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Abstract

In Search-Based Software Engineering (SBSE), metaheuristic search algorithms are used to con-

struct software by combining components that fulfill diverse user and business requirements. These

search algorithms typically employ randomization to accurately and efficiently evaluate numerous

component combinations using limited computational resources. As a result, several search algo-

rithms have been proposed to address SBSE problems, each with varying solution quality guarantees

and computational resource usage. Recent research has demonstrated that search algorithms ex-

hibit complementary behavior, that is, different search algorithms outperform each other on specific

problem instances in terms of computational resource usage and solution quality. Problematically,

current SBSE approaches do not leverage the complementary performance property and use a sin-

gle search algorithm to solve all instances of a problem resulting in several inefficient or ineffective

solutions. To address these limitations, we leverage a set of complementary search algorithms to

fulfill complex user requirements and computational constraints for two SBSE applications.

Our research vision is to assist practitioners in building and maintaining effective and efficient

software by providing automated, fine-grained search algorithm recommendations when employing

SBSE techniques. To accomplish our vision, we study the impact of search algorithm selection

on web service composition and third-party software library migration at the method level. Each

of these SBSE problems has diverse requirements: search algorithms for web service composi-

tion need to be executed frequently to fulfill user-specified non-functional requirements, whereas

library migration recommendations are used by developers to maintain software and fulfill func-

tional requirements. We assess the relative strengths of 12 search algorithms on 6,144 web service

composition and 7,200 third-party software library migration instances with multiple conflicting re-

quirements. To accurately model variability in search algorithm performance, we leverage machine
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learning techniques to recommend algorithms for various SBSE instances. Our experimental eval-

uations demonstrate that our approach solves hard SBSE problems by fulfilling user requirements

while minimizing computational resource usage. Additionally, we propose a transfer learning-based

approach to predict algorithm performance across SBSE problems and mitigate challenges aris-

ing from a lack of training data. We conclude by outlining future research directions to build a

generalizable algorithm selection framework for SBSE.
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Chapter 1

Introduction

Billions of people use software applications daily and expect them to be robust and reliable. Soft-

ware systems are increasingly constructed by combining numerous components in various config-

urations to fulfill complex functional ( e.g., payment processing, email etc.) and non-functional

( e.g., response time, availability etc.) requirements. Furthermore, software components and user

requirements evolve frequently, necessitating periodic maintenance and re-construction at scale. As

a result, software engineering (SE) practitioners frequently perform tedious and error-prone main-

tenance activities by assessing large numbers of component combinations. In fact, recent studies

have found that developers spend up to 60% of their time understanding existing code, and up to

67% of a project’s allocated budget maintaining pre-existing code [9]. Due to diverse requirements,

numerous component combinations, and frequent software evolution, there is a need for automated

tools to assist practitioners in engineering and maintaining software.

To address the challenges mentioned above, the Search-Based Software Engineering (SBSE) paradigm,

heuristic search algorithms are used to accurately and efficiently solve complex software engineering

problems. These search algorithms are computationally efficient because they use random explo-

ration to evaluate numerous component combinations. As a result, SBSE techniques are widely

used to find high-quality solutions using relatively fewer computational resources such as time and

memory. For example, heuristic algorithms [10, 44, 64, 77, 118] have been applied to SE problems

such as test-case generation [15], project scheduling [119], path planning in robots [122], web service

composition [81] etc.Each heuristic algorithm provides near-optimal solution quality guarantees and

uses variable computational resources to find suitable solutions. Existing work in SBSE typically

uses a single, pre-determined heuristic algorithm to solve all instances of a specific SE problem.

1
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Recent works [75,76,78,79,94] have demonstrated that heuristic algorithms exhibit complementary

performance across different problem instances, that is, different algorithms outperform each other

on specific instances of a problem. As a result, selecting one algorithm from a complementary set

for specific problem instances reduces computational resource usage while delivering high-quality

solutions. Problematically, current SBSE approaches do not consider this variability in heuristic

algorithm performance and use a single algorithm for all problem instances leading to several

inefficient solutions in terms of computational resource usage or solution quality. To address this

limitation, we leverage the complementary performance of heuristic algorithms and demonstrate the

benefits of selecting different algorithms for specific problem instances for web service composition

and third-party library migration at the method-level (API migration). Our goal is to assist

practitioners in building and maintaining effective and efficient software by providing automated,

fine-grained search algorithm recommendations when employing SBSE techniques. By working

towards this vision, we make the following contributions:

• Self-Adaptive Service-Oriented Systems: We propose a new adaptation mechanism

that leverages complementary heuristic algorithm performance to efficiently construct appli-

cations. Service-oriented systems are constructed by combining various services that use web

protocols ( e.g., HTTPS, REST etc.) to communicate. During service composition, numerous

service combinations are evaluated to find solutions that fulfill diverse non-functional Quality

of Service (QoS) requirements. However, unanticipated changes in service and application

behavior such as new functionality and QoS fluctuations necessitate periodic re-composition.

To address these challenges, heuristic algorithms are used to efficiently evaluate solutions

to fulfill QoS requirements while reducing computational resource usage. In Chapters 4

and 5, we demonstrate the benefits of using a set of complementary heuristic algorithms

in R-CASS, our self-adaptive framework for service-oriented systems. R-CASS profiles and

dynamically selects heuristic algorithms from a complementary set for service composition in-

stances. In this work, we take the first steps towards proposing a new adaptation mechanism

for self-adaptive systems using algorithm selection. Specifically, an algorithm selection-based

adaptation mechanism will help software systems self-optimize in uncertain environments.

• Third-Party Software Library Migration at the Method-Level (API Migration):

In our work on API migration, we leverage heuristic algorithms to recommend software li-

brary methods with high precision. Software developers frequently use third-party software

libraries to build reliable software and mitigate re-implementation efforts. These libraries are

periodically updated to provide critical updates such as bug fixes, added features and func-

tionality, and so on. During API migration, developers manually replace methods from older
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libraries with their newer, updated counterparts by referring to source and target library ap-

plication programming interfaces (APIs) and their related documentation. As a result, API

migration is a tedious and error-prone process due to differences in library design, naming

conventions, and large numbers of method mappings.

To address these challenges, we leverage heuristic algorithms to recommend source-target

method mappings with high precision. In Chapter 6, we formulate API migration as a com-

binatorial optimization problem and leverage heuristic algorithms to recommend method

mappings with high precision and recall. Compared to existing API migration approaches,

our search-based approach reduces the requirement for expensive training routines and can

generalize to different programming languages and frameworks. We build on our work in

Chapter 7 and demonstrate that using an algorithm selection approach reduces the time

required for recommendation while selecting mappings with high precision.

• Algorithm Selection for Search-Based Software Engineering: In SBSE literature,

numerous heuristic algorithms [8,10,35,44] have been leveraged to address complex problems

arising in SE. As a result, it may be difficult for practitioners to determine which algorithm

to use for specific problems. We contribute to SBSE research by demonstrating the benefits

of using a set of complementary algorithms to solve complex SE problems. We note that

this set of complementary algorithms need not be the ‘best’ algorithms from the literature,

but should use diverse search mechanisms so that they outperform each other on problem

instances with different characteristics [139].

• Application Areas for Algorithm Selection: In our work, we apply algorithm selection

for web service composition and API migration. To the best of our knowledge, the benefits of

algorithm selection have not been demonstrated for these two SE problems. As a result, we

contribute to the field of algorithm selection by discussing our approach and the challenges

we faced when applying selection techniques to self-adaptive service composition and API

migration. Our experimental evaluations illustrate the potential benefits of using algorithm

selection for other SBSE problems in the future.

Through the tools proposed in this dissertation, we hope to make it easier for practitioners to:

• Identify and leverage a set of complementary heuristic algorithms that can be used together.

• Automate the process of selecting an appropriate algorithm from our complementary set for

specific SE problem instances.
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• Assist SBSE practitioners in constructing and maintaining robust, reliable software and reduce

operational costs by optimizing computational resource usage.

1.1 Overview

We provide a brief overview of subsequent chapters in this dissertation.Figure 1.1 depicts our over-

all algorithm selection-based approach for web service composition and API migration. We gather

requirements from software engineering practitioners for service composition and API migration.

Each problem instance is associated with a schematic that consists of specific, configurable compo-

nents. We model the performance of a set of complementary algorithms (‘portfolio’) using machine

learning (ML) techniques trained on previously solved instances and select the algorithm that fulfills

user requirements and minimizes computational resource usage.

Figure 1.1: An overview of our algorithm selection approach for search-based software engineering

problems.

In Chapter 4, we study the variability of heuristic algorithms for numerous service-oriented systems

tasks. We propose the R-CASS framework that leverages classifiers and contextual multi-armed

bandits to select an algorithm from a complementary set of service composition algorithms. Our

experimental evaluations demonstrate that our approach reduces computational resource usage

significantly while fulfilling user requirements. However, frequent fluctuations in web service at-

tributes and changes to service-oriented systems applications pose key challenges when collecting
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training data for classifiers. We address this challenge in Chapter 5 by leveraging a transfer learning

technique [132,142] to ‘transfer’ knowledge of algorithm performance across domains. Specifically,

we train our classifiers on extensive data from a different source domain and predict algorithm

performance in the service-oriented systems domain. We assess R-CASS performance using the

following research questions:

RQ 1 - Variability in Service Composition Algorithms

What behavior do Multi-Constrained Shortest Path (MCSP), Ant Colony System (ACS), Genetic

Algorithm (GA) and Particle Swarm Optimization (PSO) exhibit when solving composition tasks

in terms of delivered solution quality, time and memory resources used?

RQ 2 - Assessing Model Accuracy

Which classification and regression models can best model Multi-Constrained Shortest Path (MCSP),

Ant Colony System (ACS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) per-

formance on composition tasks?

RQ 3 - R-CASS Efficacy

How effectively does a classifier-selected composition algorithm meet Quality of Service (QoS)

requirements while minimizing computational resource usage as compared to a statically chosen

composition algorithm?

RQ 4 - Evaluating Online Learning

Does online learning improve composition algorithm selection to reduce computational resource

usage while meeting QoS constraints? If so, how do the three exploration strategies impact com-

position algorithm selection?

RQ 5 - Overhead

What is the overhead associated with selecting an algorithm for each composition task at runtime?

RQ 6 - Scope for Transfer Learning

How effectively can we transfer knowledge about Multi-Constrained Shortest Path (MCSP), Ant

Colony System (ACS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) perfor-

mance from TSP to service-oriented systems instances?

We also evaluate the benefits of heuristic algorithm selection for third-party library migration at the

method level (API migration). In contrast to service-oriented systems, recommended APIs must

fulfill specific functional requirements so that the underlying software functionality is not nega-

tively impacted. As API migration has not previously been studied as a search-based problem, we
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formulate API migration as a combinatorial optimization problem in Chapter 6. In the subsequent

Chapter 7, we analyze the complementary strengths of heuristic algorithms for API migration and

the benefits of using an algorithm selection approach. We evaluate the efficacy of our approach

using the following research questions:

RQ 7 - Search-Based API Migration

How accurately can our single-objective genetic algorithm (GA) approach recommend source-target

method mappings?

RQ 8 - Comparing Multi-Objective Search

How effectively do UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA, and MOEAD

recommend source-target library method mappings for various migration rules?

RQ 9 - Assessing Similarity Schemes

What is the impact of using different similarity score schemes (method signature, documentation,

and co-occurrence probabilities) when recommending source-target method mappings?

RQ 10 - Complementary Performance on API Migration Instances

How does UNSGAIII, RNSGAII, NSGAII, AGEMOEA and SMSEMOA performance vary across

migration instances with different sizes and fitness distributions?

RQ 11 - Efficacy of Algorithm Selection for API Migration

What is the impact of selecting a different metaheuristic algorithm for specific migration instances?

1.2 Contributions

In this section, we enlist the papers published as part of this dissertation and release all datasets

on GitHub. Each dataset was generated using considerable computational resources from RIT‘s

research computing (RC) cluster. To motivate future research in algorithm selection-based ap-

proaches for software engineering, we make our datasets publicly available.

1.2.1 Datasets and Tools

1. A dataset of service-oriented systems tasks: In our work on self-adaptive service-

oriented systems, we created a dataset of 6,144 service composition tasks and executed 4 popu-

lar service composition algorithms on each task. We sampled the popular WS-DREAM [148]

dataset for response time and throughput attributes. Prior to this work, a similarly large
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dataset of service composition tasks did not exist. All trained classifiers, contextual bandits

code, and labeled datasets are publicly available at https://github.com/niranjanadesh

pande/contextual-bandits-composition-algorithm-selection.

2. Code for evaluating metaheuristic algorithms on API migration: When leveraging

single and multi-objective algorithms for API migration, we randomly generate migration

instances containing valid and invalid mappings for each migration rule. We evaluated 8

algorithms using the PyMOO and MOEA frameworks on 9 migration rules and generated

detailed results on individual algorithm performance. All code and results for this work are

publicly available at http://bit.ly/MOO-api-migration.

3. A dataset of API migration instances: For our work on algorithm selection for API mi-

gration, we generate a dataset of 7,200 tasks and characterize each instance using 228 features.

We record the performance of multiple evolutionary algorithms on each API migration task

and generate a labeled dataset. The instance generation code, feature computation, and the

labeled dataset are available at https://github.com/niranjanadeshpande/algorithm-

selection-api-migration.

4. Our dataset of Traveling Salesman Problem (TSP) instances for transfer learning:

Our experiments on using transfer learning for service-oriented systems required the creation

of 27,267 TSP instances using the RUE and Netgen generation regimes. Additionally, we

applied a TSP clustering algorithm on each instance and collected execution data for 4 algo-

rithms on each instance. As a result, significant effort and computational resources were used

to generate and validate our TSP dataset over multiple months. We note that this dataset

was created using the same encoding and fitness functions used in service-oriented systems

work. As a result, our dataset can be used by the service-oriented systems and algorithm

selection community to evaluate new approaches. In the interest of reproducibility, we make

our datasets and code available at https://github.com/niranjanadeshpande/tsp-soa-

transfer-learning.

1.2.2 Publications

We have published 8 notable articles as part of this dissertation. With one exception (*contributes

to the general area of self-adaptive systems), each publication is directly related to our work on

using algorithm selection to engineer self-adaptive service-oriented systems and API migration. We

list the articles and abstracts as follows:
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1. Search-Based Third-Party Library Migration at the Method-Level, In Applications of Evolu-

tionary Computation, EvoApplications 2022, CORE Rank B

In software development, third-party libraries are commonly used to reduce implementation

efforts and errors, while delivering high-quality, reliable, and secure software. To support

software evolution, newer libraries are continuously released to offer added features, and

critical updates such as bug and vulnerability fixes. As a result, old (source) libraries and their

methods must be replaced with their newer, updated counterparts (target libraries) during

the library migration process. This is a time-consuming and error-prone process as developers

must analyze both the source and target library’s Application Programming Interface (API)

documentation and implementation to replace every source API with target API(s). Recent

studies do not provide generalizable guidelines on how each source API can be replaced

with one or multiple target library APIs. To address this limitation, our work leverages

evolutionary search algorithms to recommend APIs by (1) formulating API migration as a

combinatorial optimization problem, and (2) using genetic algorithms (GA) to recommend

suitable APIs during migration based on the method signature and documentation similarity,

and co-occurrence. We conduct an empirical study on 9 popular library migrations from

57,447 open-source Java projects and demonstrate that GA can recommend multiple APIs

for replacement with up to 100% precision for certain library migrations.

2. Third-Party Software Library Migration At The Method-Level Using Multi-Objective Evolu-

tionary Search, Swarm and Evolutionary Computation, 2024, Impact Factor 10

In this work, we address the limitations of our single-objective GA approach when recom-

mending multiple APIs in many-to-many method mappings. In particular, we formulate

library migration at the method level as a multi-objective combinatorial optimization prob-

lem and examine the performance of 7 multi-objective evolutionary algorithms: UNSGAIII,

RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA, and MOEAD. Our results demonstrate

that UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA and MOEAD outper-

form GA top achieve 90%, 89%, 94%, 90%, 91%, 94%, and 71% precision on average, and

83%, 23%, 58%, 63%, 58%, 60% and 17% average recall respectively. All code and results are

publicly available at: http://bit.ly/MOO-api-migration.

3. * Addressing Tactic Volatility In Self-Adaptive Systems Using Evolved Recurrent Neural Net-

works And Uncertainty Reduction Tactics, In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO ’22), CORE Rank A



CHAPTER 1. INTRODUCTION 9

Self-adaptive systems frequently use tactics to perform adaptations. Tactic examples include

the implementation of additional security measures when an intrusion is detected, or acti-

vating a cooling mechanism when temperature thresholds are surpassed. Tactic volatility

occurs in real-world systems and is defined as variable behavior in the attributes of a tactic,

such as its latency or cost. A system’s inability to effectively account for tactic volatility ad-

versely impacts its efficiency and resiliency against the dynamics of real-world environments.

To enable systems’ efficiency against tactic volatility, we propose a Tactic Volatility Aware

(TVA-E) process utilizing evolved Recurrent Neural Networks (eRNN) to provide accurate

tactic predictions. TVA-E is also the first known process to take advantage of uncertainty

reduction tactics to provide additional information to the decision-making process and re-

duce uncertainty. TVA-E easily integrates into popular adaptation processes enabling it

to immediately benefit a large number of existing self-adaptive systems. Simulations using

52,106 tactic records demonstrate that: I) eRNN is an effective prediction mechanism, II)

TVA-E represents an improvement over existing state-of-the-art processes in accounting for

tactic volatility, and III) Uncertainty reduction tactics are beneficial in accounting for tactic

volatility. The developed dataset and tool can be found at https://tacticvolatility.github.io/

Although we do not present this publication in our dissertation, this work miti-

gates challenges that may be encountered when deploying our algorithm selection-

based approach at runtime.

4. Composition Algorithm Adaptation In Service-Oriented Systems, In Software Architecture,

ECSA 2020, Communications in Computer and Information Science, CORE Rank A

In service composition, complex applications are built by combining web services to fulfill

user Quality of Service (QoS) and business requirements. To meet these requirements, ap-

plications are composed by evaluating all possible web service combinations using search

algorithms. These algorithms must be accurate and inexpensive to evaluate numerous ser-

vice combinations and services’ fluctuating QoS attributes while meeting the constraints of

limited computational resources. Recent research has shown that different search algorithms

can outperform others on specific instances of a problem domain, in terms of solution quality

and computational resource usage. Problematically, current service composition approaches

ignore this property, leading to inefficient compositions. In this paper, we study the vari-

ability of 3 service composition algorithms: Genetic Algorithm (GA), Ant Colony System

(ACS) and Multi-Constrained Shortest Paths (MCSP) on 105 composition requests using 8
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QoS metrics sampled from the QWS dataset [5]. Our results demonstrate the complementary

performance of MCSP, GA and ACS.

5. R-CASS: Using Algorithm Selection for Self-Adaptive Service Oriented Systems, 2021 IEEE

International Conference on Web Services (ICWS), CORE Rank A

We build on our work [56] and leverage the complementary strengths of MCSP, GA, PSO

and ACS to adapt service-oriented systems at runtime. More specifically, we propose a

self-adaptive framework, R-CASS, based on a composition algorithm selection framework to

select one heuristic algorithm from a set for each composition task at runtime. We train

random forest classifiers to predict algorithm performance using 408 service-oriented task

features. Our evaluations on 6,144 composition requests demonstrate that R-CASS leads to

more efficient compositions, reducing composition time by 55.1% and memory by 37.5%.

6. Online Learning Using Incomplete Execution Data for Self-Adaptive Service-Oriented Sys-

tems, 2022 IEEE International Conference on Web Services (ICWS), CORE Rank A

Our previous work leverages pre-trained classifiers that become inaccurate at runtime due to

changes in service QoS attributes and application evolution. As a result, unsuitable algorithms

may be selected for service-oriented systems tasks that use excessive computational resource

usage or do not fulfill user requirements. To address these limitations, we propose online

composition algorithm selection using contextual multi-armed bandits that learn to select an

algorithm for each composition task at runtime. Our evaluations demonstrate the benefits of

online learning by reducing time and memory usage by up to 54.2% and 15.5% while fulfilling

QoS requirements, compared to using a single composition algorithm for all tasks.

7. Algorithm Selection Using Transfer Learning, In Proceedings of the Genetic and Evolutionary

Computation Conference Companion (GECCO ’21), CORE Rank A

Per-instance algorithm selection has been shown to achieve state-of-the-art performance in

solving Traveling Salesman Problems (TSP). Current approaches select different algorithms

from a complementary set for each TSP instance leading to a significant reduction in com-

putational time usage. In this work, we highlight how recent algorithm selection techniques

apply to service composition, which is commonly posed as a TSP problem. However, unantic-

ipated changes in the service composition environment pose a key challenge when collecting

training data for all algorithms on unseen tasks. To address this problem, we propose the use
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of transfer learning techniques to improve classification accuracy in dynamic settings such as

service composition.

8. Towards Algorithm Selection for Search-Based Software Engineering, ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE 2023), Doctoral Symposium, CORE RANK A*

In this work, we summarize our results and contributions in a doctoral symposium paper that

was presented at the ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering in 2023. We share our findings with the software

engineering community and elicit feedback to inform future research.

A summary of subsequent chapters is as follows: in Chapter 2, we list all the algorithms used in this

study and provide a brief description of their mechanics. Additionally, we discuss the challenges

associated with web service composition and API migration using motivating examples. Chapter 3

discusses current approaches that address web service composition and API migration, and their

limitations. In Chapters 4 and 5, we leverage supervised learning and demonstrate the benefits

of algorithm selection on a large dataset of 6,144 service composition tasks. We further study the

impact of algorithm selection for SBSE on API migration in Chapters 6 and 7. Finally, we conclude

in 8 and outline directions for future work.



Chapter 2

Background

In this dissertation, we examine the impact of using algorithm selection techniques [120] to assist

software engineering (SE) practitioners in building effective and efficient software. As a result, our

work leverages insights from SE, optimization, and machine learning (ML) to predict metaheuristic

algorithm performance on SE problems. In this chapter, we discuss common terms and concepts

used when discussing algorithm selection, API migration and service composition.

2.1 Background on Algorithm Selection

In this dissertation, we evaluate single and multi-objective metaheuristic algorithms on software

engineering problems. The metaheuristic algorithms (metaheuristics or heuristics) used in our

studies are inspired by natural processes e.g., evolutionary algorithms that use mutation operators,

swarm algorithms based on the flocking behavior of birds etc.We use the terms metaheuristics

or heuristics interchangeably to refer to the set of algorithms used in our studies. Additionally,

we assess the variability in algorithm behavior across diverse SE instances and demonstrate that

heuristic algorithms exhibit complementary performance.

2.1.1 Complementary Performance

Heuristic algorithm selection techniques leverage the complementary performance property to iden-

tify suitable algorithms for specific problem instances. In a complementary set of algorithms, differ-

ent algorithms outperform each other on specific instances of a problem as a result of their unique

search mechanisms. Different algorithms use specific mechanisms to search the space of possible

12
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solutions. As a result, some solutions may be easier to find for specific algorithms in a given search

space e.g., a genetic algorithm may converge to a local optimum faster than an ant colony system.

Recent studies [75, 78] have demonstrated that selecting one algorithm from a complementary set

reduces computational resource usage while delivering high-quality solutions for TSP problems. In

our work, we leverage the strengths of multiple complementary heuristics to find solutions in a wide

range of search spaces for each of two SE problems. Our set of heuristics is static [78], that is, we

determine a set of algorithms that do not change when we select one for each problem instance.

Based on the findings presented by Xu et al. [139], we select algorithms that use comparatively

different search mechanisms, rather than using the ‘best’ algorithms that achieve high performance

on a majority of problem instances.

2.1.2 Fitness Landscape and Encoding

When using heuristic algorithms, fitness functions are commonly used to compare different solutions

by assigning numeric values [95] that indicate solution quality. Each possible solution is assigned a

fitness score that is used to compare it to a neighborhood of n other solutions. Additionally, each

solution is represented using an encoding function e.g., bit-string encoding is used to recommend

method mappings during API migration. Fitness landscapes are generated by assigning fitness

scores to each possible solution using common encoding and fitness function. Fitness landscapes

can be used to visualize and compare metaheuristic performance for different problems and to

understand the features of a specific search space. In fact, Malan et al. [94] recommend studying

the characteristics of a problem function using fitness landscapes to gain insight into how search

algorithms may perform across problem instances. In our work, we adopt various features from the

algorithm selection literature [75,94] to characterize the fitness landscape when predicting algorithm

performance. We discuss specific features and how they are calculated in subsequent chapters.

2.1.3 Single-Objective Algorithms

We enlist the single-objective algorithms used in our work and provide a brief description for ease

of reference as follows:

• Multi-Constrained Shortest Path (MCSP): We study the MCSP algorithm proposed

by Yu et al. [143] for service-oriented systems. MCSP exhaustively evaluates all possible

solutions and always returns the optimal result. As a result, it can become computationally

expensive on large problem instances.

• Genetic Algorithm (GA): The genetic algorithm [36] is motivated by the crossover and
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mutation operators from evolutionary processes. It uses these operators to recombine high-

quality solutions at every iteration until a termination condition is met. GA is used for web

service composition as well as API migration.

• Ant Colony System (ACS): The ant colony system algorithm was proposed by Dorigo et al. [57]

and is inspired by the foraging behavior of ants. ACS periodically explores different solutions

and assigns higher fitness to promising solutions.

• Particle Swarm Optimization (PSO): The particle swarm optimization algorithm was

proposed by Kennedy et al. [74] inspired by the flocking behavior of birds.

2.1.4 Multi-Objective Algorithms

In contrast to single-objective algorithms, multi-objective algorithms optimize two or more objec-

tives simultaneously. Multi-objective algorithms search for solutions that fulfill multiple objectives

resulting in potentially longer search times. In our work, we evaluate 7 popular multi-objective

algorithms for API migration:

• Non-Sorting Genetic Algorithm (NSGAII): NSGAII [51] is a popular search algorithm

that leverages techniques such as non-dominated sorting and crowding distance to efficiently

select and evolve candidate solutions. In this work, we choose NSGAII because it has been

shown to perform well on problems with fewer objectives.

• Indicator-Based Evolutionary Algorithm (IBEA): We select IBEA [151] because it

has been demonstrated to work well on problems with fewer objectives and is a relatively

well-documented algorithm that allows us to study API migration-specific challenges and

characteristics. Furthermore, we use the hypervolume metric to identify diverse solutions

because we are interested in “knee points” where both conflicting objectives are balanced.

• Reference-Based Non-Sorting Genetic Algorithm (RNSGAII):We select RNSGAII [52]

due to its ability to generate multiple solutions around user-specified reference points. Specif-

ically, RNSGAII generates a set of solutions around a specified optimal point and uses Eu-

clidean distance to evaluate generated solutions.

• Unified Non-Sorting Genetic Algorithm (UNSGAIII): The Unified NSGAIII algo-

rithm [126] is a unified optimization approach that modifies NSGAIII for two and mono-

objective problems. We evaluate this approach due to the performance of NSGAIII on many-

objective problems and improvements made to the tournament selection procedure resulting

in better performance on two objective problems.
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• Adaptive Geometry Estimation based Multi-Objective Evolutionary Algorithm

(AGEMOEA): The AGEMOEA algorithm [113] generalizes to different Pareto fronts and

has been shown to outperform state-of-the-art algorithms such as NSGAIII, GrEA, MOEA/D,

and AR-MOEA. We use this algorithm for our work on API migration and select this algo-

rithm because the geometry of our Pareto front is unknown.

• S-Metric Selection Evolutionary Multi-Objective Optimization Algorithm (SM-

SEMOA): The SMSEMOA algorithm [24] aims explicitly to keep solutions that maximize

hypervolume. At every iteration, SMSEMOA discards solutions with the least contribution

to the dominated hypervolume. Since SMSEMOA relies on hypervolume maximization, we

can evaluate the efficacy of using this indicator for our problem.

• Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D):

The MOEAD algorithm [146] uses decomposition strategies to search for solutions fulfilling

multi-objective constraints. We select MOEAD because it uses a different search strategy

that divides the search space into subproblems and because it has demonstrated desirable

convergence properties on multi-objective problems.

2.2 Self-Adaptive Service-Oriented Systems

Software is frequently constructed using a popular paradigm known as Service-Oriented Archi-

tecture (SOA) [29, 81]. SOA applications are built by combining different components that are

deployed as internet communicable services, resulting in efficient and effective application devel-

opment. During service composition, heuristic algorithms evaluate various service combinations to

find solutions that fulfill complex user Quality of Service (QoS) requirements. These requirements

consist of multiple non-functional objectives (e.g., response time, throughput, and so on) that

must be optimized resulting in an NP-Hard problem [17, 47]. Additionally, frequent fluctuations

in candidate service QoS attributes and application evolution necessitate periodic re-composition

using limited computational resources at runtime. To address these challenges, heuristic algorithms

accurately and efficiently evaluate candidate service combinations. In the following sections, we

discuss the QoS model for service composition, how we evaluate solution quality, and the challenges

faced during service composition.

2.2.1 QoS Model for Service Composition

In service-oriented systems, an application is depicted as a Directed Acyclic Graph (DAG) [82,143,

147]. As shown in Figure 2.1, different nodes or abstract services (in orange) in a DAG correspond to
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Figure 2.1: We illustrate the challenges associated with service composition using a book buying

software as an example. Heuristic algorithms are used to compose applications by evaluating various

candidate service combinations to fulfill diverse user QoS requirements. The number of possible

candidate service combinations increases exponentially with the number of abstract and candidate

services. Moreover, fluctuations in candidate service QoS, and application evolution necessitate

frequent re-selection of candidate services at runtime.

the available functionality e.g., View Cart, Place Order etc.These abstract services are connected by

edges that denote control dependencies and dictate the order of individual service execution. During

service composition, a concrete service CSny is selected for each nth abstract service ASn. Concrete

services for an application are selected to satisfy users’ multi-objective QoS requirements. Each user

provides their QoS needs q⃗req ← (q1, q2, ...qz) and weights w⃗req ← (w1, w2, ...wz) prioritizing z QoS

attributes. So, a concrete service CSny selected for each abstract service ASn has z QoS attributes.

An application’s QoS is an aggregate of each of the selected concrete services’ QoS. For example,

the response time of a composed application CA, is calculated by aggregating the response time

of all selected concrete services Qrt(CA) =
∑n

i=1Qrt(CSiy). In this work, we consider response

time and throughput as our QoS attributes, notating their objective functions in Table 2.1. QoS

attribute values are normalized because they are each measured in different units and scales.

2.2.2 Measuring solution quality using the Lp function

Utility functions are commonly used to assess the quality of composed solutions and used within

composition algorithms to guide concrete service selection. We use the Lp utility [3, 147] to weigh

each edge in a DAG and select services connected by high utility edges. The Lp utility is a measure
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Table 2.1: Aggregate QoS attributes describe whether an attribute should be minimized or maxi-

mized by a composition algorithm.

Metric Aggregate Objective

Response Time qrt(CA) =
n∑

i=1
qrt(CSiy) Minimized

Throughput qth(CA) =
n∑

i=1
qth(CSiy) Maximized

of the difference between the ideal QoS values and the current aggregate QoS values. It is defined

as:

Lp(f(q⃗)) =

[
k∑

i=1

wi|
fo
i − fi(q⃗)

fo
i

|p +
z∑

i=k+1

wi|
fo
i − fi(q⃗)

fi(q⃗)
|p
] 1

p

1 ≤ p ≤ ∞

Here, objective functions fi(q⃗)(1 ≤ i ≤ k) are the aggregate QoS (here, response time) to be

minimized and fi(q⃗)(k + 1 ≤ i ≤ z) are the aggregate QoS (throughput) to be maximized. In this

work, z = 2 because we consider two QoS attributes as shown in Table 2.1. Each QoS attribute in

q⃗ ← (qrt, qth) has a corresponding weight wi, while p is set to 2. Note that, fo
i is the ideal aggregate

QoS for attribute i that is identified independently and used in the Lp metric to guide composition

algorithms to a good result [3, 147]. As the Lp function measures distance from the ideal solution,

we select a solution with the highest 1/Lp value. We note that any other utility function can be

used in place of the Lp function depending on application requirements.

2.2.3 Challenges associated with service composition

To illustrate the challenges associated with multi-objective QoS driven service composition, we

adopt the example of a book buying software as a motivating scenario. As shown in Figure 2.1,

our book buying software implements certain functionalities (e.g., view book, add to cart) and

available candidate services. Users can request a software package with different Service Level

Agreements (SLAs). The composing system must respond to diverse user requests - for example,

user Bob may request faster response times and more throughput as compared to user Alice. As

a result, different concrete services are selected (highlighted in red and green) for different users.

Additionally, the composing system must not only fulfill user QoS requirements, but it also must

account for computational resource usage. It is common for software applications to be deployed on

Infrastructure as an Service (IaaS) instances, where computational resource usage directly impacts

operational costs, and by extension, cost to users. For example, if composing an application requires

several hours for completion, this results in significant system downtime and increased operational
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costs.

At runtime, selected concrete services may evolve to have different QoS and functional attributes.

As a consequence, new service selections will have to be made using a composition algorithm to fulfill

user requirements. Composition algorithms re-select concrete services for the entire DAG to meet

QoS requirements, while also being computationally feasible. Because of large candidate service

pools, some composition algorithms may become infeasible due to the computational resources

required to compute an optimal solution. In such scenarios, approximate algorithms that use

heuristics are preferred. However, these algorithms demonstrate variable behavior for different

composition tasks depending on features such as size of DAG and features of the search space [75,

76]. So, using a single approximate algorithm for all composition instances leads to inefficient

compositions, resulting in failure to meet application requirements and increased operational costs.

Composing applications is an NP-Hard, combinatorial optimization problem [17,47], and the added

consideration of computational resource usage makes composition at runtime more challenging. In

this work, we address these challenges and demonstrate the positive effects of selecting different

algorithms for different composition tasks for efficient runtime composition using the R-CASS

framework.

2.3 Third-Party Software Library Migration at the Method-Level

We also demonstrate the benefits of algorithm selection on API migration, a complex software en-

gineering activity with strict functional requirements. Third-party software libraries are routinely

used to reduce implementation effort, reduce the number of bugs in code, and avoid redundancy [28]

during development. Over time, these software libraries are updated to provide new features, func-

tionality, and critical updates such as bug fixes [54]. As a result, developers routinely replace older,

deprecated libraries with newer, updated libraries that are consistently maintained and updated.

More specifically, developers replace each application programming interface (API) call that ex-

poses a specific library function or procedure. This process of removing older (source) libraries’

APIs and dependencies from source code and replacing them with APIs or methods from newer

(target) libraries is known as library migration [129,130].

2.3.1 Background

We begin by describing common terms and definitions used when refering to API migration as

follows:
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• Library: The term library refers to a software library containing a collection of objects and

functions that can be accessed using an Application Programming Interface (API) [130].

• Library Migration: During library migration, we replace an older source library with a

newer, updated target library by replacing all of its functional dependencies. [110,129].

• Migration Rule (Rule): A migration rule, written as source → target, specifies which

target library replaces a source library’s API calls. For example, the migration rule specifies

that suitable replacements from slf4j must be found for all methods and objects belonging

to the source library commons− logging [12].

• Migration Mapping: A migration mapping refers to a specific set of source methods that

are replaced using one or many methods from the target library [13]. This is also referred to

as a source-target method mapping or method mapping.

2.3.2 Challenges associated with API migration

To improve software functionality and reliability, developers manually examine API documentation

to identify suitable source-target method mappings [11, 129] that do not alter underlying software

functionality. However, due to differences in naming conventions and library designs, method

mappings can have different cardinalities e.g., multiple target library methods may be needed to

replace one source method. To address these challenges, developers manually evaluate numerous

source-target method mappings to identify correct replacements. However, evaluating all possible

mappings is challenging because the number of mappings increases exponentially with the number

of source and target library methods under consideration resulting in a combinatorial explosion.

Manually evaluating and verifying all source-target method mapping combinations is tedious and

requires developers to read the documentation of both source and target libraries. Additionally,

developers must consider differences in library designs and naming conventions when evaluating

potential source-target method mappings.

Figures 2.2, 2.4, 2.5 and 2.3 illustrate how one or more source (e.g., commons-lang) library methods

are replaced by one or more newer, updated counterparts from a target (e.g., guava) library. These

figures depict method mappings of different cardinalities between two popular Java libraries that

were extracted from GitHub 1. Differences in mapping cardinalities and library designs pose key

challenges to library migration [14]. For example, in Figure 2.4, two source library methods are

replaced with one target library method i.e., it is a many-to-one method mapping. The number of

1http://migrationlab.net
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Figure 2.2: An example one-to-one method mapping from the rule commons-lang → guava. The ‘-’

sign on the left (highlighted in red) denotes source library methods that have been removed while

the ‘+’ sign denotes target library methods (also highlighted in green) that have been added.

Figure 2.3: An example one-to-many method mapping from the rule jersey-client → wink-client.

The ‘-’ sign on the left (highlighted in red) denotes source library methods that have been removed

while the ‘+’ sign denotes target library methods (also highlighted in green) that have been added.

Figure 2.4: An example of a many-to-one method mapping from the rule commons-lang → guava

where multiple source library methods are replaced by one target library method.The ‘-’ sign on

the left (highlighted in red) denotes source library methods that have been removed while the ‘+’

sign denotes target library methods (also highlighted in green) that have been added.

Figure 2.5: A many-to-many method mapping for the rule jmf → gstreamer-java. The ‘-’ sign on

the left (highlighted in red) denotes source library methods that have been removed while the ‘+’

sign denotes target library methods (also highlighted in green) that have been added.

possible method mappings to be evaluated further increases when the number of target methods

required is unknown. We further discuss each mapping example as follows:

• One-to-one mapping: Figure 2.2 depicts an example of a one-to-one method mapping mined

from a project on Github when migrating from commons-lang → guava. In this example, the

leftPad() method is replaced with exactly one method from the target library repeat().
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Here, the method names do not share any similarities due to differences in naming conventions.

Due to these differences, it is difficult to correctly identify this mapping and there is a high

likelihood of selecting incorrect replacements. Both these methods require the same number

and type of inputs, but their names are different.2

• Many-to-one mapping: Figure 2.4 illustrates an example of a many-to-one method mapping

where two source library methods are replaced with one target library method. More specif-

ically, the append() and toHashCode() methods are replaced with the hashCode() method.

This example illustrates how differences in library design impact mapping cardinality: only

one target library method is needed to provide the same functionality as two source library

methods. In contrast to the example above, the toHashCode() and hashCode() methods

are easier to identify as they have similar method names. However, this mapping requires

the addition of a “helper” method append() that is difficult to identify due to differences in

source (toHashCode()) and target (append()) method names and functionalities. 3

• One-to-many mapping: In Figure 2.3, one source library method (resource()) is replaced

with two methods from the target library (resource(), getUriBuilder()). The getUriBuilder()

method is difficult to identify unless co-occurrence probability is used because it is named

very differently from the resource() method.4

• Many-to-many mapping: Figure 2.5 depicts an example of a many-to-many mapping where

two source library methods are replaced with multiple target library methods. Specifically,

the createPlayer() and addControllerListener() methods are replaced with init(),

PlayBinMediaPlayer(), setURI() and addMediaListener() methods. Source and target

methods are difficult to identify in this example, as each source and target method has

completely different input parameter types and return types5.

Due to the challenges discussed above, there is a need for automated and accurate third-party

library migration tools to evaluate numerous source-target method mappings and recommend suit-

able method(s) for replacement. In contrast to service composition, API migration has not previ-

ously been studied as a search-based problem. We formulate library migration as a combinatorial

optimization problem and assess the performance of single and multi-objective evolutionary al-

gorithms in identifying suitable method mappings. Our goal is to correctly identify source-target

method mappings of different cardinalities (e.g., many-to-many, one-to-many etc.) by balancing the

2https://github.com/querydsl/codegen/commit/1b777cdaa71f93cd2da5419bd09e25a4e379d240
3https://github.com/insula/opes/commit/5d3e9ac9cb9675d5de0840cfa3d42be81044efa1
4https://github.com/syphr42/libmythtv-java/commit/6e1cd7c06f3fa655be941e2b876ccef69253f4ee
5https://github.com/syphr42/libmythtv-java/commit/24544532420d9c1bf1b0cf2ad5aaad7ea585cd60
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similarity or fitness of selected method mappings and the number of recommended target library

methods.



Chapter 3

Related Work

3.1 Algorithm Selection

Several works have leveraged algorithm selection techniques for a wide variety of computational

problems [25,27,32,75,78,99,128,135,145]. Bezzera et al. [25] propose the AutoMOEA+ framework

to design multi-objective algorithms by recombining algorithm components to solve different theo-

retical problems. Multiple works [27,78,99,128] have demonstrated the benefits of using algorithm

selection for theoretical problems such as traveling salesman problems, satisfiability problems, in-

teger linear programming and so on. Other studies [79, 92, 123] combine hyperparameter and

algorithm selection to recommend tuned search algorithms and machine learning pipelines.

Current literature addresses a wide range of computational problems using numerous heuristic

algorithms with variable computational resource requirements and solution quality guarantees [26,

35, 141]. As a result, it can be difficult for practitioners to determine which algorithm to use

when solving specific software engineering problems. Typically, software engineering practitioners

select a single heuristic algorithm to solve all instances of a problem [6, 15, 111] that can result in

solutions that do not fulfill requirements or use excessive computational resources [56]. To address

this limitation, we leverage algorithm selection techniques for software engineering problems. More

specifically, we demonstrate the benefits of using algorithm selection for web service composition

and third-party software library migration at the method level. To the best of our knowledge,

algorithm selection has not been studied before for either SBSE problem.

23



CHAPTER 3. RELATED WORK 24

3.2 Web Services Composition

Numerous self-adaptive service composition algorithms and platforms have been proposed in the

literature [4,7,10,17,19,20,38,63,81,82,83,125,133]. A substantial amount of work [7,10,18,19,36,

38,43,72,83,147] proposes new composition algorithms, either exhaustive or inexact. While inexact

composition algorithms compute approximate solutions and are comparatively less expensive to use,

they only provide near-optimal solution guarantees [36,72,147]. So, there may be some instances on

which inexact algorithms do not converge or for which they use excessive computational resources.

This leads to several undesirable, inefficient compositions.

Platforms such as those proposed in [17,34,37,63] identify individual problematic concrete services

and replace them. Each approach is able to pin-point under-performing services and replace them

individually using a pre-determined composition algorithm. This is done by using certain local

constraints over every abstract service to replace under-performing services, which has the effect

of reducing the search space for the composition algorithm used. Such approaches need carefully

constructed constraints, or otherwise they lead to sub-optimal solutions. R-CASS is complemen-

tary to these platforms, because it can incorporate different graphs and constraints when profiling

different composition algorithms. An algorithm is selected for a particular composition task based

on its characteristics such as search space size, QoS constraints, node and utility distribution. By

leveraging this information, we are able to obtain better results than a statically chosen algorithm

used to solve all composition tasks. Thus, our work is fundamentally different from but comple-

ments current approaches by modeling different algorithm behaviors and selecting one for different

composition tasks of varied search spaces.

Finally, the approach presented in [131] recommends algorithms for a set of batched user requests

using only the most recent execution data. They use more resources for priority workflows and fewer

for those that have not been executed frequently. Such an approach leads to inaccurate compositions

for less frequently executed graphs. Moreover, they only consider one metaheuristic algorithm,

which uses the same search mechanisms and demonstrates similar behavior across composition

instances; thus they do not consider complementary performance of algorithms. Additionally,

they do not leverage historic execution data that directly impacts which composition algorithms

perform well for different instances of composition tasks. In our work, R-CASS is able to leverage

historical execution data and model various algorithms’ behaviors on various composition instances

to obtain accurate predictions. Furthermore, our approach has the advantage of adapting efficiently

at runtime in response to unanticipated changes in the composition environment.
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Our work differs from pre-existing works in that R-CASS considers individual strengths of algo-

rithms and selects a specific algorithm to solve a composition instance based on features such

as graph size and search landscape properties. Furthermore, to avoid composition failure across

tasks, R-CASS uses two strategies (1) By using a set of algorithms demonstrating complementary

performance [75, 76], R-CASS is able to select other algorithms from the set that can compute a

solution when one fails. (2) The set of algorithms under consideration include an exact algorithm

that R-CASS selects when inexact ones are predicted to fail. Thus, in this work, we propose a

novel adaptation mechanism to select one algorithm per composition task, rather than proposing a

new composition algorithm. Our goal here is to build a self-optimizing system that can reconfigure

itself to fulfill QoS requirements and minimize computational resource usage.

3.3 Third-Party Software Library Migration at the Method-Level

Evolutionary algorithms have been leveraged to address various challenges in software engineering

[96] such as software development estimation [97], structure testing [33], workflow selection [91] etc.

However, current library migration approaches do not evaluate search algorithms to recommend

method mappings. In this section, we discuss the differences between our approach and related

library migration techniques. We also assess various quality indicators proposed in the literature

and describe the indicators used in this work.

3.3.1 Library-Level Approaches

Most library migration approaches [110, 129, 130] recommend which target library should be used

to replace each source library, that is, they only recommend libraries and not methods. Re-

cent work [66, 67] leverages multiple metrics to rank candidate target libraries, while other tech-

niques [6, 62, 100] recommend specific types of libraries, e.g., for Android, data science or python.

Similarly, Nafi et al. [102] recommend libraries across 4 different programming languages using

cosine similarities obtained using word vectors that are calculated from mined developer dis-

cussions. Other related work [134, 137, 140] recommends different versions of the same library.

Nguyen et al. [105] use recurrent neural networks to update library versions and their dependen-

cies, whereas Rubei et al. [121] create a migration graph to recommend which library version should

be used for replacement. Our work can be used in conjunction with these approaches as we pro-

pose fine-grained recommendations by identifying replacement methods from a pre-specified target

library.
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3.3.2 Programming Language or Framework Specific Approaches

Numerous approaches [31, 71, 107, 112, 114] address library migration at the method-level, but can

only be used for specific frameworks or languages. A recent work [109] proposes extensions to

specific tools (refaster and ErrorProne) to automate library migration. Both tools are used in

conjunction to analyze and refactor compilable Java code, and are not easily generalizable to all

languages. Phan et al. [114] generate APIs in C# to replace Java methods using the Word2Vec

model and create a transformation matrix that can be re-used to recommend API sequences. Sim-

ilarly, Nguyen et al. [107] train an API2VEC model to recommend migrations from Java to C# by

analyzing source and target language’s usage contexts. However, such an approach does not con-

sider differences in library designs that could lead to variations in surrounding contexts. Moreover,

different developers can use different “helper” methods to achieve similar functionality, resulting in

very different contexts for analogous methods. In this work, we propose an approach that can be

used for any programming language or framework provided method and documentation similarities

can be defined. Furthermore, we do not require historical data to identify method replacements,

which is useful when recommending newer libraries for which sufficient data is unavailable.

3.3.3 Method-Level Library Migration Approaches

Existing method-level library migration approaches [61,103,124] leverage the “wisdom of the crowd”

to identify suitable methods by mining API migration patterns from existing repositories or forums

such as StackOverflow. Ramos et al. [117] and Nadi et al. [101] recommend API mappings for

libraries used in data science applications by mining patterns of common migrations from GitHub.

A related approach [89] models API usage using knowledge graphs and library documentation.

Harman et al. [15] modify library source code to improve comprehension and maintainability. While

this approach does not directly recommend methods during library migration, the authors use

genetic improvement to modify the source code without impacting API definition.

Multiple works recommend methods during library migration [21, 40, 49, 150] using deep learn-

ing techniques that require extensive training data and computational power. Specifically, Col-

lie et al. [49] use sophisticated program synthesis techniques on intermediate code representations

to provide API recommendations. Similarly, Chen et al. [40] use unsupervised deep learning to em-

bed usage semantics and infer likely mappings. These approaches only work for specific languages

(compilable, Java) and require a lot of training data. Alrubaye et al. [12] propose a relatively

more generalizable approach that uses a decision tree model to recommend one-to-one method

mappings. However, such an approach cannot be used if there are newer mappings that are not
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present in the training dataset or libraries for which training data is unavailable [106]. To address

these limitations, we leverage multi-objective search algorithms to identify suitable mappings. Our

approach uses three different types of similarity schemes (method and documentation similarity,

and co-occurrence probability) to recommend method mappings even when library data may not be

available. Furthermore, we show that our approach can recommend different mapping cardinalities

with high precision and recall. Additionally, our approach can be used for different programming

languages and frameworks, as long as similarity scores can be defined.

3.3.4 Quality Indicators Assessment

Several quality indicators [8,86,87,88,108] have been proposed in the evolutionary search literature

to evaluate the convergence, spread, uniformity and cardinality achieved by algorithms on different

problems. We briefly summarize how each of these properties relates to the key characteristics of

the API migration problem and the quality indicators we use in this study:

• In this work, our goal is to mitigate the time and effort required to evaluate numerous source-

target method mappings during library migration. Since developers expend considerable effort

verifying each recommended mapping, we want to minimize the number of recommended

source-target method mappings without impacting precision and recall. As a result, it is not

useful to evaluate the cardinality of generated solution sets for this problem.

• To achieve high precision and recall when recommending method mappings, it is desirable that

algorithms converge to the best possible solutions after examining a wide range of mappings.

Thus, we evaluate whether each evolutionary algorithm converges to recommend fewer but

correct mappings.

• In this work, we evaluate the convergence property of each algorithm by comparing gener-

ated solutions with a “groundtruth” derived from the dataset used in our experiments. This

groundtruth consists of a set of correct mappings that have been used before by other de-

velopers when migrating between software libraries. We measure how close the generated

solutions are to the groundtruth using the mean Euclidean distance of all the solutions in

the final iteration. Note that a similar formulation is used in IGD+ and GD+, except we

measure distance from the groundtruth (pareto) point to the solution set rather than from the

pareto front. Moreover, since the groundtruth is a single point of reference, we do not have a

reference set for comparison. As a result, indicators that measure the properties of a pareto

front (specifically, uniformity and spread properties) are not well suited to this problem.

• In practice, developers do not know beforehand what the best method mappings are, that is,
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they do not have access to “groundtruth” mappings. As a result, indicators (such as Euclidean

distance) that evaluate distance from the pareto front cannot be used. Moreover, as libraries

evolve, developers may use different method mappings to achieve the same functionality,

thereby changing the pareto fronts. However, to reduce time and effort required during the

verification of mappings, we are interested in “knee points” that can balance the number of

mappings while also being accurate. As a result, the hypervolume indicator is of interest.



Chapter 4

A Self-Adaptive Framework for

Service-Oriented Systems Using

Algorithm Selection

4.1 Motivation

Figure 4.1 illustrates the impact of variable algorithm behavior on service-oriented systems using

the book buying software example introduced in Section 2. We observe two users, Alice and Bob,

with specific response time (RT ) and throughput (Thrpt) requirements, and examine three heuris-

tic composition algorithms (Ha, Hb, Hc) to select specific candidate services for Alice (highlighted

in green) and Bob (highlighted in red). Specifically, we demonstrate that leveraging complemen-

tary performance of Ha and Hb results in a significant reduction in time and memory resource

usage while fulfilling user QoS requirements. We observe that between Ha and Hb, only Hb can

fulfill Bob’s QoS requirements. In contrast, both Ha and Hb select candidate services that fulfill

Alice’s QoS requirements. A suitable composition algorithm must be accurate and inexpensive.

Service composition algorithms frequently re-select candidate services in response to QoS fluctu-

ations, changes to the application DAG (e.g., added features), and updated user requirements.

Additionally, it is common for software applications to be deployed on Infrastructure as a Service

(IaaS) instances, where computational resource usage directly impacts operational costs, and by

extension, cost to users. For example, if composing an application requires several hours for com-

pletion, this results in significant system downtime and increased operational costs. As a result, Ha

29



CHAPTER 4. ALGORITHM SELECTION FOR SERVICE COMPOSITION 30

Figure 4.1: This figure illustrates how different heuristic composition algorithms outperform each

other on specific composition tasks. In this example, three algorithms Ha, Hb, Hc can be used to

select candidate services to fulfill Alice and Bob’s response time (RT) and throughput (Thrpt)

requirements.

is better suited to fulfill Alice’s QoS requirements because it uses relatively fewer time and memory

resources compared to Hb. From So, selecting different algorithms for specific composition tasks

results in fewer resources being used while also fulfilling QoS requirements.

Figure 4.2 provides an architectural overview of our approach. The Composition Engine is a

central component of our approach that monitors every composed application, records existing

service selections, detects QoS violations and selects an algorithm for composition. To accurately

select one composition algorithm from a set of possible algorithms, we collect execution data from

previously executed compositions and record delivered solution utility, time, and memory usage

for m composition algorithms. This historical data is stored in the Composition Execution Data

Storage and is used to train a Composition Algorithm Selector that models the performance of each

algorithm at runtime (detailed further in the next section). In this Chapter, we first demonstrate

the complementary performance of four popular composition algorithms and leverage classifiers to

select one algorithm for each user.
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Figure 4.2: This figure presents an architectural overview of our approach. We select one of m

heuristic algorithms to fulfill each user request based on their past performance.

When using pre-trained classifiers as Composition Algorithm Selectors, only one algorithm from a

complementary set is selected for execution on the current user request. As a result, the performance

of other unselected algorithms remains unobserved leading to an incomplete data setting. For

example, in Figure 4.1, the performance of algorithm Hc is not observed because it is not selected

for Alice or Bob. So, our training data does not contain information about Hc for these newer user

requests. Consequently, classifiers become inaccurate over time as a result of incomplete data. In

addition to evaluating classifiers as algorithm selectors, we assess contextual multi-armed bandits

to accurately select algorithms in an incomplete data setting for online composition algorithm

selection.

4.2 R-CASS Description

To facilitate algorithm selection in service-oriented systems, we propose R-CASS, a framework

that leverages composition algorithm selection at runtime for self-adaptive service composition.

Our goal is to predict a suitable algorithm for fulfilling each composition request, such that the

selected algorithm fulfills QoS requirements while minimizing the time and memory resources used

for composition. To achieve our goal, we propose a novel adaptation mechanism that uses a set

of algorithms, each with its unique strengths, and selects one algorithm per composition task to

meet QoS needs and optimize composition costs. In this section, we outline our proposed system,
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R-CASS.

Figure 4.3: We provide a reference architecture for R-CASS to facilitate algorithm selection at

runtime. Using the popular MAPE-K feedback loop, service compositions are monitored at runtime

and data from recent executions is collected for accurate predictions.

4.2.1 R-CASS using the MAPE-K architecture

To deploy R-CASS in a service composition environment, we integrate different components of

R-CASS into a feedback loop that can monitor applications and trigger adaptation at runtime.

Figure 4.3 provides a reference architecture for implementing our approach using a feedback loop.

In particular, we use the MAPE-K loop [70], a popular, influential reference architecture. Figure 4.3

shows how R-CASS is realized using a MAPE-K loop [70]. Every component of the R-CASS

architecture is divided into one of four MAPE phases - Monitor, Analyze, Plan and Execute. All

collected information about recent QoS violations, composition requests, and algorithm executions

is stored in the Knowledge base. Such a design allows for a clear separation of concerns so that

R-CASS can monitor composed applications for changes and adapt to them using the Composition

Algorithm Selector. Once an algorithm is executed, data about its performance is also gathered and

used to train the Selector. The integration of R-CASS with the phases of MAPE-K is as follows:

1. Monitor: In this phase, R-CASS uses the QoS Monitor to monitor and record the QoS

of selected concrete services corresponding to each abstract service. If the aggregate QoS

fails to meet business or user needs, R-CASS needs to adapt to (re-)compose a new solution

by first selecting a composition algorithm and executing it to select new candidate services.

R-CASS’s Monitor phase records all QoS information at each timestep and passes it to the

Analyze phase of the MAPE-K loop.

2. Analyze: In the Analyze phase, information from the QoS Monitor is used to decide if

re-composition is needed. The Constraint Analyzer component takes as input the recorded
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QoS information for the composed application and references it with the requested QoS

parameters. If the requested solution quality is not met, it prepares a (re-)composition

request. This composition request contains information about the dependency graph, QoS

requirements q⃗req, QoS weights w⃗req, and QoS distribution features (described in Section 4.3)

which is then passed to the Plan by the Request Processing component to select an algorithm.

In this work, we re-compose by selecting concrete services for a DAG according to some

user-provided constraints over the entire application. This ensures that a globally optimal

solution is found. However, in certain business applications, nested DAGs or sub-workflows

are commonly used [1,2], which means that an abstract task may need to be recomposed using

its own dependency graph and constraints. In that case, R-CASS can be used to re-compose

specific sub-workflows or DAGs as needed.

3. Plan: In the Plan phase, R-CASS plans for adaptation by selecting a composition algorithm

once the Analyze phase triggers re-composition. The Request Processing component passes

as input recorded features about the composition task and environment that are used to

query the algorithm performance models. These models are trained to select an algorithm

for each composition request using execution data from previous composition requests. In

this work, we use classifiers to model composition algorithm performance and act as selectors.

Ultimately, the Plan component uses predictions from the Algorithm Selector to solve the

optimization problem presented in the next subsection and select a suitable composition

algorithm.

4. Execute: The Composition Executor component uses the composition algorithm selected in

the Plan phase and executes it. Execution data from the composition algorithm along with

the composition request is stored in the Algorithm Execution Data Storage and Composition

Request Data Storage components of the Knowledge Base. This data is used to train the

Algorithm Selector for future executions.

4.3 Modeling Algorithm Performance

We begin by describing the features used to characterize a composition task/instance. Next, we de-

scribe how classifiers and contextual multi-armed bandits are trained using historical execution data

to select algorithms at runtime. Finally, we describe the set of algorithms we use to demonstrate

the positive effects of composition algorithm selection.
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4.3.1 Features for Composition Algorithm Selection

We begin by characterizing service composition requests that serve as inputs to the classifiers.

Each composition request is characterized using features that provide essential context to predict

the most suitable composition algorithm. In addition to the base set of features [56], we expand

our feature set to include information about node utility and distribution. All features are treated

as continuous variables. Our set of basic features are as follows:

1. Dependency graph characteristics: The Directed Acyclic Graph (DAG) is a functional

description of the application and is characterized by the number of abstract and concrete

services as features. Existing works [10, 143] have demonstrated that general flow structures

can be reduced to sequential flow graphs, therefore in our work, we focus on sequential flow

graphs to test our approach.

2. Requested QoS: A user’s requested solution quality is characterized using 2 QoS attributes,

that are used to compute the requested solution utility. Weights for each QoS attribute are

also provided to prioritize different QoS attributes using the Lp function. In this work, we

weigh both QoS attributes equally so that both attributes are equally preferred for exposition.

We note that our framework is flexible and allows a practitioner to customize the QoS attribute

weights for their application.

3. Computational resources: Time (seconds) and memory (kilobytes) used by each algorithm

are recorded, with the goal of minimizing resource usage.

To accurately predict computational resource usage and characterize the utility distribution in a

DAG, we adapt additional node distribution features from [75]. These features characterize the

search space an algorithm must explore and its complexity.

1. Characterizing the adjacency matrix: In a DAG, each concrete service for an abstract

service is connected to the next abstract service’s concrete services - thus creating an adjacency

matrix. We characterize this matrix by measuring the mean values, variation coefficient, and

skew between each adjacent pool of concrete services for each of the two QoS attributes.

2. Centroids of the QoS attributes: We calculate the centroids of both QoS attributes for

a DAG’s entire concrete service pool.

3. We also record the bottleneck between two nodes; this translates to the worst QoS values

between two abstract nodes. These features, in addition to the adjacency matrix features,
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provide insights about the search space in which the composition algorithms search for solu-

tions [76].

4.4 Using classifiers as algorithm selectors

Classifiers are supervised learners that learn how to differentiate samples from multiple classes using

labels assigned to each training datum. Using these labels, certain decision boundaries are learned

on training data that can be used to similarly assign labels to unlabeled test data. In our work, we

consider supervised learning because it incorporates human inputs in the form of labels and learns

decision boundaries according to certain preferences. For R-CASS, we have 4 labels corresponding

to one of 4 composition algorithms explained further in this section. To train classifiers, a previously

executed service composition request is labeled with the algorithm that best solves it, as discussed

in Section 4.4.1. The algorithm that can fulfill QoS requirements while using the least amount of

time and memory, is the most suitable for a particular composition task.

4.4.1 Classification Optimization Problem

We describe the optimization problem that balances solution quality and computational resource

usage when using R-CASS. We assume that there is a set of composition algorithm candidates

that outperform each other on different composition instances, thus demonstrating complementary

performance [75,76]. This set is denoted as CASet = {CASet0, CASet1, . . . CASetj}, wherein each

composition algorithm has different solution guarantees and uses varied computational resources in

terms of time timej and memory memj . Some algorithms may compose a solution more efficiently

than others for a particular dependency graph and set of user QoS constraints. Our goal is to

select an algorithm that fulfills QoS requirements while minimizing computational resource usage.

Therefore, we model composition algorithm selection as a dynamic decision problem.

argminjϵCASet {min(timej),min(memj)}

such that Uj ≥ ReqUtil

where Uj = LpFunc(q⃗j , w⃗req)

and ReqUtil = LpFunc(q⃗req, w⃗req) (4.1)

This optimization problem is solved for each composition request req that is associated with an

abstract service dependency graph or DAG for the requested functionality. The dependency graph
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consists of a set of abstract services AS = {AS0, AS1, . . . ASn}. Each abstract service ASn is

associated with a pool of concrete services of varying QoS values CSn = {CSn0, CSn1, . . . CSny}.
We obtain the requested solution utility ReqUtil and composed utility delivered by a composition

algorithm Uj using the Lp function described in Chapter 2. The best suited algorithm adaptation

jϵCASet fulfills ReqUtil while using the least amount of timej and memj . We note here that

fulfilling the QoS requirements is a necessary but not sufficient condition for selection.

4.5 Leveraging contextual multi-armed bandits for algorithm se-

lection

To mitigate the risk of predicting inaccurate algorithms using pre-trained classifiers, we propose

online composition algorithm selection and leverage incomplete data using a powerful reinforcement

learning technique – contextual multi-armed bandits [53, 84]. Contextual bandits 1○ periodically

execute different composition algorithms to collect additional incomplete execution data, and 2○
leverages this data to accurately model algorithm behavior on various tasks.

Contextual bandits learn to select the optimal action for the current context of the environment by

balancing exploration and exploitation [84]. In this work, actions correspond to each service com-

position algorithm in the set CASet and the context corresponds to the task for which an algorithm

must be selected e.g., select suitable candidate services to fulfill Bob’s RT and Thrpt requirements

of 0.5 seconds and 80%. When using contextual bandits approaches, balancing exploration and

exploitation is crucial as it impacts the overall quality of current and future compositions. For

example, a purely exploitative strategy can select Ex for both Alice and Bob leading to excessive

computational resource usage. In contrast, pure exploration would randomly select algorithms that

can lead to sub-optimal solutions e.g., using Hb for Bob will lead to a QoS violation. In this work,

we evaluate three different strategies to balance exploration and exploitation for online composition

algorithm selection: greedy, ϵ-greedy, and upper confidence bound (UCB).

Algorithm 1 describes how the ϵ−greedy strategy is applied to online composition algorithm se-

lection using incomplete execution data. Each composition algorithm CAlgoj is associated with a

regression model mj that is trained to predict its performance using data from previous executions

T (CAlgoj). Each model can be re-trained separately at runtime as an algorithm CAlgoj is executed

more frequently, which allows us to leverage incomplete execution data leading to more accurate

modeling and predictions over time. Contextual bandits strategies query these regression models

and select a composition algorithm CAselect based on the predicted behavior of algorithms and the
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Algorithm 1: Contextual bandits for algorithm selection using ϵ−greedy
Input: Training data T , Exploration parameter ε, Set of composition algorithms CASet

Output: Selected composition algorithm, CAselect

cost,m = {}, {}
//Train a regression model for each algorithm

for each CAlgoj in CASet do
T (CAlgoj) = {Ti for i in |Tj | | TjϵCAlgoj}
mj = mj(T (CAlgoj))

end

//Predict composition algorithm performance

Ψ = Φ(CTt)

λ = argminjϵCASetmj(Ψ) //Pure greedy selection

δ = random()

if δ > ε then
CAselect = λ(CTt)

else
CAselect = random(CASet)

end

return CAselect

exploration-exploitation strategy used. The current composition task CTt is characterized by its

QoS, node, and utility distribution features Ψ. These features are extracted using a feature-value

mapping function Φ and used as an input to query each regression model mj when selecting an

algorithm for a composition task. The following contextual bandits strategies are evaluated in this

work:

• Greedy: In Algorithm 1, the greedy approach [53] corresponds to always using argminjϵCASetmj(Ψ),

and setting the exploration parameter ϵ to 0. This leads to greedy selections that have the least

predicted cost. However, a purely exploitative approach such as this can result in one algorithm

being executed most of the time leading to inaccurate models of other composition algorithms

and ultimately unsuitable algorithm selections on future tasks.

• ϵ− Greedy: The ϵ−greedy strategy [60], shown in Algorithm 1 randomly selects a composition

algorithm ϵ% of the time, and greedily selects an algorithm with the least cost costj (1− ϵ)% of

the time. A larger ϵ value leads to more exploration and can result in more accurate modeling of

all algorithms in CASet as more execution data is collected.

• Upper Confidence Bound (UCB): The UCB strategy [84] constructs an upper bound on algorithm

performance by adding a second term to a regression model’s prediction. This additional term



CHAPTER 4. ALGORITHM SELECTION FOR SERVICE COMPOSITION 38

incorporates the standard deviation σj of predicted costj (Equation 4) and is multiplied by a

discount factor γj and algorithm’s execution probability. If a particular composition algorithm is

selected frequently, its cost will increase resulting in other composition algorithms being explored.

By including this term, UCB selects algorithms that (a) it is confident will compute an optimal

solution, or (b) are under-explored.

Our approach can be deployed as a runtime adaptation mechanism for service-oriented systems

using the influential MAPE-K [56] feedback loop architecture described in [56]. Contextual bandits

can be used to select suitable composition algorithms and re-select candidate services for each task

to fulfill QoS requirements while minimizing resource usage.

4.5.1 Bandits Optimization Problem

Our goal is to select a composition algorithm for each task such that it fulfills QoS requirements

and minimizes time and memory usage. We formalize the optimization problem that contextual

bandits in an incomplete data setting to select an algorithm CASetj .

argminjϵ|CASet| costj(timej ,memj , Uj) (4.2)

where CASet = {CASet0, CASet1, . . . CASetj} (4.3)

where cost(timej ,memj , Uj) = timej +memj + penaltyj (4.4)

where Uj = 1/Lp(q⃗j , w⃗req), ReqUtil = 1/Lp(q⃗req, w⃗req) (4.5)

penaltyj =

3 if Uj < ReqUtil

0 otherwise
(4.6)

As shown in Equations 2–6, our approach optimizes the overall cost of using a composition algo-

rithm for a specific task by taking into consideration delivered solution quality, time and memory

resources used during composition. In this work, the cost of using a composition algorithm j is

formulated as costj , and denotes a trade-off between penaltyj , composition timej and memory

memj . Compositions that do not fulfill user QoS requirements ReqUtil are strongly penalized

with a penalty term of 3 that has a significantly larger value than the normalized values of timej

and memj combined. A high penalty discourages sub-optimal solutions and leads to composition

algorithm selections that fulfill QoS requirements and minimize computational resource usage. The

formulation of this optimization problem is crucial because it determines how accurately contextual

bandits approaches learn to model and select composition algorithms over time.
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4.6 Evaluated Composition Algorithms

To illustrate the benefits of adapting composition algorithms at runtime, we implement and execute

four popular service composition algorithms [72] on composition instances. We evaluate exhaustive

and inexact composition algorithms and select one algorithm that fulfills QoS requirements while

minimizing computational resource usage. We note that while we selected these algorithms for

exposition, R-CASS can easily be extended to include additional composition algorithms. The

algorithms we implement in this study are:

• Multi-Constrained Shortest Path (MCSP): MCSP is an exhaustive algorithm proposed

in [143]. It evaluates all possible candidate solutions and provides the highest utility solution.

This approach is comparatively time and memory intensive, especially as the search space

size increases.

• Ant Colony Optimization (ACS): ACS is a meta-heuristic algorithm inspired by the

behavior of ants originally proposed in [57, 147]. It uses multiple agents to find a solution

by exploring graph edges with higher utility. The hyperparameter settings are: α = 2, β =

8, t0 = 10.

• Genetic Algorithm (GA): GA is a search heuristic inspired by the theory of natural

evolution. We modify the formulation in [36] and use the same hyperparameter settings.

• Particle Swarm Optimization (PSO): Particle Swarm Optimization is a metaheuristic

inspired by the flocking behavior of birds [74]. It computes velocities for possible solutions

and evaluates solution fitness based on utility. We use the formulation presented in [48,90].

We select these composition algorithms because they each behave differently, allowing us to examine

why some algorithms are selected for certain composition tasks. We selected ACS, GA and PSO

as they are the most widely-studied service composition algorithms [72] and MCSP as our exact

baseline algorithm. By doing so, we leverage existing literature to establish ground truth and

correctness of our initial results. Following existing guidance [36, 115, 122], we set 200 as the

maximum number of iterations and as the population size for all metaheuristic algorithms. If a

solution fulfilling user QoS constraints is found within these iterations, the algorithm is stopped.

Alternatively, if a solution is not found, the algorithm is said to have not converged. Such a

formulation is useful for a service composition tool because algorithms must finish running using

finite resources to be feasible for an application.
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4.7 Methodology

4.7.1 Dataset Generation

We set up experiments on 6,144 composition requests on DAGs of a wide range of sizes [45]. The

number of abstract services vary from 5 to 40, and can be one of 5, 10, 15, 20, 25, 30, 35, 40

while the number of concrete services per abstract service is one of 5, 10, 15, 20. Using these

values, we generate combinations of a different number of abstract and concrete services. This

setup gives us a wide range of search space sizes [45] from a possible 3125 to 1.1e52 combinations,

in which case exact optimization becomes expensive. Composition algorithms search through this

space of possible solutions to generate one meeting user requirements. We use a real-world dataset,

WS-DREAM [148] and randomly sample it for response time and throughput values of concrete

services. We use three sets of constraints to signify different classes of users; with relative solution

qualities of 0.85, 0.9 and 0.95. Solution qualities are relative to the best possible solution obtainable

for a graph at a given time.

We vary the QoS for a pool of concrete services available for a graph at every time step, in two ways

- (a) As data for the same set of concrete services is available at a certain time step, we observe

changes in the QoS values for concrete services and recompose (b) If a concrete service fails or is

unavailable at a given time step, it is replaced by sampling for another concrete service. In this

manner, we evaluate R-CASS’s performance in an online setting for 6,144 composition requests,

spread across 64 time slices.

4.7.2 Comparative Approaches

With R-CASS, our goal is to select the right algorithm for each composition task such that it fulfills

QoS needs while minimizing computational resource usage. So, we propose an efficient adaptation

mechanism to leverage the strengths of different composition algorithms, rather than presenting a

new composition algorithm. In our experiments, we validate the algorithm selection mechanism

by comparing four different composition algorithms. An added advantage of our approach is that

more algorithms can be included in practice as needed.

Because R-CASS is the first work of its kind to exploit variability in service composition algorithm

performance, there are no other comparative works in existing literature. Furthermore, since our

approach uses multiple composition algorithms each with their own strengths, it is not fair to

compare any one pre-existing composition algorithm not included in the algorithm portfolio. So,
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we adopt the notion of single and virtual best solvers common in the algorithm selection literature

from [75,76] to provide upper and lower bounds on R-CASS’s performance. They are as follows:

• Single Best Solver (SBS): Our first baseline is the single best solver that shows the best

performance for the majority of composition instances. Adapting composition algorithms

using algorithm selectors is useful only if they outperform the single best solver. In this work,

the single best solver is MCSP, because fulfilling QoS requirements is our first priority. This is

because it is not useful to deliver sub-optimal solutions using fewer computational resources.

• Virtual Best Solver (VBS): This is the perfect selector, which selects the best possible

algorithm for each composition instance, rather than one for the entire dataset. It is the ideal

result, and provides an upper bound for our algorithm selectors. Due to imperfect learning,

the performance of selectors will fall short of the virtual best selector. In this study, the labels

assigned for training supervised learning models are the best possible selections.

4.7.3 Evaluation metrics to assess R-CASS performance

We define the metrics used to evaluate R-CASS performance in this section. We use accuracy,

precision, recall and the F1-score to determine the best classifier. Then, R-CASS uses the best

classifier to evaluate how much time and memory is saved using algorithm adaptation.

1. Accuracy: Accuracy is simply the ratio of correct predictions to the total number of predic-

tions.

2. Precision: Precision identifies which proportion of classified instances was correctly classi-

fied.

3. Recall: Recall identifies which proportion of actual positives was identified correctly.

4. F1-Score: F1-score gives a clearer picture of a classifiers ability to predict true positives

by combining precision and recall. For imbalanced datasets, it is a more accurate metric of

classifier performance.

5. Cost: We use cost when leveraging contextual multi-armed bandits. Cost is defined as

the sum of differences between requested and delivered solution quality, time and memory

resources used for composition. Each algorithm has a cost associated with it, and our goal is

to select one with the least cost. Note that these differences are normalized since they have

different units.
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6. Time and memory saved: These are differences between time and memory used by the

composition algorithm selected by our approach and the static SBS approach. Time is mea-

sured in seconds (s) and memory in kiloBytes (kB).

7. Running overhead: This is a measure of the time (s) taken to adapt by selecting a com-

position algorithm.

When reporting overall results we use the Wilcoxon test to measure statistical significance.

4.8 Experimental Evaluation

R-CASS selects one algorithm from a complementary set, such that it best meets user QoS require-

ments and minimizes computational resource usage in terms of time and memory. We achieve this

goal by leveraging the unique strengths of multiple composition algorithms and select one for each

composition task. To gauge R-CASS’s ability to do so using classifiers and contextual multi-armed

bandits, we formulate the following research questions:

• RQ1: What behavior do Multi-Constrained Shortest Path (MCSP), Ant Colony System

(ACS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) exhibit when solv-

ing composition tasks in terms of delivered solution quality, time and memory resources

used? We demonstrate that MCSP, ACS, GA and PSO all solve different tasks better than

each other in varied search spaces.

• RQ2: Which classification and regression models can best model Multi-Constrained Shortest

Path (MCSP), Ant Colony System (ACS), Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) performance on composition tasks? We evaluate the ability of several

classifiers and regressors to model composition algorithm performance. The best metrics are

achieved by a random forest model.

• RQ3: How effectively does a classifier-selected composition algorithm meet Quality of Ser-

vice (QoS) requirements while minimizing computational resource usage as compared to a

statically chosen composition algorithm? Using a trained random forest model for classifica-

tion, R-CASS uses 55.1% less time and 37.5% less memory for composition on average as

compared to the SBS.

• RQ4: Does online learning improve composition algorithm selection to reduce computational

resource usage while meeting QoS constraints? If so, how do the three exploration strategies
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Figure 4.4: The gap between composition time using SBS and VBS selections is considerable. VBS

delivers compositions faster with more points closer to the diagonal, than the SBS which is much

slower.

impact composition algorithm selection? We find that re-training regression models on in-

complete data leads to diverse composition algorithm selections that use fewer computational

resources. Additionally, we demonstrate the benefits of balancing exploration and exploitation

to select the right composition algorithm for each task.

• RQ5: What is the overhead associated with selecting an algorithm for each composition task

at runtime? We demonstrate that R-CASS has minimal overhead and is suitable for runtime

use.

4.8.1 RQ 1: Establishing Complementary Algorithm Performance

We pose this question to analyze how each composition algorithm’s search efficiency changes with

respect to different composition task features (presented in Section 4.3) and determine the potential

for algorithm selection. To answer this research question, we first execute all algorithms on all

composition requests and collect execution data. Next, for every composition instance, we identify

which algorithms generated a solution meeting user constraints. Finally, from this subset, we

determine which algorithm used the least amount of time and/or memory to generate such a

solution. Every composition instance is labeled with the best algorithm and these labels are used

to train classifiers. These individual labels are deemed the best possible selections for our study and
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Figure 4.5: The gap between SBS and VBS memory usage demonstrates the potential for saving

memory. VBS uses less memory than SBS for approximately 30% of composition instances.

thus constitute the virtual best solver (VBS). The distribution of algorithms is given in Table 4.1.

As seen from Table 4.1, ACS is able to find solutions faster than MCSP, GA and PSO for 894

instances, while MCSP, GA and PSO are competitive with each other. There are approximately

1300 instances where only MCSP meets user constraints, as ACS, GA and PSO did not converge.

To avoid selections that do not meet QoS requirements, MCSP is selected as the SBS.

Table 4.1: Algorithm label distribution for 6,144 composition instances. Each instance is labeled

with the algorithm that fulfills constraints while minimizing time and memory usage.

Algorithm Labels Algorithm Labels

MCSP 1805 GA 2057

ACS 894 PSO 1388

Figures 4.4 and 4.5 demonstrate the potential for algorithm selection to minimize excess computa-

tional resource usage. In these figures, the axes are visualized on a log-scale. We observe that the

VBS takes less time for most composition instances and has points on the diagonal as compared to

the baseline, which is desirable. The SBS demonstrates a larger spread of the resource distribution,

demonstrating the potential for algorithm selection to bridge this performance gap. For a more

detailed evaluation, we perform feature selection using Logistic Regression with lasso regularization

and study the coefficients for selected features to analyze algorithm behavior. Out of 407 features,
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280 are selected. To draw our conclusions, we use the mean, median and standard deviation of

these feature values for composition instances labeled MCSP, ACS, GA and PSO. We observe

• The median number of candidate services for MCSP, ACS, GA and PSO selections were

10, 15, 10 and 10 respectively. All three algorithms were selected across graphs of varying

abstract services. Interestingly, MCSP is selected for a large number of graphs with a higher

number of abstract and candidate services because the others did not converge.

• Mean response times for each abstract service were highest for instances solved by MCSP

followed by PSO and GA. Median values for these features was also highest for ACS in

general. The standard deviation was highest for GA and PSO values for graphs that have

≥ 15 abstract services.

• For MCSP instances, mean and standard deviation values of variation coefficients of response

times were highest. Skew values for response times across abstract services were all negative

with a higher standard deviation observed for MCSP, GA, PSO and ACS instances, in that

order.

• These findings indicate that MCSP is selected for instances with larger graphs with difficult

search spaces, as characterized by the worst response time and throughput values. ACS is

selected for smaller (≤ 10 nodes) graphs with relatively complex search spaces. Finally, GA

and PSO are selected for similar instances, with GA selected for larger graphs. These have a

higher mean throughput and lower mean response time, leading to a quicker search.

4.8.2 RQ 2: Prediction Accuracy using Classification and Regression Tech-

niques

Assessing classifier performance:

Having demonstrated the potential for improvement using composition algorithm adaptation, we

evaluate classifiers as algorithm selectors to adapt composition algorithms dynamically. We con-

sider Multi-Layer Perceptron (MLP), Random Forests, Decision Trees, SVM with rbf and sigmoid

kernels, Logistic Regression, Naive Bayes, k-Nearest Neighbors (kNN) and Quadratic Discriminant

Analysis (QDA). We select these because each of these learns a different type of decision bound-

ary for classification [65], allowing us to test different ways of learning. To improve classification

performance, we also include features characterizing the search space, explained earlier in RQ1 .

These features are used because they can be computed fast at runtime. The dataset was split 70/30
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Table 4.2: By comparing classifier accuracies, we demonstrate MLP’s ability in selecting composi-

tion algorithms to minimize computational resource usage.

Classifier Accuracy F1-score Precision Recall

Random Forest 0.7446 0.7441 0.7436 0.7446

SVM - rbf 0.7185 0.7185 0.7179 0.7185

MLP 0.6963 0.6965 0.6995 0.6963

Decision Tree 0.6518 0.6537 0.6559 0.6518

kNN 0.6328 0.6328 0.6367 0.6328

Logistic Regression 0.6269 0.6190 0.6173 0.6269

SVM Sigmoid 0.6382 0.6367 0.6379 0.6382

Naive Bayes 0.4175 0.3661 0.4572 0.4175

QDA 0.5580 0.5531 0.6036 0.5580

and 5 fold cross-validation was repeated 10 times to report the metrics shown in Table 4.2. From

Table 4.2 we see that random forest has the best performance across accuracy, F1-score, precision

and recall as compared to the others. As seen from Figure 4.6, the random forest classifier can

correctly identify most algorithm instances, shown in the high accuracy across the diagonal.

Assessing regressor performance:

For our experiments using contextual multi-armed bandits, we leverage regression models to predict

the cost of using each algorithm as described in Section 4.5.1. Exploration strategies leverage the

predicted cost of using each algorithm to select a specific composition algorithm for each task. For

example, if the normalized cost of using MCSP is 2 and GA is 2.7 for a specific composition task,

a greedy strategy would select MCSP.

Our experiments demonstrate that Random Forest (RF) outperforms other regression techniques

when modeling composition algorithm performance. We evaluate 6 different regression modeling

techniques to predict the cost of using each algorithm on different tasks: Support Vector Machines

(SVM) with the rbf and sigmoid kernels, Gaussian Processes (GP) with rbf kernel, Multi-Layered

Perceptron (MLP), Lasso Regression (LASSO) and Random Forests (RF). Each regression model

is trained to predict the costj of every composition algorithm (MCSP, ACS, GA and PSO) based

on the features of the current composition task, Ψ. We use a 70/30 train-test split and repeat 5

fold cross validation 10 times to report average results in Tables 4.3 and 4.4. We also use mutual

information regression to eliminate features with importances < 0.1, and retain 271 features. To

evaluate regression model performance, we use R2, Mean Absolute Error (MnAE) and Median
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Figure 4.6: Confusion matrix for Random Forest. High classification accuracy is observed across

the diagonal, which is necessary to (a) prevent utility loss and (b) minimize computational resource

usage.

Table 4.3: Average R2, MnAE and MdAE performance of each regressor on all 4 composition

algorithms. We find that GP and RF demonstrate the best performance.

Model R2 MnAE MdAE

SVM-RBF 0.75 0.27 0.18

SVM-SIG 0.52 0.32 0.22

GP 0.78 0.24 0.19

MLP 0.7 0.33 0.22

LASSO 0.57 0.37 0.27

RF 0.78 0.24 0.16

Absolute Error (MdAE) to select the technique with the best performance. The R2 score mea-

sures what proportion of variance of the cost can be explained using the feature set, and must be

maximized whereas MnAE and MdAE must be minimized.

From Table 4.3, we observe that RF and GP have the best R2 and MnAE scores. Moreover,

from Table 4.4 we observe that RF has lower error when predicting PSO cost compared to GP.

Specifically, we observe that RF has 18% lower MnAE and 32.3% lower MdAE than GP. As

contextual bandits selects the composition algorithm with the least predicted cost, it requires

accurate predictions for all composition algorithms. So, we select RF as our regression model.
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Table 4.4: Gaussian Processes (GP) and Random Forest (RF) performance for each of four com-

position algorithm. RF demonstrates the best performance when predicting PSO cost.

CAlgo
GP

R2

GP

MnAE

GP

MdAE

RF

R2

RF

MnAE

RF

MdAE

MCSP 0.87 0.11 0.01 0.82 0.13 0.02

GA 0.86 0.27 0.23 0.86 0.28 0.24

ACS 0.87 0.21 0.16 0.78 0.22 0.16

PSO 0.53 0.39 0.34 0.65 0.32 0.23

AVG 0.78 0.24 0.18 0.78 0.24 0.16

Table 4.5: Comparing SBS, R-CASS and VBS performance distribution in terms of utility, time

and memory used.

Method Mean

Utility

Mean

Time (s)

Mean

Memory

(kB)

Median

Utility

Median

Time (s)

Median

Memory

(kB)

VBS 9.36 616.83 115325.69 1.87 0.78 69329.6

R-CASS 8.39 350.89 91635.89 1.90 2.09 69654.0

SBS 7.80 780.67 146625.04 2.43 44.96 90902.0

Figure 4.7: Time and memory taken by composition algorithms selected by the VBS, R-CASS and

SBS. R-CASS selections use less time and memory than the SBS (Comparisons of R-CASS, VBS

versus the SBS are statistically significant (p < 0.05))
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Figure 4.8: Each point shows the cost incurred on the verification dataset by greedy-nl, greedy and

greedy-fi. In general, we observe that greedy selections outperform greedy-nl.

4.8.3 RQ 3: Evaluating Classifiers for Self-Adaptive Service-Oriented Systems

We use the best classifier as the Algorithm Selector in R-CASS and compare its performance with

that of a statically selected algorithm denoted by the SBS. Figure 4.7 and Table 4.5 demonstrate

that the time taken and memory used by an R-CASS selected algorithm is much less than that used

by the SBS. On average, R-CASS takes 429.78 seconds (55%) less and 54989.15 kiloBytes (37.5%)

less to generate solutions meeting constraints as compared to the SBS. The median time saved

is 42.87 seconds and median memory saved is 21248 kiloBytes when compared to the SBS. Thus

R-CASS is demonstrably more efficient than a statically chosen composition algorithm because of

its algorithm adaptation mechanism.

4.8.4 RQ 4: Evaluating Multi-Armed Bandits for Online Service Composition

Algorithm Selection

We demonstrate that leveraging incomplete data using online learning helps to improve regression

model accuracy. Specifically, we evaluate three versions of the greedy strategy: 1○ greedy approach

without retraining on online composition algorithm data (greedy-nl), 2○ a greedy algorithm that is

trained using all algorithms’ execution data leading to a full information setting (greedy-fi), and 3○
a greedy approach that is periodically retrained using execution data for the selected composition

algorithm only i.e., using incomplete data. Furthermore, we evaluate these strategies by using a
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10-80-10% dataset split as train, online and verification datasets. This corresponds to an extreme

setting where there is very little training data [53]. Figure 4.8 demonstrates the cost incurred by

each approach and we report the median time and memory for each greedy version. Greedy, greedy-

nl and greedy-fi selections use 34.79, 40.5 and 7.04 seconds for composition respectively. Similarly,

greedy, greedy-nl and greedy-fi selections use 78,632 kB, 83,932 kB and 71,408 kB respectively.

Greedy-nl favors MCSP, as there is rarely a penalty associated with using it, leading to high time

and memory consumption. Similarly, greedy tends to favor MCSP, but also learns to explore ACS,

GA and PSO. In general, we observe that retraining regression models to learn from incomplete

algorithm execution data leads to improved selections that (a) select diverse algorithms, and (b)

use fewer computational resources.
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Figure 4.9: Greedy and ϵ−greedy learn to select suitable composition algorithms over time. Each

curve represents the normalized sum of time and memory for different contextual bandits explo-

ration strategies on the online dataset.

Figure 4.9 and Table 4.5 demonstrate the positive impact of using explicit exploration to reducing

composition time and memory usage. Each regression model mj is initiated on the training dataset

and re-trained for every 10 new datapoints observed during the online exploration phase, to leverage

incomplete data. After the online phase, each model is greedily tested without exploration on the

verification dataset to evaluate the impact of exploration. Figure 4.9 displays the cumulative sum

of time and memory usage as a function of the number of composition tasks handled, obtained by
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selecting different composition algorithms. We carefully selected ϵ = 0.3 and γ = 0.05 to reduce

the number of incorrect selections. From Table 4.5, ϵ−greedy demonstrates the highest time and

memory resource savings, using 54.2% fewer time and 15.5% fewer memory resources compared

to the SBS, with 10.3% incorrect selections not meeting QoS requirements. From Figure 4.9, we

observe that ϵ−greedy is closest to the VBS and outperforms greedy after ∼4200 composition tasks

have been handled. We also observe that while UCB is relatively better than the SBS, UCB often

selects MCSP because its performance is associated with a low standard deviation as it does not

incur a penalty. Because MCSP exhaustively searches for and computes a solution with the highest

utility, the mean time (MnT) and memory (MnM) is higher for UCB. Thus, we conclude that using

explicit exploration (ϵ-greedy) leads to considerable time and memory savings.

4.8.5 RQ 5: Overhead

Classifier overhead:

Finally, we examine the time and data overhead imposed by the R-CASS decision making mecha-

nism used to select algorithms at runtime. At runtime, R-CASS selects a composition algorithm for

each task. As seen from Figure 4.10, the time required for selection is of the order of 10−3 seconds,

which is negligible (1%) especially when compared to the actual time taken for composition. The

second overhead pertains to the classifier’s training data requirement. In R-CASS, training data

is used to predict and model algorithm behavior, which is a challenging task. The availability

of execution data enables more accurate and automatic selection, leading to significant time and

memory savings. Additionally, this data overhead can be reduced by leveraging readily available

execution data from existing systems to train the classifier. Thus, we conclude that R-CASS is

suitable for runtime deployment due to its low overhead.

Contextual bandits overhead:

Our results demonstrate that there are small time and data overheads associated with using our

approach for online composition algorithm selection. The mean time overhead associated with

predicting composition algorithm performance is 0.07% when compared to executing composition

algorithms. Additionally, the mean time overhead for periodically retraining regression models

on online datapoints is 2.28% of the mean execution time. We note that retraining only occurs

every 10 datapoints, so this overhead applies only at those timesteps. Furthermore, our experiments

demonstrate the effectiveness of our approach in an extreme environment where insufficient training

data [53] is available.
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Figure 4.10: Time taken by R-CASS to select a composition algorithm. The y-axis scale demon-

strates that a negligible amount of time is required to select an algorithm.

4.9 Limitations

• In this study, we compute 408 features relating to DAG characteristics and QoS distribution

for each candidate service pool. However, these features can be expensive to calculate at run-

time resulting in an increase in composition time and memory. We can address this challenge

by considering feature-free techniques such as convolutional neural networks (CNNs), graph

neural networks (GNNs) etc. to learn accurate DAG representations. These techniques can

reduce prediction and composition time, but will require significant training data.

• When leveraging classifiers, we utilize a considerable portion of our dataset (70%) for train-

ing. Similarly, when using contextual multi-armed bandits, we use 10% to train our regression

models and 80% data to explore different composition algorithms. Each of these techniques as-

sumes that (a) a considerable amount training data is available and, (b) the training dataset

is representative of composition tasks encountered at runtime. Due to QoS fluctuations,

changes in application DAGs and user requirements, it is difficult to anticipate how com-

position tasks vary at runtime. As a result, the training data becomes unrepresentative of

the tasks encountered at runtime and classifiers in particular can become inaccurate. Addi-

tionally, random exploration can result in the selection of unsuitable composition algorithms

being selected which negatively impacts solution quality and excessive computational resource

usage. To address this limitation, we examine the use of transfer learning techniques to re-

duce the training data requirement and accurately select composition algorithms for specific

service-oriented systems tasks.
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• Compared to classifiers, our contextual multi-armed bandits approach selects composition

algorithms that use 17.5% more memory. Additionally, compared to the VBS, there is con-

siderable room for improvement in terms of time and memory resource savings. In the future,

we plan to explore other bandits strategies in addition to more powerful modeling techniques

to further improve composition algorithm selection accuracy.

• In this work, we considered four popular service composition algorithms that assume that the

candidate service pool does not change during composition, that is, candidate service pools

are static. However, service QoS attributes vary frequently during a composition algorithm’s

execution, that is, candidate service QoS changes while a composition algorithm executes

resulting in unsuitable candidate service selections. In the future, we plan to construct a

set of composition algorithms that consider changes to candidate service pools during service

composition.

4.10 Chapter Summary

In this chapter, we demonstrated the benefits of our proposed algorithm adaptation mechanism for

service-oriented systems that leverages algorithm selection in a self-adaptive framework R-CASS

for runtime compositions. Our work is fundamentally different from but complements existing

service composition approaches, in that we select one composition algorithm from a portfolio of

complementary algorithms, rather than proposing another composition algorithm. In particular,

we leverage classifiers and contextual multi-armed bandits to select a different algorithm from a

complementary set for each composition task.

Our evaluations demonstrate that when using a classifier as our selector, we reduce time usage by

55.1% and memory usage by 37.5% to deliver solutions fulfilling QoS requirements when compared

to a static approach that uses a single composition algorithm for all composition requests. Moreover,

when using contextual bandits for online composition algorithm selection, our approach reduces

composition time and memory usage by 54.2% and 15.5% while fulfilling QoS requirements. In

particular, our bandits approach requires less training data and takes advantage of online learning

to leverage incomplete data generated at runtime.



Chapter 5

Leveraging Transfer Learning for

Algorithm Selection in

Service-Oriented Systems

5.1 Motivation

In the previous chapter, we demonstrated the benefits of using classifiers and contextual multi-

armed bandits to select heuristic service composition algorithms for SOA instances. We created a

dataset of 6,144 service-oriented instances and leveraged it for training. During deployment, our

training dataset corresponds to execution data collected from algorithms executed on previously

seen instances. So, classifiers can be re-trained at runtime as more training instances become

available. However, when deploying a pre-trained model to select algorithms at runtime, we can

only select and execute one algorithm at a time. As a result, we have incomplete data where

information about only one algorithm is available. Since this can negatively impact algorithm

selection accuracy, we leverage contextual multi-armed bandits to periodically explore the use of

other algorithms so that we can collect diverse execution data and more accurately model algorithm

performance at runtime. In our experiments, we observed that the ϵ-greedy exploration strategy

performs well and uses a random forest regression model to predict algorithm performance.

Figure 5.1 depicts additional challenges associated with using pre-trained models to predict algo-

rithm performance. In this figure, a new user, Charlie, has strict response time and throughput

54
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requirements on a completely new composition task with different candidate services. We compute

a set of features to characterize the composition task/instance and query our pre-trained random

forest model, which selects the exact algorithm Ex based on the training data it has seen before.

In contrast, when using random exploration in a contextual bandits strategy, the algorithm Ha

may be selected to fulfill the user’s requirements. However, in this scenario, only Hb can fulfill

Charlie’s requirements. In this example, it is difficult to anticipate changes to the composition

task DAG, candidate service QoS and user requirements. In particular, the composition tasks at

runtime may be very different from the training dataset resulting in incorrect algorithm selections.

As a result, our pre-trained models may become inaccurate leading to solutions that do not fulfill

user requirements or use excessive computational resources. So, the right algorithm Hb may not be

selected as our final algorithm resulting in Charlie’s QoS requirements not being fulfilled.

Figure 5.1: We illustrate the challenges associated with using classifiers trained on SOA instances.

When selecting an algorithm for a new user Charlie with strict response time and throughput re-

quirements, the random forest classifier would prefer the exact algorithm Ex based on the instances

it has seen before. Once selected, we would have execution data only about Ex, when the right

algorithm to select would have been Hb. When using contextual bandits, exploration may result in

a different algorithm being chosen but result in inaccurate models.

To address the above-mentioned limitations, we leverage graph transfer learning to transfer knowl-

edge about algorithm performance across clustered traveling salesman problem (CTSP) and service-

oriented systems (SOA) instances. Figure 5.2 depicts how service-oriented systems tasks are com-

monly formulated as CTSP instances [10,116,147]. Each ‘cluster’ in a CTSP instance corresponds

to an abstract service that must be visited by selecting one ‘city’ or ‘candidate’ service. In our CTSP

and SOA tasks, the goal is to maximize the Lp utility and fulfill certain quality constraints. In this

study, we use the GraphCL approach [142] to transfer knowledge of algorithm performance from

CTSP to SOA instances. We execute MCSP, GA, PSO and ACS on widely available CTSP instances
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and leverage deep graph neural networks (DGNNs) to learn robust representations. Additionally,

by using DGNNs to characterize graph instances, we reduce the time required to perform expen-

sive feature computation routines used in the previous chapter. Crucially, recent studies [94, 95]

have demonstrated that heuristic algorithm behavior is impacted by the choice of the encoding

function used to characterize solutions. That is, heuristic algorithm performance changes based on

the encoding function used. Our hypothesis is: assuming the fitness function, problem encoding,

and search algorithms used for CTSP and SOA instances are the same, we can transfer knowledge

about algorithm performance from CTSP to SOA. To achieve our goal, we adopt a popular trans-

fer learning technique, GraphCL [142], to more accurately recommend heuristic algorithms across

CTSP and SOA instances.

Figure 5.2: We highlight the potential similarities between service-oriented systems tasks and

clustered traveling salesman problem (CTSP) instances. Service-oriented DAGs are commonly

formulated as TSP instances where one candidate service must be selected for each abstract service.

5.1.1 Implications of Our Approach

Our goal is to improve algorithm selection accuracy on SOA instances by modeling heuristic al-

gorithm performance on CTSP instances and ‘transferring’ knowledge of their performance. To

achieve this goal, we leverage deep graph neural networks (DGNNs or GNNs) that learn robust

graph representations during training and reduce the computational resources required to compute

a feature set that characterizes CTSP/SOA instances. Additionally, since we cannot anticipate how

SOA instances evolve at runtime, we reduce the need to collect expensive training data using SOA

instances by leveraging commonly available CTSP instances. Furthermore, we evaluate GraphCL

performance on a novel application and examine if we can accurately model algorithm performance

by creating similar fitness landscapes. As a result, our work aims to train a generalizable algorithm

selector for service-oriented systems.
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5.2 Methodology

5.2.1 Applying GraphCL

Figure 5.3: We adopt the GraphCL approach to transfer knowledge of algorithm behavior across

CTSP and SOA instances. Specifically, we use the graph isomorphism network (GIN) to learn

graph representations and use contrastive loss to reconcile augmentations with the original graphs.

Figure 5.3 depicts our overall approach that leverages deep graph neural networks (GNNs), graph

augmentations, and contrastive loss. Specifically, we adopt the GraphCL approach proposed by

You et al. [142]. For each clustered traveling salesman problem (CTSP) instance in our dataset,

we generate one of three possible augmentations. We then pass the original and augmented graph

pair through a GNN model and obtain a numerical representation or embedding for each graph.

This representation is then passed through a projection head that reduces the dimensions of the

embedding, that is, it projects the representations of both graphs to a common latent space. We

then apply contrastive loss to make the augmented view and original graph agree by maximizing

temperature-scaled cross-entropy loss between different graph representations. The full derivation

can be found in [142]. Once the pre-training routine is completed, we introduce a linear layer to

predict one of four classes corresponding to MCSP, GA, ACS and PSO. Finally, we finetune the

entire network using SOA instances using cross-entropy loss.

In this work, we leverage the graph isomorphism network (GIN) model to learn graph representa-

tions. The GIN model [138] has been shown to outperform other architectures on multiple prediction
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tasks, including unsupervised transfer learning [142]. Specifically, GIN aggregates feature informa-

tion from each node’s neighbors to better model the relationships between multiple sets of nodes

in a graph resulting in more accurate predictions. We use a GIN model with 5 layers, 300 hidden

units in each layer and global maximum pooling. Figure 5.4 illustrates the augmentations we test

in our study. By augmenting TSP instances, we introduce perturbations or noise in TSP instances.

Our goal is to learn more robust representations of graphs in scenarios where complete information

about a graph may be unavailable such as missing edges or node attributes. The augmented views

are made to agree with the original TSP instances using contrastive loss. Additionally, our goal

is to introduce ‘small’ perturbations that do not negatively impact the meaning of the graph e.g.,

dropping 50% of the total cities in a graph consisting of 1000 cities results in a completely new TSP

instance and alters graph connectivity and the underlying search space. We generate augmented

views of approximately 20% of the TSP instances used during training. These augmentations are

as follows:

• Subgraph augmentation: The intuition behind subgraph augmentations is that a local

graph substructure contains the semantics of the entire graph [142]. To generate a subgraph,

a random walk is performed by randomly selecting one ‘city’ from each ‘cluster’. The number

of clusters for which a city is selected is also random, that is, the path length is randomly

determined and smaller than the path of the overall TSP instance.

• Edge dropping: A certain portion of the edges in the graph are dropped or added. This

makes the learned graphs robust to changes in connectivity and is analogous to instances where

certain web services are degraded or removed from consideration due to QoS fluctuations.

These edges are dropped using a uniform IID distribution [142].

• Node masking: In this augmentation, attributes of nodes are hidden or masked. The goal

is to prompt the GNN model to recover masked attributes based on other context informa-

tion, i.e., attributes that are not hidden. This corresponds to the case where QoS attribute

estimates may not be available or accurate for specific web services but their performance

in a composition can be inferred based on other neighbors. For example, the response time

value for a specific candidate service can be estimated based on the Lp utility connecting two

web services.

5.2.2 Dataset generation, baselines, metrics, and training splits

To evaluate the benefits of using graph contrastive learning for cross-domain algorithm selection, we

generate a dataset of 27,267 clustered traveling salesperson problem (CTSP) tasks. We generate
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Figure 5.4: We evaluate the benefits of using different types of augmentations on our TSP dataset.

CTSP instances that contain {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100} ‘cities’ per cluster,

and {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500} total ‘cities’
per instance. Each ‘city’ has two attributes that are generated using a random uniform Euclidean

distance (RUE) or Netgen scheme in [75]. We use the Netgen library1 in R to generate each

CTSP instance. A clustering algorithm is applied to group cities that are ‘close’ to each other

by comparing their Euclidean distances
√
x2 + y2. These parameters result in a wide range of

search spaces ranging from 5e20 to 4e117 possible combinations of visiting one ‘city’ in each cluster.

Additionally, we study the impact of applying subgraph augmentation, edge permutations and

attribute masking for learning robust graph representations. These augmentations can reduce the

search space size considerably, so we aim to improve generalizability by using comparatively larger

CTSP graphs on which to assess our approach.

We execute Multi-Constrained Shortest Path (MCSP), Genetic Algorithm (GA), Ant Colony Sys-

tem (ACS) and Particle Swarm Optimization (PSO) on each of these 27,267 CTSP instances to

evaluate the variability of algorithm behavior. Each CTSP instance is labeled following the routine

presented in chapter 4, where an algorithm that fulfills quality requirements while using the least

amount of time and memory resource usage is considered the final label. Approximately 10% of

CTSP instances from our dataset are invalid because a majority of ‘cities’ were assigned to a single

cluster that could be solved relatively easily using a deterministic algorithm. As a result, these

instances are not meaningful when studying our approach. Our final CTSP dataset consists of

24,681 CTSP instances. From Table 5.1, we observe that 12,016 instances are best solved by PSO,

and the number of instances solved by MCSP and GA are relatively similar. We note that 4,853

instances are only solvable by MCSP, meaning that only MCSP can fulfill solution quality con-

straints. Although ACS fulfills solution quality requirements, it is selected for very few instances.

This is because the ACS algorithm computes a large ‘pheromone’ matrix using relatively more

computational resources resulting in it being selected for fewer instances.

1https://rdrr.io/cran/netgen/
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Table 5.1: Algorithm label distribution for our dataset of 24,681 CTSP instances. Each instance

is labeled with the algorithm that fulfills quality constraints while minimizing time and memory

usage.

Algorithm Labels Algorithm Labels

MCSP 7447 (4862) GA 7668

ACS 136 PSO 12016

From the label distribution in Table 5.1, we observe that MCSP, GA, PSO and ACS demonstrate

complementary behavior on our CTSP instances. So, we use our dataset of 24,681 instances and

adopt the protocol based on using contrastive learning as specified in [142]. In other terms, we

assess the impact of using unsupervised contrastive loss for learning graph representations, so the

results reported in this study do not use the labels associated with CTSP instances during training.

However, the labeling procedure helps us establish the scope for algorithm selection and determine

whether our algorithm portfolio exhibits complementary performance on our CTSP instances. We

plan to investigate other supervised approaches in the future.

Once our GNN model has been trained on our CTSP instances, we use our dataset of 6,144 service-

oriented systems instances for finetuning. Specifically, we add a linear layer that learns to predict

algorithm labels for our SOA instances using BCE Logits loss. We use 60% of our SOA dataset for

finetuning and 40% to evaluate the impact of using transfer learning, that is, we report accuracy,

precision and recall on 40% of our SOA dataset after finetuning.

5.3 Results

We evaluate the efficacy of our transfer learning-based approach using the following research ques-

tion:

• RQ6: How effectively can we transfer knowledge about Multi-Constrained Shortest Path

(MCSP), Ant Colony System (ACS), Genetic Algorithm (GA) and Particle Swarm Optimiza-

tion (PSO) performance from TSP to service-oriented systems instances?

Table 5.2 depicts the precision, recall and accuracy achieved using four GraphCL models. We

observe that using augmentations improves accuracy, that is, subgraph, edge permutations and node

masking improve accuracy by 14%, 14% and 4% respectively compared to using no augmentations

in the ‘None’ model. Due to computational resource limitations, each model is trained using a
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Table 5.2: We compare the accuracies achieved using different augmentations.

Augmentation Accuracy Precision Recall

Subgraph 0.37 0.37 0.37

Edge Permutation 0.37 0.37 0.37

Node masking 0.27 0.27 0.27

None 0.23 0.23 0.23

subset of 5000 CTSP instances, with the learning rate set to 0.001. We train each model over 10

epochs and finetune the model over another 10 epochs. Notably, we ran each model for 100 epochs

but observed that loss did not increase considerably over more iterations, that is, it stabilizes over

10 epochs. Each GNN model has 5 layers, and each layer has 300 units. We use maximum pooling

and a dense layer as our projection head. We calculate the contrastive loss on the output of the

dense layer and backpropagate it to train the DGNN. Furthermore, we set the augmentation ratio

to 20% for each model, that is, augmentation is applied to 20% of the dataset. We note that the

accuracy numbers are relatively poor, e.g., our classifiers achieved 74% accuracy. This could be

because the network architecture is too big compared to our dataset of sequential graphs. We did

not observe significant changes in performance when learning rates were set to 0.001 and 0.01.

5.4 Future Work

In this work, we present our preliminary results when applying transfer learning for cross-domain

heuristic algorithm prediction. We observe that adding in the subgraph and edge permutation aug-

mentations improved prediction accuracy by 14% compared to using no augmentations. However,

we note that the overall accuracy numbers are low, and outline future work to improve accuracy:

• In the future, we will dedicate significant effort to tuning our hyperparameters. In particular,

we will test different learning rates, and weight decay and dropout values during training

using CTSP instances. Additionally, we will also experiment with different augmentation

ratios to evaluate if selection performance can be further improved.

• In the future, we will use more CTSP instances to train our GNN models. These instances are

much larger than the SOA instances studied in this work. As a result, higher augmentation

ratios may be more useful in improving selection accuracy. However, this computation is

time consuming e.g., applying subgraph augmentation with a 20% probability for our entire

dataset would require approximately 9 days with 1 GPU and 8 CPU cores/workers. We will

also investigate techniques to optimize augmentation generation and reduce training time.
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• In this work, we adopt the architecture proposed in [142] that is used to predict the properties

of large biochemical molecules. Consequently, this architecture may be too large for our CTSP

and SOA instances which are limited to a few thousand ‘cities’ in clustered graphs. In the

future, we will perform an architecture search to explore the use of different architectures

with different numbers of layers, hidden units etc.

5.5 Chapter Summary

In this chapter, we demonstrated the impact of using deep graph neural networks (DGNNs) to model

graph representations and reduce computationally expensive feature computational routines. We

adopt a popular graph transfer learning technique, GraphCL [142], and transfer knowledge about

heuristic algorithm performance from clustered traveling salesman problem (CTSP) instances to

service-oriented systems tasks. We create a dataset of 24,681 CTSP instances and assess the

scope for algorithm selection by executing MCSP, GA, PSO and ACS on each instance. Using

the GraphCL approach, we train our DGNN using unsupervised contrastive loss and finetune

our models on service-oriented systems instances. Our preliminary evaluations demonstrate that

using subgraph augmentations, edge permutations and node masking improves algorithm selection

accuracy by 14%, 14% and 4% compared to using no augmentations. We will continue to work on

refining our approach in the future by performing architecture search, hyperparameter tuning and

testing different augmentation rates.



Chapter 6

Search-Based Third-Party Library

Migration at the Method-Level

In our work on self-adaptive service-oriented systems, we demonstrated that selecting one algorithm

from a complementary set for specific service composition tasks results in significantly reduced

time and memory resource usage while fulfilling solution quality requirements. Given the success of

algorithm selection for service composition, would other software engineering problems benefit from

metaheuristic algorithm selection?

In Chapters 6 and 7, we study the benefits of metaheuristic algorithms for third-party software

library migration (API migration). Third-party software libraries are routinely used to reduce

implementation effort, reduce the number of bugs in code, and avoid redundancy [28] during de-

velopment. Over time, these software libraries are constantly updated to provide new features,

functionality, and critical updates such as bug fixes [54]. As a result, developers routinely replace

older, deprecated libraries with newer, updated libraries that are consistently maintained and up-

dated. More specifically, developers replace each application programming interface (API) call that

exposes a specific library function or procedure. This process of removing older (source) libraries’

APIs and dependencies from source code and replacing them with APIs or methods from newer

(target) libraries is known as API migration [129,130].

In contrast to service composition, API migration emphasizes functional correctness. That is,

service composition must fulfill non-functional QoS requirements whereas API migration must

ensure that recommended APIs are functionally correct and do not negatively impact the underlying

63
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software functionality. So, our goal is to propose fewer but correct API mappings to reduce the

burden on developers to manually verify mappings. Additionally, in Chapter 4, we began by

demonstrating that service composition algorithms exhibit complementary behavior. While our

approach was fundamentally different from current service composition work, it is founded on

existing studies that have evaluated several metaheuristic algorithms for service composition. In

contrast, metaheuristic algorithms have not been studied before for API migration. As a result,

API migration provides a unique opportunity to study metaheuristic algorithm performance on a

novel problem with unique requirements. So, in Chapter 6 we first evaluate various metaheuristic

algorithms for API migration, and assess the benefits of algorithm selection in Chapter 7.

6.1 Introduction

We discussed how API migration is a challenging and complex task in Chapter 2 as a result of the

large number of potential source-target API mappings to be evaluated.

Table 6.1: The 9 popular

migration rules used in this

study.

Source → Target

commons-logging → slf4j

slf4j → log4j

easymock → mockito

google-collect → guava

gson → jackson

testng → junit

json → gson

commons-lang → slf4j

json-simple → gson

Additionally, other factors such as mapping cardinalities, differ-

ences in method names, return types, input parameters, and API

documentation (if it exists) pose key challenges to search-based

API migration. Current library migration approaches [12, 13, 41,

49, 68, 121, 136] rely on training data derived from previous mi-

grations for specific programming languages and frameworks, or

are designed to address one-to-one method mappings, so they can-

not accurately recommend one-to-many, many-to-one and many-

to-many mappings. As a result, these approaches cannot be used

for different mapping cardinalities (e.g., many-to-many mappings),

newer libraries, or migrations between different languages [80].

In this chapter, we present our work on leveraging single and multi-

objective metaheuristic algorithms for API migration. In particu-

lar, our GA approach recommends method mappings by constrain-

ing the number of recommended methods and maximizing method

mapping similarity scores [55]. However, our single-objective ap-

proach achieves low precision and recall for many-to-many method mappings because it cannot

accurately optimize the number of recommended target methods. To address this limitation, we

leverage multi-objective optimization [42, 46, 58, 69, 73, 93, 98, 127, 144] to accurately recommend

different mapping cardinalities during library migration. Our multi-objective approach explicitly
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minimizes the number of recommended method mappings and simultaneously maximizes the simi-

larity of recommended methods from the replacement or target library. By formulating method-level

migration as a multi-objective optimization problem, we achieve high precision and recall values

while evaluating numerous combinations of target library methods to replace one or more methods

from the original source library.

In contrast to existing techniques that require extensive training routines [12, 31, 107, 114] or spe-

cific mapping cardinalities [12], our approach can accurately recommend method mappings for

newer software libraries, different programming languages and mapping cardinalities. We demon-

strate the benefits of our approach using a single-objective genetic algorithm (GA) and 7 popular

multi-objective evolutionary algorithms, namely, Unified Non-Dominated Sorting Algorithm (UN-

SGAIII) [113], Reference-Point Based Non-Dominated Sorting Algorithm (RNSGAII) [52], Adap-

tive Geometry Estimation Based Multi-Objective Evolutionary Algorithm (AGEMOEA) [113], S-

Metric Selection Evolutionary Multiobjective Optimization Algorithm (SMSEMOA) [24], Non-

Dominated Sorting Genetic Algorithm (NSGAII) [51], Indicator-Based Evolutionary Algorithm

(IBEA) [151], and Multi-Objective Evolutionary Algorithm using Decomposition (MOEAD) [146].

In particular, our multi-objective approach explicitly balances two objectives: maximizing the fit-

ness score and minimizing the number of all selected source-target method mappings. We evaluate

each algorithm on a popular dataset consisting of 57,447 migrations from 9 Java library pairs

or migration rules . Additionally, we examine the effectiveness of using three different similar-

ity scores when evaluating source-target method mappings: Co-Occurrence score (CO), Method

and Documentation Similarity (MS+DS), and a combination of all three (ALL). Our experimental

evaluations demonstrate that UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA,

MOEAD, and GA achieve an average precision of 90%, 89%, 94%, 90%, 91%, 94%, 71% and 61%,

respectively, and average recall values of 83%, 23%, 58%, 63%, 58%, 60%, 17% and 16% respec-

tively. Additionally, in the interest of reproducibility, we make all our code and results publicly

available at: http://bit.ly/MOO-api-migration.

6.2 Methodology

We formulate API migration as a combinatorial optimization problem, specifically, as a knapsack

problem [50]. Each migration rule is modeled as a knapsack containing all possible source-target

method mappings, where each method mapping is an item with a specific profit and weight. An

item’s profit corresponds to its fitness score, and each item’s weight is set to 1. Additionally, each

knapsack is associated with a capacity constraint that dictates the maximum number of items that
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can be selected for a specific knapsack. During library migration, we want to recommend fewer,

but accurate source-target method mappings so that developers can incorporate replacements into

the source code. However, developers do not know beforehand which target methods should be

used for replacement or how many will be required. These constraints inform the optimization

objectives when using single and multi-objective metaheuristic algorithms.

6.2.1 Leveraging Single-Objective Optimization

When leveraging a single-objective algorithm, we set the capacity value to be equal to the number of

source methods that need to be replaced. In this scenario, the capacity parameter is critical because

it controls the number of target methods that can be recommended for selection, thus impacting

performance. Without a constraint on the number of recommended methods, a knapsack’s profit

will be maximized by setting capacity to a high value, resulting in more target method recommen-

dations; however, the time spent by developers to examine all recommended mappings increases

considerably as the number of recommended target methods increases. Thus, to ensure that accu-

rate source-target mappings are recommended while minimizing the number of recommendations,

a penalty is imposed on solutions that exceed the capacity constraint by recommending too many

target methods. If the number of recommended methods exceeds capacity, a penalty equal to the

difference between the number of recommended methods and knapsack capacity is applied.

6.2.2 Using Multi-Objective Optimization

In contrast to the single-objective setting, where we impost a capacity constraint, we explicitly

minimize the number of selected method mappings in our multi-objective formulation. In other

terms, the maximum capacity value in the multi-objective setting is equal to all possible items in the

knapsack. Our goal is to maximize the cumulative fitness of selected mappings (knapsack profit),

while minimizing the number of selected mappings (knapsack weight). Accurately selecting an

appropriate number of method mappings is necessary to reduce the effort expended by developers in

manually verifying each recommendation and identifying newer mappings when unsuitable methods

are suggested.

A fundamental requirement when using multi-objective optimization algorithms is that at least one

optimization objective must conflict with at least one other objective, that is, achieving good results

in one objective will result in poor values for another objective. In API migration, we consider

the number of selected method mappings and the cumulative fitness score of selected mappings

as our conflicting objectives. Our fitness score formulation results in positive values in the [0, 1]

range resulting in larger cumulative fitness scores as more method mappings are selected. So, the
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maximum cumulative fitness is achieved when all method mappings in a migration rule are selected.

However, it is undesirable to recommend all mappings, as developers have to manually validate each

selection resulting in a time-consuming and error-prone library migration process [13,49]. To achieve

our goal of recommending the exact number of correct method mappings, each multi-objective

algorithm must minimize the number of source-target method mappings while also maximizing the

cumulative fitness score of all selected mappings.

6.2.3 Solution Representation

Figure 6.1: In this study, source-target method mappings are represented using a chromosome bit

string. Each m = 3 source method (on the left, in red) can be mapped to n target methods (on

the right, in green). The first source method from easymock, static void verify(Object...), is a one-

to-one mapping and is replaced by abstract T verify() from mockito. A selected method mapping’s

corresponding gene value is represented as 1 in the bitstring. The second and third source meth-

ods are mapped to multiple target library methods i.e., they are many-to-many mappings. Both

static IExpectationSetters expect(T) and abstract IExpectationSetters andReturn(T) belong to the

same code block and are replaced by public abstract when(T) and public abstract OngoingStubbing

thenReturn(T). During the search, these source methods should be individually mapped to both

target methods.

We encode potential source-target method mappings for each migration rule as a chromosome

containing individual genes. A chromosome represents all possible combinations of m source and n

target methods, where each individual gene corresponds to a specific source-target method mapping.

Figure 6.1 depicts a simplified example of migration between the easymock and mockito libraries,

where each of m = 3 source methods (left, red) can be mapped to n = 3 target methods (green,

right). In reality, the easymock and mockito libraries contain 2,211 and 2,265 methods respectively,

so the number of potential method mappings is considerably higher, especially when considering
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one-to-many or many-to-many method mappings. Figure 6.1 depicts a chromosome consisting of

m × n = 9 genes, each corresponding to a potential source-target method mapping. If a specific

source-target method mapping is selected, its corresponding gene value is set to 1, with the others

set to 0.

• One-to-One Mapping: In Figure 6.1, the source-target method pair static void verify(Object...)

→ abstract T verify(T) is a one-to-one mapping, where one source method is replaced using

one target method. When selected by an algorithm, the corresponding gene (at index 0) is

marked as 1. Other potential mappings static void verify(Object...) → abstract T when(T),

and static void verify(Object...) → abstract Ongoing Stubbing thenReturn(T) are not selected.

So, the genes in indices 1 and 2 representing these mappings are marked 0.

• Many-to-Many Mapping: We consider a many-to-many method mapping, where two

source methods static IExpectationSetters expect(T) and abstract IExpectationSetters an-

dReturn(T) need to be replaced by multiple target methods. In this example, the static

IExpectationSetters expect(T) method is replaced using the abstract T when(T) and abstract

OngoingStubbing thenReturn(T) methods. So, indices 4 and 5 representing these mappings

in the chromosome bitstring are assigned a value of 1. Similarly, abstract IExpectationSetters

andReturn(T) is replaced by public abstract T when(T) and abstract OngoingStubbing then-

Return(T), so gene indices 7 and 8 are also assigned a value of 1. In this manner, each gene

represents a unique source-target method mapping that can be selected by a multi-objective

algorithm. During the search process, all gene values are concatenated and represented as a

0/1 bitstring for computational efficiency.

6.2.4 Fitness function

In this work, we use three different similarity schemes to denote the fitness of each source-target

method mapping. Evolutionary algorithms use this notion of fitness to identify and select suitable

source-target method mappings, for example, a method mapping with a higher fitness score is

more likely to be correct and will thus be recommended. Therefore, correctly formulating the

fitness function is crucial when using our approach. In this study, we use the measures described

in [55,104] to calculate fitness using three components: method similarity, documentation similarity,

and co-occurrence probability.

• Method similarity: Intuitively, source and target methods with equivalent functionality

will have similar method names, return types, and input arguments. We use the formula
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proposed by Nguyen et al. [104] to calculate source and target method signature similarity.

Let s and t be the source and target methods, each with a list of input arguments ips and

ipt, and return types rs and rt, respectively. Assuming that the source method name is

represented as ns and the target method name as nt, the method similarity is calculated as:

Sim(s, t) =0.5 ∗ sqSim(ns, nt) + 0.25 ∗ sqSim(ips, ipt)

+ 0.25 ∗ strSim(rs, rt)

Here, the sqSim function leverages the longest common sub-sequence algorithm to calculate

the similarity between two word sequences, while the strSim function calculates token-level

similarity. We use 0.5, 0.25, and 0.25 as the weights for each component of the equation fol-

lowing guidance from existing literature [104]. Each weight represents the relative importance

of a component, with method name similarity being assigned the highest importance. As an

example, consider two methods: void deleteDirectory(File), and void deleteRecursively(File).

Method similarity for this source-target method pair is calculated as follows:

Sim(s, t) = 0.5 ∗ sqSim(deleteDirectory, deleteRecursively)

+ 0.25 ∗ sqSim(File, F ile) + 0.25 ∗ strSim(void, void)

= 0.25 ∗ (1/2) + 0.25 ∗ (1/1) + 0.25 ∗ (1/1)

= 0.625

In the case of a one-to-many or many-to-many method mapping, all similarities are calcu-

lated separately for each possible pair of source and target methods. For example, consider a

one-to-many method mapping from Figure 6.1, where the method static IExpectationSetters

expect(T) is replaced by two target library methods abstract T when(T) and abstract On-

goingStubbing thenReturn(T). For such a one-to-many method mapping, method similarity

would be calculated for two possible source-target method pairs: abstract T when(T) and

static IExpectationSetters expect(T), and static IExpectationSetters expect(T) and abstract

OngoingStubbing thenReturn(T). Both target library methods would need to be selected in-

dependently of each other based on similarity scores.

• Documentation similarity: Intuitively, two methods that offer similar functionality will

also have similar documentation. In this work, we calculate the similarity between the doc-

umentation for each source and target method pair using word vector embeddings obtained

from a state-of-the-art neural network - the Universal Sentence Encoder (USE) [39]. The USE

network is trained on a wide range of natural language datasets to generate sentence-level

embeddings that can be used to calculate semantic similarity. Consider that s and t are our
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source and target methods respectively, whose documentation is an input to the USE net-

work. We obtain the source and target documentation embeddings Ws and Wt and calculate

cosine documentation similarity as follows:

SimDoc(s, t) =
(Ws ·Wt)

(||Ws|| × ||Wt||)

• Co-occurrence probability: In addition to method and documentation similarity, we lever-

age “wisdom of the crowd” knowledge from migrations performed by other developers in

previously seen migration diffs. A source code migration diff contains all lines of removed

and added code that we use to identify which source methods were replaced by which target

methods. These code diffs can be identified using modern version control systems such as

GitHub. In other terms, co-occurrence probability CoOc(s, t) is how frequently a source and

target method pair have been observed together so that higher fitness can be assigned to

those method mappings that have been found in pre-existing programs. The co-occurrence

probability is calculated by dividing the count for each source-target method pair by the

maximum co-occurrence count for all method pairs.

coOc(s, t) =
count(s, t)

maxsϵLs,tϵLt(count(s, t))

Here, Ls represents the source library and Lt represents the target library.

Next, we calculate an aggregate fitness score by combining co-occurrence, method, and documen-

tation similarity scores for each source-target method pair s, t. We note that each of the three

similarities is calculated as a normalized score with values in the [0, 1] range to give all similarities

equal weight. Additionally, we divide the aggregate (CoOc(s, t) + SimDoc(s, t) + Sim(s, t)) score

by the total number of source-target method mappings under consideration for each migration rule

to ensure a fair chance of selection for every method mapping. So, our final fitness score also lies in

the [0, 1] range. With m as the number of source methods and n as the number of target methods,

our final fitness score calculation is:

fitness(s, t) =
(coOc(s, t) + Sim(s, t) + SimDoc(s, t))

(3×m× n)

6.2.5 Re-combination operators

Evolutionary algorithms use crossover and mutation genetic recombination operators to generate

diverse solutions. These operators produce different combinations of source-target method map-
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Figure 6.2: When applied to a bitstring, the mutation operator ‘flips’ bit values e.g., bits with a

value of 0 are changed to 1 at indices 1,4, and 7. Similarly, bits with a value of 1 are ‘flipped’ to

1. In our study, each bit corresponds to a specific source-target method mapping that may (1) or

may not (0) be selected.

Figure 6.3: The crossover operator generates offspring chromosomes from two parent chromosomes.

Each parent chromosome’s bit string is divided at a pre-determined crossover point and recombined

to generate new chromosomes. Crossover ensures that different solutions are explored periodically,

and solutions with high fitness scores are retained.

pings at every iteration and retain method mappings with the highest fitness scores. These retained

parent method mappings are used to generate more offspring by applying crossover and mutation

until a termination condition is reached. They are described as follows:

• Crossover: Figure 6.3 depicts the crossover operator applied to two chromosomes represented

as bit strings [51]. First, each chromosome is divided into two substrings at a determined

crossover point. Then, each substring is recombined with the other chromosome’s half to gen-

erate two offspring solutions. For example, in Figure 6.3, the first chromosome is divided into

two substrings “10100” and “0000” and recombined with the second chromosome’s substrings

“01010” and “0110” to generate two offsprings “101000110” and “010100000”. The crossover

rate Pc% determines how frequently this operator is applied to a population of solutions.

• Mutation: Figure 6.2 illustrates how the mutation operator is applied to a bitstring. The

mutation operator simply ‘flips’ the bit it wants to mutate i.e., if the bit to be mutated has

a value of 1, then it is mutated to 0 and vice versa. This operator is also associated with a

mutation rate Pm% i.e., it flips only Pm% of the population.
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We note that there are no infeasible solutions for the method-level software library migration

problem when using crossover and mutation operators. For each specific migration rule, all possible

source target method mappings are represented as a bitstring that can either be selected (denoted

by a 1) or not (denoted by a 0). At maximum, an algorithm can select all available target library

methods resulting in a bitstring of 1s. While such a solution is undesirable, it is not infeasible as

we do not impose any constraints on the selection.

6.2.6 Termination Condition and Parameters

Evolutionary algorithms iteratively generate solutions with higher fitness scores using mutation

and crossover operators until a termination or stopping criterion is reached. In our experiments,

we evaluate each generated solution by comparing it to a “groundtruth” obtained from the dataset

used for our experiments. This “groundtruth” consists of a set of manually-validated and correct

method mappings for each migration rule. However, developers do not have access to the set of

correct source-target method mappings beforehand, so we cannot use a stopping criterion that

measures solution quality. Hence, we set our termination criteria to the maximum number of

function evaluations.

6.2.7 Algorithms Used for Search-Based API Migration

In this study, we examine one single-objective algorithm and 7 popular multi-objective algorithms

that use different search and selection strategies [30,59,85,149] to find solutions that balance both

our objectives. As our work is the first to evaluate metaheuristic algorithms for third-party library

migration at the method level, we select popular and well-understood algorithms to evaluate the

impact of using evolutionary strategies for API migration. In particular, we consider GA as our

single-objective algorithm, and UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA,

and MOEAD as our multi-objective evolutionary algorithms that are known to perform well with

a smaller number of objectives. We discuss the rationale for selecting these algorithms as follows:

• GA: GA is a popular single-objective search algorithm that iteratively evolves a set of candi-

date solutions until a termination criteria is met using the crossover and mutation operators.

We choose GA because it is a demonstrably efficient and accurate algorithm.

• NSGAII: NSGAII [51] is a widely regarded and popular search algorithm that leverages

techniques such as non-dominated sorting and crowding distance to efficiently select and

evolve candidate solutions. In this work, we choose NSGAII because it has been shown to

perform well on problems with fewer objectives.
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• IBEA: We select IBEA [151] because it has been demonstrated to work well on problems

with fewer objectives and is a relatively well-documented algorithm that allows us to study

API migration-specific challenges and characteristics. Furthermore, we use the hypervolume

metric to identify diverse solutions because we are interested in “knee points” where both

conflicting objectives are balanced.

• MOEAD: The MOEAD algorithm [146] uses decomposition strategies to search for solutions

fulfilling multi-objective constraints. We select MOEAD because it uses a different search

strategy that divides the search space into subproblems and because it has demonstrated

desirable convergence properties on multi-objective problems.

• UNSGAIII: The Unified NSGAIII algorithm [126] is a unified optimization approach that

modifies NSGAIII for two and mono-objective problems. We evaluate this approach due to

the performance of NSGAIII on many-objective problems and improvements made to the

tournament selection procedure resulting in better performance on two objective problems.

• R-NSGAII: We select RNSGAII [52] due to its ability to generate multiple solutions around

user-specified reference points. Specifically, RNSGAII generates a set of solutions around a

specified optimal point and uses Euclidean distance to evaluate generated solutions.

• AGEMOEA: The AGEMOEA algorithm [113] generalizes to different Pareto fronts and has

been shown to outperform state-of-the-art algorithms such as NSGAIII, GrEA, MOEA/D,

and AR-MOEA. We choose this algorithm because our Pareto front consists of only one

“point” corresponding to our groundtruth, so its shape is unknown. Since AGEMOEA can

adapt to different Pareto front shapes, we select it as one of the algorithms used in our study.

• SMSEMOA: The SMSEMOA algorithm [24] aims explicitly to keep solutions that maximize

hypervolume. At every iteration, SMSEMOA discards solutions with the least contribution

to the dominated hypervolume. Since SMSEMOA relies on hypervolume maximization, we

can evaluate the efficacy of using this indicator for our problem.

6.2.8 Experimental Settings

Dataset

To evaluate the performance of multi-objective search for API migration, we use a popular dataset

containing a set of manually curated mappings belonging to 9 popular library migrations collected

from 57,447 open-source Java projects [12]. Details of the source and target libraries for each
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migration rule used in our study can be found in Appendix A. We use this dataset because it contains

verified and correct mappings that can serve as our “groundtruth” when evaluating evolutionary

algorithm performance. When conducting experiments, we generate source and target method

mappings by randomly sampling from this dataset [12] to also include scenarios of incorrect method

mappings that test our approach. This setting also allows us to examine algorithm behavior across

a wide range of API migration scenarios containing different numbers of potential mappings with

varying mapping cardinalities. We use algorithm implementations provided in the MOEA and

PyMOO frameworks, as they are popular tools for implementing and evaluating various multi-

objective evolutionary algorithms. We run and average the results of each search algorithm 30

times for statistical significance [16].

Algorithm Settings

We execute GA, NSGAII, IBEA, and MOEAD using the MOEA framework1, and UNSGAIII,

RNSGAII, AGEMOEA, and SMSEMOA using the PyMoo framework2. To ensure consistency,

we specify the population size as 250 and the number of function evaluations for all algorithms

as 100,000 to avoid premature convergence and ensure that diverse solutions are explored. The

initial population is randomly generated for all algorithms. In our multi-objective algorithms, we

set the number of selected mappings as an explicit objective that needs to be minimized, so that

only method mappings with high similarity or fitness scores are selected. In contrast, GA uses an

explicit constraint to limit the number of selected method mappings. We tune the crossover and

mutation rates using a tree parzen estimator (TPE) included in PyMOO using the Optuna library.

For algorithms executed using the MOEA framework, we conduct a grid search to determine the

mutation and crossover rates. We select final parameter values using precision and recall and note

that algorithm performance does not vary considerably with changes to parameters. So, we set the

crossover rate to 1.0 and the mutation rate to 0.1.

When comparing our multi-objective algorithms, we follow guidance from [8, 86, 87, 88, 108] and

select indicators that can incorporate developer (decision maker) preferences when recommending

source-target method mappings. As our goal is to accurately identify the appropriate number of

source-target method mappings, we carefully select Euclidean distance (ED) [8] and Hypervolume

(HV) [87] [88] to compare multi-objective algorithm performance. When calculating these indica-

tors for multi-objective algorithms, we specify maximum and minimum bounds for each objective

against which hypervolume is calculated. To determine hypervolume, we compute the theoretical

1http://moeaframework.org/javadoc/index.html
2https://pymoo.org/algorithms/list.html
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maximum and minimum values for fitness and the number of selected mappings by aggregating

all fitness values and counting the total number of possible mappings for each migration rule.

We calculate Euclidean distance (ED) of each solution with respect to our “groundtruth” which

corresponds to the correct source-target method mappings from our dataset. Our “groundtruth”

objectives are set to the aggregate fitness score of each correct method mapping and the number

of verified source-target method mappings to be selected.

6.2.9 Comparative Approaches/Baselines

Random Search: A random search algorithm randomly selects potential method-mappings. We

compare GA against random search to determine whether it converges to a solution, or randomly

searches through our dataset. GA must outperform random search to be considered useful.

Hill-Climbing: Similar to GA, hill-climbing is an iterative algorithm that starts with a random

solution and improves on the current solution by making small modifications. If hill-climbing

outperforms GA, then the search space is relatively simple and does not necessitate the use of GA.

6.2.10 Metrics Used

In this work, we assess the benefits of using multi-objective optimization to select source-target

method mappings during library migration. We compare our algorithms approach with a current

tree-based classifier approach RAPIM [12], and random search and hill-climbing for our single-

objective genetic algorithm (GA). To evaluate the efficacy of our approach, we use two sets of

metrics: precision and recall for all algorithms and RAPIM; and Euclidean Distance (ED) and

Hypervolume (HV) when evaluating multi-objective algorithms [8, 86,87,88,108].

• Precision: Precision is the ratio of correctly selected mappings to all selected mappings.

• Recall: This is the ratio of correctly identified mappings to the number of correct mappings

for each migration rule.

• Hypervolume (HV): The hypervolume metric evaluates how much of the objective space

is covered by generated solutions and requires the specification of minimum and maximum

points or bounds. To evaluate our algorithms, we set the minimum and maximum fitness

as 0 and 1 respectively. Similarly, we set the minimum and maximum number of selected

methods as 0. As a result, our ideal point is [0, 0] and the reference point is [1, 1] assuming the
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minimization of both objectives. We use this indicator because we are interested in solutions

that balance both our objectives: the fitness and number of recommended source-target

method mappings.

• Euclidean Distance (ED): This indicator is calculated as the distance of each solution

from the groundtruth based on each objective value. The ED metric evaluates solution

quality by measuring how close generated solutions are to the desired point as specified by

the groundtruth. When calculating ED, we normalize both fitness and the number of selected

methods to be within [0,1] and report the mean values.

6.3 Results

Our goal is to evaluate the efficacy of using a search-based approach to to recommend methods

during software library migration. The following research questions drive our experimentation:

• RQ7: How accurately can our single-objective genetic algorithm (GA) approach recommend

source-target method mappings? We compare GA performance against random search and

hill-climbing to demonstrate the effectiveness of our single-objective approach during API

migration.

• RQ8: How effectively do UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA,

and MOEAD recommend source-target library method mappings for various migration rules?We

find that our multi-objective algorithms tend to outperform GA. Furthermore, we compare our

multi-objective algorithms using hypervolume and Euclidean distance. We also plot solution

sets generated by each algorithm to gain insight into their performance.

• RQ9: What is the impact of using different similarity score schemes (method signature,

documentation, and co-occurrence probabilities) when recommending source-target method

mappings? We compare precision and recall achieved by each algorithm using three similarity

schemes: co-occurrence probability (CO), method and documentation similarity (MS+DS),

and a combination of MS+DS and CO (ALL).

6.3.1 RQ 7: GA Effectiveness Compared To Random Search And Hill Climbing

Table 6.2 shows the precision and recall obtained using GA, random search (RS) and hill-climbing

(HC) averaged over 30 runs for different migration rules. We execute GA, RS and HC 30 times and
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use the Wilcoxon signed rank test (p<0.05) and observe that our results for each algorithm pair are

statistically significant. In general, we observe that GA has a higher precision than both random

search and hill-climbing for all migration rules, indicating that it can identify correct source-target

method mappings. We observe that GA achieves the highest values of precision and recall compared

to both baselines for rules google − collect → guava and json → gson. These libraries contain a

majority of one-to-one mappings and well-defined similarity scores resulting in good performance.

While GA also achieves perfect precision when migrating between commons− lang → slf4j − api

and json − simple → gson, it recommends mappings extremely conservatively leading to poor

recall. Similarly, GA achieves high precision and poor recall when migrating between logging →
slf4j, slf4j − api → log4j, gson → jackson because these libraries contain a majority of many-

to-one, many-to-many and one-to-many mappings that makes the search process difficult. Overall,

the worst performance is observed for the rules easymock → mockito and testng → junit where

the search space is complex due to multiple local optima and close to zero similarity scores. We

discuss the different factors impacting GA performance in greater detail as follows:

The effect of capacity:

The capacity value is critical to GA performance as it determines which and how many target

methods are recommended. However, the value of capacity is difficult to determine exactly because

we cannot know how many mappings exist between two libraries unless all possible combinations are

explored. Due to these reasons, we use a case study to conduct an experiment to determine the effect

of different capacity values on GA performance. In this regard, we use the rule commons− lang →

Table 6.2: Precision and recall values for GA, random search and hill-climbing obtained using 100

individuals and 50000 function evaluations.

.

Precision Recall

Migration Rule (↓) GA RS HC GA RS HC

logging → slf4j 0.7166 0.3148 0.3039 0.0855 0.3621 0.4950

slf4j-api → log4j 0.4639 0.2019 0.1944 0.1216 0.3807 0.4912

easymock → mockito 0.0331 0.0339 0.0331 0.0622 0.4177 0.5000

google-collect → guava 0.4444 0.0685 0.0721 0.6666 0.2444 0.4777

gson → jackson 0.5000 0.0478 0.0486 0.2500 0.3444 0.5444

testng → junit 0.1417 0.0769 0.0831 0.0500 0.3615 0.5038

json → gson 0.6666 0.4500 0.2152 0.6666 0.4388 0.5333

commons-lang → slf4j-api 1.0000 0.1281 0.1252 0.1666 0.2944 0.4944

json-simple → gson 1.0000 0.2541 0.2216 0.1666 0.3055 0.4925
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slf4j − api as a case study and evaluate the effect of increasing capacity on precision and recall in

Figure 6.5. We observe that precision values are highest for low capacity values, in fact, we obtain

perfect precision up to a capacity value of 4. This is expected because GA recommends methods

conservatively leading to almost no false positives. As the capacity values increase, more correct

and incorrect source-target methods are recommended. This increases the likelihood of selecting

wrong mappings resulting in more false positives and lower precision values. Moreover, as capacity

increases more correct methods are also identified leading to fewer false negatives thereby increasing

recall. From the graph, we observe that a balance between precision and recall is achieved when the

capacity is 12, which is also the number of correct source-target mappings that exist in the ground

truth. That is, GA balances precision and recall when the capacity is set to the number of source

methods to be replaced (which we know beforehand). Thus, in subsequent experiments, we set the

capacity for each migration rule to be equal to the number of source methods to be replaced.

Next, we study the impact of capacity on different migration rules. When the capacity value is well-

specified, GA achieves high precision and recall as demonstrated in Table 6.2 for the rules google−
collect→ guava and json→ gson. This also indicates that the source and target libraries involved

in these migrations deliver the same functionality and thus have many similar methods leading to

several correct potential mappings i.e., they have equivalent functionality. This is also demonstrated

in Figure 6.9 where GA consistently achieves relatively higher recall scores as the capacity value is

equal to the number of mappings that must be found. When the capacity value is relatively high,

GA evolves solutions containing a large number of mappings which increases the probability of

finding the wrong mappings (more false positives), resulting in low precision. This is reflected in GA

performance for rules logging → slf4j, slf4j−api→ log4j, gson→ jackson where it obtains high

values of precision but does not select all correct mappings. When the capacity value is relatively

low, GA becomes picky, and selects very few source-target method mappings. This increases

precision because selected methods are correct, but also results in poor recall because a large number

of correct mappings are not selected, resulting in low recall e.g., commons − lang → slf4j − api

and json−simple→ gson. This is illustrated further in Figure 6.9 where GA consistently achieves

perfect precision and poor recall because only a few methods are correctly recommended compared

to the actual number of correct mappings that can be found. In an extreme scenario, we also

observe that GA is extremely picky when recommending mappings between easymock → mockito

because it must evaluate a large number of target methods to recommend very few mappings (1%

of all potential mappings). In this scenario, GA is unable to find a solution and instead randomly

selects target methods to fulfill the capacity constraints.
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Figure 6.4: Precision and recall values over 30 runs demonstrate that GA outperforms random

search and hill-climbing to recommend API mappings with high precision.
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Figure 6.5: This graph demonstrates the effect of increasing the capacity values for the rule

commons − lang → slf4j − api. As the capacity increases from 1 to 20, we observe a decline

in precision values and an increase in recall values. This is because more source-target mappings

are recommended for higher capacities.

The effect of various cardinalities:

In general, it is difficult to find replacement methods for many-to-one, one-to-many and many-

to-many mappings. It is relatively easier to recommend for one-to-one mappings, because only

one target method (usually with the highest similarity score) needs to be recommended for each

source method. Thus, the search process is simplified because it must only find m target methods

with the highest similarity. This is reflected in both the precision and recall values when migrating

between google−collect→ guava, testng → junit where the majority of mappings in these datasets

are one-to-one, so the number of recommended methods is close to the number of actually correct

source-target method mappings that exist. This leads to fewer false positives, thus resulting in high

values of precision. Furthermore, GA exhibits perfect precision but poor recall when migrating

between commons − lang → slf4j − api and json − simple → gson because it selects very few

methods. These selected methods are correct and therefore lead to almost no false positives,

however, GA cannot accurately identify all correct mappings and thus returns a high number of

false negatives that lead to a low recall. This occurs because of a majority of one-to-many, many-to-

one or many-to-many mappings where several methods are ‘helper’ functions that do not contain

the main programming logic but are used to perform repetitive tasks e.g., basic error handling

or typecasting using the toString() method. As a result, there are many correct source-target
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mappings with similar fitness scores and GA is unable to differentiate between them, resulting in

poor recall.

The effect of libraries’ characteristics:

Additionally, we find that two characteristics impact search performance: the number of methods

in source and target libraries (dataset size) and the number of potential source-target mappings

with a zero similarity score. The migrations logging → slf4j and testng → junit contain various

methods that are close in signature and documentation, i.e., they contain the least number of

source-target mappings with zero similarity. This results in a difficult search space with multiple

local optima, thus making it hard for the fitness to discriminate wrong mappings. In contrast, the

migration rules easymock → mockito, google − collect → guava, gson → jackson, json → gson,

and commons − lang → slf4j − api contain a large number of source-target mappings that have

a fitness of zero (distant method signatures and different documentations). That is, most of the

correct source-target mappings have a non-zero similarity score. Moreover, the recall value for the

rule gson → jackson is relatively higher compared to easymock → mockito and testng → junit.

This because the dataset for this rule contains the largest number of source-target methods with

zero similarity, leading to fewer local optima.

The effect of different similarity scores:

In general, each scoring measure (MS, DS and CO) captures a different dimension that can be useful

for selecting correct source-target mappings. However, there are some exceptions: for example, some

libraries do not have proper documentation for each method. In these scenarios, documentation

similarity (DS) is zero and not only it does not provide the intended result, but it also biases the

search: in our approach, if the documentation similarity is calculated as zero, it may drive the

overall fitness closer to zero and adversely impact search performance. Thus, search algorithms

may not select correct mappings due to poor documentation scores.

Combining the MS, DS and CO results in better recommendations as compared to using them

separately, especially if one of them cannot be properly calculated (e.g., in case of poor docu-

mentation). As a result, during our manual validation, we found that GA can also discover other

mappings that are correct but have not been seen previously (absent from ground truth). For exam-

ple, in Figure 6.6b, the correct mapping from public abstract void warn(java.lang.Object,

java.lang.Throwable) to public abstract void warn(java.lang.String) has been returned

by our algorithm, while being absent from the existing dataset. Another example in Figure 6.6a
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shows how the methods public static <T> org.easymock.IExpectationSetters<T>

expectLastCall() and public abstract T should() have signature and documentation similar-

ities as zero, but a non-zero co-occurrence score, thus leading to it being correctly recommended.

(a) A one-to-many mapping. The method similarity

score for expectLastCall() to should() is zero as their

signatures are zero, as is the documentation score.

However, as this mapping has been used before in our

dataset, it has a co-occurrence of 1.

(b) A discovered one-to-one mapping selected by GA.

In this case, GA selects this mapping because the

method similarity before normalization is calculated

as 0.5 due to the same return type and method name.

Figure 6.6: Examples of correct mappings found by our algorithm.

6.3.2 RQ 8: Evaluating Multi-Objective Search

In subsequent research questions, we compare multiple multi-objective algorithms, so we determine

the statistical significance of our results using the Kruskal-Wallis test (p<0.05) as it allows us to

compare multiple groups at once. A p-value < 0.05 indicates that there is a significant difference

in the values of the indicators of our algorithms. Results are statistically significant unless noted

otherwise.

Table 6.3: Using the CO scheme, UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA,

MOEAD achieve higher precision compared to our single-objective GA approach. We use the

Kruskal-Wallis test to evaluate statistical significance.

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD GA

logging → slf4j 0.96 0.98 1 0.96 0.95 0.98 0.76 0.7

slf4j − api→ log4j 1 1 1 1 1 1 0.87 0.95

easymock → mockito 0.94 0.92 0.96 0.92 0.95 0.97 0.87 0.85

google− collect→ guava 1 1 1 1 0.95 0.98 0.58 0.12

gson→ jackson 1 1 1 1 1 1 0.88 0.64

testng → junit 0.56 0.48 0.68 0.52 0.62 0.74 0.32 0.29

json→ gson 0.67 0.67 0.83 0.66 0.75 0.85 0.36 0.3

commons− lang → slf4j − api 1 1 1 1 1 1 0.9 0.68

json− simple→ gson 1 1 1 1 1 0.95 0.88 1

Average 0.90 0.89 0.94 0.90 0.91 0.94 0.71 0.61

Tables 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 present precision and recall values achieved by UNSGAIII,

RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA, MOEAD and the single-objective genetic

algorithm (GA) [55]. We evaluate each algorithm using three similarity schemes: co-occurrence

probability (CO), a combination of method and documentation similarity (MS+DS), and an ag-
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Figure 6.7: We visualize solutions closest to the mean Euclidean distance value for each algorithm

for the logging → slf4j migration rule. The overall best-performing algorithm is UNSGAIII. Note

that in these plots we depict both objectives as minimization for readability, hence the fitness values

are negatives as they must be maximized.
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Table 6.4: Using the ALL scheme, UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII,

IBEA, MOEAD achieve higher precision compared to our single-objective GA approach. We use

the Kruskal-Wallis test to evaluate statistical significance.

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD GA

logging → slf4j 0.75 0.8 0.81 0.77 0.80 0.81 0.75 0.68

slf4j − api→ log4j 0.32 0.47 0.21 0.19 0.27 0.24 0.65 0.49

easymock → mockito 0.91 0.91 0.93 0.9 0.93 0.94 0.87 0.85

google− collect→ guava 0.24 0.46 0.28 0.27 0.30 0.28 0.48 0.11

gson→ jackson 0.59 0.68 0.58 0.57 0.59 0.58 0.76 0.53

testng → junit 0.36 0.39 0.43 0.38 0.40 0.41 0.32 0.28

json→ gson 0.36 0.41 0.42 0.37 0.39 0.40 0.32 0.3

commons− lang → slf4j − api 0.8 0.95 0.82 0.79 0.82 0.81 0.87 0.66

json− simple→ gson 0.48 0.81 0.57 0.54 0.74 0.74 0.86 0.58

Average 0.53 0.65 0.56 0.53 0.58 0.58 0.65 0.50

Table 6.5: Using the MS+DS scheme, UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII,

IBEA, MOEAD achieve higher precision compared to our single-objective GA approach. We use

the Kruskal-Wallis test to evaluate statistical significance.

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD GA

logging → slf4j 0.76 0.86 0.8 0.81 0.79 0.81 0.74 0.69

slf4j − api→ log4j 0.25 0.53 0.18 0.17 0.25 0.23 0.62 0.46

easymock → mockito 0.92 0.92 0.91 0.91 0.92 0.94 0.87 0.86

google− collect→ guava 0.23 0.52 0.29 0.28 0.3 0.28 0.47 0.12

gson→ jackson 0.59 0.55 0.56 0.56 0.55 0.54 0.7 0.55

testng → junit 0.38 0.43 0.39 0.39 0.39 0.41 0.32 0.29

json→ gson 0.38 0.41 0.41 0.38 0.38 0.39 0.32 0.29

commons− lang → slf4j − api 0.7 0.7 0.79 0.8 0.75 0.76 0.82 0.65

json− simple→ gson 0.42 0.75 0.54 0.52 0.7 0.71 0.84 1

Average 0.51 0.63 0.54 0.54 0.56 0.56 0.63 0.55

Table 6.6: Using the CO scheme, UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA,

MOEAD achieve higher recall compared to our single-objective GA approach. We use the Kruskal-

Wallis test to evaluate statistical significance.

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD GA

logging → slf4j 0.52 0.23 0.34 0.4 0.43 0.43 0.06 0.14

slf4j − api→ log4j 0.99 0.04 0.54 0.78 0.55 0.53 0.14 0.19

easymock → mockito 0.5 0.36 0.41 0.44 0.42 0.4 0.12 0.26

google− collect→ guava 1 0.26 0.91 0.92 0.77 0.92 0.11 0.12

gson→ jackson 1 0.01 0.52 0.57 0.52 0.52 0.08 0.05

testng → junit 0.68 0.43 0.68 0.6 0.66 0.72 0.1 0.26

json→ gson 0.77 0.53 0.69 0.73 0.73 0.79 0.1 0.22

commons− lang → slf4j − api 1 0.03 0.55 0.62 0.58 0.58 0.07 0.04

json− simple→ gson 1 0.21 0.6 0.62 0.6 0.5 0.27 0.15

Average 0.83 0.23 0.58 0.63 0.58 0.6 0.17 0.16

gregate of co-occurrence, method and documentation similarities (ALL). From Table 6.3 and 6.6,
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Table 6.7: Using the ALL scheme, UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII,

IBEA, MOEAD achieve higher recall compared to our single-objective GA approach. We use the

Kruskal-Wallis test to evaluate statistical significance.

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD GA

logging → slf4j 0.56 0.3 0.45 0.43 0.44 0.44 0.08 0.14

slf4j − api→ log4j 0.56 0.13 0.21 0.18 0.24 0.18 0.11 0.1

easymock → mockito 0.52 0.38 0.43 0.45 0.44 0.43 0.14 0.26

google− collect→ guava 0.61 0.51 0.6 0.6 0.59 0.6 0.14 0.1

gson→ jackson 0.52 0.12 0.33 0.31 0.32 0.3 0.08 0.04

testng → junit 0.61 0.47 0.59 0.58 0.56 0.57 0.14 0.25

json→ gson 0.49 0.37 0.4 0.43 0.42 0.41 0.1 0.22

commons− lang → slf4j − api 0.69 0.16 0.42 0.43 0.44 0.43 0.07 0.04

json− simple→ gson 1 0.65 0.78 0.8 0.68 0.66 0.31 0.15

Average 0.62 0.34 0.47 0.47 0.46 0.45 0.13 0.14

Table 6.8: Using the MS+DS scheme, UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII,

IBEA, MOEAD achieve higher recall compared to our single-objective GA approach. We use the

Kruskal-Wallis test to evaluate statistical significance.

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD GA

logging → slf4j 0.58 0.25 0.46 0.45 0.43 0.43 0.08 0.14

slf4j − api→ log4j 0.48 0.11 0.17 0.15 0.17 0.15 0.11 0.09

easymock → mockito 0.53 0.33 0.43 0.43 0.43 0.42 0.14 0.27

google− collect→ guava 0.61 0.35 0.59 0.6 0.56 0.59 0.15 0.1

gson→ jackson 0.52 0.1 0.32 0.35 0.27 0.27 0.07 0.04

testng → junit 0.65 0.46 0.55 0.58 0.56 0.57 0.14 0.25

json→ gson 0.48 0.27 0.39 0.4 0.41 0.4 0.1 0.22

commons− lang → slf4j − api 0.58 0.09 0.28 0.26 0.3 0.28 0.06 0.04

json− simple→ gson 0.8 0.61 0.74 0.76 0.62 0.59 0.3 0.15

Average 0.58 0.29 0.44 0.44 0.42 0.41 0.13 0.14

we observe that all 7 evolutionary algorithms achieve high precision and recall when using the CO

scheme. In fact, for logging → slf4j, slf4j − api → log4j, google − collect → guava, json →
gson, commons − lang → slf4j − api, atleast one algorithm achieves 100% precision. Addition-

ally, for easymock → mockito while 100% precision is not achieved, 6 out of 7 algorithms achieve

precision above 90% precision. We observe that precision and recall values are highest when using

the CO scheme because it provides an ideal scenario where prior knowledge about the preferred

source-target method mappings is available in the form of probabilities.

While each of the 7 algorithms achieves high precision and recall, we observe that UNSGAII, RNS-

GAII, AGEMOEA, SMSEMOA, NSGAII, and IBEA outperform our single-objective GA approach

on all migration rules. This is because GA uses a pre-defined capacity constraint to control the

number of method mappings that can be selected. This capacity constraint is equal to the number
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of source methods which results in GA selecting fewer method mappings leading to better recall.

However, since it difficult to know how many target methods will be required for each source

method, GA performance varies based on mapping cardinalities e.g., in the case of one-to-many

mappings. Our multi-objective approach addresses this limitation by modeling the number of se-

lected target methods as an objective. As a result, our multi-objective approach achieves higher

precision and recall compared to GA, and it is also easier to use.

We observe that GA achieves high precision on json− simple→ gson but suffers from poor recall.

In this case, GA achieves high precision but low recall due to the under-selection of correct method

mappings. Note that using a pre-defined capacity constraint could be more useful when considering

only one-to-one method mappings, leading to more precise selections since the number of target

methods to be selected is known beforehand. Unfortunately, the capacity constraint tends to be

poorly defined for one-to-many, many-to-one, and many-to-many mappings, so GA selects fewer

methods leading to poor recall.

Additionally, we compare the performance of multi-objective search with the RAPIM approach [12].

Figure 6.8 plots the best precision and recall values achieved by our approach and RAPIM. We

observe that our multi-objective approach achieves higher precision and recall than RAPIM. Similar

to the GA approach, RAPIM performs well on one-to-one mappings and does not generalize well to

other mapping cardinalities resulting in poor precision and recall across different migration rules.

Thus, we conclude that our approach outperform current state-of-the-art API migration technique

RAPIM [12] and our single-objective GA approach.

Tables 6.3 and 6.6 demonstrate the differences in UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA,

NSGAII, IBEA, and MOEAD performance using the CO scheme. In general, we observe that

all algorithms achieve high precision on most migration rules. From Table 6.6, we observe that

UNSGAIII achieves the highest or close to the highest recall value on all migration rules. These

results suggest that UNSGAIII can correctly identify true and false positives and negatives, making

it a powerful algorithm for API migration. In general, we observe that MOEAD demonstrates

comparatively poor performance, in particular for testng → junit and json → gson for precision

and all other rules for recall. We examine this further in Figure 6.7 by plotting the “best” pareto

front achieved by each of the 7 algorithms used in this study. The “best” pareto front is the one

that achieves the lowest mean Euclidean distance from the groundtruth. We observe that MOEAD

generates fewer solutions that are also further away from the groundtruth, suggesting that MOEAD

is more selective when identifying method mappings compared to the other algorithms and resulting

in poor precision and recall. We also observe that 6 out of 7 algorithms generate similar pareto
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fronts, and UNSGAIII and NSGAII generate more balanced solutions that minimize the number

of selected mappings while maximizing fitness.

From Table 6.9, we observe that UNSGAIII and IBEA achieve the lowest ED values across all

migration rules, while RNSGAII achieves high hypervolume values when using the CO similarity

scheme. This difference between ED values obtained by UNSGAIII and the other algorithms is most

pronounced when using the CO scheme. However, as seen from Tables 6.10 and 6.11, UNSGAIII

is able to find solutions with lower ED values when using the ALL and MS+DS schemes, but

it is outperformed by RNSGAII, AGEMOEA and IBEA on multiple migration rules. Moreover,

UNSGAIII suffers from relatively low hypervolume across all three similarity schemes, although the

magnitude of all indicators is similar. We examine this further in Figure 6.9, where we plot HV and

ED values against the number of function evaluations. We observe that UNSGAIII converges to a

good HV value after ∼ 60000 function evaluations and converges to a very low ED value as shown

in Table 6.9. In contrast, for RNSGAII HV and ED values slightly increase with the number of

function evaluations from 0.56 to 0.68. In contrast, UNSGAIII ED drastically decreases from ∼0.65
to ∼0.03, in addition to high precision and recall values. We observe similar trends for different

migration rules and provide all plots and results in our replication package.

Figure 6.8: Our multi-objective approach outperforms the RAPIM approach presented in [12] using

all three schemes in terms of precision and recall. We note that the RAPIM approach is trained

for one-to-one method mappings, and uses 8 features derived from different components of each of

three schemes (e.g., return type description, method signature similarity etc.).
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Table 6.9: Hypervolume and ED values achieved by UNSGAIII, RNSGAII, AGEMOEA, SMSE-

MOA, NSGAII, IBEA, and MOEAD using the CO scheme. We use the Kruskal-Wallis test to

evaluate statistical significance.

.

UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD

Migration Rule (↓) ED HV ED HV ED HV ED HV ED HV ED HV ED HV

logging → slf4j 0.43 0.62 0.68 0.57 0.54 0.67 0.48 0.62 0.45 0.71 0.44 0.67 1.11 0.28

slf4j − api→ log4j 0.06 0.66 1.02 0.39 0.42 0.83 0.16 0.8 0.39 0.83 0.42 0.83 0.91 0.45

easymock → mockito 0.55 0.42 0.72 0.39 0.6 0.47 0.58 0.42 0.59 0.54 0.59 0.53 1.13 0.27

google− collect→ guava 0.03 0.91 0.72 0.91 0.06 0.93 0.04 0.92 0.18 0.93 0.06 0.91 0.89 0.39

gson→ jackson 0.01 0.51 1.1 0.19 0.38 0.73 0.33 0.69 0.4 0.78 0.39 0.75 1.01 0.37

testng → junit 0.17 0.57 0.36 0.5 0.14 0.65 0.22 0.55 0.18 0.69 0.13 0.69 0.9 0.2

json→ gson 0.18 0.58 0.39 0.52 0.21 0.66 0.19 0.57 0.2 0.72 0.14 0.71 0.92 0.24

commons− lang → slf4j − api 0.01 0.39 1.13 0.3 0.46 0.64 0.39 0.59 0.44 0.68 0.44 0.69 1.07 0.35

json− simple→ gson 0.27 0.85 0.75 0.85 0.31 0.89 0.29 0.89 0.33 0.88 0.44 0.89 0.68 0.72

Table 6.10: Hypervolume and ED values achieved by UNSGAIII, RNSGAII, AGEMOEA, SMSE-

MOA, NSGAII, IBEA and MOEAD using the ALL scheme. We use the Kruskal-Wallis test to

evaluate statistical significance.

.

UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD

Migration Rule (↓) ED HV ED HV ED HV ED HV ED HV ED HV ED HV

logging → slf4j 0.28 0.49 0.52 0.46 0.33 0.55 0.33 0.5 0.34 0.58 0.34 0.57 0.89 0.41

slf4j − api→ log4j 0.58 0.46 0.35 0.64 0.48 0.75 0.48 0.74 0.48 0.75 0.44 0.73 0.35 0.57

easymock → mockito 0.51 0.4 0.68 0.38 0.56 0.43 0.54 0.39 0.55 0.49 0.56 0.49 1.06 0.35

google− collect→ guava 0.62 0.74 0.26 0.73 0.55 0.81 0.56 0.78 0.48 0.86 0.55 0.82 0.26 0.48

gson→ jackson 0.34 0.55 0.53 0.62 0.29 0.75 0.28 0.73 0.34 0.78 0.32 0.75 0.65 0.44

testng → junit 0.24 0.4 0.08 0.38 0.2 0.43 0.23 0.4 0.22 0.49 0.22 0.49 0.35 0.35

json→ gson 0.3 0.54 0.13 0.47 0.29 0.59 0.27 0.51 0.31 0.65 0.34 0.63 0.41 0.34

commons− lang → slf4j − api 0.13 0.44 0.74 0.59 0.34 0.7 0.31 0.67 0.34 0.71 0.33 0.68 0.91 0.37

json− simple→ gson 0.29 0.61 0.2 0.77 0.25 0.82 0.25 0.78 0.25 0.82 0.26 0.82 0.41 0.63

Table 6.11: Hypervolume and ED values achieved by UNSGAIII, RNSGAII, AGEMOEA, SMSE-

MOA, NSGAII, IBEA and MOEAD using the MS+DS scheme. We use the Kruskal-Wallis test to

evaluate statistical significance.

.

UNSGAIII RNSGAII AGEMOEA SMSEMOA NSGAII IBEA MOEAD

Migration Rule (↓) ED HV ED HV ED HV ED HV ED HV ED HV ED HV

logging → slf4j 0.29 0.47 0.54 0.45 0.33 0.52 0.34 0.48 0.36 0.56 0.36 0.53 0.88 0.42

slf4j − api→ log4j 0.67 0.41 0.35 0.63 0.52 0.75 0.5 0.72 0.47 0.76 0.43 0.72 0.34 0.58

easymock → mockito 0.52 0.38 0.69 0.37 0.57 0.42 0.56 0.39 0.57 0.48 0.57 0.47 1.05 0.36

google− collect→ guava 0.59 0.75 0.11 0.7 0.49 0.82 0.52 0.77 0.41 0.86 0.5 0.82 0.26 0.5

gson→ jackson 0.37 0.57 0.52 0.58 0.29 0.73 0.27 0.69 0.35 0.78 0.32 0.74 0.66 0.45

testng → junit 0.24 0.39 0.06 0.38 0.2 0.42 0.2 0.39 0.21 0.48 0.21 0.47 0.34 0.36

json→ gson 0.3 0.51 0.12 0.46 0.27 0.57 0.26 0.5 0.29 0.63 0.32 0.61 0.39 0.35

commons− lang → slf4j − api 0.3 0.54 0.72 0.61 0.42 0.77 0.4 0.75 0.42 0.79 0.41 0.74 0.82 0.4

json− simple→ gson 0.43 0.6 0.11 0.71 0.33 0.8 0.36 0.78 0.27 0.8 0.28 0.8 0.34 0.58

6.3.3 RQ 9: Assessing Similarity Schemes

Tables 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10 and 6.11 depict the impact of using different similarity

schemes to recommend method mappings using multi-objective algorithms. All algorithms achieve
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Figure 6.9: In general, we observe that ED values increase and HV values decrease as the number of

function evaluations increases when using UNSGAIII for rules easymock → mockito and google−
collect → guava. In contrast, the ED values for RNSGAII increase for easymock → mockito,

although the change is not considerably higher. Refer to our replication package for more plots:

http://bit.ly/MOO-api-migration.

the best performance in terms of precision and recall when using the CO scheme compared to using

ALL and MS+DS. However, co-occurrence probabilities are difficult to compute particularly when

the source and target libraries are new and fewer projects have migrated between them resulting



CHAPTER 6. SEARCH-BASED API MIGRATION 90

in a lack of usage data. To examine if method mappings can be recommended in the absence

of CO information, we evaluate an alternative similarity scheme consisting of combined method

(MS) and documentation (DS) similarities. We also evaluate the ALL similarity scheme that

combines CO, MS, and DS to examine if MS+DS information can improve source-target method

Figure 6.10: An example method mapping

selected due to a high MS+DS score for

the rule json − simple → gson. The rec-

ommended target method is incorrect, as a

String object and a JsonObject are incom-

patible. The ‘-’ sign on the left denotes

source library methods (in red) that have

been removed while the ‘+’ sign denotes tar-

get library methods (in green) that have been

added.

Figure 6.11: An example mapping recom-

mended by NSGAII for logging → slf4j.

While the source method does not accept any

parameters, the target method accepts an

argument of the type java.lang.Class. The

method similarity score for this mapping is

high, which leads to its recommendation,

however, the co-occurrence score is 0.The ‘-’

sign on the left denotes source library meth-

ods (in red) that have been removed while

the ‘+’ sign denotes target library methods

(in green) that have been added.

Figure 6.12: An example mapping recommended for testng → junit. Both source and target

methods have similar definitions, apart from the return types and arguments, leading to a high

MS+DS score. While this mapping does not exist in our groundtruth, the target method can be

used as a replacement. The ‘-’ sign on the left denotes source library methods (in red) that have

been removed while the ‘+’ sign denotes target library methods (in green) that have been added.
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Figure 6.13: This figure illustrates the impact of using different weights for method (MS) and

documentation (DS) similarities on UNSGAIII and IBEA precision and recall. We observe that

each algorithm achieves high precision and recall for different weight combinations when considering

method and documentation similarities.

recommendations.

From Tables 6.5 and 6.8, we observe that leveraging method and documentation similarity in the

MS+DS scheme is useful, and can lead to good precision and recall when recommending source-

target method mappings. However, all 7 algorithms do not achieve the highest precision and

recall values when using the MS+DS scheme. This is because multi-objective algorithms may

discover newer, unobserved mappings that are not assigned high fitness scores when using the CO

scheme compared to the MS+DS scheme e.g., as depicted in Figure 6.12. The CO scheme is

derived from our ground truth, which only consists of mappings from our dataset that have been

observed before. Moreover, the MS+DS scheme can assign higher fitness scores to similarly defined

methods as a result of method and documentation similarity calculations leading to more mapping

selections compared to the CO scheme. Figures 6.11 and 6.12 demonstrate that similarities in library

designs and method naming conventions can lead to many more (correct) target methods being

recommended that are absent in the ground truth leading to poor precision and recall. Additionally,

using method similarity can be a source of noise because several source-target method mappings are

assigned low non-zero fitness leading to random selections or false positives that negatively impact

precision, such as in Figure 6.10. Method and documentation similarity can also be difficult to use

for many-to-many mappings. Figure 6.12 depicts an example many-to-many mapping that consists

of “helper” method calls that may not have equivalent replacements across both source and target

libraries resulting in zero or close to zero similarity scores in the MS+DS scheme. As a result,
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search algorithms may not select these mappings. In such scenarios, only the CO scheme would

accurately indicate whether specific “helper” methods are appropriate replacements. Thus, we

make two observations: (a) method signature similarity (MS) results in accurate recommendations

when two libraries have similar design conventions, and (b) using a combination of CO and MS+DS

mappings can result in the discovery of source-target method mappings that have not been observed

in past migrations.

In our previous experiments, we assigned equal weights to both method and documentation simi-

larity. However, when source and target libraries are poorly documented or have different designs,

variable weights should be assigned to documentation and method similarities to maximize avail-

able information about possible method mappings. From Figure 6.13, we observe that the highest

values of precision and recall are obtained using different weight combinations for each migra-

tion rule e.g., UNSGAIII achieves the highest recall using the {MS: 0.1, DS: 0.9} weight scheme

for json − simple → gson (a 28% increase from Table 6.5), and achieves high recall when using

the scheme {MS: 0.5, DS: 0.5} for slf4j − api → log4j. We study the impact of different weight

combinations for each migration rule as follows:

• When considering rules logging → slf4j, google − collect → guava and testng → junit, we

observe that the precision curve does not vary a lot when considering different MS and DS

weighing schemes. However, the recall curve improves considerably as method similarity is

assigned a higher weight. These results suggest that assigning a higher weight to method

signature similarity reduces the number of false negatives and that methods from the source

and target libraries are similarly defined.

• slf4j − api → log4j: While precision values are low when using UNSGAIII and MS+DS,

both precision and recall trends increase as method similarities are assigned more weight. We

also note that the median fitness score is closer to 0 for this rule suggesting that the mappings

in our dataset do not have similar naming conventions or lack documentation.

• easymock → mockito: While precision values are close to 100%, recall values are closer to

50% suggesting that there are a high number of false negatives. These libraries have similar

naming conventions and designs, so the mean and median similarity scores are very close

(within 1%) resulting in high precision but poor ability to identify negatives.

• gson → jackson: For this migration rule, precision improves by approximately 10% when

considering only method similarity, while recall decreases proportionately. So, documentation

similarity results in more incorrect method mappings being chosen as compared to other rules.
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• json → gson: Similar to other migration rules recall steadily improves with an increase in

MS weights. Moreover, the recall curve illustrates that DS similarity scores are important to

correctly identify false negatives. So, for this migration rule, both MS and DS are required

to accurately identify method mappings.

• For the rules commons − lang → slf4j − api and json − simple → gson, assigning higher

weights to documentation similarity results in fewer false positives leading to improved preci-

sion. Moreover, we observe that poor precision and recall are achieved when considering only

method similarity, suggesting that mappings from these libraries do not have similar naming

conventions.

We observe that differences in algorithm performance when using the MS+DS scheme are a result

of dissimilar library designs, naming conventions, and documentation. While the MS+DS scheme

achieves good results in terms of precision and recall, MS and DS weights must be carefully selected

based on distribution statistics e.g., if the mean documentation similarity is 0 and the standard

deviation is low, then DS should be assigned a lower weight as compared to MS. We also note that

the MS+DS scheme can discover method mappings that have not been used before, so it can be use

in conjunction with the CO scheme. We summarize the strengths and weaknesses of using three

similarity schemes in Table 6.12.

6.4 Limitations

• In our experiments, the best precision and recall values are generally observed when using

the CO scheme, which relies on co-occurrence probabilities calculated from data generated

by the developer community. This is similar to using training data to recommend suitable

method mappings. Additionally, the USE network is not trained to handle a mix of code

and natural language. As a result, we cannot include code examples that may be part of the

documentation when calculating the DS score. To address these issues, in the future we will

explore the use of large language models (LLMs) to recommend method mappings.

• In this work, we formulated API migration as an unconstrained, multi-objective search prob-

lem instead of a constrained single-objective problem [56]. However, single-objective algo-

rithms are easier to use for libraries with more one-to-one method mappings because con-

straints may be easy to specify. In contrast, for many-to-many, one-to-many, or many-to-one

mapping cardinalities, it is difficult to define constraint values for single-objective algorithms

as we do not know beforehand how many target methods are required for replacement. So,



CHAPTER 6. SEARCH-BASED API MIGRATION 94

Table 6.12: A summary of the strengths and weaknesses of using each similarity scheme.

Scheme Strengths Weaknesses

CO
Can identify highly “dissimilar”

mappings

Calculating CO requires historical

data, so it may not work for newer

libraries

Can incorporate subtle best prac-

tices and mappings using “wisdom

of the crowd”

Expensive to calculate since it re-

quires train- ing data

MS+DS
Can recommend mappings when

data is un- available e.g., for newer

libraries, and across different lan-

guages and platforms

Only works when both source and

target library designs and naming

conventions are similar

Effective when library designs are

similar and documentation is well-

defined

Can result in lower similarity

scores if libraries and methods do

not have proper documentation

ALL Incorporates MS, DS, and CO so

it can still find mappings if one of

the components is missing

Achieves lower precision and recall

than CO. It may need trial and

error to tune the weight for each

component
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our multi-objective approach should be used by developers to obtain recommendations on a

wider range of mappings, particularly when mapping cardinalities are unknown.

• In this study, we found that search algorithms can also discover novel method mappings with

high fitness scores that have not been observed before. In such cases, precision and recall

values are low because our ground truth does not contain these mappings, leading to a large

number of false positives and negatives. Additionally, these new mappings may need to be

manually validated by developers, which results in a significant overhead. We note that such

validation is necessary for real-world scenarios when leveraging API recommendation tools.

In other terms, the precision and recall values achieved by each algorithm in our experimental

evaluations may improve further after manual validation. Our experiments provide a baseline

for algorithm performance based on the CO scheme and may underestimate the performance

of our approach. However, this limitation will not exist in practice since any recommended

source-target method mappings will be manually validated by developers before incorporating

them into existing software. Also, developers may not intend to change the behavior of the

system when migrating between libraries, and therefore, functional testing can be used to

detect any regressions introduced by newly introduced methods.

• In this work, we have specified both minimum and maximum bounds for hypervolume cal-

culations. Incorrect specifications of these points can lead to erroneous hypervolume values

and, thus, inaccurate conclusions. We have mitigated this threat by deriving the minimum

and maximum for each objective from all generated Pareto fronts. Moreover, we also evaluate

algorithms by calculating Euclidean distance from our groundtruth derived from manually

validated method mappings. However, despite these precautions, due to factors such as newly

found method mappings, these calculations could contain errors that are not possible to know

beforehand. In practice, when using our approach, developers will be able to calculate hyper-

volume, but will not be able to calculate Euclidean distance as a groundtruth is unavailable.

6.5 Chapter Summary

We formulate third-party library migration at the method-level as a combinatorial optimization

problem. We evaluated a single-objective genetic algorithm (GA) and 7 popular multi-objective

algorithms - UNSGAIII, RNSGAII, AGEMOEA, SMSEMOA, NSGAII, IBEA and MOEAD - to

recommend source-target method mappings across 9 library pairs. Our experiments demonstrate

that (a) GA outperforms random search and hill-climbing, and (b) multi-objective optimization

further improves recommendation quality to outperform RAPIM and GA in terms of precision and
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recall. Moreover, we examine the benefits of using three different similarity schemes - co-occurence

probability, method and documentation similarity, and a combination of all three. Additionally,

we make our code and results publicly available at: http://bit.ly/MOO-api-migration.



Chapter 7

Algorithm Selection for Search-Based

Third-Party Library Migration at the

Method-Level

Having demonstrated the positive impact of using multi-objective metaheuristic algorithms in Chap-

ter 6, we now examine if these algorithms exhibit complementary performance on API migration

instances. To reduce developer effort, our primary goal is to ensure that our approach recommends

target APIs with high precision. Based on our results from the previous chapter, we observe that

all algorithms do not uniformly achieve the highest precision, recall, HV and ED when recommend-

ing for all migration rules. That is, metaheuristic performance varies by migration rules and their

underlying fitness distribution. In this chapter, we explore metaheuristic variability further and

demonstrate the potential benefits of using an algorithm selection approach for API migration. To

the best of our knowledge, the impact of algorithm selection for API migration has not been studied

before.

7.1 Methodology

In this study, we identify the variability in algorithm behavior on different migration instances and

demonstrate the complementary performance of search algorithms for API migration. To achieve

our goal, we generate a dataset of 7,200 API migration instances and examine the variability of 5

metaheuristic algorithms. We generate a labeled dataset that is used to train classifiers to predict
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a suitable algorithm for each migration instance.

7.1.1 Dataset generation

Our previous experiments in Chapter 6 compared the performance of various metaheuristic algo-

rithms on one set (instance) of randomly sampled method mappings for each migration rule. Using

a single set of mappings for each migration rule allowed us to compare algorithms fairly without

introducing variations in the underlying fitness distribution or search space. However, in this study,

our goal is to explicitly study how algorithm performance varies for diverse search spaces. As a re-

sult, we randomly sample multiple sets of method mappings for each each. Specifically, we generate

400 random instances for each migration rule with varying numbers and cardinalities of method

mappings. Furthermore, our sampling procedure includes both correct and incorrect method map-

pings so that we can test the precision and recall of each algorithm. The correctness of a mapping is

determined by checking whether a specific source-target method pair exists in our manually curated

dataset of Java mappings. In other terms, a source and target method pair is considered correct

if it co-exists in our dataset of mappings scraped from 5̃7,000 projects. Since the CO scheme also

calculates fitness based on the co-occurrence of source-target method pairs, all algorithms achieve

the highest precision, recall, ED, and HV when using the CO scheme. So, we use the CO scheme to

study the variability in algorithm performance because it provides the most accurate assessment.

We also examine the impact of algorithm selection using the MS+DS scheme (method and doc-

umentation similarity). This configuration results in a dataset of 400 × 9 × 2 = 7, 200 different

migration instances with varied search landscapes.

7.1.2 Metrics Used

In addition to the metrics used to study different metaheuristic algorithms in the previous chapter,

we record the execution time (in seconds) for each algorithm. We present a brief overview of all

the metrics used in this study as follows:

• Runtime: In search-based API migration, our goal is to build automated tools that rec-

ommend fewer, and correct API mappings when performing software library migration. De-

veloper tools are frequently incorporated in integrated development environments (IDEs) to

facilitate real-time recommendations. As a result, we aim to recommend mappings accurately

and efficiently so that developers can incorporate suggested code changes during program-

ming. So, we record the time in seconds required by each algorithm to recommend suitable

mappings.
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• Precision: Precision measures the ratio of correctly identified method mappings to the

number of recommended mappings (true and false positives).

• Recall: Recall measures the ratio of correct (true positives) and incorrect (false negatives)

mappings that were accurately identified.

• Euclidean Distance (ED): The Euclidean distance indicator calculates the distance of a

solution from the ‘groundtruth’. The ‘groundtruth’ is calculated by referencing our dataset

of 5̃7,000 manually curated mappings. That is, if a source-target method pair exists in our

dataset of Java mappings, it is correct, otherwise it is considered incorrect. As a result, this

metric generally has higher values when using the co-occurrence (CO) scheme since similarity

is calculated using co-occurrence in our dataset.

• Hypervolume (HV): The hypervolume indicator evaluates the quality of the entire set of

generated solutions. It is calculated using the best and worst possible values for each objective

(here, the number and fitness of recommended mappings). Similar to ED calculations, the

best and worst objective values are also informed by our 5̃7,000 Java method mappings.

7.2 Algorithms Used

Based on our results from Chapter 6, we study the variability of UNSGAIII, RNSGAII, NSGAII,

AGEMOEA and SMSEMOA on the instances from our dataset. MOEAD is excluded from this

study due to its relatively poor precision for API migration as noted in Chapter 6. Furthermore,

we leverage the PyMOO framework that contains optimized implementations of these algorithms

for accurate comparison. So, IBEA is also excluded as it is not implemented in PyMOO, and using

a different framework could lead to an unfair comparison particularly when considering runtime.

7.2.1 Features considered

We begin by characterizing each API migration instance that serve as inputs to our classifiers that

predict a suitable algorithm. Each migration instance is characterized using a pre-determined set

of features that provide essential context. We adapt features from our previous work on service

composition in Chapter 4 to API migration and include information about the fitness distribution

for each API migration instance. The features are:

1. Characterizing the size of each migration instance: We record the total number of

source and target methods considered in each migration instance. As each migration instance
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consists of randomly generated source-target mappings, we study how algorithm performance

changes with search space size.

2. Computational resources: We record the execution time (in seconds) for each algorithm

are recorded, with the goal of providing accurate and efficient API mappings to developers.

Additionally, to accurately predict computational resource usage and characterize the fitness distri-

bution for each migration instance, we adapt node characteristic features from [75]. These features

characterize the search space an algorithm must explore and its complexity.

1. Characterizing each source method’s fitness distribution: For each source library

method that needs to be replaced, we characterize the fitness distribution of potential target

methods that can be used for replacement. More specifically, we measure the mean, variation

coefficient and skew fitness value for each potential target library method that can be used

for replacement. For example, consider we need to replace 5 source methods using one of 5

target methods for each source method. So, for each source method we will record the mean,

variation and skew for the 5 target methods that can potentially be used for replacement.

2. Centroids of fitness distribution: In addition to the characteristics above, we also calcu-

late the centroid of the fitness distribution for all target methods being considered to replace

each source method.

3. We also record the worst fitness value for each set of target methods that can be used to re-

place different source methods. These features, in addition to the ones above, provide insights

about the search space in which different metaheuristic algorithms search for solutions [76].

7.2.2 Algorithm Selection Optimization Function

Next, we formulate the optimization problem governing the precision and runtime trade-off when

leveraging algorithm selection for API migration. We assume that there is a pre-determined set

of complementary metaheuristic algorithms. That is, different algorithms in our set outperform

each other on specific migration instances [75, 76]. A suitable algorithm is selected from a subset

denoted as CASet = {CASet0, CASet1, . . . CASetj}, wherein each metaheuristic algorithm com-

putes solutions with high precision using variable time timej resources. Each algorithm in CASet

must achieve high precision, that is, we only consider those algorithms that achieve precision within

5% of the best precision achieved by all algorithms in ASet. We use 5% as a constraint because
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all algorithms achieve similarly high precision values. In fact, even our SBS (UNSGAIII) achieves

up to 4% less precision on average compared to the best algorithm. By doing so, we ensure that

all selected algorithms generate high-quality solutions while also considering the execution time

of different algorithms. Our goal is to select an algorithm that recommends mappings with high

precision while minimizing execution time.

argminjϵCASet min(timej) (7.1)

where CASet = {algo ϵ ASet | |precalgo −M | ≤ 0.05M} (7.2)

where M = max({preck | kϵASet}) (7.3)

and ASet = {UNSGAIII, RNSGAII, NSGAII, AGEMOEA, SMSEMOA} (7.4)

This optimization problem is solved for each migration instance that is associated with the fitness

features that we described above. We record the precision achieved and time timej required by

each algorithm to generate high-quality solutions. The best suited algorithm jϵCASet achieves high

precision | precalgo − M | ≤ 0.05M while using the least amount of timej . We note here that

achieving high precision is a necessary but not sufficient condition to be considered for selection.

7.2.3 Classifiers Evaluated

In this work, we leverage classifiers to predict a suitable algorithm for each migration instance. We

use classification techniques to learn decision boundaries for migration instances and correctly select

algorithms for similar migration instances. Each migration instance is assigned a label correspond-

ing to different algorithms used in this study. We compare the precision achieved and time used by

each algorithm and use the algorithm selection optimization function to guide our labeling process.

A classification approach allows us to incorporate human input and learn decision boundaries ac-

cording to specific preferences. We train each classifier using a subset of our dataset, corresponding

to previously solved migration instances. The algorithm that can recommend method mappings

with high precision while using the least amount of time is the most suitable algorithm for a specific

migration instance.

We use features similar to those in Chapter 4 to characterize each migration instance and study

the variability of algorithm performance on 7,200 API migration instances. We focus on features

that characterize the search space to improve accuracy as described earlier. So, we evaluate the

performance of classifiers on our expanded dataset and demonstrate the benefits of using these

features when profiling algorithm performance.
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7.2.4 Comparative Approaches

We compare our algorithm selection-based API migration approach to two baselines from the

algorithm selection literature described in Chapter 4. We restate these baselines for ease of reference

as follows:

• Single Best Selector (SBS): The single best selector corresponds to using a single algorithm

for all migration instances. For any algorithm selection approach to be considered useful, the

SBS must be outperformed. In this study, we set the SBS to UNSGAIII as it achieves high

precision and recall compared to other algorithms.

• Virtual Best Selector (VBS): The virtual best selector corresponds to a perfect selector

that always selects the ‘right’ algorithm for each problem instance. In API migration, the

‘right’ algorithm recommends mappings with high precision and minimizes runtime. The

VBS corresponds to the labels in our API migration dataset.

7.3 Results

Our goal is to demonstrate select a suitable algorithm from a complementary set for each API migra-

tion instance such that we minimize runtime while recommending source-target method mappings.

We evaluate the efficacy of our approach using two research questions:

• RQ 10: How does UNSGAIII, RNSGAII, NSGAII, AGEMOEA and SMSEMOA performance

vary across migration instances with different sizes and fitness distributions? We demonstrate

that UNSGAIII, RNSGAII, NSGAII, AGEMOEA and SMSEMOA exhibit complementary

performance on various API migration instances.

• RQ 11: What is the impact of selecting a different metaheuristic algorithm for specific mi-

gration instances? By selecting different algorithms for specific API migration instances, we

recommend method mappings with high precision and reduce time usage by 12.5%.

7.3.1 RQ 10: Variability of Search Algorithms for API Migration

Table 7.1 depicts the mean precision, recall, ED, HV achieved by each of the algorithms used

in our study. Additionally, we also record the execution time of each algorithm. We report the

mean metrics for all algorithms using CO and MS+DS schemes. We observe that all algorithms
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Table 7.1: Comparing the mean metrics achieved by UNSGAIII, RNSGAII, NSGAII, AGEMOEA,

SMSEMOA using the CO and MS+DS similarity schemes. All algorithms achieve relatively hgh

precision and similar ED and HV values. RNSGAII achieves comparatively higher ED and HV

values, and we observe that there is variability in runtime performance.

Algorithm Precision Recall Runtime (s) ED HV

UNSGAIII 0.85 0.91 513.22 0.12 0.42

RNSGAII 0.80 0.48 500.13 0.31 0.66

NSGAII 0.80 0.61 494.35 0.18 0.56

AGEMOEA 0.80 0.63 540.25 0.16 0.52

SMSEMOA 0.81 0.62 557.79 0.20 0.52

achieve similarly high levels of precision and HV, and low ED values across all migration rules.

RNSGAII is an exception because it achieves high precision and high ED, with relatively poor

recall. Additionally, we observe differences in algorithm runtime despite similarities in precision

and some recall values.

Based on these observations, we generate labels for our dataset using the optimization function

discussed in Section 7.2.2. Table 7.3 depicts the label distribution of our dataset. For each mi-

gration instance in our dataset, we first generate a list of algorithms that recommend method

mappings within 5% of the best possible precision. We then label the instance with the algorithm

that recommends mappings using the least amount of time. From Table 7.3, we observe that NS-

GAII and UNSGAIII are the most frequently selected algorithms, followed by RNSGAII. However,

AGEMOEA and SMSEMOA are selected for considerably fewer instances. In fact, SMSEMOA

and AGEMOEA are selected for only 3.4% and 6.3% of the instances in our dataset. As a result,

we have an imbalanced dataset that may lead to inaccurate selections for classes that have fewer

datapoints. We describe the classifiers used and training routine used to train algorithm selectors

in the next subsection.

We study algorithm performance further using our labeled dataset and the feature set outlined

in 7.2.1. In particular, we analyze features of migration instances labeled for each algorithm and

make the following observations:

• We observe that UNSGAIII is selected uniformly for all migration rules, and NSGAII is

selected more for slf4j−api→ log4j, google−collect→ guava, commons−lang → slf4j−api
and json−simple→ gson. In contrast, RNSGAII is rarely used for google−collect→ guava

and AGEMOEA is selected at a relatively lower rate at slf4j−api→ log4j, google−collect→
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guava and json− simple→ gson.

• We also note that AGEMOEA is usually selected for those migration instances with a larger

number of method mappings, whereas SMSEMOA is selected for smaller search spaces. In

general, the instances that SMSEMOA solves efficiently have the highest fitness values with

low variation coefficient and skew. Additionally, we also note that UNSGAIII is frequently

selected for those migration instances with a smaller number of mappings. Additionally,

NSGAII and RNSGAII are selected uniformly across different search space sizes.

• We observed that UNSGAIII and AGEMOEA have the lowest mean fitness compared to

RNSGAII, SMSEMOA and NSGAII. Additionally, instances labeled for UNSGAIII have the

second lowest mean variation coefficient suggesting that the fitness values for these instances

do not vary as much as for the other algorithms. That is, the fitness landscape is comparatively

more uniform for those instances labeled as UNSGAIII. In contrast, AGEMOEA instances

have the highest variation coefficient values, followed by RNSGAII and NSGAII.

• The mean fitness skew for AGEMOEA is highest, followed by RNSGAII, then NSGAII and

UNSGAIII with similar values, and SMSEMOA has the lowest skew fitness. This suggests

that AGEMOEA fitness landscapes are relatively more complex compared to SMSEMOA,

and UNSGAIII.

Table 7.2 and Figures 7.1 and 7.2 illustrate the potential for using an algorithm selection approach.

Figure 7.2 depicts the precision achieved when using the SBS and VBS on a log scale. We observe

that all points are close to the diagonal meaning that both approaches achieve high precision and

there is very little variation precision achieved by the SBS and VBS. In contrast, we observe from

Figure 7.1 that a considerable portion of migration instances (in the bottom left corner) solved by

the SBS use more time resources compared to the VBS selections as they are positioned further

away from the diagonal. As a result, we can reduce time resource usage with little or no precision

loss using an algorithm selection approach.

Based on our feature analysis and observations about SBS and VBS performance, we conclude that

UNSGAIII, RNSGAII, NSGAII, AGEMOEA and SMSEMOA exhibit complementary performance.

That is, different algorithms should be selected for specific API migration instances. In the next

subsection, we evaluate the benefits of an algorithm selection approach for API migration.
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Table 7.2: Comparing SBS, algorithm selection and VBS precision, recall, ED, HV and runtime

using the CO similarity scheme. This table presents the mean values for each metric. All approaches

achieve similarly high precision and there is a difference of approximately 25 seconds between SBS

and VBS performance.

Method Precision Recall Runtime (s) ED HV

VBS 0.87 0.71 489.89 0.20 0.59

AlgoSelect 0.86 0.73 495.37 0.19 0.56

SBS 0.85 0.91 515.29 0.12 0.42

Figure 7.1: The gap between execution time using SBS and VBS selections is considerable. VBS

can recommend source-target method mappings fasteras compared to SBS.

Figure 7.2: The gap in precision achieved by the SBS and VBS is negligible. Both the SBS and

VBS can recommend source-target method mappings with the high precision
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Table 7.3: Algorithm label distribution for 7,200 API migration instances. Each instance is labeled

with the algorithm that recommends method mappings with high precision while minimizing time

usage.

Algorithm Labels

NSGAII 2330

UNSGAIII 2286

RNSGAII 1885

AGEMOEA 456

SMSEMOA 243

7.3.2 RQ 11: Algorithm Selection for API Migration

Table 7.4 illustrates that a random forest classifier achieves the highest accuracy and F1-score when

predicting search algorithms for migration instances. We repeat 5 fold cross-validation 10 times

and report the average. Additionally, we use an 80/20 train-test split and perform a grid search

to determine the best set of hyperparameters for each classifier. From Table 7.4, we observe that

random forest and decision tree achieve the highest accuracy, followed by k nearest neighbors. These

findings suggest that the decision boundaries between classes are highly non-linear, indicating a

complex relationship between our features and labels.

Figure 7.3 depicts the efficacy of our trained random forest classifier when selecting an algorithm

for each migration instance. We observe that a majority of UNSGAIII and NSGAII instances

are correctly identified. However, AGEMOEA, RNSGAII and SMSEMOA instances are frequently

misclassified. We tested a one-vs-one training routine to assess if it improves random forest accuracy

particularly for classifying AGEMOEA and SNSEMOA instances. However, we did not observe a

significant increase in accuracy, precision, recall or F1-score values.

Figures 7.5, 7.4 and 7.6 illustrate the loss of precision when using our random forest classifier and

the time used by SBS, random forest selected algorithms and the VBS to find suitable method

mappings. We evaluate the time required by each approach in Figure 7.4 where the SBS and VBS

plots have noticeably different shapes, highlighting the potential for improvement. From Table 7.5,

we note that the mean computation time is reduced by 19.9 seconds and the median time by 20.2

seconds without considerable loss in precision. In fact, based on the plot in From Figure 7.5, we

note negligible precision loss when using our algorithm selection approach. We also evaluate the

time reduced using algorithm selection on test instances that were not labeled as UNSGAIII. Such

an analysis allows us to assess if more time is saved on instances best solved by other algorithms

that are not the SBS. Figure 7.6 illustrates the benefits of using algorithm selection on instances
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Table 7.4: We compare classifier accuracies and observe that a random forest classifier selects

algorithms that recommend mappings with high precision and minimize time.

Classifier Accuracy F1-score Precision Recall

Random Forest 0.61 0.6 0.6 0.61

SVM - rbf 0.5 0.48 0.48 0.5

MLP 0.51 0.48 0.48 0.51

Decision Tree 0.58 0.57 0.57 0.58

kNN 0.53 0.51 0.52 0.53

Logistic Regression 0.49 0.47 0.46 0.49

SVM Sigmoid 0.45 0.43 0.44 0.45

Naive Bayes 0.16 0.16 0.29 0.16

QDA 0.4 0.37 0.44 0.4

Table 7.5: Using a random forest classifier to select evolutionary algorithms reduces recommenda-

tion time while suggesting mappings with high precision

Method Mean Precision Mean Time(s) Median Precision Median Time (s)

VBS 0.87 489.89 1.0 457.65

Algo Select 0.86 495.37 1.0 462.66

SBS 0.85 515.29 1.0 482

best solved by algorithms other than the SBS. On non-SBS instances, the mean time reduced is

61.95 seconds and the median time reduced is 55.48 seconds. In other terms, time savings are

considerably higher when an algorithm other than the SBS needs to be selected for API migration

instances. So, we conclude that algorithm selection can reduce mean time usage by up to 12.5%

for all API migration instances while achieving high precision.

7.4 Discussion and Future Work

• In this work, we generate 7,200 migration instances by randomly sampling a manually curated

dataset of Java mappings for 9 migration rules. However, the range of search spaces evaluated

in our API migration work is not as extensive as our service composition dataset. As a result,

the benefits of our approach have not been tested on other programming languages (e.g.,

python) and migration rules with more source and target library methods. In the future,

we will evaluate our approach for other programming languages and frameworks to generate

varied search spaces with more mappings and migration rules.
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Figure 7.3: A random forest classifier achieves 61% accuracy. However, it frequently mis-classifies

AGEMOEA and RNSGAII instances.

Figure 7.4: Both VBS and algorithm selection approaches reduce the time taken by each algorithm

to recommend API mappings. Note that this graph is generated on our test set, which is 20% of

our training data.
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Figure 7.5: Mean precision loss when using algorithm selection is 0%. This figure depicts the

distribution of precision loss over our test instances, which is minimal.

Figure 7.6: 52% of our test instances use the same algorithm as the SBS. On the other 42% instances

that use a different algorithm, the mean time saved is considerably higher at 61 seconds.
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• We leverage evolutionary algorithms to recommend one-to-one, one-to-many, many-to-one

and many-to-many method mappings. More specifically, we recommend replacements for

individual API calls and do not consider additional changes that may need to be made to the

surrounding code e.g., the addition of ‘helper’ methods to process the output. In the future,

we plan to leverage Large Language Models (LLMs) to expand the scope of our approach and

recommend changes to the entire source code snippet during library migration.

• We observed that ED and HV indicators were correlated to the precision achieved by each

evolutionary algorithm. As a result, we consider precision and runtime when recommending

suitable algorithms for API migration instances. However, there may be other indicators that

can be used to assess the quality of generated solutions without referencing the ‘groundtruth’.

In the future, we plan on including indicators to measure convergence and solution quality

when recommending algorithms for API migration.

7.5 Chapter Summary

In this chapter, we demonstrated that UNSGAIII, RNSGAII, NSGAII, AGEMOEA, and SMSE-

MOA exhibit complementary performance and are preferred for specific API migration instances.

More specifically, each algorithm achieves high precision and requires variable time resources to

recommend source-target method mappings. We generate a dataset of 7,200 API migration in-

stances by randomly sampling a popular dataset consisting of manually curated mappings from 9

popular library migrations collected from 57,447 open-source Java projects [12]. Our experimental

evaluations demonstrate that our approach reduces time usage by up to 12.5% while recommending

method mappings with high precision.



Chapter 8

Summary

8.1 Research Contributions

Search-based software engineering (SBSE) commonly employs heuristic algorithms to accurately

and efficiently evaluate numerous software configurations and find solutions that fulfill user require-

ments. Assessing different configurations is challenging because solutions must balance multiple

conflicting functional ( e.g., accuracy) and non-functional ( e.g., execution time) objectives. To

address these challenges, current approaches have leveraged various heuristic algorithms to solve

diverse software engineering problems such as test case generation, web service composition, eval-

uating architectural configurations etc. Each heuristic algorithm provides near-optimal solution

quality guarantees and uses variable amounts of computational resources to find suitable solutions.

As a result, it is difficult to determine which heuristic algorithm to use for a software engineering

problem.

Recent work in algorithm selection has demonstrated that different algorithms outperform each

other on specific instances of a problem, that is, heuristic algorithms exhibit complementary per-

formance in terms of solution quality and computational resource usage. However, current SBSE

approaches do not leverage this complementary performance property, and use a single heuristic

algorithm to solve all instances of a problem resulting in several inefficient solutions in terms of

computational resource usage and solution quality. In this thesis, our goal is to assist practitioners

in building and maintaining effective and efficient software by providing automated, fine-grained

search algorithm recommendations when employing SBSE techniques. We demonstrate that by se-

lecting a different algorithm from a complementary set for each problem instance, our algorithm

111
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selection-based approach can considerably reduce computational resource usage while delivering

high-quality solutions.

We demonstrate the benefits of leveraging algorithm selection for two software engineering prob-

lems: web service composition and third-party software library migration. Our work on web service

composition builds on existing work to propose an algorithm selection framework, R-CASS, to fulfill

non-functional QoS requirements by re-selecting web services at runtime. To evaluate the efficacy

of our approach, we created a dataset of 6,144 service composition instances and demonstrated the

complementary performance of 4 popular service composition algorithms. We leverage classifiers

and contextual multi-armed bandits to predict algorithm performance with up to 74% accuracy.

Our experimental evaluations demonstrate that our approach reduces composition time and mem-

ory by up to 55% and 37.5% while fulfilling QoS requirements.

In contrast to service composition, heuristic algorithms have not been used to address API migra-

tion before. As a result, our first study on API migration analyzes the impact of using evolutionary

algorithms for API migration on a popular dataset of 57,447 manually curated method mappings

from 9 popular Java library pairs on GitHub. Our experimental evaluations show that leveraging

multi-objective algorithms is beneficial in recommending APIs with up to 94% precision and 83%

recall. Our subsequent study examines the variability of 5 multi-objective evolutionary algorithms

on 7,200 randomly sampled API migration instances. We find that heuristic algorithms vary in

terms of execution time and recommend API mappings with high precision. Our approach uses

classifiers to select different evolutionary algorithms for specific API migration instances and re-

duces recommendation time by up to 12.5% while achieving high recommendation precision. We

summarize the contributions of our work as follows:

• Contribution to SBSE: We developed fine-grained algorithm recommendation tools for two

search-based software engineering applications. Specifically, we leverage algorithm selection

to recommend different algorithms for specific problem instances. Our approach reduces

computational resource usage while delivering high-quality solutions.

• Contribution to Algorithm Selection: Our work also contributes to algorithm selection

and evolutionary computation literature. We study the variability of algorithm performance

and detail the challenges of leveraging evolutionary algorithms for two SBSE applications.

• Contribution to Service-Oriented Systems: Our work on self-adaptive service-oriented

systems leverages algorithm selection as an adaptation tactic to efficiently fulfill user re-

quirements at runtime. Using our algorithm selection-based approach, we are able to reduce
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composition time and memory significantly while fulfilling QoS requirements. Additionally,

we also make our dataset publicly available to promote further research in this area.

• Contribution to API Migration: Our first contribution to API migration is devising a

generalizable evolutionary algorithm-based approach to recommend method mappings with

high precision. Notably, our approach can recommend algorithms across platforms and pro-

gramming languages, and does not require extensive training routines. Our second con-

tribution is to study the impact of selecting different algorithms for various API migration

instances. In particular, we leverage classifiers to select algorithms for a large dataset of 7,200

migration instances. By harnessing the complementary strengths of different algorithms, our

approach recommends method mappings with high precision and reduces execution time by

up to 12.5%.

8.2 Future Work

Numerous heuristic approaches with variable solution quality guarantees have been proposed in the

SBSE literature. Coupled with the variability in heuristic algorithm performance, determining the

right heuristic algorithms for a specific SE problem is a challenge for software practitioners. Our

work aims to mitigate this challenge using algorithm selection to assist practitioners in construct-

ing efficient and effective software systems with multiple conflicting requirements. We note that

determining the right heuristic algorithms for SBSE problems is a challenging, interdisciplinary

problem that spans software engineering, optimization and AI. Although our work has taken the

first steps to address this challenge, we hope that future work continues to build on our research.

Some promising directions for future research include but are not limited to:

• Algorithm Selection as an Adaptation Tactic: In R-CASS, we dynamically adapt

service-oriented applications by using different algorithms to select web services at runtime.

In the future, we plan to evaluate the impact of using our framework for other cyber-physical

systems e.g., in robot coordination. A significant challenge when adopting heuristic algo-

rithm selection is verifying and validating that recommended algorithms always find suitable

configurations, particularly for critical applications. However, the inherent stochasticity of

heuristic algorithms may make it difficult to prove theoretical bounds. In the future, we plan

to study verification techniques for algorithm selection as an adaptation strategy.

• Combining Heuristic Search with LLMs: Large Language Models (LLMs) are powerful

tools that can process text, code and image data for varied natural language processing
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tasks. More specifically, these tools can be used to understand code-related tasks such as

API migration. Since LLMs are trained on large datasets of previously seen migrations,

they can be used to accurately recommend target APIs across programming languages and

frameworks. We note that our work on API migration was conceptualized before LLMs were

widely available. So, in the future, we plan to explore how our heuristic algorithm-based

approach can benefit from using LLMs particularly for API migration.

• Automated Algorithm Design: Heuristic algorithm performance can vary considerably

due to specific hyperparameter values [22]. In our work on web service composition, we did not

have to perform hyperparameter tuning because previous work had already tuned each com-

position algorithm used in our study. However, for API migration, we expended considerable

effort to tune each evolutionary algorithm. However, predicting the best hyperparameters

for each instance is an open research challenge. Recent work [22, 23] has proposed the use

of data-driven techniques to derive algorithm performance guarantees for problem domains.

In the future, we plan to leverage this work for the joint selection of algorithms and their

hyperparameters to ensure the best search performance.
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Appendices

A.1 Details of Source and Target Library Pairs

Table A.1: This table depicts the number of source and target library method mappings available

for each of the 9 migration rules used in this study. The number of source-target method mappings

to be evaluated grows exponentially by mn, where m is the number of source and n is the number

of target library methods. For our experiments, we randomly sample source and target library

methods to create a dataset with correct and incorrect mappings.

Source → Target Source library methods Target library methods

commons-logging → slf4j 260 586

slf4j-api → log4j 586 2021

easymock → mockito 2211 2265

google-collect → guava 2746 1952

gson → jackson 877 2328

testng → junit 3678 1429

json → gson 332 877

commons-lang → slf4j-api 2211 586

json-simple → gson 94 2328
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Table A.2: Precision and recall obtained using the CO scheme when tuning hyperparameters. We

leverage a grid-search for tuning algorithms from the MOEA framework.
0cm

.

Precision Recall

Migration Rule (↓) NSGAII IBEA MOEAD NSGAII IBEA MOEAD

logging → slf4j 0.71 0.71 0.7 0.5 0.5 0.49

slf4j − api→ log4j 0.51 0.53 0.46 0.6 0.6 0.54

easymock → mockito 0.86 0.87 0.86 0.5 0.5 0.49

google− collect→ guava 0.14 0.15 0.13 0.66 0.67 0.58

gson→ jackson 0.59 0.6 0.55 0.54 0.54 0.5

testng → junit 0.31 0.31 0.29 0.51 0.51 0.5

json→ gson 0.33 0.33 0.31 0.53 0.54 0.51

commons− lang → slf4j − api 0.71 0.72 0.67 0.53 0.54 0.5

json− simple→ gson 0.47 0.49 0.4 0.68 0.71 0.6

Table A.3: Precision and recall obtained using the MS+DS scheme when tuning hyperparameters.

We leverage a grid-search for tuning algorithms from the MOEA framework.
0cm

.

Precision Recall

Migration Rule (↓) NSGAII IBEA MOEAD NSGAII IBEA MOEAD

logging → slf4j 0.7 0.7 0.69 0.5 0.5 0.49

slf4j − api→ log4j 0.38 0.38 0.38 0.47 0.48 0.47

easymock → mockito 0.86 0.86 0.86 0.5 0.5 0.49

google− collect→ guava 0.12 0.12 0.11 0.56 0.57 0.53

gson→ jackson 0.52 0.52 0.52 0.49 0.49 0.48

testng → junit 0.3 0.3 0.29 0.51 0.51 0.5

json→ gson 0.3 0.31 0.3 0.5 0.5 0.49

commons− lang → slf4j − api 0.64 0.64 0.64 0.49 0.49 0.48

json− simple→ gson 0.37 0.39 0.35 0.61 0.62 0.56

A.2 Additional Results from Tuning Experiments

Tables A.2, A.3 and A.4 depict the best precision and recall values obtained by NSGAII, IBEA,

and MOEAD using a grid search. We evaluate 25 combinations of the crossover and mutation rates

for each similarity scheme (CO, MS+DS, ALL). Additionally, we define 5000 evaluations as the

termination condition for our hyperparameter tuning experiments. In particular, we select different

rates belonging to [0.2,0.4,0.6,0.8,1.0]. Our evaluations demonstrate that precision and recall do
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Table A.4: Precision and recall obtained using the ALL scheme when tuning hyperparameters. We

leverage a grid-search for tuning algorithms from the MOEA framework.
0cm

.

Precision Recall

Migration Rule (↓) NSGAII IBEA MOEAD NSGAII IBEA MOEAD

logging → slf4j 0.7 0.7 0.69 0.5 0.5 0.49

slf4j − api→ log4j 0.38 0.38 0.38 0.48 0.48 0.47

easymock → mockito 0.86 0.86 0.86 0.5 0.5 0.49

google− collect→ guava 0.12 0.12 0.11 0.56 0.57 0.53

gson→ jackson 0.53 0.53 0.52 0.5 0.5 0.48

testng → junit 0.3 0.3 0.29 0.51 0.51 0.5

json→ gson 0.31 0.31 0.3 0.5 0.5 0.49

commons− lang → slf4j − api 0.66 0.67 0.65 0.5 0.5 0.48

json− simple→ gson 0.41 0.43 0.37 0.67 0.68 0.58

not vary significantly for different hyperparameter values, and remain stable. We observe that

increases in precision values result in a decrease in recall and vice versa. This behavior is expected

as recall values are higher when more method mappings are selected because more false positives

are identified leading to a simultaneous decrease in precision.

For UNSGAIII, RNSGAII, AGEMOEA, and SMSEMOA, we determine the impact of different

mutation and crossover rates using a tree parzen estimator (TPE) provided by the PyMOO library.

Similar to our tuning experiments with algorithms implemented with the MOEA framework, we set

the maximum number of function evaluations to 5000. We use the TPE estimator because it is a

popular Bayesian optimization technique that is more efficient than a grid search. Tables A.5, A.6

and A.7 depict the best precision and recall obtained after hyperparameter tuning for all three sim-

ilarity schemes. We note that there are some changes in precision and recall, however, the average

precision and recall are similar across all migration rules. We also note that the relative perfor-

mance of all algorithms does not change considerably. Based on these observations, we conclude

that using the default values for mutation and crossover rates is a good starting point. Moreover,

in practice, the groundtruth bitstring required for computing precision, recall, and Euclidean dis-

tance is not available or known beforehand. Thus, to provide a fair assessment of our approach to

practitioners and based on observations from our tuning experiments, we set the mutation rate to

0.1 and the crossover rate to 1.0 for all algorithms.
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Table A.5: Precision and recall obtained using the CO scheme. We tune the crossover and mutation

rate using a tree parzen estimator (TPE) provided by the PyMOO framework.

.

Precision Recall

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA UNSGAIII RNSGAII AGEMOEA SMSEMOA

logging → slf4j 0.99 0.99 1.00 0.99 0.58 0.20 0.37 0.39

slf4j − api→ log4j 1.00 1.00 1.00 1.00 1.00 0.11 0.60 0.77

easymock → mockito 0.95 0.95 0.95 0.94 0.48 0.32 0.40 0.42

google− collect→ guava 1.00 0.99 1.00 1.00 1.00 0.14 0.90 0.92

gson→ jackson 1.00 0.99 1.00 1.00 1.00 0.10 0.54 0.55

testng → junit 0.64 0.62 0.64 0.58 0.75 0.44 0.64 0.64

json→ gson 0.78 0.82 0.81 0.73 0.85 0.49 0.70 0.72

commons− lang → slf4j − api 1.00 1.00 1.00 1.00 1.00 0.12 0.52 0.60

json− simple→ gson 1.00 1.00 1.00 1.00 1.00 0.22 0.60 0.61

Table A.6: Precision and recall obtained using the MS+DS scheme. We tune the crossover and

mutation rate using a tree parzen estimator (TPE) provided by the PyMOO framework.
0cm

.

Precision Recall

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA UNSGAIII RNSGAII AGEMOEA SMSEMOA

logging → slf4j 0.76 0.84 0.80 0.81 0.60 0.28 0.45 0.44

slf4j − api→ log4j 0.22 0.43 0.19 0.18 0.41 0.13 0.18 0.17

easymock → mockito 0.91 0.92 0.92 0.92 0.51 0.34 0.43 0.44

google− collect→ guava 0.23 0.52 0.29 0.28 0.61 0.36 0.59 0.60

gson→ jackson 0.59 0.55 0.56 0.57 0.52 0.10 0.32 0.36

testng → junit 0.38 0.42 0.39 0.39 0.65 0.45 0.55 0.56

json→ gson 0.38 0.41 0.39 0.38 0.48 0.28 0.38 0.41

commons− lang → slf4j − api 0.69 0.71 0.76 0.74 0.57 0.09 0.30 0.32

json− simple→ gson 0.42 0.76 0.55 0.51 0.80 0.60 0.74 0.76

Table A.7: Precision and recall obtained using the ALL scheme. We tune the crossover and mutation

rate using a tree parzen estimator (TPE) provided by the PyMOO framework.
0cm

.

Precision Recall

Migration (↓) UNSGAIII RNSGAII AGEMOEA SMSEMOA UNSGAIII RNSGAII AGEMOEA SMSEMOA

logging → slf4j 0.76 0.84 0.81 0.81 0.60 0.27 0.45 0.44

slf4j − api→ log4j 0.32 0.41 0.24 0.20 0.66 0.13 0.26 0.20

easymock → mockito 0.92 0.92 0.92 0.92 0.52 0.34 0.43 0.44

google− collect→ guava 0.27 0.59 0.29 0.27 0.77 0.40 0.60 0.60

gson→ jackson 0.63 0.68 0.59 0.60 0.63 0.12 0.33 0.36

testng → junit 0.38 0.42 0.40 0.39 0.65 0.45 0.55 0.56

json→ gson 0.38 0.42 0.41 0.39 0.49 0.29 0.40 0.43

commons− lang → slf4j − api 0.82 0.96 0.82 0.81 0.85 0.13 0.43 0.45

json− simple→ gson 0.48 0.72 0.57 0.55 1.00 0.71 0.77 0.79

A.3 Additional Results regarding Statistical Significance

In our work, we used the Kruskal-Wallis test to evaluate the statistical significance of precision,

recall, HV, and ED values achieved by all 7 algorithms. All values achieved using CO, MS+DS and

ALL schemes are statistically significant i.e., p-values were < 0.05. These results denote that at
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least one algorithm’s distribution is different from the other algorithms, that is, the Kruskal-Wallis

test does not tell us which algorithm pairs have different distributions. As a result, we apply the

Dunn test for a posthoc analysis to determine which algorithm pairs are statistically different. In

Tables A.8, A.10 and A.9, we list the algorithm pairs that have a p-value > 0.05 for each of the three

similarity schemes for every migration rule. The listed algorithm pairs have similar distributions

that are not statistically significant.

Table A.8: Posthoc test results from the Dunn test to examine the statistical significance of pre-

cision, recall, HV, and ED values when using the CO scheme. Algorithm pairs with p-values¿0.05

are listed and denote those distributions that are not statistically significant.

Migration

Rule

Precision Recall HV ED

logging →
slf4j

NSGAII & IBEA,

NSGAII & MOEAD,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

AGEMOEA, AGE-

MOEA & SMSEMOA

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

AGEMOEA, AGE-

MOEA & SMSEMOA

IBEA & UNSGAIII,

IBEA & SMSEMOA,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

AGEMOEA

NSGAII & IBEA, NS-

GAII & SMSEMOA,

IBEA & UNSGAIII,

IBEA & SMSEMOA,

MOEAD & RNSGAII,

RNSGAII & AGE-

MOEA, AGEMOEA

& SMSEMOA

slf4j −
api →
log4j

NSGAII & IBEA,

NSGAII & MOEAD,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

AGEMOEA, AGE-

MOEA & SMSEMOA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & MOEAD,

UNSGAIII & SMSE-

MOA, RNSGAII &

AGEMOEA, AGE-

MOEA & SMSEMOA,

SMSEMOA & UN-

SGAIII

NSGAII & IBEA, NS-

GAII & AGEMOEA,

IBEA & SMSEMOA,

MOEAD & UN-

SGAIII, UNSGAIII &

RNSGAII, RNSGAII

& SMSEMOA

NSGAII & IBEA, NS-

GAII & AGEMOEA,

IBEA & AGEMOEA,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA

easymock →
mockito

NSGAII & IBEA,

NSGAII & MOEAD,

MOEAD & RNS-

GAII, AGEMOEA &

SMSEMOA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA &MOEAD, UN-

SGAIII & SMSEMOA,

RNSGAII & AGE-

MOEA,AGEMOEA &

SMSEMOA

NSGAII & IBEA,

IBEA & UNSGAIII,

MOEAD & RNSGAII,

UNSGAIII & AGE-

MOEA, RNSGAII &

SMSEMOA, AGE-

MOEA & SMSEMOA

NSGAII & IBEA,

NSGAII & AGE-

MOEA, NSGAII &

SMSEMOA, IBEA &

AGEMOEA, IBEA &

SMSEMOA, MOEAD

& RNSGAII, AGE-

MOEA & SMSEMOA
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google −
collect →
guava

NSGAII & IBEA,

NSGAII & MOEAD,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

MOEAD, RNSGAII

& AGEMOEA, AGE-

MOEA & SMSEMOA

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

IBEA, RNSGAII &

AGEMOEA, AGE-

MOEA & SMSEMOA

NSGAII & RNS-

GAII, NSGAII &

AGEMOEA, IBEA &

UNSGAIII, RNSGAII

& AGEMOEA

NSGAII & RNS-

GAII, NSGAII &

AGEMOEA, IBEA &

AGEMOEA, IBEA &

SMSEMOA, MOEAD

& RNSGAII, UN-

SGAIII & SMSEMOA,

AGEMOEA & SMSE-

MOA

gson →
jackson

NSGAII & IBEA,

NSGAII & MOEAD,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

AGEMOEA, AGE-

MOEA & SMSEMOA

NSGAII & IBEA, UN-

SGAIII & SMSEMOA,

RNSGAII & AGE-

MOEA, AGEMOEA

& SMSEMOA

NSGAII & IBEA,

IBEA & AGEMOEA,

MOEAD & UN-

SGAIII, UNSGAIII &

RNSGAII, RNSGAII

& SMSEMOA, AGE-

MOEA & SMSEMOA

NSGAII & IBEA, NS-

GAII & AGEMOEA,

IBEA & AGEMOEA,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, AGEMOEA &

SMSEMOA

testng →
junit

NSGAII & IBEA,

NSGAII & MOEAD,

MOEAD & RNS-

GAII, AGEMOEA &

SMSEMOA

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

AGEMOEA, SMSE-

MOA & UNSGAIII

NSGAII & IBEA,

MOEAD & RNSGAII,

UNSGAIII & AGE-

MOEA, RNSGAII &

SMSEMOA

NSGAII & RNSGAII,

NSGAII & AGE-

MOEA, NSGAII &

SMSEMOA, IBEA &

UNSGAIII, MOEAD

& RNSGAII, AGE-

MOEA & SMSEMOA

json →
gson

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

MOEAD & NSGAII,

MOEAD & RNSGAII,

UNSGAIII & SM-

SEMOA, RNSGAII

& MOEAD, AGE-

MOEA & SMSEMOA,

SMSEMOA & UN-

SGAIII, SMSEMOA

& AGEMOEA

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & NSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

IBEA, RNSGAII &

AGEMOEA, AGE-

MOEA & RNSGAII,

SMSEMOA & UN-

SGAIII

NSGAII & IBEA,

IBEA & NSGAII,

IBEA & UNSGAIII,

MOEAD & RNSGAII,

UNSGAIII & IBEA,

UNSGAIII & AGE-

MOEA, RNSGAII &

MOEAD, RNSGAII

& SMSEMOA, AGE-

MOEA & UNSGAIII,

AGEMOEA & SMSE-

MOA, SMSEMOA &

RNSGAII, SMSEMOA

& AGEMOEA

NSGAII & AGE-

MOEA, NSGAII &

SMSEMOA, IBEA &

UNSGAIII, MOEAD

& RNSGAII, UN-

SGAIII & IBEA,

RNSGAII & MOEAD,

AGEMOEA & NS-

GAII, AGEMOEA

& SMSEMOA, SM-

SEMOA & NSGAII,

SMSEMOA & AGE-

MOEA
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commons−
lang →
slf4j − api

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

MOEAD & NSGAII,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

MOEAD, RNSGAII

& AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA,

IBEA & NSGAII, UN-

SGAIII & SMSEMOA,

RNSGAII & AGE-

MOEA, AGEMOEA

& RNSGAII, AGE-

MOEA & SMSEMOA,

SMSEMOA & UN-

SGAIII, SMSEMOA

& AGEMOEA

NSGAII & IBEA,

NSGAII & AGE-

MOEA, NSGAII &

SMSEMOA, IBEA

& NSGAII, IBEA &

AGEMOEA, MOEAD

& UNSGAIII, UN-

SGAIII & MOEAD,

UNSGAIII & RNS-

GAII, RNSGAII &

UNSGAIII, RNSGAII

& SMSEMOA, AGE-

MOEA & NSGAII,

AGEMOEA & IBEA,

SMSEMOA & NS-

GAII, SMSEMOA &

RNSGAII

NSGAII & IBEA, NS-

GAII & SMSEMOA,

IBEA & NSGAII,

IBEA & SMSEMOA,

MOEAD & RNSGAII,

RNSGAII & MOEAD,

RNSGAII & AGE-

MOEA, AGEMOEA

& RNSGAII, SM-

SEMOA & NSGAII,

SMSEMOA & IBEA

json −
simple →
gson

NSGAII & IBEA,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

MOEAD, RNSGAII

& AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

UNSGAIII & SMSE-

MOA, RNSGAII &

NSGAII, RNSGAII

& AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & UNSGAIII,

IBEA & RNSGAII,

IBEA & AGEMOEA,

IBEA & SMSEMOA,

MOEAD & UN-

SGAIII, UNSGAIII &

NSGAII, UNSGAIII

& MOEAD, RNSGAII

& IBEA, RNSGAII

& AGEMOEA, RNS-

GAII & SMSEMOA,

AGEMOEA & IBEA,

AGEMOEA & RNS-

GAII, AGEMOEA

& SMSEMOA, SM-

SEMOA & IBEA,

SMSEMOA & RNS-

GAII, SMSEMOA &

AGEMOEA

NSGAII & AGE-

MOEA, NSGAII &

SMSEMOA, IBEA &

MOEAD, MOEAD

& IBEA, MOEAD &

RNSGAII, UNSGAIII

& SMSEMOA, RNS-

GAII & MOEAD,

AGEMOEA & NS-

GAII, AGEMOEA

& SMSEMOA, SM-

SEMOA & NSGAII,

SMSEMOA & UN-

SGAIII, SMSEMOA

& AGEMOEA

Table A.9: Posthoc test results from the Dunn test to examine the statistical significance of preci-

sion, recall, HV, and ED values when using the ALL scheme. Algorithm pairs with p-values¿0.05

are listed and denote those distributions that are not statistically significant.
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Migration

Rule

Precision Recall HV ED

logging →
slf4j

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

MOEAD & NSGAII,

MOEAD & RNSGAII,

UNSGAIII & AGE-

MOEA, RNSGAII &

MOEAD, RNSGAII

& SMSEMOA, AGE-

MOEA & UNSGAIII,

AGEMOEA & SMSE-

MOA, SMSEMOA &

RNSGAII, SMSEMOA

& AGEMOEA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

UNSGAIII & AGE-

MOEA, RNSGAII &

NSGAII, RNSGAII

& SMSEMOA, AGE-

MOEA & UNSGAIII,

AGEMOEA & SMSE-

MOA, SMSEMOA &

RNSGAII, SMSEMOA

& AGEMOEA

IBEA & AGEMOEA,

IBEA & SMSEMOA,

MOEAD & RNSGAII,

UNSGAIII & RNS-

GAII, UNSGAIII &

SMSEMOA, RNS-

GAII & MOEAD,

RNSGAII & UN-

SGAIII, AGEMOEA

& IBEA, SMSEMOA

& IBEA, SMSEMOA

& UNSGAIII

NSGAII & IBEA, NS-

GAII & SMSEMOA,

IBEA & NSGAII,

MOEAD & RNSGAII,

RNSGAII & MOEAD,

AGEMOEA & SMSE-

MOA, SMSEMOA &

NSGAII, SMSEMOA

& AGEMOEA

slf4j −
api →
log4j

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & NSGAII,

UNSGAIII & AGE-

MOEA, RNSGAII &

IBEA, RNSGAII &

SMSEMOA, AGE-

MOEA & UNSGAIII,

AGEMOEA & SMSE-

MOA, SMSEMOA &

RNSGAII, SMSEMOA

& AGEMOEA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

UNSGAIII & AGE-

MOEA, RNSGAII &

NSGAII, RNSGAII

& SMSEMOA, AGE-

MOEA & UNSGAIII,

AGEMOEA & SMSE-

MOA, SMSEMOA &

RNSGAII, SMSEMOA

& AGEMOEA

NSGAII & SM-

SEMOA, IBEA &

RNSGAII, MOEAD &

UNSGAIII, MOEAD

& RNSGAII, UN-

SGAIII & MOEAD,

RNSGAII & IBEA,

RNSGAII & MOEAD,

AGEMOEA & SMSE-

MOA, SMSEMOA &

NSGAII, SMSEMOA

& AGEMOEA

NSGAII & IBEA, NS-

GAII & SMSEMOA,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & RNSGAII,

UNSGAIII & AGE-

MOEA, RNSGAII &

IBEA, RNSGAII &

MOEAD, AGEMOEA

& UNSGAIII, AGE-

MOEA & SMSEMOA,

SMSEMOA & NS-

GAII, SMSEMOA &

AGEMOEA
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easymock →
mockito

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

MOEAD & NSGAII,

MOEAD & RNSGAII,

RNSGAII & MOEAD,

AGEMOEA & SMSE-

MOA, SMSEMOA &

AGEMOEA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

UNSGAIII & SM-

SEMOA, RNSGAII

& NSGAII, AGE-

MOEA & SMSEMOA,

SMSEMOA & UN-

SGAIII, SMSEMOA

& AGEMOEA

NSGAII & IBEA,

IBEA & NSGAII,

MOEAD & RNSGAII,

UNSGAIII & AGE-

MOEA, UNSGAIII

& SMSEMOA, RNS-

GAII & MOEAD,

RNSGAII & SMSE-

MOA, AGEMOEA

& UNSGAIII, AGE-

MOEA & SMSEMOA,

SMSEMOA & UN-

SGAIII, SMSEMOA &

RNSGAII, SMSEMOA

& AGEMOEA

NSGAII & IBEA,

NSGAII & AGE-

MOEA, NSGAII &

SMSEMOA, IBEA

& NSGAII, IBEA &

AGEMOEA, IBEA &

SMSEMOA, MOEAD

& RNSGAII, RNS-

GAII & MOEAD,

AGEMOEA & NS-

GAII, AGEMOEA &

IBEA, AGEMOEA

& SMSEMOA, SM-

SEMOA & NSGAII,

SMSEMOA & IBEA,

SMSEMOA & AGE-

MOEA

google −
collect →
guava

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & NSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

IBEA, RNSGAII &

AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & NSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

IBEA, RNSGAII &

AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & AGE-

MOEA, IBEA & SM-

SEMOA, UNSGAIII &

RNSGAII, RNSGAII

& UNSGAIII, AGE-

MOEA & NSGAII,

AGEMOEA & SMSE-

MOA, SMSEMOA &

IBEA, SMSEMOA &

AGEMOEA

NSGAII & MOEAD,

NSGAII & AGE-

MOEA, IBEA &

AGEMOEA, IBEA &

SMSEMOA, MOEAD

& NSGAII, MOEAD &

RNSGAII, RNSGAII

& MOEAD, AGE-

MOEA & NSGAII,

AGEMOEA & IBEA,

AGEMOEA & SMSE-

MOA, SMSEMOA &

IBEA, SMSEMOA &

AGEMOEA
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gson →
jackson

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & NSGAII,

RNSGAII & IBEA,

AGEMOEA & SMSE-

MOA, SMSEMOA &

AGEMOEA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

RNSGAII & NSGAII,

AGEMOEA & SMSE-

MOA, SMSEMOA &

AGEMOEA

IBEA & AGEMOEA,

IBEA & SMSEMOA,

MOEAD & UN-

SGAIII, UNSGAIII &

MOEAD, UNSGAIII

& RNSGAII, RNS-

GAII & UNSGAIII,

AGEMOEA & IBEA,

AGEMOEA & SMSE-

MOA, SMSEMOA &

IBEA, SMSEMOA &

AGEMOEA

NSGAII & IBEA,

NSGAII & UNSGAIII,

IBEA & NSGAII,

IBEA & AGEMOEA,

MOEAD & RNSGAII,

UNSGAIII & NS-

GAII, UNSGAIII &

RNSGAII, RNSGAII

& MOEAD, RNS-

GAII & UNSGAIII,

AGEMOEA & IBEA,

AGEMOEA & SMSE-

MOA, SMSEMOA &

AGEMOEA

testng →
junit

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

MOEAD & NSGAII,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

MOEAD, RNSGAII

& AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & NSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

IBEA, RNSGAII &

AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA,

IBEA & NSGAII,

MOEAD & RNSGAII,

UNSGAIII & AGE-

MOEA, UNSGAIII

& SMSEMOA, RNS-

GAII & MOEAD,

AGEMOEA & UN-

SGAIII, AGEMOEA

& SMSEMOA, SMSE-

MOA & UNSGAIII,

SMSEMOA & AGE-

MOEA

NSGAII & IBEA, NS-

GAII & SMSEMOA,

IBEA & NSGAII,

IBEA & SMSEMOA,

MOEAD & UN-

SGAIII, UNSGAIII

& MOEAD, AGE-

MOEA & SMSEMOA,

SMSEMOA & NS-

GAII, SMSEMOA &

IBEA, SMSEMOA &

AGEMOEA

json →
gson

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

MOEAD & NSGAII,

MOEAD & RNSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

MOEAD, RNSGAII

& AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

UNSGAIII & SMSE-

MOA, RNSGAII &

NSGAII, RNSGAII

& AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA,

IBEA & NSGAII,

IBEA & UNSGAIII,

MOEAD & RNSGAII,

UNSGAIII & IBEA,

UNSGAIII & AGE-

MOEA, RNSGAII &

MOEAD, RNSGAII

& SMSEMOA, AGE-

MOEA & UNSGAIII,

AGEMOEA & SMSE-

MOA, SMSEMOA &

RNSGAII, SMSEMOA

& AGEMOEA

NSGAII & AGE-

MOEA, NSGAII &

SMSEMOA, IBEA &

UNSGAIII, MOEAD

& UNSGAIII, UN-

SGAIII & IBEA, UN-

SGAIII & MOEAD,

AGEMOEA & NS-

GAII, AGEMOEA

& SMSEMOA, SM-

SEMOA & NSGAII,

SMSEMOA & AGE-

MOEA
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commons−
lang →
slf4j − api

NSGAII & IBEA,

NSGAII & MOEAD,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & NSGAII,

UNSGAIII & SMSE-

MOA, RNSGAII &

IBEA, RNSGAII &

AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

UNSGAIII & SMSE-

MOA, RNSGAII &

NSGAII, RNSGAII

& AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA, NS-

GAII & SMSEMOA,

IBEA & NSGAII,

IBEA & RNSGAII,

MOEAD & UN-

SGAIII, MOEAD &

RNSGAII, UNSGAIII

& MOEAD, RNSGAII

& IBEA, RNSGAII

& MOEAD, AGE-

MOEA & SMSEMOA,

SMSEMOA & NS-

GAII, SMSEMOA &

AGEMOEA

NSGAII & IBEA, NS-

GAII & AGEMOEA,

IBEA & NSGAII,

IBEA & AGEMOEA,

IBEA & SMSEMOA,

MOEAD & RNS-

GAII, RNSGAII &

MOEAD, AGEMOEA

& NSGAII, AGE-

MOEA & IBEA,

AGEMOEA & SMSE-

MOA, SMSEMOA &

IBEA, SMSEMOA &

AGEMOEA

json −
simple →
gson

NSGAII & IBEA,

IBEA & NSGAII, UN-

SGAIII & SMSEMOA,

RNSGAII & AGE-

MOEA, AGEMOEA

& RNSGAII, AGE-

MOEA & SMSEMOA,

SMSEMOA & UN-

SGAIII, SMSEMOA

& AGEMOEA

NSGAII & IBEA,

NSGAII & RNSGAII,

IBEA & NSGAII,

IBEA & MOEAD,

MOEAD & IBEA,

UNSGAIII & SMSE-

MOA, RNSGAII &

NSGAII, RNSGAII

& AGEMOEA, AGE-

MOEA & RNSGAII,

AGEMOEA & SM-

SEMOA, SMSEMOA

& UNSGAIII, SMSE-

MOA & AGEMOEA

NSGAII & IBEA, NS-

GAII & SMSEMOA,

IBEA & NSGAII,

IBEA & SMSEMOA,

MOEAD & UN-

SGAIII, UNSGAIII

& MOEAD, AGE-

MOEA & SMSEMOA,

SMSEMOA & NS-

GAII, SMSEMOA &

IBEA, SMSEMOA &

AGEMOEA

NSGAII & IBEA, NS-

GAII & AGEMOEA,

IBEA & NSGAII,

IBEA & AGEMOEA,

IBEA & SMSEMOA,

MOEAD & UN-

SGAIII, UNSGAIII

& MOEAD, AGE-

MOEA & NSGAII,

AGEMOEA & IBEA,

AGEMOEA & SMSE-

MOA, SMSEMOA &

IBEA, SMSEMOA &

AGEMOEA

Table A.10: Posthoc test results from the Dunn test to examine the statistical significance of

precision, recall, HV, and ED values when using the MS+DS scheme. Algorithm pairs with p-

values¿0.05 are listed and denote those distributions that are not statistically significant.

Migration

Rule

Precision Recall HV ED
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logging →
slf4j

NSGAII & IBEA ,

NSGAII & MOEAD

, IBEA & NSGAII ,

MOEAD & NSGAII ,

MOEAD & RNSGAII

, UNSGAIII & AGE-

MOEA , RNSGAII &

MOEAD , RNSGAII

& SMSEMOA , AGE-

MOEA & UNSGAIII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& RNSGAII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

IBEA & NSGAII ,

AGEMOEA & SMSE-

MOA , SMSEMOA &

AGEMOEA

NSGAII & IBEA ,

IBEA & NSGAII ,

IBEA & AGEMOEA ,

MOEAD & RNSGAII

, UNSGAIII & RNS-

GAII , UNSGAIII &

SMSEMOA , RNS-

GAII & MOEAD

, RNSGAII & UN-

SGAIII , AGEMOEA

& IBEA , AGEMOEA

& SMSEMOA , SM-

SEMOA & UNSGAIII

NSGAII & IBEA , NS-

GAII & SMSEMOA

, IBEA & NSGAII ,

IBEA & SMSEMOA ,

MOEAD & RNSGAII ,

RNSGAII & MOEAD ,

AGEMOEA & SMSE-

MOA , SMSEMOA &

NSGAII , SMSEMOA

& IBEA , SMSEMOA

& AGEMOEA

slf4j −
api →
log4j

NSGAII & IBEA ,

NSGAII & MOEAD

, IBEA & NSGAII ,

IBEA & RNSGAII ,

MOEAD & NSGAII

, UNSGAIII & AGE-

MOEA , RNSGAII &

IBEA , RNSGAII &

SMSEMOA , AGE-

MOEA & UNSGAIII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& RNSGAII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

NSGAII & RNSGAII

, IBEA & NSGAII

, IBEA & MOEAD

, MOEAD & IBEA

, UNSGAIII & AGE-

MOEA , RNSGAII &

NSGAII , RNSGAII

& SMSEMOA , AGE-

MOEA & UNSGAIII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& RNSGAII , SMSE-

MOA & AGEMOEA

NSGAII & AGE-

MOEA , IBEA &

AGEMOEA , IBEA

& SMSEMOA ,

MOEAD & UNSGAIII

, MOEAD & RNS-

GAII , UNSGAIII &

MOEAD , RNSGAII

& MOEAD , RNS-

GAII & SMSEMOA

, AGEMOEA & NS-

GAII , AGEMOEA &

IBEA , SMSEMOA &

IBEA , SMSEMOA &

RNSGAII

NSGAII & IBEA , NS-

GAII & SMSEMOA

, IBEA & NSGAII ,

IBEA & RNSGAII ,

MOEAD & RNSGAII

, UNSGAIII & AGE-

MOEA , RNSGAII &

IBEA , RNSGAII &

MOEAD , AGEMOEA

& UNSGAIII , AGE-

MOEA & SMSEMOA ,

SMSEMOA & NSGAII

, SMSEMOA & AGE-

MOEA
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easymock →
mockito

NSGAII & IBEA ,

NSGAII & MOEAD

, IBEA & NSGAII ,

MOEAD & NSGAII ,

MOEAD & RNSGAII

, UNSGAIII & AGE-

MOEA , RNSGAII &

MOEAD , RNSGAII

& SMSEMOA , AGE-

MOEA & UNSGAIII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& RNSGAII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

NSGAII & RNSGAII

, IBEA & NSGAII ,

IBEA & MOEAD ,

MOEAD & IBEA ,

UNSGAIII & SMSE-

MOA , RNSGAII &

NSGAII , RNSGAII

& AGEMOEA , AGE-

MOEA & RNSGAII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& UNSGAIII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

IBEA & NSGAII ,

IBEA & AGEMOEA ,

MOEAD & RNSGAII

, UNSGAIII & RNS-

GAII , UNSGAIII &

SMSEMOA , RNS-

GAII & MOEAD

, RNSGAII & UN-

SGAIII , AGEMOEA

& IBEA , AGE-

MOEA & SMSEMOA

, SMSEMOA & UN-

SGAIII , SMSEMOA

& AGEMOEA

NSGAII & IBEA , NS-

GAII & AGEMOEA

, NSGAII & SMSE-

MOA , IBEA & NS-

GAII , IBEA & AGE-

MOEA , IBEA & SM-

SEMOA , MOEAD &

RNSGAII , RNSGAII

& MOEAD , AGE-

MOEA & NSGAII ,

AGEMOEA & IBEA ,

AGEMOEA & SMSE-

MOA , SMSEMOA &

NSGAII , SMSEMOA

& IBEA , SMSEMOA

& AGEMOEA

google −
collect →
guava

NSGAII & IBEA ,

NSGAII & MOEAD

, IBEA & NSGAII ,

IBEA & RNSGAII ,

MOEAD & NSGAII

, UNSGAIII & SM-

SEMOA , RNSGAII

& IBEA , RNSGAII

& AGEMOEA , AGE-

MOEA & RNSGAII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& UNSGAIII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

NSGAII & MOEAD

, IBEA & NSGAII ,

IBEA & RNSGAII ,

MOEAD & NSGAII

, UNSGAIII & SM-

SEMOA , RNSGAII

& IBEA , RNSGAII

& AGEMOEA , AGE-

MOEA & RNSGAII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& UNSGAIII , SMSE-

MOA & AGEMOEA

IBEA & AGEMOEA ,

MOEAD & RNSGAII

, UNSGAIII & RNS-

GAII , UNSGAIII &

SMSEMOA , RNS-

GAII & MOEAD

, RNSGAII & UN-

SGAIII , AGEMOEA

& IBEA , SMSEMOA

& UNSGAIII

NSGAII & MOEAD

, NSGAII & AGE-

MOEA , IBEA &

AGEMOEA , IBEA &

SMSEMOA , MOEAD

& NSGAII , MOEAD

& RNSGAII , UN-

SGAIII & SMSEMOA

, RNSGAII & MOEAD

, AGEMOEA & NS-

GAII , AGEMOEA &

IBEA , SMSEMOA &

IBEA , SMSEMOA &

UNSGAIII
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gson →
jackson

NSGAII & IBEA ,

NSGAII & MOEAD

, IBEA & NSGAII ,

IBEA & RNSGAII ,

MOEAD & NSGAII

, UNSGAIII & SM-

SEMOA , RNSGAII

& IBEA , RNSGAII

& AGEMOEA , AGE-

MOEA & RNSGAII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& UNSGAIII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

IBEA & NSGAII , UN-

SGAIII & SMSEMOA

, RNSGAII & AGE-

MOEA , AGEMOEA

& RNSGAII , AGE-

MOEA & SMSEMOA

, SMSEMOA & UN-

SGAIII , SMSEMOA

& AGEMOEA

IBEA & AGEMOEA

, MOEAD & UN-

SGAIII , UNSGAIII &

MOEAD , UNSGAIII

& RNSGAII , RNS-

GAII & UNSGAIII ,

RNSGAII & SMSE-

MOA , AGEMOEA &

IBEA , SMSEMOA &

RNSGAII

NSGAII & IBEA , NS-

GAII & UNSGAIII ,

IBEA & NSGAII ,

IBEA & AGEMOEA ,

MOEAD & RNSGAII

, UNSGAIII & NS-

GAII , UNSGAIII &

RNSGAII , RNSGAII

& MOEAD , RNS-

GAII & UNSGAIII ,

AGEMOEA & IBEA ,

AGEMOEA & SMSE-

MOA , SMSEMOA &

AGEMOEA

testng →
junit

NSGAII & IBEA ,

NSGAII & MOEAD

, IBEA & NSGAII ,

MOEAD & NSGAII ,

MOEAD & RNSGAII

, UNSGAIII & AGE-

MOEA , RNSGAII &

MOEAD , RNSGAII

& SMSEMOA , AGE-

MOEA & UNSGAIII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& RNSGAII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

IBEA & NSGAII , UN-

SGAIII & SMSEMOA

, RNSGAII & AGE-

MOEA , AGEMOEA

& RNSGAII , AGE-

MOEA & SMSEMOA

, SMSEMOA & UN-

SGAIII , SMSEMOA

& AGEMOEA

NSGAII & IBEA ,

IBEA & NSGAII ,

IBEA & AGEMOEA ,

MOEAD & RNSGAII

, UNSGAIII & RNS-

GAII , UNSGAIII &

SMSEMOA , RNS-

GAII & MOEAD

, RNSGAII & UN-

SGAIII , AGEMOEA

& IBEA , AGE-

MOEA & SMSEMOA

, SMSEMOA & UN-

SGAIII , SMSEMOA

& AGEMOEA

NSGAII & IBEA , NS-

GAII & AGEMOEA ,

NSGAII & SMSEMOA

, IBEA & NSGAII ,

IBEA & AGEMOEA

, IBEA & SMSEMOA

, MOEAD & UN-

SGAIII , UNSGAIII

& MOEAD , AGE-

MOEA & NSGAII ,

AGEMOEA & IBEA ,

AGEMOEA & SMSE-

MOA , SMSEMOA &

NSGAII , SMSEMOA

& IBEA , SMSEMOA

& AGEMOEA
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json →
gson

NSGAII & IBEA ,

NSGAII & MOEAD

, IBEA & NSGAII ,

MOEAD & NSGAII ,

MOEAD & RNSGAII

, UNSGAIII & AGE-

MOEA , RNSGAII &

MOEAD , RNSGAII

& SMSEMOA , AGE-

MOEA & UNSGAIII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& RNSGAII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

NSGAII & RNSGAII

, IBEA & NSGAII ,

IBEA & MOEAD ,

MOEAD & IBEA ,

UNSGAIII & SMSE-

MOA , RNSGAII &

NSGAII , RNSGAII

& AGEMOEA , AGE-

MOEA & RNSGAII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& UNSGAIII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

IBEA & NSGAII ,

IBEA & AGEMOEA ,

MOEAD & RNSGAII

, UNSGAIII & AGE-

MOEA , UNSGAIII

& SMSEMOA , RNS-

GAII & MOEAD ,

RNSGAII & SMSE-

MOA , AGEMOEA &

IBEA , AGEMOEA

& UNSGAIII , SM-

SEMOA & UNSGAIII

, SMSEMOA & RNS-

GAII

NSGAII & UNSGAIII

, NSGAII & AGE-

MOEA , IBEA &

MOEAD , IBEA &

UNSGAIII , MOEAD

& IBEA , UNSGAIII &

NSGAII , UNSGAIII

& IBEA , AGE-

MOEA & NSGAII ,

AGEMOEA & SMSE-

MOA , SMSEMOA &

AGEMOEA

commons−
lang →
slf4j − api

NSGAII & IBEA ,

NSGAII & RNSGAII

, IBEA & NSGAII ,

IBEA & MOEAD ,

MOEAD & IBEA ,

UNSGAIII & SMSE-

MOA , RNSGAII &

NSGAII , RNSGAII

& AGEMOEA , AGE-

MOEA & RNSGAII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& UNSGAIII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA ,

NSGAII & RNSGAII

, IBEA & NSGAII ,

IBEA & MOEAD ,

MOEAD & IBEA ,

UNSGAIII & SMSE-

MOA , RNSGAII &

NSGAII , RNSGAII

& AGEMOEA , AGE-

MOEA & RNSGAII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& UNSGAIII , SMSE-

MOA & AGEMOEA

NSGAII & AGE-

MOEA , IBEA &

RNSGAII , IBEA &

SMSEMOA , MOEAD

& UNSGAIII , UN-

SGAIII & MOEAD ,

UNSGAIII & RNS-

GAII , RNSGAII &

IBEA , RNSGAII &

UNSGAIII , AGE-

MOEA & NSGAII ,

AGEMOEA & SMSE-

MOA , SMSEMOA &

IBEA , SMSEMOA &

AGEMOEA

NSGAII & IBEA , NS-

GAII & AGEMOEA ,

NSGAII & SMSEMOA

, IBEA & NSGAII ,

IBEA & AGEMOEA ,

IBEA & SMSEMOA ,

MOEAD & RNSGAII

, RNSGAII & MOEAD

, AGEMOEA & NS-

GAII , AGEMOEA &

IBEA , SMSEMOA &

NSGAII , SMSEMOA

& IBEA



APPENDIX A. APPENDICES 146

json −
simple →
gson

NSGAII & IBEA ,

IBEA & NSGAII , UN-

SGAIII & SMSEMOA

, RNSGAII & AGE-

MOEA , AGEMOEA

& RNSGAII , AGE-

MOEA & SMSEMOA

, SMSEMOA & UN-

SGAIII , SMSEMOA

& AGEMOEA

NSGAII & IBEA ,

NSGAII & RNSGAII

, IBEA & NSGAII ,

IBEA & MOEAD ,

MOEAD & IBEA ,

UNSGAIII & SMSE-

MOA , RNSGAII &

NSGAII , RNSGAII

& AGEMOEA , AGE-

MOEA & RNSGAII

, AGEMOEA & SM-

SEMOA , SMSEMOA

& UNSGAIII , SMSE-

MOA & AGEMOEA

NSGAII & IBEA , NS-

GAII & AGEMOEA

, IBEA & NSGAII

, MOEAD & UN-

SGAIII , UNSGAIII &

MOEAD , UNSGAIII

& RNSGAII , RNS-

GAII & UNSGAIII ,

RNSGAII & SMSE-

MOA , AGEMOEA

& NSGAII , AGE-

MOEA & SMSEMOA

, SMSEMOA & RNS-

GAII , SMSEMOA &

AGEMOEA

NSGAII & IBEA ,

NSGAII & RNSGAII

, IBEA & NSGAII

, MOEAD & AGE-

MOEA , UNSGAIII

& SMSEMOA , RNS-

GAII & NSGAII

, AGEMOEA &

MOEAD , SMSEMOA

& UNSGAIII
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