the wrong transfor-
mation between observations, which will ultimately mess up any attempt we
make to combine landmark information across observations.

Given that the underlying data is quite noisy and that each landmark is
only identifiable by its position relative to the observer, unless we want to
perform a lot of work to validate each match, we need to leverage a couple of
assumptions about our input to fix this issue. The first assumption is that the
observer should be recording its observations relatively frequently, such that
the observer will have only moved a small distance between each reported ob-
servation. The other assumption is that the environment’s landmarks should
be at least λ distance away from each other1. Given that the observer’s dif-
ferential distance between sequential observations is likely much less than λ,
we can simply check whether a match is valid by ensuring that the positions
of the matched landmarks (relative to the observer in their respective frames)
are less than λ away from each other. In other words, since the observer
should not have physically moved very far since its previous observation, we
can quickly identify false-positive associations since their landmarks have sig-
nificantly differing positions relative to the observer. We can speed up this
process even further by evaluating only the maximum feature distance of the
matched landmarks (instead of metrics like squared or Euclidean distance).
See Fig. 4.2 for an illustration on how landmark associations are rejected.

It is important to remember that we only require two correct associations in
order to compute a valid Euclidean transformation between observations (our
method expects at least γ associations to minimize the position noise that
potentially affects each landmark’s position), but a single incorrect associa-
tion will produce a significantly different matrix. Therefore, we only consider
associations to be valid if we are almost certain they are correct. This can be
adjusted by varying the value of λ in the system.

1If sequential observations are consistently depicting the robot moving a significant dis-
tance (due to some unavoidable latency), then another form of filtering these landmark
association should be implemented to replace the oversimplified method explained above.

CHAPTER 4. SYSTEM ARCHITECTURE 21

Figure 4.2: Demonstration of landmark association rejection during local bun-
dle adjustment. When the distance between the observed positions of two
matched landmarks exceeds λ, that correspondence is assumed to be incorrect
and excluded when computing the transformation between observations.

4.2.2 Keyframe Construction

Since we expect the individual incoming observations to be fairly noisy, we
want to cross-examine their contents across a small window of time. As new
observations are received, each will be matched against each of the observations
in the keyframe (starting with the most recent) until a valid association is
found. When this occurs, we match it against the f most recent observations
that were unable to be associated with the keyframe2.

If the keyframe is uninitialized, observations will be matched with each
other as they arrive until a valid association between two of them is found.
The earliest observation will be used as the base frame for the keyframe.
When other observations are matched with the keyframe, the positions of
their landmarks will be transformed w.r.t. the base of the keyframe. These
transformed positions get stored in a single point cloud. This process is similar
to computing the forward kinematics of robotics arms, where the position
of a robot’s end-effector relative to the arm’s base can be derived from the
combination of the individual transforms which describe the state of each joint
and link in the arm. In other words, regardless of which keyframe observation
a new observation matches with, it is really easy to find the positions of the
new observation’s landmarks w.r.t. the base of the keyframe. See Fig. 4.3 for

2f should be relatively small. While our method for place recognition can still function
when observations only exhibit a partial overlap, if observations are taken from a distance
greater than λ, their landmark correspondences willbe rejected.

CHAPTER 4. SYSTEM ARCHITECTURE 22

Figure 4.3: Case study on keyframe construction. Observations are sorted
by the order of their arrival. The fixed reference frame of the keyframe is
the robot’s position in the observation used as the base frame. Every other
observation in the keyframe stores a transformation to describe its landmark
positions relative to the base frame. In this example, before the keyframe was
initialized, observations {9, 10, 11} were not able to align with each other.
Once observation 12 was created, the following sequence of events ensues to
construct the keyframe shown above: (1) 12 matched with 10 (2) 10 estab-
lished as keyframe base, (3) 12 linked to 10, (4) 9 matched and linked to 12
(5) 13 could not match with keyframe observations (6) 14 matched and linked
to 12 (7) 11 matched and linked to 14.

a closer look at how observations can be arranged in the keyframe.
Ideally, the accumulation of our observation data should mask the presence

of any detection noise. Once we have at least n observations-worth of data
in our cumulative point cloud, we perform clustering on the aggregated land-
mark positions, keeping the centroids of the resulting clusters as our finalized
landmark locations. Any form of clustering can be used for this purpose, but
ultimately each cluster will represent a single point in space, and we want to
try to ignore as many outlier landmark positions as possible when clustering.
By clustering the landmark positions, we are attempting to remove as much
of the position noise as possible. With these final landmark positions defined,
we send them to the global map and start fresh with an empty keyframe.

CHAPTER 4. SYSTEM ARCHITECTURE 23

4.3 Global Mapping

GeoSLAM is designed to continuously provide up-to-date robot pose and land-
mark position estimates in the global frame. We combine GraphSLAM, which
incrementally improves our estimates regarding the state of the environment,
with the place recognition technique of geometric hierarchy matching. Since
we expect keyframe data to be a little noisy, it can still be challenging to make
associations between the local and and global frames if both representations
of the environment do not closely resemble the ground truth. However, if we
can incrementally improve the global map over time, then it we could also
improve our ability to find associations with the global map regardless of how
noisy an incoming keyframe is.

As with any SLAM back-end, GraphSLAM requires essentially perfect data
association to work properly. Since we expect some residual noise to remain
in our data, this implementation utilizes a number of safeguards to prevent
updating the map in a manner that would break the optimization process.
Algorithm 3 summarizes the process of maintaining the global map using 2D
landmark locations from incoming keyframes.

4.3.1 Map Initialization

Choosing the starting configuration of the map is important. There are cur-
rently two options regarding how the global map can be initialized. A user
can either provide a map upon starting the program or the system will be
expected to initialize one itself. A user-defined map is equivalent to a set of
2D landmark positions. Landmarks initialized in user-defined maps will not
be included in graph optimization until they have been observed by the robot
at least once. This will improve the speed of graph optimization especially
when large maps are given to GeoSLAM.

When a map is not provided, the system will use the first keyframe it
receives as its starting map. Since individual keyframes may have extra or
missing landmarks relative to the robot’s current position, this can be im-
proved to collect multiple keyframes before establishing the starting global
map. For example, we could probably store a small window of keyframes
to be used find transformations between observations (similar to how local
bundle adjustment is implemented). Then we could leverage our method for
landmark discovery (see Section 4.3.4) to determine where landmarks belong
in the global map. Once the set of global landmarks is considered to be dense
enough for proper geometric hierarchy matching, we can forget the previous
keyframes and only match new keyframes using the global map.

CHAPTER 4. SYSTEM ARCHITECTURE 24

Algorithm 3: Global Map Update

Data: globalMap, newLandmarkGraph,
s, τ,∆N , η, γ, ψ,m, α, ξ,Λ, ρ, β, r, µ, k, ω, δ

Result: up-to-date robot pose and landmark positions
/* globalMap contains (ldmks, globalGH, graph) */

/* DiscoverLandmarks() can access newLandmarkGraph */

1 Function GlobalMapUpdate(cloud):
2 gH ← constructGeoHier(cloud, s)
3 if !exists(globalMap) then create globalMap using cloud and gH
4 else
5 for t← τ to m by ψ until |ptMatches| > γ or τ > m do
6 ptMatches← hierMatching(gH, globalGH, t,∆N , η)
7 if |ptMatches| ≥ γ
8 and
9 EstimatePose(cloud, ldmks, ptMatches, α, ξ,Λ, ρ, β, r, µ)

10 then
11 Retrieve landmarkAssoc, unmatchedLocals, bestTf
12 graph.addPose(bestTf)
13 for each (lP, gP) ∈ landmarkAssoc do
14 if gP ̸∈ ldmks then graph.addLandmark(gP)
15 graph.addConstraint(bestTf, gP, lP)

16 for each (gP, obsv) ∈
DiscoverLandmarks(unmatchedLocals, bestTf, k, δ) do

17 graph.addLandmark(gP)
18 for each (pose, position) ∈ obsv do
19 graph.addConstraint(pose, gP, position)

20 Optimize and update graph
21 if graph error increased too much then rollback globalMap
22 else
23 if any new landmarks discovered then
24 globalGH← constructGeoHier(ldmks, s)
25 else recalcPolygonDescriptors(globalGH)
26 newLandmarkGraph drops observations older than ω

CHAPTER 4. SYSTEM ARCHITECTURE 25

4.3.2 Initial Landmark Association

As opposed to how geometric hierarchies are matched during local bundle
adjustment, we attempt to match polygons using multiple threshold settings.
The polygon descriptor threshold τ for local bundle adjustment will be set
relatively high in order to find landmark associations between polygons that
potentially are not very similar due to high amounts of noise. On the other
hand, the global mapper’s value for τ will likely be much lower because we
expect the polygons to contain less noise and we do not want false-positive
matches. However, finding matches only using this initial threshold is not
guaranteed, so we repeatedly check for matches, incrementing τ by ψ until
reaching some upper limit m. Since keyframes take multiple observations to
produce, GeoSLAM will inherently have fewer keyframes to match against to
update and optimize the robot’s position. Therefore, we aim to utilize the
data from every possible keyframe when updating the global map. The only
reason a keyframe should be ignored is when it contains information that could
potentially disturb the stability of the map.

4.3.3 Global Pose Estimation & Data Association Filtering

As mentioned in Section 4.2.1, the landmark associations that result from
matching geometric hierarchies are not perfect. Therefore, we need to validate
that the given associations are correct before we can use them to calculate a
pose estimate for our robot. Incidentally, we have the opportunity to create
even more landmark associations while finding the best possible pose estimate
for the robot. Algorithm 4 describes this process.

We will repeatedly use samples of ξ-many landmark associations to obtain
a variety of global pose estimates for the robot. Using each pose estimate,
we can transform the landmarks in the keyframe into the global map. If a
transformed point is closer than Λ to the location of a global landmark, then
those points most likely represent the same landmark. If the transformed point
is farther away than ρ to any global landmarks, then it most likely represents
a landmark not yet depicted in the global map. To improve scalability, if
the maximum observation range of the robot (r) is known, we can reduce
the number of global landmarks that the keyframe points will be compared
against.

Ultimately, we will keep the estimated robot pose that resulted in the high-
est number of landmark associations derived after transforming the keyframe
into that pose. We will store those newly derived landmark associations as
well as the candidate points to represent new global landmarks.

CHAPTER 4. SYSTEM ARCHITECTURE 26

Algorithm 4: Pose Estimation and Landmark Association Filtering

Data: localLandmarks, globalLandmarks, pointMatches
Result: landmarkAssocations, unmatchedLocals, bestTf,

hasEstimate
1 Function EstimatePose(α, ξ,Λ, ρ, β, r, µ):
2 hasEstimate←− false
3 repeat
4 goodMatchesMap, problematicGlobals,matchless←− ∅
5 tf ←− getTf(random subset (size ξ) of pointMatches)
6 nearbyGlobals←− {globalLandmarks within range r of tf}
7 foreach gP ←− (idx, position ∈ (tf × localLandmarks)) do
8 Find closestDist from gP to some gL ∈ nearbyGlobals
9 if closestDist < Λ then

/* landmark observable once per frame */

10 if gL ∈ goodMatchesMap then
11 problematicGlobals.add(gL)
12 goodMatchesMap.remove(gL)

13 else if gL ̸∈ problematicGlobals then
14 goodMatchesMap[gL]←− gP
15 end

16 else if ρ <= closestDist then matchless.add(gP)

17 end
18 if |goodMatchesMap| > |landmarkAssocations| ≥ µ then
19 landmarkAssocations←− goodMatchesMap
20 bestTf ←− tf
21 unmatchedLocals←− matchless
22 hasEstimate←− true

23 end

24 until α iterations or β · |localLandmarks| ≤ |landmarkAssocations|
25 end

CHAPTER 4. SYSTEM ARCHITECTURE 27

While it could be argued that we only need the landmark associations
resulting from matching geometric hierarchies, an important reason to extend
landmark associations beyond those matches is to promote the representation
of a diverse selection of observed landmarks per pose estimate. In general, each
geometric hierarchy consists of an assortment of generic and unique polygons.
Every polygon in the geometric hierarchy is eligible for matching, which is
especially important when the geometric hierarchy formed from an observation
does not contain many geometrically distinct polygons. It is important to
improve the positional accuracy of every landmark in the global map so that
we can localize the robot as consistently and as accurately as possible. If the
positions of only a certain subset of landmarks are optimized across subsequent
observations, then when those optimized landmarks are not visible at certain
positions in the environment, there would be a higher chance to make incorrect
associations or estimate incorrect poses with incoming noisy keyframes.

Conversely, it is not necessary for every landmark in each keyframe to be
matched with its corresponding landmark in the global map. In fact, it may
be harmful to try to do so, since perfect landmark association is difficult to
obtain using only positional information to distinguish individual landmarks
from each other. Across consecutive keyframes, there should be some amount
of overlap in their observed landmarks. Even if an association is not found for
a landmark in one keyframe, there will be more opportunities to improve its
estimated position soon afterwards.

When not enough ”reliable” landmark associations (µ) are found using a
certain pose estimate, that pose estimate was most likely incorrect. In other
words, not enough of our prior knowledge about the robot’s immediate prox-
imity translates to the representation of the environment that we currently
see. It is possible that none of the estimated poses will provide enough associ-
ations to update the global map confidently. Therefore, when this occurs, the
keyframe will be discarded. We can assume that the landmark associations re-
sulting from strictest geometric hierarchy matching settings included enough
incorrect associations to significantly affect pose estimation, thus trying to
perform matching again is not worth the time or effort trying to fix.

4.3.4 New Landmark Discovery

Once we are highly confident with our correspondences between landmarks
in the keyframe and the global map, we must also determine whether new
landmarks should be added to the map. It is important to remember that the
keyframes are still somewhat noisy, and their landmark positions will probably
not be perfect. If we were to accidentally introduce a false landmark into

CHAPTER 4. SYSTEM ARCHITECTURE 28

the global map, we would disrupt the state of the global geometric hierarchy,
making it much more difficult to accurately find matches between the keyframe
and the global map. Therefore, we implement a procedure that will prevent
mistakes like this from occurring.

Algorithm 5: New Landmark Discovery

Data: newLandmarkGraph
Result: global landmarks and their observed local positions

1 Function
DiscoverLandmarks(unmatchedLocals, currentPose, k, δ):

2 foreach node←− (localP t, globalP t) ∈ unmatchedLocals do
3 newLandmarkGraph.add(currentPose, node)
4 Create edges to existing nodes with global positions closer

than δ
/* Assume δ < (avg distance between NN landmarks) */

5 if k-clique(newLandmarkGraph, node) then
6 Include the average global position and the local positions

of the k-clique elements in the result
7 Remove k-clique elements from newLandmarkGraph

8 end

9 end

10 end

Our strategy, like seen in the upstream methods, is to only add a landmark
to the global map once we have found enough keyframes within a short period
of time that agree on its approximate position. Algorithm 5 describes how this
process works. We maintain a sliding window of observed landmark locations
across keyframes, and we use them as the nodes for a graph (or network) data
structure. The edges of this graph represent that two landmarks are within
distance δ of each other3. A ”consensus” between keyframes can be defined as
a k-clique in the graph. k is pre-defined by the user, representing the minimum
number of observations required to discover a landmark. We can discover k-
cliques while individual observed landmark positions are added to the graph,
making this operation very fast. Landmark positions that have been in the
network for more than ω keyframes are removed after the global geometric
hierarchy is updated (Section 4.3.5).

3See Section 4.4.3 for more details regarding the value of δ.

CHAPTER 4. SYSTEM ARCHITECTURE 29

Figure 4.4: A clique is a subgraph where each vertex is connected to every
other vertex. In this example, if GeoSLAM was looking for a 4-clique to find
a consensus in the association network, it would find one after landmark 7 is
added.

4.3.5 GraphSLAM and Geometric Hierarchy Maintenance

This system uses the online version of GraphSLAM to improve the estimated
position of landmarks and the pose of the robot over time. In this version, the
only one optimization is computed after the data from a given observation is
added to the graph. In particular, the graph directly retrieves and updates
the positions of landmarks directly from the global geometric hierarchy.

After the graph is successfully optimized, the updated positions of land-
marks are saved in the geometric hierarchy. Since these positions are stored
in a single location, updating these values is very straightforward. However,
at this point, it is possible for new landmarks to have been added to the map.
Additionally, because the landmarks have changed position, it is possible for
the structure of the geometric hierarchy to have changed. In the best-case sce-
nario, no new landmarks have been added, the triangulation still satisfies the
Delaunay constraint, and none of the triangles changed which of their edges
is longest (causing the arrangement of polygons to change). In the worst-case
scenario, the triangulation would contain many non-Delaunay triangles and
the arrangement of polygons would have changed.

For this problem, we assume that even if the changes in landmark positions
caused a major change in the Delaunay triangulation or polygon arrangement,
there would still be some amount of partial overlap in the robot’s observations
that would enable matches between keyframes and the global map. Therefore,
we elect to not recompute the structure of the geometric hierarchy when new

CHAPTER 4. SYSTEM ARCHITECTURE 30

landmarks have not been added. Considering the current state of the system,
this decision is made to reduce computational requirements and ensure the
system can operate practically in real-time. However, we also want to ensure
that polygons from incoming keyframes will continue match with the global
map over time. Therefore, we compromise by choosing to always update the
edge lengths of the triangulation and the descriptors of the polygons.

When landmarks are added to the global map, it is guaranteed some por-
tion of the Delaunay triangulation. In these cases, we find that it is necessary
to reconstruct the geometric hierarchy, as the new landmarks should improve
future polygon matching capability. Specifically, this should only occur when
the robot is exploring the frontiers its map. If the robot is operating within a
pre-mapped area, the computational cost to reconstruct the geometric hierar-
chy should never occur.

4.4 Parameter Tuning

Throughout Section 4, there are many references to the various parameters
that must be set correctly so that GeoSLAM will work as intended. The fol-
lowing section compiles those parameters into Tables 4.1, 4.2, and 4.3, and
explains the rationality behind choosing the value for each parameter. The
values for certain parameters are more likely to vary depending on the imple-
mentation: bold parameters are sensitive to detection noise, italicized param-
eters are sensitive to position noise, and underlined parameters are sensitive
to the environment’s landmark density.

4.4.1 Setting Parameters for Polygon Matching

Regarding the settings for the polygon matching parameters in Table 4.1, we
elect to use the same values as the prior work for s, ∆N , and η (5%, 3, 50%).
These values are unlikely to change due to differences in sensor noise and
the environment’s landmark density. The threshold γ was not defined in the
prior work, and is primarily designed to be an extra counteract uncertainty
regarding landmark associations.

In prior work, optimal value for τ was determined to be 5 for the data they
tested against. However, that setting was desirable for the general use-case of
map-merging and loop-closure detection, whereas for this system, we assume
that there should always be a match between geometric hierarchies since we
can almost guarantee partial overlap between observations. There are also two
different use-cases for τ within GeoSLAM. For local bundle adjustment, we
may want to set τ to a high value, such as 9, because we might expect the

CHAPTER 4. SYSTEM ARCHITECTURE 31

Table 4.1: Polygon Matching Parameters
s Ratio of Perimeter between Sampled Points for Descriptor

τ Maximum Descriptor Distance for Valid Polygon Match

∆N Differing Number of Sides for Polygons Matching Eligibility

η Minimum Ratio of Matched Triangles in a Polygon

γ Minimum Landmark Associations for Valid Frame Association

Table 4.2: Local Bundle Adjustment Parameters
λ Maximum Distance between Landmarks for Valid Association

σ Cluster Tolerance (radius)

n Standard Number of Observations per Keyframe

f Number of Unmatched Observations before Flushing Keyframe

incoming frames to be very noisy, and we want to quickly find any matches
we can. In the global mapper, we may want to set τ to be much lower (for
example 2), because we want to find a small set of very reliable landmark
associations if possible (to get the best samples for our pose estimate), and
if that low threshold does not work for a given keyframe, then the system
will automatically increase the threshold to try to find valid matches anyway.
Ultimately, the user should consider how noisy they expect the incoming data
to be when setting τ .

4.4.2 Setting Parameters for Local Bundle Adjustment

Table 4.2 lists the parameters utilized specifically for local bundle adjustment.
λ (measured in meters) should be set relative to the speed of the robot and
the rate of incoming observations, such that the robot moves a distance much
smaller than λ between each observation. λ should also be smaller than what
the average nearest-neighbor distance between landmarks in the environment
is to reduce the likelihood of the system using incorrect landmark associations
resulting from geometric hierarchy matching to compute the differential trans-
formation between two observations (for more information regarding λ, refer
to Section 4.2.1).

n should be set depending on the amount of expected sensor noise, es-
pecially detection noise. As demonstrated in prior work [23], detection noise
had a much greater effect on loop-closure detection via geometric hierarchy
matching than position noise. This is because the presence of landmarks (or
lack thereof) significantly changes the construction of the geometric hierar-

CHAPTER 4. SYSTEM ARCHITECTURE 32

Table 4.3: Global Mapping Parameters
ψ Increment Amount for τ

m Maximum Value for τ

α Maximum Pose Estimate Attempts

ξ Landmark Association Sample Size for Estimating Pose

β Ratio of Valid Landmark Associations to Exit Estimation Early

Λ Maximum NN Landmark Distance for Valid Filtered Association

ρ Minimum NN Landmark Distance for Landmark Discovery Election

r Maximum Sensor Range

µ Minimum Filtered Landmark Associations for Valid Pose Estimate

k Minimum Agreeing Observations to Establish New Landmark

ω Number of Observations in Active Window

δ Maximum Feature Distance for Landmark Discovery Association

chy. With more noise, some frames may not match, and more frames may be
required in order to collect enough information about the local landmarks to
construct an accurate and useful keyframe.

σ may or may not be present depending on the type of clustering used. Its
usage in this implementation is discussed in Section 4.5.5. Lastly, f should be
set lower if runtime efficiency is important, as fewer observations that have yet
to be added to the current keyframe will be kept in memory to be matched
against.

4.4.3 Setting Parameters for Global Mapping

Table 4.3 lists the user-defined parameters for the global mapping component.
ψ and m are used to define how many matching attempts should be made
between incoming keyframes and the global map. α, ξ, β, Λ, ρ, r, and µ all
pertain to estimating the robot’s global pose and finding landmark associations
with high confidence. k, ω, and δ dictate the behavior of how new landmarks
are established in the global map.

α, ξ, and β resemble traditional RANSAC parameters. Our implementa-
tion has α set relatively low because the estimation procedure we implemented
is not optimized very well. ξ is set very small to reduce the potential for a bad
data association from messing up the pose estimate while also forcing sample
variety to be high even though α is so low. β is a setting that allows for early
estimation exits in cases with low environment noise.

Λ and ρ are thresholds for discovering filtered landmark associations and

CHAPTER 4. SYSTEM ARCHITECTURE 33

potential new landmarks respectively. The value for Λ should be very small (at
most 20% of λ), because the number of landmark associations that pass this
threshold will determine the best pose estimate to provide to GraphSLAM.
Similarly, when more landmark associations pass under this tight threshold, we
can be more certain that our pose estimate is correct. The value for ρ should
be lowered as the average nearest-neighbor distance between the environment’s
landmarks decreases.

r should be equivalent to the sensor range of the robot this system is
supporting. It is specifically designed to improve scalability of the landmark
association filtering process.

µ is useful for identifying keyframes that will likely provide a bad pose
estimate and get rejected after graph optimization is attempted. In other
words, its more likely for the pose estimate to be wrong when we are only able
to find a small number of landmark associations from it. This also counteracts
the effects of having the value of ξ being so low, where the only remaining
landmark associations may be the original samples. Set it high if ξ is low or
you are concerned that the mapper is rejecting bad graph optimizations, but
it could be instead exiting early and saving time/computations.

The remaining parameters k, ω, and δ pertain to the landmark discovery
procedure. Like the other association distance thresholds, δ should be smaller
than the average distance between NN landmarks in the environment, in this
case to prevent multiple landmarks collapsing into a single point during dis-
covery. k and ω are less trivial to set. When setting k, we want to balance
(the need to establish landmarks in the map quickly to improve our ability to
match keyframe geometric hierarchies with the global map) with (our desire
to prevent fake landmarks to the global map, which would disrupt geometric
hierarchy matching). In general, k will likely need to be increased depending
on the amount of residual noise we are expecting in the incoming keyframes.
ω must always be larger than k, and it determines how consistent consecu-
tive frames must be when coming to a consensus regarding the location of
new landmarks. A bigger ω value will allow more opportunities for landmarks
to be discovered, while a value that is slightly bigger than k will make sure
that landmarks are only discovered when the sequence of frames agree on its
position.

4.5 Practical Implementation Details

Although briefly mentioned in previous subsections, the following will provide
details regarding how the proposed system was physically coded.

CHAPTER 4. SYSTEM ARCHITECTURE 34

Figure 4.5: GeoSLAM ROS Node Architecture.

4.5.1 Overall System Architecture

In order to test the efficiency and effectiveness of GeoSLAM, we created a
full C++17 implementation using ROS and associated libraries. The algo-
rithms found in this project were developed using Nardari et al.’s open-source
geometric hierarchy code [23] (discussed in Section 4.5.4), guidelines for im-
plementing GraphSLAM [11] (discussed in Section 4.5.6), or were otherwise
conceived independently4. GeoSLAM utilizes a newer version of Eigen (3.4+)
to implement efficient data storage and manipulation, and therefore requires
the use of PCL 1.14.0 instead of the PCL version that ROS provides to suc-
cessfully compile the code.

Fig. 4.5 illustrates the ROS network architecture of GeoSLAM. The first
node simulates a robot travelling through a given forest environment. Each
noisy observation is stored as a 2D point cloud and published. The next node
subscribes to these observations and performs local bundle adjustment with
them, publishing the resulting keyframes as 2D point clouds. The final node
uses each keyframe to update a global map. In addition to passing information
over ROS Topics, each of these nodes logs important data. This information
is processed offline using separate Python scripts.

4.5.2 Simulated Forest Generation

The method for generating a simulated forest environment is the same as was
used by Nardari et al. [23] Forests are initialized by generating a set of 2D
landmarks using Poisson-Disc sampling through Bridson’s algorithm [1] (see
Fig. 4.6). The minimum distance between points is varied depending on the
desired forest density.

This initial configuration will have trees arranged in a regular pattern,
which does not realistically represent the distribution of trees in a real forest.
Thus, the position of each tree is perturbed with zero-mean Gaussian noise.
Table 4.4 depicts the parameters used to create each type of simulated forest.

4https://github.com/danielcastellarin/urquhart

CHAPTER 4. SYSTEM ARCHITECTURE 35

Figure 4.6: Illustration of Bridson’s algorithm. All points are stored in a grid,
where each tile is assigned (at most) one point. When sampling a new point,
the program first checks if there is a point assigned to the tile where it will be
placed. If that tile is available, the program will evaluate the distances to the
points assigned to the surrounding eight tiles to ensure that no point is within
the user-defined minimum distance between points. In the above example,
one of the points in an adjacent tile violates the minimum distance constraint,
meaning that the sampled point would not be kept in the grid.

Minimum
Distance

Standard
Deviation

Forest Type
Landmark
Count

Average Distance
between Landmarks

4 2 Dense 42011 2.733m

7 3 Intermediate 13770 4.968m

9 3.5 Sparse 8419 6.560m

Table 4.4: Parameters used to generate each type of simulated forest. Each
forest is a 2D point cloud representing 1km2 of trees.

CHAPTER 4. SYSTEM ARCHITECTURE 36

Figure 4.7: Five path options for the simulated robot. The robot starts at
the green circle and follows the path in the direction indicated by the orange
arrow.

4.5.3 Robot Observation Simulation

For all experiments, we simulated a robot observer travelling a distance of
200m. Fig. 4.7 illustrates the path variations that could be simulated for
the robot. We randomly sample starting poses in the environment until we
find one where no landmark will be within 30cm of the robot’s chosen path.
We assume that the observer has 360◦ vision of its surroundings. That being
said, GeoSLAM should function identically no matter where the landmarks
are relative to the observer.

The robot records the position of the landmarks within 40m of itself at
set intervals along its given path. When travelling straight or along a curve,
this interval is defined as a distance of 20cm (by default) around the shape’s
perimeter. When the robot reaches a corner, it will rotate 0.2 radians per
interval until it aligns with the next segment or it will stop if it has already
travelled the full 200m. When transitioning between forward and turning
maneuvers, the robot will always exhaust its full movement capability. For
example, if the robot is 15cm from a corner, it will arrive at the corner and
then turn 0.5 radians before recording its next observation. Therefore, using
the default interval, for the circle, line, and figure-eight paths, the robot makes
1000 observations along its path, whereas it makes 1022 and 1020 observations
for the square and triangle paths respectively.

Before performing local bundle adjustment using the observed landmark
positions, the simulation applies detection and position noise to each land-

CHAPTER 4. SYSTEM ARCHITECTURE 37

mark. Detection noise describes the robot’s probability of detecting any given
landmark in its sensor range. If detected, we then apply noise to the land-
mark’s sensed position using a Gaussian distribution with a given standard
deviation. Unless specified otherwise, our simulations use 90% and 20cm for
detection and position noise respectively.

4.5.4 Geometric Hierarchy

The basic structure of code is maintained from the open-source version5 pro-
vided by Nardari et al. [23], which was translated into C++ after the original
work (developed with Python) was published. In terms of third-party libraries,
they utilized QHull to compute the Delaunay triangulation for a given set of
points and OpenCV to perform Discrete Fourier Transforms to compute the
descriptor for each polygon.

We implemented three major changes to this version. The first was that we
changed how polygons store their vertex positions and edge lengths. Instead of
each polygon storing separate copies of the positions of vertices and the lengths
of edges, for the entire hierarchy, we store the values in a single location, and
we make the polygons store references to those values. This change enables
the state of the geometric hierarchy to be updated quickly and easily, which
is critical when optimizing the global map.

The second major change we implemented was that we refactored most
of the standard library containers into Vector and Matrix objects from the
Eigen library. This was intended to improve the overall speed and scalability
of the code. For example, vectors in the C++ standard library are designed to
be easy-to-use dynamically-allocated lists. On the other hand, Eigen’s dense
vectors and matrices store their data contiguously in memory are optimized
to perform math on its elements very quickly.

The last major change was that we rewrote the tree data structure which
linked the polygons of the hierarchy together. The original implementation
utilized adjacency lists from Boost’s graph library. However, that implemen-
tation was traversing the tree inefficiently (e.g. using breadth-first-search for
everything), which we noticed was causing performance issues at scale. Since
this tree only has a maximum depth of three, running breadth-first-search
does not actually improve runtime. Instead, we implemented the tree as three
dictionaries: polygon lookup, parent lookup, and children lookup. Utilizing
these maps, our version of the geometric hierarchy ran much faster at scale
than the original.

5https://github.com/gnardari/urquhart

CHAPTER 4. SYSTEM ARCHITECTURE 38

Figure 4.8: An example of how the current implementation matches vertices
of triangles. After the edges A,B,C are matched between two triangles, the
program will extend those matches to the vertices opposite to each edge. For
instance, when the ”A” edges match, the ”1” vertices match, too.

There were also a couple of minor changes we implemented to improve
the accuracy of landmark association. The first was we use a non-greedy
approach for polygon matching. This is especially useful for matching against
the global map, where it is much more important to find the best possible
polygon matches for the purpose of landmark association. we also fixed how
the vertices of triangles are matched based on edge lengths. Previously, after
finding the best permutation of edges for the participating triangles, the code
would match the starting vertex of the matched edges. This method will only
work if the vertices of both triangles both ordered either clockwise or counter-
clockwise. However, this is not guaranteed for the triangles computed by
QHull, so sometimes the landmark associations would be wrong even though
the edge associations were correct. Instead of matching the starting vertex
of the matched edges, we match the vertices opposite to the matched edges,
officially making this process invariant to the participating triangles’ order of
vertices. See Fig. 4.8 for a closer look at an example.

4.5.5 Local Bundle Adjustment

The major portions of the local bundle adjustment functionality is imple-
mented using PCL functions. Specifically, this includes transforming entire
point clouds into new frames and clustering the cumulative keyframe cloud.

CHAPTER 4. SYSTEM ARCHITECTURE 39

In regards to how the point clouds are transformed into new frames, PCL
does not provide a built-in function to do this for 2D point clouds. Therefore,
we store these point clouds in 3D (z always set to 0), derive a 3D transfor-
mation matrix, and use the transformation function for 3D point clouds to
perform the operation we need.

In regards to how the cumulative keyframe cloud is clustered, we use a
greedy method defined within the PCL library (EuclideanClusterExtraction).
A caveat to this approach is that clustering accuracy heavily relies on setting
the cluster tolerance σ correctly. Too low could cause clusters to either not
form or a single landmark represented as multiple landmarks. Too high and
multiple landmarks could collapse into a single point. As long as these edge
cases happen infrequently/rarely (1 in k keyframes), the global map should
remain stable. We have also set the minimum and maximum cluster size to 2
and n respectively. The lower bound is 2 to ensure that single outliers are not
included in the keyframe. The upper bound is n to ensure that multiple land-
marks will not collapse into a single point in the keyframe when they happen
to be clustered together. This has the side effect of potentially not represent-
ing those the landmarks in the keyframe at all, which could be undesirable.
However, due to the robustness of the system, this flaw does not drastically
impact performance.

4.5.6 GraphSLAM

We implemented GraphSLAM from scratch following the guidelines from an
introductory GraphSLAM article [11] and a Python implementation which
demonstrates the concepts in code6.

Compared to the prior work, we implemented three modifications to the
version of GraphSLAM. The first was that we configured map optimization
to run online. Instead of ingesting the observations across all robot poses
and running multiple optimizations with GraphSLAM (solving the Full-SLAM
problem), our implementation reads one set of observations at a time and
performs an optimization with that data added to the map state. This results
in GraphSLAM performing quicker computations, which produce smaller (less
computationally expensive) changes in the state of the map, enabling the
process to run practically in real-time as the robot is actively observing the
environment.

Another major change we made is that the positions of all global landmarks
are physically stored and updated in the geometric hierarchy. As mentioned

6https://github.com/StefanoFerraro/Graph-SLAM

CHAPTER 4. SYSTEM ARCHITECTURE 40

previously in Section 4.5.4, we modified the geometric hierarchy implemen-
tation to have polygons store references to their vertex positions and edge
lengths, such that there will be one copy of each vertex position and edge
length. Having these landmark positions stored in one location makes it much
easier to maintain data consistency after the graph is optimized.

The last modification we implemented in the system was the additional
ability for the graph to detect poor data associations and rollback the state of
the graph after attempting a graph optimization using those bad associations.
This is often featured in practical applications of GraphSLAM, but usually
not discussed in literature for the underlying theory. It is possible to detect
mistaken associations by computing the error between the newly optimized
robot pose and landmark positions and the landmark positions relative to the
robot given by the latest keyframe. When this error is significantly higher
than the errors calculated after previous poses were optimized, it is safe to
assume that GraphSLAM’s system of equations was built incorrectly because
it included some bad landmark associations.

After a false data association is detected, we elect to rollback the state
of the graph, geometric hierarchy, and landmark discovery network to the
state of the map before the latest keyframe was received. Similar to how the
latest keyframe is dropped when the system cannot find enough landmark
associations to validate any estimated robot poses, attempting to isolate the
mistaken association or correct the estimated pose would not be worth the
effort.

While GraphSLAM can suffer from computational complexity issues at
scale, we use it because GraphSLAM maintains global consistency in the map
and does not make assumptions about the distribution and observed positions
of landmarks in the environment. Even though we used GraphSLAM in our
implementation, any formulation of online-SLAM can be used to optimize this
system’s global map.

4.5.7 Visualizations

We utilized many visualizations when designing the components of GeoSLAM.
All of them were built using Matplotlib plots in Python. They could either read
data from files or receive data in real-time using ROS messages. Matplotlib
is optimized for simple, static plotting, and is not considered thread-safe.
However, we still used it alongside ROS to rapidly refresh visualizations in
real-time. Although ROS has built-in, scalable visualization support through
the Rviz package, we elected not to use it because utilizing Rviz would require
much more development time set up and update as GeoSLAM evolved over

CHAPTER 4. SYSTEM ARCHITECTURE 41

Figure 4.9: Offline display of initial polygon matching results between a
keyframe and the global map, depicted as blue lines. This display could be
toggled to show the improved landmark association results (green) and the
positions of potentially new landmarks (purple) instead of the initial polygon
matching results.

time.
Fig. 4.9 depicts a visualization of the landmark associations between the

keyframe and global map after the a new global pose has been estimated (sec-
tion 4.3.3). It displays the geometric hierarchies of a keyframe and the global
map side-by-side and draw lines to demonstrate that two landmark positions
have been associated. Initially, this visualization only depicted the landmark
associations resulting from initial polygon matching, but we added a feature
which enables the user to instead show the improved landmark association
results. Matplotlib takes too long to draw these graphics in real-time, so this
visualization can only be run once a simulation is complete. New landmarks
have been added to the graph (section 4.3.4) prior to optimizing the graph
state (section 4.3.5).

Fig. 4.10 depicts a visualization for the state of GraphSLAM after new
landmarks have been added to the graph (section 4.3.4) prior to optimizing the
graph state (section 4.3.5). GeoSLAM would serialize this data (for ease of de-
velopment) in a ROS message, transmit it to another ROS node, which would
display this visualization in real-time (one keyframe at a time). Dots repre-
sent landmarks and triangles represent the robot’s poses. Previously observed
landmarks are red, currently observed landmarks are green, newly established

CHAPTER 4. SYSTEM ARCHITECTURE 42

Figure 4.10: Real-time display of GeoSLAM’s graph state. In this example,
the robot has travelled more than one-quarter of a circular path. From its most
recent keyframe, GeoSLAM was able to find 34 associations with previously
mapped landmarks (green) and establish the position of 2 new landmarks
(purple). The black triangle, blue triangles, and red dots represent the robot’s
current estimated pose, the robot’s previous poses, and the other existing
landmark positions respectively. The error statistic represents the cumulative
error, or ”disagreement”, between the constraints in the graph, which can
signal when the graph should be rolled back (see Section 4.5.6).

landmarks are purple, previous robot poses are blue, and the current robot
pose is black. This visualization was vital for helping us troubleshoot issues
with the GraphSLAM implementation and identify when GeoSLAM accepted
an incorrect landmark association, causing the map to become unstable.

There were two other types of visualizations we developed. The first were
visualizations that illustrated frame transformations within the simulated en-
vironment, specifically from the global frame to the robot’s local frame to the
robot’s ground truth odometry frame. This was especially helpful when we
needed to verify that simulated robot paths and observations were working
as intended. The second were a set of live visualizations that illustrated the
formation of keyframes from various observations.

CHAPTER 4. SYSTEM ARCHITECTURE 43

Figure 4.11: GeoSLAM ROS Node Architecture modified for scalable experi-
mentation. Data that was originally passed over the network is instead directly
read from log files. Strings containing the path to the run’s log files are trans-
mitted along the chain of nodes to indicate when the run’s data is ready for
further processing.

4.5.8 Computing Results

GeoSLAM required the executions of many simulations in order to adequately
evaluate its accuracy and stability. However, the ROS framework does not
facilitate experiment automation in its framework. In addition, because our
experiments assume that GeoSLAM will be processing every observation and
keyframe, this information must be stored somewhere instead of only commu-
nicating it via network connection. Therefore, we had to modify our original
ROS Node architecture to enable scalable experimentation on GeoSLAM. Fig.
4.11 depicts the new architecture built for running the experiments described
in Section 5.

Since our original code was designed to run one instance of GeoSLAM and
then close, we needed to modify the code to include a new run option. The
key to our new option is that each node would erase its memory to prepare
for incoming data from a new simulation. First, the robot simulation node
would record multiple random paths (one at a time) in log files. After a given
path was simulated, a flag would be sent to the local bundle adjustment node,
telling it to look at the log files in a given directory to generate a sequence
of keyframes for the global map. When all of the keyframe data is ready, the
flag is passed to the next node to process all of the keyframes into a global
map. After this, the flag would be passed to a new node which will compare
each state of the global map against the ground truth of the simulation. The
new node aggregates the data across the simulations, awaiting a shutdown
command cascading from the simulation node to know when all simulations
have been completed and the aggregated results can be displayed.

Comparing the ground truth robot and landmark positions was also non-
trivial. The ground truth must be transformed into the reference frame of
the robot’s map to enable valid comparison. Assuming that the observations
are indexed, we need to track which observation serves as the base of each
keyframe. With this knowledge, we need to transform the ground truth tree
positions and robot poses w.r.t the robot’s pose in the observation used as the
base of the first keyframe. The observation used here may differ depending on

CHAPTER 4. SYSTEM ARCHITECTURE 44

how many observations it takes to construct the first keyframe.
At this point, we can find the error in each robot pose across all map

states. Pose error is separated into two values: position error (Euclidean
distance) and orientation error (absolute difference between angles). We also
find the Euclidean distance from each landmark in each map state to the closest
transformed ground truth landmark position. This nearest-neighbor approach
is necessary because landmarks can only be described by their position. The
error in the estimated robot poses (i.e. its path through the environment)
and landmark positions is averaged across all unique states of the global map
to obtain three metrics: robot position error (RPE), robot orientation error
(ROE), and landmark position error (LPE). RPE and LPE is measured in cm,
whereas ROE is measured in degrees. Our evaluation does not depict ROE
because the error was below 1◦ across all experiments.

Chapter 5

Evaluation

In order to demonstrate the stability and effectiveness of GeoSLAM, we eval-
uate its ability to accurately estimate the robot’s pose and the positions of
landmarks over time. Experiments are performed using the simulation soft-
ware described in Sections 4.5.2, 4.5.3, and 4.5.8.

Tables 5.1, 5.2, and 5.3 provide the parameter values used throughout
the evaluation of GeoSLAM. While GeoSLAM is designed to be adaptable
for various environments and conditions, we utilize this one configuration of
parameters to demonstrate its inherent flexibility. Please refer to Section 4.4
for insight on setting the values in Tables 5.2 and 5.3. The values of parameters
marked with an * in Table 5.1 indicate that it will act as an independent
variable in one of the following experiments. In addition, i was lowered to
0.1 for certain runs that simulated high noise levels in the experiment from
Section 5.3.

Table 5.1: Default Simulation Parameter Values (*experiment-dependent)
Parameter Value Description

F intermediate* forest density
D 200 robot travel distance (m)
P circle* robot path type
i 0.2 observation interval (m || rad)
C 0.3 minimum distance to any landmark (m)
r 40 robot sensor range (m)
κ 90%* probability of successful landmark detection
ϵ 0.2* st. dev. of position estimation error (m)
j 10 number of paths simulated

45

CHAPTER 5. EVALUATION 46

Table 5.2: Local Bundle Adjustment Parameter Values
Parameter Value Description

s 0.05 polygon perimeter step for descriptor computation
∆N 3 tolerance side count for polygon comparison
η 0.5 triangle match ratio
τ 9 polygon descriptor distance threshold
λ 1 landmark association distance threshold (m)
γ 7 minimum associations for valid alignment
n 8 expected observations per keyframe
f 3 stale frame threshold
σ 1.0 cluster tolerance (m)

Table 5.3: Global Mapping Parameter Values
Parameter Value Description

s 0.05 polygon perimeter step for descriptor computation
∆N 3 tolerance side count for polygon comparison
η 0.5 triangle match ratio
τ 2 initial polygon descriptor distance threshold
ψ 0.5 increment amount for τ
m 10 maximum value for τ
γ 16 minimum associations to begin pose estimation
α 75 maximum attempts to estimate robot pose
ξ 2 landmark association sample size for estimating pose
Λ 0.2 landmark association threshold (m)
ρ 2.5 landmark discovery threshold (m)
µ 6 association threshold for valid pose estimate
β 0.9 landmark association ratio to accept pose estimate
k 4 observations to establish new global landmark
ω 5 stale frame threshold
δ 0.5 landmark discovery association threshold (m)

CHAPTER 5. EVALUATION 47

Table 5.4: Path Type Experiment Results
Path Type Landmark Count LPE (cm) RPE (cm) Map Updates

circle 224.8 21.34 21.21 124.9
linear 289.0 24.87 25.26 124.7

figure-eight 138.0 14.45 15.22 124.7
square 211.3 17.89 18.49 126.8
triangle 206.4 23.54 22.26 124.9

5.1 Path Type

This first experiment attempts to uncover how the robot’s exploration pattern
affects the accuracy of its map. The simulation runs observations along paths
arranged randomly within the intermediate-density forest. Ten simulations
are run for each type of path seen in Fig. 4.7. Table 5.4 depicts the average
number of unique landmarks, LPE, RPE, and number of keyframes used to
update the global map across each path type.

Before discussing these results, we will consider the important implications
of some of the path types. Every path spans the same distance (200m). The
linear path covers the most ground, since the robot only moves forward. This
explains why the linear path observes more unique landmarks than the other
paths. The figure-eight path consists of two circular paths 100m in length
each. Therefore, the robot will be taking more overlapping observations of a
smaller set of landmarks. Lastly, the square and triangle paths feature the
robot rotating in place. Because of this, the robot will be taking an extra 22
and 20 observations of its environment respectively. This ultimately means
that the square path allows for the global map to be updated a maximum
127 times, the triangle path 126 times, and the circle, figure-eight, and linear
paths 125 times.

The only useful result from this data indicates a subtle positive correlation
between the number of unique landmarks observed across a robot’s path and
the global map’s historical landmark position error.

5.2 Forest Density

The next batch of simulations was designed to evaluate how the number of
landmarks per observation affects the performance of GeoSLAM. Observations
were simulated around ten circular paths for each type of forest: dense, in-
termediate, and sparse. Table 5.5 depicts the average number of landmarks

CHAPTER 5. EVALUATION 48

Table 5.5: Landmark Density Experiment Results
Forest
Density

Landmarks Detected
per Observation

Map
Updates

RPE (cm) LPE (cm)

Dense 189.6 / 210.8 125.0 11.37 12.18

Intermediate 61.7 / 68.6 124.9 21.21 21.34

Sparse 37.4 / 41.5 122.1 22.77 21.19

detected per observation (out of how many within sensing range), number of
global map updates (125 maximum), RPE, and LPE across the ten simulations
for each forest density type.

Besides demonstrating that GeoSLAM can adapt to mapping environments
with varying amounts of observable landmarks, this experiment shows that
GeoSLAM can estimate the positions of the robot and the landmarks in its
map more accurately when it observes more landmarks per keyframe (i.e.
having more samples improves its approximations).

More importantly, GeoSLAM is able to successfully update its map more
often when observing more landmarks per keyframe. When more landmarks
are observed, there will be more polygons available for matching. Even if
some landmarks are not observed, GeoSLAM only needs one matching pair
of polygons to align two frames and extend associations to other landmarks
in each observation. Therefore, when each observation has less landmarks,
less polygons will be created, and there will be a lower probability that any
two polygons will match between observations, especially when omitting a
landmark from the observation impacts the configuration of the polygons that
were built using the other landmarks in its proximity.

5.3 Noise Levels

Perhaps the most important experiment evaluated how sensor noise impacts
GeoSLAM’s performance. We simulated the robot exploring the intermediate-
density forest along 10 different circular paths with different amounts of de-
tection and position noise. The average RPE and LPE across the runs for
each noise profile are given in Tables 5.6 and 5.7 respectively. Although the
parameters of GeoSLAM could be further tuned to improve its performance in
mapping against more difficult noise profiles, these results demonstrate that
GeoSLAM can maintain an accurate map of the environment even when in-
coming observations contain varying amounts of noise.

As was mentioned earlier (Section 5), the interval between observations (i)

CHAPTER 5. EVALUATION 49

Table 5.6: Noise Level Experiment: RPE Results. Noise profiles with re-
sults in gray cells indicate that observations were taken every 10cm to sample
landmarks more frequently. Accuracy values in bold indicate that some runs
resulted in noticeably fewer successful map updates.

Position
Detection

100% 95% 90% 85% 80%

0cm 0.41 0.64 1.20 1.23 1.00

10cm 2.97 4.16 8.44 12.63 13.56

20cm 7.24 12.46 17.95 26.32 31.39

30cm 17.62 18.93 37.62 38.98 30.54

40cm 27.47 37.79 43.05 41.47 43.54

Table 5.7: Noise Level Experiment: LPE Results. Noise profiles with re-
sults in gray cells indicate that observations were taken every 10cm to sample
landmarks more frequently. Accuracy values in bold indicate that some runs
resulted in noticeably fewer successful map updates.

Position
Detection

100% 95% 90% 85% 80%

0cm 0.26 0.41 1.11 0.94 0.39

10cm 3.05 4.01 8.33 11.35 12.17

20cm 8.56 12.31 17.01 25.70 30.12

30cm 22.66 18.42 40.26 40.56 24.95

40cm 40.39 37.65 43.52 40.48 56.46

CHAPTER 5. EVALUATION 50

was lowered to from 20cm to 10cm for runs that simulated high noise levels.
This applies to the noise profiles whose results are in gray cells. The noise
from these runs were so intense that GeoSLAM required more overlapping ob-
servations to confidently build its global map. This should not be perceived as
a weakness for GeoSLAM; there is some threshold of noise where information
becomes unintelligible, especially when the information is not very descriptive
(i.e. landmarks are indistinguishable besides their observed position). In-
stead, it should be seen as a strength that GeoSLAM can utilize those extra
observations to build an accurate map despite high noise levels.

The accuracy values from Tables 5.6 and 5.7 in bold indicate that some
runs associated with these noise profiles resulted in noticeably fewer successful
map updates. When a run consists of fewer map updates, its accuracy values
are more likely to be higher or lower than the other results because fewer
position estimates factor into the average accuracy. These runs have fewer
map updates because GeoSLAM will not add the new keyframe data if certain
requirements are not met. First, at least 16 landmark associations between
the keyframe and global map result from initial polygon matching using a
polygon descriptor threshold of at most 10. Second, at least one robot pose
estimate must correspond to at least 6 improved landmark associations. Third,
after optimizing the global map using GraphSLAM, the error associated to the
newest robot pose node in the graph must not exceed 10000 (this number is
arbitrary and is primarily used to indicate when constraints originating from
this node disagree significantly from other constraints in the graph). In all
of these cases, GeoSLAM ignores the keyframe when it cannot recognize the
robot’s current location or it has reason to doubt the landmark associations
it defined when localizing the robot in the global map.

This problem may be occurring for a few different reasons. First, noise
levels could be so high that individual observations are not able to align with
each other to create keyframes. In addition, when keyframes are created,
they may contain enough noise such that it cannot meet the global map’s
strict landmark association requirements. If this is the case, then it could
indicate that the association thresholds were not generous enough given the
amount of noise in each observation. Lastly, as the robot explores new areas
of the environment, GeoSLAM will not be able to perform place recognition
with incoming keyframes if it cannot quickly and consistently establish new
landmarks in the global map. Even though any single one of these mistakes
could cause GeoSLAM to mess up the global map, GeoSLAM demonstrates
that it can maintain a stable representation of the environment regardless of
how unreliable its observation data is.

CHAPTER 5. EVALUATION 51

5.4 Localization in Large Environments

As opposed to the previous experiments, which were concerned with evaluating
the accuracy and stability of GeoSLAM over time, this next experiment was
designed to evaluate GeoSLAM’s ability to perform one-shot localization in
large scale environments. Here, GeoSLAM is provided with an initial map
of the intermediate-density forest covering 1km2, containing 13770 landmarks
forming 5110 polygons. We simulated the robot observing this forest along 10
circular paths with 90% landmark detection success rate and 20cm position
noise. Although not representative of practical use-cases, to provide the most
challenging test, each keyframe is localized in the global map independently,
which means it does not account for previous pose estimates. In the end,
all but 6 out of 1250 keyframes resulted in localizing the robot within 0.5m
of the ground truth, where 4 keyframes localized the robot within 1m of the
ground truth and 2 keyframes were skipped due to insufficient matching. In
all 10 runs, GeoSLAM completed the path successfully. The average runtime
to perform initial polygon matching was 129ms, and the average runtime to
estimate the robot pose and obtain landmark associations for GraphSLAM
was 179ms.

5.5 GeoSLAM Efficiency

Although not an experiment by itself, this section provides insight into the
efficiency of each GeoSLAM component. Fig. 5.1 illustrates the median time
each GeoSLAM component required to process each incoming keyframe. Land-
mark Discovery is not depicted because all runtimes were under 1ms. In this
case, GeoSLAM was tested using our default simulation parameters provided
in Table 5.1.

Polygon matching between the keyframe and the global map is very fast,
especially since there are far fewer polygons than there are individual land-
marks. In addition, the number of polygons in the global map grows much
slower than the number of landmarks as more of the environment is explored.
Polygon matching also includes many opportunities to short-circuit compar-
isons, which reduces the time spent processing associations that do not likely
match.

The slowest component of this system is GraphSLAM, whose runtime
scales with number of poses estimated and landmarks observed. Even if the
robot does not move, GraphSLAM’s runtime will constantly increase over time
since the landmarks around it will still be repeatedly observed.

CHAPTER 5. EVALUATION 52

Figure 5.1: GeoSLAM Runtimes per Incoming Keyframe

Global pose estimation is relatively slow because it usually performs all 75
attempts before exiting. Towards the end of each run, global pose estimation
usually terminates early since incoming keyframes are no longer discovering
new landmarks as the robot nears its starting position.

The Geometric Hierarchy Maintenance component will either update the
polygon descriptors or reconstruct the global geometric hierarchy. The faster
runtimes can be attributed to when the polygon descriptors are updated. This
tends to occur more frequently towards the end of each run because new land-
marks are no longer being established on the map. Constructing a geometric
hierarchy requires more time as the number of landmarks increases. This
is why Constructing the Local Geometric Hierarchy takes roughly the same
amount of time across all keyframes (since the robot is not moving into an area
with a higher density of landmarks) while reconstructing the global geometric
hierarchy takes longer over time.

Chapter 6

Discussion

Overall, our results indicate that GeoSLAM can accurately and efficiently lo-
calize a robot using unlabeled landmarks across a variety of realistic scenarios.
We are able to show that, using a single parameter configuration, GeoSLAM
can maintain a stable and accurate representation of environments with vari-
ous landmark densities when they are observed at varying levels of noise. As
expected, GeoSLAM can update its global map more accurately and reliably
when it observes more landmarks per keyframe. In addition, we have shown
that the polygons created from one keyframe remain distinguishable even when
matching against the entirety of a large environment. We have also demon-
strated that even when an environment contains thousands of landmarks, by
grouping landmarks into polygons, we can efficiently find candidate landmark
associations between observations.

That being said, GeoSLAM does not necessarily produce more accurate
results compared to other SLAM implementations. In addition, although it
was designed to solve the online-SLAM problem, there are a couple glaring
performance and scalability issues that must be addressed to ensure consistent
real-time capability for the collective system. Most importantly, this design
does not immediately demonstrate much practical value. The majority of
SLAM systems are designed specifically with a perception system in mind.
Since GeoSLAM does not interface directly with raw sensor data, it is difficult
to compare this system with other SLAM implementations.

What sets GeoSLAM apart from other implementations of SLAM is that
it only utilizes the positions of landmarks to perform place recognition quickly
and accurately. Other SLAM implementations will often utilize unique de-
scriptors to clearly identify locations, which makes it easier to perform data
association correctly. Since SLAM back-ends can only maintain a stable map

53

CHAPTER 6. DISCUSSION 54

state through perfect data association, other systems may elect to spend more
computation time producing their unique descriptors with as much accuracy as
possible. This can be problematic when such systems are used in environments
that require quick decision making (e.g. autonomous driving scenarios).

GeoSLAM exemplifies the potential for a paradigm shift in the design
of place recognition systems. Instead of spending so much computational re-
sources on perfectly understanding which unique objects are within the robot’s
proximity, practical implementations could derive a vague, imperfect abstrac-
tion of the environment so that they can save resources for other downstream
processes. Reliable place recognition systems, like what is demonstrated within
GeoSLAM, can still utilize this abstraction to effectively perform SLAM de-
spite how much noise it may contain.

Chapter 7

Future Work

Although the results that GeoSLAM produced were quite promising, there
are many components that could be improved upon and explored further.
Changing the SLAM implementation and how the global geometric hierar-
chy is updated can improve GeoSLAM’s scalability. GeoSLAM can also be
more reliable through the implementation of robust initialization and correc-
tion methods for its global map. Lastly, there is the opportunity to evaluate
GeoSLAM’s effectiveness when processing more realistic data.

7.1 Incremental Geometric Hierarchy Updates

Reconstructing the entire hierarchy every time a new landmark is added to
the global map will not be sustainable for mapping larger environments. In-
stead, a method should be implemented to incrementally modify the geometric
hierarchy based on local changes in the global map.

A few problems must be solved so that this approach works as intended.
First, there must be a method to quickly find the Delaunay triangles that will
be added or changed depending on which landmarks changed positions and
where new landmarks are located. Utilizing data structures that are designed
to organize geometric data would be especially useful here. Second, triangle
and polygon descriptors only need to be recomputed when a triangle’s longest
edge changes, causing the configuration of polygons to change, too. Third, any
changes to the configuration of the geometric hierarchy should occur in-place
within its physical data structure.

55

CHAPTER 7. FUTURE WORK 56

7.2 Global Map Initialization

When not provided with a user-defined map, GeoSLAM uses the first keyframe
as its initial global map. GeoSLAM does not validate this keyframe, so if
the keyframe contains incorrect information, the map cannot be easily fixed.
A more robust method of initializing GeoSLAM’s global map is required to
prevent a single initial bad keyframe from disrupting the robot’s understanding
of the environment.

One option would be to utilize GeoSLAM’s landmark discovery function-
ality when initializing the global map. GeoSLAM could save the first several
keyframes separately and estimate transformations between each of them. As
the data from each keyframe is transformed into a single reference frame,
GeoSLAM’s landmark discovery procedure could be followed to find agree-
ment between each keyframe and establish individual landmarks in the global
map. Once enough landmarks have been established in the global map (such
that a certain amount of polygons can be defined), the previous keyframes can
be forgotten, and the original method for localizing incoming keyframes in the
global map will commence.

7.2.1 Correcting the Global Map

GeoSLAM can prevent data association mistakes from propagating into the
global map. However, when a false landmark is saved to the map or the robot
can no longer localize itself using its surroundings, it is not easy for GeoSLAM
to recover. The following subsections describe a couple of new features that
would be capable of fixing the map state.

7.2.2 Deleting False Landmarks

GeoSLAM currently cannot remove false landmarks from its global map. It
simply does not have enough information to know when a newly established
landmark should not have been created in the first place. However, it may
be possible to analyze GeoSLAM’s raw place recognition results to determine
how helpful each landmark is towards localizing incoming keyframes.

When the robot is estimated to be within sensing range of a given land-
mark in the global map, the place recognition statistics associated with that
landmark will be tracked. During initial polygon matching, we count how
many successfully-matched polygons and triangles contained this landmark
and whether this landmark had a correspondence in the keyframe. We also
identify whether this landmark was associated after estimating the robot’s

CHAPTER 7. FUTURE WORK 57

new pose. If the landmark is false, its polygons will not likely match with
anything in the keyframe and it will likely not have any associations itself.
After some amount of keyframes where the landmark does not contribute to
the place-recogntion, it would be safe to assume that the landmark is false
and can be removed from the global map.

7.2.3 Merging Disjoint Maps

In regards to how GeoSLAM initializes global maps, there is also the possibility
that it could maintain multiple disparate global maps. This would especially
be useful if there is a temporary localization failure in the primary global map,
for example due to a lower density of landmarks in a certain region. When
a new keyframe is received, it would be matched against each global map.
If a keyframe matches with at least two global map, then those maps can
be merged. This concept is similar to how other SLAM systems implement
loop closure, and is also comparable to how keyframes are constructed for
GeoSLAM in Section 4.2.

7.3 Other SLAM Back-ends

The actual implementation of SLAM is not a key component in the design of
GeoSLAM. In this current implementation, GraphSLAM dominates the com-
putation time of the system as more observations are recorded. GraphSLAM
inherently has poor scalability, but various approaches are available that can
alleviate this issue. For example, GraphSLAM could maintain submaps for dif-
ferent portions of the environment. This would ultimately structure the graph
hierarchically, which would enable quicker SLAM computations for long-term
explorations of large environments. There is also the option to try implement-
ing a probablistic SLAM solution. These methods are characteristically built
for solving SLAM in real-time, but may suffer from poor accuracy in some
situations.

7.4 Realistic Data

This work only exhibits GeoSLAM processing simulated observations of land-
marks. While we attempted to make our simulations as realistic as possible,
many concessions were made to enable easier implementation. For example,
we assume that the robot has the ability to observe any landmark within a
certain distance of itself. In reality, landmarks like trees could occlude each

CHAPTER 7. FUTURE WORK 58

other. The simulation could be improved by assigning a width to each tree and
realistically implementing line-of-sight to accurately portray which landmarks
are physically visible to the robot. There is also the potential to feed real data
into GeoSLAM. Future work could utilize a front-end perception system to
observe an environment, turning real sensor data into 2D landmark positions
for GeoSLAM. Different sensor equipment configurations and feature extrac-
tion methods can be used to vary the quality of landmark positioning for these
observations.

Chapter 8

Conclusion

This work has explored how place recognition for virtually identical landmarks
can be implemented to successfully maintain a stable and accurate understand-
ing of a robot’s environment regardless of situational conditions, culminating
in the creation of GeoSLAM. We utilize geometric hierarchies to find transfor-
mations between local observations of the environment and ultimately localize
the robot. We aggregate data across observations into keyframes to reduce the
noisiness of landmark positions. We safeguard the optimization of our global
map against incorrect data associations using multiple verification techniques.
Through our simulations, we demonstrate that, using a single parameter con-
figuration, GeoSLAM can maintain a stable and accurate representation of en-
vironments with various landmark densities when they are observed at varying
levels of noise. Future work can improve GeoSLAM’s scalability, but there is
also the potential that the concepts featured in GeoSLAM’s design could be
applied to existing algorithms to improve their performance as well.

59

Bibliography

[1] Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. In
ACM SIGGRAPH 2007 Sketches, SIGGRAPH ’07, page 22–es, New York,
NY, USA, 2007. Association for Computing Machinery.

[2] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-
muzza, José Neira, Ian Reid, and John J. Leonard. Past, present, and
future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Transactions on Robotics, 32(6):1309–1332, 2016.

[3] Steven W. Chen, Guilherme V. Nardari, Elijah S. Lee, Chao Qu, Xu Liu,
Roseli Ap. Francelin Romero, and Vijay Kumar. Sloam: Semantic lidar
odometry and mapping for forest inventory. IEEE Robotics and Automa-
tion Letters, 5(2):612–619, 2020.

[4] Winston Churchill and Paul Newman. Experience-based navigation for
long-term localisation. The International Journal of Robotics Research,
32(14):1645–1661, 2013.

[5] Stephen A. Cook. The Complexity of Theorem-Proving Procedures, page
143–152. Association for Computing Machinery, New York, NY, USA, 1
edition, 2023.

[6] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse.
Monoslam: Real-time single camera slam. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(6):1052–1067, 2007.

[7] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping:
part i. IEEE Robotics & Automation Magazine, 13(2):99–110, 2006.

[8] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odom-
etry. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(3):611–625, 2018.

60

BIBLIOGRAPHY 61

[9] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale
direct monocular slam. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
II 13, pages 834–849. Springer, 2014.

[10] Abel Gawel, Titus Cieslewski, Renaud Dubé, Mike Bosse, Roland Sieg-
wart, and Juan Nieto. Structure-based vision-laser matching. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 182–188, 2016.

[11] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Bur-
gard. A tutorial on graph-based slam. IEEE Intelligent Transportation
Systems Magazine, 2(4):31–43, 2010.

[12] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-
time loop closure in 2d lidar slam. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 1271–1278, 2016.

[13] Marian Himstedt, Jan Frost, Sven Hellbach, Hans-Joachim Böhme, and
Erik Maehle. Large scale place recognition in 2d lidar scans using geomet-
rical landmark relations. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5030–5035, 2014.

[14] Kin Leong Ho and Paul Newman. Loop closure detection in slam by com-
bining visual and spatial appearance. Robotics and Autonomous Systems,
54(9):740–749, 2006.

[15] Leyao Huang. Review on lidar-based slam techniques. In 2021 Interna-
tional Conference on Signal Processing and Machine Learning (CONF-
SPML), pages 163–168, 2021.

[16] Mohd Javaid, Abid Haleem, Ravi Pratap Singh, and Rajiv Suman. Sub-
stantial capabilities of robotics in enhancing industry 4.0 implementation.
Cognitive Robotics, 1:58–75, 2021.

[17] Fabjan Kallasi and Dario Lodi Rizzini. Efficient loop closure based on
falko lidar features for online robot localization and mapping. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1206–1213, 2016.

[18] Qingqing Li, Paavo Nevalainen, Jorge Peña Queralta, Jukka Heikkonen,
and Tomi Westerlund. Localization in unstructured environments: To-
wards autonomous robots in forests with delaunay triangulation. Remote
Sensing, 12(11):1870, 2020.

BIBLIOGRAPHY 62

[19] Zhe Liu, Shunbo Zhou, Chuanzhe Suo, Peng Yin, Wen Chen, Hesheng
Wang, Haoang Li, and Yunhui Liu. Lpd-net: 3d point cloud learn-
ing for large-scale place recognition and environment analysis. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages
2831–2840, 2019.

[20] Zhihao Liu, Quan Liu, Wenjun Xu, Lihui Wang, and Zude Zhou. Robot
learning towards smart robotic manufacturing: A review. Robotics and
Computer-Integrated Manufacturing, 77:102360, 2022.

[21] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leuteneg-
ger. Semanticfusion: Dense 3d semantic mapping with convolutional neu-
ral networks. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 4628–4635, 2017.

[22] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. Orb-slam: A
versatile and accurate monocular slam system. IEEE Transactions on
Robotics, 31(5):1147–1163, 2015.

[23] Guilherme V. Nardari, Avraham Cohen, Steven W. Chen, Xu Liu, Vaib-
hav Arcot, Roseli A. F. Romero, and Vijay Kumar. Place recognition
in forests with urquhart tessellations. IEEE Robotics and Automation
Letters, 6(2):279–286, 2021.

[24] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison.
Dtam: Dense tracking and mapping in real-time. In 2011 International
Conference on Computer Vision, pages 2320–2327, 2011.

[25] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree.
In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 2161–2168, 2006.

[26] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point fea-
ture histograms (fpfh) for 3d registration. In 2009 IEEE International
Conference on Robotics and Automation, pages 3212–3217, 2009.

[27] Sivic and Zisserman. Video google: a text retrieval approach to object
matching in videos. In Proceedings Ninth IEEE International Conference
on Computer Vision, pages 1470–1477 vol.2, 2003.

[28] Gian Diego Tipaldi and Kai O. Arras. Flirt - interest regions for 2d
range data. In 2010 IEEE International Conference on Robotics and
Automation, pages 3616–3622, 2010.

BIBLIOGRAPHY 63

[29] Gian Diego Tipaldi, Luciano Spinello, and Wolfram Burgard. Geometrical
flirt phrases for large scale place recognition in 2d range data. In 2013
IEEE International Conference on Robotics and Automation, pages 2693–
2698, 2013.

[30] Konstantinos A. Tsintotas, Loukas Bampis, and Antonios Gasteratos.
The revisiting problem in simultaneous localization and mapping: A sur-
vey on visual loop closure detection. IEEE Transactions on Intelligent
Transportation Systems, 23(11):19929–19953, 2022.

[31] RB Urquhart. Algorithms for computation of relative neighbourhood
graph. Electronics Letters, 14(16):556–557, 1980.

[32] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-
time. In Proceedings of Robotics: Science and Systems (RSS ’14), July
2014.

[33] Shishun Zhang, Longyu Zheng, and Wenbing Tao. Survey and evaluation
of rgb-d slam. IEEE Access, 9:21367–21387, 2021.

	Geo-SLAM: Using Geometric Hierarchies to Support Localization and Mapping in Forest Environments
	Recommended Citation

	tmp.1721654186.pdf.cb3cT

