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Abstract

A key factor in promoting sustainable economies, industries, and society is the use of
electric vehicles (EVs). They are an important step toward a greener future since they
reduce greenhouse gas emissions, improve air quality, and encourage energy independence.
The demand for charging stations (CSs) will undoubtedly rise as the global EV market
continues to grow over the next few decades, requiring significant investments from both
public and private players.

By creating a cutting-edge AI model, this work tackles the crucial problems of EVs
range prediction and charging optimization decisions. The contributions are summarized
as the below:

1. Developed Al models to predict estimated range for EVs without explicitly stating

the use of data.

2. Implemented a binary decision-making process to determine the necessity of EV
charging, enhancing energy management strategies and mitigating range anxiety.

3. Proposed a comprehensive solution incorporating vehicle-to-vehicle (V2V) and grid-
to-vehicle (G2V) energy sharing, selecting optimal charging stations (CS1, CS2) or
vehicles (V2, V3) based on factors like waiting time, distance, and energy provision.

4. Curated a dataset highlighting essential data variables crucial for optimizing Al
models for V2V energy sharing, facilitating the development of sustainable trans-
portation solutions.

The technology, when integrated into the V2V framework, creates a strong founda-
tion for self-governing energy and enables effective energy sharing between EVs. These
developments have important ramifications for encouraging the use of EVs, improving
customer satisfaction, and furthering sustainable transportation programs.
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Chapter 1

Introduction

To meet the Paris Agreement’s goal of limiting global warming to 1.5°C, emissions must
be reduced by 45% by 2030 and achieve net-zero emissions by 2050 [I]. Around 75%
of all emissions from mobility worldwide are currently produced by cars, trucks, and
other road vehicles [2]. As per data from The World Bank, the transportation industry
accounts for approximately 64% of the world’s oil consumption and contributes to 23%
of energy-related CO, emissions [3].

In 2020, an L.C.A. study for the British Department of Transport found that EVs
reduced pollutants by around 65% when compared to comparable internal combustion
vehicles. By 2030, Battery Electric Vehicles (BEV) will reduce greenhouse gas emis-
sions by 76 percent and a potential 81 percent reduction by 2050 based on anticipated
improvements in battery production and continued decarbonization of the U.K. electric
grid [4].

Currently, customers enjoy a more comprehensive array of options when considering
the purchase of an EV. As gasoline prices surge and EV costs decline, the popularity
of EVs is on the rise [5]. The biggest auto markets will transition to all-EVs by 2035,
offering both a significant economic opportunity and a glimpse of a more environmentally
friendly future [6].

Recent research and solutions focus on optimizing EVs energy resources. The Bidi-
rectional Bipolar Junction Transistor, or rB-TRAN, is ideal for use in EVs, EV chargers,
and other devices that help us get closer to a net-zero future, applicable where energy
efficiency is essential. Two or more traditional power switches are replaceable with a
single B-TRAN thanks to its innovative bidirectional architecture [7].

However, one limitation of EVs compared to internal combustion engine (ICE) vehicles
is the accessibility of refueling options. While traditional fuel stations are widespread, CSs
for EVs are not as prevalent, leading to range anxiety in users, particularly in urban areas
[8,9]. It is possible that the current electric infrastructures were not intended to handle
this significant rise in power use. As the global EV market continues to expand over
the coming decades, the demand for CSs will inevitably surge, necessitating substantial
investments from both governments and private investors along with support of the public
[10].

CS availability, especially in residential areas with multiple occupants, presents a
significant challenge. Apartments often lack dedicated charging infrastructure, leading to
range anxiety and parking concerns. Residents may face uncertainties about finding an
available charging spot and the time required for a full charge. Moreover, the scheduling
factor adds complexity, as residents may need to coordinate and compete for limited



charging resources [11], 12].

In this context, V2V energy sharing emerges as a transformative solution that can
offer EV owners flexibility and energy security beyond the reliance on conventional CSs
[13]. V2V represents a form of crowdsourcing where those needing energy are the ones
making requests, individuals providing energy are the workers, and the task at hand is
the request for charging initiated by the energy requester [14]. The most critical stage
in V2V energy sharing, where all EV user data analysis, processing, and EV matching,
selection, scheduling, and routing take place. Within the framework for V2V energy
sharing, modules and their roles are presented, displaying the importance of Al agents
for energy usage monitoring, demand prediction, and smart adaption. Under the physical
layer of a V2V energy-sharing framework, an Al agent can post a charging request even
before the State of Charge (SoC) drops below the crucial limit, which can lessen the range
anxiety within the EV users [13].

With the help of cutting-edge AI solutions like the one this study suggests, V2V en-
ergy sharing has the potential to completely transform how we view and use energy in
the transportation industry. A 2016 poll provides important insights into the potential
of this technology by illuminating the perceived benefits and drawbacks of V2V appli-
cations. The study’s users recognized the many advantages that V2V technologies offer,
such as improved cost-effectiveness, efficiency, comfort, and safety. V2V systems facili-
tate communication between cars, which can optimize traffic flow, minimize congestion,
and ultimately improve road safety. Furthermore, by lowering carbon emissions and our
reliance on fossil fuels, the smooth sharing of energy amongst vehicles can make a sub-
stantial contribution to the sustainability of our transportation networks [15]. As the
study made clear, it is imperative to address worries about security, control, and privacy.
By putting strong security measures in place and protecting user privacy, we can allay
these worries and realize the full potential of V2V energy sharing. V2V energy sharing
has the potential to transform our transportation networks and open the door to a more
efficient and sustainable future with careful planning, teamwork, and the adoption of
cutting-edge Al technologies. In a separate survey conducted in 2014 across the US, UK,
and Australia, the advantages of V2V applications were identified as fewer crashes, re-
duced crash severity, improved emergency response, less traffic congestion, lower vehicle
emissions, and lower insurance rates. On the flip side, respondents expressed concerns
and disadvantages related to safety implications in the event of equipment or system
failures, legal liabilities for drivers or owners, system security vulnerabilities (from hack-
ers), interactions with pedestrians and bicyclists, and the potential for drivers to overly
rely on the technology [16]. A study was conducted to develop a matching algorithm for
Spatio-Temporal Non-Intrusive Direct V2V Charge Sharing Coordination. This research
included a survey of 153 EV owners in the US, revealing that 40% of participants are
interested in both receiving and supplying energy in the V2V charge exchange network.
Additionally, 72% prefer to go to the supplier’s location for V2V activities, while 46%
are willing to pay 5$ for supplier EV services. Moreover, 40% would prefer to have 10-30
EVs participating in V2V communities in their respective areas [17]. In terms of cost
considerations for EV users, a simulation study demonstrated that integrating both V2G
and V2V systems outperforms scenarios involving only V2G and independent energy
charging. This integration led to a cost reduction of 9.17% for residential car parking
space and 12.58% for shopping center car parking space [I§]. It is worth noting that
the number of V2V charging modes depends on the participating EVs and the type of
charging option available [19].



[N
©
13 |g

a
0o o~ ' Situation 3:

Situation 1: Situation 2: Considers five elements
Range Prediction Binary Charging to Decide V2V or G2V:
Prediction Distance, waiting time,

Amount og charge

Figure 1.1: Proposed EV model prediction.

The Aim of this thesis is to develop Al models that predict the estimated range
for electric vehicles (EVs) and optimize charging decisions to enhance energy manage-
ment and reduce range anxiety. First, it implements a binary decision-making process to
determine the necessity of EV charging, enhancing energy management strategies, and
mitigating range anxiety. It then proposes a comprehensive solution incorporating V2V
and G2V energy sharing, selecting optimal charging stations (CS1, CS2) or vehicles (V2,
V3) based on factors like waiting time, distance, and energy provision. The study cu-
rated a dataset highlighting essential data variables crucial for optimizing AI models for
V2V energy sharing, facilitating the development of sustainable transportation solutions.
These elements are crucial in determining the most effective approach for managing en-
ergy distribution and ensuring the efficient operation of EVs. Figure [1.1] represents the
proposed solution. These predictions are made internally by the Al agent within the
EV, without requiring data from other vehicles or external sources. These decisions serve
as the foundation for subsequent actions in a V2V energy sharing framework. It serves
the physical layer, where an Al agent can anticipate charging needs based on learned
behaviour or post charging requests preemptively to alleviate range anxiety. The related
research questions that is driving this study is to explore the key findings, arguments,
research methods used, and limitations. Here are the questions you have to look in it:

e Which data variables are essential for optimizing Al models in V2V energy sharing?

e How can the curated dataset facilitate the development of sustainable transporta-
tion solutions?

e What are the most critical factors to consider for V2V energy Sharing?

e What methodologies can be employed to enhance the predictive accuracy of Al
models for EV range estimation without relying on explicit external data sources?

Through innovations in vehicle-to-vehicle (V2V) and grid-to-vehicle (G2V) energy
sharing, the study seeks to contribute to the creation of a more efficient, reliable, and
sustainable EV ecosystem.The underlying objectives are to split into:

e Foundation:



1. To create Al models that estimate the range of EVs without explicit data from
external sources.

2. To implement a binary decision-making process to determine the necessity of
EV charging.

e Broad Impact:

1. To propose a comprehensive solution for V2V (vehicle-to-vehicle) and G2V
(grid-to-vehicle) energy sharing, optimizing the selection of charging stations
and vehicles based on waiting time, distance, and energy provision.

2. To curate a dataset with essential variables for optimizing Al models in V2V
energy sharing, supporting sustainable transportation solutions.

e Implicit Nature:

1. Enhancing the reliability and user confidence in electric vehicles to promote
their adoption and support environmental sustainability.

This thesis follows a comprehensive structure to address the research goals and find-
ings in a systematic manner. Beginning with an Introduction, it provides background
context, problem statements, research objectives, and an overview of the thesis structure.
Subsequently, the Literature Review delves into relevant literature and theoretical frame-
works, identifying gaps in current research and advancing the understanding of the subject
matter. The Methodology section outlines how the data is processed, transmitted, and
analyzed within the machine learning algorithm, including model architectures tailored
for different scenarios, data collection methods, and limitations. Following this, the Data
section elaborates on the data collection process, driving patterns, parameters included,
and any constraints encountered. Model Implementation and Evaluation are then dis-
cussed, covering aspects such as dataset splitting, model training, evaluation metrics, and
the presentation of results, along with a critical assessment of the model’s limitations.
Proceeding, navigating Implementation Challenges addressed considering V2V Energy
Sharing Framework and Al implementation in V2V energy sharing. The thesis also ex-
plores avenues for Future Work and Publications, identifying potential research directions
and showcasing resultant publications. Finally, the Conclusion encapsulates key findings.
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Chapter 2

Literature Review

An overview of significant studies in the fields of forecasting the range of EVs based on
various input features to determine the likelihood of a car requiring charging, thereby
aiding in efficient charging EV management and finally, a localized final decision intro-
duces a decision-making component where the model must choose the optimal charging
station for the EV based on factors like proximity, waiting time, and available energy.
This chapter explores the key findings, arguments, research methods, and limitations
presented in the current research and market status for the same concerning topic of "EV
distance prediction”, ”V2V and EV Matching”.

Efficient energy utilization among EVs is required for better battery management.
Paper [20] presents Peer-to-Peer Car Charging (P2C2), which enables EVs to share
charge while in motion through cloud-based coordination. This solution targets indi-
vidual EV-focused predictive analysis and optimization to alleviate range anxiety and
optimize charging behavior by introducing Mobile Charging Stations (MoCS), which are
high-battery-capacity vehicles used to replenish the overall charge in a vehicle network
using a simulator based, developed by using a simulation framework and performed a set
of quantitative analysis. SUMO (Simulation of Urban Mobility)12 is a traffic simulator to
support peer-to-peer BEV charging on-the-go, MoCS, and MoCS hubs. It also manages
the charging behavior of BEVs based on their battery levels, mobility, and interactions
with charging providers. [21] introduces distributed heuristic algorithms for V2V charge
sharing, aiming to optimize the matching between energy providers and requesters while
minimizing overhead and waiting time. The focus is on enhancing the efficiency of en-
ergy exchange networks among EVs. The paper [22] proposes Multi-Agent Reinforcement
Learning (MARL) approaches for EV charging coordination with V2V energy exchange,
primarily focusing on the effective management of EV charging stations from a macro-
scopic perspective, considering the overall energy balance and optimization of charging
processes across multiple EVs within the charging station. It does not directly address in-
dividual EV needs, such as estimating distance or deciding whether charging is required.
Instead, it operates at a higher level, optimizing the charging and discharging processes
to minimize energy costs and ensure efficient charging station operation. [23] presents a
data-driven matching protocol for managing V2V energy exchange to address environ-
mental concerns and alleviate charging overload issues in power systems. The protocol
utilizes a deep reinforcement learning (DRL) approach to learn the long-term rewards of
matching actions based on a formulated Markov decision process (MDP) offline. Addi-
tionally, to protect the privacy of EV owners, a federated learning framework is proposed,
enabling collaboration between EV aggregators without sharing sensitive information. An
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optimization model is established and converted into a bipartite graph problem at the
online matching stage for efficient computation. The work in [24] 25] focus on managing
energy between EVs using V2V energy sharing, optimizing system-wide energy allocation
and matching. In [26], the authors utilize machine learning techniques to predict energy
demand for EV networks for G2V systems by proposing an Energy Demand Learning
(EDL) algorithm, where a Charging Station Provider (CSP) gathers information from
all CSs to predict energy demand for the area. Further, Federated Learning (FL) can
be utilized to provide security and privacy insurance. In the meantime, [27] emphasizes
comprehending how energy is distributed and consumed in EVs in a smart grid setting.
By maximizing energy transfer to charging stations based on consumption patterns, it
seeks to provide insights for planning EV CSs and sustainable energy policy usage.

The work in [28] proposes new machine learning techniques for predicting energy
demand in EV networks. They introduce Energy Demand Learning (EDL) and Feder-
ated Energy Demand Learning (FEDL) approaches to enhance prediction accuracy while
addressing privacy concerns and reducing communication overhead. The proposed ap-
proaches rely on data collected from multiple CVs in the EV network to improve energy
demand prediction accuracy. Both references [20], 28] involve machine learning techniques
for predicting energy demand in EV networks. They also explore the application of fed-
erated learning to leverage distributed data sources while preserving privacy. However,
while the work in [26] focuses on predicting energy demand for EV networks using feder-
ated energy demand learning, the work in [28] applies federated learning to probabilistic
prediction models for EV driving range. Both approaches aim to improve prediction ac-
curacy and efficiency by leveraging data from distributed sources within the EV network.

Predicting a BEV’s remaining range and the minimal charge needed to finish a trip
safely is the primary emphasis of [29]. It uses recurrent neural networks (RNNs) to es-
timate, and even with daily route variations, it exhibits good accuracy. On the other
hand, the work in [30] investigates the application of machine learning-based regression
models for EV range prediction, namely ensemble stacking generalization and linear re-
gression. It draws attention to the difficulties in locating publically accessible datasets
and demonstrates how appropriate linear regression is for precise range estimation.

The work in [31] and [34] concentrate on using deep reinforcement learning (DRL)
algorithms for energy management system (EMS) optimization for effective energy dis-
tribution among groups of prosumers participating in V2V energy trading. These studies
address price mechanisms and privacy preservation issues with unique approaches, such as
federated learning frameworks and Markov Decision Processes (MDP). The potential of
V2G and V2V technologies to improve grid flexibility and lessen environmental effects [32]
and [33]. In order to enable resource utilization and job offloading over vehicle networks,
they develop data-driven matching protocols and collaborative fog computing systems,
which eventually improve system efficiency and service throughput. Moreover, the work
in [35] emphasizes the use of EVs to create greener transportation systems and suggests
methods to maximize energy trading volume and societal welfare by using double-sided
auctions and fog-based architectures to coordinate V2V traffic. In order to encourage
the widespread adoption of EVs, these publications highlight the significance of match-
maximization tactics and effective resource allocation systems. Finally, the work in [36]
and [37] use DRL-based optimization techniques and data-driven matching algorithms to
tackle the problems associated with V2V energy management. In order to improve V2V
energy trading and raise local energy self-sufficiency, they emphasize how important it
is to take long-term benefits, privacy protection, and computing efficiency into account
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while designing matching algorithms. By raising the bar for energy management and
optimization in the context of plug-in vehicles EVs and P2P trading systems, these ar-
ticles collectively advance the state-of-the-art and open the door to future developments
in more efficient and sustainable energy solutions.

Table discusses the below points:

e System Data: A broader information set characterizes the environment in which the
proposed adaptive task offloading framework operates. Including world vehicular
environment data and information about the physical environment where vehicles
operate, including road conditions, traffic patterns, and infrastructure layout. Ve-
hicular communication network data: Data on the communication capabilities and
behaviors of vehicles, such as transmission range, signal strengths, and connectivity
patterns. Task generation data: Information about generating computational tasks
within the vehicular environment, including task sizes, frequencies, and types. Ve-
hicle characteristics and states: Data about individual vehicles participating in the
network, such as their positions, speeds, energy levels, computational capacities,
and current task loads. Environmental factors: Additional data related to external
factors may influence task offloading decisions, such as weather conditions, time of
day, and geographic location.

e ML Utilization or Other Algorithms: Indicates whether the paper incorporates
machine learning, artificial intelligence, or other algorithms to develop its solution
or relies solely on traditional algorithms or simulations.

e Privacy Concerns: Reflects whether the paper addresses privacy concerns associated
with EV users’ data and interactions within the proposed framework, including
implementing measures to protect users’ privacy.

e V2V Framework: Specifies the involvement of the proposed framework within the
V2V communication layer, distinguishing whether it operates primarily at the phys-
ical layer for local data exchange or involves higher-level communication network
protocols for matchmaking and coordination.

Table 2.1: Studies on EV Range Prediction.

Aspect

Reference [29]

Reference [30]

Prediction of EV Range

Proposes a novel approach
using recurrent neural net-
works (RNNs) to predict re-
maining range and minimum
charge required to complete
a trip safely.

Explores different machine
learning algorithms to im-
prove existing methods for
electric range (eRange) esti-
mation.

Use of Local Data

Utilizes historical drive cycle
data collected from the vehi-
cle to train predictive mod-
els.

Utilizes publicly available
datasets to train predictive
models.

13
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1 Advanced State of Art

Uncertainty is defined as the inability to fully understand all options or the ramifications
of each, which complicates scenario interpretation and decision-making. Al and other
intelligent technologies can help human decision makers with predictive analytics in two
ways: (1) by identifying relationships among numerous factors, they can help human
decision makers gather and act upon new sets of information more effectively; and (2) by
generating new ideas through probability and data-driven statistical inference approaches.
Generating fresh data and forecasts about consumers, assets, and operations is one of
predictive analytics’ main purposes. Al technologies and humans can work together
to handle various decision-making tasks. Al is probably in a good position to handle
difficult problems by applying analytical methods [3§]. This brings us to this solution
and how this solution addresses two key challenges in the realm of EVs: mitigating
Range Anxiety among users and enhancing the flexibility of charging infrastructure. It
consists of three core elements: improving human comfort by alleviating range anxiety,
implementing V2V energy sharing to optimize EV user experience and reduce strain on
charging stations, and promoting the transition from ICE vehicles to EVs to encourage
environmental sustainability. Overall, it offers a comprehensive approach to improving
the EV user experience and contributing to environmental conservation. In this section,
we compare our proposed Situations (Situation 1, Situation 2, and Situation 3) with
existing research, particularly papers [29, B0] and [34]. We highlight the key differences
and advancements provided by our solutions.

1.1 Situations 1 and 2

Our Situation 1 and Situation 2 leverage multiple machine learning algorithms to predict
the range of EVs using historical data obtained from EV users’ daily commutes. This
approach ensures the privacy of users by not explicitly accessing their individual data,
similar to the approach in [29)].

In contrast, the work in [30] utilizes publicly available datasets to train predictive
models, which may raise concerns regarding data privacy. Additionally, both papers
[29, B0] focus solely on predicting range without considering the need for charging or not
during a trip.

1.2 Situation 3

Our Solution 3 expands beyond range prediction to incorporate charging decisions, offer-
ing a comprehensive approach to energy management for EVs. We compare this solution
with a relevant paper that shares similar concepts but does not fully address charging
decision-making.

For example, the work in [34] encompasses various aspects of EV behavior, preferences,
and charging patterns, utilizing DRL methods to evaluate V2V matching actions based
on the MDP. While the work in [34] addresses some aspects of charging decision-making,
it may lack the depth and comprehensiveness of Solution 3, which integrates both range
prediction and charging decisions seamlessly into the decision-making process, that works
as a feedback to the AI, enhancing the decision making.
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Chapter 3

Methodology

This chapter describes how the data is processed, transmitted, and analyzed within the
machine learning algorithm, influencing its efficiency and effectiveness in solving problems
[39]. In simple terms, the choice of a machine learning algorithm and the basic structure
or design of the machine learning model together define what is known as the model
architecture [40]. Figure illustrates how each methodology in the specified Situation
uses data inputs to develop the model architecture.

5 Replications of 5-
fold cross-validation
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Figure 3.1: Methodology for Situations 1, 2 and 3.
Figure shows that the models perform three main functions, the first of which

is the Estimated Range task. This task uses Al models to predict the driving range in
kilometers for EVs, helping drivers plan their trips more efficiently. Second, Decision 1
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provides a binary output (1 or 0) to indicate whether a car needs charging within the day,
which helps in energy management and alleviates range anxiety for EV owners. Third,
the Comprehensive Solution task incorporates V2V and G2V energy sharing strategies.
Considering factors like waiting time, distance, and energy provision, the model recom-
mends the best charging approach, choosing between charging stations (CS1, CS2) or
vehicles (V2, V3), to support sustainable transportation.

Leveraging Vehicle-to-Vehicle Energy
Sharing:
Using Predictive Modelling and
Decision Making

|

Combines all outpiuts to
Output displays available make a decision to
range in kilometers based on eothgr chargg at
current charge status. Charging station or
Vehicle considering
factors like (Distance,

time, provided charge)

Linear Regression,
XGBOOST, Random
Forest, SVR

LSTM, Feed Forward
Neural Network

Figure 3.2: Model Situation 1,2 and 3 Architecture.

Additionally, the rationale behind the chosen architecture and its alignment with the
specific requirements of V2V optimization tasks is discussed, shedding light on how the
model addresses the complexities inherent in the problem domain.

1 Model Architecture - Situation 1

Situation 1 is considered a regression problem type. The following machine learning
models are considered for this problem:

e Linear regression is one of the most straightforward and widely employed machine
learning algorithms. Essentially, this approach models the connections between
dependent and independent variables, progressing from analysis and learning to
current training outcomes [51].

e XGBoost regressor and gradient-boosting decision trees are considered and used by
data scientists and researchers to optimize their machine learning models.

e Random Forest captures non-linear relationships and interactions between features,
which may be beneficial if the relationship between available energy and distance
is not strictly linear.
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e Support Vector Regression (SVR) is also implemented to capture non-linear pat-
terns in the data, and the kernel trick allows it to model complex relationships.
SVR is adequate in high-dimensional spaces and is particularly useful when dealing
with non-linear relationships. It uses a kernel trick to transform the input features
into a higher-dimensional space.

2 Model Architecture - Situation 2

In Situation 2, the expected outcome is binary: 1, which indicates a need to charge, or
0, which indicates no need to charge. The chosen models are the Decision Tree classifier,
XGBOOST, and KNN. Decision trees are intuitive and can capture non-linear relation-
ships. They are well-suited for binary classification tasks and can handle interactions
between features. Decision trees are also interpretable, making it easier to understand
the decision-making process. KNN is a simple and effective algorithm for classification.
It classifies instances based on the majority class among their k-nearest neighbors. KNN
is non-parametric and can adapt to different data distributions. It might be effective
when the decision boundary is non-linear.

3 Model Architecture - Situation 3

In Situation 3, the methodology involves addressing multiple decisions handled by a
separate neural network model. Situation 3 is inherently more complex comparing to
Situation 1 and 2, involving more intricate patterns and temporal dependencies in the
data. To accurately capture and process this complexity, advanced models are necessary.
Models are selected based on below:

e LSTM Model: The Long Short-Term Memory (LSTM) model is designed to han-
dle sequential data, making it suitable for tasks involving time series or sequence
prediction. The architecture comprises several layers: the input layer accepts the
input data, formatted as sequences with a single feature. This input is then fed
into the LSTM layer, which consists of 50 LSTM units. These LSTM units can
retain information over long sequences, making them practical for capturing tem-
poral dependencies in the data. The LSTM layer processes the sequential input
data and extracts relevant features. Following the LSTM layer, a dense layer with
32 neurons and a ReLLU activation function is added to introduce non-linearity and
extract features from the LSTM output. Finally, the output layer consists of 5 neu-
rons, corresponding to the five output variables of the model. This layer produces
the model’s predictions for these variables.

e FFNN: Unlike the LSTM model, the Forward Neural Network (FENN) operates
on tabular data without considering any sequential information. The architecture
of the FFNN is as follows: the input layer accepts the tabular input data directly
without considering sequence or time-related information. This input is then passed
through two dense layers. The first dense layer consists of 64 neurons with a ReLLU
activation function. This layer is responsible for capturing complex patterns and
relationships present in the input data. The second dense layer follows, comprising
32 neurons with ReLU activation function. This layer further refines the features
extracted by the previous layer. Like the LSTM model, the output layer of the

19



FFNN consists of 5 neurons, corresponding to the five output variables of the model.
This layer produces the model’s predictions for these variables.

The Scikit-learn (Sklearn) library is employed, recognized as one of the most essential
and robust libraries for machine learning in Python. It offers a wide range of effective
tools for machine learning and statistical modeling, such as classification, regression,
clustering, and dimensionality reduction, all accessible through a uniform interface in
Python [52].
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Chapter 4

Data

The dataset marks the initial phase of constructing a machine learning model. It con-
stitutes an MxN matrix, where M denotes the columns (features), and N represents the
rows (samples). Excel spreadsheet program is utilized to generate and organize the data
[41].

A bespoke dataset was meticulously constructed for this study in response to the
absence of a standardized V2V data frame containing detailed specifications and travel-
related information. This section outlines the methodology and parameters involved in
creating the custom dataset, emphasizing the inclusion of V2V charge transfer scenarios
and leveraging legitimate car specifications from authoritative sources. Table com-
pares further the utilized data in different papers discussing the same concerns.

1 Data Collection

Comprehensive research on various car models sourced from reputable automotive web-
sites, ensuring the legitimacy of technical specifications such as make, model, range, and
kWh, are considered from [42]. Additionally, V2V charge transfer scenarios were incor-
porated based on established standards and protocols from recognized industry sources.

2 Driving patterns

The worldwide average daily driving distance for passenger cars, as the study indicates,
ranges from 25 to 50 kilometers. However, it is crucial to recognize the substantial geo-
graphic variations in driving patterns. For instance, Furopean countries may exhibit lower
average distances [43, [44] compared to regions like the United States [45] or the Middle
East, where commuting can reach up to 139km [47]. These differences include personal
commuting habits, urban planning, and cultural factors. In Dubai, where commuting
distances are notably higher, personal driving habits such as the observed kilometers
in daily commuting can exceed the global average. The validation and reliability of the
dataset were ensured through rigorous checks and referencing real-world experiences. The
dataset was meticulously crafted based on thorough research and real-world references to
closely replicate real-life EV situations, ensuring its accuracy and relevance.
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3

Parameters Included

Input Parameters

The self-created V2V data frame comprises the following key parameters using the pro-
gram Excel:

Car Model: It is extracted from the database with a total number of 360 car models
[42].

Range: It is based on the car model specifications in km [42].
Electric Energy: It is based on the car model specifications in kWh [42].

Daily commute (km): It is selected for each car model randomly between 6-139
km. It reflects a diverse range of driving distances from Worldwide Daily Driving
Distance, by insights from personal experiences and known commuting patterns
43, [5].

Available Charge: It is determined as 20% of the total electric energy capacity of
the car model, assuming that vehicles are within the range anxiety zone. Charging
is optimal when the battery level is between 20% and 30%, as it helps avoid deep
discharge damage in lithium-ion batteries and ensures efficient recharging [46]. Sce-
narios where cars often fall into this charge percentage include car owners without
home charging facilities, long highway journeys, and unexpected daily commutes.

Estimated Distance or Output: It is the amount of range according to the available
charge of each car model. It is calculated based on a simple mathematical Formula
of ratio and proportions, where:

a:buc:d (4.1)
range : kWh :: x : kW h(available) (4.2)

SC-1, SC-2 km: They represent the allocation of the distance to each car’s first CS
option. They vary significantly, ranging from a minimum of 5.6 km to a maximum
of 275 km. The minimum distance is based on data indicating that, on an average
day, whether working or non-working, individuals in Greece typically travel only
5.6 km. Conversely, the maximum distance considered is 275 km, which reflects the
spacing of CSs in remote areas of Canada, accommodating the range capacities of
currently available EVs [42][47].

V2, V3 km: It is the distance traveled to reach or find an EV in km. The range is
between 0.4 to 10 km to travel to another vehicle for charge exchange.

SC1 [Level 2 - km/30 min]: The CS power capacity is level 2, utilized in most
standard CSs. The time considered for charging is 30 minutes, providing 20.12
capacity [4§].

SC2 [Level 3 - km/30 min|: The CS power capacity is level 3, utilized also in most
standard CSs as fast charger. The time considered for charging is 30 minutes,
providing 72.42 capacity [48].
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V2: It represents the power capacity that can be shared from Vehicle 2, considering
V2 as the GMC 2022 Hummer model [42].

V3: It represents the power capacity that can be shared from Vehicle 3, considering
V3 as the LUCID DREAM Air performac 19 [42].

W.T for SC 1,SC 2: It is important to note that these values may vary depending
on the geographical location, population, and charging infrastructure. The worst-
case scenario is waiting for a CS in the queue, which could last for months. The
considered scenario is big cities with more CS infrastructure available. London has
an average of 2 hours and 37 minutes for each car while the minimum waiting time
was considered at the Outer Hebrides in Scotland due to the less amount of EVs and

more available CSs, with a typical waiting time of around 1 hour and 40 minutes
[47]).

W.T V2, V3: It is the time considered in minutes until V1 finds V2 or V3. It is
calculated based on a simple physics formula:

Speed = Distance/Time (4.3)

Time = Distance/Speed (4.4)

If we have distance and speed, we can figure out the time. Constant value of speed
is considered 60km/hour, assuming the car is driving at this speed limit.

SC1 +: It is the amount of km distance added if CS1 is selected.
SC2 +: It is the amount of km distance added if CS2 is selected.
V24 It is the amount of km distance added if V2 is selected.

V3+: It is the amount of km distance added if V3 is selected.

Output Parameters

Solution 1: Estimated Distance or Output km is the amount of range according to the
available charge of each car model.

Solution 2: Decision 1 is a fundamental binary decision determining if a car requires
charging. The binary output is either 1, indicating the need for charging, or 0, signifying
no charging is necessary. It also identifies urgent use cases, prioritizing situations where
the remaining range is below 10 km, in addition to cases where it is below zero.

Solution 3 : It includes several indices that guide decision-making:

— INDEX 1: Prioritizes the charging station that requires the shortest driving dis-
tance.

— INDEX 2: Selects the charging option that offers the maximum energy within a
30-minute period.

— INDEX 3: Chooses the charging source with the shortest waiting time in the
queue.

23



— INDEX 4: Considers the previous outputs (SC1+, SC2+, V2+, V3+) and selects
the option that provides the maximum additional charge to the vehicle.

— INDEX 5: Represents the final decision, choosing among the four charging options
based on the highest frequency of previous selections (CS1, CS2, V2, V3).

4 Limitations

The intent is to construct a comprehensive EV for range prediction and a charging decision
dataset, considering crucial parameters such as car specifications, driving patterns, and
environmental influences. Notably, this dataset comprises simulated data rather than
real-life observations, serving as a valuable resource for academic research and model
development. With a size of 7 parameters for each of the 360 car models, this dataset
will provide a robust foundation for analyzing key determinants of EV range and refining
predictive models. Additionally, it will serve as a benchmark for evaluating prediction
techniques and guiding policy decisions to advance sustainable transportation initiatives.
This dataset has been publicly available on the Github platform to facilitate its use and
inspire further research endeavors. Researchers and practitioners are encouraged to access
and utilize this dataset for various applications, leveraging its insights and potential to
drive innovation in the field of EVs and related domains [49].

24



Chapter 5

Model Implementation and
Evaluation

The model implementation and evaluation are integral components of the model exe-
cution and assessment phase. The methodology employed is illustrated in Figure |3.1]
Initially, before designing the model architecture, Exploratory Data Analysis (EDA) is
conducted to derive insights from the data beyond formal modeling or hypothesis test-
ing. This process helps in understanding the dataset variables and their interactions more
thoroughly [50].

Beginning with Situation 1, the task involves predicting the remaining range in kilo-
meters for the car after a daily commute. This provides the driver with a primary estimate
of the remaining distance they can travel based on their daily commuting patterns.

As shown in Figure [5.1a], the attention was directed towards scrutinising the corre-
lation between all inputs and the output for Situation 1. A heat map analysis of the
dataset for Situation 1 reveals significant correlations between various input parameters
and the estimated range output. Strong positive correlations are observed between esti-
mated range and both the kWh parameter and available charge, highlighting the influence
of electric energy levels on range estimation. Conversely, the daily commute parameter
shows a weaker correlation, suggesting a lesser impact on the estimated range compared to
energy-related factors. Additionally, the perfect correlation between the range parameter
and the estimated range indicates a precise alignment between specified and calculated
range values.

The bar graph in Figure |5.1b| shows the distribution of cars based on their charging
needs, categorized as either requiring charging (labeled as 1) or not requiring charging
(labeled as 0) as part of Situation 2. This visualization provides insights into the frequency
of charging needs within the dataset. Given that Situation 2 is a binary categorical
variable, visualizations like scatter plots or heatmaps would not effectively display its
relationship with the Estimated Range. Consequently, a bar graph is used for its clarity
and effectiveness in illustrating the prevalence of charging requirements among the cars.

For Situation 3, Figure |5.1c| presents a correlation heatmap that illustrates the cor-
relation coefficients among various features. Notably, Decision 1 demonstrates a strong
positive correlation with other features, evidenced by a coefficient of 0.98. In contrast,
V2 indicates a weak negative correlation (-0.083), and V3.1 shows a slight positive cor-
relation (0.084). Both CS1 and CS2 are constant features and therefore do not exhibit
any correlation with other features.
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Figure 5.1: Exploratory Data Analysis.

1 Dataset Splitting

1.1 Train-Test Split

In machine learning, data splitting is a widely employed technique that involves dividing
a dataset into distinct subsets, typically for training, testing, and sometimes validation
purposes. This method is instrumental in identifying optimal model hyper parameters
and estimating the model’s ability to generalize to new, unseen data [56, [55].

In machine learning model development, ensuring that a trained model generalizes
to new, unseen data is crucial. To facilitate this, the dataset is typically divided into
two subsets through a process known as data splitting, resulting in a train-test split.
Generally, the larger subset, about 80% of the data, is used for training, while the smaller
subset serves as the testing/validation set.

For Situations 1 and 2, the approach involves an 80-10-10 split, where 80% of the data
is used for training, 10% for validation, and the remaining 10% for testing. In contrast,
for Situation 3, the data is split differently, with 80% allocated for training and 20% for
testing.
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1.2 Model Training

When training a machine learning model, the first step is to select the best hyperpa-
rameters for the algorithm to learn the optimal parameters. These optimal parameters
are used to correctly map the input features (independent variables) to the labels or
targets (dependent variable) in order to achieve a certain level of intelligence [57]. Hy-
perparameters are significant for machine learning algorithms since they directly control
the behaviors of training algorithms and have a significant effect on the performance of
machine learning models. [58] For both Situations 1 and 2, the critical parameter model
is highlighted. Aside from that, these critical parameters are based on hyperparameter
tuning, which is a crucial step in the process of training machine learning models. The
tuning technique used for Situations 1 and 2 is Grid Search, a systematic approach that
evaluates the model’s performance across a predefined grid of hyperparameter values.
In Situation 3, hyperparameter tuning is conducted using a Keras Tuner. This library op-
timizes hyperparameters for TensorFlow neural networks by identifying the most effective
settings. The model utilizing the Keras Tuner undergoes adjustments to its hyperparam-
eters, making it a hyper-tuned model [59].

For situation 1, an N-fold cross-validation technique is commonly employed to op-
timize the utilization of available data. This method involves partitioning the dataset
into N folds, typically using 5-fold. The dataset is set up for 5-fold cross-validation, with
each fold using 10% of the data for validation and the remaining data for training. This
setup allows for thorough model evaluation and training. For Situation 2, where the task
involves binary classification, using ROC AUC for model evaluation instead of k-fold
cross-validation stems from several considerations. The receiver operator characteristic
(ROC) curve is often used in binary outcome analysis to illustrate how well a model
or algorithm performs [I3]. Unlike k-fold cross-validation, which may not be directly
applicable to binary classification tasks, ROC AUC is specifically designed to assess the
discriminatory power of binary classifiers.

1.3 Model Evaluation Metrics

The evaluation of machine learning models involved several key metrics. Due to the na-
ture of Situation 1 and Situation 3 outputs, Absolute Error (MAE) and Mean Squared
Error (MSE) were used to quantify the accuracy of predictions, measuring the average
difference and squared difference between predicted and actual values, respectively. Ad-
ditionally, the R-squared score was employed to assess the overall goodness of fit of the
models, indicating the proportion of the variance in the dependent variable explained
by the independent variables. Furthermore, training and testing scores were considered
to evaluate the model’s performance on seen and unseen data, providing insights into
overfitting or underfitting issues. These metrics provided a comprehensive understanding
of the model’s predictive capabilities and generalization performance.

In Situation 2, the models are evaluated against binary output, which necessitates
the adoption of specific performance metrics tailored to such scenarios. Unlike Situation
1, where metrics like MAE, MSE, and R-squared are commonly employed for regression
tasks, Situation 2 involves classification tasks with binary outcomes. In binary classifica-
tion, predicting the correct class label is pivotal, and metrics such as accuracy, precision,
recall, and F1 score gain prominence.
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1.4 Validation and Testing: Feature Selection

Feature selection is an essential task in machine learning-related problems because irrel-
evant features, used as part of the training procedure of different prediction systems, can
increase the cost and running time of the system and make its generalization performance
much poorer [54].

The techniques used for feature selection are Univariate selection using the chi-squared
(chi?) statistical test and a correlation heat map to illustrate the relationships between
features when interdependencies exist among their values. After performing feature se-
lection for Situations 1,2 and 3, the selected features are selected based on the Chi Score
for each feature, as shown in Table

Table 5.1: Summary of Feature Selection Techniques and Selected Features for Different
Models in Various Situations.

Model Feature Selection Technique |Selected Features

Situation 1|Chi-Squared, Correlation Heatmap|SN ,RANGE ,kWh ,Available Charge
Situation 2|Chi-Squared, Correlation Heatmap| RANGE, kWh, Daily commute (km),
Available Charge, Estimated range
Situation 3|Chi-Squared, Correlation Heatmap|Decision 1, W.T for SC 2, SC-2 km,
V2 km, V3 km, SC1 [Level 2 - km/30
min|, SC2 [Level 3 - km/30 min]|, V2,
V3, W.T for SC 1

In Situation 1, as demonstrated in [5.2] the '/RANGE’, "Available Charge’, and '’kWh’
features consistently have the highest importance scores for all models (Linear Regression,
XGBoost, Random Forest, and SVR), indicating their significance in predicting the target
variable. The SN’ feature also shows relatively high importance across all models, albeit
slightly lower than the aforementioned features. The "Decision 1’ feature has moderate
importance in all models except for Random Forest, where it has a relatively higher
importance score. The 'Daily commute (km)’ feature generally has lower importance
scores compared to other features across all models.

In Situation 2, as demonstrated in , the 'Daily commute (km)’ feature has the high-
est importance score across all models, indicating its significance in predicting the target
variable. For XGBoost and Decision Tree models, 'RANGE’ and 'Estimated Range’ also
show notable importance. ’kWh’ and ’Available Charge’ exhibit moderate importance in
most models, while ’Output: km’ has relatively lower importance in KNN.

Finally for Situation 3, the feature selection score results are shown in [5.4] where:

e Index 1:

The features SC1 [Level 2 - km /30 min], SC2 [Level 3 - km/30 min], V2, V3, CS 1,
and CS 2 are not included in the feature selection because they do not exist as part
of the inputs. The features with NaN chi-squared scores likely indicate that they
are constant and do not show significant variability, making it hard for the model
to find correlations with the target variable.

e Index 2:

Only SC1 [Level 2 - km/30 min], SC2 [Level 3 - km/30 min], V2, and V3 are
considered inputs, while the rest of the features are not included. Similar to Index
1, NaN values for some features suggest they might be constant and lack variability.
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Table 5.2: Feature Selection - Situation 1.

Model ‘ Feature Score
Linear Regression
RANGE 4.040613
Available Charge 1.360677
kWh 1.353712
SN 0.451674
Decision 1 0.051224
Daily commute (km) 0.025044
XGBoost
RANGE 4.042569
kWh 1.356742
Available Charge 1.337432
SN 0.445424
Decision 1 0.038128
Daily commute (km) 0.027359
Random Forest
RANGE 4.034815
Available Charge 1.358558
kWh 1.355766
SN 0.443531
Decision 1 0.070825
Daily commute (km) 0.010862
SVR
RANGE 4.028888
Available Charge 1.364626
kWh 1.359623
SN 0.447285
Decision 1 0.051869
Daily commute (km) 0.017922

e Index 3:

Features SC1 [Level 2 - km/30 min], SC2 [Level 3 - km/30 min], V2, V3, CS 1,
and CS 2 are not included in the feature selection, likely because they are not part
of the inputs. The chi-squared scores for W.T V2 and W.T v3 are relatively high,
indicating they are important for predicting Index 3.

e Index 4:

Features SC1 +, SC2 +, V24, and V3+ are the only considered parameters. Similar
to previous indices, NaN values for some features suggest they might be constant
and lack variability.

e Index 5:

Features CS 1 and CS 2 are not considered in the feature selection due to the previ-
ous selection/decisions made on the primary ”Indices”. V2 and V3 play significant
roles in predicting Index 5, as indicated by their high chi-squared scores. The final
decision, 'Decision 1’, is highly correlated with V2 and V3, suggesting that these
charging providers are crucial factors in determining the outcome.
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Table 5.3: Feature Selection - Situation 2.

Model ‘ Feature Score
XGBoost
Daily commute (km) 0.424092
Estimated Range 0.071514
RANGE 0.048868
Available Charge 0.039488
kWh 0.021221
KNN
Daily commute (km) 0.419184
Output: km 0.045381
RANGE 0.039185
kWh 0.023200
Available Charge 0.003726
Decision Tree
Daily commute (km) 0.417476
RANGE 0.084425
Estimated Range 0.060110
kWh 0.051876
Available Charge 0.034930

Overall, the feature selection process identifies relevant features for each target vari-
able, with some features being constant or not included due to their absence in the
input data. The selected features reflect the key factors influencing each index, providing
insights into their predictive relationships.

As shown in Table [5.5] it is evident that feature selection helps regularization to
reduce overfitting or underfitting, which substantially impacts model performance. In
Situation 1, before feature selection, models like XGBoost and SVR frequently show
good training scores but suffer from overfitting, as seen by substantial differences in
training and test scores. Even though scores may drop after feature selection, models such
as Random Forest and Linear Regression show better generalization and less tendency
toward overfitting, as seen by more minor score differences.

Meanwhile, in Table [5.6] Situation 2 models like KNN and Decision Tree exhibit
great accuracy before feature selection but show a trade-off after feature selection. KNN
and Decision Tree demonstrate better generalization even with lower scores, as seen by
more minor differences in training and test results. This highlights how crucial feature
selection is in maintaining robustness against overfitting or underfitting by striking a
balance between model complexity and performance for improved regularization.

In Situation 3, Table illustrates the performance of two cases, before and after
feature selection. Initially, both the LSTM and FFNN models showed comparable per-
formance in terms of MSE and R-squared values, although the FFNN model recorded a
slightly higher MAE than the LSTM model. Post feature selection, the LSTM model’s
performance enhanced notably—demonstrating a significant reduction in MSE and MAE,
and an improvement in R-squared value. Conversely, the performance of the FFNN model
deteriorated significantly after feature selection, with marked increases in MSE and MAE
and a reduction in R-squared value. Therefore, while feature selection markedly benefited
the LSTM model, it adversely affected the FENN model.
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Table 5.4: Feature Selection - Situation 3 (LSTM and FFNN).

Target Variable | Feature Chi-squared score
Index 1 SC-1 km 1.1349
SC-2 km 0.9050
V2 km 18.6311
V3 km 20.1375
Index 2 SC1 [Level 2 - km/30 min] NaN
SC2 [Level 3 - km/30 min] NaN
V2 NaN
V3 NaN
Index 3 SC-1 km 0.0159
SC-2 km 0.2272
V2 km 0.0211
V3 km 0.1461
Index 4 SC1 + NaN
SC2 + NaN
V2+ NaN
V3+ NaN
Index 5 CS1 NaN
CS 2 NaN
V2 26.1785
V3.1 31.1816
Decision 1 126.0
2 Results

In the assessment of models for Situation 1, SVR proved to be the top performer, ex-
celling in MAE, MSE, and R-squared metrics. In Situation 2, XGBoost emerged as the
best model, showing vital accuracy and predictive strength. These results highlight the
effectiveness of SVR and XGBoost in their respective predictive tasks, indicating their
potential for practical application in enhancing V2V energy sharing in the physical layer.
For situation 3, the LSTM model exhibited significant performance improvement.

The study addresses the pressing need for efficient energy management in EVs to
mitigate range anxiety and promote sustainable transportation practices. Three distinct
scenarios were considered, each requiring tailored AI models to address specific challenges.

e Situation 1: Estimated Range Prediction

For predicting the estimated range of EVs, feature selection played a crucial role
in enhancing model performance. After employing Chi-Squared and correlation
heatmap techniques, the selected features (RANGE, kWh, Daily commute, Avail-
able Charge) provided a refined input set for AI models. Notably, models such as
Random Forest and Linear Regression demonstrated improved generalization and
reduced overfitting post-feature selection, highlighting the importance of regular-
ization techniques. It is important to note that both linear regression and SVR,
scored 1 in R-square. When there is no discrepancy between the anticipated and
actual values, the model fits the data exactly, and the R-square value is equal to
1. After employing feature selection, a validation set, k-fold cross-validation the
score is still consistent. This can be explained with, in linear regression, If the
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Table 5.5: Comparative analysis of model performance in Situation 1 - Before and after

feature selection.

Before Feature Selection
Method MSE Test | MAE | R-squared (R?)
XGBOOST 0.04347 0.99992 0.10759
Linear Regression 0.00000 0.00000 1.00000
SVR 0.00209 0.03619 1.00000
Random Forest 0.53401 0.24986 0.99902
After Feature Selection
XGBOOST 1.02887 0.22977 0.99810
Linear Regression 0.00000 0.00000 1.00000
SVR 0.00200 0.03521 1.00000
Random Forest 0.34531 0.18667 0.99936

Table 5.6: Comparative analysis of model performance in Situation 2 - Before and after

feature selection.

Before Feature Selection
Method Accuracy | Precision | Recall F1 AUC Score
XGBOOST 0.98148 0.95833 1.0 0.97872 0.98597
KNN 0.87037 0.83333 | 0.86957 | 0.85106 0.87027
Decision Tree | 0.96296 0.92 1.0 0.95833 0.96774
After Feature Selection
XGBOOST 0.98148 0.95833 1.0 0.97872 0.99158
KNN 0.77778 0.68966 | 0.86957 | 0.76923 0.78962
Decision Tree 0.81481 0.70968 0.95652 | 0.81481 0.83310

input variables have a high correlation, the linear regression will overfit the results.
Due to the fact that the data is curated based on mathematical formula, it is fore-
seen that the input variables have a high correlation [60]. In SVR, Finding the
optimal fit that properly predicts the target variable while lowering complexity to
prevent overfitting is the aim of support vector machines (SVR). SVR naturally
solves multicollinearity by employing the Support Vector Machine (SVM) method
to ignore duplicated variables and concentrate on the most essential ones [61]. In
summary, multicollinearity and the innate mathematical relationships in the cu-
rated data cause linear regression to overfit, while SVR can manage these problems
well. Despite SVR’s resilience, overfitting can still occur because to the compara-
tively small size of the dataset, as demonstrated by the flawless R-Squared values
in both models.

Situation 2: Charging Necessity Decision

Various machine learning algorithms were evaluated to determine whether an EV
requires charging within the day. Despite the initial high accuracy observed with
models like KNN and Decision Tree, a trade-off was evident after feature selection.
However, models showcased improved generalization post-feature selection, suggest-
ing a balanced approach between model complexity and performance for effective
regularization.

Situation 3: Comprehensive Solution with V2V and G2V Energy Sharing

Integrating V2V and G2V energy-sharing strategies aimed to optimize charging
decisions based on waiting time, distance, and energy provision. The feature se-
lection highlighted critical variables (Decision 1, Waiting Time for Charging Sta-
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Table 5.7: Comparative analysis of model performance in Situation 3 - Before and after
feature selection.

Before Feature Selection
Method | MSE Test Data | MAE | R Squared
LSTM 0.01236 0.01930 0.55030
FFNN 0.01041 0.03983 0.59283
After Feature Selection
LSTM 0.00558 0.00908 0.57755
FFNN 0.12636 0.17564 0.19746

tions, Vehicle Distances) essential for model performance. Post feature selection,
the LSTM model exhibited significant performance improvement, while the FFNN
model showed degradation, emphasizing the effectiveness of feature selection in
enhancing model efficacy.

This study underscores the importance of tailored Al models and feature selection
techniques in addressing diverse challenges in EV energy management. By leveraging
machine learning algorithms and optimizing feature sets, the proposed solutions demon-
strate promising results in predicting range, determining charging necessity and opti-
mizing energy-sharing strategies. These findings pave the way for more sustainable and
efficient transportation practices, contributing to the transition towards a greener future.

2.1 Limitations of the Model

While predictive models are valuable tools for making informed decisions and predictions
based on data, it is essential to recognize that they simplify complex systems and may
only partially capture some relevant factors or nuances [62].

Understanding the limitations of a model is essential for interpreting its results cor-
rectly and avoiding overreliance on its predictions. By acknowledging and addressing
these limitations, researchers and practitioners can make more informed decisions about
when and how to use the model effectively.

e Data Source Limitations: The data used to build the model relies on informa-
tion from reputable automotive websites and established standards and protocols.
However, the accuracy and completeness of these sources may vary, which could
introduce biases or inaccuracies into the model.

e Geographic Variations: Driving patterns and commuting distances vary signifi-
cantly across regions and countries. While efforts were made to account for these
differences, geographic variations could still impact the model’s generalizability,
especially in regions with unique commuting habits, such as Dubai.

e Assumptions and Interpretations: The model construction involves making assump-
tions and interpretations based on available data and research. These assumptions
may only partially capture some of the complexities and nuances of real-world driv-
ing scenarios, leading to potential oversimplifications or inaccuracies in the model
predictions.
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e Limited Scope: The model may have a limited scope regarding the factors con-
sidered and the scenarios modeled. For example, it may not account for certain
variables or external factors influencing electric vehicle performance or charging
requirements, such as weather conditions or infrastructure limitations.

e Uncertainty and Future Changes: Like any predictive model, the predictions are
uncertain, especially when extrapolating future trends or scenarios. Additionally,
the automotive industry is rapidly evolving, with advancements in technology and
changes in consumer behavior impacting the relevance and accuracy of the model
over time.
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Chapter 6

Navigating Implementation
Challenges

Within the dynamic landscape of transportation systems, the concept of Vehicle-to-
Vehicle (V2V) energy sharing emerges as a transformative force, transcending traditional
boundaries to redefine the way vehicles interact and collaborate on the road. Beyond
the realms of mere communication, V2V energy sharing operates at the intersection of
various layers, encompassing physical, communication, and network domains. This multi-
faceted approach brings forth a myriad of challenges and opportunities, as vehicles evolve
into interconnected nodes in a vibrant energy ecosystem. In this chapter, first a compre-
hensive exploration of V2V energy sharing, traversing through the intricacies that span
across different layers of architectures is explained followed by the implementation issues
and mechanisms with an emphasis on the local environment utilising Al for V2V Energy
Sharing.

1 V2V Energy Sharing Framework

Following the published paper that provides an overview of the V2V energy framework
[64], the V2V energy sharing framework can be conceptualized as a multi-layered system,
with each layer addressing key aspects essential for its successful implementation. The
challenges within the V2V energy sharing framework can be summarized as follows:

e Physical layer:

— Numerous power conversion stages leading to power loss and reduced efficiency.

— Increase cost associated with external DC-DC converters compared to on-
board charging solutions.

— Durability, power, and safety of batteries used in EVs.
e Communication Layer:

— Systems like Bluetooth and ZigBee, which have short transmission ranges and
poor data rates, are not suitable for dynamic charging.

— Characteristics required for a real-time-in motion communication system.

— Creating a successful information and communication system for EV dynamic
charging.
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— Allowing for efficient V2V connection with little latency and excellent depend-
ability.

e Application and Data Layer:
— When EV participants are connected, accurate verification of transferred en-

ergy and possible security breaches are made.

— Dependence on reliable and secure communication is essential for dynamic
pricing and congestion management in the V2V charge allocation protocol for

VANET:S.

— Insufficient security measures in V2V message dissemination systems (digital
platforms).

— Persuading EV vendors to participate in V2V charging.
e Interoperability and Standards Layer:

— Charging Connectors and Protocols.
— Payment Systems.

— Grid Integration.

— CS Network Accessibility.

e Network Layer:

— Ensuring data security in the transfer of data energy between participants.

— Limited network bandwidth and high content demand in V2V communication.
— Enabling cooperative NOMA in V2V networks.

— Ensuring network security and privacy in V2V communication.

— Deployment of 6G Infrastructure.

2 Local Environment Considerations for AI Imple-
mentation in V2V energy sharing

Implementing Al-driven V2V energy sharing systems requires careful adaptation to the
specific characteristics and constraints of the local environment.

e Data Collection and Management:

Data is crucial for Al. Assessing local data availability(e.g., vehicle battery lev-
els, driving patterns, traffic conditions, weather data) which can be establishing
partnerships for data sharing. Along this, a robust data privacy and management
practices shall be in line with local regulations.

e ML Algorithms and Models:

Customize Al models to reflect local driving patterns and conditions (Machine
learning models for range estimation, Optimization algorithms for charging deci-
sions, Importance of real-time processing and decision-making). This can be ac-
complished in collaboration with local Al researchers and institutions.
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Communication Infrastructure:

Map out existing communication infrastructure and identify gaps. This is evaluated
by the reliability of local communication networks and plans for potential upgrades.
Should be in line with with local cybersecurity standards.

Interoperability and Standards:

Adoption of international standards while considering local adaptations. Work-
ing with local standards organizations to adopt relevant protocols for privacy and
security. Not to forget the involvement between local/international vehicle man-
ufacturers (Ensuring compatibility with different vehicle types) and local service
providers (Ensuring compatibility with different charging stations).

Integration with Physical and Network Infrastructure:

Conduct a thorough assessment of the local charging infrastructure and grid capa-
bilities (Real-time monitoring and control systems). Develop strategies to integrate
Al systems. by ensuring Al systems can interact seamlessly with local charging sta-
tions and grid infrastructure. Assessing and addressing any specific local challenges
such as power outages or grid instability.

Financial and Incentive Mechanisms:

Researching existing financial programs and propose new initiatives to support Al
deployment in V2V energy exchange. Considering new incentives tailored to local
economic conditions and policy targets.
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Chapter 7

Future Work and Publications

1 Future Work

The plan involves exploring further optimization techniques for AI models to predict
EV range more accurately, which may include considering additional input variables or
alternative modeling approaches. Additionally, there’s a focus on investigating advanced
machine learning algorithms or hybrid models to improve the accuracy and efficiency of
determining EV charging necessity.

Furthermore, the aim is to extend the comprehensive solution to fully incorporate G2V
energy sharing, tackling challenges such as infrastructure integration and scalability. As
part of these future plans, collaboration with EV manufacturers and other stakeholders in
the car industry, as well as local authorities with data on EV users and charging station
details, is crucial. This collaboration aims to obtain real-world data that can enhance
the determination of V2V and G2V charge exchange status.

2 Publications

This work has resulted into two scholarly publications. The first is a journal review paper
that provides an overview of V2V energy sharing, presenting the conceptual framework,
key findings, and potential applications:

Marwa Alghawi*, Jinane Mounsef, “Overview of Vehicle-to-Vehicle En-
ergy Sharing Infrastructure”, IEEE Access, April 2024.

The second publication is an accepted paper at the Artificial Intelligence Applications
conference. It focuses on the results of solutions 1 and 2 (EV range prediction and
charging necessity determination), showcasing the efficacy of the developed AT models.
The intent is also to publish the obtained results of solution 3, comprehensive V2V and
G2V energy sharing separately, emphasizing its significance in advancing sustainable
transportation solutions:

Marwa Alghawi*, Jinane Mounsef, Ioannis Karamitsos, “Optimizing Vehicle-
to-Vehicle Energy Sharing with Predictive Modeling”, Artificial Intelligence
Applications and Innovations (AIATI), Corfu, June 27-30, 2024.

Additionally, part of the future plan involves conducting a survey among EV users
to gather data on their willingness to participate in V2V energy sharing and incorporate
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AT into their EV decision-making process. This survey serves as a platform for collecting
valuable insights and data from EV owners, which can inform the development and
implementation of V2V energy sharing initiatives.
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Chapter 8

Conclusion

In this study, we conducted an in-depth analysis of EV range prediction and charging
optimization. Our investigation involved reviewing significant literature in the field and
proposing a novel Al model to address the challenges associated with EV range esti-
mation and charging decisions. Through our analysis, we identified key methodologies
and approaches employed in existing research, including predictive modeling, machine
learning algorithms, and coordination strategies for energy exchange among EVs.

We found that SVR demonstrated the best performance in Situation 1, with the lowest
MSE and highest R-squared value among the tested models. In Situation 2, XGBoost
emerged as the optimal model, exhibiting the highest accuracy and precision compared
to other algorithms. For Situation 3, the LSTM model, after feature selection, showed
the lowest MSE and highest R-squared value, indicating its effectiveness in predicting EV
range and optimizing charging decisions.

The implications of our findings extend to various real-world applications in the au-
tomotive industry and sustainable transportation sector. By accurately predicting EV
range and optimizing charging decisions, our Al model can significantly enhance the user
experience and promote widespread adoption of EVs. Moreover, our model’s integration
within the V2V and G2V framework establishes a critical infrastructure for autonomous
energy management and facilitates efficient energy exchange among EVs. These advance-
ments have the potential to accelerate the transition towards sustainable mobility and
reduce greenhouse gas emissions. While our study has made significant contributions to
the field of EV range prediction and charging optimization, several avenues for future
research and improvements remain unexplored. One potential direction for future work
involves refining the accuracy and robustness of our AI model through additional data
collection and validation processes. Additionally, exploring advanced machine learning
techniques and reinforcement learning algorithms could enhance the adaptability and
efficiency of our model in dynamic environments. Overall, ongoing research efforts in
this area are crucial for addressing emerging challenges in EV adoption and advancing
sustainable transportation initiatives.
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