
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2024

Continual Learning for an Ever Evolving and Intelligent Malware Continual Learning for an Ever Evolving and Intelligent Malware

Classification System Classification System

Mohammad Saidur Rahman
mr6564@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Rahman, Mohammad Saidur, "Continual Learning for an Ever Evolving and Intelligent Malware
Classification System" (2024). Thesis. Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11758?utm_source=repository.rit.edu%2Ftheses%2F11758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Continual Learning for an Ever Evolving and
Intelligent Malware Classification System

by

Mohammad Saidur Rahman

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

May 2024

Continual Learning for an Ever Evolving and
Intelligent Malware Classification System

by

Mohammad Saidur Rahman

Committee Approval:

We, the undersigned committee members, certify that we have advised and/or supervised the candidate on the work

described in this dissertation. We further certify that we have reviewed the dissertation manuscript and approve it in

partial fulfillment of the requirements of the degree of Doctor of Philosophy in Computing and Information Sciences.

Matthew Wright, Ph.D. Date

Dissertation Advisor

Scott E. Coull, Ph.D. Date

Dissertation Committee Member

Qi Yu, Ph.D. Date

Dissertation Committee Member

Rui Li, Ph.D. Date

Dissertation Committee Member

Sean Hansen, Ph.D. Date

Dissertation Defense Chairperson

Certified by:

Pengcheng Shi, Ph.D. Date

Ph.D. Program Director, Computing and Information Sciences

ii

© 2024 Mohammad Saidur Rahman

All rights reserved.

iii

Continual Learning for an Ever Evolving and
Intelligent Malware Classification System

by

Mohammad Saidur Rahman

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences Ph.D. Program in

Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

Malware classification poses unique challenges for continual learning (CL) systems, driven by

the daily influx of new samples and the evolving nature of malware threats that exploit new

vulnerabilities. Antivirus vendors encounter hundreds of thousands of unique software pieces

daily, encompassing both malicious and benign files. Over its operational life, a malware

classifier can accumulate more than a billion samples. Training malware classification system

with only new samples and classes leads to catastrophic forgetting (CF), where the system

forgets previously learned data distribution. While retraining with all old and new samples

effectively combats CF, it is computationally expensive and necessitates storing vast amounts

of older software and malware samples. Employing sequential training with CL strategies

offers a potential solution to mitigate these challenges by reducing both training and storage

demands. However, the adoption of CL for malware classification has not been extensively

explored. This work represents the first in-depth examination of CL not just in the realm of

malware classification, but also more broadly within the cybersecurity domain.

In this thesis, first we systematize the malware classification pipeline through the lens of

three continual learning scenarios: Domain Incremental Learning (Domain-IL), Class Incre-

mental Learning (Class-IL), and Task Incremental Learning (Task-IL), detailed in Chapter 3.

Our objective is to bridge the research gap between existing CL literature and the specific

needs of malware classification. We undertake a thorough examination of state-of-the-art CL

methods within the frameworks of these three CL scenarios. Chapter 4 presents an in-depth

iv

exploration of the catastrophic forgetting phenomenon in the context of malware classifica-

tion. We analyze the applicability and performance of 11 leading CL techniques across three

categories – regularization, replay, and replay with exemplars, initially developed for com-

puter vision tasks, to uncover if they can also mitigate catastrophic forgetting in malware

domain. Contrary to expectations, our findings indicate that none of the CL approaches

tested successfully mitigate catastrophic forgetting in malware classification systems, point-

ing to a significant research opportunity in this domain.

The unexpected results presented in Chapter 4 prompted a detailed exploratory analysis of

the EMBER dataset [10], which comprises Windows malware and benign software samples,

in Chapter 5. This analysis revealed significant diversity within malware data distribu-

tions, both across and within malware families. Drawing on these insights, we developed

MADAR– Malware Analysis with Diversity-Aware Replay. This innovative strategy for

malware classification adopts a diversity-aware, replay-based approach, integrating a mix of

representative and novel samples into the training regimen to enhance the stability of the

model to retain learned information and identify emerging malware threats, even with limited

memory budget. Moreover, we have created two new benchmarks using Android malware

from the AndroZoo repository [8] for testing in both Domain-IL (AZ-Domain) and Class-IL

(AZ-Class) scenarios. The results from these benchmarks underscore the effectiveness of

the MADAR framework, establishing it as the new state-of-the-art and demonstrating its

enhanced performance over existing leading CL methods in adapting to realistic shifts in

malware data distribution.

In Chapter 6, we conclude with promising future research direction to advance continual

learning research for an ever evolving and intelligent malware classification systems, focusing

on adaptability to evolving threats and tackling challenges relevant to both industry and

academia.

v

Acknowledgments

The completion of this dissertation and the research behind it would not have been possible

without the guidance, support, and encouragement of many individuals. I would like to take

this opportunity to express my heartfelt gratitude to them.

Firstly, I am profoundly grateful to my advisor, Professor Dr. Matthew Wright, who believed

in me, gave me the opportunity to learn from him, and guided me toward becoming an

independent researcher. If he had not given me this chance, I would not be where I am

today. His continuous inspiration, encouragement, feedback, and invaluable advice have

shaped me as a researcher over the years. He is an exemplary professor and a remarkable

human being. He went above and beyond to help and support me in difficult situations.

Afterwards, I am immensely grateful to Dr. Scott Coull for introducing me to malware

analysis research during my Data Science Internship in 2020. His guidance, feedback, and

industry perspectives made our work even more practical and timely. The guidance from him

and my mentors at the Mandiant Data Science team, Dr. Phil Tully and Dr. Ethan Rudd,

inspired me to focus my dissertation on this area, fostering a collaboration that continues to

this day.

I would like to express my gratitude to my PhD committee members, Dr. Qi Yu and Dr. Rui

Li, for their intellectual support and feedback. As prominent machine learning experts, their

insights have greatly improved our work. I would also like to thank our PhD directors, Dr.

Pengcheng Shi and Dr. Yin Pan, for their support and advice, which have helped me become

a better PhD student. In addition, I would like to express my gratitude to Dr. Ziming Zhao

for his mentorship and support over the years.

In addition, I would like to express my heartfelt gratitude to those who taught, inspired,

encouraged, and supported me in pursuing my higher education. The complete list would

be too long, but I want to acknowledge a few who are directly related to this endeavor from

the MIS department of the University of Dhaka: Md. Ariful Islam, Dr. Hasibur Rashid,

Dr. K. M. Salah Uddin, and Dr. Md. Rakibul Hoque. I would like to express my gratitude

to all the teachers who have taught, inspired, and supported me throughout my life. I am

and always will be grateful to them. I am committed to dedicating my lifetime of service to

making my parents and teachers proud.

vi

The last but not the least, I would like to thank my excellent mentors, collaborators, friends,

and lab siblings throughout the graduate school for their support and help – Mohsen Imani,

Payap Sirinam, Saniat Sohrawardi, Nate Mathews, Se Eun Oh, Kelly Wu, Shaikh Akib

Shahriyar, Luke Kurlandski, Sovantharith Seng, Kantha Girish Gangadhara, and many more.

As I write this acknowledgment, I miss the beloved person who would have been happiest

to see me graduate with a PhD — the person who was full of love and care for me, who

gave up her own happiness for the sake of mine and my well-being. She never lost hope for

me, never said no to my endeavors, and did everything within her power to ensure I had

everything I needed. She believed in my dream of pursuing higher education in the US — my

loving and caring mother, who bravely fought COVID and left us with countless cherished

memories. I cannot adequately express my gratitude for all she did for me. All I can say is,

“I exist because of you.” I had planned for us to celebrate this graduation together. I would

like express my heartfelt gratitude to my beloved father who abandoned all his happiness to

provide for us, who did not even buy an expensive shirt to save money for my education,

and worked so hard to make sure I have everything. Only being thankful to my parents is

not enough who taught me being a better human being with value sense.

Finally, I would like to express my tremendous gratitude to my beloved wife, Mt. Tahmina

Akter, who stood by me through the ups and downs of my Ph.D. journey, including the most

challenging time of my life — the loss of my mother. I consider myself incredibly blessed

and fortunate to have her in my life. Her unconditional love and care for the past 11 years,

and her hard work to make our living space a home, are beyond my capability to match. I

am profoundly grateful for her, and I cherish every moment we share together. I also thank

my two sisters for their unconditional love and support at every step of my life. Everything

in my life would be meaningless without my family members.

vii

To my Beloved Parents, my Loving Wife, and All the Great

Educators who Made me Who I am Today!

viii

Contents

List of Figures . xii

List of Tables . xiv

1 Introduction . 1

1.1 Research Contribution . 4

2 Background & Preliminaries . 8

2.1 Continual Learning . 9

2.2 Continual Learning Training Protocols . 10

2.3 Continual Learning Scenarios . 11

2.3.1 Task Incremental Learning (Task-IL) 12

2.3.2 Domain Incremental Learning (Domain-IL) 12

2.3.3 Class Incremental Learning (Class-IL). 13

2.4 Continual Learning vs. Related Learning Paradigm 14

2.4.1 Online Learning . 14

2.4.2 Transfer Learning . 15

2.5 Catastrophic Forgetting . 15

2.6 Overcoming Catastrophic Forgetting . 18

2.6.1 Regularization Methods . 18

2.6.2 Replay Methods . 20

2.6.3 Adaptive expansion methods . 27

3 Continual Learning in Malware Domain . 28

3.1 Malware Domain . 29

3.2 Continual Learning Scenarios for Malware Classification 30

3.3 Dataset . 33

ix

Contents

3.4 Model Selection and Training . 36

3.5 Implementation Details . 37

3.6 Baselines . 38

3.7 Metrics . 38

4 Catastrophic Forgetting for Malware Classification 40

4.1 Introduction . 41

4.2 Continual Learning Techniques Studied . 44

4.3 Evaluation . 45

4.4 Partial Replay with Stored Data . 50

4.5 Discussion . 52

4.6 Conclusion . 56

5 Malware Analysis with Diversity-Aware Replay 57

5.1 Introduction . 58

5.2 Exploratory Analysis of EMBER . 60

5.3 Additional Baseline – Global Reservoir Sampling (GRS) 66

5.4 Diversity Aware Replay . 67

5.4.1 Isolation Forest-based Sampling (IFS) 67

5.4.2 Procedure . 69

5.4.3 Anomalous Weights-based Sampling (AWS) 71

5.5 Evaluation . 74

5.5.1 EMBER . 74

5.5.2 Android APK File - AZ . 76

5.6 Discussion . 77

5.7 Conclusion . 78

6 Conclusion and Future Work . 79

6.1 Conclusion . 80

6.2 Future Work . 81

6.2.1 Analysis of Complex Image Data vs. Malware Data 81

6.2.2 Continual Learning for Dynamic Malware Analysis 82

6.2.3 Harnessing the Advancement of Generative AI 82

6.2.4 Continual Large Language Model for Malware Analysis 83

x

Contents

6.2.5 Generalization of the System . 83

6.3 Publications . 84

6.3.1 Continual Learning & Malware Analysis 84

6.3.2 Traffic Analysis & Website Fingerprinting 84

6.3.3 Quantum Secure Network . 86

References . 87

Appendices . 103

A Additional Replay Buffer Techniques . 104

A.1 Comparison of the Required Number of Replay Samples 105

A.2 Replay Buffer Techniques . 107

A.2.1 Family based Reservoir Sampling (FRS) 107

A.2.2 Family based Recency Sampling (FReS) 108

A.2.3 HDBSCAN based Sampling (HS) . 109

A.3 Evaluation . 111

A.3.1 FRS . 111

A.3.2 FReS . 112

A.3.3 HS . 114

A.4 Analysis of the Preliminary Replay Buffer Techniques 118

xi

List of Figures

2.1 Schematic Representation of Task Incremental Learning (Task-IL) Scenario. 12

2.2 Schematic Representation of Domain Incremental Learning (Domain-IL) Sce-

nario. 13

2.3 Schematic Representation of Class Incremental Learning (Class-IL) Scenario. 14

2.4 Schematic Overview of Joint Replay Mechanism in Continual Learning (CL)

Processes. 17

2.5 Conceptual Diagram of Generative Replay in Neural Networks: Integrating

Past and Present Learning. 23

3.1 CL Scenarios in Malware Classification Pipeline. 31

3.2 EMBER Data: Goodware and malware data statics of 12 months of 2018. . . 34

4.1 Domain-IL on EMBER: Accuracy over time. 47

4.2 Class-IL on EMBER: Accuracy as the number of classes grows. 48

4.3 Task-IL on EMBER: Accuracy as the number of tasks grows. 49

4.4 Class-IL on Drebin: Accuracy as the number of classes grows. 49

4.5 Task-IL on Drebin: Accuracy as number of tasks grows. 50

4.6 Partial Joint Replay in EMBER: Accuracy over time. 51

4.7 Partial Joint Replay in EMBER: Change in training time over time. 52

4.8 Feature space visualization using t-SNE in Class-IL scenario. 53

4.9 MNIST and EMBER data distribution shift in Domain-IL scenario using t-

SNE plot. 55

5.1 t-SNE projection of EMBER malware from January 2018. 62

5.2 EMBER Malware samples without AV-Class labels. 63

5.3 New and already learned families in each task. 64

5.4 Frequency of Top 15 Malware Families based on the Appearance in Task Months. 65

xii

List of Figures

5.5 Depiction of MADAR framework with Isolation Forest based Sampling (IFS). 68

5.6 Depiction of MADAR framework with Anomalous Weights-based Sampling

(AWS). 72

A.1 FRS: Accuracy over time with different configurations of FRS in Domain-IL. 113

A.2 FReS: Accuracy over time with different configurations of FReS in Domain-IL. 113

A.3 Family data distribution in tSNE projection and colors represent the different

cluster labels produced by HDBSCAN. 115

xiii

List of Tables

3.1 Drebin. 4525 malware samples from top 18 malware families. 33

4.1 Summary of the Experiments. The average accuracy (Mean (AT)) and

minimum accuracy (Min (ÂT)) from all the tasks in each experiment. Re-

sults in Bold indicate accuracy values closer to Joint performance than None.

EWC-O: EWC Online, GR-D: GR + Distill. Error range is omitted for the

results with less than 1.0 standard deviation 46

5.1 EMBER task based frequency of Goodware and Malware Samples, and fre-

quencies of families in malware samples in each task. 61

5.2 Summary of the EMBER Domain-IL Experiments. None = 93.1±0.1
and Joint = 96.4±0.3. 74

5.3 Summary of the EMBER Class-IL Experiments. None = 26.5±0.2
and Joint = 86.5±0.4. 74

5.4 Summary of the AZ Domain-IL Experiments. None = 94.4±0.1 and

Joint = 97.3±0.1 . 76

5.5 Summary of the AZ Class-IL Experiments. None = 26.4±0.2 and

Joint = 94.2±0.1. 76

A.1 Comparison of the number of replay samples required in global random sample

selection and family based random sample selection. 105

A.2 HS results with different HDBSCAN parameters. HS-500/f represents de-

fault HDBSCAN, and HS-500/f (X-Y) represents tuned HDBSCAN where

X : min-cluster-size and Y : min-samples. 116

A.3 Summary of the Experiments. The average accuracy over all tasks AT and

the minimum accuracy among the tasks ÂT for the sets of experiments. Bold

indicates performances which are higher than that of at least GRS-50%. . . . 117

xiv

“A computer would deserve to be called intelli-

gent if it could deceive a human into believing

that it was human.”

— Alan Turing (1912 - 1954)

1
Introduction

1

Over the past few years, the fields of machine learning (ML) and deep learning (DL) have rev-

olutionized how we approach complex challenges across various disciplines. These technolo-

gies have been instrumental in advancing computer vision [54,71,74], enhancing natural lan-

guage understanding [37,144], improving speech recognition and audio processing [1,55,107],

and bolstering cybersecurity defenses [61, 110]. As a result, ML and DL have become foun-

dational components in these fields, driving the development of innovative and practical

intelligent systems. Their integration has not only solved existing problems but also opened

new avenues for research and application, setting the stage for the next generation of tech-

nological advancements.

In the domain of cybersecurity, the integration of ML and DL has marked a significant

evolution in protecting computer and network systems [15, 36, 61, 77, 93, 110]. In particular,

DL advancements have led to notable enhancements in identifying malicious websites [133],

classifying malicious phone calls [77], detecting malware [33,77,132], and recognizing network

intrusions [46, 93]. Research specific to malware detection and classification has applied

ML and DL techniques, achieving tremendous success in a wide range of problem domains

including Windows malware [35, 135], PDF malware [72, 84], malicious URLs [75, 133], and

Android malware [11, 49, 98]. The cross-domain applications of ML and DL showcase their

versatility and power in solving complex problems, making them indispensable tools in the

modern technological landscape.

DL models are fundamentally inspired by the structure of biological neurons, a concept

highlighted in seminal works such as those by Rosenblatt [121] and Fukushima [45]. However,

the manner in which these artificial systems learn diverges significantly from the learning

processes observed in humans. Human brains exhibit a remarkable capability for continuous,

sequential learning, seamlessly integrating new information and skills without substantially

compromising previously established knowledge. Contrastingly, DL models, once trained on

a predetermined dataset, essentially become static. Their ability to adapt or learn from new

data at this point is limited; they undergo a phase of evaluation where their performance

is gauged against previously unseen data, under the assumption that this new data mirrors

the statistical properties of the training set. This approach presumes a fixed distribution for

both training and testing datasets, a premise often at odds with real-world scenarios where

data can evolve or change over time. To maintain accuracy and relevance in the face of

such shifts, DL models necessitate periodic retraining, a process that involves revisiting the

2

training phase with new or updated data to accommodate these changes.

In the context of malware classification and detection, the continuous emergence of varied

and novel malicious software (i.e., malware) represents a significant challenge in cyberse-

curity [12]. Developing systems capable of detecting and classifying these new types of

malware with minimal human intervention remains a critical area of research [30,75,98,135].

ML and DL-based systems are extensively investigated in both academic studies and prac-

tical applications to detect and categorize malware, covering various types such as Windows

malware [35, 63, 135], PDF malware [72, 84], malicious URLs [75, 133], and Android mal-

ware [11,98]. These approaches typically involve training models on known malware samples

and deploying them with the expectation that they will be effective against new, unseen

threats. However, the ever-evolving nature of malware, coupled with the continuous changes

in benign software (referred to as goodware), presents a dynamic and challenging problem.

To accommodate shifts in the data distribution over time, the model needs to be retrained

regularly to maintain its effectiveness. Unfortunately, the speed with which new malware

and goodware are produced results in large datasets that can be both costly to maintain

and difficult to train on. For example, the AV-TEST institute registers more than 450,000

unique pieces of malware and “potentially unwanted applications (PUA)” each day [12], while

VirusTotal, a crowdsourced antivirus scanning service, regularly receives more than 1 million

unique pieces of software each day [145]. Over the lifetime of a malware classification model,

these daily feeds can result in datasets containing upwards of a billion unique training samples

spanning multiple years. Given the realities of training these models, antivirus companies

must decide whether to:

• remove some older samples from the training set, at the risk of allowing attackers to

revive older malware instead of writing new ones;

• train less frequently, at the cost of not adjusting to changes in the distribution; or

• expend tremendous effort to frequently retrain over all the data which will incur incre-

mental computational cost.

The challenges mentioned above can be addressed by an evolving and intelligent malware

classification system, capable of dynamically adjusting to changes in data distribution with-

3

1.1. Research Contribution

out significant storage and computational demands. Fortunately, continual learning (CL)

presents a promising solution by allowing the incremental addition of new information and

adaptation to shifts in data distribution, all while avoiding the need for large datasets and

excessive training overhead [79,114,139]. Integrating CL techniques into the training pipeline

of a malware classification system could offer significant advantages, such as:

• reducing or eliminating the need to retain past data;

• lessening the necessity for access to previous datasets;

• maintaining the privacy of training data while enabling model updates; and

• cutting down on computational costs.

However, implementing continual learning (CL) faces a significant challenge: catastrophic

forgetting (CF), where a ML model forgets previously learned information [44,87,113]. This

issue is closely related to the stability-plasticity dilemma in neural networks [2,83,91], which

represents the balance between retaining existing knowledge (i.e., stability) and learning

new information (i.e., plasticity). As a model learns to identify new threats, it needs to

remain adaptable or plastic. However, this adaptability can compromise the model’s stability,

leading to the loss of previously learned information, or CF. Traditional neural networks often

struggle with this balance. Updating these networks with new data can unintentionally alter

the weights that encode older knowledge, effectively overwriting vital information. This

issue is particularly problematic in the field of malware detection and classification, where

recognizing both new and old threats is crucial. Therefore, addressing CF is essential to

maintain the efficacy of CL models amidst the constantly evolving cybersecurity landscape.

1.1 Research Contribution

The challenge of catastrophic forgetting has been extensively addressed in the field of com-

puter vision, with significant research and applications exploring solutions using datasets

such as MNIST [73], CIFAR10, and CIFAR100 [70], as well as ImageNet [124]. However, the

relevance and effectiveness of these approaches in the context of malware classification remain

4

1.1. Research Contribution

unexplored. This thesis aims to bridge this gap by developing a continual learning system

specifically designed for malware classification, addressing the dynamic and ever-evolving

nature of malware and benign software. Our work positions us among the first to explore

this critical research intersection between continual learning and the malware domain.

In this thesis, we propose a systematization of the malware classification pipeline through the

lens of three continual learning scenarios [141,142]: Domain Incremental Learning (Domain-

IL), Class Incremental Learning (Class-IL), and Task Incremental Learning (Task-IL). This

systematization is presented in Chapter 3. Domain-IL addresses changes in data distri-

bution, typically over time, and in our context, it involves adapting to variations in both

benign software and malware while maintaining the accuracy of classifying older samples.

For Domain-IL, our focus is on the binary classification of software as either malicious or

benign, with an emphasis on handling data distribution shifts over time. Class-IL poses a

significant challenge in continual learning by requiring the model to accommodate an ex-

panding array of classes. This scenario demands the ability to identify newly introduced

categories (such as cats, dogs, apples, bananas) without the benefit of distinct sub-task (i.e.,

pets and fruits) indications. On the other hand, Task-IL is considered the more straightfor-

ward approach, where the focus is on mastering new distinct tasks (i.e., apples vs. bananas)

while maintaining proficiency in previously learned tasks (cats vs. dogs). Here, each task is

well-defined and segregated (for instance, categorizing subjects as either fruits or pets).

For both Class-IL and Task-IL, we explore malware family classification, where each malware

sample is assigned to a specific family based on characteristics like its codebase, capabilities,

and structure. In Class-IL, we progressively introduce new malware families, reflecting the

continuous discovery of new malware types in the real world. Task-IL also adds new families

over time but does so within clearly defined classification tasks such as adware, ransomware,

trojans, spyware, and so on. These three scenarios encapsulate key challenges faced by the

anti-malware industry.

In Chapter 4 of this thesis, we delve into a comprehensive study of the catastrophic forgetting

phenomenon within malware classification. We assess the effectiveness and relevance of 11

state-of-the-art continual learning (CL) techniques across three categories – regularization,

replay, and replay-with-exemplars. These techniques, initially devised for computer vision

tasks, are tested for their ability to mitigate catastrophic forgetting in the malware domain.

5

1.1. Research Contribution

Our investigation utilizes two large-scale real world malware datasets, Drebin [11] and EM-

BER [10], to explore both binary and multi-class malware classification challenges. Surpris-

ingly, our study finds that none of the CL methods examined effectively prevent catastrophic

forgetting in malware classification systems. This marks the first comprehensive study of

CL not only in malware classification but also more broadly within the cybersecurity field.

The research also provides evidence that incorporating some form of replay is essential for

reducing catastrophic forgetting, echoing findings from previous studies [139,141].

Additionally, we identify the partial joint replay (PJR) approach – later defined as global

reservoir sampling (GRS) in Chapter 5 – as a promising method. By replaying a percentage

of past data alongside new data, PJR significantly mitigates catastrophic forgetting while

also reducing training costs. We hypothesize that the unique challenges of malware data

distribution, such as stringent feature semantics and the evolving nature of malware, may

explain the discrepancies between our findings and existing CL literature. These character-

istics potentially hinder the effectiveness of generative, distillation, and regularization-based

approaches, as they may not fully capture the domain’s complexity. Nevertheless, these

observations also suggest new directions for future research in this area and these insights

highlight the need for further exploration of CL in dynamic and complex settings.

The surprising findings of the Chapter 4 motivated us to conduct a comprehensive ex-

ploratory analysis of the EMBER dataset [10], which includes samples of Windows malware

and benign software (goodware), to uncover unique characteristics and complexities within

malware data distributions, presented in Chapter 5. Our analysis reveals a notable churn in

the representation of malware families over time. For instance, of the 913 families identified in

January, only 551 continue into February, with 425 new families emerging. This churn high-

lights potential challenges in maintaining training data continuity, which could exacerbate

catastrophic forgetting, thus emphasizing the need for adaptive continual learning strategies

in the malware domain. Moreover, many malware families exhibit complex distributional

patterns in the feature space, adding further diversity within classes. To further complicate

the situation, it is often not possible to provide definitive family labels for a sample due to

the inherent subjectivity involved in malware analysis, which results in a large, diverse set

of additional unlabeled samples which must be considered [65]. Our findings underscore the

diversity in malware, both between and even within families, or groups of related malware.

6

1.1. Research Contribution

Leveraging these insights, we introduce MADAR– Malware Analysis with Diversity-Aware

Replay, a strategy specifically designed for malware classification that utilizes a diversity-

aware, replay-based approach. This method incorporates a strategic mix of representative

and novel samples (i.e., outliers) into the training process, enhancing the model’s ability

to maintain its knowledge base and recognize new malware variants, even under memory

constraints. To identify these crucial novel samples, our technique employs Isolation Forests

(IF) [81]. MADARfeatures two variations: Isolation Forest-based Sampling (IFS), which

relies on the model’s input features, and Anomalous-Weights-based Sampling (AWS), which

opts for a more compact representation using model weights. We rigorously evaluate these

methods on the EMBER dataset across two CL scenarios in malware classification: Domain-

IL and Class-IL, aligning with previous studies [109]. Furthermore, we have developed two

new benchmarks of Android malware from the AndroZoo repository [8] to conduct exper-

iments in both Domain-IL (AZ-Domain) and Class-IL (AZ-Class) settings. Our findings

across these datasets demonstrate MADAR’s effectiveness, outperforming existing state-of-

the-art CL approaches in the face of realistic shifts in the malware data distribution. As

malware and goodware continue to evolve, these insights steer continual learning towards

strategic, resource-efficient methods, ensuring model effectiveness amid the constantly shift-

ing landscape of cybersecurity threats.

In Chapter 6, we conclude by outlining several promising directions for future research. Our

goal is to advance the development of continual learning systems that are adaptable to the

rapidly evolving landscape of malware threats and capable of addressing complex challenges

that span both industry and academia. Specifically, we see potential in exploring novel

algorithms that enhance model adaptability without compromising on efficiency, developing

techniques to better manage the balance between retaining old knowledge and acquiring new

information, and investigating the integration of domain-specific knowledge into learning

processes. Additionally, the creation of more realistic and challenging benchmarks could

significantly contribute to pushing the boundaries of current methodologies. By focusing on

these areas, we aim to draw a path forward for continual learning in the malware classification

domain, ultimately contributing to more resilient and intelligent cybersecurity defenses.

7

“Look deep into nature, and then you will understand everything bet-

ter.”

- Albert Einstein

2
Background & Preliminaries

8

2.1. Continual Learning

2.1 Continual Learning

Continual learning (CL), a branch of Machine Learning (ML), addresses the challenge of

learning from a sequence of evolving data distributions and generalizing across all encoun-

tered distributions [51]. The current static ML training paradigm assumes that the training

data are independent and identically distributed (i.i.d.), which contrasts with the practical

learning setting where both training and testing data distributions are generally dynamic.

CL attempts to overcome the limitations of the current static ML training paradigm, in

which an ML model is trained and deployed under the assumption that the training and test

data belong to similar distributions, with the expectation that the model will generalize to

unseen distributions. Broadly, research on CL addresses two significant challenges inherent

in this traditional static ML training paradigm.

Firstly, the standard training paradigm for ML models, especially stochastic gradient de-

scent [117], encounters difficulties in adapting to changing and evolving data distributions.

This challenge leads to a phenomenon termed as catastrophic forgetting or catastrophic in-

terference [44,87,113]. Fundamentally, the neural network becomes too adapted to the most

recent data it has seen, neglecting what it learned from earlier data. This results in signifi-

cantly reduced effectiveness, particularly when evaluated on test sets that include a variety

of samples belonging to earlier learned data distributions, as the neural network fails to

maintain a balance between new and old information.

Secondly, the constant changes in real-world data distribution indicates that addressing non-

stationarity is essential for developing evolving, practical, and intelligent systems. Depending

on the problem space, various factors can contribute to the constantly shifting nature of

data, including climate change, urban development, and the creation of digital content.

In security applications such as malware analysis, the reason behind the constant shift in

data distribution is the evolution of malware and the release of benign software. These

changes are usually gradual and interconnected. The experimental setting becomes even

more challenging when we consider that the intelligent system is deployed in a resource-

constrained environment such as various internet-of-things (IoT) devices and and can only

process a small fraction of the available data.

The research gap between the static i.i.d. assumption used in many machine learning meth-

9

2.2. Continual Learning Training Protocols

ods and the ever evolving nature of the real-world data distributions warrants for novel

and more sophisticated solutions [94]. Current strategies, such as storing and randomly

resampling data, are limited and not suitable for all situations. Therefore, the challenge

of non-stationarity highlights the crucial importance of continual learning, marking it as a

key area for exploration and application in both theoretical and practical fields. In the CL

training framework, a ML model deals with a series of tasks, denoted as t1, t2, ..., tT , each

linked to a unique data distribution represented as p(x, y|ti). For each task, the model has a

set of parameters, indicated as θt1 , θt2 , ..., θtT . Initially, the model is trained on task t1, which

adjusts its parameters to θt1 . Upon encountering a new task, say θt2 , the model undergoes

retraining, leading to an update in its parameters to θt2 . However, this retraining process

may result in catastrophic forgetting of the data distribution p(x, y|ti−1) related to the pre-

vious task, as the model may lose the knowledge it gained earlier. As such, the fundamental

goal of CL is to develop an intelligent CL system capable of adapting to new tasks while

preserving the knowledge from earlier ones.

2.2 Continual Learning Training Protocols

In continual learning, models sequentially learn tasks t1, t2, ..., tT , each with its distinct data

distribution p(x, y|ti). The goal is to adapt to new tasks while remembering old ones. CL

uses three types of parameters: shared parameters (θs) across all tasks, old task-specific

parameters (θ0), and new task parameters (θn). The Joint training method, considered

the performance benchmark, optimizes all these parameters simultaneously but requires

extensive resources as it needs access to all past and present data during training [78].

In contrast, CL training strives to optimize and update θs and θn, while maintaining θ0 in

a relatively fixed state, for each new task n. The updating, however, of any of the shared

weights θs risks confusing the classifier when faced with older data, as those classification

decisions depend on not only θ0, but also θs. CL training typically boasts significantly faster

speed and far less storage requirements than Joint training, thus permitting more frequent

model retraining to adapt to evolving data distributions or other requirements.

Training in Continual learning (CL) involves considering three sets of parameters [78] –

10

2.3. Continual Learning Scenarios

• θs: parameters that are shared across all the tasks

• θ0: parameters specific to the previous tasks, and

• θn: parameters specific to the new task

Here, θ0 and θn contain the corresponding weights and the output layer of the older tasks

and the new task, respectively. The weights of all the layers except the classification layer

belong to θs.

Traditional machine learning (ML) training involves optimizing all three sets of parameters

together, and is referred to as Joint training. This training method requires the availability

– and hence the storage – of all the older data from previous tasks. The performance of this

training mechanism is considered to be an upper bound, as data from all the previous tasks

as well as the new tasks are used to train the model. Training this way, however, is slow and

costly.

In CL training, for each new task n, θs and θn are optimized and updated while trying to

keep θ0 fixed. CL training does not require the older data to be available, which makes this

a difficult task. Significant effort has been spent to boost the performance of models on the

tasks in cases where there is no previous data available. Training is typically significantly

faster than in Joint training, which may enable more frequent retraining of the model to

keep up with changing data distributions or other needs without risking earlier concepts.

2.3 Continual Learning Scenarios

Depending on the type of the data distribution shift observed in the real-world, continual

learning (CL) can be formalized into three scenarios [76,141,142] – Task Incremental Learn-

ing (Task-IL), Domain Incremental Learning (Domain-IL), and Class Incremental Learning

(Class-IL).

11

2.3. Continual Learning Scenarios

Figure 2.1: Schematic Representation of Task Incremental Learning (Task-IL) Scenario.

2.3.1 Task Incremental Learning (Task-IL)

In this scenario, the capability of the model increases with respect to different objectives of

the model, and the task essentially defines the objective. Task-IL is considered as the easiest

continual learning (CL) scenario, where the task identity is always known. This means that

the inference objective of the model is to make a decision based on the task. A schematic

representation of the Task-IL scenario is depicted in Figure 2.1. In this figure, we can see

that the first task is to learn and classify the MNIST-10 digits [73]. The second objective of

the model is to learn and classify three domestic animals: cat, pigeon, and dog. The final

objective of the model is to learn and classify three flowers: lily, cherry, and rose. In this

continual learning setting, given the objectives of the model (i.e., tasks) — MNIST-10 digit

classification, domestic animal classification, and flower classification — the model needs to

infer which object is the test sample within the given objective.

2.3.2 Domain Incremental Learning (Domain-IL)

In a Domain-IL scenario, the number of classes in the learning process remains fixed, but

the distribution of the data for each class changes due to covariate shift. A schematic

representation of the Domain-IL scenario is depicted in Figure 2.2. We can see that the

learning objective of the model remains fixed, which is to learn and classify three domestic

animals: cat, pigeon, and dog. However, the underlying data distribution changes in each

12

2.3. Continual Learning Scenarios

Figure 2.2: Schematic Representation of Domain Incremental Learning (Domain-IL) Sce-

nario.

subsequent task. This means that the model observes different variants of the same object

in each learning episode. As shown in the figure, the model encounters variants of the same

objects in each learning episode, from Task1 to TaskN .

2.3.3 Class Incremental Learning (Class-IL).

In a Class-IL scenario, the class distribution changes as new classes emerge in each learning

episode. A schematic representation of the Class-IL scenario is depicted in Figure 2.3. We

can see that the first objective of the model is to learn and classify three objects: cat, pigeon,

and dog. In the second task, the model encounters two more classes: lily and cherry. Now,

the model’s objective is to learn these two new classes; however, the inference objective

changes from classifying three objects to classifying five objects: cat, pigeon, dog, lily, and

cherry. In the final task, the model encounters two additional classes: apple and orange.

The model’s objective is to learn these two new classes, and the inference objective is to

classify all the classes encountered so far: cat, pigeon, dog, lily, cherry, apple, and orange.

13

2.4. Continual Learning vs. Related Learning Paradigm

Figure 2.3: Schematic Representation of Class Incremental Learning (Class-IL) Scenario.

2.4 Continual Learning vs. Related Learning Paradigm

2.4.1 Online Learning

Online learning (OL) is a branch of machine learning (ML) in which training data is observed

sequentially [29,39]. The base model is updated as soon as a new sample is observed, and the

model becomes effective moving forward. In contrast to the static ML training paradigm,

where retraining is done using all current and historical data, OL retrains with only the

new data, making it efficient and fast. Another important benefit of OL is its capacity

to accommodate the model to concept drift. Concept drift occurs when new samples of

existing classes are observed. In essence, OL is characterized by incremental updates to the

model with each new data point, effectively setting the batch size to one. This method is

particularly well-suited for scenarios requiring immediate processing of information, either

to quickly adapt the model or due to limitations in data storage.

Although the learning procedures of OL and CL may seem similar, they serve different

14

2.5. Catastrophic Forgetting

objectives. OL is fundamentally designed to efficiently learn new samples incrementally and

be robust to concept drift. CL, on the other hand, is designed not only to learn new samples

incrementally and be robust to concept drift, but also to ensure that the model remains robust

against catastrophic forgetting. A CL model needs to retain the knowledge of prior data

distributions while learning new data distributions and experiencing new learning objectives.

In some cases, these prior and current learning experiences help in learning future experiences

more easily.

Recently, a few studies have aimed to bridge OL and CL, focusing on models that learn from

a continuous, potentially infinite stream of data, processing one instance or a small batch

at a time. This approach assumes each new sample is encountered only once, necessitating

rapid learning within constrained resources [6, 7, 19,20,31,50,51,52,53,80,126].

2.4.2 Transfer Learning

Transfer learning (TL) enables an ML model to leverage its prior learning experience from

one task to learn the next task [43, 105, 153]. Fundamentally, learning from one type of

objective (i.e., prior task) helps improve the learning of the next objective (i.e., next task).

The prior task in this context is also referred to as the source domain, while the next task

is referred to as the target domain. TL is also referred to as a domain adaptation technique

in natural language processing (NLP) research [34,101].

TL and CL differ fundamentally in their objectives. TL does not focus on preparing the

model to be robust against catastrophic forgetting, whereas CL is designed to achieve this.

Additionally, CL focuses on knowledge aggregation and continuous learning, while TL is not

designed for this purpose.

2.5 Catastrophic Forgetting

Catastrophic forgetting (CF) is a phenomenon where a neural network’s performance on

previously learned tasks significantly worsens after it is trained on a new task. This occurs

under the assumption that the network learns tasks sequentially. A “task” refers to a spe-

15

2.5. Catastrophic Forgetting

cific data distribution, such as a new class of data, a different type of task (for example,

transitioning from classifying MNIST digits to CIFAR10 objects), or a variation in the data

distribution of existing classes due to factors like time, weather conditions, or seasons. CF

happens because the neural network’s weights, adjusted for new tasks, tend to overwrite

those that were adapted for older tasks, leading to a decline in performance on those older

tasks.

This phenomenon is also known in the literature as the stability-plasticity dilemma [2, 3,

118]. The ideal scenario involves the neural network being sufficiently plastic to adapt to

new environments and learn novel tasks, while also being stable enough to retain critical

information over time. Plasticity is crucial for the ongoing learning process, allowing neural

networks to incorporate new patterns and data. This capability is akin to the learning process

in biological systems, where synaptic plasticity underlies learning and memory formation [85].

On the other hand, stability ensures that the acquisition of new information does not lead

to the unlearning of previous knowledge, a process that is safeguarded in biological neurons

through various mechanisms, such as synaptic consolidation [88].

The tension between these two requirements presents a significant challenge: excessive plas-

ticity may lead to catastrophic forgetting, where new learning disrupts old knowledge, while

excessive stability can impede the incorporation of new information, rendering the network

less responsive to changes in its environment. Several approaches have been proposed to

mitigate this dilemma, such as Elastic Weight Consolidation (EWC) [69], which introduces

a regularization term to protect important weights from significant changes, thereby balanc-

ing between the need for plasticity in learning new tasks and the need for stability to retain

previous knowledge. Understanding and addressing the stability-plasticity dilemma is cru-

cial for the development of more robust and adaptive neural networks, capable of continuous

learning without forgetting previous knowledge.

The human brain’s capacity for learning and memory storage is underpinned by the sophis-

ticated interplay between various regions, notably the prefrontal cortex and the hippocam-

pus. The prefrontal cortex, particularly its medial regions, is instrumental in the executive

functions associated with learning, such as attention, decision-making, and the regulation

of emotional responses [92]. It processes complex information and is involved in the ab-

straction and generalization of knowledge, thereby facilitating the application of learned

16

2.5. Catastrophic Forgetting

Figure 2.4: Schematic Overview of Joint Replay Mechanism in Continual Learning (CL)

Processes.

information to new, similar contexts [13]. Once information has been initially processed and

encoded through these mechanisms, it is then transferred to the hippocampus, a structure

deeply embedded within the medial temporal lobe, which is critical for the consolidation

of this information into long-term memory [13]. The hippocampus is particularly adept at

encoding the contextual details of experiences, forming the rich, associative memories that

are essential for spatial navigation and episodic memory [40]. This division of labor be-

tween the prefrontal cortex’s role in the initial learning and processing of information and

the hippocampus’s role in memory consolidation and storage reflects the intricate neural

architecture supporting human cognition.

Continual learning (CL) research aims to emulate the human learning process by training

a neural network to learn a series of tasks sequentially, while simultaneously addressing

the challenge of catastrophic forgetting (CF). One primary method to mitigate CF involves

retaining previous data and revisiting it during the learning of new tasks (see Figure 2.4).

This approach is known as Joint/Exact replay [119, 140] in contemporary literature and as

rehearsal [113,118] in earlier works. It involves periodically reintegrating previously learned

data into the training process of new tasks to mitigate catastrophic forgetting. In this

conceptual framework, the primary model is likened to the visual cortex, responsible for

perceiving new information. Analogously, the storage mechanism is equated to the brain’s

hippocampus, functioning as a memory buffer. Previous research indicates that the process

known as replay, crucial for consolidating and reinforcing memories, originates within the

hippocampus, manifesting as episodic memory recall [32,122,138]. This analogy underscores

the pivotal role of the hippocampus in memory formation and retrieval, drawing a parallel

between neural network operations and cognitive processes in the human brain.

However, this approach is often criticized for its inefficiency, primarily due to the necessity of

17

2.6. Overcoming Catastrophic Forgetting

continually retraining the system on all previously learned tasks, which can lead to unman-

ageable data storage demands over time [102,128]. Moreover, the comprehensive storage of all

data may contradict with various data privacy regulations, including the EU’s General Data

Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). Contrary

to this, the human brain does not retain all raw data for memory recall. Instead, it relies

on the crucial process of replaying past experiences to solidify new memories [62,108]. This

reactivation of neurons associated with past experiences, originating from the hippocampus

and manifesting in the cortex, occurs during both sleep and waking states [21].

2.6 Overcoming Catastrophic Forgetting

Over the years, numerous strategies have been developed to address the challenge of catas-

trophic forgetting, which can broadly be categorized into three major families [102]: i)

regularization methods, which constrain the update of certain parameters to retain previous

knowledge; ii) replay methods, which involve revisiting previous tasks or data to reinforce

old memories; and iii) adaptive expansion methods, which dynamically adjust the network

architecture to accommodate new tasks without overwriting existing information.

2.6.1 Regularization Methods

Regularization-based techniques attempt to penalize changes to weights that are determined

to be important to the previous tasks. This is done by introducing a new loss function

known as regularization loss. The regularization loss is added to the training loss to com-

pute the total loss. This category includes Elastic Weight Consolidation (EWC) [69], EWC

Online [128], Synaptic Intelligence (SI) [151], Memory Aware Synapses [5], Riemannian Walk

(RWALK) [24], Online Laplace Approximator [116], Hard Attention to the Task [129], and

Learning without Memorizing [38]. In this section, we explore a selection of key techniques

relevant to our research.

18

2.6. Overcoming Catastrophic Forgetting

Elastic Weight Consolidation (EWC) and EWC Online. [69] proposed EWC to over-

come catastrophic forgetting in a neural network. EWC is inspired by human brain, in

which the plasticity of the synapses of the previously learned tasks are reduced to facilitate

continual learning. As mentioned earlier, excessive plasticity of the weights of the previous

tasks is the major cause of the catastrophic forgetting. If the plasticity of the weights is

loosely connected to the previous task, then the network becomes less prone to catastrophic

forgetting. Leveraging this idea, EWC quantifies the importance of the weights in terms of

their impact on the previous tasks’ performance, and selectively reduces the plasticity of the

most important such weights.

A Bayesian approach is used to measure the importance of the parameters of a task in EWC.

Given two tasks T1 and T2, EWC tries to converge to a point where both of these tasks have

low error using the following loss function:

L(θ) = LT2(θ) +
∑
i

λ

2
Fi

(
θi − θ∗T1,i

)2
(2.1)

Here, LT2(θ) is the loss of task T2 only, Fi(θi − θ∗T1,i
)2 approximates a Gaussian distribution

with mean given by the parameters θ∗T1
which is with respect to task T1 and a diagonal

of the Fisher information matrix F . i is an index into the weight vector. λ controls this

distribution in such as way that the weights do not move too far away from the low error

region of task T1. Similarly, when a new task T3 is observed, the loss function is updated in

such a way that forces the parameters θ to be close to θ∗T1,T2
, where θ∗T1,T2

is the parameters

learned for the previous tasks T1 and T2.

The major drawback of the proposed EWC is scalability. The quadratic term of the regular-

ization loss grows linearly with the increase of task which hinders to enable EWC be truly

applicable in a practical continual learning scenario where the tasks keep growing. EWC

Online attempts solve this problem by strict Bayesian treatment which results in a single

quadratic penalty term considering the important parameters of the current task and a run-

ning sum of the Fisher Information matrices of the previous task’s parameters [128]. EWC

Online modifies the second part of Equation 2.1 where F̃i is the running sum of the previous

task. The modified loss function becomes as follows:

19

2.6. Overcoming Catastrophic Forgetting

L(θ) = LT2(θ) +
∑
i

λF̃i

(
θi − θ∗T1,i

)2
(2.2)

Synaptic Intelligence (SI). SI is a variant of EWC, in which changes to weights that

are important to the previous tasks are penalized when training on new tasks [151]. Funda-

mentally, regularizer loss is added to the loss of the current task to get the total loss, Ltotal.

To compute this regularization loss, we first compute the importance of the weights Iwt after

every task t, with respect to the change in total loss Ltotal. To get the estimated importance

of the weights IN−1t for N−1 tasks, all the Iwt are summed up together after a normalization

step. Finally, the regularization loss Lr(θ) for tasks N > 1 is computed in Equation 2.3.

Refer to the paper [151] for more details.

Lr(θ) =
K∑
t=1

IN−1t

(
θt − θ̂

(N−1)
t

)2

(2.3)

2.6.2 Replay Methods

Replay methods are designed to complement the training data for each new task with older

data that are representative of the tasks seen so far [26, 119, 134]. Distillation loss, for

instance, is often used in replay-based techniques [22, 78, 114]. Learning without Forgetting

(LwF) [78] replays pseudo-data, which is generated by first running the older model on new

data to generate the softmax outputs, and then using those outputs as soft labels for training

the model. This technique is similar to model distillation.

In an alternative form of replay called generative replay (GR) [130,139,140], a second model

is trained to capture the distribution of data from the previous tasks and generate new

samples from the distribution to be replayed. In the current task T , both the main model

MT and a generative model GT is trained using a mix of task T data and data generated by

the prior generator model GT−1. GR is a powerful technique when access to older data is not

available or restricted. Replay through Feedback (RtF) [140] reduces the training cost for

dual-memory-based GR by coupling the generative model into the main model. RtF enhances

the capability of the main model to generate samples by adding feedback connections and

20

2.6. Overcoming Catastrophic Forgetting

a layer of latent variables z, which are responsible for reconstructing inputs. Brain-Inspired

Replay (BI-R) [139] is an improvement over RtF and proposes three new components: i)

replacement of the standard normal prior with Gaussian mixture, ii) internal context [86],

and iii) internal replay.

Another variant of replay, which intelligently picks the samples (i.e., called exemplars) to

complement the training data of the current task, includes Experience Replay [119], Gradi-

ent Episodic Memory (GEM) [82], Averaged Gradient Episodic Memory (A-GEM) [25], and

Incremental Classifier and Representation Learning (iCaRL) [114]. ER leverages a reinforce-

ment learning based learner to learn new and old experiences. In particular, ER balances

stability and plasticity using on-policy for plasticity and off-policy for stability. iCaRL sets

a memory budget beforehand, and the memory budget is equally divided into the previously

learned classes. It picks and stores only exemplars that are close to the feature mean of each

class. Loss of the current classes is minimized along with the distillation loss between targets

obtained from the predictions of the previous model and the predictions of the current model

on the previously learned classes. A-GEM also follows iCaRL to replay selective samples

during training from the learned tasks to be replayed in the current task. When the original

data is available, however, prior work has recommended exact replay instead [66, 97, 114].

We briefly discuss the specific techniques studied for this proposal below.

Experience Replay (ER). ER technique jointly trains the network utilizing both the

examples (i.e., data) from the current task and examples stored in the very small episodic

memory. ER is based on a distributed actor-critic training in which the single learner is fed

both new and replayed experiences (i.e., tasks) [119]. To adjust the off-policy distribution

shifts during training, ER adapts V-Trace off-policy learning algorithm [41]. Three losses –

Lpolicy−gradient, Lvalue, and Lentropy are common to both new and replayed experiences and an-

other two losses – Lpolicy−cloning and Lvalue−cloning are unique to only the replayed experiences.

Refer to the paper [119] for more details.

Learning without Forgetting (LwF). LwF tries to reduce the catastrophic forgetting

of an older task tn−1 by learning the parameters of new task tn, θn, with the help of the

shared parameters θs and the parameters of the older tasks θ0. The objective is to optimize

θn and θs such that the prediction of tn using θs and θ0 does not drift significantly [78]. The

21

2.6. Overcoming Catastrophic Forgetting

objective function of LwF algorithm is given below:

θ∗s , θ
∗
0, θ
∗
n ←− argminθ̂s,θ̂0,θ̂n

(Lnew(ŷn, yn)+

λ0Lold(ŷ0, y0) +R(θs, θ0, θn))
(2.4)

ŷn is the prediction of the test samples of the new task tn using current shared parameters

θ̂s and current task’s parameters θ̂n. A multinomial logistic loss function is used to compute

Lnew. Thus, Lnew(ŷn, yn) minimizes the difference between predicted ŷn and actual yn. y0

is the prediction of the test sample of the new task tn using the shared parameters θs and

previous task’s parameters θ0 (i.e., the model before being trained with the samples of the

new task). ŷ0, on the other hand, is the prediction of the test samples of the new task tn

using current shared parameters θ̂s and previous task’s parameters θ̂0 (i.e., the model as

trained with the samples of the new task). Distillation loss [56] is used to compute the

Lnew so that the output of one network can be approximated using the outputs of another.

Thus Lold(ŷ0, y0) minimizes the difference between ŷ0 and y0. λ0 works as a balancing factor

between the new task tn and the previous task tn−1. In the algorithm, R(θs, θ0, θn) works as

a regularizer to avoid overfitting in the model.

Generative Replay (GR) and GR with Distillation. Earlier studies indicate that

the cerebral cortex, serving as the primary model, is more effective when coupled with a

generative model rather than a replay buffer [28, 67, 112]. Shin et al. [130] introduced Deep

Generative Replay (DGR) in 2017, utilizing a Generative Adversarial Network (GAN) [48] to

produce synthetic examples of past tasks, thereby obviating the need to store real data from

these tasks. Figure 2.5 depicts a schematic of Generative Replay (GR), illustrating how the

generator, analogous to the hippocampus, synthesizes representative samples of historical

data for integration during new task training. This process allows the GAN generator to

effectively recreate the model’s understanding of prior tasks.

Given a series of tasks t0, t1, t2, ..., tn, an expert model S – which contains a generator model

G and a solver model M (called the main model in some works [139, 140]) – holds the

knowledge of the previous tasks and thus prevents the system from catastrophic forgetting.

In the Figure 2.5, at the outset of the learning process in Task 0 (t0), the main model

22

2.6. Overcoming Catastrophic Forgetting

Figure 2.5: Conceptual Diagram of Generative Replay in Neural Networks: Integrating Past

and Present Learning.

undergoes training with the current new data. Concurrently, the generative model G0 creates

representative data of this new input and stores it. Moving on to Task 1 (t1), the data

generated by G0 is replayed to the main model for retraining, alongside the new data for

Task 1. Meanwhile, G0 evolves into G1, which then generates representative samples of both

the current task’s data and the previously stored representative generated samples. This

means G1 produces representative samples for both the current and previous tasks. This

23

2.6. Overcoming Catastrophic Forgetting

cycle of generation and storage continues with subsequent tasks and learning episodes.

In DGR, S is learned and maintained in a continual learning fashion. S for the series of

previous n tasks can be represented as Sn = (Gn,Mn). Given a new task tn+1 and the new

training data Dn+1, the objective of S is to learn Sn+1 = (Gn+1,Mn+1). There are two steps

involved in the learning process of Sn+1 considering Dn+1 = (x, y) where (x, y) represents

(data, label):

1. At first, the scholar model Sn+1 is updated with the input x of new task tn+1 and

replayed with the generated data, x̂, from previous scholar model Gn. Real data x

and replayed data x̂ are mixed together at a ratio based on the importance of the

new task tn+1 compared to the older task tn. This is referred to as intrinsic replay or

pseudo-rehearsal [118].

2. Then the main model Mn+1) is trained with the real and replayed data with the

following loss function:

Ltrain(θn+1) = rE(x, y) ∼ Dn+1[L(M(x; θn+1), y)]+

(1− r)E(x, y) ∼ Dn[L(M(x; θn+1), y)]
(2.5)

Here, θn represents the parameters of the main model Mn) and r represents the ratio

of the mixture of the real and replayed data.

The DGR framework is designed in such a way that choice of the generative model is not

limited to a GAN and can instead be a variational autoencoder (VAE) [68] or any other such

type.

For the experiments of GR, we need two models – the main model M and a generative

model G. G is responsible for generating representative samples of the previous tasks to be

replayed in the current task. We use the base model architecture for both M and G. The

loss function of M consists of two parts – one for the data of the current task and another

for the replayed samples. The cumulative loss of these two parts are weighted in terms of

the number of tasks the model has observed so far.

For G in our experiments, we use a symmetric VAE [68], where there is an encoder that

maps the input data distribution to a latent distribution and a decoder that reconstructs the

24

2.6. Overcoming Catastrophic Forgetting

inputs from the latent distribution. For both the encoder and the decoder, the base model

architecture is used. In all of our experiments, we used a stochastic latent variable layer with

100 Gaussian units parameterized by the mean and the standard deviation of the output of

the encoder given input x.

The data to be replayed are sampled from the generative model, and then the selected

samples are fed to the main model and then labeled based on the predicted class of the

model. The samples to be replayed during task T are generated by the version of the main

model and the generator after training on task T − 1. Hence, we need to store a copy of

both M and G after each task.

GR with distillation is a variant of GR where the generated samples are replayed with the

output probabilities (i.e., soft targets) instead of the actual labels. Previous work show that

GR with distillation often works better than GR [139,140,141].

Replay through Feedback (RtF). GR has two models – a main model and a generative

model. RtF proposes to merge the generator model into the main model [140]. This is

inspired by the fact that replay in the brain is originated in the hippocampus and then it

propagates to the cortex, and in our brain’s processing hierarchy, the hippocampus sits on

top of the cortex. The merged model will work as a brain, where the first n layers will work

as the visual cortex and the last m−n layers will work as the hippocampus. Technically, an

additional softmax classification layer is added on top of the encoder of our generator VAE

model. This technique requires only a single model to be trained, and the loss of the current

tasks has two terms – cross entropy loss and generative loss.

Brain-Inspired Replay (BI-R). Recently proposed by [139], BI-R seeks to improve upon

RtF with another three add-on components – Conditional Replay (CR), Gating based on

Internal Context (Gating), and Internal Replay (IR). For CR, BI-R proposes to replace

the standard normal prior over the VAE’s latent variables by a Gaussian mixture with a

separate mode for each class so that class-specific samples can be generated. This is due

to the fact that a vanilla VAE is limited to generate class-specific samples, but humans do

have control over which memories to recall. Conditional replay (CR) is intended to provide

the network a human-like capacity to generate samples of the class the network needs most.

25

2.6. Overcoming Catastrophic Forgetting

Context-dependent gating was originally proposed by [86]. The idea is to reduce interference

between different tasks by gating different and randomly selected network nodes for each

task. However, this technique requires the task identity to be known for all the tasks, which

is not realistic in the Class-IL scenario. BI-R proposes to use this gating technique in the

decoder of the VAE with a conditional of the internal context. The task or class to be

generated and reconstructed is the conditioned internal context. To note, not all of the

nodes of the decoder network are gated. Mental images are not propagated all the way to

the retina, and thus the brain does not replay memories to the input level [16]. This insight

is corroborated by evidence from neuroscience that our brain’s early visual cortex does not

change significantly from childhood to adulthood [131]. To accommodate these observations

into continual learning, BI-R proposes to replay internally or at a hidden layer, instead of to

the input level. From the machine learning perspective, the first n layers will need a limited

amount of change, since there is no replay in them.

Incremental Classifier and Representation Learning (iCaRL). iCaRL [114] is one

of the earliest replay-based methods specifically designed for Class-IL scenario. Given a

fixed buffer size (i.e., allocated memory), iCaRL stores samples of the earlier learned classes

which are closest to the feature mean of those classes obtained from the feature maps of the

network. iCaRL minimizes two loss functions – i) one is the categorical cross entropy loss

of new classes, and ii) distillation loss obtained from the predictions of the current model’s

and the previous model’s targets.

Averaged Gradient Episodic Memory (A-GEM). A-GEM [25] is an improved version

of GEM [82]. GEM attempts to reduce catastrophic forgetting by constraining the updates

of the new task not to interfere with the previous tasks. GEM utilizes the first order Taylor

series approximation to estimate the direction of the gradient on the possible areas laid out

by the gradients of the previously learned tasks. A-GEM relaxes the constraint to project

the gradient into only one direction estimated from the randomly selected samples stored in

a replay buffer. The replay buffer contains samples of the previously learned tasks.

26

2.6. Overcoming Catastrophic Forgetting

2.6.3 Adaptive expansion methods

Adaptive expansion methods grow the capacity of the neural network as new tasks are ob-

served. Several techniques have been proposed, including Progressive Neural Networks [125],

Dynamically Expandable Networks [150], Adaptation by Distillation [57], and Dynamic Gen-

erative Memory [100]. These methods require incremental increases in memory as the new

tasks are observed, and thus face scalability problems. Given the scale of malware classifi-

cation problems, we leave the investigation of these techniques to future work, and instead

focus on methods that do not require us to increase model capacity with dataset or problem

size.

27

3
Continual Learning in Malware Domain

28

3.1. Malware Domain

In this Chapter, we begin by addressing the current challenges in the malware domain, partic-

ularly in light of the continuously expanding landscape of both malware and benign software.

We then propose a formalization of continual learning scenarios, discussed in Chapter 2, tai-

lored for malware classification. Next, we delve into the specifics of the malware datasets

analyzed in this dissertation. While two of these datasets, EMBER [10] and Drebin [11],

were sourced from prior studies, the remaining two were collected specifically for this re-

search from AndroZoo repository [8]. Following this, we provide insights into the model

utilized in our study, along with the training mechanism employed. Additionally, we discuss

the implementation details, baselines utilized, and the metrics employed for evaluation.

3.1 Malware Domain

The explosive growth in both malicious and benign software presents significant challenges

for machine learning models in cybersecurity. According to AV-TEST Institute, over 450,000

new malware instances and potentially unwanted applications (PUAs) are detected daily [12],

highlighting the relentless advance of cyber threats. Furthermore, VirusTotal registers more

than 1.5 million new benign software applications each day [145]. This rapid proliferation

complicates the task of distinguishing between malware and benign programs, as the sheer

volume and variety of new software strains traditional detection methods.

Continual Learning (CL) offers a promising solution to these challenges by enabling models

to learn incrementally from new data without forgetting previous knowledge. This approach

is particularly suited to the dynamic nature of cybersecurity, where the ability to adapt to

evolving threats in real-time is crucial. By incorporating CL, malware classification systems

can better manage the influx of new software and malware, maintaining their efficacy in

identifying and neutralizing threats amidst the ever-growing digital ecosystem.

However, we note that no prior work has explored continual learning or machine unlearning

to the malware domain. However, [9] has proposed a continual learning-based network

intrusion detection system (IDS) to mitigate catastrophic forgetting in a class-incremental

scenario leveraging partial replay-based approaches. While they primarily focus on the role

of class imbalance, some of the results of their study mirror our own findings, namely that

the number and selection of samples used during replay are key to the success of continual

29

3.2. Continual Learning Scenarios for Malware Classification

learning in the cybersecurity space. A recent work on continual learning for Android malware

classification proposes to combine contrastive learning with active learning to continuously

train Android malware classifiers [27]. However, their focus is on the concept drift detection

rather than overcoming CF.

Additionally, there is some prior work on online learning (OL) applied to malware classifi-

cation [60, 95, 96, 148]. Online learning considers the problem of incorporating new samples

into the model as they are observed, and notably does not directly address the problem of

catastrophic forgetting. Furthermore, previous work has shown that producing high-quality

labels for malware can be a difficult task [65], and often requires weeks of time for vendors

to come to consensus on newly-discovered variants [154], making immediate incorporation of

observed samples risky. Recently, researchers have explored malware detection systems lever-

aging transfer learning in an attempt to address the challenge of adapting to ever-evolving

malware samples [4, 23, 47, 58, 120, 136]. Transfer learning, however, is not focused on re-

taining knowledge of the prior tasks when being applied to the new domain. In malware,

this distinction is significant, since an inability to detect previous malware variants would

reintroduce vulnerabilities without the user’s knowledge. We thus focus in this paper only

on CL techniques, as they explicitly address the issue of catastrophic forgetting.

3.2 Continual Learning Scenarios for Malware Classi-

fication

We setup our continual learning problem in such a way that a ML model, M , learns a series

of sequential tasks, t0, t1,, tn. During the training of ti, only data from ti is available.

Below, we describe three continual learning scenarios for malware classification [141]: Do-

main Incremental Learning (Domain-IL), Class Incremental Learning (Class-IL), and Task

Incremental Learning (Task-IL). We show a schematic representation of the utility of these

three scenarios in a malware classification pipeline in Figure 3.1.

Domain-IL. The most important problem in malware classification is binary classification

of a test sample as either benign software (goodware) or malware. Many new malware

30

3.2. Continual Learning Scenarios for Malware Classification

Figure 3.1: CL Scenarios in Malware Classification Pipeline.

samples, unidentified applications, and goodware are created and released every day. New

malware and goodware often behave differently from prior ones, resulting in concept drift over

time. This makes it valuable to incorporate new samples into production systems sooner than

later. Previously proposed malware classification techniques generally do not consider an

evolving model trained continuously to incorporate this distribution shift without complete

retraining [64, 149]. Further, in this adversarial setting, an attacker may leverage older

malware specifically to evade classifiers that have forgotten about it. Thus, the distribution

shift must be captured while avoiding catastrophic forgetting.

In this binary malware classification setting, we divide our dataset into monthly tasks, where

each month captures the natural concept drift of both malware and goodware due to evolving

malware capabilities and benign software releases. We seek to incorporate this new knowledge

in each monthly incremental learning iteration while maintaining previous discriminative

knowledge about earlier malware and goodware.

We note that, unlike most studies of Domain-IL that rely on artificial manipulations of image

datasets, the malware dataset we use shows real-world shifts in the data distributions over

time. For example, we find that some malware families become more or less popular during

the span of the dataset.

Class-IL. The second type of malware task is multi-class family classification. A family

is a set of malware programs that have significant overlap in their code, such that they are

considered by experts to be a group with common functionality. The famous Zeus banking

31

3.2. Continual Learning Scenarios for Malware Classification

trojan, for example, has evolved since 2006 to include 556 versions of software spread out

among 35 different families with names like Citadel and Gameover [127].

It takes some time to label new malware samples and unknown applications with the help of

experts and, in many cases, a consensus of scores from multiple anti-virus engines. Classes

can be added when enough samples share enough similarity for the experts to decide that

they are a new family [65, 154]. This occurs fairly infrequently in practice, but it requires

the model to be adaptable to incorporate this new knowledge.

In this multi-class malware classification setting, we divide our dataset so that the model

would learn new malware classes incrementally, extending its capabilities. We assume that

the base model would start with a non-trivial number of classes, and then we would increment

with new classes afterwards. Each new task is defined as adding new classes, but test time

performance is measured on all classes that the model has been trained on so far.

In practice, an analysis pipeline is used to detect and triage malicious programs. The first

step is binary classification of benign/malicious files. Once a file is determined to be mali-

cious, it is useful to provide additional context to the security analyst about the malware

family or its capabilities, which is encapsulated in Class IL. Since benign files are classified

at the first stage in the pipeline, only malware is used in these settings.

Task-IL. To facilitate classification of malware into families, it can help to constrain the

task based on information gained from other analysis methods, such as the broader category

of the malware (e.g. adware, ransomware, etc.), behaviors of the malware [17], or the infec-

tion vector that the malware uses (e.g. phishing, downloader, etc.). Task-IL captures this

notion of constrained tasks, where adding a new task may represent a new category or new

set of behaviors. This is likely to be less frequent than simply adding a new family, as we

have in Class-IL, but it represents a real problem in malware classification. Unlike in Class-

IL, the task identity is given to the model at test time, making it a much easier problem. In

malware, this could mean learning the task identity from a separate model, manual analysis,

or field reports of the malware’s behavior. As we do not have naturally defined tasks in our

datasets, we divide our dataset into tasks that contain an equal number of independent and

non-overlapping classes, as is common in the continual learning literature [69,128,151].

32

3.3. Dataset

Table 3.1: Drebin. 4525 malware samples from top 18 malware families.

Label Family #of Samples Label Family #of Samples

0 FakeInstaller 925 9 Geinimi 92

1 DroidKungFu 667 10 Adrd 91

2 Plankton 625 11 DroidDream 81

3 Opfake 613 12 MobileTx 69

4 GingerMaster 339 13 FakeRun 61

5 BaseBridge 330 14 SendPay 59

6 Iconosys 152 15 Gappusin 58

7 Kmin 147 16 Imlog 43

8 FakeDoc 132 17 SMSreg 41

Total 4,525

3.3 Dataset

For our experiments, we have utilized two popular, large-scale datasets from the malware re-

search community: Drebin [11] for Android malware and EMBER [10] for Windows Portable

Executable (PE) malware, specifically the EMBER 2018 version due to its updated complex-

ity and challenge for classifiers. Additionally, we have compiled two datasets from Andro-

Zoo [8] (AZ), named AZ-Domain and AZ-Class, tailored for Domain Incremental Learning

(Domain-IL) and Class Incremental Learning (Class-IL) respectively. These datasets com-

prise Android APK files.

Drebin. The Drebin dataset consists of 5,560 Android malware samples.1 For our exper-

iments, we use malware samples from the top 18 malware families totaling 4,525 malware

samples. Unfortunately, we could not find the samples belonging to LinuxLotoor and Gold-

Dream in the dataset. We can see the details of Drebin dataset used in this study from

Table 3.1.

Drebin features are organized as sets of strings, such as permissions, API calls, and network

addresses, and they are embedded in a joint vector space as Boolean expressions representing

1https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html

33

https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html

3.3. Dataset

Figure 3.2: EMBER Data: Goodware and malware data statics of 12 months of 2018.

the presence or absence of the attribute. Drebin features are highly sparse, making it a

relatively easy dataset. The total number of original features in these samples is 8,803.

With binary features, we do not need to use standardization, though we do pre-process the

features using scikit-learn’s VarianceThreshold [104] to omit features with very low

variance (< 0.001). This leaves a final set of 2,492 features.

We can only perform task-IL and class-IL experiments with this dataset. Even though the

samples span over five years, the families in this dataset do not consistently contain enough

samples for each time period.

EMBER. The EMBER 2018 dataset contains features from one million PE files scanned

mostly in 2018, with 50K samples from before 2018.2 There are 400K goodware samples,

400K malware samples, and 200K unknown samples. Figure 3.2 shows the number of good-

ware and malware samples of each month of 2018.

EMBER contain a variety of features, including general file information, header information,

imported and exported functions, and section information. EMBER features also contain

three groups of format-agnostic features: byte histogram, byte-entropy histogram, and string

information. Some of these features with high cardinality (e.g., identified strings) are then

processed using the hashing trick [147] with different bin sizes. Each of the groups of EMBER

2https://github.com/elastic/ember

34

https://github.com/elastic/ember

3.3. Dataset

features have unique distribution characteristics, which makes this dataset complex. It is

also worth noting that the EMBER feature space encodes rich semantics for the underlying

executable data that naturally constrain the feasible regions of that space. For more detail,

refer to [10].

There are 2,381 features in total, and we use scikit-learn’s StandardScaler [104] to

standardize the feature space. StandardScaler provides a partial fit method, which can be

updated incrementally to standardize the dataset using each month representing a continuous

flow of data.

For the Task-IL and Class-IL experiments, we only use the malware samples from 2018, which

belong to 2,900 families. As we found that the majority of the families contain only a few

samples, we filtered out the families containing fewer than 400 samples. This left us with 106

families, from which we select the top 100 malware families containing 337,035 samples for

our experiments. For the study of Domain-IL, we take both goodware and malware samples

from 2018, removing the unknown samples. This subset of the data spans 12 months, January

to December. We focus on binary classification for this set of experiments.

AndroZoo – AZ Datasets. We have collected two datasets of Android APK files from

AndroZoo [8] for our experiments: AZ-Domain for Domain Incremental Learning (Domain-

IL) and AZ-Class for Class Incremental Learning (Class-IL). The AZ-Domain dataset com-

prises 80,690 malware and 677,756 goodware samples collected from 2008 to 2016, with each

year’s samples spanning from January to December, totaling 758,446 samples. Following

established practices [148], we selected malware samples with a VirusTotal detection count

of at least 4. We aimed for a 9:1 goodware-to-malware ratio, although this was not always

achievable for each year. The AZ-Domain dataset was divided into training and testing sets

for each year at a 9:1 ratio, resulting in 682,598 training samples and 75,848 testing samples.

The AZ-Class dataset includes 285,582 samples across 100 Android malware families, each

with a minimum of 200 samples and a VirusTotal detection count of at least 4. This dataset

was split into 223,608 training samples and 61,974 testing samples, maintaining the same

9:1 ratio.

For both datasets, we extracted Drebin features [11], which encompass eight feature cate-

gories to analyze app behavior thoroughly. These categories include hardware access, re-

35

3.4. Model Selection and Training

quested permissions, component names, filtered intents, restricted API calls, used permis-

sions, suspicious API calls, and network addresses. The AZ-Domain training set yielded

3,858,791 features, with the test set transformed accordingly. The AZ-Class training set

had 1,067,550 features, with the test set also transformed accordingly. To enhance com-

putational efficiency, we applied scikit-learn’s VarianceThreshold to both datasets,

eliminating features with a variance below 0.001. This process resulted in reduced feature

dimensions of 1,789 for AZ-Domain and 2,439 for AZ-Class.

3.4 Model Selection and Training

For the purposes of our experiments, we standardize our model as a multi-layer perceptron

(MLP). Our MLP model has four fully-connected (FC) layers with [1024, 512, 256, 128] hid-

den units, using dropout (rate = 0.5) and batch normalization in each layer. We use SGD

as the optimizer, with learning rate = 0.01, momentum = 0.9, and weight decay = 0.000001.

In our approach, we refined the model’s performance through selective hyperparameter tun-

ing, which included adjustments to the number of layers, hidden units, activation functions,

optimization algorithms, and learning rates. This process led to our model achieving an AUC

score of 0.99512. For context, the EMBER 2018 dataset, as referenced by [10], utilized a

LightGBM model for binary classification, achieving a slightly higher AUC score of 0.99642.

Interestingly, substituting StandardScaler with QuantileTransformer in our model im-

proved the ROCAUC score to 0.99655. However, due to the lack of a partial fit method

in QuantileTransformer, this approach was not feasible for our final model. Despite this,

the ROCAUC score obtained with StandardScaler closely approaches the benchmark set

by the LightGBM model in [10], leading us to adopt it for subsequent experiments on both

EMBER and Drebin datasets.

There are, however, a few data- and experiment-specific changes to the optimizer and learning

rate that we finalized after conducting multiple sets of experiments in each setting. For

experiments with the Drebin dataset, we observed that an Adam optimizer with learning

rate 0.001 provided us slightly better performance than SGD, so we switch to it for Task-IL

and Class-IL experiments on Drebin. For Task-IL and Class-IL with the top 100 classes of

EMBER, we observe that SGD with learning rate 0.001 gave better accuracy than learning

36

3.5. Implementation Details

rate 0.01. Meanwhile, for the Domain-IL experiments with EMBER, SGD with learning rate

0.01 yielded the best performance.

For all scenarios and training protocols, the model is trained in a sequential manner, such that

each of the N tasks t1, t2, t3, ..., tN are independent, and their corresponding data distribution

is also independent. The model only has access to the data of the current task. We use

the standard multi-class cross-entropy loss for all the experiments except in Domain-IL. As

Domain-IL is binary, we use binary cross entropy loss. We use mini-batch sizes of 32 and

256 for Drebin and EMBER, respectively.

3.5 Implementation Details

In Task-IL, we equally divide the number of classes into nine tasks for Drebin and and 20

tasks for EMBER data, where each task has two classes and five classes, respectively. In

Class-IL with Drebin data, the model starts with 10 classes, and then we add two classes

in each task, making five tasks in total. For EMBER, the model starts with 50 classes and

then five classes are added in each task, making 11 tasks in total. In Class-IL, a task means

an episode of learning new class(es). In Domain-IL, there are 12 tasks, one for each month’s

data of malware and goodware.

The output layer of each of the scenarios is implemented differently. The output layers of

Task-IL and Class-IL have a distinct output unit for each class to be learned. The major

difference of these two scenarios, however, is in the active output units. In Task-IL, only the

output units of the classes in the current task are active. In Class-IL, however, all the output

units of all the classes seen so far are active. In Domain-IL, all the output units – both of

them in our binary classification task – are active, as only the data distribution is changing.

The softmax function only considers these active units while assigning probabilities.

We use PyTorch [103] and run our models on a CentOS-7 machine with an Intel Xeon

processor with 40 CPU cores, 128GB RAM, and four GeForce RTX 2080Ti GPU cards, each

with 12GB GPU memory.

37

3.6. Baselines

3.6 Baselines

We have two baselines: i) None and ii) Joint. In the None baseline, the model is trained

sequentially without any CL techniques. The performance of this method can be interpreted

as an informal lower bound on our results, though it is not a true lower bound in theory or

practice. In the Joint baseline, the accumulated data of all the tasks observed so far are used

to train the model. The performance of this mechanism can be interpreted as an informal

upper bound, though it too is not a theoretical upper bound. Joint replay requires storage

and training effort proportional to all the data of the tasks observed so far. It is expensive,

but it ensures high performance across the entire dataset up to the current iteration. The

effectiveness of a particular technique to overcome catastrophic forgetting can then be seen

as its ability to move the accuracy from being near to the lower bound to near the upper

bound.

3.7 Metrics

We measure the performance of our experiments throughout this work using two metrics –

i) global average accuracy over all tasks, and ii) minimum of the average accuracies of tasks.

Global average accuracy over all tasks (AT ∈ [0, 1]) : Let AP,T be the accuracy of

the model on the test set of task Q after the model is trained on task T . Then the average

accuracy AT at task T can be defined as follows:

AT =
1

T

T∑
Q=1

AQ,T (3.1)

Assuming the number of task is N , then the average accuracies AT over all tasks TN can be

defined as:

38

3.7. Metrics

AT =
1

TN

TN∑
T=1

AT (3.2)

Minimum of the average accuracies of tasks (ÂT ∈ [0, 1]) : Assuming the number

of task is N and Z is the set of the minimum average accuracy, Z = {AT1, AT2, ..., ATN}, of

all tasks TN , the minimum of the Z is ÂT that can be defined as:

ÂT = arg minZ (3.3)

39

4
Catastrophic Forgetting for Malware

Classification

The content of this chapter has been adapted from a paper that is accepted and published

at the Conference on Lifelong Learning Agents (CoLLAs) 2022. This paper can be found in

this URL.

40

https://proceedings.mlr.press/v199/rahman22a.html

4.1. Introduction

Current machine learning systems for malware classification often fail to account for the

dynamic nature of training and test distributions, the emergence of new malware families,

and the daily discovery of thousands of new samples. Training solely on new samples and

classes leads to catastrophic forgetting (CF), a phenomenon where the system forgets previ-

ously learned tasks. Although retraining with both old and new data is effective against CF,

it is costly and necessitates storing vast amounts of older software and malware samples.

Continual Learning (CL) seeks to mitigate this issue through sequential training, reducing

the risk of CF.

In this Chapter, we present a comprehensive study of state-of-the-art (SOTA) continual

learning techniques to overcome catastrophic forgetting. Towards that end, we assess the

effectiveness of widely adopted state-of-the-art CL techniques for malware classification. We

evaluate 11 CL techniques – elastic weight consolidation (EWC), Online EWC, synaptic

intelligence (SI), learning without forgetting (LwF), generative replay (GR), and GR with

distillation, across three CL scenarios: task incremental learning (Task-IL), class incremental

learning (Class-IL), and domain incremental learning (Domain-IL). We utilize two real-world

malware datasets, Drebin and EMBER, noting that Drebin presents a less complex feature

space than EMBER. Our Domain-IL experiments reflect realistic shifts in data distribution

over time. Our comprehensive evaluation reveals that: i) in Task-IL, only LwF scales ef-

fectively with increasing task numbers and dataset complexity, and ii) all CL techniques

struggle to deliver satisfactory performance in both Class-IL and Domain-IL. Interestingly,

we find that replaying just 20% of stored data can save approximately 50% of training time

while achieving performance near the Joint level. Our conclusion discusses the findings and

poses open questions, encouraging further research into adaptive and intelligent malware

classification/detection systems.

4.1 Introduction

Machine learning (ML) and deep learning (DL) models have become important tools in

the defense of computers and networked systems. In particular, for addressing malicious

software (malware), ML-based approaches have been used extensively in both academic lit-

erature and real-world systems for malware detection and classification, including for Win-

41

4.1. Introduction

dows malware [35, 63, 135], PDF malware [72, 84], malicious URLs [75, 133], and Android

malware [11, 49, 98]. Although DL models are fundamentally inspired by biological neu-

rons [45, 121], their learning paradigm differs significantly from human learning processes.

Biological neural networks are capable of continual, sequential learning, allowing our brains

to assimilate new data and tasks on the go without significantly forgetting previously ac-

quired information. In contrast, DL models, once trained on a dataset, become fixed and are

then applied to new data in production without further adaptation. This approach typically

assumes that the distributions of training and testing data remain constant. However, the

adversarial nature of malware and continual evolution of benign software (goodware) makes

for an inherently non-stationary problem.

To accommodate shifts in the data distribution over time, the model needs to be retrained

regularly to maintain its effectiveness. Unfortunately, the speed with which new malware

and goodware are produced results in large datasets that can be both costly to maintain

and difficult to train on. For example, the AV-TEST institute registers more than 450,000

unique pieces of malware and “potentially unwanted applications (PUA)” each day [12],

while VirusTotal, a crowdsourced antivirus scanning service, regularly receives more than 1

million unique pieces of software each day [145]. Over the lifetime of a malware classification

model, these daily feeds can result in datasets containing upwards of a billion unique training

samples spanning multiple years. Given the realities of training these models, antivirus

companies must decide whether to: (i) remove some older samples from the training set, at

the risk of allowing attackers to revive older malware instead of writing new ones; (ii) train

less frequently, at the cost of not adjusting to changes in the distribution; or (iii) expend

tremendous effort to frequently retrain over all the data.

Continual learning (CL) offers an appealing alternative to these options by enabling incre-

mental incorporation of new information and adaptation to data distribution shifts without

maintaining large datasets or incurring significant training overhead. In this work, we in-

vestigate the extent to which malware classification models suffer from catastrophic forget-

ting [44,87,113], and whether we can address this using approaches from continual learning

research. While combating the problem of catastrophic forgetting has been extensively stud-

ied, explored, and applied in the context of computer vision [42, 59, 62, 130, 139, 140] using

the MNIST, CIFAR10 and CIFAR100, and ImageNet datasets, its role in and applicability

to malware classification tasks remains unknown.

42

4.1. Introduction

Using two large-scale malware datasets – Drebin [11] and EMBER [10] – we examine the

problems of binary malware classification and multi-class classification in the context of

three CL scenarios: domain incremental learning (Domain-IL), class incremental learning

(Class-IL), and task incremental learning (Task-IL). For Domain-IL, we focus on the binary

classification task of labeling software as malicious or benign, and consider the problem of

incorporating shifts in the data distribution over time without losing the ability to classify

older samples. For Class-IL and Task-IL, we examine the task of malware family classifi-

cation, where a piece of malware is categorized into a well-defined family based on its code

base, capabilities, and overall structure. In Class-IL, we incrementally add newly-discovered

families at each iteration to mirror the ever-expanding universe of malware families found

in the wild. The Task-IL formulation also incrementally adds new families to be classified,

but constrains the classification task. All three scenarios represent problems faced in the

anti-malware industry.

For each of these settings, we study 11 proposed CL approaches in our experiments, rep-

resenting three major categories: regularization, replay, and replay with exemplars. We

investigate their ability to reduce catastrophic forgetting in our two malware datasets com-

pared with the baselines of (i) using no CL techniques and (ii) full Joint replay, which retrains

on the full available dataset at each iteration. Finally, we investigate how much stored data

may be enough to be replayed while still achieving high accuracy with lower storage and

retraining costs. Our contributions are as follows:

• We are among the first to investigate continual learning in security problems, specifi-

cally in malware classification using deep learning models.

• We present a study of Domain-IL scenario using a real-world dataset with data distri-

bution shift over the span of twelve months.

• We applied 11 distinct CL techniques in three CL scenarios using two large-scale mal-

ware datasets. We find that several CL techniques work reasonably well on Task-IL.

• We empirically show that none of the CL techniques are effective in the Domain-IL

setting.

• For Class-IL, 10 of the 11 methods performed poorly, with only iCaRL [114] performing

marginally better against the Joint replay baseline.

43

4.2. Continual Learning Techniques Studied

• Instead of storing all prior data, we find that replaying 20-50% data is enough to sig-

nificantly outperform all CL techniques in Domain-IL while also reducing the training

cost by 35-50% compared with 100% Joint replay.

• We discuss the probable causes of the poor performance offered by CL techniques to

help spur future research in this problem setting.

4.2 Continual Learning Techniques Studied

In this work, we apply 11 widely studied CL techniques belonging to three major categories:

regularization, replay, and replay with exemplars. We provide a brief overview of each of the

studied techniques in this section.

Regularization. Elastic Weight Consolidation (EWC) [69] quantifies the importance of

the weights in terms of their impact on the previous tasks’ performance. As proposed,

however, EWC is not scalable to a large number of tasks, as the regularization term grows

with the number of tasks. EWC Online [128] is a modified version of EWC proposed to

overcome this limitation. Synaptic Intelligence (SI) [151] is similar to EWC Online, but it

uses a different method to measure the importance of weights and a different regularization

loss.

Replay. For each task, LwF trains with both the hard labels, to adapt to the new data

distribution, and the soft labels, to retain aspects of the old model. Generative Replay

(GR) [130], on the other hand, replays representative data of the previous tasks using a

generative model. For the generative model, G, in our experiments, we use a symmetric

VAE [68], in which the base model architecture is used for both the encoder and the de-

coder [139, 140]. We use a variant of GR with distillation loss, as well. We also evaluate

Replay through Feedback (RtF) [140], which attempts to reduce the extensive cost of train-

ing the dual-memory-based GR technique by integrating the generative model into the main

model. In addition, we study Brain-Inspired Replay (BI-R) [139] which improves upon RtF.

44

4.3. Evaluation

Replay + Exemplars. Experience replay (ER) [119] trains the model to learn new ex-

periences (i.e., new tasks) coupled with replayed experiences (i.e., old tasks). iCaRL [114]

proposes to store X number of samples of the previously learned classes based on a memory

budget. A-GEM [25] contains an episodic memory which stores a subset of the observed

examples from previously learned task and replayed along with the new sample during train-

ing.

LwF labels the current data using the model of the old task. This forms an input, output pair.

The outputs in this case is not the actual label rather the predicted softmax probabilities of

the current data using the old model. This input, output pairs are replayed while training

the old model with the current data. Basically two things are happening here. i) we get the

input, output pair of the current data using the old model, ii) we update the old model with

the current data with actual input, output pairs and the input, output pairs we got from (i).

4.3 Evaluation

In this section, we describe the results from our main set of experiments, investigating

the three continual learning (CL) scenarios – Domain-IL, Class-IL, and Task-IL – using 11

continual learning techniques described in Section 4.2. We compare the results with two

baselines – None and Joint – and perform experiments using two malware datasets – Drebin

and EMBER. We summarize our findings in Table 4.1. The results of each of the experiments

are represented in both Mean and Min metrics. Mean represents the mean accuracy of

all the tasks in a single experiment, such as across 10, 12, 14, 16, and 18 classes tested

for Class-IL with a given CL method on Drebin. Similarly, Min represents the minimum

accuracy among all the tasks, which we highlight because the weakest performance shows

the degree to which a technique may not be suitable for use.

Domain-IL. In our experiments, we have 12 tasks representing the monthly data distribu-

tion shift of malware and goodware in EMBER from January to December 2018. Figure 4.1

shows the results, which are summarized in the rightmost column of Table 4.1. The mean

accuracies of None and Joint baselines over the 12 tasks are 93.1% and 95.9%, respectively.

We can see that Joint performance trends upward with each incremental task. This may be

45

4.3. Evaluation

Table 4.1: Summary of the Experiments. The average accuracy (Mean (AT)) and

minimum accuracy (Min (ÂT)) from all the tasks in each experiment. Results in Bold

indicate accuracy values closer to Joint performance than None. EWC-O: EWC Online,

GR-D: GR + Distill. Error range is omitted for the results with less than 1.0 standard

deviation .

Approach Method

Drebin EMBER

Task-IL Class-IL Task-IL Class-IL Domain-IL

AT ÂT AT ÂT AT ÂT AT ÂT AT ÂT

Baselines
None 85.3 63.7±6 45.3 19.7 75.7 60±3.5 26.6 09.2 93.1 91.3

Joint 99.7 99.3 99.0 97.5 97.1 95±3 87.7 85±2.5 95.9 93.2

Regul.

EWC 85.1 62±9 46.3 20±2 85.9 72±16 8.4 00.1 92.8 90.0

EWC-O 83.9 64±7 47.1 20±2 78.8 57±31 9.0 00.2 93.1 91.5

SI 90.7 78±7 45.3 20.0 73.6 58±4 27.3 09.5 93.0 91.1

Replay

LwF 94.9 88±4 27.8 5±1.5 93.9 91±9 11.9 00.7 93.2 91.7

GR 99.1 98.1 55.1 26.2 80.8 70±6 26.9 09.3 93.2 91.6

GR-D 99.3 98.5 55.1 26.1 82.9 73±3 27.0 09.0 93.2 91.7

RtF 99.4 98.9 55.0 25.7 77.7 68±8.5 26.6 09.1 93.1 91.2

BI-R 95.9 88±6 58.7 30±2.5 86.9 81±4 26.7 9.0 93.4 91.6

Replay

+

Exemplars

ER 99.6 99.1 55.2 26.7 94.0 91±1 28.0 09.4 75.9 65±4.5
A-GEM 92.6 79±5.5 47.8 20±2 90.4 82±3 28.0 09.9 77.5 67.4

iCaRL - - 96.2 95±1 - - 62.8 46±2.5 - -

expected, despite changes in the data distribution, as there is more training data in each

additional task. We also see that none of the CL techniques are effective, with all of them

performing closer to None than to Joint. Note that the data distribution does not change

dramatically during the year – even None reaches at least 91.3% or better in all cases.

Class-IL. Figure 4.4 and Figure 4.2 show the results of our experiments in this scenario

for Drebin and EMBER, respectively. Since Class-IL is the most difficult CL scenario, it is

not surprising that the mean accuracies for None and Joint are so far apart at 45.3% and

99.0%, respectively, on Drebin. All the regularization-based techniques and LwF perform

poorly and very close to None. Among replay techniques, BI-R performs the best with 58.7%

mean accuracy. iCaRL outperforms all the other CL techniques with 96.2% mean accuracy.

46

4.3. Evaluation

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Incremental Months

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc
ur
ac
y

None

Joint

EWC

EWC Online

SI

LwF

GR

GR+Distill

A-GEM

ER

RtF

BI-R

Figure 4.1: Domain-IL on EMBER: Accuracy over time.

On EMBER, the performance of all methods is about the same or even worse than None

except iCaRL, which yields 62.8% mean accuracy. Even though iCaRL outperforms other

techniques by a substantial margin, it still is far from the Joint baseline, which is notable

given the volume of executables scanned by malware detection models each day – even a small

increase in false positive or false negative rate can cause significant operational problems.

Task-IL. Figures 4.5 and 4.3 show the results of the Task-IL experiments on Drebin and

EMBER, respectively. The average accuracies on the Drebin dataset of None and Joint

training of the nine tasks, where each task contains two classes, are 85.3% and 99.7%,

respectively. These form the effective lower and upper bounds in this setting. Among

the regularization techniques, only SI yields closer to Joint level performance with 90.7%

accuracy. The replay and replay-with-exemplars techniques are mostly effective, with GR,

GR+Distill, RtF, and ER reaching over 99.0% average accuracy.

47

4.3. Evaluation

50 55 60 65 70 75 80 85 90 95 100
Incremental Classes

0.0

0.2

0.4

0.6

0.8

A
cc
ur
ac
y

None

Joint

EWC

EWC Online

SI

LwF

GR

GR+Distill

A-GEM

ER

RtF

iCaRL

BI-R

Figure 4.2: Class-IL on EMBER: Accuracy as the number of classes

grows.

On EMBER, the average accuracy of None and Joint on the 20 tasks, where each task

contains five classes, are 75.7% and 97.1%, respectively. None of the regularization-based

techniques yield closer to Joint baseline performance. Among replay-based techniques, only

LwF performs close to the Joint baseline with 93.9% mean accuracy. Replay-with-exemplars-

based techniques – ER and A-GEM – outperform other techniques with 94.0% and 90.4%

average accuracy, respectively. Considering both datasets, we can see that only ER performs

reasonably well on both. GR, GR+Distill, RtF, BI-R, and SI all have difficulty with the

larger and more complex EMBER dataset. In contrast, LwF does well on EMBER, but

underwhelms on Drebin.

48

4.3. Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Incremental Task - Each Task Contains 5 Classes

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

None

Joint

EWC

EWC Online

SI

LwF

GR

GR+Distill

A-GEM ER RtF BI-R

Figure 4.3: Task-IL on EMBER: Accuracy as the number of tasks grows.

10 12 14 16 18
Incremental Classes

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

None

Joint

EWC

EWC Online

SI

LwF

GR

GR+Distill

A-GEM

ER

RtF

iCaRL

BI-R

Figure 4.4: Class-IL on Drebin: Accuracy as the number of classes

grows.

49

4.4. Partial Replay with Stored Data

1 2 3 4 5 6 7 8 9
Incremental Tasks

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc
ur
ac
y

None

Joint

EWC

EWC Online

SI

LwF

GR

GR+Distill

A-GEM

ER

RtF

BI-R

Figure 4.5: Task-IL on Drebin: Accuracy as number of tasks grows.

4.4 Partial Replay with Stored Data

In this section, we perform a second set of experiments using partial joint replay (PJR).

This assumes that we have ample storage capacity and can maintain huge amounts of both

historical and current data to be accessed at any time. Indeed, this may be the case for

some companies doing malware detection. In this setting, CL techniques are not required,

as the real data is available. Nevertheless, the huge volume of historical malware data makes

it very expensive to train over all of it using full Joint replay. Thus, our question is how

much of the historical data is needed to achieve high levels of accuracy using a strategy of

sampled partial joint replay. In these experiments, we use early stopping with patience = 5,

as replaying stored data causes the model to converge faster.

We focus on Domain-IL, which is the CL setting most applicable to malware classification.

We performed seven sets of experiments with varying fractions – None (0%), 1%, 5%, 10%,

20%, 50%, and Joint (100%) – of the stored data to be replayed in the subsequent tasks.

50

4.4. Partial Replay with Stored Data

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Incremental Months

0.90

0.92

0.94

0.96

A
cc
ur
ac
y

None

Replay 1%

Replay 5%

Replay 10%

Replay 20%

Replay 50%

Joint

Figure 4.6: Partial Joint Replay in EMBER: Accuracy over time.

Figure 4.6 shows the results, while Figure 4.7 shows the corresponding training times. The

mean accuracy of the Joint and None baselines is 96.4% and 93.0%, respectively.

The average accuracy over all the tasks with 1% of replayed data is 93.9% – nearly 1%

higher than None and easily outperforming all CL techniques evaluated above. It is perhaps

surprising to see that only 1% replayed data results in such a significant improvement in the

average accuracy, but note that the total set of old training samples grows larger with each

task, making it multiple times larger than the new data for most tasks in our experiment.

Even a small sample of 1% thus becomes a significant fraction of all training data. When

we increase the replayed data fraction to 5%, 10%, 20%, and 50%, average accuracy grows

to 94.5%, 94.7%, 95.0%, and 95.4%, respectively. With 20% replayed data, the accuracy is

only 1.4% lower than Joint replay. Reducing the replay data improves training efficiency

significantly, as we can see in Figure 4.7. With our dataset, the expected amount of training

effort using 20% of the replay data shrinks by 50% compared to full Joint replay. Even with

50% of the replay data, the expected training effort shrinks by 35%.

51

4.5. Discussion

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Incremental Month

20

40

60

80

100

T
ra
in
in
g
T
im
e
in

S
ec
on
ds

None

Replay 1%

Replay 5%

Replay 10%

Replay 20%

Replay 50%

Joint

Figure 4.7: Partial Joint Replay in EMBER: Change in training time over

time.

4.5 Discussion

Continual learning (CL) for malware classification can provide a number of benefits including:

i) alleviating the need to store some or all of the previous data, ii) relaxing the requirement

for access to previous data, iii) keeping training data private while sharing a model that can

be updated, and iv) reducing computational cost. From our experiments, however, we can

see that none of the CL techniques could contribute significantly in the Domain-IL setting,

and only iCaRL provided reasonable performance in Class-IL setting, though even in that

setting the gap between Joint and iCaRL was substantial – upwards of 24% on EMBER.

For Task-IL, we observed reasonable performance by several methods on Drebin and on

EMBER. Task-IL for malware, however, is of least significance, as adding new tasks is likely

to occur less frequently than adding new classes or observing domain shift. Given these

limitations, we now examine probable causes to help spur future research in CL considering

these problem settings and datasets.

52

4.5. Discussion

(a) MNIST 2-Class (b) Drebin 2-Class (c) EMBER 2-Class

(d) MNIST 10-Class (e) Drebin 10-Class (f) EMBER 10-Class

Figure 4.8: Feature space visualization using t-SNE in Class-IL scenario.

Dataset Complexity. Most papers on CL techniques use the MNIST dataset for their

experiments, but MNIST is relatively simple in its data distribution and feature space.

Figure 4.8 shows a t-SNE projection [143] of the feature space to demonstrate the complexity

of MNIST, Drebin, and EMBER dataset with both two and 10 classes for each. In MNIST,

we can see a clear separation for the two classes and relatively clear separations for 10 classes.

In Drebin, we see a somewhat sparser, yet complex space, particularly for 10 classes where

some classes become difficult to separate. Meanwhile, the EMBER feature space is extremely

complex with significant overlap between classes. Additionally, we see class imbalance in the

EMBER dataset, which reflects the realistic sampling of real-world data. MNIST has equal

numbers of samples in both Class-IL and Task-IL.

Another interesting distinction is the semantically-rich feature space of the malware classifi-

53

4.5. Discussion

cation datasets. Unlike the image domain, malware classifiers typically use tabular features

derived from parsing and analysis of the binary program (e.g., headers, byte sequences,

APIs). There are strong semantic constraints on the values that these features can take on

and their relationships, which affects the shape of the feature space that feasible samples

occupy. It is possible that these constraints and the inherent complexity of the classification

task render generative, distillation, and regularization-based CL methods ineffective. Taken

together, our results show that it is important to evaluate CL techniques on more complex,

realistic datasets to understand how their effectiveness may generalize and apply in practical

settings.

Real Domain Shifts. Prior work has studied Domain-IL only in a simulated experimental

setting to mimic data distribution shift using the permuted MNIST protocol, in which pixels

of the MNIST images are permuted around the image in a consistent way across the dataset

to create the next task. This protocol clearly does not represent a realistic data distribution

shift, and certainly not the strongly constrained feature space found in malware classification

tasks. As such, the performance offered by CL techniques in this simulated setting is not

a realistic measurement that would be likely to generalize to other data. In contrast, our

experimental setting in Domain-IL represents a sample of real-world data that shifts over

time.

In Figure 4.9, we show a t-SNE visualization of MNIST and EMBER data distribution

shift in Domain-IL. In summary, even though permuted MNIST is challenging for people to

visualize, it appears to actually create reasonably solvable classification tasks for DL models.

The natural distribution shift found in EMBER, on the other hand, creates very difficult

tasks for the classifier.

Partial Joint Replay (PJR). Simple partial joint replay offers significant improvements

over the None benchmark while also reducing computational effort. It would be interesting

for future work to evaluate the effectiveness of combining partial joint replay and CL tech-

niques, and our results here offer a pragmatic benchmark for future efforts. In some ways, the

widely studied iCaRL CL technique is analogous to PJR in that iCaRL replays the samples

stored in the memory buffer in the training phase, coupling those old samples with the new

ones. As originally designed, however, iCaRL has a fixed memory budget that can limit its

54

4.5. Discussion

(a) Task 1: Original MNIST

(no permutation).

(b) Task 6: Cumulative

MNIST data from Task 1 to

Task 6 using permuted MNIST

protocol.

(c) Task 12: Cumulative

MNIST data from Task 1 to

Task 12 using permuted MNIST

protocol.

(d) Task 1: EMBER data of

January

(e) Task 6: Accumulated EM-

BER data from January to

June.

(f) Task 12: Accumulated EM-

BER data from January to De-

cember.

Figure 4.9: MNIST and EMBER data distribution shift in Domain-IL scenario using t-SNE

plot.

effectiveness with increasing classes. We can validate this by observing the performance of

iCaRL for Drebin and EMBER datasets shown in Table 4.1 and Figures 4.4 and 4.2. Drebin

has 18 classes and the performance gap between iCaRL and Joint is around 3%. On the

other hand, EMBER has 100 classes and iCaRL’s performance gap grows to almost 25%.

55

4.6. Conclusion

4.6 Conclusion

In this work, we investigate 11 continual learning techniques in three scenarios using two

large, real-world malware datasets. Unfortunately, our findings demonstrate that in almost

all cases those CL techniques are ineffective at preventing catastrophic forgetting and main-

taining classification performance. Of the techniques evaluated, only iCaRL [114] performed

near Joint replay baselines. Meanwhile, we also found that a simple partial joint replay

strategy of training on a small fraction of the historical data is enough to achieve reasonable

performance with lower cost.

Taken as a whole, our results underscore the need for additional study of CL in complex,

non-stationary problem settings. We hypothesize that the strong semantic constraints of

the features used for malware classification tasks, along with the complex data distributions

induced by natural drift in this space, lie at the heart of the performance differences between

existing CL literature and the results in our paper. In particular, these unique aspects of the

malware classification domain may severely limit the applicability of generative, distillation,

and regularization-based methods due to their inability to sufficiently capture the inherent

complexity. At the same time, these results also hint at possible avenues of future work. For

example, the relative success of partial joint replay and iCaRL demonstrate the importance

of sample selection during replay and the possibility of developing more effective strategies

that ensure optimal coverage over feasible regions of the feature space. Most importantly,

however, we hope this work spurs further exploration of CL in the cybersecurity domain and

a broader conversation about real-world application of CL techniques.

56

5
Malware Analysis with Diversity-Aware Replay

The content of this chapter has been adapted from a paper that is submitted to a

conference and under review.

57

5.1. Introduction

The findings of Chapter 4 empirically show us that the conventional CL techniques, often

developed for image processing tasks, struggle to maintain performance on older malware

samples while adapting to new data. This limitation is particularly critical in malware

detection, as it might enable attackers to recycle old malware. The results of Chapter 4

motivated us to investigate even further to uncover the unique nature of malware which may

be inherent to malware data distribution. And based on the outcome of the analysis, we

endeavor to explore a continual learning system that is tailored for malware classification

tasks taking into account of the unique nature of malware data distribution.

Towards that end, in this Chapter, we first present a comprehensive exploratory analysis,

revealing unique challenges and characteristics of malware datasets. We find that malware

families are diverse and difficult to characterize easily, requiring a variety of samples to learn a

robust representation. Based on these findings, we propose Malware Analysis with Diversity-

Aware Replay (MADAR), a CL framework that accounts for the unique properties and

challenges of the malware data distribution. MADAR consists of two novel CL techniques

– Isolation Forest-Based Sampling (IFS) and Anomaly Weights-Based Sampling (AWS).

We extensively evaluate these techniques using both Windows and Android malware, and

show that MADAR significantly outperforms prior work. This highlights the importance

of understanding domain characteristics when designing CL techniques and demonstrates a

path forward for the malware classification domain.

5.1 Introduction

Advancements in machine learning have significantly improved malware detection and clas-

sification, with notable successes across various types of software, such as Windows executa-

bles [35,63], PDFs [84], and Android applications [11]. Traditional models, trained on static

datasets, are expected to perform well on new data under the assumption of a constant

data distribution. In reality, though, both malware and benign software (i.e., goodware) are

ever-evolving and require regular model updates to keep up with these changes in data dis-

tribution to maintain effectiveness. For example, the AV-TEST Institute logs about 450,000

new malware samples daily [12], and VirusTotal processes about one million new submissions

each day [145].

58

5.1. Introduction

Training a malware classification model solely on new data can lead to catastrophic forgetting

(CF) [44], which may result in both misclassifying known benign software and allowing

attackers to bypass detection with older malware strains. To address this, antivirus vendors

can keep older samples and retrain over all of them during model updates, but the enormous

volume of such samples makes the storage and computational costs of this approach excessive.

Continual learning (CL) offers a solution to this problem by enabling models to adapt to

new data without the need for maintaining large datasets or extensive retraining [7, 139].

While combating catastrophic forgetting has been extensively studied, explored, and applied

in the context of computer vision [59, 130, 139], there are very few studies of CL in the

context of malware classification. Previous work reveals that none of the CL techniques

originally designed for computer vision problems offer acceptable performance in malware

classification, due in part to the strong semantics of malware features and the high level of

diversity found in the malware ecosystem [109].

In this study, we first delve into the unique complexities of malware data distributions us-

ing the EMBER dataset [10] of Windows malware and goodware. Our analysis highlights

the diversity in malware, both between and even within families, or groups of related mal-

ware. Leveraging this insight, we devise, MADAR – Malware Analysis with Diversity-Aware

Replay, a diversity-aware, replay-based continual learning strategy tailored for malware clas-

sification. This approach replays a mix of representative samples and novel samples (i.e.,

outliers) to enhance the model’s ability to retain knowledge and identify new malware vari-

ants despite memory constraints. Our techniques employ Isolation Forests (IF) [81] to pin-

point these critical novel samples. MADAR consists of two variants: Isolation Forest-based

Sampling (IFS), which utilizes the model’s input features, and Anomalous-Weights-based

Sampling (AWS), which uses model weights for a more compact representation.

We then evaluate these techniques with comprehensive experiments on the EMBER dataset

in two key CL scenarios that mirror common malware classification tasks: domain incremen-

tal learning (Domain-IL) and class incremental learning (Class-IL), as highlighted in prior

work [109]. Additionally, we have curated two new benchmarks of Android malware from

the AndroZoo repository [8] to experiment in both Domain-IL (AZ-Domain) and Class-IL

(AZ-Class) scenarios. Our results on these datasets confirm that MADAR is indeed effective

and much better than the prior state-of-the-art CL methods in the face of realistic data

59

5.2. Exploratory Analysis of EMBER

distribution shifts.

In summary, the contributions of this study are:

• We provide an exploratory analysis of malware’s diversity and show how it creates

unique challenges in the continuous learning setting.

• We develop two large-scale, realistic Android malware benchmarks covering both Domain-

IL and Class-IL scenarios.

• In Domain-IL scenarios, we show that MADAR performs much better than prior CL

techniques. On the AZ dataset, for example, MADAR comes within 0.4% average

accuracy of the joint training baseline using just 50K training samples versus 680K.

• MADAR is also effective in Class-IL scenarios, where it consistently outperforms all

prior methods over a wide range of budgets. With a budget of 20K training samples

on EMBER, MADAR gets an average accuracy of 85.8% versus 66.8% for the best

method from prior work.

5.2 Exploratory Analysis of EMBER

In this section, we provide an analysis of the EMBER dataset, which sheds light on the

distribution across various families and tasks, aiding in selecting representative samples for

replay. The malware samples in the dataset are labeled with the avclass labels that have

been identified as belonging to a particular family. After conducting a thorough examination

of the month-by-month malware samples in the EMBER data, we discovered that there are

2899 distinct malware families present in the accumulated malware samples. Additionally,

we found 11433 samples without any avclass labels but were still identified as malware.

These additional 11,433 samples lacking clear family labels are assigned the label other.

Table 5.1 provides a summary of the number of goodware and malware samples in each task

month, along with the unique number of malware families represented. For example, a closer

look at January’s data shows that 32,491 malware samples are spread across 913 families.

60

5.2. Exploratory Analysis of EMBER

Table 5.1: EMBER task based frequency of Goodware and Malware Samples, and frequencies

of families in malware samples in each task.

Task #of Goodware #of Malware #of Malware Families

January 29423 32491 913

February 22915 31222 976

March 21373 20152 898

April 25190 26892 804

May 23719 22193 909

June 23285 25116 945

July 24799 26622 776

August 23634 21791 917

September 26707 37062 1160

October 29955 56459 393

November 50000 50000 574

December 50000 50000 754

On average, each task month, ranging from January to December, includes samples from

over 800 distinct malware families.

Furthermore, the distributional patterns of many malware families within the feature space

add another layer of diversity. As depicted in Figure 5.1, the t-SNE projection of EMBER’s

January 2018 malware features illustrates that classes, denoted by different colors, are not

confined to single, well-defined regions. Instead, larger classes fragment into subsets scattered

across the feature space. Therefore, to faithfully represent the malware distribution, it’s

crucial to include samples from various regions within each class, capturing the diversity both

across and within families. While there is some overlap between families, distinct clusters

can still be identified, emphasizing the necessity of including samples from each, particularly

those from less represented families, to accurately portray the malware ecosystem for any

given period.

Assigning specific family labels to malware samples is challenging due to the subjective nature

of malware classification. This leads to many samples remaining unlabeled, complicating

the dataset and highlighting the importance of careful sample selection for analysis. In

61

5.2. Exploratory Analysis of EMBER

Figure 5.1: t-SNE projection of EMBER malware from January 2018.

our examination of the EMBER dataset, we found over 10,000 malware samples without

avclass labels, shown in Figure 5.2. This situation makes malware classification difficult,

as accurately identifying new malware requires significant expertise and time. Additionally,

these unlabeled samples often don’t group together in simplified visualizations, suggesting

they might stand out as outliers compared to samples from known families.

62

5.2. Exploratory Analysis of EMBER

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
ne

Ju
ly

A
ug Se

p
O
ct

N
ov D

ec

17
68 1
85

4

1
07

2

83
1

66
3

11
5
3

7
42

12
0
1 1
35

4

1
16 2
04

4
75

Months

F
re
q
u
en

cy

Figure 5.2: EMBER Malware samples without AV-Class labels.

In addition, we analyze the prevalence of malware families over time, identifying both recur-

ring and newly detected families each month, as illustrated in Figure 5.3. Unlike the static

datasets commonly used in continual learning research, our dataset exhibits significant varia-

tion in family representation over time. For instance, of the 913 families identified in January,

only 551 reappear in February, with 425 new families emerging. This dynamic is visualized

by the green bars, which represent families the model is encountering for the first time, and

the red bars, which denote families previously observed. Notably, several families learned

in earlier months do not recur in subsequent datasets. This discontinuity suggests that the

model’s performance on these non-recurring families may decline, potentially exacerbating

catastrophic forgetting. Such churn underscores the challenge of maintaining training data

continuity and highlights the necessity of continually updating and refining machine learning

models to maintain efficacy in malware detection. This situation also points to the need for

adaptive continual learning strategies tailored to the malware domain.

We conducted a supplementary analysis to examine how the most common malware families

vary across different tasks in the EMBER dataset. We identified the top 15 families based

on their sample frequency within each task and their appearance across task months, as

illustrated in Figure 5.4. The figure does not display the frequency of samples for each

malware family. Instead, it illustrates the frequency of appearance in each task month. For

instance, the emotet family is observed in 11 out of 12 task months. However, we do not

provide the specific sample counts for emotet across different task months, such as January,

63

5.2. Exploratory Analysis of EMBER

913

0

425

551

257

641

208

596

183

726

184

761

118

658

133

784

287

873

23

370

66

508

102

652

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
ne

Ju
ly

A
ug Se

p
O
ct

N
ov D

ec
Months

F
re

q
u

en
cy

New Families Learned Families

Figure 5.3: New and already learned families in each task.

February, and so on.

Our findings indicate variability in these top families, suggesting that families prevalent

in earlier tasks might not maintain their prominence in later ones. Notably, the emotet

family is the most consistent, appearing in 11 of the tasks, followed by fareit and zusy,

each appearing in 8 and 7 tasks, respectively. This variability demonstrates significant

concept drift within the malware dataset, posing a challenge for research and highlighting

the necessity for continual learning techniques that can adapt to such drift [14, 64, 149].

Effective continual learning approaches should, therefore, be designed to accommodate the

concept drift observed in malware datasets.

In summary, these attributes of the malware landscape make it difficult to characterize classes

as contiguous regions of the feature space with relatively simple class boundaries. Rather,

each class might only be understood as a collection of smaller pockets of the feature space

that might be closer to pockets from other classes than the same class. This may explain why

prior CL techniques designed for computer vision datasets are less effective when applied to

the malware domain [109].

64

5.2. Exploratory Analysis of EMBER

0 2 4 6 8 10 12

installmonster

adposhel

zusy
fareit

emotet

dealply

startsurf

bladabindi

wannacry
gandcrab

upatre

razy

prepscram
flystudio

ribaj

sivis

zbot

ramnit

downloadguide

xtrat

sality

ursnif

sdbot

4

4

7

8

11

3

4

4

2

4

5

2

2

2

2

4

4

5

3

4

4

3

2

Frequency of Appearance in Task Months

M
a
lw

a
re

F
a
m
il
y

Figure 5.4: Frequency of Top 15 Malware Families based on the Appearance in Task Months.

65

5.3. Additional Baseline – Global Reservoir Sampling (GRS)

5.3 Additional Baseline – Global Reservoir Sampling

(GRS)

Algorithm 1: Global Reservoir Sampling (GRS).
Input : Tc – Current task

XTc
, YTc

– Samples and associated Labels of current task

Gdp – Global Data Pool

Rp – Memory Buffer Constraint

Output: Xreplay, Yreplay – Replay Samples and associated Labels

1 if Tc == 0 then

2 ∇Gdp ← XTc , YTc // Create global data pool with the samples from current task

3 else

4 Xstored, Ystored ← Gdp // Get stored samples and associated labels from the global data pool

5 Iall = random.shuffle(range(Ystored)) // Randomly shuffled index numbers of the stored samples

6 Ireplay = Iall[: Rp] // Index numbers of the replay samples to be picked

7 Xreplay, Yreplay = Xstored[: Ireplay], Ystored[: Ireplay] // Get the replay samples and associated labels

8 ∇Gdp ← XTc
, YTc

// Update global data pool with the samples from current task

Partial joint replay (PJR) randomly selects X%-of the stored data till the previous task TN−1

to be used along with the samples of the current task TN . PJR is a term used in our previous

work where we investigate various continual learning techniques in the malware classification

problem space [109]. In this work, we attempt to formalize PJR in light of the literature of

the continual learning space. One of the widely term of PJR technique used in the previous

work is called Reservoir Sampling (RS) [26,115,146,152]. Given a memory β, RS randomly

selects M -samples without replacing from the global data pool Gdp of Z-samples. For each

of the continual task, samples in the β is updated adhering some constraint C. For our work,

C is the number of replay samples to choose from the Gdp. The samples are chosen from

Gdp with equal probability β/Z by randomly shuffling the indexes of Z samples. Unless

otherwise specified, from this point we will refer random sample selection as RS instead of

PJR with some configuration specific modification. In the continual learning literature, each

of the current training batch is updated with samples from the current data Xcurrent and β

for mini-batch stochastic training. For our work, however, we mix Xcurrent and β in the form

of concatenation, apply random shuffling, and then prepare training mini-batch.

As we choose samples for β from the global data pool Gdp and global data pool stores all

66

5.4. Diversity Aware Replay

the previous data up to the previous task TN−1, we refer this sampling technique Global

Reservoir Sampling (GRS). Note that, Goodware and Malware samples for this configura-

tion form a mixed data pool for Domain-IL. A detailed algorithmic representation of GRS is

depicted in Algorithm 1. Given current task Tc, samples of the current task (XTc , YTc), global

data pool Gdp which is empty at the beginning of the learning process, and a constraint C
for the memory β, this algorithm returns the replay samples for the current task. For the

beginning task, there is no available replay samples, hence, Gdp is updated only. For any

other task than the initial task, the algorithm selects replay samples Xreplay for Tc and after

the selection, it updates Gdp with (XTc , YTc) to be used in the next task Tc+1. Rahman et

al. [109] investigated GRS only for Domain-IL scenario of EMBER dataset. In this work, we

present a deeper investigation of GRS in both Domain-IL and Class-IL scenarios with both

EMBER and AZ datasets.

5.4 Diversity Aware Replay

Here, we introduce the MADAR framework for CL in malware classification with two

diversity-aware replay variants: Isolation Forest-based Sampling (IFS) and Anomalous Weights-

based Sampling (AWS).

5.4.1 Isolation Forest-based Sampling (IFS)

Building on the exploratory analysis in Section 5.2, we postulate that stratified sampling,

where replay samples are chosen based on their representation in malware families, may

better preserve the model’s stability versus random sampling as used in GRS. Moreover,

we also seek to capture the diversity within each family’s data distribution. We do this by

selecting a balance between representative samples that are close to each other and anomalous

samples that are separated. While any single anomalous sample is not as important to learn

and remember as a single representative sample, a collection of anomalous samples helps to

track the diversity within a class.

67

5.4. Diversity Aware Replay

Figure 5.5: Depiction of MADAR framework with Isolation Forest based Sampling (IFS).

Isolation Forest (IF) [81] is a technique for identifying outliers in high-dimensional data. IF

uses decision trees to isolate anomalous data points based on the intuition that outliers are

distinct and easy to separate from the rest of the data. An important parameter in IF is

the contamination rate Cr, which represents the expected fraction of outliers in the data.

We found that Cr = 0.1 works best and used it in all our experiments. The algorithm for

MADAR in the Domain-IL setting is provided in the Algorithm 2.

A high-level representation of the Isolation Forest-based Sampling (IFS) is shown in Fig-

ure 5.5 within the MADAR framework, which operates in three distinct phases. 1○ in the

figure marks the initial phase, where the model undergoes its first training using a static

training approach with the initial dataset. It is important to note that weight initialization

occurs solely during this stage. This phase involves a thorough exploration of the model’s

hyperparameters such as learning rate, batch size, number of layers, and optimizer—to en-

68

5.4. Diversity Aware Replay

hance model performance. Upon completing this initial training, the utilized data is stored,

ensuring it is organized based on malware family categories.

The model then progresses to the continual learning (CL) phase, indicated by 2○ in the

figure. During this phase, the model is exposed only to new data and selected data from

the replay buffer, assuming a replay-based technique is employed to ensure model stability.

The replay buffer is filled with samples chosen by the IFS, adhering to a predefined memory

constraint. The isolation forest module then analyzes samples from each family, identifying

both anomalous and similar samples based on IFS’s hyperparameters (explained in the next

section), and selects replay samples for each family within the memory buffer’s limits.

Finally, as depicted by 3○, newly encountered data is stored, continuing the organization

by malware family. This structured approach facilitates the model’s ongoing learning and

adaptation to new data while maintaining the integrity of previously acquired knowledge.

5.4.2 Procedure

We now describe IFS using Domain-IL, noting that Class-IL is similar. IFS processes good-

ware and malware separately, with malware further categorized by family. It begins by

creating a global data pool P for all goodware and family-based malware samples, and a

dictionary D to track malware families and their frequencies up to the current task. For

each new task, IFS divides goodware (Xgood) and malware (Xmal) from P , allocating mem-

ory budgets βM for malware and βG for goodware from the total memory budget β, based

on a split ratio γ. If the dataset, like EMBER, is relatively balanced between goodware and

malware, we use γ = 0.5. For a significantly imbalanced datasets like AZ, it is better to tune

γ. The ratio of goodware and malware samples in the AZ datasets is 9:1, so we use γ = 0.9

to get the βG and the rest as βM .

Before each new task, MADAR trains the already trained classifier with a mix of new samples

from the most recent task and replay samples from prior tasks. The replay samples include

benign replay samples Rgood ⊂ Xgood and malicious replay samples Rmal ⊂ Xmal. Rmal is

sampled from malware families rather than randomly from all of Xmal.

To determine how many samples to select from each family f , its family budget Bf , we use

69

5.4. Diversity Aware Replay

Algorithm 2: Isolation Forest based Sampling (IFS)
Input : c – Current task number

Xc, Yc – Samples and labels of c

P – Data pool

β – Memory budget

γ – Split of goodware and malware

Ω – Split of Typical and anomalous samples

Output: Xtrain, Ytrain – Training samples and labels

1 init P; // Global data pool

2 init D ← {f : sf}; // Dictionary of each malware family f and its number of samples sf

3 if c = 0 then

4 P ← Xc, Yc;

5 Xgood, Xmal ← P;
6 ∇D ← Xmal; // Update dictionary

7 Xtrain, Ytrain ← Xc, Yc;

8 else

9 Xgood, Xmal ← P; // Separate out goodware and malware samples from the global family data

pool

// Set budget ratios

10 βG ← β · γ; // Goodware budget

11 βM ← (1− γ) · β; // Malware budget

12 βT ← βM · Ω; // Typical budget

13 βA ← βM · (1− Ω); // Anomalous budget

14 if Uniform budgeting then

15 ftot ← D; // # of malware families in D
16 Bf ← βM/ftot; // Family budgets are Uniform

17 Rmal ← []; // Malware replay samples

18 for Xf ⊆ Xmal // Each family f

19 do

20 mf ← |Xf |; // $of malware in Xf

21 if Ratio Budgeting then

22 mtot ← |P|; // Total #of malware

23 Bf ← (mf/mtot) ∗ βM ; // Family budget

24 if mf <= Bf then

25 Rmal.append(Xf);

26 else

27 (Tf , Af)← IF(Xf , βT , βA,mf); // Typical and Anomalous samples selected w/ IF

28 Rmal.append(Tf , Af)

29 Rgood ← sample(Xgood, len(Rmal)); // Randomly select as much goodware as malware

30 Xreplay ← (Rgood, Rmal);

31 Yreplay ← ([0] ∗ len(Rgood), [1] ∗ len(Rmal));

32 Xtrain ← concat(Xc, Xreplay);

33 Ytrain ← concat(Yc, Yreplay);

34 P. append(Xc, Yc); // Update P with samples of current task

35 ∇D ← Xmal // Update global dictionary

36 return (Xtrain, Ytrain)

70

5.4. Diversity Aware Replay

two sub-sampling variants – Ratio budgeting and Uniform budgeting. In Ratio budgeting,

IFS selects the number of samples from a family in direct proportion to that family’s rep-

resentation in the dataset. This may be more suitable in binary classification of samples as

being either benign or malicious, as it provides proportional representation of the malware

families for training on the malicious class. In Uniform budgeting, IFS evenly distributes the

available malware budget βM among all malware families. Compared with Ratio budgeting,

Uniform budgeting may work well for multi-class classification to determine which family a

sample belongs to, as it ensures better class balance.

Within each family, Isolation Forest provides two sets of samples: representative samples Sf

and anomalous samples Af . We found that an even split of representative and anomalous

samples provides the best performance.

To get Xtrain for the current task c, we concatenate the samples Xc of the current task c

with Xreplay. Finally, after training, data pool P is updated with Xc and dictionary D is

updated with Xmal for use in the next task.

5.4.3 Anomalous Weights-based Sampling (AWS)

While IF works better than other distance-based anomaly detection technique on high-

dimensional data, it can struggle with correlated features [106]. The EMBER dataset has

2,381 features for both Domain-IL and Class-IL scenarios, and while the AZ datasets have

1,789 and 2,439 features for Domain-IL and Class-IL, respectively. Instead of applying

dimensionality reduction, employing a neural network to generate a more compact feature

representation could be a beneficial approach, especially in continual-learning contexts where

it complements ongoing model development efforts [51,99].

As such, we introduce Anomalous Weights-based Sampling (AWS), an advancement of IFS

that leverages learned representations from a trained model,M, to more effectively identify

both representative and diverse samples. By inputting a sample X intoM, we obtain weights

W reflecting the sample’s internal state. For inputs Xf from family f , AWS extracts weights

ΘLXf ∈ RD from a chosen layer L. These weights are then analyzed with the Isolation Forest

(IF) algorithm to pinpoint anomalous activations, Aw. AWS then maps these anomalies

71

5.4. Diversity Aware Replay

Figure 5.6: Depiction of MADAR framework with Anomalous Weights-based Sampling

(AWS).

back to the original input space of Xf to select the anomalous samples Af . Non-anomalous

samples are similarly sampled to form Sf . Aside from these steps, AWS proceeds similarly

to IFS.

In selecting the layer L for AWS, we aim to capture feature representations while avoiding

the model’s final classification stage. Testing various layers revealed that the final activation

layers, act4 for EMBER and act5 for AZ, yield the best results. Thus, we utilized these

layers for the remainder of our study. We also adapted the AWS algorithm by omitting batch

72

5.4. Diversity Aware Replay

normalization during the forward pass. Although batch normalization generally stabilizes

learning and improves model generalization by normalizing input layers, in the AWS context,

it can diminish the weight distribution diversity we seek to maintain. Our tests confirmed

that excluding batch normalization indeed enhances AWS’s performance.

Besides enhancing replay sample selection, AWS is also more efficient than IFS. The act4

and act5 hidden layers have just 128 dimensions each, considerably less than the original

feature dimensions. The IF algorithm thus operates more quickly in this reduced dimension

space.

A high-level representation of the Anomalous Weights-based Sampling (AWS) within the

MADAR framework is depicted in Figure 5.6, illustrating the three distinct operational

phases. The initial phase, marked by 1○ in the figure, involves the model’s first training

session using a static approach with the initial dataset. It is crucial to note that weight

initialization is exclusive to this stage. This phase includes an in-depth analysis of the

model’s hyperparameters such as learning rate, batch size, number of layers, and optimizer to

optimize performance. Following this initial training, the data used is stored and categorized

according to malware family.

The model then transitions to the continual learning (CL) phase, as indicated by 2○. In this

phase, the model is introduced solely to new data and selected data from the replay buffer,

under the assumption that a replay-based strategy is in place to preserve model stability.

The replay buffer incorporates samples chosen by AWS, subject to a specific memory limit.

Similar to IFS, AWS selects replay samples by analyzing each family individually. The model

processes samples from a given family, using the trained model obtained from the previous

learning episode, to extract specific layer weights. These weights are then analyzed using

the isolation forest module to identify anomalous and similar patterns. Subsequently, a

mapping function correlates these weights with the original samples. Based on the memory

constraints, a selection of replay samples is finalized and allocated to the replay buffer.

As shown by 3○, the introduction of new data continues the systematic categorization by

malware family. This methodical strategy supports the model’s continuous learning and

adaptation to novel data, safeguarding the knowledge previously acquired.

73

5.5. Evaluation

Table 5.2: Summary of the EMBER Domain-IL Experiments. None = 93.1±0.1
and Joint = 96.4±0.3.

Budget
Method

ER AGEM GR GRS IFS-R IFS-U AWS-R AWS-U

1K 80.6±0.1 80.5±0.1

93.1±0.2

93.6±0.3 93.7±0.1 93.6±0.2 93.6±0.1 93.5±0.2

10K 73.5±0.5 73.6±0.2 94.1±1.3 94.7±0.1 94.0±0.2 94.4±0.3 94.1±0.2

50K 70.5±0.3 70.4±0.3 95.3±0.2 95.4±0.1 95.1±0.1 95.3±0.2 94.9±0.1

100K 69.9±0.1 70.0±0.1 95.3±0.7 95.3±0.6 95.3±0.1 95.8±0.1 95.2±0.2

200K 70.0±0.1 70.0±0.2 95.9±0.1 96.0±0.1 95.5±0.1 96.1±0.1 95.6±0.1

300K 70.0±0.1 70.0±0.1 95.8±0.6 96.1±0.1 95.7±0.1 96.1±0.1 95.7±0.1

400K 70.0±0.1 70.0±0.1 96.0±0.3 96.1±0.1 95.8±0.1 96.1±0.1 95.7±0.1

Table 5.3: Summary of the EMBER Class-IL Experiments. None = 26.5±0.2 and

Joint = 86.5±0.4.

Budget
Method

iCaRL ER AGEM GR GRS IFS-R IFS-U AWS-R AWS-U

100 53.9±0.7 27.5±0.1 27.3±0.1

26.8±0.2

51.9±0.4 68.0±0.4 66.4±0.4 67.9±0.3 66.5±0.3

500 58.7±0.7 27.8±0.1 27.4±0.1 70.3±0.5 73.6±0.2 76.5±0.2 72.7±0.5 76.4±0.4

1K 60.0±1.0 28.0±0.1 27.7±0.1 75.4±0.7 76.0±0.3 79.4±0.4 76.0±0.2 79.7±0.3

5K 63.9±1.2 27.9±0.1 28.5±0.1 82.0±0.2 81.5±0.2 83.8±0.2 81.7±0.2 84.1±0.1

10K 64.6±0.8 28.0±0.1 28.2±0.1 83.5±0.1 83.2±0.2 84.8±0.1 83.2±0.1 85.3±0.1

15K 65.5±1.0 28.0±0.1 28.3±0.1 84.3±0.3 83.8±0.2 85.5±0.1 83.9±0.1 85.8±0.2

20K 66.8±1.1 28.2±0.1 28.2±0.1 84.6±0.2 84.0±0.2 85.8±0.3 84.5±0.2 86.2±0.2

5.5 Evaluation

We now present the results of our MADAR framework in the Domain-IL and Class-IL sce-

narios for EMBER and AZ datasets. We use the following four abbreviations to denote our

techniques – IFS-R: IFS-Ratio, IFS-U: IFS-Uniform, AWS-R: AWS-Ratio, and AWS-U:

AWS-Uniform.

5.5.1 EMBER

Domain-IL. In our experiments, we have 12 tasks, each representing the monthly data

distribution shift of malware and goodware in EMBER spanning from January to December

2018. Our results, detailed in Table 5.2, present a nuanced view of each method’s perfor-

mance, reported as the average accuracy over all tasks AP. The informal lower and upper

performance bounds for this configuration can be approximated by the None and Joint meth-

ods, which get AP of 93.1% and 96.4%, respectively. We compare the performances our our

proposed techniques with three of the most widely used state-of-the-art replay-based CL

74

5.5. Evaluation

techniques – experience replay (ER) [119], average gradient episodic memory (AGEM) [25],

and deep generative replay (GR) [130].

As shown in Table 5.2, at lower budgets (1K and 10K), GRS, IFS-R, and IFS-U exhibited

competitive performance, all significantly better than prior works with AP above 93.6%,

indicating their effective utilization of limited resources. ER and AGEM performed far below

even the None baseline, while GR could only match it. As the budget increased, IFS-R and

AWS-R consistently demonstrated better performance, suggesting their greater effectiveness

in adapting to incremental learning scenarios. For instance, at a 200K budget, both IFS-R

and AWS-R achieved AP of 96.0%, close to the 96.4% reached by the Joint baseline that used

over 670K training samples. On the other hand, the uniform strategies (IFS-U and AWS-U)

showed slightly lower yet consistent performance across all budget levels, indicating a stable

but less dynamic approach to incremental learning. All three prior works remained at or

below the None baseline, showing low effectiveness in the malware domain.

In summary, our results empirically depict the effectiveness of MADAR’s diversity-aware

sample selection in maximizing the efficiency and effectiveness of a malware classifier in

Domain-IL. IFS-R and AWS-R are either better or on par with GRS and significantly better

than prior work.

Class-IL. In this set of experiments, we have 11 tasks, where the initial task starts with

50 classes, one for each of 50 malware families, and five classes are added in each subsequent

task. The performance of these methods, detailed in Table 5.3, is measured by average

accuracy AP with None and Joint training baselines at an AP of 26.5± 0.2 and 86.5± 0.4,

respectively. For a very low budget of 100 samples, MADAR methods all greatly outperform

GRS, with IFS-R getting 16% higher AP. For more reasonable budgets, however, the

uniform variants IFS-U and AWS-U offer the best performance. For example, with a 5K

budget, both methods reach at least 83.8% AP, which is better than GRS at 82% AP.

They also fare far better than all prior works, with ER, AGEM, and GR below 30% and

iCaRL at only 63.9%. These poor results for the prior methods are in line with other findings

in the malware domain [109]. For a budget of 20K, AWS-U reaches 86.2 ± 0.2, nearly as

good as the Joint baseline using a maximum budget over 150 times larger.

In summary, our experiments clearly demonstrate the effectiveness of MADAR’s diversity-

75

5.5. Evaluation

Table 5.4: Summary of the AZ Domain-IL Experiments. None = 94.4±0.1 and

Joint = 97.3±0.1

Budget
Method

ER AGEM GR GRS IFS-R IFS-U AWS-R AWS-U

1K 40.4±0.1 45.4±0.1

93.3±0.4

95.3±0.1 95.8±0.1 95.7±0.1 95.8±0.2 95.6±0.1

10K 40.1±0.1 47.4±0.2 96.4±0.1 96.6±0.1 95.5±0.1 96.6±0.1 96.1±0.1

50K 41.1±0.2 49.2±0.2 96.9±0.1 96.9±0.1 95.2±0.2 96.9±0.1 96.6±0.1

100K 42.6±0.1 53.7±0.6 97.1±0.1 97.0±0.1 95.2±0.1 96.9±0.1 96.8±0.1

200K 44.0±0.1 54.2±0.3 97.1±0.1 97.0±0.1 95.4±0.1 97.1±0.1 97.0±0.1

300K 45.9±0.1 54.8±0.4 97.2±0.1 97.0±0.1 95.8±0.2 97.1±0.1 97.1±0.1

400K 48.6±1.1 56.7±0.3 97.2±0.1 97.0±0.1 96.3±0.2 97.2±0.1 97.1±0.1

Table 5.5: Summary of the AZ Class-IL Experiments. None = 26.4±0.2 and Joint

= 94.2±0.1.

Budget
Method

iCaRL GRS IFS-R IFS-U AWS-R AWS-U

100 43.6±1.2 43.8±0.7 59.4±0.6 57.3±0.5 58.8±0.3 57.5±0.7

500 54.9±1.0 62.9±0.8 67.8±0.9 70.4±0.4 66.2±0.7 70.1±0.2

1K 61.7±0.7 70.2±0.4 71.9±0.5 76.2±0.2 71.0±0.7 74.7±0.2

5K 77.2±0.4 83.0±0.3 82.9±0.2 86.8±0.1 81.2±0.3 85.5±0.1

10K 81.5±0.6 86.4±0.2 86.3±0.1 89.8±0.1 85.1±0.2 88.7±0.1

15K 83.4±0.5 88.2±0.2 88.2±0.2 91.0±0.1 86.9±0.2 90.3±0.2

20K 84.6±0.5 89.1±0.2 89.1±0.1 91.5±0.1 88.1±0.1 90.7±0.1

aware replay techniques in Class-IL. These methods significantly improve performance in

malware classification by mitigating catastrophic forgetting, and they do so using fewer

resources.

5.5.2 Android APK File - AZ

Domain-IL. In this set of experiments, we have nine tasks, each representing a year from

2008 to 2016. The performance of each method is shown in Table 5.4 as AP and compared

with two baselines: None at 94.4 ± 0.1 and Joint at 97.3 ± 0.1, representing the informal

lower and upper performance bounds, respectively.

As with EMBER, we find that our MADAR techniques greatly surpass previous methods

like ER, AGEM, and GR for every budget level. For lower budgets (1K-10K), IFS-R and

76

5.6. Discussion

AWS-R slightly outperform GRS and are within 1.5% of Joint. For higher budgets (50K-

400K), IFS-R, AWS-R, and AWS-U all perform well – in line with GRS and just slightly

below Joint, which requires 680K training samples.

Class-IL. We have 11 tasks for the Class-IL scenario of AZ. The summary results of all the

experiments are shown in Table 5.5 and is benchmarked against None and Joint with AP

of 26.4± 0.2 and 94.2± 0.1, respectively. In addition, we compare our proposed techniques

with iCaRL [114] as it is the performant technique among the compared prior work for the

EMBER dataset as shown in § 5.5.1.

For a low budget of 100, iCaRL and GRS get less than 44%, while all MADAR methods

achieve over 57%. As budgets increase, all methods improve, with IFS-U offering the best

results at every budget from 500 to 20K. At 20K, it reaches 91.5±0.1%, which is 1.4% higher

than GRS and 6.9% higher than iCaRL.

Overall, mirroring the success seen with the EMBER dataset, our proposed techniques also

surpass previous work in Class-IL in the context of the AZ-Class dataset. Additionally,

while GRS shows significant improvement with an increased budget, the uniform variants of

MADAR are more effective at every budget level.

5.6 Discussion

Our results demonstrate that in both Domain-IL and Class-IL scenarios, our MADAR tech-

niques yield markedly better performances compared to previous methods for both the EM-

BER and AZ datasets. This clearly indicates that diversity-aware replay is effective in

preserving the stability of a continual learning system for malware classification.

Analyzing the results of Domain-IL scenario, we can see that at lower budgets, all MADAR

methods show better performance than both prior work and GRS in both datasets. As

budgets increase, the Ratio variants – IFS-R and AWS-R – perform well and approach the

Joint baselines of 96.4% in EMBER and 97.3% in AZ. It is noteworthy that our techniques

require a substantially smaller number of replay samples compared with Joint to attain a

77

5.7. Conclusion

similar average accuracy.

In the Class-IL scenario, our proposed techniques significantly outperform previous work in

both the EMBER and AZ datasets. In EMBER, AWS-U nearly matches the Joint baseline at

just a 5K budget, outperforming the iCaRL method with fewer resources. In the AZ dataset,

both IFS-U and AWS-U perform well, with IFS-U reaching an impressive 91.5% AP at a

20K budget. In both datasets, the Uniform variants – IFS-U and AWS-U – consistently

surpass other methods, proving their efficiency in resource management and adaptability to

new classes.

The Ratio variants worked better for Domain-IL experiments, while Uniform variants worked

well in Class-IL. Intuitively, this makes sense because ratio budgeting for binary classification

in the Domain-IL setting naturally captures the contributions of each family to the overall

malware distribution. Additionally, since there are many small families in the Domain-IL

datasets, uniformly sampling from them consumes budget while offering little improvement

in malware coverage. In contrast, our Class-IL experiments perform classification across

families, which is better supported by Uniform budgeting to maintain class balance and

ensure coverage over all families. Moreover, in most settings we can leverage efficient repre-

sentations using AWS to scale the approach regardless of feature dimension without loss of

performance.

5.7 Conclusion

In this paper, we propose MADAR, a framework for diversity-aware replay in continual

learning specially designed for the challenging setting of malware classification. Our com-

prehensive evaluation across Domain-IL and Class-IL scenarios against Windows executable

(EMBER) and Android application (AZ) datasets demonstrates that diversity-aware sam-

pling is helpful for effective CL in malware classification. In Domain-IL scenarios, IFS-R and

AWS-R, and in Class-IL scenarios, IFS-U and AWS-U, demonstrate superior adaptability

and resource efficiency. As malware and goodware continue to evolve, these insights steer

continual learning towards strategic, resource-efficient methods, ensuring model effectiveness

amid the constantly shifting landscape of cybersecurity threats.

78

6
Conclusion and Future Work

79

6.1. Conclusion

6.1 Conclusion

Malware classification poses significant challenges for continual learning (CL) techniques due

to the daily influx of new malware samples and the rapid evolution of malware exploiting

new vulnerabilities. Antivirus vendors encounter hundreds of thousands of unique software

pieces daily as well. This enormous daily feed of both malware and benign software can lead

to a potential accumulation of over a billion samples over the lifetime of a malware classifier.

Relying solely on new samples for training can lead to catastrophic forgetting, where the

system loses its ability to recall previously learned tasks. Although retraining with both old

and new samples is effective, it is expensive and necessitates storing an enormous volume of

past software and malware samples. Hence, applying CL techniques in a sequential training

framework could significantly reduce both training and storage demands.

This thesis conducts a thorough investigation into developing a CL system capable of adapt-

ing to the continuous growth and evolution of malware and benign software, accounting for

shifts in data distribution. We begin by identifying a research gap between CL and the

malware domain, evaluating state-of-the-art CL methods across three CL scenarios: task,

class, and domain incremental learning. Utilizing two extensive, real-world malware datasets

– EMBER [10] and Drebin [11]—our empirical findings indicate that these CL techniques

generally fail to prevent catastrophic forgetting and maintain classification accuracy for mal-

ware classification system. Furthermore, an in-depth analysis of the EMBER dataset reveals

the unique properties and challenges of malware data distributions, highlighting the diversity

within and across malware families. In response, we introduce MADAR – a diversity-aware,

replay-based CL strategy specifically designed for malware classification. Additionally, we

have developed two new benchmarks using Android malware from the AndroZoo reposi-

tory [8] for testing in both Domain-IL (AZ-Domain) and Class-IL (AZ-Class) scenarios.

Our extensive evaluations demonstrate the effectiveness of MADAR framework over existing

state-of-the-art CL methods, effectively handling realistic shifts in data distribution.

80

6.2. Future Work

6.2 Future Work

As continual learning for malware domain is an emergent field of research, we believe that

extensive investigations are necessary to answer various research questions unique to malware

domain before we can realize a practical and effective continual learning system for malware

classification and detection. Moreover, the principles and methodologies developed in this

context hold promising implications for broader cybersecurity areas. These include, but are

not limited to, intrusion detection, phishing prevention, and securing emerging technologies

such as IoT devices. By extending continual learning approaches to these areas, we can

significantly enhance the resilience and responsiveness of cybersecurity defenses, making

them more adept at handling the complexities of modern cybersecurity threats.

In this section, we outline promising future research directions that could provide significant

insights and advance the field of continual learning in the malware domain.

6.2.1 Analysis of Complex Image Data vs. Malware Data

We have conducted an investigation into the feature space complexity of standard image

datasets such as MNIST [73] and standard malware datasets such as EMBER [10]. This

analysis is presented in Section 4.5. Currently, the MNIST dataset is widely regarded as one

of the easiest datasets to solve, characterized by a simpler feature space. In contrast, the

EMBER dataset, a benchmark in malware research, is considered highly complex. Thus,

comparing these datasets may initially seem unfair, but it offers an opportunity to explore

feature space complexity in the context of more challenging datasets such as CIFAR-100 [70]

and ImageNet [124]. A comprehensive comparative study of the feature space of these

complex image datasets and the EMBER dataset could yield valuable insights. These insights

may serve as a foundation for the development of more advanced continual learning systems

for malware classification and detection.

81

6.2. Future Work

6.2.2 Continual Learning for Dynamic Malware Analysis

This study examines malware classification systems in the context of static malware analy-

sis. Among various classification and detection techniques, static malware analysis is widely

utilized in industry, where expert-designed features are employed to develop the system. The

rationale behind using a hand-engineered feature-based system lies primarily in its compu-

tational efficiency and scalability. Additionally, leveraging existing knowledge of common

malware and goodware attributes allows for the improvement of such systems even further.

Notably, these systems have demonstrated impressive performance, with models like Light

GBM achieving a ROC AUC of 0.996 on benchmark malware dataset EMBER [10]. Con-

sequently, in this work, both the exploratory analysis and the proposed continual learning

system are designed to operate within the hand-engineered feature space.

At its current stage, this work does not delve into studying a continual learning system in

the context of dynamic malware analysis. In dynamic malware analysis, a malware sample is

executed within a controlled virtual environment to observe its behavior and its impact on the

system. This sophisticated analysis provides insights into the true nature of the malware and

its ability to evade detection systems. While dynamic analysis is considered more effective

compared to static analysis, it requires significantly more resources and time. Despite these

challenges, an exploration of continual learning systems utilizing dynamic malware features

could yield even greater effectiveness. The feature space in dynamic analysis is more fine-

grained and unique to specific types of malware. We hypothesize that this approach could

further reduce the reliance on accessing older malware samples and subsequently decrease

storage and computation costs.

6.2.3 Harnessing the Advancement of Generative AI

The Generative Replay (GR) technique has emerged as a promising solution to counter-

act catastrophic forgetting, particularly within the computer vision domain [130, 139, 140].

However, our findings present an anomaly. Despite its theoretical potential, GR has not

demonstrated the anticipated level of effectiveness in our studies on malware classification.

This gap between its theoretical promise and the observed results in our research opens up a

series of compelling questions. Could there be characteristics intrinsic to malware data that

82

6.2. Future Work

diminish the effectiveness of GR? Or might external factors be influencing the outcomes?

Investigating the underlying reasons for this discrepancy is not just academically intriguing;

it could fundamentally transform our approach to malware classification. Successfully har-

nessing the GR technique could lead to significant advancements: eliminating the necessity

to store raw data would greatly reduce storage requirements, streamline the training pro-

cess, and enhance data security by reducing exposure. Moreover, perfecting the use of GR

in malware classification could set a precedent for its application across various domains. A

promising avenue for future research is to unravel this mystery and fully exploit the potential

of generative artificial intelligence (AI) techniques, ensuring our models are both efficient and

robust in real-world applications.

6.2.4 Continual Large Language Model for Malware Analysis

Given the challenges associated with managing long and complex sequences in binary ex-

ecutables, current methods often favor feature-based systems for classifying malware. In

our previous research, we explored the potential of Transformer models in an innovative

end-to-end approach, evaluating various architectural designs, training techniques, and ex-

perimental setups to identify key factors for effective detection models [123]. Building on

these insights, further research can be advanced and conducted by integrating more sophis-

ticated large language models [18, 111, 137] with continual learning strategies. This area of

research would be suitable to tackle the challenges of processing extensive sequence lengths

within an end-to-end framework for continual malware detection.

6.2.5 Generalization of the System

Our current research is based on malware datasets specific to Windows and Android plat-

forms. This focus narrows the scope of our findings, potentially limiting the broader appli-

cability of our proposed systems to the diverse and evolving landscape of malware threats.

Recognizing this limitation, we advocate for a more expansive approach in future studies.

Incorporating a wider array of malware datasets from a variety of platforms—including, but

not limited to, iOS, PDF documents, web-based threats, and vulnerabilities within office

83

6.3. Publications

suite applications—would not only enrich the research but also strengthen the effectiveness

and relevance of the developed systems. Furthermore, extending the temporal range of these

datasets to span multiple years can offer invaluable insights into the longitudinal trends and

transformations within the malware domain, thereby enhancing the predictive and adaptive

capacities of continual learning frameworks in cybersecurity.

6.3 Publications

6.3.1 Continual Learning & Malware Analysis

1. Under Review: Rahman, Mohammad Saidur, Scott Coull, Qi Yu, and Matthew

Wright. ”MADAR: Continual Learning for Malware Analysis with Diversity-Aware

Replay.” 2024.

2. CoLLAs-2022: Rahman, Mohammad Saidur, Scott Coull, and Matthew Wright.

”On the Limitations of Continual Learning for Malware Classification.” In Conference

on Lifelong Learning Agents, pp. 564-582. PMLR, 2022.

3. WoRMA-2022: Rudd, Ethan M., Mohammad Saidur Rahman, and Philip

Tully. ”Transformers for End-to-End InfoSec Tasks: A Feasibility Study.” In Proceed-

ings of the 1st Workshop on Robust Malware Analysis, pp. 21-31. 2022.

6.3.2 Traffic Analysis & Website Fingerprinting

1. IEEE S&P-2023: Mathews, Nate, James K. Holland, Se Eun Oh, Mohammad

Saidur Rahman, Nicholas Hopper, and Matthew Wright. ”SoK: A Critical Eval-

uation of Efficient Website Fingerprinting Defenses.” In 2023 IEEE Symposium on

Security and Privacy (SP), pp. 344-361. IEEE Computer Society, 2022.

2. IEEE S&P-2022: Oh, Se Eun, Taiji Yang, Nate Mathews, James K. Holland, Mo-

hammad Saidur Rahman, Nicholas Hopper, and Matthew Wright. ”DeepCoFFEA:

Improved Flow Correlation Attacks on Tor via Metric Learning and Amplification.” In

84

6.3. Publications

2022 IEEE Symposium on Security and Privacy (SP), pp. 1915-1932. IEEE Computer

Society, 2022.

3. PoPETS-2021: Oh, Se Eun, Nate Mathews, Mohammad Saidur Rahman,

Matthew Wright, and Nicholas Hopper. ”GANDaLF: GAN for data-limited finger-

printing.” Proceedings on Privacy Enhancing Technologies 2021, no. 2 (2021).

4. IEEE TIFS-2020: Rahman, Mohammad Saidur, Mohsen Imani, Nate Math-

ews, and Matthew Wright. ”Mockingbird: Defending against deep-learning-based web-

site fingerprinting attacks with adversarial traces.” IEEE Transactions on Information

Forensics and Security 16 (2020): 1594-1609.

5. PoPETS-2020: Rahman, Mohammad Saidur, Payap Sirinam, Nate Mathews,

Kantha Girish Gangadhara, and Matthew Wright. ”Tik-Tok: The Utility of Packet

Timing in Website Fingerprinting Attacks.” Proceedings on Privacy Enhancing Tech-

nologies 3 (2020): 5-24.

6. ACM CCS-2019: Sirinam, Payap, Nate Mathews, Mohammad Saidur Rah-

man, and Matthew Wright. ”Triplet fingerprinting: More practical and portable web-

site fingerprinting with n-shot learning.” In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, pp. 1131-1148. 2019.

7. ACMCCS-2019: Rahman, Mohammad Saidur, Nate Matthews, and Matthew

Wright. ”Poster: video fingerprinting in tor.” In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, pp. 2629-2631. 2019.

8. ACMCCS-2019: Mathews, Nate, Mohammad Saidur Rahman, and Matthew

Wright. ”Poster: Evaluating Security Metrics for Website Fingerprinting.” In Proceed-

ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,

pp. 2625-2627. 2019.

9. ACM CCS-2018: Imani, Mohsen, Mohammad Saidur Rahman, and Matthew

Wright. ”Adversarial traces for website fingerprinting defense.” In Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 2225-

2227. 2018.

85

6.3. Publications

6.3.3 Quantum Secure Network

1. Under Review: Rahman, Mohammad Saidur, Stephen DiAdamo, Miralem

Mehic, Charles Fleming. ”Quantum Secure Anonymous Communication Network.”

2024.

86

References

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn,

and Dong Yu. Convolutional neural networks for speech recognition. IEEE/ACM

Transactions on audio, speech, and language processing, 22(10):1533–1545, 2014.

[2] Wickliffe C Abraham and Mark F Bear. Metaplasticity: the plasticity of synaptic

plasticity. Trends in Neurosciences, 19(4):126–130, 1996.

[3] Wickliffe C Abraham and Anthony Robins. Memory retention and weight plasticity

in ann simulations. Trends in Neurosciences, 2(28):73–78, 2005.

[4] Laha Ale, Longzhuang Li, Dulal Kar, Ning Zhang, and Aayasha Palikhe. Few-shot

learning to classify android malwares. In 2020 IEEE 5th International Conference on

Signal and Image Processing (ICSIP), pages 1001–1007. IEEE, 2020.

[5] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne

Tuytelaars. Memory aware synapses: Learning what (not) to forget. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 139–154, 2018.

[6] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learn-

ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11254–11263, 2019.

[7] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample

selection for online continual learning. Advances in Neural Information Processing

Systems (NeurIPS), 32, 2019.

87

References

[8] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo:

Collecting millions of android apps for the research community. In Proceedings of

the 13th International Conference on Mining Software Repositories, MSR ’16, pages

468–471, New York, NY, USA, 2016. ACM.

[9] Suresh Kumar Amalapuram, Thushara Tippi Reddy, Sumohana S Channappayya, and

Bheemarjuna Reddy Tamma. On handling class imbalance in continual learning based

network intrusion detection systems. In The First International Conference on AI-

ML-Systems, pages 1–7, 2021.

[10] Hyrum S Anderson and Phil Roth. EMBER: an open dataset for training static pe

malware machine learning models. arXiv preprint arXiv:1804.04637, 2018.

[11] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and

CERT Siemens. Drebin: Effective and explainable detection of android malware in your

pocket. In Network and Distributed System Security Symposium (NDSS), volume 14,

pages 23–26, 2014.

[12] AV-TEST. Malware statistics and trends report. https://www.av-test.org/en/

statistics/malware/.

[13] David Badre and Anthony D Wagner. Left ventrolateral prefrontal cortex and the

cognitive control of memory. Neuropsychologia, 45(13):2883–2901, 2007.

[14] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. Tran-

scending transcend: Revisiting malware classification in the presence of concept drift.

In 2022 IEEE Symposium on Security and Privacy (SP), pages 805–823. IEEE, 2022.

[15] Karel Bartos, Michal Sofka, and Vojtech Franc. Optimized invariant representation of

network traffic for detecting unseen malware variants. In USENIX Security Symposium,

pages 807–822, 2016.

[16] Daniel Bendor and Matthew A Wilson. Biasing the content of hippocampal replay

during sleep. Nature Neuroscience, 15(10):1439–1444, 2012.

[17] Konstantin Berlin, David Slater, and Joshua Saxe. Malicious behavior detection using

windows audit logs. In ACM Workshop on Artificial Intelligence and Security (AISec),

pages 35–44, 2015.

88

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

References

[18] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Syd-

ney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brun-

skill, et al. On the opportunities and risks of foundation models. arXiv preprint

arXiv:2108.07258, 2021.

[19] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin,

Lucas Page-Caccia, Issam Hadj Laradji, Irina Rish, Alexandre Lacoste, David Vázquez,

et al. Online fast adaptation and knowledge accumulation (osaka): a new approach

to continual learning. Advances in Neural Information Processing Systems, 33:16532–

16545, 2020.

[20] Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with nat-

ural distribution shifts: An empirical study with visual data. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 8281–8290, 2021.

[21] Margaret F Carr, Shantanu P Jadhav, and Loren M Frank. Hippocampal replay in

the awake state: a potential substrate for memory consolidation and retrieval. Nature

Neuroscience, 14(2):147, 2011.

[22] Francisco M Castro, Manuel J Maŕın-Jiménez, Nicolás Guil, Cordelia Schmid, and

Karteek Alahari. End-to-end incremental learning. In Proceedings of the European

conference on computer vision (ECCV), pages 233–248, 2018.

[23] Yuhan Chai, Lei Du, Jing Qiu, Lihua Yin, and Zhihong Tian. Dynamic prototype net-

work based on sample adaptation for few-shot malware detection. IEEE Transactions

on Knowledge and Data Engineering, 2022.

[24] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr.

Riemannian walk for incremental learning: Understanding forgetting and intransi-

gence. In Proceedings of the European Conference on Computer Vision (ECCV), pages

532–547, 2018.

[25] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.

Efficient lifelong learning with A-GEM. In International Conference on Machine Learn-

ing (ICML), 2019.

89

References

[26] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,

Puneet K Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic

memories in continual learning. In International Conference on Machine Learning

(ICML), 2019.

[27] Yizheng Chen, Zhoujie Ding, and David Wagner. Continuous learning for android

malware detection. In USENIX Security Symposium, 2023.

[28] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 12(3):1–207, 2018.

[29] Min Chee Choy, Dipti Srinivasan, and Ruey Long Cheu. Neural networks for continuous

online learning and control. IEEE Transactions on Neural Networks, 17(6):1511–1531,

2006.

[30] Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E Bryant.

Semantics-Aware Malware Detection. In IEEE Symposium on Security and Privacy

(S&P), pages 32–46. IEEE, 2005.

[31] Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from im-

balanced data. In International Conference on Machine Learning, pages 1952–1961.

PMLR, 2020.

[32] Martin A Conway. Episodic memories. Neuropsychologia, 47(11):2305–2313, 2009.

[33] Scott E Coull and Christopher Gardner. Activation analysis of a byte-based deep

neural network for malware classification. In IEEE Security and Privacy Workshops

(SPW), pages 21–27. IEEE, 2019.

[34] Gabriela Csurka. Domain adaptation for visual applications: A comprehensive survey.

arXiv preprint arXiv:1702.05374, 2017.

[35] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale malware classifi-

cation using random projections and neural networks. In International Conference on

Acoustics, Speech, & Signal Processing (ICASSP), pages 3422–3426. IEEE, 2013.

[36] Vacha Dave, Saikat Guha, and Yin Zhang. Viceroi: Catching click-spam in search

ad networks. In ACM Conference on Computer and Communications Security (CCS),

pages 765–776, 2013.

90

References

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[38] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chel-

lappa. Learning without memorizing. In Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5138–5146, 2019.

[39] Mark Dredze and Koby Crammer. Online methods for multi-domain learning and

adaptation. In Proceedings of the 2008 Conference on Empirical Methods in Natural

Language Processing, pages 689–697, 2008.

[40] Howard Eichenbaum. Hippocampus: cognitive processes and neural representations

that underlie declarative memory. Neuron, 44(1):109–120, 2004.

[41] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward,

Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable dis-

tributed Deep-RL with importance weighted actor-learner architectures. In Interna-

tional conference on machine learning (ICML), pages 1407–1416. PMLR, 2018.

[42] Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning.

arXiv preprint arXiv:1805.09733, 2018.

[43] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast

adaptation of deep networks. In International conference on machine learning, pages

1126–1135. PMLR, 2017.

[44] Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cog-

nitive Sciences, 3(4):128–135, 1999.

[45] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition. In Competition and Cooperation

in Neural Nets, pages 267–285. Springer, 1982.

[46] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,

Chung Hwan Kim, Sanjeev R Kulkarni, and Prateek Mittal. SAQL: A Stream-based

Query System for Real-Time Abnormal System Behavior Detection. In USENIX Se-

curity Symposium, pages 639–656, 2018.

91

References

[47] David Escudero Garćıa, Noemı́ DeCastro-Garćıa, and Angel Luis Muñoz Castañeda.

An effectiveness analysis of transfer learning for the concept drift problem in malware

detection. Expert Systems with Applications, 212:118724, 2023.

[48] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Ad-

vances in Neural Information Processing Systems (NeurIPS), 27, 2014.

[49] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick

McDaniel. Adversarial examples for malware detection. In European Symposium on

Research in Computer Security (ESORICS), pages 62–79. Springer, 2017.

[50] Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual learning through mutual

information maximization. In International Conference on Machine Learning, pages

8109–8126. PMLR, 2022.

[51] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan.

Remind your neural network to prevent catastrophic forgetting. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 466–483. Springer, 2020.

[52] Tyler L Hayes and Christopher Kanan. Online continual learning for embedded devices.

arXiv preprint arXiv:2203.10681, 2022.

[53] Jiangpeng He and Fengqing Zhu. Online continual learning via candidates voting. In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,

pages 3154–3163, 2022.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[55] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,

et al. Deep neural networks for acoustic modeling in speech recognition: The shared

views of four research groups. In IEEE Signal Processing Magazine, 2012.

[56] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.

92

References

[57] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Lifelong

learning via progressive distillation and retrospection. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 437–452, 2018.

[58] Shou-Ching Hsiao, Da-Yu Kao, Zi-Yuan Liu, and Raylin Tso. Malware image classi-

fication using one-shot learning with siamese networks. Procedia Computer Science,

159:1863–1871, 2019.

[59] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating

continual learning scenarios: A categorization and case for strong baselines. arXiv

preprint arXiv:1810.12488, 2018.

[60] Ngoc Anh Huynh, Wee Keong Ng, and Kanishka Ariyapala. A new adaptive learning

algorithm and its application to online malware detection. In International Conference

on Discovery Science (ICDS), pages 18–32. Springer, 2017.

[61] Mohsen Imani, Mohammad Saidur Rahman, and Matthew Wright. Adversarial traces

for website fingerprinting defense. In ACM Conference on Computer and Communi-

cations Security (CCS), 2018.

[62] Daoyun Ji and Matthew A Wilson. Coordinated memory replay in the visual cortex

and hippocampus during sleep. Nature Neuroscience, 10(1):100–107, 2007.

[63] Jeff Johns. MalwareGuard: FireEye’s Machine Learning Model to Detect and Prevent

Malware. https://www.fireeye.com/blog/products-and-services/2018/07/

malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.

html, 2018.

[64] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia

Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting concept drift in malware

classification models. In USENIX Security Symposium, pages 625–642, 2017.

[65] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal Shankar,

Rekha Bachwani, Anthony D Joseph, and J Doug Tygar. Better malware ground truth:

Techniques for weighting anti-virus vendor labels. In ACM Workshop on Artificial

Intelligence and Security (AISec), pages 45–56, 2015.

93

https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.html
https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.html
https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.html

References

[66] Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental

learning. arXiv preprint arXiv:1711.10563, 2017.

[67] William DS Killgore, Ellen T Kahn-Greene, Erica L Lipizzi, Rachel A Newman, Gary H

Kamimori, and Thomas J Balkin. Sleep deprivation reduces perceived emotional in-

telligence and constructive thinking skills. Sleep Medicine, 9(5):517–526, 2008.

[68] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[69] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.

Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

[70] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. 2009.

[71] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems (NeurIPS), 2012.

[72] Pavel Laskov and Nedim Šrndić. Static detection of malicious javascript-bearing pdf

documents. In Annual Computer Security Applications Conference (ACSAC), pages

373–382, 2011.

[73] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[74] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional networks and

applications in vision. In Proceedings of 2010 IEEE international symposium on circuits

and systems, pages 253–256. IEEE, 2010.

[75] S. Lee and J. Kim. WarningBird: Detecting Suspicious URLs in Twitter Stream. In

Network and Distributed System Security Symposium (NDSS), 2012.

[76] Timothée Lesort, Massimo Caccia, and Irina Rish. Understanding continual learning

settings with data distribution drift analysis. In International Conference of Machine

94

References

Learning 2021 (ICML) Workshop on Theory and Foundation of Continual Learning,

2021.

[77] Huichen Li, Xiaojun Xu, Chang Liu, Teng Ren, Kun Wu, Xuezhi Cao, Weinan Zhang,

Yong Yu, and Dawn Song. A machine learning approach to prevent malicious calls

over telephony networks. In IEEE Symposium on Security and Privacy (S&P), pages

53–69. IEEE, 2018.

[78] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 40(12):2935–2947, 2017.

[79] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-

forcement learning. In International Conference on Learning Representations (ICLR),

2016.

[80] Bing Liu. Learning on the job: Online lifelong and continual learning. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 34, pages 13544–13549, 2020.

[81] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee

international conference on data mining, pages 413–422. IEEE, 2008.

[82] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual

learning. Advances in neural information processing systems (NeurIPS), 30, 2017.

[83] Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and

Will Dabney. Understanding plasticity in neural networks. In International Conference

on Machine Learning, pages 23190–23211. PMLR, 2023.

[84] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A pattern recognition system

for malicious pdf files detection. In International Workshop on Machine Learning and

Data Mining in Pattern Recognition (MLDM), pages 510–524. Springer, 2012.

[85] Stephen J Martin, Paul D Grimwood, and Richard GM Morris. Synaptic plasticity and

memory: an evaluation of the hypothesis. Annual review of neuroscience, 23(1):649–

711, 2000.

95

References

[86] Nicolas Y Masse, Gregory D Grant, and David J Freedman. Alleviating catastrophic

forgetting using context-dependent gating and synaptic stabilization. Proceedings of

the National Academy of Sciences, 115(44):E10467–E10475, 2018.

[87] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist

networks: The sequential learning problem. In Psychology of Learning and Motivation,

volume 24, pages 109–165. Elsevier, 1989.

[88] James L McGaugh. Memory–a century of consolidation. Science, 287(5451):248–251,

2000.

[89] Leland McInnes and John Healy. Accelerated hierarchical density based clustering. In

Data Mining Workshops (ICDMW), 2017 IEEE International Conference on, pages

33–42. IEEE, 2017.

[90] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based

clustering. The Journal of Open Source Software, 2(11):205, 2017.

[91] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity

dilemma: Investigating the continuum from catastrophic forgetting to age-limited

learning effects. Frontiers in psychology, 4:54654, 2013.

[92] Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex

function. Annual review of neuroscience, 24(1):167–202, 2001.

[93] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an

ensemble of autoencoders for online network intrusion detection. arXiv preprint

arXiv:1802.09089, 2018.

[94] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.

arXiv preprint arXiv:1312.5602, 2013.

[95] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu.

Context-aware, adaptive, and scalable android malware detection through online learn-

ing. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(3):157–

175, 2017.

96

References

[96] Annamalai Narayanan, Liu Yang, Lihui Chen, and Liu Jinliang. Adaptive and scalable

android malware detection through online learning. In International Joint Conference

on Neural Networks (IJCNN), pages 2484–2491. IEEE, 2016.

[97] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational

continual learning. arXiv preprint arXiv:1710.10628, 2017.

[98] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano De Cristofaro,

Gordon Ross, and Gianluca Stringhini. Mamadroid: Detecting android malware by

building markov chains of behavioral models (extended version). ACM Transactions

on Privacy and Security (TOPS), 22(2):1–34, 2019.

[99] Oleksiy Ostapenko, Timothee Lesort, Pau Rodŕıguez, Md Rifat Arefin, Arthur Douil-

lard, Irina Rish, and Laurent Charlin. Foundational models for continual learning: An

empirical study of latent replay. arXiv preprint arXiv:2205.00329, 2022.

[100] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi.

Learning to remember: A synaptic plasticity driven framework for continual learning.

In Conference on Computer Vision and Pattern Recognition (CVPR), pages 11321–

11329, 2019.

[101] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation

via transfer component analysis. IEEE transactions on neural networks, 22(2):199–210,

2010.

[102] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan

Wermter. Continual lifelong learning with neural networks: A review. Neural Net-

works, 113:54–71, 2019.

[103] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch:

An imperative style, high-performance deep learning library. In Advances in Neural

Information Processing Systems (NeurIPS), 2019.

[104] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine Learning

Research (JMLR), 12:2825–2830, 2011.

97

References

[105] Lorien Y Pratt. Discriminability-based transfer between neural networks. Advances in

neural information processing systems, 5, 1992.

[106] Luca Puggini and Seán McLoone. An enhanced variable selection and isolation forest

based methodology for anomaly detection with oes data. Engineering Applications of

Artificial Intelligence, 67:126–135, 2018.

[107] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang, and Tara

Sainath. Deep learning for audio signal processing. IEEE Journal of Selected Topics

in Signal Processing, 13(2):206–219, 2019.

[108] Yu-Lin Qin, Bruce L McNaughton, William E Skaggs, and Carol A Barnes. Memory

reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philo-

sophical Transactions of the Royal Society of London. Series B: Biological Sciences,

352(1360):1525–1533, 1997.

[109] Mohammad Saidur Rahman, Scott E. Coull, and Matthew Wright. On the Limitations

of Continual Learning for Malware Classification. In First Conference on Lifelong

Learning Agents (CoLLAs), 2022.

[110] Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and Matthew Wright.

Mockingbird: Defending against deep-learning-based website fingerprinting attacks

with adversarial traces. IEEE Transactions on Information Forensics and Security,

2020.

[111] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.

Hierarchical text-conditional image generation with clip latents. arXiv preprint

arXiv:2204.06125, 1(2):3, 2022.

[112] Steve Ramirez, Xu Liu, Pei-Ann Lin, Junghyup Suh, Michele Pignatelli, Roger L

Redondo, Tomás J Ryan, and Susumu Tonegawa. Creating a false memory in the

hippocampus. Science, 341(6144):387–391, 2013.

[113] Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by

learning and forgetting functions. Psychological Review, 97(2):285, 1990.

98

References

[114] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lam-

pert. icarl: Incremental classifier and representation learning. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 2001–2010, 2017.

[115] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu,

and Gerald Tesauro. Learning to learn without forgetting by maximizing transfer

and minimizing interference. In International Conference on Learning Representations

(ICLR), 2019.

[116] Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace ap-

proximations for overcoming catastrophic forgetting. In Advances in Neural Informa-

tion Processing Systems (NeurIPS), pages 3738–3748, 2018.

[117] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals

of mathematical statistics, pages 400–407, 1951.

[118] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection

Science, 7(2):123–146, 1995.

[119] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory

Wayne. Experience replay for continual learning. In Advances in Neural Informa-

tion Processing Systems (NeurIPS), pages 350–360, 2019.

[120] Candong Rong, Gaopeng Gou, Chengshang Hou, Zhen Li, Gang Xiong, and Li Guo.

UMVD-FSL: Unseen Malware Variants Detection Using Few-Shot Learning. In 2021

International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[121] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386, 1958.

[122] Gideon Rothschild, Elad Eban, and Loren M Frank. A cortical–hippocampal–cortical

loop of information processing during memory consolidation. Nature Neuroscience,

20(2):251–259, 2017.

[123] Ethan M Rudd, Mohammad Saidur Rahman, and Philip Tully. Transformers for end-

to-end infosec tasks: A feasibility study. In Proceedings of the 1st Workshop on Robust

Malware Analysis, pages 21–31, 2022.

99

References

[124] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet

large scale visual recognition challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[125] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-

patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural

networks. arXiv preprint arXiv:1606.04671, 2016.

[126] Mattia Sangermano, Antonio Carta, Andrea Cossu, and Davide Bacciu. Sample con-

densation in online continual learning. In 2022 International Joint Conference on

Neural Networks (IJCNN), pages 01–08. IEEE, 2022.

[127] Dennis Schwarz. zeusmuseum. https://zeusmuseum.com/, 2022.

[128] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-

Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress:

A scalable framework for continual learning. In International Conference on Machine

Learning (ICML), pages 4528–4537, 2018.

[129] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming

catastrophic forgetting with hard attention to the task. 2018.

[130] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with

deep generative replay. Advances in Neural Information Processing Systems (NeurIPS),

30:2990–2999, 2017.

[131] Stelios M Smirnakis, Alyssa A Brewer, Michael C Schmid, Andreas S Tolias, Al-

mut Schüz, Mark Augath, Werner Inhoffen, Brian A Wandell, and Nikos K Logo-

thetis. Lack of long-term cortical reorganization after macaque retinal lesions. Nature,

435(7040):300–307, 2005.

[132] Nedim Šrndic and Pavel Laskov. Detection of malicious pdf files based on hierarchical

document structure. In Network and Distributed System Security Symposium (NDSS),

pages 1–16. Citeseer, 2013.

100

https://zeusmuseum.com/

References

[133] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Shady paths: Lever-

aging surfing crowds to detect malicious web pages. In ACM Conference on Computer

and Communications Security (CCS), pages 133–144, 2013.

[134] Timothy Tadros, Giri P Krishnan, Ramyaa Ramyaa, and Maxim Bazhenov. Sleep-

like unsupervised replay reduces catastrophic forgetting in artificial neural networks.

Nature Communications, 13(1):1–12, 2022.

[135] Gil Tahan, Lior Rokach, and Yuval Shahar. Mal-id: Automatic malware detection

using common segment analysis and meta-features. Journal of Machine Learning Re-

search (JMLR), 13(1):949–979, 2012.

[136] Zhijie Tang, Peng Wang, and Junfeng Wang. Convprotonet: Deep prototype induc-

tion towards better class representation for few-shot malware classification. Applied

Sciences, 10(8):2847, 2020.

[137] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint

arXiv:2302.13971, 2023.

[138] Endel Tulving et al. Episodic memory: From mind to brain. Annual Review of Psy-

chology, 53(1):1–25, 2002.

[139] Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay

for continual learning with artificial neural networks. Nature Communications, 11(1):1–

14, 2020.

[140] Gido M van de Ven and Andreas S Tolias. Generative replay with feedback connections

as a general strategy for continual learning. arXiv preprint arXiv:1809.10635, 2018.

[141] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning.

arXiv preprint arXiv:1904.07734, 2019.

[142] Gido M van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incre-

mental learning. Nature Machine Intelligence, 4(12):1185–1197, 2022.

[143] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal

of Machine Learning Research (JMLR), 9(11), 2008.

101

References

[144] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[145] VirusTotal. VirusTotal - Stats. https://www.virustotal.com/gui/stats.

[146] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathe-

matical Software (TOMS), 11(1):37–57, 1985.

[147] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Atten-

berg. Feature hashing for large scale multitask learning. In International Conference

on Machine Learning (ICML), pages 1113–1120, 2009.

[148] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. Droidevolver: Self-evolving

android malware detection system. In IEEE European Symposium on Security and

Privacy (EuroS&P), pages 47–62. IEEE, 2019.

[149] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh, Xinyu

Xing, and Gang Wang. CADE: Detecting and explaining concept drift samples for

security applications. In USENIX Security Symposium, pages 2327–2344, 2021.

[150] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with

dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[151] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic

intelligence. Journal of Machine learning research (JMLR), 70:3987, 2017.

[152] Shangtong Zhang and Richard S Sutton. A deeper look at experience replay. arXiv

preprint arXiv:1712.01275, 2017.

[153] Chenyang Zhao, Timothy Hospedales, Freek Stulp, and Olivier Sigaud. Tensor based

knowledge transfer across skill categories for robot control. In International Joint

Conference in Artificial Intelligence (IJCAI), pages 1–7, 2017.

[154] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and Gang

Wang. Measuring and Modeling the Label Dynamics of Online Anti-Malware Engines.

In USENIX Security Symposium, 2020.

102

https://www.virustotal.com/gui/stats

Appendices

103

A
Additional Replay Buffer Techniques

Before outlining our proposed diversity-aware replay-based continual learning system for

malware classification in Chapter 5, we conducted an extensive preliminary study. In Ap-

pendix A, we present a subset of this preliminary investigation, focusing on aspects that can

help understand and evaluate various alternative replay buffer proposals. Note that all the

analysis and investigations in this appendix are conducted using the EMBER [10] dataset in

the Domain-IL setting.

104

A.1. Comparison of the Required Number of Replay Samples

A.1 Comparison of the Required Number of Replay

Samples

Table A.1: Comparison of the number of replay samples required in global random sample

selection and family based random sample selection.

Replay

Config.

Task Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Joint - 55722 93094 139967 181287 224847 271125 312007 368499 446271 536271 626271

GRS-20% - 11144 20888 28362 37736 46000 54712 63967 72143 83441 98995 116995

GRS-50% - 27861 52222 70908 94344 115004 136784 159923 180364 208610 247496 292496

FRS-50/f - 14744 23580 29276 32998 38532 43690 46682 50716 56230 56870 58204

FRS-100/f - 19694 31460 39402 45102 53238 61452 66842 73136 81894 82980 84936

FRS-200/f - 25548 41418 51462 59374 71902 84188 92592 101614 115216 117122 120196

FRS-500/f - 33252 58044 72202 83922 102174 123014 137072 150758 173768 178916 184410

FRS-1K/f - 39832 70862 89110 106426 129036 156724 179624 198554 230716 241464 249662

FRS-5K/f - 55722 99613 131888 166044 196648 234104 274652 307200 365770 416912 447866

FRS-10K/f - 55722 104445 138825 185409 225772 268458 313680 353367 409127 481803 547802

One crucial question that arises in sample selection is: “How many samples should be selected

for each family?” The answer to this question may vary depending on the capacity or

memory budget (i.e., replay buffer) of specific antivirus vendors. However, it is important to

understand the number of samples required in different configurations of sample selection to

facilitate better comparison of the performance of each explored configuration. Our objective

is to identify an effective sample selection configuration that can achieve higher or comparable

performance with an equivalent or reduced number of replay samples compared to partial

joint replay (PJR).

To this end, we conducted an exploratory analysis to compare the number of replay samples

required in different configurations of family-based replay sample selection with partial joint

replay (PJR) based sample selection. The number of replay samples for each task month

is shown in Table A.1. In this context, PJR follows the experimental setting outlined in

Section 4.4, where X −% of stored samples are selected for replay alongside the new data of

the current learning episode. In our continual learning framework, the Joint configuration

accumulates samples until the previous task, Tn−1, and combines them with the new data

of the current task, Tn. The resulting dataset is then used to train the model for the

105

A.1. Comparison of the Required Number of Replay Samples

current task. We track the total number of accumulated samples for different tasks in this

configuration. However, no replay samples are available for the January task month, as it

marks the beginning of the learning task and there are no previous tasks to accumulate

samples from.

The notation GRS − X% is used to denote different configurations of the PJR technique

in continual learning. This technique involves randomly selecting samples from the global

repository of the previous data pool. Please note that the random sample selection technique

discussed in Section 5.3 differs from the one used here. In this context, we select X% of the

stored data, whereas in Section 5.3, a fixed number of replay samples are chosen.

In our comparison, we examine two configurations: one with 20% of the replay samples and

the other with 50%. Previous research has indicated that using less than 20% of the replay

samples leads to suboptimal performance, while utilizing more than 50% of the stored data for

replay is not desirable. Although any value for X can be chosen, higher values are expected

to yield better performance. The primary objective is to achieve maximum performance

using as few replay samples as possible.

It is worth noting that the performance achievable with the Joint configuration will be the

highest, as this configuration utilizes all available samples from the previous task and trains

the model using a static training mechanism. Therefore, if we can achieve performance

equivalent to the Joint configuration with fewer replay samples, such as those provided by

GRS − 50% or GRS − 20%, or even with fewer samples, we can consider the configuration

to be effective.

The notation FRS−N/f , where N ranges from 50 to 10K, represents various configurations

of replay sample selection based on family. Here, N signifies the number of samples to select

from each family. In this configuration, FRS denotes random selection from the data pool

of a specific family. The algorithm for this configuration is detailed in Section A.2.1.

To ensure that the number of replay samples falls within our desired limits, we can refer to

the Joint configuration, which provides an upper limit for the number of replay samples for

the last task. Our objective is to maintain the number of replay samples at or below GRS−
50% but above GRS − 20%. Among the family-based configurations, only FRS − 200/f ,

FRS − 500/f , and FRS − 1K/f meet this criterion.

106

A.2. Replay Buffer Techniques

The green cell in the table denotes the number of replay samples for the final task (December),

representing the highest number of replay samples for the Joint, GRS− 50%, FRS− 200/f ,

FRS − 500/f , and FRS − 1K/f configurations, respectively. This allows us to make an

informed decision regarding the number of replay samples for the replay buffer while ensuring

high performance. We plan to investigate each of these three configurations for their ability

to reduce catastrophic forgetting.

A.2 Replay Buffer Techniques

A.2.1 Family based Reservoir Sampling (FRS)

Algorithm 3: Family based Reservoir Sampling (FRS).
Input : Tc – Current task

XTc , YTc – Samples and associated Labels of current task

Gfd – Global Family Data Pool

β – Threshold number of samples per family

Output: Xreplay, Yreplay – Replay Samples and associated Labels

1 if Tc == 0 then

2 ∇Gfd ← XTc , YTc // Create global family data pool with samples of the current task

3 else

4 Xgoodware, Xmalware ← Gfd // Separate out goodware and malware samples from global family data pool

5 Rmalware = [] // Initialize empty list for malware replay samples

6 for family, Xfamily in Xmalware.items() do

7 if len(Xfamily) <= β then

8 Rmalware.append(Xfamily)

9 else

10 NXfamily = random.sample(Xfamily, β)

11 Rmalware.append(NXfamily)

12 Rgoodware = random.sample(Xgoodware, len(Rmalware)) // Randomly select goodware samples equal to

the number of malware samples

13 Xreplay = Concatenate((Rgoodware, Rmalware))

14 Yreplay = Concatenate(([0] ∗ len(Rgoodware), [1] ∗ len(Rmalware)))

15 ∇Gfd ← XTc
, YTc

// Update global family data pool with samples of the current task

107

A.2. Replay Buffer Techniques

Family based reservoir sampling (FRS) treats goodware and malware samples independently.

Instead of a global data pool Gdp, there is a global family data pool Gfd for this configuration

which stores malware samples based on their associated families. In particular, Gfd is consid-

ered to be a global family data pool dictionary in which the family labels are the keys and

samples of the family are values. A detailed algorithmic representation of FRS is depicted

in Algorithm 3. β for FRS is treated as the threshold of the number of samples per family.

For the initial task, the FRS creates the Gfd. For the goodware samples, an additional key

goodware is added to the Gfd to avoid using a separate data pool for the goodware.

For the task other than the initial task, we separate out goodware Xgoodware and malware

Xmalware data pool. Malware replay samples Rmalware are selected at first from Xmalware

pool. The families which contain samples less than β, all of the samples are included the

Rmalware. We only need to select β samples from the families which have more than β

samples. We utilize reservoir sampling to choose samples from a particular family. After

populating Rmalware from all the families, we use reservoir sampling to select goodware

replay samples Rgoodware equal to the number of Rmalware samples from the Xgoodware pool.

After the replay samples selection for both goodware and malware, we mix Rgoodware and

Rmalware in the form of concatenation. Finally, FRS updates the Gfd with (XTc , YTc) to be

used in the next task Tc+1.

A.2.2 Family based Recency Sampling (FReS)

In this configuration of sample selection, we still select family based samples, however, instead

of reservoir sampling, we choose samples based on the recentness of the malware samples

in the Gfd. The only change in the Algorithm 3 is in the line 10 where recency based

sampling chooses either the first or the last β samples from Xfamily. This set of investigation

will reveal whether the latest β samples or the oldest β samples contribute most to reduce

catastrophic forgetting.

108

A.2. Replay Buffer Techniques

Algorithm 4: HDBSCAN based Sampling (HS).
Input : Tc – Current task

XTc
, YTc

– Samples and associated Labels of current task

Gfd – Global Family Data Pool

β – Threshold number of samples per family

Output: Xtrain, Ytrain – Training Samples and associated Labels

1 if Tc == 0 then

2 ∇Gfd ← XTc
, YTc

// Create global family data pool with samples of the current task

3 else

4 ∇Gfd ← XTc , YTc // Update global family data pool with samples of the current task

5 Xgoodware, Xmalware ← Gfd // Separate out goodware and malware samples from global family data pool

6 Rmalware = [] // Initialize empty list for malware replay samples

7 for family, Xfamily in Xmalware.items() do

8 if len(Xfamily) <= β then

9 Rmalware.append(Xfamily)

10 else

11 NXfamily = HDBSCAN(Xfamily, β)

12 Rmalware.append(NXfamily)

13 Rgoodware = random.sample(Xgoodware, len(Rmalware)) // Randomly select goodware samples equal to

the number of malware samples

14 Xtrain = Concatenate((Rgoodware, Rmalware))

15 Ytrain = Concatenate(([0] ∗ len(Rgoodware), [1] ∗ len(Rmalware)))

A.2.3 HDBSCAN based Sampling (HS)

One of the reasons we endeavor to investigate to select samples based on malware family

is due to the variety of malware families. Selecting samples based on family itself has its

merits to offer diversity in the replay samples. We hypothesize that we can do even better

than family based reservoir sampling provided that we can sort out within family diversity.

In particular, if we use a clustering algorithm to cluster the samples of a particular malware

family in a low dimensional space, we can probably visually distinguish some patterns within

that family. With the reference of those clusters, we can choose to select samples which rep-

resent each of those small clusters in addition to the outliers within that family. Intuitively,

this process might better represent diversity in the selected replay samples.

109

A.2. Replay Buffer Techniques

Among the various clustering algorithms, hierarchical density-based spatial clustering of ap-

plications with noise (HDBSCAN) [89] is the most robust clustering algorithm that can

handle noisy data points and can also offer to detect outliers. HDBSCAN is built upon

DBSCAN. HDBSCAN overcomes the limitations of DBSCAN by offering to identify clusters

of varying density and faster computation. HDBSCAN algorithm starts with finding out

the core distances between data points. Points in denser regions would have smaller core

distances while points in sparser regions would have larger core distances. HDBSCAN will

help us to identify the outliers with the family based data distribution. Among the various

parameters of HDBSCAN, minimum cluster size min-cluster-size impacts the most to the

quality of the resulting clusters. Minimum cluster size parameter puts a threshold on the

least number of samples to have to consider a cluster. Reducing the min-cluster-size will

produce more clusters and increasing the min-cluster-size will produce less number of

clusters and produce more outliers. There is another important parameter called minimum

samples min-samples which is by default set equal to the min-cluster-size in the imple-

mentation [90]. While tuning min-cluster-size, it is also crucial to tune min-samples,

otherwise HDBSCAN might produce either significant high or low number of outliers.

A detailed algorithmic representation of the HDBSCAN based sampling is provided in Al-

gorithm 4. In this configuration of sample selection, we impose another specification on top

of the constraint C of the number of replay samples per family β. As HDBSCAN will be

able to select both outliers (discriminative samples) and non-outliers (representative sam-

ples), we hypothesize that we might not need to include all of the samples of the current

task TN . Instead we can effectively down-sample further and select both discriminative and

representative samples after combining both the stored samples till task TN−1 and samples

from the current task TN . In the algorithm, we can see that we do not down-sample for the

first task as the initial model needs to be good enough with enough number of samples and

it is usually not recommended to down-sample in the initial task. From the second task,

we update the global family data pool Gfd with data from current task (XTc , YTc) and then

start sub-sampling and down-sampling processing with HDBSCAN (see line 5 − 13). For

this configuration, the selected goodware and malware samples (Rgoodware, Rmalware) form the

training samples (Xtrain, Ytrain) of the current task TN .

110

A.3. Evaluation

A.3 Evaluation

A.3.1 FRS

Based on our exploratory analysis, we choose and study three configurations of family based

reservoir sampling (FRS) such that FRS : {200, 500, 1000}/f and compare the performance

with the baselines explained above. The performance configuration is used for further com-

parison in next set of investigations. For each task other than the initial task, in each of

these FRS configurations, the replay samples are mixed with the task specific samples and

randomly shuffled. Standard scaler is used to standardize the samples before starting the

training. Training procedure is shown in Algorithm 5. Training is performed in batch-by-

batch with stochastic gradient descent (SGD) optimization.

We can see the performances of each of the studied configurations in Figure A.1. The fig-

ure shows the average accuracies of each task as the task grows. As expected all the three

FRS configurations outperform GRS-20%. Compared with GRS-50%, FRS-1000/f performs

better with a slight margin, FRS-500/f yields relatively similar performance, and FRS-200/f

performance slightly low. The average accuracies over all tasks (AT) and minimum accuracy

among all task (ÂT) can provide even better comparison among all these configurations.

For all the three configurations of FRS: {FRS − 200/f, FRS − 500/f, FRS − 1000/f},
AT = {94.9%, 95.1%, 95.3%} and ÂT = {93.5, 94.0, 93.9}, respectively. Compared to these

performances, GRS-20% and GRS-50% yield AT = 94.4, 95.0 and ÂT = 93.8, 94.2, respec-

tively. Carefully analyzing these results, we can see that RS − 500/f is actually performing

very closely to GRS − 50%. Even though FRS − 1000/f is performing slightly better com-

pared to GRS − 500%, the number of replay samples required for FRS − 1000/f is higher

than FRS − 500/f . Our goal is to get similar or better performance with as few replay

samples as possible. In this case, GRS − 500% seems to be a viable candidate to explore to

improve this even further.

Finally, the joint configuration yields AT = 95.9 and ÂT = 95.2 indicating that we still need

to improve the performance significantly. Even though, the gap among the performances

might seem to look small, this is significant for a security applications. In addition, the

dataset just spans over one year. Having a dataset that would span over multiple year could

111

A.3. Evaluation

magnify the impact of these replay configurations in a more realistic way.

Algorithm 5: Training Procedure.
Input : T – Set of Tasks

M – Model

β – Threshold number of samples per family

1 init S – Initialize standard scaler

2 init Gdp – Initialize global family data pool

3 init ξ – Initialize SGD optimizer

4 for Tc in T do

5 XTc
, YTc

← Tc

6 if Tc == 0 then

7 ∇Gdp ← XTc
, YTc

// Create global data pool with the samples from current task

8 Sscaler = S.partialFit(XTc
)

9 XTc
= Sscaler.transform(XTc

)

10 else

11 Xreplay, Yreplay ← SampleSelection(Gdp, β) // Get the replay samples and associated labels

12 XTc
, YTc

← Concatenate((XTc
, Xreplay)), Concatenate((YTc

, Yreplay))

13 ∇Gdp ← XTc
, YTc

// Update global data pool with the samples from current task

14 TrainingLoss = train(M, XTc , YTc , ξ)

A.3.2 FReS

For this set of investigations, we attempt to understand whether the latest samples or the

oldest samples in the queue of family based samples contribute most to yield a better perfor-

mance compared to FRS. A simplification of the oldest sample selection and latest sample

selection can be expressed as first in first out (FIFO) and last in first out (LIFO). Intuitively,

a family data queue will add new family samples at the end of the queue every time we en-

counter new samples. As such the sample update in the memory buffer will only happen in

LIFO method as the last set of N samples where N = {500, 1000} in the queue will change

as the task grows. On the other hand, the first set of N samples where N = {500, 1000} in

the queue will remain the same from the first task.

We perform our investigation with only two configurations of number of sample selection

{500, 1000} which we choose based on the results of our investigations of FRS. FRS−500/f

112

A.3. Evaluation

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Incremental Months

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97
Ac

cu
ra

cy

None
FRS-200/f

FRS-500/f
FRS-1000/f

GRS-20%
GRS-50%

Joint

Figure A.1: FRS: Accuracy over time with different configurations of FRS in Domain-IL.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Incremental Months

0.93

0.94

0.95

0.96

Ac
cu

ra
cy

FRS-500/f
FRS-1000/f

FReS-FIFO-500/f
FReS-FIFO-1000/f

FReS-LIFO-500/f
FReS-LIFO-1000/f

Figure A.2: FReS: Accuracy over time with different configurations of FReS in Domain-IL.

and FRS − 1000/f performed comparably with FRS − 50%. Hence, we only consider

only these two configurations for two FReS sample selection criteria – LIFO and FIFO.

113

A.3. Evaluation

Figure A.2 depicts the performances of each of the studied configurations. In the figure,

we can observe that {500, 1000} ∈ FReS − LIFO are clearly struggling to compete with

{500, 1000} ∈ FReS − FIFO and {500, 1000} ∈ FRS, specially in the later tasks such as

July, August, October, and December. AT and ÂT show a more clear quantitative standing

of the capacity of each of these configurations. AT = {94.8, 95.2} and ÂT = {94.3, 94.8}
for {500, 1000} ∈ FReS − LIFO, whereas AT = {95.1, 95.3} and ÂT = {94.8, 94.7} for

{500, 1000} ∈ FReS − FIFO. Both of the FReS-FIFO configurations are providing similar

performance compared to FRS. Both of the FReS-LIFO configurations, on the other hand,

are relatively performing slightly lower than FRS and FReS-FIFO. Even though, the score

difference is very low, we still would like to choose the performant one for these investigations.

From the next set of investigations, we only consider 500 samples per family (500/f) as we

would like to improve the performance of continual learning with as few samples as possible.

As we can see 500/f for FReS-FIFO is performing similar to FRS-500/f, we move forward

with this configuration. Even though 1000− f for FReS-FIFO is also performing similar to

FRS-1000/f, the number of replay samples is higher than 500/f configuration and our goal

is to choose the cheaper one. Hence we aim to improve the accuracy with 500/f sample

selection even further.

A.3.3 HS

As we have explained in the previous section, a density based clustering such as HDBSCAN

can further form sub-clusters within a family based data distribution which in turn can

be better to use as a reference to select samples within a family. Before we start running

experiments with default and varying parameters of HDBSCAN, we first endeavor to find

out whether HDBSCAN can actually provide sub-clusters within a family distribution and

whether they are visually distinguishable. As this is the primary motivation and hypothesis,

we would like to loosely confirm our intuition and whether this show us some direction or

not.

To perform this analysis, (i) first we randomly choose three families – emotet, installmonster,

and zusy among the top 100 malware families selected based on their frequencies, (ii) then

we utilize HDBSCAN to produce sub-cluster and their associated sub-cluster labels for con-

114

A.3. Evaluation

100 75 50 25 0 25 50

40

20

0

20

40

Jan - emotet - 854

100 50 0 50 100

Jan - installmonster - 5223

100 50 0 50

Jan - zusy - 3090

100 75 50 25 0 25 50
20

10

0

10

20

30

Feb - emotet - 648

50 0 50 100

Feb - installmonster - 5722

50 25 0 25 50 75 100

Feb - zusy - 2182

40 20 0 20

60

40

20

0

20

40
Mar - emotet - 753

50 25 0 25 50

Mar - installmonster - 3494

40 20 0 20 40

Mar - zusy - 2068

Figure A.3: Family data distribution in tSNE projection and colors represent the different

cluster labels produced by HDBSCAN.

secutive three months (i.e., January, February, and March), (iii) afterwards, we get the 2D

tSNE projections of the family data distribution, and (iv) finally, we label the points of

the tSNE projection based on the sub-cluster labels produced by HDBSCAN. We show the

visualization of this analysis in Figure A.3. Note that colors in each of the sub-figure are

independent and similar color in different sub-figure does not indicate the same cluster.

The visualization initially confirms our hypothesis and we can, with some confidence, distin-

guish different clusters in each of the family based distribution if different task month. This

115

A.3. Evaluation

Table A.2: HS results with different HDBSCAN parameters. HS-500/f represents

default HDBSCAN, and HS-500/f (X-Y) represents tuned HDBSCAN where X :

min-cluster-size and Y : min-samples.

Metrics HS-500/f HS-500/f (10-5) HS-500/f (30-2) HS-500/f (50-2) FRS-500/f

AT 94.0 94.7 94.6 94.6 95.1

ÂT 92.9 94.2 92.7 92.7 93.6

provides us an indication that HDBSCAN based sample selection (HS) might be a better

candidate for sample selection.

As we have mentioned before in Section A.2.3 that there are two important parameters of

HDBSCAN – min-cluster-size and min-samples. In addition to the default HDBSCAN

configuration, we selectively tune these two parameters to perform another three sets of

experiments. We perform experiments with increasing min-cluster-size which include

{10, 30, 50} and reducing the min-samples to {2, 5}. While there can be any number of

combinations of parameters that can be utilized to perform the experiment, we see from

our results that increasing the min-cluster-size significantly does not contribute to more

percentage in the accuracy and reducing the min-samples also does not help to boost the

performance. Table A.2 shows the results of each of these four experiments. Note that

we only perform experiments with 500-samples per family for HS. We also compare the

performance of these set of experiments with FRS-500/f.

We can see from the table that the best performant HS configuration is with min-cluster-size =

10 and min-samples = 5 yielding AT = 94.7 and ÂT = 94.5. To our surprise, however,

none of the HS configurations perform either on par or exceed FRS-500/f configuration.

These results indicate that HDBSCAN based sampling may be failing to capture a better

discriminative and representative samples.

116

A.3. Evaluation

Table A.3: Summary of the Experiments. The average accuracy over all tasks AT and

the minimum accuracy among the tasks ÂT for the sets of experiments. Bold indicates

performances which are higher than that of at least GRS-50%.

Approach Method
Domain-IL

AT ÂT

Baselines

None 92.2±1.0 91.8±1.1
GRS-20% 94.4 93.8±1.1
GRS-50% 95.0±1.0 94.2±1.2
Joint 95.9 93.7

Regularization

EWC 92.8 90.0

EWC-O 93.1 91.5

SI 93.0 91.1

Replay

LwF 93.2 91.7

GR 93.2 91.6

GR-D 93.2 91.7

RtF 93.1 91.1

BI-R 93.4 91.6

Replay +

Exemplars

ER 75.9 65±4.5
A-GEM 77.5 67.4

Preliminary

diversity

aware

replay

(ours)

FRS-200/f 94.9 93.5±1.8
FRS-500/f 95.1 94.0±1.2
FRS-1000/f 95.3 93.9±1.6
FReS-FIFO-500/f 95.1 94.8±1.0
FReS-FIFO-1000/f 95.3±1.0 94.7± 1.5

FReS-LIFO-500/f 94.8 94.3±1.0
FReS-LIFO-1000/f 95.2 94.8± 1.0

HS-500/f (10-5) 94.7 94.2

117

A.4. Analysis of the Preliminary Replay Buffer Techniques

A.4 Analysis of the Preliminary Replay Buffer Tech-

niques

We provide a summary of results from all experiments conducted for the replay sample selec-

tion configurations discussed in this appendix, shown in Table A.3. Specifically, we explored

various techniques for selecting replay samples that capture the most discriminative and rep-

resentative samples from family-based data distributions. Our investigation compares the

performance of these techniques with GRS-50% and Joint configurations. In total, we exper-

imented with over 10 variants of replay sample selection, categorized into FRS, FReS, and

HS. Table A.3 showcases only the effective diversity-aware replay techniques that achieved

average accuracy over all tasks (AT) either on par with or exceeding FRS-50%.

Our exploration of FRS to select samples from a family based distribution which yielded

relatively better performance with similar memory budget compared to global reservoir sam-

pling. In the table, we can see FRS-500/f and FRS-1000/f configurations of this setting as

performant with more than 95% accuracy. Then our exploration on utilizing either the lat-

est or the oldest samples for the memory buffer proved to be also effective as well. We can

see from the table that 3 out of four configurations of this setting (i.e., FReS-FIFO-500/f,

FReS-FIFO-1000/f, and FReS-LIFO-1000/f) provide more than 95% accuracy. Realizing

that these two settings still may lack to capture the most discriminative and representa-

tive samples, we expand our exploration into clustering based technique namely HDBSCAN

technique the sample selection. Our results show that HDBSCAN based sample selection

(HS) is relatively less effective.

In summary, our preliminary work demonstrates that state-of-the-art performance can be

achieved using a diversity-aware replay-based continual learning technique for malware classi-

fication. This initial investigation provided valuable insights that informed the development

of a more advanced diversity-aware replay continual learning technique for malware classifi-

cation, as presented in Chapter 5.

118

	Continual Learning for an Ever Evolving and Intelligent Malware Classification System
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	Research Contribution

	Background & Preliminaries
	Continual Learning
	Continual Learning Training Protocols
	Continual Learning Scenarios
	Task Incremental Learning (Task-IL)
	Domain Incremental Learning (Domain-IL)
	Class Incremental Learning (Class-IL).

	Continual Learning vs. Related Learning Paradigm
	Online Learning
	Transfer Learning

	Catastrophic Forgetting
	Overcoming Catastrophic Forgetting
	Regularization Methods
	Replay Methods
	Adaptive expansion methods

	Continual Learning in Malware Domain
	Malware Domain
	Continual Learning Scenarios for Malware Classification
	Dataset
	Model Selection and Training
	Implementation Details
	Baselines
	Metrics

	Catastrophic Forgetting for Malware Classification
	Introduction
	Continual Learning Techniques Studied
	Evaluation
	Partial Replay with Stored Data
	Discussion
	Conclusion

	Malware Analysis with Diversity-Aware Replay
	Introduction
	Exploratory Analysis of EMBER
	Additional Baseline – Global Reservoir Sampling (GRS)
	Diversity Aware Replay
	Isolation Forest-based Sampling (IFS)
	Procedure
	Anomalous Weights-based Sampling (AWS)

	Evaluation
	EMBER
	Android APK File - AZ

	Discussion
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work
	Analysis of Complex Image Data vs. Malware Data
	Continual Learning for Dynamic Malware Analysis
	Harnessing the Advancement of Generative AI
	Continual Large Language Model for Malware Analysis
	Generalization of the System

	Publications
	Continual Learning & Malware Analysis
	Traffic Analysis & Website Fingerprinting
	Quantum Secure Network

	References
	Appendices
	Additional Replay Buffer Techniques
	Comparison of the Required Number of Replay Samples
	Replay Buffer Techniques
	Family based Reservoir Sampling (FRS)
	Family based Recency Sampling (FReS)
	HDBSCAN based Sampling (HS)

	Evaluation
	FRS
	FReS
	HS

	Analysis of the Preliminary Replay Buffer Techniques

