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Abstract 

Managing thermal energy generation and heat transfer within nanoscale devices (transistors) of modern-day 

electronics is important as it limits speed, carrier mobility, and affects device reliability. In the nanoscale, 

heat conduction occurs primarily via phonon transport and heat generation is a result of electron-phonon 

interactions in these devices. Traditional methods of predicting physical behavior have proven to lack either 

physical accuracy, computational efficiency, or flexibility. The Nanoscale Energy Transport Model 

(NETM) is an engineering design tool introduced to calculate non-equilibrium transport of energy carriers in 

nanoscale devices and overcome the deficiencies of traditional models of energy-carrier transport The 

NETM previously had a rudimentary model to represent heating from electron-phonon 

interactions. This thesis builds a foundation for a more detailed representation of the transport 

and interaction of electrons and phonons with three major goals. First, to create a method of 

calculating equilibrium energy carrier concentrations across the first conduction band electronic structure for 

a silicon lattice and implement it into the NETM. Second, to create a preliminary model to calculate the 

effect of N-type dopant on the energy carrier concentration within the silicon lattice. And third, to do a 

wavevector space mesh sensitivity on the possible electron-phonon interactions subject to energy and 

momentum selection rules. The model implementation results compare well to similar methods in the 

literature. This forms the basis of the implementation of Fermi’s golden rule for the electron-phonon 

scattering rate computation and can lead to a full joule heating model. 
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Introduction 

Transistor Devices, Silicon Structure, & Heat Transport 

Thermodynamics within nanoscale electronic devices (transistors, operational amplifiers, etc.) of modern 

microelectronics is an important design consideration as increased temperature can lead to device 

degradation, limits on maximum device performance, and failure. Elevated temperatures can degrade 

performance due to decreased carrier mobility in the device and interconnect resistivity at device junctions. 

This can lead to device failure and reliability issues when used for an extended period of time. This is mostly 

related to the continued scaling of transistors sizes over time, as transistors become smaller and smaller 

thermal management becomes a more prevalent problem due to transistor density. Data for microchip 

transistor sizes is shown in figure 1.  

 

Figure 1: Microchip transistor sizes from 2000 to 2020. Reproduced from [1]. 

Data on the number of transistors in a processing device on average are shown in figure 2. 
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Figure 2: Number of Transistors Per Computational Device, Reproduced From [2] 

As shown, the transistor count in current semiconductor CPUs has already passed one-billion transistors. 

This is in line with the concept of Moore’s Law, the observation that the number of transistors within an 

integrated circuit has doubled each year. This is also better illustrated by the data compiled by Karl Rupp [3] 

as shown in Figure 3. 
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Figure 3: Microprocessor Trend Data, Reproduced from [3]. 

Figure 2 shows that with the number of transistors increasing, the Single-Thread performance, frequency, 

and typical power have tapered off since the early 2000’s. The most significant of these data trends that have 

been tapered off is the frequency, as its limitations in modern processors allow for decreased thermal 

performance degradation if designed and accommodated correctly. This is due to the direct correlation 

between heat generation and frequency, as the more frequency is increased the more heat is generated in the 

device due to the higher movement of charge carriers. Many engineering tools attempt to solve this problem 

by predicting heat transfer at the microlevel using assumptions and macroscale heat equations. However, 

due to the fundamental issues of translating macroscale effects to the nanoscale, these calculations are often 

imprecise. And attempts at direct atomic simulation often are incredibly computationally intensive. ANSYS, 

one of the most widely used computational tools, requires a use of eight gigabytes of ram per CPU core to 

run efficiently for their direct atomic simulation suite [4]. The Nanoscale Energy Transport Model, 

developed by Dr. Michael Medlar, allows for a less hardware intensive tool suite for heat generation 

calculations due to its flexibility, efficiency, and accuracy for calculating phonon dispersion within silicon 

lattices [5]. This is due to the consideration and combination of techniques used in quantum mechanics, 
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improvement upon established Monte-Carlo simulation techniques, and basic statistical mechanics. The 

goal of the Nanoscale Energy Transport Model [5] is to fill the gap and meet the needs of engineers and 

designers to allow more efficient computation of heat generation within semiconductor devices while 

maintaining accuracy and low processing time. 

Traditional Modeling Approaches 

This dissertation deals with the modeling of heat transfer associated with modern transistor geometries. The 

primary mechanism of heat transfer within solid devices, such as transistors, is conduction. A brief review of 

the general macroscale type models used to predict conduction and other mechanisms of heat transfer will 

be presented. The shortcomings of these models (primarily macroscale conduction) at nanoscale sizes and 

picoseconds time scales will be discussed briefly as the motivation for different modeling approaches. 

Convection and Conduction Paired Models (Macroscale Models) 

Heat conduction is the transport of heat within a medium where there is no bulk motion of atoms or 

molecules in the medium [6]. Macroscale condition is modeled with Fourier’s law of heat conduction, 

which states that the rate of heat transfer through the given material is proportional to the negative gradient 

of the temperature across the medium. To represent this mathematically, the gradient function is used as 

shown below in equation 1. 

 𝑑𝑞

𝑑𝑡
= −𝑘∇𝑇 

(1) 

Where 
𝑑𝑞

𝑑𝑡
 is the rate of heat transfer, k is the thermal conductivity of the given material, and ∇𝑇 is the 

temperature gradient across the x, y, and z directions. If we are only considering a one-dimensional case, 

then the equation simplifies to the following as equation 2. 
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 𝑑𝑞

𝑑𝑡
= −𝑘𝐴

𝑑𝑇

𝑑𝑥
 

(2) 

Where 𝐴 is the cross-sectional area of the material being analyzed and 
𝑑𝑇

𝑑𝑥
 is the gradient across the x-

direction only. Combining this with conservation of energy creates the equation for heat conduction, where 

transient thermal responses can be predicted across many macroscale scenarios. Equation 3 shown below is 

this equation for the one-dimensional case with isotropic (same properties across all dimensions) thermal 

conductivity [6]. 

 
k
∂2T

∂x2
+

∂q

∂t
= ρC

dT

dt
 

(3) 

Where 
𝜕𝑞

𝜕𝑡
  is the volumetric heat generation rate, 𝜌 is the density of the material and 𝐶 is the specific heat 

(for an incompressible fluid or solid, C = Cv = Cp). In relation to transistor devices, the heat flow can be 

modeled as the heat traveling across the x-direction from source to drain. A visualization of this is shown 

below in figure 4. 

 

Figure 4: A diagram of a MOSFET transistor with its heat flow represented as a red arrow. The dimensions of the transistor are H, D, W, and L. L 

being the gate length, D being the total depth of the transistor, H being the height of the transistor, and W being the width of the transistor. The 

directional coordinates of which is shown using a 𝑖,̂ 𝑗̂, and 𝑘̂ coordinates system to represent the basis vectors in the x, y, and z directions, 

respectively. 

Convection, in contrast, deals with the transfer of thermal energy between the hot and colder fluid medium 

by the bulk motion of molecules of the fluid medium [6]. This involves the process of conduction to the 
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fluid in the immediate vicinity of the surface and the movement of the fluid away from the surface carrying 

the heat away from the surface. Bulk motion can occur though either density variations in the fluid 

(buoyancy driven flow) or though externally forced fluid motion. For a simple integrated circuit chipset (IC) 

this is illustrated with figure 5. 

 

Figure 5: Convection from microchip to a fluid showing a transistor as the most basic source of heat generation, not to scale. Adapted from [5] 

To predict convective heat transfer across a surface, predictions of the fluid conditions adjacent to the 

microchip are required. That is typically done by using three governing equations for conservation mass, 

momentum, and energy. The three equations are formulated for a differential control volume and using 

simultaneous equations, can be solved to predict heat transfer from the surface of the microchip. 

Macroscale Model Shortcomings 

Due to macroscale limitations, Fourier’s law of heat conduction becomes unreliable at nanometer and sub 

nanometer length scales and picosecond time intervals [7,8]. This occurs due to the breakdown of local 

thermodynamic equilibrium at the length scales of current modern day semiconductor devices. The 

assumption that implies that the local temperature is an accurate representation of the distribution of 

phonons in the medium that is being observed. The assumption becomes invalid at the length scales and 

time scales of modern-day transistors due to approaching the mean free path and scattering time of the 

dominant energy carriers in the device [9]. For silicon (depending on the temperature distribution), the 



16 

 

representative values of the mean free path and scattering times range from 100nm – 1𝜇𝑚 and 10 ps – 10 ns 

respectively [10]. According to figure 1, transistor feature sizes have well surpassed this limit since the early 

2000’s. In addition, transistor frequencies have long since surpassed the characteristic scattering times in a 

similar time period. Intel® with their new CoreTM Alder LakeTM architecture can allow for boost frequencies 

up to 6.0 GHz in transistor switching in near 2 nanosecond switching times in their I9 line of products [11]. 

This indicates that the future of transistor type technologies will be far outside the scope of Fourier’s law. 

Thus, there is a huge demand for the direct simulation and modeling of transport of energy carriers across a 

variety of device platforms to track thermal energies. In semiconductors, the dominant thermal energy 

carrier is the phonon, and the primary mechanism of joule heating is the electron-phonon interaction. As 

such, nanoscale simulations are more appropriate to model these types of behaviors in transistors and other 

semiconductor devices. 

Nanoscale Energy Transport Model (NETM) 

The Nanoscale Energy Transport Model (NETM) [5] is a quasiparticle approach to modeling energy carrier 

interactions and transport. The first iteration of the NETM was called Statistical Phonon Transport Model 

(SPTM) and only modeled phonon transport and interactions. The modeling approach of the SPTM and 

thus the NETM consists of the following: First, the NETM creates the real lattice space and using the 

Fourier transform transforms the space into the wavevector space and meshes the newly created space. 

Second, using lattice dynamics, computes the phonon dispersion across the meshed wavevector space. 

Third, it searches across the meshed wavevector space to find the allowable three phonon interactions based 

on conservation of energy and momentum selection rules. Fourth, utilizing Fermi’s golden rule it computes 

the scattering rates of the each allowed interaction for three phonon scattering. And finally, it updates the 

entire phonon populations at each iterative timestep based on the results of scattering and real-space drift 

based of the phonon group velocity. Heat generation is as result of the electron-phonon interactions and is 
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treated as an input parameter that results in a phonon generation rate. The spectrum of phonon generation is 

based off limited studies of electron phonon interaction densities. 

Current NETM Shortcomings 

The treatment of the interactions between phonons and electrons in the current implementation of the 

NETM is a shortcoming that limits model accuracy. The electron-phonon scattering rate, as described in 

Fermi’s Golden Rule is not computed directly. The volumetric heat generation rate, which is a consequence 

of interactions, is treated as a geometric cell input parameter. At each time step, the energy input to each cell 

is computed as the product of the heat generation rate, the cell volume, and the discrete time step. The 

cellular energy input results in a net production of phonons, but not all phonon modes create phonons at the 

same rate per time step. The spectrum of phonon generation depends on the phonon wavevector, frequency, 

and polarization. The static spectrum was computed using two parameters, the electron-phonon scattering 

strength and the electron-phonon interaction density, respectively. The scattering strength parameter is based 

on the different deformation potentials from different phonon modes. And the interaction density was 

estimated using a 1-dimensional approximation. A fit to the phonon dispersion in the (100) direction and a 

parabolic conduction band model was used to compute allowable electron-phonon interactions (Rowlette 

and Goodson model) [12]. With the limits of momentum and energy conservation imposed.  

Objectives 

The goal of this thesis is to address the shortcomings of the representation of electron-phonon interactions in 

and assist in creating the foundation for a full electron-phonon scattering model for bulk silicon transistor-

based devices. This consists of the following steps: 

1. Initialize the electron population within the conduction band allowing for consideration of both 

doped and intrinsic charge carriers. 
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2. Understand the proportionality of dopant vs. the number of electrons present above the conduction 

band by using a first order model. 

3. Investigate the mesh sensitivity of the wavevector space element size to the electron-phonon 

interaction statistics. 

Literature Review and Theory Background 

Nanoscale Heat Conduction  

At the nanoscale level, conduction can be thought of as the result of two distinct mechanisms. These 

mechanisms consist of the movement of electrons in the lattice of the selected material and the transport of 

energy associated with the vibrational waves in the lattice [10]. Within semiconductors, both mechanisms 

are prevalent for the discussion of heat transfer with phonons representing the majority of heat carriers and 

their interactions with energy carriers changing some of their key characteristic values: energy and 

momentum.  

Lattice Structures and Electrons 

A crystal structure is the periodic arrangement of atoms in a crystal which can be described mathematically 

as a lattice, an identical and infinite array of points in space where the neighboring points are identical to all 

others [13]. The most basic unit of the crystal lattice is called the unit cell. For silicon, the unit cell is a face 

centered cubic diamond structure where the atoms occupy the faces of the cube. A visual of this is shown 

below in figure 6.  
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Figure 6: Face Centered Cubic diamond structure. Reproduced from [15]. 

To understand these structures and their formations, an understanding of the electron’s behavior must be 

known as to understand the population dynamics and orientations of the charge carrier. 

In quantum mechanics, electrons are the most fundamental charge carrier particle. As such they are the 

primary conduction energy carriers in a semiconductor. All quantum particles can be treated as waves due to 

wave/particle duality; this means that the fundamental particle can act as a wave and be predicted using 

wave mechanics [16]. For electrons, a fundamental relationship is the frequency energy relationship. This is 

given by the following equation: 

 E = ℏ|𝜔⃗⃗ | (4) 

Where E is the total energy of the particle, ℏ is the half Planck constant which is given in the amount of 

1.0574718 ∗ 10−34 J-s, and |𝜔⃗⃗ | being the magnitude of the angular frequency vector given in radians per 

second. Another useful descriptor of a quantum particle is the momentum of the particle. This is also 

described by the following equation: 

 𝑝 = ℏ𝑘⃗  (5) 

Where 𝑝  is the momentum of the traveling particle and 𝑘⃗  is the wavevector in units of radians per meter. 

The wavevector describes the spatial frequency and direction of the traveling particle.  
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The electron, due to the nature of wave-particle duality which is governed by the Schrodinger’s equation 

[14,16,17]. Schrodinger’s equation gives the complete time and energy description of the particle under 

analysis. It can be written as such: 

 
iℏ

∂Ψ

∂t
= ĤΨ 

(6) 

Where 𝑖 is the imaginary number, Ψ is the wavefunction of the particle that give the complete description of 

the particle’s states, and 𝐻̂ is the Hamiltonian of the particle. The Hamiltonian is the complete energy 

description of the particles state and is often given in the form of: 

 𝐻̂ = 𝑇̂ + 𝑉̂ (7) 

Where 𝑇̂ is the kinetic energy and 𝑉̂ being the potential energy. 

Solving for this equation gives rise to the idea that electrons will have a preference of where they can and 

cannot be found depending on the potential coulombic interaction and the kinetic energy. This leads to the 

rise of the idea of orbitals, locations surrounding the atom where there is a higher probability that an electron 

will be found. These orbitals are what give structure to the atom when there is an interaction between two 

nearby neighboring atoms. For semiconductors, this leads to the structure of silicon being very orderly due 

to the fact that in silicon. This is due to there are two free electrons out of the fourteen that is attached to the 

nucleus that can be paired in silicon’s outer most electron shell (called the p shell), 3𝑝𝑥 and 3𝑝𝑧. A 

depiction of these electron orbital shells is shown below. 
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Figure 7: 3px and 3pz orbitals.in silicon. Each orbital is oriented along its designated axis. Reproduced from [17]. 

These specific orbitals lead to the consequences of crystal structures. As crystal structure is the periodic 

arrangement of atoms in a crystal, the periodicity leads to periodic interacting coulombic interactions. This 

leads to the effects of bands and periodic potentials, which affect the electron position and populations 

across the silicon lattice.  

Electron Populations in Transistors 

Electrons within solids are bounded to certain states due to the nature of quanta within the nanoscale regime 

[14,16,17]. Once many atoms are introduced in a regular lattice pattern, a more intricate approach must be 

taken for solving for the electrons wave function as instead of being bound to a simple atomic core, many of 

these cores are connected in a regular pattern to each other. Each of these core’s act as a potential barrier that 

the electron must overcome to go across the lattice. For a simplified model, the one-dimensional case can be 

considered where the electrons are going across this one-dimensional chain of wells and barriers. The 

formal definition of this model is the one-dimensional Kroing-Penny model [14], a picture of which is 

shown below in figure 8. 
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Figure 8: The one-dimensional Kronig-Penny model, each barrier represents the gaps between the ion cores and each well represents the ion cores 

themselves. 

To solve this situation for the electrons wavefunction, a theorem known as Bloch theorem is used. The 

Bloch theorem states that the eigenstates of the Hamiltonian can be chosen to have the form of a plane wave 

times a function with the periodicity of the Bravais lattice (the most basic unit cell of a lattice) [16,18,19]. 

Mathematically, the way to represent this is using equation 8 below: 

 𝜓(𝑟 + 𝑅⃗ ) = 𝑒𝑖𝑘𝑅⃗ ⃗⃗ ⃗⃗  ⃗
𝜓(𝑟 ) 

(8) 

Where 𝑅⃗  is the lattice vector of the Bravais lattice. Using this and solving for the wavefunction using 

Schrodinger’s equation gives a relationship between the well and barrier regions. Solving for the 

relationship gives a graph that follows a sinusoidal decaying curve. This is shown below in figure 9. 

 

Figure 9: The solution curve to the Kroing-Penny model. The x-axis represents the periodic energy of the lattice spacing and the y-axis represents the 

wavevector possibilities. Reproduced from [14]. 
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Looking at the curve, the only possible solutions that are valid to solve for are the values between 1 and -1 

due to those values representing the valid states of electron existence. This solution leads to a banding effect 

due to the strong coulombic forces exerted by atoms being regularly spaced [14,18]. This (as described in 

solid state physics) leads to a banding effect as described by a theory called the band theory of solids.  

The band theory of solids says that due to the fact that there are N number of many atoms occupying a given 

space, and the consequences of the atoms being regularly spaced together in the solid, the energy locations 

where certain electrons occupy are described by bands [16]. These bands occur due to the discrete energy 

levels where electrons are able to occupy (the electron orbitals) start to layer upon each other creating a 

continuum. There can be numerous energy bands depending on the solid and its characteristics. However, 

the most important energy bands that most engineering applications are concerned with are the valance 

band, conduction band, and the forbidden band. The valance band is the band below the conduction band 

but the electrons at this band are loosely bound to the atom’s nucleus. The conduction band is the energy 

band where electrons are considered “free” and no longer localized around the nucleus of a given atom. The 

forbidden band (sometimes referred to as the band gap) is the energy gap between the valance and 

conduction band [14,16,18]. The band gap determines the electrical conductivity of the material with which 

we are working. In solid state theory, three types of solids are often characterized by this type of band gap 

relationship: metals, semiconductors, and insulators. Metals have many states and bands, to the point where 

the valance and conduction bands begin to touch and, in some cases, overlap. Semiconductors exhibit a 

bandgap but can have this gap closed with an applied voltage. This is the reason transistors exhibit the 

behaviors that they do, as the band gap is able to close and allow energy carriers to travel across the source 

to the drain. Insulators have the property of having an incredibly wide bandgap. So wide that electrical 

conductivity requires an enormous amount of volage applied across the material substrate [14,16]. A 

diagram of all of these material band gaps is shown below: 
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Figure 10: Depiction of band gap Structures for Metal, Semiconductor, and Insulator Materials. The blue bar represents the valance band, and the 

orange bar represents the conduction band. [14] 

However, due to the fact that crystal orientation can affect properties of charge transport, the gap between 

the conduction band and valance band is also different depending on the orientation axis. In wavevector 

space, the model for these differences in conduction and valence band energy is plotted on a graph called the 

E-k diagram, where k is the wavevector depending on the orientation and E is the energy in electron-volts. 

Figure 14 shows the E-k diagram of silicon. 

 

Figure 11: E-k Diagram of silicon across different lattice directions in momentum space across different allowable wavevectors. Reproduced from 

[20]. 
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To understand how many electrons populate a certain band two equations known as the density of states 

function and the probabilistic occupation function are used in conjunction to calculate the electron 

populations. 

Density of States Theory 

In solid state theory, we need to understand how many states are available to fill within the lattice of the 

structure we are observing for energy carrier transport [19]. Usually, within a one or two atom system, this is 

done by the Pauli exclusion principle and the use of molecular orbital theory to understand where the 

electron is filling in the state and how many states are available to be filled. However, once a many-body 

electronic system is introduced, it is not accurate to state a one-to-one jump transition of a box. As with 

banding theory, the electron now has many possibilities of where it could land given the overlapping of 

states within a given volume [14,16,18]. The density of states theory, however, is used for this purpose. A 

density of states function tells us the number of available states in a given energy range for an energy carrier 

to occupy. Along with a function of probability, the combination allows a description for how many 

particles are being filled at a certain state. For example, a free electron confined within a bulk three-

dimensional can be modeled as a quantum particle in a three-dimensional box [14]. To make this situation 

applicable to find the momentum, an understanding of the relationship of the lengths and wavevectors must 

be obtained. This is however trivial, using a simple relation an understanding of this relationship can be 

understood in equation 9. 

 
k =

2π

λ
 

(9) 

Where λ is the wavelength of one period of the wave in meters. If all the lengths are assumed to be the same 

to find the amount of volume occupied in momentum space, we use the relation shown in equation 15. 
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(Δk)3 = ΔkxΔkyΔkz =

2π

Lx

2π

Ly

2π

Lz
=

(2π)3

L3
=

(2π)3

Ω
 

(10) 

 With Ω representing the phase space volume (momentum space volume) that the wavevector 𝑘⃗  can travel. 

With that, we can find the number of total states by dividing the total amount of momentum space available 

to the electrons with the amount of volume occupied in momentum space, as shown in equation 16 [14]. 

 
N =

2 ∗ 2πk2dk

(2π)3

Ω

 
(11) 

And to find the density of states, we can use the base energy of the particle (often called the ground state 

energy) and use the energy per wavevector to solve as shown in equations 26-29 [14]. 

 
𝑘2 =

2𝑚𝐸

ℏ2
 

(12) 

 
𝑑𝑘 =

𝑑𝐸

𝑑𝐸
𝑑𝑘

=
𝑑𝐸 ∗ 𝑚

ℏ ∗ √2𝑚𝐸
 

(13) 

   

 
N = Ω ∗

8π

(2π)3
∗ 𝑘2 ∗

𝑑𝐸 ∗ 𝑚

ℏ ∗ √2𝑚𝐸
 

(14) 

 
g(E)dE =

1

2π2
(
2m

ℏ2
)
3/2

√EdE 
(15) 

   

Equation 12 is the energy and wavenumber relationship for a simple electron existing within a three-

dimensional box. Equation 13, then gives us the more general relationship involving both energy and the 

energy derivative in respect to wave space. That allows the observation of the direct energy dependency 

upon each discretized portion of k-space. 14 is the recognition that to account for all the states within the 

solid, we must take the total phase space volume and multiply it by the probabilistic potential of an electron 
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existing at that place. Finally, 15 is diving 𝑁 by the phase space volume Ω to obtain a density of states (how 

many states there are in the solid) function. A graph of equation 24 is shown below in figure 12. 

 

Figure 12: 3D Density of States across the energy spectra. Reproduced from [14]. 

However, in a general case of a solid of a more complex periodic potential we can use the following relation 

to understand the relationship of the number of particles to the density of states in equation 16: 

 𝑁(𝐸)𝑑𝐸 = 𝑔(𝐸)𝑓(𝐸)𝑑𝐸 (16) 

Where 𝑁(𝐸) is the number of particles per unit volume between energy 𝐸 and 𝐸 + 𝑑𝐸, 𝑔(𝐸) is the 

density of states function, and 𝑓(𝐸) is the distribution function or the probability function that a particle 

exists in energy state E. For counting the total sum of all the number of electrons existing across all energy 

bands, we can take equation 16 and integrate it across all energy bands available as shown in equation 17. 

 
𝑒#

− = ∫𝑁(𝐸)𝑑𝐸
𝐸

= ∫𝑔(𝐸)𝑓(𝐸)𝑑𝐸
𝐸

 
(17) 

In particular interest is the function 𝑓(𝐸) as it tells us the probability of a particle occupying a particular 

band. This is determined by either Fermi-Dirac, Bose-Einstein, or Boltzmann statistics [21]. Fermi-Dirac 

statistics describe the statical probability that a fermion is distributed among a set of energy states. Fermions 

have the properties of being indistinguishable, obeying the Pauli exclusion principle, having odd-half integer 
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spin, and their wavefunctions can overlap. Electrons obey these principles, and as such the Fermi-Dirac 

distribution is used to describe them. The equation for Fermi-Dirac statistics is shown below in equation 18 

[21]. 

 
𝑓𝐹𝑒𝑟𝑚𝑖(𝐸) =

1

1 + 𝑒
𝐸−𝐸𝑓

𝑘𝑏𝑇

 
(18) 

Bose-Einstein statistics describe the statical probability that a boson is distributed among a set of energy 

states. Bosons have the properties of being indistinguishable from each other, they do not obey the Pauli 

exclusion principle, have whole integer spin, and their wavefunctions can overlap. Phonons obey these 

principles due to being a quasi-particle and not having any type of spin associated with them. The equation 

for this statistic is shown in equation 19 [19, 21].  

 
𝑓𝐵𝐸(𝐸, 𝑇) =

1

𝑒
𝐸

𝑘𝑏𝑇 − 1

 
(19) 

When the population becomes noticeably big, they begin to converge to another type of distribution known 

as the Maxwell-Boltzmann distribution. This distribution accounts for particles that are identical to each 

other but can be sorted and distinguished depending on the order, have any type of spin characteristic, and 

their wavefunctions do not overlap. Some examples of this behavior are gas molecules or many high energy 

bosons. The equation for Maxwell-Boltzmann distribution is shown below in equation 20. 

 
𝑓𝑀𝐵(𝐸) = 𝑒

−
𝐸−𝐸𝑓

𝑘𝑏𝑇  
(20) 

For a visualization of both statistics compared to regular Boltzmann statistics is shown in figure 13. 
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Figure 13: Bose-Einstein, Maxwell-Boltzmann, and Fermi-Dirac Statistics as Compared across the energy spectrum with ε being the energy of the 

particle, μ being the chemical potential, kb being the Boltzmann constant, and T being the overall system temperature. Reproduced from [21]. 

With each of these statistics there are two dependencies, the temperature of the system and the chemical 

potential. In solid state physics, our chemical potential is the Fermi level of the system. The Fermi level is 

the term used to describe the top collection of electron energy levels at absolute zero. Electrons are 

dependent on the lattice banding and thus the Fermi level of the Fermi “sea” of electrons present. In the 

previous section discussing bandgaps, the Fermi level would be set between the valance conduction band at 

absolute zero (0 K). The equation to describe the energy location is given by equation 21 [14, 21]. 

 
𝐸𝑓 =

𝐸𝑔𝑎𝑝

2
=

𝐸𝑐 − 𝐸𝑣

2
 

(21) 

This description works well near zero kelvin as the particles obey Boltzmann like behaviors. However, once 

we begin introducing thermal effects the statistics begin to skew due to energy being introduced into the 

system thermally. A graph of this is shown below in figure 14. 
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Figure 14: The Fermi distribution at a range of temperatures. 

The statistic is also affected by doping and impurities, causing a shift of the Fermi level and thus the Fermi 

“sea” of elections. This is shown in figure 15 below. 

 

Figure 15: Fermi Distribution at Shifted Fermi Levels 

An interpretation of this function is that at ordinary temperatures, most levels up to the fermi level are filled 

with electrons (thus have a high probability of being found). With higher temperatures, the skew of the 

function shows that a larger fraction of the electrons can exist above and contribute to conduction band 
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interactions. It should be noted that even though there are values at the gap between the Fermi level and the 

conduction band, no electrons exist at the band gap. In the density of states function, it is considered to be 

the probability that an electron exists at that energy at the given temperature. Due to impurity shifting, this 

can cause a bit of a recursive relationship to occur due to the Fermi level’s dependence on the dopant shift 

and the amount of dopant that can be calculated to exist to be determined by the shift of the Fermi level.  

Dopant and Fermi level shifting  

Dopants are purposefully introduced impurities into a semiconductor lattice to make it more conductive and 

narrow the bandgap between the Fermi level and the conduction band [19, 22]. The prevalence of 

semiconductors in our modern day is heavily reliant on the relationship between dopant and electrical 

conductivity. In industry, some of the most common elements for dopant in silicon are boron (B), 

phosphorus (P), arsenic (As), and antimony (Sb) [22]. The reason behind this is that both elements change 

the charge carrier distribution of the silicon, allowing for higher conductivity across the lattice due to more 

availability of charges. Boron has a vacancy in its outer shell allowing for the formation of what is called a 

“hole.”  Phosphorus, Arsenic, and Antimony, in contrast, have an extra electron in its valance shell, allowing 

for more electrons to be introduced into the silicon lattice. The electrons and holes are considered negative 

and positive charge carriers, respectively. For a visual of this relationship, figure 16 below shows the effects 

of introduced impurities in the lattice below. 
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Figure 16: Visual of dopant introduced into the lattice. The right image shows pure silicon without any added dopant while the right image shows two 

cases: P-Type (Boron doped silicon with extra vacancies “holes” in the lattice) and N-Type (Antimony doped silicon with extra valance electrons). 

Reproduced from [22]. 

Introduction of these impurities into the lattice is important as their introduction shifts the Fermi level to 

allow higher ease of carrier transport as mentioned previously. To introduce these impurities a method 

known as dopant introduction is used to inject dopant into the semiconductor lattice. By doing this, the 

newly introduced dopant atom “knocks out” an atom previously occupying lattice point and places itself in 

that position [22]. After the impurities are introduced through doping the semiconductor, a shift in the Fermi 

level occurs. This is where more dopant impurities cause the fermi level in the semiconductor to shift up. 

This relationship is dependent on the dopant introduced into the lattice, however unilaterally the Fermi level 

will shift up relative to the dopant introduced. There however can be cases where the Fermi level can shift 

up near the conduction band. This is considered to be when the semiconductor goes to a degenerate state. 

Degeneracy is when the semiconductors’ valance band begins to share states with the conduction band due 

to bandgap narrowing effects. This can cause the semiconductor to exhibit metallic like electrical behaviors 

[23]. Once the valance and conduction bands begin to fully overlap, this will cause the phenomenon of 

bandgap narrowing to occur. This leads to the semiconductor exhibiting complete metallic behaviors. An 

illustration of this phenomenon is shown in figure 17 below. 
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Figure 17: A depiction of band gap narrowing within a semiconductor device. Once enough dopant has been introduced into the lattice of the 

material, the bandgap will begin to narrow. This leads to more metallic like electrical conductivity within the semiconductor. Reproduced from [24]. 

To calculate the amount of shifting and degeneracy that occurs due to the Fermi level, the relationship 

between the dopant amount and the Fermi level can be used. Normally, an equation called the Fermi-Dirac 

integral is used to determine the relationship between the conduction electrons and shifted Fermi level due 

to dopant [23,24]. The equation for the Fermi-Dirac integral is shown below in equation 22. 

 
𝐹𝑘(η) = ∫

𝑥𝑘

𝑒𝑥−η + 1
𝑑𝑥

∞

0

 
(22) 

With k representing the order of the integral and η representing the energy of the electron sea. This equation 

can often prove to be difficult to solve for as the half-order of this function must be taken without 

knowledge of η or little knowledge of it. So, approximations are often made in the field of bandgap 

engineering. An example of these types of approximations is shown below in equations 23 and 24 for the 

position of the fermi level [24]. 

 𝐸𝐹 = 𝐸𝑐 + 𝑘𝑏𝑇 [𝑙𝑛 (
𝑛0

𝑁𝑐
) + 0.353

𝑛0

𝑁𝑐
] (23) 

 𝐸𝐹 = 𝐸𝑣 − 𝑘𝑏𝑇 [𝑙𝑛 (
𝑝0

𝑁𝑣
) + 0.353

𝑝0

𝑁𝑣
] (24) 

Where 𝐸𝑉 is the energy position of the valance band, 𝑁𝑣 is the effective density of states in the valance 

band, 𝑁𝑐 is the effective density of states in the conduction band, 𝑛0 is the number of electrons, and 𝑝0 is 

the number of holes. The position and availability of these electrons then can affect many of the thermal 

characteristics of the semiconductor. Especially when it relates to phonons and three phonon scattering. 



34 

 

Phonons & Three Phonon Scattering 

In a lattice of any material, the atoms are in constant vibrational motion as any temperature above absolute 

zero (0 Kelvin) [25]. Atoms do not move without being acted upon by other atomic forces as their 

movement is dependent upon their nearest neighbors and the interatomic forces being applied to them. This 

consequently causes the vibrations and movements of one atom to affect the neighboring atoms and causes 

a lattice vibrational wave to occur. To make this concept clearer, a toy model can be made using a 1-d chain 

of atoms, all connected in a row and bonded together one by one as shown below in figure 18 [19]. 

 

Figure 18: 1-D Toy Model of an Atomic Chain 

Where the blocks represent the individual atoms in the lattice and the springs represent the interatomic 

bonds between each atom. If any of the atoms are displaced from their equilibrium position, this would exert 

a force on the connecting atoms in the chain both left and right and this force would propagate along the line 

of atoms. This is an example of a propagating vibrational waves, and in this case the vibration propagates 

along the one-dimensional chain. The quantum mechanical nature of particles at this scale dictates that the 

atoms can only vibrate at discrete, quantized energy levels. This can be represented as a simple quantum 

harmonic oscillator. In a bound potential, which is represented as a parabolic energy curve, the vibrations are 

discrete levels up the curve. On these energy levels, the wavefunction can be overlayed on each energy 

level, as that is where the atom exists at that state as shown in figure 19 below. 
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Figure 19: Parabolic Potential Curve and Its Associated Energy Modes with the overlayed wavefunction for each energy level. Sourced from [26]. 

These normal modes up this energy ladder are considered to be an excitation up the oscillator’s potential. 

This is in essence what a phonon is, a discrete packet of vibrations each with an assigned energy level. This 

is analogous with the discrete amount of energy transmitted with a photon in the electromagnetic spectrum 

[27]. The amount of energy in each phonon is related to the frequency of the vibration using the energy 

frequency relationship. All objects within the nanoscale world exhibit wave/particle duality and are 

governed by the uncertainty principle. So, phonons can be thought of as pseudo-particles [5]. This 

description is sufficient if the length scales that are being considered are larger than the wavelength of the 

phonon. As elementary excitation of the lattice, multiple phonons can exist within the same excitation 

energy state. This implies that they follow Bose-Einstein statistics and the probability that a phonon is 

occupying a certain excitation number (the energy level number in our case) [19]. The phonon occupation is 

directly correlated with how many phonons are occupying in a given volume 𝑉of real space. In real lattices, 

the determination of normal modes available to the phonons amounts to the determination of the dispersion 

relationship. The dispersion relationship describes the relationship between energy and momentum for 
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phonons in the lattice of the given material [19]. In solid state physics the dispersion relationship is often 

shown as a frequency vs. wavevector graph for phonons. Shown below is the dispersion relationship for the 

one-dimensional lattice shown in figure 20. 

 

Figure 20:  Dispersion Relationship of a 1-D Monatomic Chain, with a representing the lattice spacing between the individual atoms. [19] 

This relationship is directly related to the structure of the material and the interatomic forces acting upon 

each atom. The materials under consideration, silicon, and germanium, have a diamond centered crystal 

structure. To analyze the structure when relating to dispersion, it is better to look at the lattice in wavevector 

space (k-space, or sometimes referred to as reciprocal space or the momentum space as mentioned above). 

Wavevector space is formed by taking the three-dimensional spatial Fourier transformation of the real lattice 

space. For analysis, we consider a zone called the First Brillouin Zone (FBZ). The FBZ represents the basic 

unit cell in wave vector space and the physically possible values of the wavevectors for each phonon [5,19]. 

Wavevectors that reach beyond this space can be related back to the FBZ through the concept of aliasing, 

where the wavevector is mirrored back to the FBZ due to having similar locations and values of another 

wave in a different cell of the lattice [28]. The edge of the FBZ represents the minimum meaningful 

wavelength relative to the lattice. A schematic of the FBZ for silicon is shown below in Figure 9. 
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Figure 21: First Brillouin Zone of Silicon, Reproduced from [5]. 

Each axis labels the different components of the allowable wavevectors. In solid state physics, certain 

locations are labeled with the letters Γ, L, X, K, and W shown in Figure 21. The labels are used to denote the 

directions of high symmetries within the lattice itself [14,19]. For example, the direction of  Γ-L is referred 

to as the (100) vector of the lattice and denotes the direction of propagation of the phonons in a direction 

parallel to one edge of the cubic unit cell as shown in Figure 1.  

Six energy levels are available to any one wavevector within the domain of the FBZ for a two-atom basis, 

like silicon [19]. The energy levels are labeled with different frequencies and are referred to as modes or 

polarizations. The different modes of each related to the displacement of the adjacent atoms in the lattice c 

relative to one another. The acoustic modes involve adjacent atoms in the lattice moving in the same 

direction while optical modes are moving opposite to each other as shown in Figure 22. 

 

Figure 22: Image of Acoustical and Optical Modes 
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Within acoustic and optical modes, transverse and longitudinal modes of these waves can be identified. 

Transverse indicates that atomic motions are orthogonal to the direction of motion of the wave whereas 

longitudinal is when atomic motions are parallel to the direction of motion of the wave (often called a 

compression wave). Two transverse directions exist for any given longitudinal direction, and they are also 

orthogonal to the longitudinal direction. An example of the experimentally determined relationships for this 

behavior in a silicon lattice is visualized in Figure 23 on a frequency-wavevector diagram. 

 

Figure 23: Experimental Values for Silicon Dispersion in the (100) Direction at 300 K. Triangles Are Data from Nilsson and Nelin [29], Open 

Circles Are from Dolling [30]. 

Results are shown for frequency vs. wavevector in different directions of the FBZ. The labeling of the graph 

corresponds to different wavevector lattice points identified in the FBZ labeled in figure 21. Phonons 

traversing in different directions through the lattice can have different frequencies. This is a result of the 

different interatomic forces that result in different trajectories in the lattice [25]. As a result, different phonon 

modes will exhibit different group velocities as they traverse through the material lattice. The group velocity 

is defined in equation 25. 
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𝑣𝑔⃗⃗⃗⃗ =

𝑑ω⃗⃗ 

𝑑𝑘
 

(25) 

Graphically, this is interpreted as the slope at any given point on the dispersion curves.  

Scattering interactions affect phonon transport just as photon interactions with a refractive crystal affect 

radiative transport [19]. Phonons can interact with boundaries, interfaces, impurities, transport electrons, 

photons, and other phonons as well. In pure insulating three-dimensional bulk material, the primary 

interaction that affects phonon transport is three phonon scattering [19]. Three phonon scattering involves 

three phonons that can take two forms, type I, and type II. Type I is shown in Fig 24. 

 

Figure 24: Illustration of 1-D three phonon scattering where ks' and k's' combine to produce k''s'', Type II reverse the order. Adapted from [5] 

Where k, k’, and k’’ indicate the wavevectors of the three phonons and s, s’ and s’’ are the polarizations or 

modes. In both types of interactions, energy, and momentum (up to a subtraction of a reciprocal lattice 

vector) is conserved This implies the following relationships regarding the wavevectors and frequencies: 

 𝑘𝑠 + 𝑘′𝑠′ = k′′s′′ + G (26) 

 ω(k) + ω′(k′) = ω′′(k′′) (27) 

The only meaningful wavevectors are those in the FBZ. If an interaction involves the addition of 

wavevectors that lead to a result inside the FBZ it is referred to as a normal scattering event [19]. If an 
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interaction involves the addition of wavevectors that lead to a result in the FBZ as it is referred to as a 

normal scattering event. If an interaction involves the addition of wavevectors that results in a result outside 

of the FBZ domain, it is aliased back into the FBZ. This type of backscattering interaction is known as an 

Umklapp process. Both types of interactions are schematically shown with figure 25. 

 

 

Figure 25: Normal vs. Umklapp three phonon scattering in a 2-d representation of the wavevector space. Phonons K1 and K2 interact to result in 

vector K3 in the normal process on the left. Phonons K1 and K2 interact to result in K3 that is reflected back into the FBZ with the reciprocal vector 

G in the Umklapp process on the right. Reproduced from [5]. 

However, phonons can propagate through other mechanisms as mentioned above. As we add more dopant 

into the system, the interatomic force constants will change depending on the size of the dopant atom and 

charge carrier. This. can lead to a production of a perturbation which will lead to a change of state for the 

phonon [25]. The impurity scattering rates are directly dependent on the square of the frequency of the 

phonon involved in the interaction, the number of phonons with that particular frequency, and the impurity 

scattering parameter [5]. This is all a result of dopant concentration and as such an increase in interaction 

events and thus a general increase of dispersion across the medium. To calculate the number of new 

interactions due to dopant concentration requires an understanding of fermi effects when dopant 

concentration is introduced.  
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Electron and Phonon Interaction Scattering and Heat Generation  

As phonons are the main thermal energy carrier in the lattice and thus the semiconductor device, it is the 

interaction between the phonon and electron populations which give rise to joule heating. Electrons and 

phonons experience many interactions and transformations as they move through a material lattice. 

However, electron-phonon scattering is the only interaction that changes the net energy of the electron 

population as it results in net energy transfer to the lattice structure [5]. The input of energy to the phonon 

population is primarily due to the deformation potential interaction. With the deformation potential 

interaction, phonons are assumed to produce a uniform local strain of the lattice structure. This local strain 

causes a deformation of the electron cloud, influencing charge carrier transport. This is treated as a 

perturbation responsible for scattering and scattering rates can be computed from Fermi’s Golden Rule. 

Fermi’s Golden Rule is shown below [16]. 

 
𝜏 =

2𝜋

ℏ
|⟨𝛹𝑓|𝐻𝑖𝑓̂|𝛹𝑖⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖 ± ℏ𝜔) 

(28) 

Where 𝜏 is the transitional probability per unit of time, 𝛹𝑖 is the initial state of the quantum system, 𝛹𝑓 is the 

final state of the quantum system, 𝐻𝑖𝑓̂ the Hamiltonian dynamical matrix of the system, and 𝛿(𝐸𝑓 − 𝐸𝑖 ±

ℏ𝜔) is the energy conservation condition. In the inelastic interaction, the electron will emit a phonon as it 

transitions to a lower energy state, or it can absorb a phonon to reach a higher energy state. This interaction 

is shown schematically in the Feynman diagram in figure 26 below. 
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Figure 26: Electron-phonon interaction Feynman diagram. The 𝑒−represent the electrons and the arrows represent the states with the black arrows 

are the initial states and the orange arrows represent the final states. The wave (𝑘, 𝑠) represents the phonon interaction of emission and absorption 

form one electron to its local neighbor.  

In the case where a phonon is emitted and absorbed, the initial state consists of an energy 𝐸 and a 

momentum 𝑞, the final state with an energy 𝐸′ and momentum 𝑞′, and a phonon with momentum 𝑘 and 

polarization 𝑠.  

Modeling Implementation 

Methodology 

Implementation of Fermi’s Golden Rule for electron-phonon scattering requires the knowledge of the 

interactions allowed by the selection rules, the deformed potential, and the initial phonon and electron 

populations. The electron population initialization within the conduction band is the focus of this work and 

for a visual of this, figure 27 below shows the block diagram representing the steps and how they feed into 

each other sequentially. 
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Figure 27: Visual guide for modeling approach and steps. Solid lines represent work done; dashed lines represent future work to be done. 

Electron Population  

To compute the distribution of electrons at or above the conduction band minimum, the relationship for both 

the density of states and probability function needs to be found for each wavevector space element. A 

depiction of this method is shown below in figure 28. 
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Figure 28: A depiction of the states located along the conduction band. Each state at the conduction band will exist among a dk interval in dE energy 

range. As such, a relationship between dk and dE can be used to find all the states located along the interval. 

To model this for the NETM, the given volume in real space is given by the following equation: 

 dV = dx ∗ dy ∗ dz (29) 

This in it of itself is simple to explain, where dx, dy, and dz are the discretized lengths in real space which 

is computed by the NETM in the input scattering algorithm. To obtain the occupation factor, there will be a 

set amount of occupancy per unit of k space. This can be represented by the following relationship: 

 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 ∝  𝑑𝑘 (30) 

Remembering that in order to translate that occupancy per 𝑑𝑘 into real space requires use of the inverse 

Fourier transform, the following relationship is then made for all of the conduction band. 

 
𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =

𝑑𝑘3

(2π)3
 

(31) 

After this, the probability of finding an electron in real space is then simply the Fermi-Dirac distribution. 

Multiplying all of these together, a relationship is given by the following equation: 

 
𝑁(𝐸)𝑑𝐸 = (𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑧)

𝑑𝑘3

(2π)3

1

1 + 𝑒
−
𝐸(𝑘)−𝐸𝑓

𝑘𝑏𝑇

𝑑𝐸 
(32) 
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Finally, to find all the possible electron elements that are applicable for the initial state calculations, a sum 

over all k-space is done using the energy-wavevector relation. For a continuous distribution this would be 

done with an integral, but computationally this is done as a sum. This is shown in equations (33) to (35). 

 
𝑁(𝐸) ℏ𝑑𝑘 = (𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑧)

𝑑𝑘3

(2π)3

1

1 + 𝑒
−
𝐸(𝑘)−𝐸𝑓

𝑘𝑏𝑇

 ℏ𝑑𝑘 
(33) 

 
𝑒#

− = ∫(𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑧)
𝑑𝑘3

(2π)3

1

1 + 𝑒
−
𝐸(𝑘)−𝐸𝑓

𝑘𝑏𝑇

 𝑑𝑘 
(34) 

 
𝑒#

− = ∑ (𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑧)
𝑑𝑘3

(2π)3

1

1 + 𝑒
−
𝐸(𝑘)−𝐸𝑓

𝑘𝑏𝑇
𝑘

 
(35) 

It should be noted that the same equation can be used to find any matter of electrons across the entire band 

energy spectrum. However, conduction electrons are only considered as they are the only contributors to the 

charge carrier movement and thus the electron-phonon interactions. 

Dopant Charge Carrier Contribution Population Initial Implementation 

When it comes to dopant modeling, given all the considerations given in the literature it was difficult to 

create a “shoe fits all” model for the current stage of the NETM. This would require code for every element 

used and an implementation of Fermi-Dirac integration. For a simple model however, it was considered that 

all dopants were ionized and filled spots in the silicon conduction band. Thus, every electron effective state 

found would be proportional to the amount of total distribution of the dopant across the lattice. This can be 

represented with the following mathematical relationship: 

 𝑒#
− ∗ α = 𝑑𝑜𝑝𝑎𝑛𝑡 𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 (36) 

As such, to find that proportionality, a simple mathematical relationship can then be used: 
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α =

𝐷𝑜𝑝𝑎𝑛𝑡 𝐼𝑛𝑝𝑢𝑡

𝑒#
−  

(37) 

Of note is that this calculation could work for any type of dopant as long as the charge carrier addition is one 

to one. That is, for every ion added either there must be one additional electron or additional hole. This 

represents the Fermi-Dirac integration of finding the dopant relation to the number of effective states and as 

such can be used as a replacement. As such, to compute a new fermi level, the constant α can be used in 

conjunction with equation (25) to produce the following Fermi shift model: 

 
𝐸𝑓 = −𝑘𝑏T [𝑙𝑛 (

1

α
) + 0.353 ∗

1

α
] 

(38) 

There is no conduction band addition as the model considers the conduction band to be the initial band edge 

value. 

Electron Phonon Mesh Analysis 

The wavevector element size was investigated to determine the effect on allowable electron-phonon 

interactions subject to the conservation of energy and momentum. The mesh sensitivity consisted of 

variation of element sizes to three values and resulting search of the wavevector space. The allowable 

interactions were recorded and added to the collective bin. For the mesh sizes ran, the range was determined 

to be between mesh size ten and mesh size twenty as to see how the splitting of wavevector space would 

cause the bin sizes of wavevector and energy space to change over the size gradient. Of the interactions that 

were run, the final time to compute was recorded and was checked to see how the results would relate to the 

number of interactions found in the lattice. Then a histogram chart was made to view the group trend and 

understand more the importance of mesh size to interactions found in the lattice. 
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Validation and Modeling Results 

Comparisons to Published Literature 

Rowlette and Goodson Simulations 

Goodson, Pop, Sinha, and Rowlette have already done much in the area of thermal and electrical modeling 

in nanoscale Field Effect Transistors (FET’s). The work chosen for comparison of the density of states 

model is that of Rowlette and Goodson [13]. With this work, a one-dimensional simulation of silicon PNP 

(positive negative positive) junction transistors were used to represent the core of the transistor structure. 

The device consists of a 150nm source (S or n+), and drain (D or n+) separated by the gate channel 

(Channel, or p) of 20 nanometers. The channel is below the gate region between the gate and interface. 

Schematically these are shown below and illustrated with figure 29. 

 

Figure 29: Schematic illustration of the one -dimensional domain simulated by Rowlette and Goodson [13]. 

For density of state calculations, the banding was approximated using a parabolic model at the (100) lattice 

face. This utilized an effective mass factor and an empirically derived tight chain binding model as derived 

from T. B. Boykin et al [31]. This approximation allowed for most of the valance band charge carrier 

transport to occur at the (100) direction and fit accurately to the empirically gathered data set. This was used 

as a starting point to test if general DOS calculations were fitting with empirically measured methods. 



48 

 

Jin and Fischetti 

Jin, Fischetti, and Tang [32] performed electron mobility modeling on a silicon wire to set for surface 

roughness effects and band non-parabolicity. In this work they utilized the Kubo-Greenwood formula for 

material electrical conductivity in tandem with the self-consistent solutions to both Schrodinger’s equations 

and Poisson’s equations for elliptical surfaces. This was applied to a silicon wire with a variable diameter, a 

diagram of which is shown in figure 30. 

 

Figure 30: Schematic of a gated nanowire structure that was considered under the Jin and Fischetti Study [31] 

The diameter considered for testing was 3nm diameter, as now with current transistor nanowires a 3nm 

process is used to allow confinement in the x and y direction while streamlining the charge carrier transport. 

For the testing of the density of states, their output of the 3nm density of states was used due to 3nm being a 

standard feature size for the more modern transistors in current day computational devices.  

Martin and Gonzalez: One Dimensional Electron Transport Analysis 

Martin, Gonzalez, Pardo, and Velazquez [33] utilized a one-dimensional Poisson solver with a Monte Carlo 

simulation to solve electron transport in homogeneous Si structures in PNP diodes. For their simulation, 

they first simulated under the conditions of bulk silicon and then under homogenous diode structures. For 

the bulk silicon, a 1-D study was conducted to see how the model faired under bulk 1-D confined silicon. A 

visual of this is shown below in figure 31. 
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Figure 31: Bulk Silicon wire model used in Martin and Gonzalez [32]. 

Second, they utilized their model in a comparison of PNP junction transistors in the field directions of <

100 > and < 111 > lattice directions. This was done to test the model for charge carrier transport in 

different device configurations. As they utilized a one-dimensional model, direct comparison can be made 

to the NETM’s silicon nanowire FET capabilities. The density of states model that they used involved a 

two-valley model in the lattice direction. The model came exceedingly close to real predictions and fitted 

well to the conduction band curvature in the < 100 > direction. As such, their density of states model will 

be used as well to compare between electron locations.  

Ashraf: Intrinsic Carrier Concentration in Presence of Degenerate Doping 

Ashraf pointed to inaccuracies in previous literature relating to bandgap narrowing parameters [34]. 

Utilizing analytical equations, he pointed out that much of the literature previously failed to account for 

bandgap narrowing parameterizations and suggested a doping dependent model at 300K. His results for the 

Fermi Energy will be used as analysis in this paper to measure the new algorithms capabilities of accurately 

predicting band gap narrowing within semiconductor devices and to point towards any improvements 

needed to the bandgap model currently used. 
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Results Discussions 

Density of States 

For density of states, a comparison was made to the model done by Jin et al [32]. Their calculations included 

the entire range from the valance to the conduction band, but only the conduction band results were 

considered due to the nature of electron-phonon interactions. The results for the density of states occupation 

factor distribution are shown in figure 32. 

 

Figure 32: Dopant Electron Element Occupation Locations across the energy spectra. The results for the 3mm diameter wire from Jin et al [31] are 

shown as the red line. 

There is much agreement with the results collected in comparison to Jin’s model. In the worst case, it 

appears that due to the electrons rapidly falling into the bands below, they no longer agree. As we are only 

looking at conduction electrons, it makes sense to say that the convergence would go near zero and Jin’s 

model does converge into a near zero probability at the band edge. For E-k diagram results, figure 33 shows 

these results as well. 
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Figure 33: E-K Diagram results for the new model, with the NETM results represented in the blue circles, Rowlett et al [13] is represented in red, 

and Martin et al [32] is represented in yellow. 

There is much agreement with the distribution of states among the two models as the wavevector magnitude 

of 10 ∗ 109𝑚−1 represents the 𝑋  direction of the FBZ. 

Dopant Correlation Results 

For dopant there were some observations done on the relationship between states and dopant, most 

involving the position of the fermi level and the dopant parameter. Figure 34 shows the relationship between 

the proportionality constant and amount of dopant. 

 

Figure 34: Dopant relationship to dopant proportionality. 
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The model is mostly linear in the resultant curve. However, it should be noted that at the end of the curve a 

jaggedness in the line begins to appear. This could be due to the effect of degeneracy and stacking of states 

at higher dopant amounts. For the Fermi level shift, a computation was performed afterwards to observe the 

shift in level and the dopant proportionality correlation to the data collected by Ashraf. Below in figure 35 is 

a model of the data correlation: 

 

Figure 35: NETM Algorithm comparison with Ashraf [34]. The blue line represents the NETM algorithm predictions while the red circles represent 

data from Ashraf. 

As shown, the NETM produces a reasonable fit to the predictions from Ashraf [34]. There is however a 

slight lowering of the curve in comparison. This could be a result of the handling of the conduction band 

calculations in the NETM, as the set value (0.81517 eV) is lower compared to the experimental value 

recorded in the literature (1.12 eV).  

Mesh Sensitivity Results 

For the mesh sensitivity, twenty runs of the NETM were done in order to collect the aggregate results across 

all meshing conditions. This went from a range of ten to twenty in terms of mesh slicing and this was done 
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all on the same machine to reduce variability in results. The following two graphs (Figures 36 and 37) were 

produced afterwards as a measure of the results. 

 

Figure 36: Mesh Sensitivity Test Histogram Relating Energy Values vs Interaction Count. 

 

Figure 37: Mesh Sensitivity Test Histogram Relating Energy Values vs Interaction Count. 

As a general observation, the finer the mesh size came with finer results and more interactions seen. This 

means that the more we partition the FBZ mesh, the more interactions are generated and analyzed. This is 

seen in both the energy and wavevector results. The significance of this in the wavevector domain is that it 
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corresponds well for the electron locations across the conduction band seen above at the previous section 

and the optical phonons peak as related to NETM three phonon scattering output at the 𝑋 FBZ direction [5]. 

This also remains consistent with the lower edge conduction band edges shown in both Rowlette [13] and 

Martin [33].  This means that it is expected that at that orientation there should be more interaction between 

the electrons and phonons that can only be seen in 12+ mesh sizing. This could have a significant impact on 

FGR implementation in the future and should be considered for future implementations.  

It should be noted that even though there are more interactions seen, this increases computation time 

significantly. For a peak mesh size of twenty, the number of interactions calculated made the runtime peak 

for the NETM was 3 hours total given the finer interaction and meshing in comparison to the regular run 

time of 30 minutes for sub-sixteen meshes. So, the finer the mesh, the more time will be taken to run all 

interaction iterations. 

Summary, Conclusions, and Future Work Recommendations 

Summary 

The work presented accomplished the original three goals for the new additions of the Nanoscale Energy 

Transport Model: 

1. Initialize the electron population within the conduction band allowing for consideration of both 

doped and intrinsic charge carriers. 

2. Understand the proportionality of dopant vs. the number of electrons present above the conduction 

band by using a first order model. 

3. Look at the mesh sensitivity of the wavevector space element size to the electron-phonon 

interaction statistics and look into the number of interactions related to those statistics. 
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These were all addressed with new additions to the existing Nanoscale Energy Transport Model and a 

measurement of its accuracy to existing work. The major addition now added is computation of states that 

are initialized at the conduction band including scanning for the individual energies and wavevector 

magnitudes of each charge carrier.  

First, utilizing density of states theory, a new model was developed to allow computation across the entirety 

of the conduction band for both doped and intrinsic electron states. This computational utility allows for 

electron look up and initial state initialization for Fermi’s golden rule functionality. Second, a preliminary 

dopant scaling model was added to allow scaling factors for how much dopant the user wishes to input into 

the lattice of dopant in comparison to the number of states found. Finally, a mesh sensitivity test was done to 

see how these additions affected the model interactions and interaction counts and run time. The density of 

state model was tested against other representative simulations from literature and showed accuracy among 

its contemporaries. 

Conclusions 

From the NETM, it can be concluded that electrons are less likely to exist higher up the conduction band 

limits, much like observed phenomena. Along with this, the dopant relationship with these found electrons 

is linear until the amount of dopant starts to cause band gap narrowing in the device structure. For meshing, 

smaller mesh sizes lose accuracy but can be speedily done. However, for an accurate simulation, large mesh 

sizes are preferable. And now the NETM has implemented initial state functionality. Thus, the NETM is 

now ready for Ferm’s golden rule implementation.  

Future Work Recommendations 

The work presented now in this dissertation illustrates some more enhancements to the NETM; however, a 

number of additional extensions should be considered for future work. As the comparison of the NETM to 
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other modeling techniques form the literature has illuminated more issues with the NETM and its modeling 

of joule heating. This can be represented as the following research question: 

Can the Nanoscale Energy Transport Model be able to provide high fidelity, transient, 3D simulations of 

nanoscale devices with full charge carrier and phonon transport and predict the effect the design parameters 

of volage biases, dopant, topology, and heat transfer to effect device performance, maximum clock speed, 

and thermal failure limits? 

Any extensions beyond this point should be focused on answering the above question. For some proposed 

future work, some avenues that could be taken are: 

1. Fidelity 

a. Fermi’s Golden Rule Implementation for electron phonon interactions 

i. As Fermi’s golden rule allows for calculation of joule heating in the interactions 

between phonons and electrons, this should be considered a high priority for 

implementation. With the additions added in this dissertation, there now should be 

a basis to allow full FGR implementation for electron-phonon interactions. 

b. Impurity scattering 

i. Nanoscale devices primarily consist of dopant as mentioned above to increase 

conductivity. The addition of states that include impurity scattering proportional 

parameters should be included for higher fidelity dynamics. This could also include 

a distribution algorithm as well for impurities based on the semiconductor 

manufacturing process. 

c. Silicon Oxide Support 
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i. Due to the use of silicon oxide in semiconductor manufacturing, a next-generation 

model should include phonon transmission between silicon and silicon oxide 

material regions to accurately capture heat transfer across the device boundary. 

2. Flexibility 

a. Curvilinear coordinates or topological principles could be implemented to provide wider 

support for discontinuities in the lattice topology. 

b. Change of basis and tensor implementation will allow for better general representation of 

non-cartesian topologies in lattice or transistor structures. 

c. Multi-scale and Levi-Civita connection implementation could allow the merger of local 

transport model with disjointed and larger scale coordinate system modeling where 

Fourier’s law can be used. 

3. Computational Efficiency 

a. Implementation of the CUDA® toolkit from NVIDIA® will allow hardware acceleration to 

be an option for the NETM. Greatly increasing performance across the board with the use 

of Tensor Core implementations. 

These improvements of the NETM made in this dissertation and suggested with the future work will 

contribute to enhancing nanoscale device designs and a better understanding of local thermodynamic 

conditions. It is the sincerest hope of the author of this thesis that the development of this model will lead to 

an improvement in engineering considerations and design decisions for nanoscale devices and, ultimately, 

lead to the betterment of society. Whether it be in a big or small way. 
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