
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2024

GoalBERT: Goal-Directed ColBERT for Iterative Retrieval GoalBERT: Goal-Directed ColBERT for Iterative Retrieval

Ben Giacalone
bsg8294@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Giacalone, Ben, "GoalBERT: Goal-Directed ColBERT for Iterative Retrieval" (2024). Thesis. Rochester
Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11754?utm_source=repository.rit.edu%2Ftheses%2F11754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

GoalBERT: Goal-Directed ColBERT for Iterative Retrieval

by

Ben Giacalone

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in Computer Science

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

May 2024

Thesis Comittee

Richard Zanibbi, Thesis Advisor

Weijie Zhao, Thesis Reader

Arthur Azevedo de Amorim, Thesis Observer

GoalBERT: Goal-Directed ColBERT for Iterative Retrieval

by

Ben Giacalone

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Department of Computer Science
in partial fulfillment of the requirements for the

Master of Science Degree
at the Rochester Institute of Technology

Abstract

We dissect and extend ColBERT, a state of the art multi-vector retrieval
model. We first perform a number of experiments to identify the role struc-
tural tokens (i.e. [CLS], [SEP], [MASK], [Q]) play in retrieval. The most
consequential findings are that (1) [MASK] tokens can be remapped to their
closest non-[MASK] embedding without a significant degradation in perfor-
mance, (2) the existence of [MASK], [Q], and [D] does not really affect the
contextualization of query text tokens, and (3) [CLS] and [SEP] can act as
“summary” embeddings for the model. In another set of experiments, we ex-
tend the number of [MASK] tokens to far greater than the number it has been
trained with, finding performance to crater when removing all [MASK]s, shoot
up as the number of [MASK]s increases to around 9, then plateau afterwards,
with no significant reduction in performance. Using this information, we pro-
pose GoalBERT, an iterative retrieval model that uses our findings to select
and add weight to terms using a reinforcement learning-based strategy. We
compare this model to Baleen, another ColBERT-derived iterative retrieval
model, to identify how it performs against the full Baleen pipeline and against
just its retrieval component. Though our model underperforms over the base-
line, we identify this is due to placing too much responsibility on the retriever,
and identify promising future directions to take the research.

iii

Acknowledgments

The second chapter was a paper submitted to the European Conference on
Information Retrieval (ECIR) 2024. My thanks to my co-authors of the paper,
Greg Paiement and Quinn Tucker. All experiment designs and runs, and most
text reported in the second chapter were created by myself, but were informed
by an earlier paper written with Greg and Quinn.

iv

Contents

List of Figures vii

List of Tables xi

1 Introduction 1

2 ColBERT: Structural Tokens and [MASK] 3
2.1 Methodology and Experimental Designs 5
2.2 Results . 6
2.3 Discussion . 9

3 Additional Stucture Token Experiments 11
3.1 Introducing [PAD] . 11
3.2 RQ3: Do [D] and [Q] tokens modify query representations? . . 12
3.3 RQ4: Do [CLS] and [SEP] aggregate information across the

whole query? . 13
3.4 Summary . 16

4 ColBERT: More Experiments With [MASK] 19
4.1 Related Work . 21
4.2 Methodology . 22
4.3 Results . 25
4.4 Conclusion . 30

5 Baleen 32
5.1 Task . 32
5.2 The Baleen System . 33

v

CONTENTS vi

5.2.1 Retriever . 35
5.2.2 Condenser . 38
5.2.3 Reader . 39
5.2.4 Conclusion . 39

6 GoalBERT 40
6.1 Background . 42

6.1.1 Reinforcement Learning 42
6.1.2 Reinforcement Learning for Information Retrieval . . . 43

6.2 Methodology . 43
6.2.1 GoalBERT . 43
6.2.2 RQ1: How do the number of MASKs impact perfor-

mance and training stability? 48
6.2.3 RQ2: How does GoalBERT compare against Baleen and

FLIPR? . 49
6.3 Results . 50

6.3.1 RQ1: How do the number of MASKs impact perfor-
mance versus training stability? 50

6.3.2 RQ2: How does GoalBERT compare against Baleen and
FLIPR? . 51

6.4 Discussion . 52
6.5 Conclusion . 56

7 Conclusion 58

8 Bibliography 60

List of Figures

2.1 Distribution of cosine distance (1− cos(e⃗, e⃗′)) for token embed-
dings before and after query token reordering (MS MARCO,
RQ2). For brevity not all tokens are shown, but the general
trend of higher variance holds for all [MASK] tokens. Left:
Cosine distances for queries starting with “what is”. Right:
Cosine distances without requiring queries to start with “what
is”. [QUERY:3] and [QUERY:5] are the first and third text to-
kens, respectively; [MASK:13] represents the [MASK] token at
position 13, and [MASK:32] represents the final [MASK] input
token. 8

3.1 RQ4: Illustration of differences in query token embeddings for
the query “what is primary occupancy in the fha loans” (first
two principal components shown). The projected embeddings
have been numbered by their position in the query, starting
from 0. 17

3.2 A visualization of how contextualization and scoring is per-
formed for RQ4. For a given query, a relevant (rel≥2) and
irrelevant (rel=0) passage is concatenated together and con-
textualized as a single passage. The embeddings for the two
passages are then separated again and scored against the query
embeddings. 18

vii

LIST OF FIGURES viii

4.1 Cosine similarity of embedded tokens to each non-[MASK] token
for positions 0 through 64. A cyclical pattern attending to the
most relevant terms in the query (e.g. “period”, “calculus”,
“california”, “austria”) can be seen, both before and after 32
tokens (the length trained with). 20

4.2 Left column: Cosine distance after tokens are switched from
”what is” to ”is what” in ColBERTv1 vs. ColBERTv2. We
see the same trend of [Q] and [MASK] tokens having the most
shifting, and an overall increase in shifting when “what is” is
not a requirement (right column). The contrast between [Q]

and [MASK] versus other tokens is more apparent in ColBERTv2
than ColBERTv1. 27

4.3 nDCG@10, MRR(rel≥2)@10, nDCG@1000, and MAP(rel≥2)
increasing number of [MASK] tokens from 0 to 96 on TREC
2019-2020. The red line shows a standard length of 32 total
tokens. Significant differences from the baseline indicated with
a star (Bonferroni correction, p < 0.05). 29

5.1 A high level overview of the various components of Baleen.
A hop starts with the “Focused Late Interaction Passage Re-
triever” (FLIPR) using late interaction to retrieve a set of candi-
date passages. Two rounds of condensing result in a small (≤9)
set of sentences that are appended to the query/claim, forming
the context for the next hop. The process repeats for 2-4 hops,
then the query and context are processed by a reader model
that predicts whether the claim is supported or not, based on
the retrieved evidence. 34

5.2 An example of FLIPR’s scoring mechanism. Each document
only matches against the top-k (k=3 here) highest matching
tokens in the query. 36

LIST OF FIGURES ix

5.3 Query and fact tokens matched for the query “The star of
the Irish film directed by Paddy Breathnach played Marcus
Agrippa in the HBO drama series ‘Rome’.” and facts “Paddy
Breathnach — He directed ‘Man About Dog’, ‘Blow Dry’ and
‘Shrooms’.” and “Allen Leech — Leech played Marcus Agrippa
on the HBO historical drama series ‘Rome’.”. The document
being matched here is for the movie “Man About Dog”, which
connects the two previously retrieved facts. 37

6.1 PCA projected query embeddings in document space. Circles
have been drawn to identify clusters and their associated concepts. 41

6.2 The relationship between [MASK] embeddings, non-[MASK] em-
beddings, and the probability distributions they generate. The
closer a [MASK] embedding is to a query text embedding, the
higher the probability will be of this embedding being present
in the generated query. 44

6.3 The proposed system, GoalBERT applied to fact verification. In this

example, the model attempts to verify whether the original query

about novelists is true. On each hop, the model contextualizes the

current query combined with evidence passages (i.e. the context)

and concatenated with some [MASK] tokens to produce a set of em-

beddings. For each [MASK] embedding, we generate a probability

distribution using the distance from that [MASK] embedding to every

non-[MASK] embedding, then sample these distributions to generate a

query. This query is used to retrieve the next piece of evidence. Once

the system has performed n number of hops (n is up to the user), the

context can be passed to a downstream reader to classify whether the

retrieved information verifies a claim or not. 45
6.4 Sentence-level EM (a) and F1 (b) when training with 1, 2, 3,

4, 6, and all [MASK]s. 2-hop claims from the HoVer dev set are
used for evaluation. 51

6.5 Query and [MASK] embeddings before and after 1000 training
iterations, for the query “Greater Swiss Mountain Dog and Har-
rier are both dog breeds.”. Embeddings projected with PCA fit
on query and [MASK] embeddings from Iteration 0. [MASK]

embeddings are in red, while non-[MASK]s are in black. 54

LIST OF FIGURES x

6.6 Query and [MASK] embeddings before and after 1000 training
iterations, for the query “Before I Go to Sleep stars an Aus-
tralian actress, producer and occasional singer.”. Embeddings
projected with PCA fit on query and [MASK] embeddings from
Iteration 0. [MASK] embeddings are in red, while non-[MASK]s
are in black. 54

List of Tables

2.1 Replacing structural token embeddings with other query token
embeddings (TREC 2019/2020, RQ1). Maximum metric values
are in bold; statistically significant differences from “None” are
shown with a dagger (p < 0.05, Bonferroni-corrected t-tests).
“All [X]” remaps [CLS], [SEP], [Q], and [MASK]. 7

3.1 RQ3: Results for comparing our control setting with a setting
where [Q] is replaced by [D] (TREC 2019/2020 dataset). None
of the metric differences are statistically significant (t-test, p <
0.05). 13

3.2 Results for comparing our control setting with a setting where
[Q] is replaced by [D]. P-values have been corrected with Bon-
ferroni correction. Statistically significant values have been in-
dicated with a dagger. 14

3.3 RQ4: Results from our six settings where we modify the query
(keeping all tokens, keeping just [CLS], and keeping just [SEP])
and the documents (keeping all tokens and keeping just peri-
ods). Each cell corresponds to the percent of time the relevant
(rel≥2) passage was selected over the irrelevant (rel=0) passage. 16

4.1 Replacing structural token embeddings by other query token
embeddings (TREC 2019-2020, RQ1). Maximum values are
in bold; significant differences from “None” are shown with a
dagger (p < 0.05, Bonferroni-corrected t-tests). 25

xi

LIST OF TABLES xii

4.2 Changing the maximum length of queries from 32 to 128 with
[MASK] padding. Maximum values are in bold; significant differ-
ences from “32” are shown with a dagger (p < 0.05, Bonferroni-
corrected t-tests). 26

6.1 Sentence-level EM and F1 for GoalBERT and Baleen, for dev
set claims requiring 2, 3, and 4 hops, as designated by the HoVer
dataset. “All” corresponds to average performance across all hops. 52

6.2 Passage-level EM and F1 for GoalBERT and Baleen, for dev set
claims requiring 2, 3, and 4 hops, as designated by the HoVer
dataset. “All” corresponds to average performance across all
hops. 52

6.3 MRR@25 for GoalBERT and FLIPR, for claims requiring 2, 3,
and 4 hops, as designated by the HoVer dataset. “All” corre-
sponds to average performance across all hops. 53

Chapter 1

Introduction

ColBERT [14] is a neural retrieval model that, when released, outperformed
other popular neural retrieval models, such as ANCE [37]. Unlike most other
contemporary models, it represents documents and queries as multiple vectors
instead of a single “summary” vector for each. This is done by simply using
every embedding produced by a token. Documents are ranked via the MaxSim
operator, in which each query and document embedding is scored by cosine
similarity, and the highest score for each query embedding is summed together.

Our goal with this thesis is to train a late-interaction model using rein-
forcement learning to retrieve documents that maximize some reward function.
The approach we use relies heavily on how structural tokens in ColBERT are
used in scoring, we thus devote much time investigating these tokens. These
tokens consist of [CLS] and [SEP], tokens that wrap the beginning and end-
ings of queries, respectively, [Q], a token that indicates whether the input
corresponds to a query or document, and [MASK], a token used to pad queries
that is also used in the document scoring process.

In Chapter 2, we primarily look at [MASK] and [Q] tokens. We remap all
[MASK] tokens to their most similar non-[MASK] token embedding (as mea-
sured by cosine similarity), and find that this causes no significant reduction
in performance, indicating [MASK] tokens primarily perform term weighting.
We also switch the first two words of queries starting with “what is” to the
end of the sentence and monitor the change in embedding representation for
special tokens, and find that [CLS] and [SEP] hardly change, while [Q] and
[MASK] tokens dramatically change.

1

CHAPTER 1. INTRODUCTION 2

In Chapter 3, we perform additional experiments on [MASK] tokens, then
study [Q], [CLS], and [SEP] in more detail. We find that the [Q], [D], and
[MASK] tokens have little effect on the contextualization of query text tokens,
given that their representations barely change when we remove all [MASK]
tokens or replace [Q] with [D] or [PAD]. We also show that [CLS] and [SEP]

outperform the first query text token when used in isolation as a single-vector
dense retrieval model, indicating these tokens may be aggregating context
across the query.

In Chapter 4, we focus more on the [MASK] tokens. We extend the number
of [MASK]s up to 128, far greater than it has been trained with, and notice no
significant performance degradation, indicating these tokens simply add weight
to the same tokens over and over again. We also see that though removing all
MASKs does not cause a huge loss in performance, as the number of MASKs
increase, performance quickly shoots upwards, up until the expected number
of MASKs are provided. We also migrate from ColBERT v1 to ColBERT
v2 [24] and confirm the results of Chapter 2.

In Chapter 5, we introduce our model for comparison, Baleen [13]. Baleen
is a late interaction model proposed by the authors of ColBERT that retrieves
from a document corpus in multiple steps to verify multi-hop claims. We
examine each component of Baleen to understand its approach, and define the
multi-hop open domain claim verification task that our proposed system is
evaluated on.

In Chapter 6, we propose GoalBERT. Based on our finding that [MASK]
tokens can be remapped to their nearest non-[MASK] embedding without any
penalty, we treat the model as a probabilistic query generator, where the cosine
similarity of [MASK] tokens to query text embeddings are used to parameterize
a probability distribution indicating the probability of a weight being added
to a token. The system then repeatedly performs retrieval to find evidence to
satisfy the query. We compare our approach to Baleen, and although we find
that the system performs poorly in comparison, we show that this is due to
the problem formulation, not the training strategy, which we show works. We
finish by highlighting new research directions based on these results.

Chapter 2

ColBERT: Structural Query
Tokens and [MASK]

In this chapter, we start our examination into structural tokens in ColBERT,
focusing mainly on the [MASK] token used to pad queries. Building off our
initial results here with [MASK], Chapter 3 then focuses on [CLS], [SEP], [Q],
and [D].

The ColBERT [14] retrieval model uses BERT [8] to produce token embed-
dings for collection (“document”) and query passages. Typically, candidate
documents are retrieved using dense retrieval on embedded tokens [37, 44],
and candidates are then re-scored using the sum of maximum cosine similari-
ties between each query token embedding and its most similar document token
embedding (referred to as the MaxSim operator). This token-based rescoring
generally improves retrieval effectiveness, and is more interpretable than dense
retrieval models.

Interestingly, not all tokens used in ColBERT’s scoring are text tokens
or sub-tokens: some are structural tokens that mark locations and segments
of a token sequence to be embedded. For example, the token [CLS] always
appears at the input start, and [SEP] marks the end of the query or docu-
ment text tokens. ColBERT employs a single modified BERT model to create
contextualized embeddings for every document and query token, including
structural BERT tokens. A [Q] or [D] token appears immediately after the
[CLS] token, to signify whether a passage comes from a query or document,
and query sequences shorter than the input size (e.g., 32 tokens) are padded

3

CHAPTER 2. COLBERT: STRUCTURAL TOKENS AND [MASK] 4

with [MASK] tokens at the end of the token sequence 1. Document sequences
shorter than the expected document length (e.g., 180 tokens) are padded with
[PAD] instead. Unlike [MASK] tokens, [PAD] embeddings do not participate in
the MaxSim operation. The following two examples illustrate the query and
document token input encodings:

Query: [CLS] [Q] cost of pools swim spa [SEP] [MASK] ... [MASK]

Document: [CLS] [D] prices ... swim spa . [SEP] [PAD] ... [PAD]

In previous work, Formal et al. [10] considers why ColBERT’s ranking
mechanism tends to outperform standard lexical models such as BM25. In
their analysis, they focus on text tokens in queries, and find that tokens with
high Inverse Document Frequency (IDF) produce more exact matches in Col-
BERT query/document token alignments (e.g. Q: “pool”, D: “pool”) while
low IDF terms produce more inexact matches (e.g. Q: “is”, D: “and”). Fur-
thermore, embeddings for low IDF tokens tend to shift position more in the
embedding space, and their removal perturbs ranking more than removing
high IDF tokens.

MacAvaney et al. [17] find that misspellings harm retrieval in ColBERT
more than lexical models (e.g. BM25), and that ColBERT increases document
scores if non-relevant content is appended to the end of the token sequence.
Curiously, they also find that appending relevant terms to the input sequence
actually decreases rank scores, even after controlling for document length –
perhaps this interferes with the distribution of tokens used for embedding.

The original ColBERT paper proposes that [MASK] tokens provide a form
of query augmentation, providing both term re-weighting and query expansion.
In [33] and [32], the authors demonstrate that [MASK] tokens generally do not
match document terms not found in the query (i.e., do not approximate query
expansion), requiring these terms to be added explicitly. Instead, [MASK]

tokens primarily weight query tokens. Wang et al. [34] also find that for
many ColBERT based models, using only special tokens for retrieval ([CLS],
[SEP], [Q], [MASK]) is nearly as effective as using all token embeddings, even
outperforming the case where only low IDF query embeddings are used.

1[MASK] was originally devised for BERT to represent a “hidden” token in the input, and
is used during training for masked token prediction tasks.

CHAPTER 2. COLBERT: STRUCTURAL TOKENS AND [MASK] 5

In the remainder of this chapter, we consider how structural tokens impact
scoring in ColBERT, focusing in particular on [MASK]. We present experiments
that address the following research questions:

RQ1. Do [MASK] tokens perform more than just term weighting?

RQ2. How sensitive are [CLS], [SEP], [Q], and [MASK] to query token order?

2.1 Methodology and Experimental Designs

Implementation, Datasets, and Metrics. We use a ColBERT v1 check-
point provided by the University of Glasgow trained on passage ranking triples
for 44k batches,2 and run experiments on a server with 4 Intel Xeon E5-2667
v4 CPUs, NVIDIA GeForce RTX 2080 Ti GPUs, and 512 GB RAM. We make
use of two datasets in our experiments:

1. MS MARCO [3]’s passage retrieval dev set (8.8 million documents, 1
million queries, binary relevance judgements). Each query has at most
1 matching document. We use this dataset when we want to observe
statistics for queries (e.g. cosine distance from one query embedding to
another).

2. A combined dataset of the test queries from the TREC 2019 [7] and
2020 [6] deep passage retrieval task (99 queries, graded relevance judge-
ments). Collection documents are the same as MS MARCO. We use this
dataset for experiments focused upon retrieval quality.3

For MS MARCO, documents with score 2 are considered relevant; how-
ever, we consider relevance at 1, 2, and 3 to identify the effect of binarization
at different relevance grades. We use MRR@10 to characterize the position
of top results, MAP to characterize performance for complete rankings, and
to complement MAP we use nDCG@k measures (k ∈ {10, 1000}) to utilize
graded relevance labels from the TREC data.

Experiments. RQ1: Do [MASK] tokens perform more than just term
weighting?

2http://www.dcs.gla.ac.uk/ craigm/ecir2021-tutorial/colbert model checkpoint.zip
3Running the TREC test queries takes only about 15 minutes to complete using a mul-

tithreaded Rust program that will be publicly available for the conference.

CHAPTER 2. COLBERT: STRUCTURAL TOKENS AND [MASK] 6

We compare ColBERT with a variant where each [MASK] token embedding
is replaced by its most similar query token embedding. This forces ColBERT
to explicitly perform term weighting (i.e. increasing the weight of a term
by copying its representation): copying the nearest query embedding cannot
introduce new terms, or perform “soft weighting” by slightly increasing the
weight of multiple query tokens. We compare retrieval metrics across three
conditions: (1) no token remapping, (2) remapping all structural query tokens
([CLS], [SEP], [Q], and [MASK]), and (3) remapping only [MASK] embeddings,
allowing [MASK] tokens to also copy the representation of [CLS], [SEP], and
[Q]. We hypothesize forcing [MASK] representations to the closest query em-
bedding causes the model to perform worse, since it removes any ability to
add new terms to the query. We use the TREC 2019-2020 dataset for this
experiment.

RQ2: How sensitive are [CLS], [SEP], [Q], and [MASK] to query token
order?

We wish to study the effect of query token position on structural token
contextualization. Simply shuffling the text tokens could change the meaning
of the query, so to control for semantics we transform queries of the form
“what is ...” into “... is what” (only moving the first two text tokens to
the end). To further prevent accidental changes in semantics in the altered
queries, we only use queries that are 3-8 tokens long (12,513 queries in the MS
MARCO dev set fit this criteria). As a baseline, we experiment with the same
reordering pattern, but without requiring the first two tokens to be “what
is”. We then measure the cosine distances between the structural embeddings
of the original and altered queries, and hypothesize that [Q] and [MASK]

embeddings will change more than [SEP] and [CLS] under this reordering.

2.2 Results

RQ1: Do [MASK] tokens perform more than just term weighting?
As seen in Table 2.1, replacing all structural token embeddings with their
closest text token embedding causes a slight reduction in all metrics other
than MAP(rel=1), although these are not statistically significant differences.
Surprisingly, remapping just [MASK] embeddings appears to improve MAP,
nDCG@10, and nDCG@1000 slightly over both “None” and “All” conditions.
For MAP(rel=1), this is a significant increase (1.5%). This contradicts our hy-

CHAPTER 2. COLBERT: STRUCTURAL TOKENS AND [MASK] 7

Table 2.1: Replacing structural token embeddings with other query token
embeddings (TREC 2019/2020, RQ1). Maximum metric values are in bold;
statistically significant differences from “None” are shown with a dagger (p <
0.05, Bonferroni-corrected t-tests). “All [X]” remaps [CLS], [SEP], [Q], and
[MASK].

Structural Token Remapping
Metric None All[X] [MASK]

Binary Relevance
MAP(rel=1) 0.447 0.454 †0.462
MRR(rel=1)@10 0.930 0.924 0.923
MAP(rel=2) 0.450 0.444 0.457
MRR(rel=2)@10 0.851 0.820 0.837
MAP(rel=3) 0.366 0.362 0.372
MRR(rel=3)@10 0.557 0.560 0.563

Graded Relevance
nDCG@10 0.689 0.685 0.694
nDCG@1000 0.680 0.673 0.684

pothesis that remapping [MASK] embeddings would harm performance based
on previous analyses. It is also interesting because [MASK] tokens comprise
most of the input sequence when queries are short, meaning that the number
of [MASK] tokens and the number of query tokens to map to could be im-
pacting the results. For MRR@10, both “All” and “[MASK]” conditions are
roughly 2-3% lower than the baseline, but this difference is not significant.

RQ2: How sensitive are [CLS], [SEP], [Q], and [MASK] to query token
order? We compared the shift in [CLS], [Q], [SEP], and two [MASK] em-
beddings before and after we move the first two query tokens to the end and
reversing their order. For comparison, we also include the shift in two query
text token embeddings as well. In Figure 2.1, QUERY:3 corresponds to the
third token in the tokenized query, which in this case is always “what”. Right
away, we can see distinct differences in how cosine distances are distributed
for CLS, SEP, QUERY:3, and QUERY:5 versus Q, MASK:13, and MASK:32.
The former group shows barely any shift, while the latter consistently shows
large shifts, with higher variation.

CHAPTER 2. COLBERT: STRUCTURAL TOKENS AND [MASK] 8

CLS Q QUERY:3 QUERY:5 SEP MASK:13 MASK:32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
sin

e
Di

st
an

ce

CLS Q QUERY:3 QUERY:5 SEP MASK:13 MASK:32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) “what is ...” → “... is

what”
(b) All queries: “1 2 ...” → “...
2 1”

Figure 2.1: Distribution of cosine distance (1−cos(e⃗, e⃗′)) for token embeddings
before and after query token reordering (MS MARCO, RQ2). For brevity not
all tokens are shown, but the general trend of higher variance holds for all
[MASK] tokens. Left: Cosine distances for queries starting with “what is”.
Right: Cosine distances without requiring queries to start with “what is”.
[QUERY:3] and [QUERY:5] are the first and third text tokens, respectively;
[MASK:13] represents the [MASK] token at position 13, and [MASK:32] repre-
sents the final [MASK] input token.

CHAPTER 2. COLBERT: STRUCTURAL TOKENS AND [MASK] 9

As a control comparison, Figure 2.1 also shows what happens when we do
not restrict ourselves to queries that start with “what is” — that is, queries
like “airplane flights to florida” are allowed, which creates the somewhat un-
natural ad hoc-style query “to florida flights airplane” when shifted, and all
tokens show larger representational shifts in this condition; however, we find
that [CLS] and [SEP] and the [QUERY:3/5] text token embeddings vary far
less than the [Q] and [MASK] tokens’ representations, which are substantially
impacted by the change in query token ordering.

Note that while we tried to avoid semantic change when rearranging to-
kens in the experiment with “what is” queries, we found that there are still
queries that do not have their meanings preserved when performing the switch.
For example, a query like “what is some examples homogeneous” becomes
“some examples homogeneous is what”, changing the query from a request for
examples of “homogeneous” to asking for the definition of “homogeneous”.
When we filtered out queries containing the word “example”, the variance of
[QUERY:3] dropped from 8.53 · 10−4 to 7.73 · 10−4, while the variance of [Q]
had less of a proportional drop (2.07 · 10−2 to 2.06 · 10−2), indicating some
of the variance of non-[Q] or [MASK] embeddings may be due to these edge
cases.

2.3 Discussion

To our surprise, our experiment in which we replaced [MASK] tokens by their
most similar non-[MASK] query token yielded similar effectiveness to standard
ColBERT in the TREC 2019/2020 dataset, including a small statistically sig-
nificant increase in MAP when including weakly-relevant documents in the
relevant set. This suggests that we can reduce the number of nearest neighbor
lookups for identifying query token matches in documents. For short queries,
most of the input to ColBERT is [MASK] tokens, and so the number of unique
first-stage token retrievals may be a fraction of the full 32-token input size.

A related approach is described by Tonellotto et al. [29], where query
embeddings are dropped after contextualization based on frequency statistics.
However, rather than pruning a set number of tokens based on collection
frequency, we can instead multiply the weight of each query token embedding’s
score contribution by the number of [MASK] token embeddings most similar to
it. This would allow incorporating [MASK] embeddings in retrieving candidate

CHAPTER 2. COLBERT: STRUCTURAL TOKENS AND [MASK] 10

documents (as done in this chapter), but without having to consider [MASK]
tokens when pairing query tokens with document tokens using the MaxSim
operator.

With respect to interpretability, using [MASK] tokens for token weighting
simplifies the ColBERT scoring model conceptually as well as computationally.
As discussed earlier, the behavior of weighted text terms has been explored
extensively in previous work. However, this leaves a question of what role
[MASK] tokens play in retrieving candidates, which we did not consider in
our experiments – all embedded tokens have been used to retrieve candidate
documents in our experiments.

To summarize, we have provided new insights into how ColBERT encodes
structural tokens for retrieval. Through examination of our first research ques-
tion, we have found evidence that mask tokens have a very strong relationship
with term weighting, although additional study is needed to confirm the exact
nature of [MASK]’s influence on scoring. Furthermore, in our second experi-
ment we saw that while [CLS] and [SEP] are relatively insensitive to query
text token order, both [Q] and [MASK]’s representations are highly dependent
on the positional encodings assigned to query tokens.

In future work, we would like to examine the role of [CLS] and [SEP]

more closely. As shown in Figure 2.1, the embeddings for these two tokens
are far less prone to shift than [Q] or [MASK]. Initial analysis indicates that
[CLS] in the query tends to match to [CLS] in the document, while [SEP] in
the query tends to match ending punctuation. In Table 2.1, we also see that
allowing [MASK] to map to [CLS], [SEP], and [Q] generally produces a small
improvement in most effectiveness measures, though not to a significant degree
for most (with MAP(rel=1) being the exception in our first experiment).

We would also like to gain a better understanding of why mapping [MASK]

tokens to the nearest query token causes the small improvements in nDCG@10,
nDCG@1000, and MAP that we observed. One potential experiment in this
direction might be to append different fixed amounts of [MASK] tokens to
each query. This may reveal if having fewer [MASK] tokens causes the model
to move them closer to non-[MASK] embeddings, or if more [MASK] tokens
provide more opportunities for term weighting. Understanding this would
help produce both more effective and efficient BERT-based retrieval models
using late interaction between query and document embeddings.

Chapter 3

Additional Structure Token
Experiments

In Chapter 2, we showed how [MASK] embeddings primarily perform term
weighting, and that [MASK] and [Q] representations are heavily dependent on
the specific order of words in the query. In this chapter, we start by performing
some more experiments on [MASK] tokens — in particular, how the amount
and location of [MASK] tokens affect portions of the output. In a similar
vein, we then consider how [D] and [Q] tokens affect query contextualization.
To round out our investigation, we analyze the role of [CLS] and [SEP],
particularly their ability to aggregate “meaning” across a passage.

We use the following set of new research questions for this chapter to
structure our investigation:

• RQ3: Do [D] and [Q] tokens modify query representations?

• RQ4: Do [CLS] and [SEP] aggregate information across the
whole query?

3.1 Introducing [PAD]

In the previous section, we describe the structural tokens as [CLS], [SEP],
[MASK], [Q], and [D]. However, we have neglected to mention one last token:
[PAD]. This token is effectively a no-op token; it is typically used to pad

11

CHAPTER 3. ADDITIONAL STUCTURE TOKEN EXPERIMENTS 12

sequences to a common length during batch inference. The transformers

library [35] explicitly mentions the attention mechanism masks [PAD] tokens
such that they do not affect the computed embeddings of other tokens; we also
verified that the ColBERT codebase also does this. Thus, [PAD] tokens are
a useful way of removing a structural token without disrupting the positional
encodings of the following tokens (e.g. by moving the tokens afterwards up by
one in the sequence).

3.2 RQ3: Do [D] and [Q] tokens modify query rep-
resentations?

Given that ColBERT uses a single BERT model for both queries and docu-
ments, differing in the input only in whether [CLS] is followed by [Q] or [D],
does ColBERT change how a phrase is encoded when marked as a query or
document? As a preliminary analysis, we replace [Q] in queries with [D],
[MASK], and [PAD]. To visualize differences, we project the resulting embed-
dings onto the first two principal components of the document token embed-
dings. Afterwards, we check if replacing [Q] with [D] significantly affects
retrieval performance using the TREC 2019/2020 dataset.

To reduce the total number of parameters being trained, ColBERT uses
the same model for both query and document encodings. To distinguish be-
tween the two use cases, [unused0] and [unused1] from the BERTWordPiece
tokenizer are used as [Q] and [D] control tokens, respectively.

In Figure 3.1, we show projected query embeddings after [Q] is replaced
with [D] and [MASK]. From the figure, we can see that replacing [Q] with [D]

has virtually no effect on how other tokens in the query are contextualized, i.e.
how their representations are computed. The projected positions of the query
embeddings prior to the switch almost exactly overlap query embeddings after.
Even the embedding in position 2, which is usually where [Q] goes, does not
change its representation after it is replaced by [D]. This is in contrast with
switching [Q] with a [MASK] token, also shown in the figure. Though the
projected positions are close to how they were embedded prior to the switch,
they no longer overlap, as was in the previous case.

Table 3.1 shows the results of running our control setting on TREC ver-
sus a setting where D replaces [Q] in the query prior to contextualization.

CHAPTER 3. ADDITIONAL STUCTURE TOKEN EXPERIMENTS 13

Table 3.1: RQ3: Results for comparing our control setting with a setting
where [Q] is replaced by [D] (TREC 2019/2020 dataset). None of the metric
differences are statistically significant (t-test, p < 0.05).

Token Substitution
Metric None [Q] → [D]

MAP 0.447 0.447
nDCG@10 0.689 0.690
nDCG@1000 0.680 0.681
MRR@10 0.930 0.931

There is virtually no change in nDCG@10, nDCG@1000, and MRR@10 when
doing this. Thus, it appears that [Q] and [D] are interchangeable. We also
exchanged [Q] with PAD — effectively removing it from the query — and ob-
served no shift, indicating that similar to the result we got with [MASK] tokens
in RQ3, these tokens do not effect query text contextualization.

3.3 RQ4: Do [CLS] and [SEP] aggregate information
across the whole query?

In BERT’s training objective, [CLS] is treated as a special token that aggre-
gates whole document context. This is useful for single-vector dense retrievers
like ANCE, which map documents and queries to single vector representations
that act as “summaries” of the document/query. However, in ColBERT ’s
training process, [CLS] is treated as just another query or document token for
MaxSim to use. We wanted to understand if in this new role, this token still
acts as an information aggregator. We also extend this analysis to [SEP], since
it also does not have an explicit meaning in ColBERT’s training objective, and
it is the structural counterpart to [CLS].

Since ColBERT uses a pretrained BERT model as a base, one hypothesis
we have is that [CLS] and [SEP] act as single-vector dense retrievers. When
we examined what [CLS] and [SEP] tend to match to, we found that much of
the time, [CLS] in the query matches to [CLS] in the document, while [SEP]
matches to ending punctuation and itself.

To test this, we contextualize TREC queries and test three cases: removing

CHAPTER 3. ADDITIONAL STUCTURE TOKEN EXPERIMENTS 14

Table 3.2: Results for comparing our control setting with a setting where [Q]
is replaced by [D]. P-values have been corrected with Bonferroni correction.
Statistically significant values have been indicated with a dagger.

Setting Just First Just [CLS] Just [SEP]

MAP 0.036 † 0.115 † 0.160
nDCG@10 0.134 † 0.295 † 0.391
nDCG@1000 0.115 † 0.258 † 0.329
MRR@10 0.295 † 0.520 † 0.695

all query tokens except the first token in the query, removing all query tokens
except the [CLS] token, and removing all query tokens except the [SEP] to-
ken. We then compare the performance of each setting to each other. Our
hypothesis is that compared to using a single query text token, using just
[CLS] or just [SEP] is significantly better. We use the first query text token
since every query is guaranteed to have at least one text token, however we
could have also used a random query text token instead.

Table 3.2 shows the results of using only a single query token contex-
tualized by ColBERT. Compared to using the first token, using [CLS] or
[SEP] produces significant improvements across all metrics, indicating that
their representations ”summarize” key aspects of the query. Interestingly,
though [CLS] is explicitly trained to aggregate information over phrases its
given, using [SEP] seems to be noticeably better. We leave comparing [CLS]

and [SEP] and testing for a significant difference between the two as a future
experiment.

While our results indicate using just the [CLS] or [SEP] embedding as the
query performs better than using just the first query text embedding, we were
still left wondering why. In particular, we wondered why using just [SEP]

demonstrated consistent improvements over using just [CLS], especially since
[SEP] is not explicitly trained to aggregate global information at any point.

We thus next test the hypothesis that that [SEP] is better than [CLS]

at intra-passage search, e.g. the [SEP] query embedding is better at identi-
fying matches within a passage. This idea is based on our observations that
[CLS] generally matches against [CLS] in documents, while [SEP] overwhelm-
ingly matches against ending tokens (“.”, “)”, “[SEP]”). Since passages can

CHAPTER 3. ADDITIONAL STUCTURE TOKEN EXPERIMENTS 15

have multiple ending punctuation tokens, while all passages have one [CLS]

token, in theory, embeddings for these contextualized ending punctuation to-
kens could be “summarizing” parts of the passage, allowing [SEP] to match
to these sub-passage summaries.

To test this, we perform the following procedure, visualized in Figure 3.2.
For each query in the TREC 2019-2020 dataset, we take the first passage with
a relevance score of 2 or higher, take the first passage with a relevance score
of 0, then concatenate them together to produce a single conjoined passage.
The order in which sub-passage comes first is randomized, and each conjoined
passage is truncated to 180 tokens. After contextualization, we remove all
characters except periods, to isolate the effect of matching to ending punctua-
tion. Note that passages listed as having 0 relevance often come from the same
document as passages with scores of 2-3, making this a particularly challenging
task.

As an example, consider the query “where was napoleon born”, and the
passages “napoleon was born in 1769.”, with a relevance score of 3, and
“napoleon had 7 siblings”, with a relevance score of 0. We concatenate these
two passages to form the passage “napoleon was born in 1769. napoleon had 7
siblings.”, then run this through the ColBERT document encoder. Afterwards,
we separate this concatenated passage back into its constituent sub-passages,
obtaining a set of embeddings for each sub-passage. MaxSim is performed
between the query embeddings and these embeddings, with the expectation
that the relevant passage will be scored higher than the irrelevant passage.

Crucially, conjoined passages share a single [CLS] token, but each sub-
passage ends with a period. If [SEP] truly is aggregating sentence level context
by matching to ending punctuation, using just [SEP] should have a higher rate
of ranking the relevant passage higher than [CLS], since [CLS] in the query
would match to the conjoined [CLS], while [SEP] in the query would match
to one of the sub-passage’s ending punctuation, making it more fine grained.

We measure performance with all query tokens (baseline), just [CLS], and
just [SEP], measuring the accuracy. We also have a setting where we use all
document tokens instead of just periods as a baseline.

As shown in Table 3.3, by default, ColBERT is very good at intra-passage
retrieval, identifying the correct sub-passage in the joined document 84.5%
of the time using all query and document embeddings. When performing re-
trieval with just periods, however, performance drastically falls across all query

CHAPTER 3. ADDITIONAL STUCTURE TOKEN EXPERIMENTS 16

Table 3.3: RQ4: Results from our six settings where we modify the query
(keeping all tokens, keeping just [CLS], and keeping just [SEP]) and the doc-
uments (keeping all tokens and keeping just periods). Each cell corresponds
to the percent of time the relevant (rel≥2) passage was selected over the irrel-
evant (rel=0) passage.

All Doc. Tokens Just Periods

All Query Tokens 84.5% 58.8%
Just [CLS] 67.0% 57.7%
Just [SEP] 50.5% 52.6%

modifications, indicating periods in the document itself do not carry enough
representational information about the document to be the reason why [SEP]

outperforms [CLS] in the single-vector dense retriever case. Interestingly, in
both document modification settings, [CLS] outperforms [SEP], an inversion
of what we see in the previous experiment. Based on this evidence, we believe
better intra-passage search does not explain the prior experiment’s results.

3.4 Summary

In this chapter, we performed additional experiments surrounding structural
tokens in ColBERT. Starting with [Q] and [D] tokens, we analyzed both
visually and with metrics what happens if [Q] is replaced with [D], finding
little effect on the query embeddings, if at all. We also replace [Q] with
[PAD], effectively removing it, and find that this also has little effect on query
embeddings, indicating [Q] and [D] may not cause the model to treat queries
and documents differently. Next, we tried using just [CLS] and [SEP] when
performing retrieval to see if they aggregate information over the entire query,
finding that using these two tokens outperforms using the first query text
token embedding. However, when we tried to test the theory that this is
due to [SEP] matching to ending punctuation and [CLS] matching to itself,
by testing whether [CLS] or [SEP] is better at intra-passage search, [CLS]
outperformed [SEP].

CHAPTER 3. ADDITIONAL STUCTURE TOKEN EXPERIMENTS 17

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.2

0.1

0.0

0.1

0.2

1 2
3 4

5

6

7 8

9
10

11

1213

14

15

16

17

18 1920 21
22

23
24

25

26

27

28

2930

31 32
1 2

3 4

5

6

7 8

9
10

11

1213

14

15

16

17

18 1920 21
22

23
24

25

26

27

28

2930

31 32

what is primary occupancy in fha loans

Q
D

(a) Token embeddings in standard ColBERT (Blue) vs. replacing [Q]

with [D] (Orange).

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.2

0.1

0.0

0.1

0.2

1 2
3 4

5

6

7 8

9
10

11

1213

14

15

16

17

18 192021
22

23
24

25

26

27

28

2930

31 32

1 23 4

5

6

7 8

9

10

11

12
13

14

15

16

17

18
19

20 21
22

2324

25

26

27

28

29 30

31
32

what is primary occupancy in fha loans

Q
MASK

(b) Standard ColBERT (Blue) vs. replacing [Q] with [MASK] (Orange).

Figure 3.1: RQ4: Illustration of differences in query token embeddings for
the query “what is primary occupancy in the fha loans” (first two principal
components shown). The projected embeddings have been numbered by their
position in the query, starting from 0.

CHAPTER 3. ADDITIONAL STUCTURE TOKEN EXPERIMENTS 18

Figure 3.2: A visualization of how contextualization and scoring is performed
for RQ4. For a given query, a relevant (rel≥2) and irrelevant (rel=0) passage is
concatenated together and contextualized as a single passage. The embeddings
for the two passages are then separated again and scored against the query
embeddings.

Chapter 4

ColBERT: More Experiments
With [MASK]

In this chapter, we perform more experiments with the [MASK] token. In
order to understand how the model’s behavior changes as [MASK]s are added
and removed, we vary the [MASK]s from 0 to 128. We also visualize how
different [MASK]s match to non-[MASK] tokens, observing a repeating pattern
for weighting certain terms.

ColBERT [14]’s use of multiple token embedding vectors supports fine-
grained matching between queries and documents. The model ranks docu-
ments by adding the maximum similarity of a document token embedding to
each query token embedding, as shown in Equation 4.1. This greedy alignment
of query to document token embeddings has been dubbed MaxSim.

Sd,q :=
∑

i∈[|Eq |]

max
j∈[|Ed|]

Eqi · ET
dj

(4.1)

Here the score for document d given query q, is computed from the set of query
and document token embeddings (Eq and Ed, respectively). Embeddings are
produced by a BERT-based model [8] finetuned with ColBERT’s training ob-
jective. For queries, ColBERT prepends a [Q] token to indicate a query is
being contextualized, and surrounds the tokens with [CLS] and [SEP] tokens
to indicate the beginning and ending of a passage. Finally, the query is padded
with [MASK] tokens up to a maximum length of 32 tokens. Augmenting the

19

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 20

[CLS]
[Q]

what
is
a

period
calculus

[SEP]

0 8 16 24 32 40 48 56

[CLS]
[Q]

how
long

is
a

flight
from

california
to

austria
[SEP]

Figure 4.1: Cosine similarity of embedded tokens to each non-[MASK] token
for positions 0 through 64. A cyclical pattern attending to the most relevant
terms in the query (e.g. “period”, “calculus”, “california”, “austria”) can be
seen, both before and after 32 tokens (the length trained with).

query with [MASK] rather than standard [PAD] tokens is key to ColBERT’s
effectiveness.

In Khattab and Zaharia’s original ColBERT paper [14], they show using
augmentation with [MASK] tokens increases MRR@10 on MS MARCO [3].
Their rationale is that [MASK] tokens help introduce new terms to the query,
and reweight other query terms. However, later work suggests that [MASK]

tokens primarily weight other tokens in the query, as summarized in Section
4.1. In this paper we present new experiments to obtain additional insight
into how query augmentation maps [MASK]s into the contextualized token
embedding space. We consider two main research questions:

RQ1. Do [MASK] tokens primarily weight non-[MASK] tokens in a query when
using ColBERTv2?

RQ2. Does effectiveness increase with the number of [MASK]s, up to four times
the number ColBERT has been trained with?

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 21

4.1 Related Work

Prior work has analyzed how ColBERT contextualizes tokens. Formal et.
al [10] focused their analysis on query text tokens, using both a model trained
with [MASK]s and a model finetuned without [MASK]s during ranking. They
found that query text tokens implicitly capture term importance, because
terms with higher IDF tend to produce more exact matches, and change their
embedded representation less. When using a model that was finetuned to not
use [MASK]s, this effect was even more apparent.

Wang et. al [33] considered whether [MASK]s in ColBERT actually add
new terms to the query, as Khattab et. al [14] proposed in their original
paper. They found that it did not, and presented an IDF-based approach
for adding new terms to the query. In the same paper, the authors show
that [MASK] tokens tend to cluster around items already present the query,
rather than produce novel query terms, necessitating an approach such as
pseudorelevance feedback to add additional query terms.

In Chapter 2, we remapped contextualized [MASK] embeddings to their
nearest non-[MASK] embedding (i.e. [CLS], [SEP], [Q], and the query text
tokens), and found no significant difference in MRR@10, nDCG@10/@1000.
However, a significant increase in MAP was observed both when remapping
[MASK] vectors to their nearest query text token vector, and when remapping
[MASK] vectors to their nearest non-[MASK] token vector. While interesting,
a shortcoming is that our experiments consider only ColBERTv1, instead of
the more effective ColBERTv2 [24].

ColBERTv2 uses a more powerful cross-encoding ranker to generate pos-
itives and negatives to train with, while ColBERTv1 uses labelled positives
and random negatives. This results in an almost 4% gain in MRR@10 on
the MS MARCO dev set, allowing it to compete with newer dense retriever
models that take advantage of distillation (e.g. PAIR [22]). This may change
the behavior of how [MASK]s interact with non-[MASK] tokens. In our first
experiment, we attempt to replicate our earlier results using ColBERTv2.

Tonellotto et. al [29] demonstrated that the number of query token em-
beddings required for initial retrieval in ColBERT can be reduced to as little
as 3 by pruning terms frequently present in the collection. They found that
[MASK]s tend to add less documents to the initial set of documents retrieved,
since [MASK]s tend to be very similar to existing terms in the documents.

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 22

Similar to this paper, in our second set of experiments we perturb the model
by modifying the number of [MASK] tokens available.

4.2 Methodology

We run our experiments using PyTerrier [18], which contains advanced bind-
ings for ColBERT. Into this framework we load the ColBERT v2 [24] check-
point provided by the ColBERT team.1 We confirmed that this checkpoint was
trained using the default query length of 32, and that [MASK]s had their at-
tention scores zeroed out during training (i.e. no token can attend to a [MASK]
token during self attention). PyTerrier officially supports only ColBERTv1,
but we have verified that the keys PyTerrier expects are also present in our
v2 checkpoint.

We do not use v2’s index compression, but we believe this is acceptable,
since this is not a core feature of the retrieval model. Using the uncompressed
index does slightly change performance on MS MARCO from the official met-
rics. On the MS MARCO dev set, we obtained an MRR@10 of 39.8, Recall@50
of 86.0, and Recall@1000 of 96.2, compared to the official reported metrics of
MRR@10 of 39.7, R@50 of 86.8, and R@1000 of 98.4. We suspect this increase
in Recall is due to some terms becoming more similar when index compression
is applied.

We run our experiments on a server with 4 Intel Xeon E5-2667v4 CPUs,
4 NVIDIA RTX2080-Ti GPUs, and 512 GB RAM. We use our two datasets
from Chapter 2:

1. MS MARCO [3]’s passage retrieval dev set (8.8 million documents, 1
million queries, binary relevance judgements). Each query has at most
1 matching document.

2. A dataset combining queries from the TREC 2019 [7] and 2020 [6] deep
passage retrieval task (99 queries, graded relevance judgements). Col-
lection is the same as MS MARCO.

As with our experiments in Chapter 2, we use MS MARCO when relevance
grades are unimportant, and use the latter when it is, and consider different

1https://downloads.cs.stanford.edu/nlp/data/colbert/colbertv2/colbertv2.0.

tar.gz

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 23

relevance levels during evaluation. Additionally, for RQ2, we also use the
TREC COVID dataset [30] in addition to the TREC 2019-2020 dataset. This
dataset contains 50 queries with graded relevance judgements from 0 to 3.
Note that we use the CORD-19 variant [31] instead of the BEIR variant [28]
used in the ColBERTv2 paper; thus our baseline measurement differs from the
officially reported figure.

RQ1: Do [MASK] tokens primarily weight non-[MASK] tokens in a
query when using ColBERTv2? We reproduce our earlier experiments
on ColBERT v2, using the TREC 2019-2020 collection. In the first experi-
ment, we compare a baseline of the standard retrieval pipeline against three
conditions where certain token embeddings are replaced with others: 1. We
remap all structural token embeddings (i.e. [CLS], [SEP], [Q], [MASK]) to
their nearest query text token embedding. 2. We remap [MASK] tokens to
their nearest non-MASK token (i.e. [CLS], [SEP], [Q], query text tokens).
3. We remap [MASK] tokens to their nearest query text embedding, but leave
other structural token embeddings (i.e. [CLS], [SEP], [Q]) alone.

In the second experiment, we modify all queries in the TREC 2019-2020
collection with a length of 3-8 tokens that start with “what is” by moving these
two tokens to the end of the query and swapping their positions (e.g. “what is
love” becomes “love is what”). As indicated in the original paper, this avoids
changing query semantics, while shifting the position of every query token.
We check the change in cosine distance for [CLS], [SEP], [Q], the first and
third query text token, and the 13th and 32nd token in the query, which are
guaranteed to be [MASK] tokens. As a baseline, we repeat the same experiment
without requiring queries to start with ”what is”, possibly generating nonsense
(e.g. “cost of swim spa” becomes “swim spa of cost”).

RQ2: Does effectiveness increase with the number of [MASK]s, up to
four times the number ColBERT has been trained with? As shown
in Figure 4.1, when extending the maximum length of a query past the 32
token window it was trained with, we see a repeating pattern of cosine simi-
larities between [MASK] and non-[MASK] tokens. It appears that BERT keeps
outputting the same weighting pattern for longer query lengths. A natural
question then, is how ColBERT fares when the maximum query length is in-
creased, and [MASK]-based term weighting dominates document scoring. One

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 24

may be wary of the unintentional effects of changing [MASK] counts this way.
For instance, could adding an extra [MASK] to the end of a query cause the pre-
vious [MASK]s, or even the query text tokens, to change their representations
in response?

An easily missed detail about ColBERT is that it treats [MASK] and non-
[MASK] tokens differently during the contextualization process — [MASK] to-
kens cannot be attended to during self attention2. This has two interesting con-
sequences. One, adding or subtracting [MASK]s cannot affect how non-[MASK]
tokens are contextualized. Non-[MASK] tokens cannot attend to [MASK] to-
kens, thus removing [MASK]s from the query entirely will not change any of the
non-[MASK] representations. Two, each [MASK] token’s computed representa-
tion cannot be affected by the existence of other [MASK] tokens. Each [MASK]

token can only look at the query and itself, thus, the only change to scoring
when adding or removing a [MASK] token is the existence of the token’s score.
In other words, other tokens cannot change their representations in response
to to different numbers of [MASK] tokens.

In our second experiment, we vary the maximum length of the query from
0 to 96 in steps of two, and measure the resulting performance on TREC 2019-
2020. Since we start from a length of 0, we hypothesize that performance will
initially increase greatly with each additional [MASK], reflecting the impor-
tance of query augmentation. Performance will then plateau, even as more
[MASK]s are added than seen during training, as the [MASK]s repeatedly per-
form a similar term weighting.

Separately, we report nDCG@10 and nDCG@1000 when the maximum
query length is set to 32 to 128, to identify the effect of increasing the total
number of tokens seen for each query. In addition to the TREC 2019-2020
dataset, we also use the TREC COVID dataset for this experiment.

ColBERT performs ranking in two phases: an initial set retrieval phase,
where documents with at least one embedding very similar to a query em-
bedding are fetched, and a subsequent reranking phase, where documents are
reranked by MaxSim. In all experiments, we report metrics for (1) only initial
set retrieval is modified, (2) only reranking is modified, and (3) both phases
are modified.

2To our knowledge, this has not been reported in the ColBERT papers.

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 25

Table 4.1: Replacing structural token embeddings by other query token em-
beddings (TREC 2019-2020, RQ1). Maximum values are in bold; significant
differences from “None” are shown with a dagger (p < 0.05, Bonferroni-
corrected t-tests).

*ColBERTv2: Token Remapping
Metric None All

[X] →
Text

[MASK]

→
Text

[MASK]

→
Str. &
Text

Binary Rel.
MAP(rel≥1) 0.514 †0.496 †0.508 0.510
MRR(rel≥1)@10 0.964 0.958 0.959 0.960

MAP(rel≥2) 0.502 †0.489 0.496 0.498
MRR(rel≥2)@10 0.870 0.871 0.888 0.874

MAP(rel≥3) 0.395 0.388 0.387 0.391
MRR(rel≥3)@10 0.616 0.593 0.598 0.605

Graded Rel.
nDCG@10 0.749 †0.733 0.741 0.745
nDCG@1000 0.712 †0.691 † 0.702 †0.703

4.3 Results

RQ1: Do [MASK] tokens primarily weight non-[MASK] tokens in a
query when using ColBERTv2 For the [MASK] remapping experiment,
we see that on ColBERTv2, remapping [MASK]s causes a consistent decrease in
performance (see Table 4.1). For nDCG@1000, all conditions are significantly
worse than the baseline. The “All [X] → Text” condition performs worse than
any other condition, many times being significantly worse than the baseline.
The “[MASK] → Str. & Text” condition performs best of the three conditions.
This is both consistent with our earlier ColBERT v1 results, and provides

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 26

Table 4.2: Changing the maximum length of queries from 32 to 128 with
[MASK] padding. Maximum values are in bold; significant differences from
“32” are shown with a dagger (p < 0.05, Bonferroni-corrected t-tests).

TREC 2019-2020 TREC COVID
Metric 32 128 32 128

Only Set Retrieval
nDCG@10 0.749 0.749 0.612 0.616
nDCG@1000 0.712 0.717 0.343 †0.350
Only Reranking
nDCG@10 0.749 0.739 0.612 0.640
nDCG@1000 0.712 0.707 0.343 0.349

Set Retrieval and Reranking
nDCG@10 0.749 0.743 0.612 0.643
nDCG@1000 0.712 0.712 0.343 0.355

more evidence for that [MASK] embeddings simply select all non-[MASK]s as
candidates for term weighting.

For the query shift experiment shown in Figure 4.2, we see the same pattern
reported in our earlier experiments: [Q] and [MASK] tokens vary greatly after
“what is” is swapped and moved, while [CLS], [SEP], and query text tokens do
not change nearly as much. In fact, with ColBERTv2, this difference is even
starker. Given that this is a pattern that has now manifested itself across
two separately trained checkpoints, with two different training objectives, we
suspect that the [Q] token performs a similar function to [MASK] tokens –
adding weight to certain tokens to influence scoring.

This would also explain the pattern demonstrated by the [Q] token in
Figure 4.1, where [MASK]s that are very similar to the [Q] token are always
also very similar to some other token. When we visualized several different
queries using the same visualization shown in Figure 4.1, we saw that [Q] was
the only non-[MASK] structural token consistently very similar to query text
tokens.

RQ2: Does effectiveness increase as the number of [MASK]s increases
up to four times the number ColBERT has been trained with?

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 27

ColBERTv1

CLS Q QUERY:3 QUERY:5 SEP MASK:13 MASK:32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
sin

e
Di

st
an

ce

CLS Q QUERY:3 QUERY:5 SEP MASK:13 MASK:32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ColBERTv2

CLS Q QUERY:3 QUERY:5 SEP MASK:13 MASK:32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
sin

e
Di

st
an

ce

CLS Q QUERY:3 QUERY:5 SEP MASK:13 MASK:32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 4.2: Left column: Cosine distance after tokens are switched from ”what
is” to ”is what” in ColBERTv1 vs. ColBERTv2. We see the same trend of
[Q] and [MASK] tokens having the most shifting, and an overall increase in
shifting when “what is” is not a requirement (right column). The contrast
between [Q] and [MASK] versus other tokens is more apparent in ColBERTv2
than ColBERTv1.

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 28

In Table 4.2, we see nDCG@/@1000 on both TREC 2019-2020 and TREC
COVID as we vary the maximum query length. We first focus on the re-
sults from the TREC 2019-2020 dataset. Modifying only set retrieval causes a
minor increase in nDCG@1000, but appears to have no effect on nDCG@10,
likely due to baseline set retrieval already retrieving most relevant documents.
Modifying only reranking on TREC 2019-2020 causes both nDCG@10/@1000
to decrease. When modifying both phases, nDCG@10 very slightly increases,
but nDCG@1000 does not change, likely due to the increase from set retrieval
and the decrease from reranking negating each other. Ultimately, all changes
observed on TREC 2019-2020 are small, and we never saw an increase or de-
crease greater than 1%, nor did we observe any statistically significant p-values
when performing Bonferroni-corrected t-tests.

On the TREC COVID dataset, we see an increase in nDCG@/@1000 as
we increase the length of the query to 128 tokens, for both reranking and
set retrieval. These changes are still very small, in the range of 1-3%. The
increase in nDCG@1000, however, is statistically significant.

A possible reason for this difference in behavior between TREC 2019-2020
and COVID is that the former dataset has less tokens per query on average
compared to the latter (9.68 versus 13.92 tokens), potentially causing certain
queries to be incompletely weighted when using only 32 tokens.

In Figure 4.3, we see nDCG@10/@1000, MRR(rel≥2)@10, and MAP(rel≥2)
as we vary the number of [MASK] tokens each query has. For most of the met-
rics, moving from 0 to 4 [MASK]s appears to actually have a detrimental affect,
indicating only using a couple [MASK] tokens is worse than none at all. From
4 to ∼24 [MASK]s, however, we see a sharp increase in nDCG@10/@1000 and
MAP(rel≥2). This peak coincides with the point where on average, queries
have an overall length of 32 (i.e., the input size used for training). From
there on, there is a slight decrease across all metrics, which we expect from
the results of the previous experiment. However, we also can see that despite
this slight reduction in performance, it is still far better than not having any
[MASK]s at all.

It appears that as more [MASK]s are used on this collection, performance
tends to converge to slightly below the baseline. As seen in Figure 4.3, using
8 [MASK]s or less causes a statistically significant reduction in performance,
while using more than that results in performance that is not significantly
different from the baseline. Also, while increasing the number of [MASK] tokens

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 29

0.700

0.725

0.750

nD
CG

@
10

0.85

0.86

0.87

RR
(re

l=
2)

@
10

0.65

0.70

nD
CG

@
10

00

0 8 16 24 32 40 48 56 64 72 80 88 96
Num. [MASK]s

0.45

0.50

AP
(re

l=
2)

Modify Initial Retrieval and Reranking
Modify Only Reranking
Modify Only Initial Retrieval

Figure 4.3: nDCG@10, MRR(rel≥2)@10, nDCG@1000, and MAP(rel≥2) in-
creasing number of [MASK] tokens from 0 to 96 on TREC 2019-2020. The red
line shows a standard length of 32 total tokens. Significant differences from
the baseline indicated with a star (Bonferroni correction, p < 0.05).

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 30

from 0 to 96, RR(rel≥2)@10 does not change in a statistically significant way.
For the TREC 2019-2020 dataset, query augmentation does not significantly
impact RR(rel≥2)@10.

4.4 Conclusion

The unconventional decision to have ColBERT integrate the padding token
used for queries ([MASK]) directly into its scoring mechanism has resulted in
state of the art performance. Padding with [MASK] tokens has been demon-
strated to act analogous to term weighting, making it more important for
documents to match against some terms than others. An interesting aspect
of [MASK] representations is that they form a repeating pattern, even when
expanding the query past the maximum query length trained with.

We were able to confirm our findings from Chapter 2 on ColBERTv1,
showing that even with ColBERTv2, remapping [MASK]s to their nearest non-
[MASK] generally produces non-significant differences in effectiveness metrics,
and that [MASK]s are much more sensitive to token order than [CLS], [SEP],
and even query text tokens. We also found that a partial term weighting using
fewer [MASK] tokens than used in trained causes effectiveness to decrease, i.e.
using no [MASK]s performs better than using a small number of [MASK]s. In-
creasing the number of [MASK]s from this low point to the amount trained with
causes performance to shoot up. Afterwards, performance slightly reduces as
[MASK]s are added across most metrics, but still performs much better than
not using [MASK]s at all.

Overall, though there is a slight drop in performance, ColBERT’s [MASK]-
based term weighting strategy performs well past the maximum query length
it was trained with, converging to near baseline levels as the size of the query
input increases.

In Chapter 6, we build off of the findings of the previous chapters to pro-
pose GoalBERT, a ColBERT-derived iterative retrieval system. Our experi-
ments with [MASK] embeddings have shown us, first and foremost, that it is
valid to view ColBERT as a learned term-weighting model, where the position
of [MASK] tokens in latent space determine the weight of query text tokens.
We have also shown that modifying the number of [MASK] tokens does not
change query text token embeddings, giving us free reign to add as many as we
want, with only a small penalty for any loss of granularity. Finally, ColBERT

CHAPTER 4. COLBERT: MORE EXPERIMENTS WITH [MASK] 31

demonstrating passable results at intra-passage search gives us the ability to
chunk documents into short spans after being run through the model, and still
be able to recover relevant information.

Chapter 5

Baleen

We now introduce Baleen. As a late interaction-based multi-hop claim veri-
fication model, it is the ideal baseline to compare our approach against. In
the process, we also define the multi-hop open domain claim verification task,
which we use in Chapter 6.

5.1 Task

Baleen targets the family of multi-hop open domain reasoning tasks. Open
domain tasks require answering questions from any sort of domain, often rely-
ing on a large external corpus to incorporate knowledge from. For tasks such
as passage/document retrieval and (single-hop) question answering, retrieval
only needs to be performed once. In contrast, multi-hop retrieval requires re-
peated retrieval from a corpus, using items retrieved in previous iterations to
guide future hops. For example, in multi-hop question answering, the retriever
aims to collect a set of documents that can be used to answer the query, where
each document in isolation cannot provide the full answer. While approaches
have been developed that use heuristics to non-parametrically identify doc-
uments to retrieve [40], we are more interested in approaches that learn to
perform this retrieval.

A typical formulation is to have a set of initial documents retrieved using
just the query, use the retrieved documents to reformulate the query, then re-
trieve again, repeating the process across multiple hops [19]. Feldman et al. [9]
propose performing query reformulation in latent space using a dense retriever,

32

CHAPTER 5. BALEEN 33

modifying the dense representation after each hop using retrieved documents.
Xiong et al. [38] also use retrieved documents to reformulate a dense query
representation, integrating beam search to search for promising passage can-
didates. Yadav et al. [41] modify the query textually, using heuristics to add
unseen terms to the query after each hop.

The specific tasks Baleen addresses are question answering and claim veri-
fication. For question answering, the system retrieves a set of documents that
allow it to answer a question. For claim verification, the system retrieves a set
of documents that provides enough evidence for a classifier to then determine
whether or not a given claim is supported by the provided facts. Both being
unable to find documents demonstrating the truth of a claim and finding doc-
uments that directly contradict a claim fall under this task. The two datasets
used for this are HotpotQA [42] and HoVer [11], respectively. The authors
primarily focus on the latter, since they find that performance on HotpotQA
is easily saturated – the dataset only requires at most 2 hops to answer a
question, while HoVer requires 2 to 4 hops instead, increasing the difficulty of
the challenge.

Each item in HoVer contains an unordered set of gold (passage, sentence)
pairs, which model facts from passages. Exact Match (EM) and F1 are mea-
sured between the retrieved and gold set of facts. HoVer uses abstracts taken
from Wikipedia in 2017, thus each document has has around 1-4 sentences.
An example query from this dataset is “The plant commonly affected by
Rhodococcus fascians is a genus of pine trees. Encyclia is as well.”, which
is a supported claim that requires 3 hops to answer. Note that HoVer pro-
vides the number of hops needed to answer a question for each query, removing
the need to predict how many hops to perform.

5.2 The Baleen System

We now describe each of Baleen’s components, as seen in Figure 5.1.
To begin, the following is a high level overview of how data moves through

the system. On each hop, the current query is run through a retriever to
produce a set of candidate documents Documents are then run through a 2-
stage condenser to isolate the most relevant facts (e.g., sentences). These facts
are added to the end of the query to form the next context, then the system
performs the next hop. After a set number of hops, the query and context

CHAPTER 5. BALEEN 34

FLIPR

Condenser
1

Condenser
2

Reader

Answer

QueryBaleen

Query +

+

1. Focused late interaction
retrieves documents that
match highly to certain parts
of the query.

2. The stage 1 condenser looks
at entire passages at once,
identifying relevant sentences
within whole passages.

3. The stage 2 condenser looks
at all the most relevant
sentences from the previous
stage at once, identifying 1-4
relevant sentences.

4. After N hops, the set of
relevant sentences and query
are sent to a task specific
reader to produce the final
answer.

Figure 5.1: A high level overview of the various components of Baleen. A
hop starts with the “Focused Late Interaction Passage Retriever” (FLIPR)
using late interaction to retrieve a set of candidate passages. Two rounds of
condensing result in a small (≤9) set of sentences that are appended to the
query/claim, forming the context for the next hop. The process repeats for 2-4
hops, then the query and context are processed by a reader model that predicts
whether the claim is supported or not, based on the retrieved evidence.

CHAPTER 5. BALEEN 35

are sent to a reader, which determines whether or not the query is supported
based on the provided context.

For example, in the query “The plant commonly affected by Rhodococcus
fascians is a genus of pine trees. Encyclia is as well.”, retrieving the entry
“Rhodococcus fascians” is required to find plants commonly affected by it.
After retrieving the entry for “Rhodococcus fascians” and finding that “Nico-
tiana” is one such affected plant, the system must retrieve the entry for “Nico-
tiana” to verify that it is indeed a pine tree. Finally, the entry “Encyclia” is
needed to check if it is a pine tree.

All components are implemented with Transformer-based language models.
In particular, the retriever uses BERT [8], while the reader and condenser are
implemented with ELECTRA models [5]. ELECTRA improves over BERT by
learning to discriminate between ground truth and corrupted tokens produced
by a generator in the sequences it trains on, resulting in higher performance.

5.2.1 Retriever

As discussed in Chapter 1, the ColBERT retrieval model uses every query and
document token for scoring. The score of a document is computed as the sum
of the most similar document embedding to each query embedding.

Baleen deviates slightly from this pattern. It proposes FLIPR, which
stands for Focused Late Interaction Passage Retriever. Unlike ColBERT,
FLIPR uses only the top-k highest scoring query tokens per document for
scoring.

To see why this is helpful, consider the claim “The Statue of Liberty and
the Eiffel Tower are located in the same country”. To verify this claim, Baleen
would have to retrieve articles on the Statue of Liberty and the Eiffel Tower.
While there could be documents directly linking the two in a single hop (e.g.
an article on French Monuments), the HoVer dataset appears to prefer re-
trieving documents describing separate entities. Because ColBERT uses every
query token, using standard ColBERT late interaction would likely retrieve
the article for Gustave Eiffel, who contributed to both projects. By only using
the highest scoring subset, a single query can match against very different
documents, even though they only match highly against certain parts of the
query.

In 5.2, we score a query against two different documents, using a k of 3.

CHAPTER 5. BALEEN 36

the

eiffel

tower

and

statue

of

liberty

was

designed

by

the

same

person

the eiffel tower is a....

Query

Document A

the

eiffel

tower

and

statue

of

liberty

was

designed

by

the

same

person

the statue of liberty is....

Document B

Figure 5.2: An example of FLIPR’s scoring mechanism. Each document only
matches against the top-k (k=3 here) highest matching tokens in the query.

After finding the maximum cosine similarity for each query token, only the
top 3 tokens are used to compute the document’s score, indicated with a green
box. This allows both the article for the Eiffel Tower and Statue of Liberty to
act as highly scoring documents, as opposed to an article that mentions both
but does not contain detailed information about each entity (e.g. an article
on Gustave Eiffel).

FLIPR computes the score contribution of the query separately from the
contribution of the context. By default, 32 tokens from the query are used
(half of the 64 tokens that form the query and [MASK]-based padding), while
only 8 tokens from the context are used. Figure 5.3 demonstrates which tokens
are used for a sample query.

To train FLIPR, Khattab et al. use latent hop ordering. Recall that
HoVer provides an unordered set of gold passage/sentence pairs. Some of
these passages cannot be retrieved based on information in the query alone.
In the “George Washington successor” example above, the model would not
be able to retrieve the article for “John Adams” before retrieving the article
for “George Washington”, since it does not know that John Adams succeeded
George Washington yet. Since queries are modified after each hop by append-

CHAPTER 5. BALEEN 37

Figure 5.3: Query and fact tokens matched for the query “The star of the
Irish film directed by Paddy Breathnach played Marcus Agrippa in the HBO
drama series ‘Rome’.” and facts “Paddy Breathnach — He directed ‘Man
About Dog’, ‘Blow Dry’ and ‘Shrooms’.” and “Allen Leech — Leech played
Marcus Agrippa on the HBO historical drama series ‘Rome’.”. The document
being matched here is for the movie “Man About Dog”, which connects the
two previously retrieved facts.

ing relevant facts from the previous hop, it is non-trivial to determine what
the query on hops after the first hop will look like. Thus, a major challenge is
to figure out not just which documents to retrieve, but when they should be
retrieved.

Latent hop ordering extends the idea of weak supervison used in ColBERT-
QA [12], proposed by the authors of Baleen. Briefly put, weak supervision is a
technique for labeling unlabled data using heuristics. This heuristic can take
many forms, from using simple features that exploit biases in the data (such
as using anchor text [1]), to using existing models to estimate relevance.

In the single-hop task used in ColBERT-QA, gold passages are not pro-
vided, but a short answer string is, allowing for a retrieval heuristic based on
BM25. During the first round of training, this BM25 heuristic is used to create
positives (highly ranked by BM25) and negatives, then a ColBERT model is
trained using these (query, positive, negative) triples. The next two rounds of
training then use the ColBERT model trained in the previous round.

This brings us to the multi-hop setting. For the first hop, a ColBERT-
QA model is used as a heuristic. Given the query, this retriever will want to
retrieve certain gold passages before others. The highest ranked retrieved gold
passages are treated as positives, while the non-gold passages are treated as
negatives. A set of first-hop queries is produced by adding gold fact sentences
present in our first-hop gold passages to queries in the dataset. These first-hop

CHAPTER 5. BALEEN 38

queries can then be used as training data for the next hop.
For the second hop, a standard ColBERT model trained on MS MARCO is

finetuned with the positives and negatives for the first hop, and all remaining
gold passages for the second hop, to produce a second-hop retriever. The
second-hop retriever can now be used to produce positives and negatives with
the same procedure used for our first hop. This process continues until a set
of positives and negatives for each hop is produced, allowing a model to be
trained that works with every hop.

5.2.2 Condenser

After retrieving our initial set of documents, facts (modeled as sentences within
retrieved passages, typically 1-4 per passage) are rescored for relevance. In or-
der to scale to as many hops as possible, the model must retain the smallest
number of facts that still allows the query to be answered. The condenser
consists of two ELECTRA-based models, one which looks at whole passages
to score relevant facts within their original context, and another that con-
catenates all relevant facts together and scores each fact in relation to each
other.

The stage 1 condenser looks at entire passages at once. Each sentence
in the passage is prepended with a [MASK] token, such that the input is
structured as [CLS] [MASK] fact1 [MASK] fact2 ... [SEP]. After passages are
contextualized, the special tokens are run through a linear layer to produce
relevance scores.

Using the per-hop positives and negatives collected when training the re-
triever, the model is trained to output high scores for positive sentences, and
low scores for negative sentences, using a cross-entropy loss. All sentences that
come from a positive passage are considered positives.

After looking at all passages and scoring the sentences within, the top 9
fact sentences are sent to the second stage.

The stage 2 condenser looks at all of the facts (concatenated together) at
once. This includes facts currently being used as context. As in the previous
stage, each fact is prepended with a [MASK] token and scored. The loss used
this time is a linear combination of binary cross entropy loss for each individual
fact, and a cross entropy loss for each positive fact against all negatives. This
both incentivizes all positive facts to be scored higher than negatives and

CHAPTER 5. BALEEN 39

causes “better” positive facts to be scored higher.
All facts that have a positive score after this step are used as context at

the end of each hop. If there are still hops left, this context is added to the
query, creating the context for the next hop. Otherwise, the query and context
are sent to the reader, where the query and facts are treated as features for a
binary classification of whether the query is supported or not.

5.2.3 Reader

The reader is the final stage of Baleen. As with the condensers, it is imple-
mented with an ELECTRA model. Given a query and set of facts, modeled as
the query concatenated with all facts (separated by [SEP] tokens), it classifies
whether the claim is supported or not. It is trained by associating the out-
puts of the previous stages with “Supported”/“Unsupported” labels from the
dataset. The representation of the [CLS] token is linearly scored to produce a
logit for binary classification.

5.2.4 Conclusion

Baleen represents the current state-of-the-art for multi-hop open domain ques-
tion answering using late interaction By using focused late interaction instead
of full ColBERT interaction, documents only need to match against certain
parts of the query and context, allowing different kinds of “queries” to be gen-
erated within a single hop. Latent hop ordering identifies which documents
should be retrieved on which hop, mitigating the need to add hop labels to
dataset items. Finally, the 2-stage condenser architecture reduces the multi-
ple passages retrieved into a set of 1-4 sentences to be appended to the query,
allowing the system to scale to multiple hops. Due to the way condensing is
performed, facts (sentences from retrieved documents) are filtered based on
both their context within a passage and their relationship to each other.

While demonstrating strong performance on HoVer, we wonder whether
weak supervision is truly the best way to tackle these sorts of tasks. In the
next section, we describe a procedure that formulates multi-hop retrieval as
a reinforcement learning task, and incorporates our findings on the [MASK]
token in ColBERT to train a model to learn to discover which documents are
relevant on each step.

Chapter 6

GoalBERT

We now describe a procedure to train late-interaction models using reinforce-
ment learning for iterative retrieval. Our proposed model, GoalBERT, uses
the [MASK] tokens as actions to select contextualized embeddings in the query
and facts, creating a weighted subset of the original query. We compare our
final model with Baleen, introduced in Chapter 5.

To review, in addition to tokenizing query and document strings, ColBERT
inserts tokens to signal different parts of the input (e.g., [CLS] at the beginning
and [SEP] at the end of query text). The following illustrates how queries and
documents are encoded:
Queries: [CLS] [Q] cost of endless pools swim spa [SEP] [MASK] [MASK]...

Documents: [CLS] [D] pool prices range from $ 20 , 000 to $ 30 , 000 [SEP][PAD]

[PAD] ...

While documents are padded to a length of 180 with [PAD] tokens, queries
are padded to a length of 32 with [MASK] tokens. These [MASK] tokens are
critical to ColBERT’s performance. Figure 6.1 shows query embeddings for the
query “cost of endless pools swim spa”, where [MASK] embeddings can be seen
congregating three distinct clusters. One cluster contains “pools”, “swim”,
and “spa”, capturing the general notion of a pool centered around wellness.
Another cluster is centered around “cost”, “of”, and various structural tokens,
capturing the query’s request for price related information. Finally, there is
a distinct “endless” cluster consisting of only one query text token, capturing
some quality of the pool being requested (i.e. being endless).

In Chapter 4, we demonstrated the resilience of the [MASK]-based term

40

CHAPTER 6. GOALBERT 41

0.20
0.25

0.30
0.35

0.1

0.2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

[CLS]

[Q]

cost

of

endlesspools

swim
spa

[SEP]
"pool" cluster

"cost" cluster

"endless" cluster

Figure 6.1: PCA projected query embeddings in document space. Circles have
been drawn to identify clusters and their associated concepts.

weighting mechanism. We showed that visually, [MASK]s tend to cyclically
repeat, adding weight to the same non-[MASK] tokens over and over again,
keeping the ratio of term weights the same as the query increases in length.
We confirmed this by extending the maximum length of the query to 128
tokens, where we saw performance plateau but not significantly decrease after
the query contained 9 [MASK] tokens.

In Chapter 5, we discussed one application of late interaction retrieval
outside of document/passage retrieval, Baleen. Given a claim that may or
may not be factually supported, Baleen performs multiple hops of retrieval,
collecting facts (modeled as sentences) that collectively prove or disprove the
claim. Since each passage it retrieves may only be relevant for a part of the
query, it proposes focused late interaction, which scores passages using the
top-k query embeddings with the highest cosine similarity to the document
embeddings (as opposed to using all query embeddings, as with ColBERT).

We would now like to use our findings with the structural tokens from
previous chapters to identify ways to modify ColBERT to fit the needs of
certain tasks, similar to how focused late interaction was proposed to better

CHAPTER 6. GOALBERT 42

fit the needs of multi-hop claim verification. If MASK tokens primarily select
and add weight to existing features in the query, can we frame the act of
retrieval with this model as a reinforcement learning task? Given the current
state (i.e. the current query), the model could be trained to output actions in
the form of MASK embeddings that represent a weighted subset of the current
query. This would be useful for tasks that require multiple steps of retrieval,
such as multi-hop question answering.

6.1 Background

6.1.1 Reinforcement Learning

Reinforcement learning (RL) is an approach to solving Markov decision pro-
cesses (MDPs) [4] through trial and error [26]. On each timestep, the MDP
provides the RL algorithm with the current state, and the algorithm outputs
a probability distribution over all possible actions it can perform in this state,
which is sampled to return an action (or set of actions). The MDP then re-
turns the reward, whether the last action brought the MDP to its terminal
state, and the next state. A string of experience (sequence of states, actions,
and rewards) from a start state to a terminal state is called an episode. The
goal of the algorithm is to maximize the expected return – the sum of all
rewards over the course of an episode – by examining transitions (tuples of
state, action, reward) collected through interaction with the MDP. The func-
tion that takes in a state and returns a distribution over all actions is formally
called the policy.

Many modern RL algorithms that take advantage of deep neural networks.
Broadly speaking, RL algorithms are split into two categories: off policy meth-
ods that map state-action pairs to expected returns (e.g. DQNs [20]), and on
policy methods that map states to a probability distribution over actions,
where actions that lead to higher returns are more likely to be selected (e.g.
REINFORCE [27]). The latter are referred to as policy gradient (PG) methods.

We are particularly interested in the PG family of methods since we are
interested in having our model output a distribution. The original policy gra-
dient algorithm proposed by Sutton et al. [27] simply maximizes the log prob-
ability of an action under the policy multiplied by the return of the episode.
To cope with the high variance of returns, Konda et al. proposed the actor-

CHAPTER 6. GOALBERT 43

critic framework [15], which uses a critic to predict the return produced by
a given state, rewarding the policy (the actor) by how much better it per-
forms compared to the critic’s baseline prediction. Modern approaches using
the actor-critic framework implement both the actor and critic as deep neural
networks. Later, Schulman et al. [25] proposed the Proximal Policy Optimiza-
tion (PPO) algorithm, which uses the ratio of old action probabilities to new
action probabilities to determine when the distributions have drifted too far
during training, reducing the chances of catastrophic failure during training.
We use this algorithm in our approach due to its state of the art performance.
Both our policy and critic network are implemented as transformer models,
with our policy network being GoalBERT itself.

6.1.2 Reinforcement Learning for Information Retrieval

In recent years, there has been interest in casting tasks in information retrieval
as reinforcement learning problems. The benefits are two-fold. First, certain
tasks, particularly sequential tasks (i.e. retrieval is performed across multiple
steps), are a natural fit for RL. For instance, one may wish to sequentially
create a list of diverse results for a given query [36] or optimize click rate
across multiple pages [43]. Second, RL allows for optimizing non-differentiable
objective functions. Metrics such as nDCG can be directly optimized [21, 39]
for a given task. Recently, Reinforced Retrieval Augmented Machine Learning
(RRAML) [2] has been proposed as a way of learning to retrieve passages in
a Retrieval Augmented Generation (RAG) [16] setting, using the output of
the whole system to train the retriever. A large motivation of the method we
describe is being able to train late interaction models using RL.

6.2 Methodology

6.2.1 GoalBERT

We now describe our proposed model, GoalBERT. Similar to Baleen, Goal-
BERT performs retrieval across multiple hops. On each hop, the current query
and context (except on the first hop, where no context is available yet) is used
to retrieve facts. The highest scoring fact not seen yet is appended to the back
of the current context, forming the context for the next hop.

CHAPTER 6. GOALBERT 44

[CLS]

[CLS]

[SEP]

movie

price

ticket

[MASK]

[SEP]movie ticket price

Figure 6.2: The relationship between [MASK] embeddings, non-[MASK] embed-
dings, and the probability distributions they generate. The closer a [MASK]

embedding is to a query text embedding, the higher the probability will be of
this embedding being present in the generated query.

GoalBERT uses [MASK] tokens to parameterize a distribution over each
query and fact embedding, then samples from these distributions once per
[MASK] to form its actions. Each [MASK] is therefore able to select a single
non-[MASK] embedding. These selected embeddings are then used to query
the fact index, a ColBERT v2 index consisting of fact sentences.

Figure 6.2 illustrates how term weighting is performed. The query being
used here is “movie ticket price”, with [CLS] and [SEP] surrounding the
query text, and a single [MASK] token being used. After contextualization, the
[MASK] embedding is very similar to the “movie” and “ticket” embeddings,
somewhat similar to [CLS] and “price”, and very dissimilar to [SEP]. The
cosine similarities, ranging from 1 to -1, are fed through the softmax function,
generating a probability distribution over all non-[MASK] tokens, indicated by
the green bars.

As shown in Figures 6.2 and 6.3, rather than simply weighting all relevant
terms in the original query, we train the model to strategically create sub-
queries.

Figure 6.3 demonstrates these steps. Given the statement “Mary Doria
Russell and James Joyce are both novelists” (taken from the HoVer [11] claim

CHAPTER 6. GOALBERT 45

[CLS] Mary Doria Russell and James Joyce are both novelists [SEP] [MASK] [MASK]

Russell novelists

Joyce novelists

Mary Doria Russell (born August 19, 1950) is an American novelist.

James Augustine Aloysius Joyce (2 February 1882 – 13 January
1941) was an Irish novelist, poet, and literary critic.

… Joyce are both novelists [SEP] [MASK] [MASK] Mary Doria Russell (born …

[CLS] Mary Doria Russell and James Joyce are both novelists [SEP] Mary
Doria Russell (born August 19, 1950) is an American novelist. [SEP] James
Augustine Aloysius Joyce (2 February 1882 – 13 January 1941) was an Irish
novelist, poet, and literary critic.

Query + Evidence

Task
Specific
Reader

True

Hop 1

Hop 2

Query

Query +
Context

[MASK]
probability
distributions

[MASK]
probability
distributions

Sampled query

Sampled query

Retrieved
fact
(FAISS
retrieval +
MaxSim)

Retrieved
fact
(FAISS
retrieval +
MaxSim)

At query time

Offline

FAISS
Passage
Collection

Split into constituent
facts (sentences)

Passage 1,
Fact 1

Passage N,
Fact M

…
ColBERT

Create contextualized
embeddings with

ColBERT

Create FAISS
index from

embeddings

Figure 6.3: The proposed system, GoalBERT applied to fact verification. In this
example, the model attempts to verify whether the original query about novelists
is true. On each hop, the model contextualizes the current query combined with
evidence passages (i.e. the context) and concatenated with some [MASK] tokens to
produce a set of embeddings. For each [MASK] embedding, we generate a probability
distribution using the distance from that [MASK] embedding to every non-[MASK]
embedding, then sample these distributions to generate a query. This query is used
to retrieve the next piece of evidence. Once the system has performed n number
of hops (n is up to the user), the context can be passed to a downstream reader to
classify whether the retrieved information verifies a claim or not.

CHAPTER 6. GOALBERT 46

verification dataset), the model is given the task of retrieving relevant docu-
ments that would demonstrate the claim to be true or false. On the first hop,
the blue [MASK] token is contextualized such that it is very close to “Mary”,
“Doria”, and “Russell”, while the red [MASK] token is very close to “novel-
ists”, thus forming the query “Russell” and “novelists” after randomly sam-
pling these distributions. Identical to ColBERT, these contextualized query
embeddings are used to retrieve relevant sentences. The highest scoring sen-
tence is concatenated to the end of the current context, forming the context
for the next hop, thus the set of facts grows with each hop. In real-world
usage, the query and context is sent to a task specific reader for classifying
whether the claim is true or not.

In our experiments, we initialize GoalBERT with the ColBERT v2 weights
provided by the ColBERT repository 1. For our critic network, we use Dis-
tilbert [23], a distilled version of BERT. During both training and evaluation,
we sample [MASK]s, as opposed to selecting the non-[MASK] with the highest
probability of being chosen for each [MASK].

Action Pruning

As is, the action space of possible queries is still far too large. Consider a query
consisting of 30 tokens that uses 20 [MASK]s. This result in 1.024e+13 possible
action combinations. This inhibits both exploration (the model will not be able
to see the effects of most query combinations) and credit assignment (there is
high variance due to the extremely large number of final queries that can be
generated).

As observed in some figures, some contextualized tokens form clusters in
latent space. For example, ”swim”, ”pools”, and ”spa” are all located close
to each other in our sample query. Intuitively, if a [MASK] token selects any
one of the embeddings in this cluster, it will be almost the same as if it had
selected the other ones. This leads to a natural way to reduce the scale of the
problem: removing ”duplicates” from our action space. We run through the
query and identify all embeddings whose cosine similarity is above a certain
threshold (we use 0.8) to a previously seen embedding. If so, we mask it out,
since selecting this embedding should have a near-identical effect to selecting
the previously seen embedding, which we keep. This reduces the set of possible

1https://downloads.cs.stanford.edu/nlp/data/colbert/colbertv2/colbertv2.0.tar.gz

CHAPTER 6. GOALBERT 47

actions we can take and increases the probability of the remaining tokens due
to normalization. Since retrieved facts by design contain embeddings similar
to the query, this results in an almost guaranteed reduction in embeddings to
check.

Reward Function

Our reward function closely mirrors the objective of the HoVer dataset. On
each hop, our model must retrieve one of the gold facts based on information
it currently has access to. Thus, a natural choice is to reward the model
whenever it retrieves a gold fact, and give no reward if the fact retrieved is
not part of the gold set or has already been seen. Maximizing this objective
means returning a relevant fact on every single hop.

However, this function makes for a poor optimization signal. For a four-
hop question, if it retrieves anything out of the set of millions of facts except
four specific strings, it would get a reward of zero.

Instead, we opt for a softer version of the same idea. For each generated
subquery, we retrieve the top 100 facts and identify the rank of the closest
unseen fact, using “0” as the rank of the highest ranked item. Our model uses
this rank as the reward (1 − R/100), giving us a reward in the range of 0 to
1. This is similar in concept to using the reciprocal rank, except our reward
linearly decreases, while the reciprocal rank decreases harmonically. If the
closest fact ended up in our top 10 results, we add it to our list of seen facts
even though we do not select it for context (we only use the highest ranked fact
that hasn’t been previously selected when appending to our context), since the
model could exploit this by keeping the same gold fact in second place, instead
of maximizing the chance of selecting it.

Loss Function

We use the standard PPO clipped loss as our loss function. As typical with
PPO, we also incorporate an entropy coefficient to incentivize the network
to explore. For our specific problem, we add a term to “freeze” the MASKs
and prevent them from changing. Inspired by Distilbert, we add a cosine
maximization term that incentivizes the non-[MASK] tokens to be as close as
possible to the outputs of the original model. The full loss function for the
policy at training iteration k, Lk can be seen in Equation 6.2. The first term

CHAPTER 6. GOALBERT 48

(PPOk, in Equation 6.1) is the standard clipped PPO loss (using advantage
estimation Aπk(st, at)), the second term is the cosine maximization loss, and
the third term is the entropy loss. N is an operation that computes the
non-[MASK] embeddings for a state st, where each state consists of the query
and context at that timestep. Nk corresponds to the non-[MASK]s produced
by the model at training iteration k, making N0 the embeddings produced
by the original ColBERT model. The actions at corresponds to the selected
non-[MASK]s for each [MASK] token. πk(st|at) represents the probability of
selecting actions at given state st at training iteration k. T is the total number
of timesteps. Cm and Ce are coefficients for the [MASK] freezing term and
entropy term, respectively.

PPOk = min

(
πk(at|st)
πk−1(at|st)

Aπk(st, at), g(ϵ, Aπk(st, at))

)
(6.1)

Lk =
T∑
t=0

−PPOk − Cm · Tr(N0(st)
TNk(st))− Ce · π(at|st) log(πk(st|at))

(6.2)

6.2.2 RQ1: How do the number of MASKs impact perfor-
mance and training stability?

With each MASK token we add, we add another dimension to our action space.
This quickly decreases the tractability of the problem, as the effect of changing
a single MASK is reduced and the joint probability decreases drastically due
to each action probability being independent.

We can alleviate this issue by only using the first n MASKs in the query.
Reducing the number of [MASK]s reduces the number of possible weighting
configurations, potentially hurting the model’s ability to perform optimal
queries – for example, with only two [MASK] tokens, the model can only select
a single non-[MASK] embedding or two embeddings of equal weight. How-
ever, this reduction in [MASK]s also dramatically reduces the space of possible
embedding selections, making the problem more tractable.

We vary the number of MASKs available from 1 to 4, 6, and all (i.e.
all [MASK]s are used) and identify the F1 and EM score reached after 490
sampling/training iterations, where during one iteration, we collect a batch

CHAPTER 6. GOALBERT 49

of experience with our policy, then train the batch on our model to update
action probabilities. We stick to using 2 hops (similar to HotpotQA) instead of
the much more challenging 4-hop setting to get faster convergence speeds. We
expect performance on the latter setting to be much more difficult when adding
more masks, due to the explosion in action space size when more non-[MASK]
tokens are taken into consideration. Our hypothesis is that similar to our
[MASK] varying experiments from Chapter 4, performance will sharply increase
as [MASK]s are increased from 1 to 4. However, due to the greatly increased size
of the problem, 6 and all [MASK]s will cause the policy to collapse, ultimately
resulting in lower performance.

On all runs, we use a policy learning rate of 5e-6, an entropy coefficient
of 0.003, a [MASK] freezing coefficient of 3, a PPO batch size of 512, and a
training batch size of 64.

6.2.3 RQ2: How does GoalBERT compare against Baleen and
FLIPR?

We train GoalBERT on the full HoVer train set (i.e. with 2, 3, and 4 hop
claims) using 4 [MASK] tokens, and compare its performance to Baleen (using
the official Baleen checkpoint provided by the GitHub page 2) on the HoVer
dev set. Due to our reliance on using [MASK]s, during training, we filter out
all queries that leave us with less than 4 [MASK]s. We measure the same
metrics used in the Baleen paper, sentence and passage level Exact Match
(EM) and F1 (combination of precision and recall). EM reports a 1 if our
final set of retrieved facts or passages is identical to the dataset’s gold set of
facts or passages, and a 0 otherwise. F1 acts as an intersection-over-union
measure between the retrieved and gold set of facts/passages. We report per-
formance across 2, 3, and 4-hop claims individually, along with an average. We
hypothesize that due to Baleen’s 2 stage condenser architecture, GoalBERT
underperforms against the full model.

To compare each model’s ability to retrieve highly relevant documents from
a wide corpus, we also measure MRR@25 between GoalBERT and FLIPR
on the HoVer dev set. GoalBERT is most similar to FLIPR in the Baleen
architecture, thus it makes the most sense to compare them head to head.

2https://downloads.cs.stanford.edu/nlp/data/colbert/baleen/hover.checkpoints-
v1.0.tar.gz

CHAPTER 6. GOALBERT 50

For initial retrieval, ensuring highly relevant documents appear is the priority,
while precision takes a backseat. However, if too wide of a net is cast, later
parts of the pipeline suffer due to many distractors. We hypothesize that due
to GoalBERT being trained to only rank a single document as high as possible
on each step, effectively performing a single query per hop, it outperforms
FLIPR, whose focused late interaction mechanism causes a query to fulfill
many information needs at once (greatly improving recall of gold facts per hop,
but potentially reducing precision). We use MRR@25 since Baleen retrieves
25 passages per hop.

Due to Baleen’s usage of condensing after initial retrieval, FLIPR will
inherently get better facts as context during retrieval, leading to an unfair
comparison. To mitigate this, we use a “perfect” condenser for GoalBERT that
takes the results of its retrieval, finds the highest ranked gold fact (as opposed
to greedy selection of the highest ranked retrieved fact), and appends this to
the context for the next hop. To account for the fact that FLIPR operates
on whole passages, while GoalBERT operates on just sentences, we replace
the set of sentences retrieved by GoalBERT with their passages, then remove
duplicates. For example, given passages A,B,C, and facts A0..3, B0..3, C0..3,
where A0 is the first sentence of A, a ranking of A0, C1, A1, A2, B2 would reduce
to A,C,B, since a passage from A is returned first, then C, then B.

For each experiment, we also compare GoalBERT against GoalBERT at
the start of training (i.e. freshly initialized with ColBERT v2 weights) in order
to measure improvement. We use a policy learning rate of 5e-6, an entropy
coefficient of 0.3, a [MASK] freezing coefficient of 3, a PPO batch size of 512,
and a training batch size of 64.

6.3 Results

6.3.1 RQ1: How do the number of MASKs impact perfor-
mance versus training stability?

In Figure 6.4, we see sentence-level EM and F1 for 1, 2, 3, 4, 6, and all [MASK]s.
We see that starting from 1 [MASK] onwards, adding subsequent [MASK]s ini-
tially causes a large rise in performance, however performance quickly plateaus
(similar to our results from 4). Interestingly, performance never drops even
with a large number of [MASK]s (i.e. “All”), we see a monotonic increase in

CHAPTER 6. GOALBERT 51

1 2 3 4 ... 6
0.0

0.2

0.4

0.6

0.8

1.0

All All
of [MASK]s

EM
of [MASK]s vs. EM

(a) EM

1 2 3 4 ... 6
0.0

0.2

0.4

0.6

0.8

1.0

All All
of [MASK]s

F1

of [MASK]s vs. F1

(b) F1

Figure 6.4: Sentence-level EM (a) and F1 (b) when training with 1, 2, 3, 4, 6,
and all [MASK]s. 2-hop claims from the HoVer dev set are used for evaluation.

performance as more [MASK]s are added. To speed up convergence, for RQ2,
we only use 4 [MASK]s, however our results here indicate that using all [MASK]s
will not harm performance due to catastrophic policy failure during training.

6.3.2 RQ2: How does GoalBERT compare against Baleen and
FLIPR?

In Tables 6.1 and 6.2, we see EM and F1 at the sentence and passage level,
respectively, for Baleen, GoalBERT, and GoalBERT at the start of train-
ing (“Not Finetuned”). As expected, Baleen greatly outperforms GoalBERT
across all measures. With each hop, we see lower EM and F1, reflecting the
increasing difficulty of the problem.

Table 6.3 shows MRR@25 between FLIPR and our trained and untrained
GoalBERT models. Disappointingly, we see that FLIPR greatly outperforms
GoalBERT, with an average increase of around 30 points. On average, Goal-
BERT obtains an MRR@25 of 16.9, indicating relevant passages appear at
the 6th position of the ranking on average. In contrast, FLIPR tends to find
relevant passages in the 2nd position. These results indicate that GoalBERT
performs poorly even when it is just used for initial retrieval.

Despite poor performance in comparison to Baleen and FLIPR, we do see

CHAPTER 6. GOALBERT 52

Sentence EM Sentence F1
Model/# Hops All 2 3 4 All 2 3 4

Baleen 39.2 47.3 37.7 33.3 81.5 81.2 82.5 80.0
GoalBERT 0.4 1.3 0.1 0.0 12.3 20.6 10.2 6.9
GoalBERT
(Not Finetuned) 0.3 1.0 0.0 0.0 11.5 19.3 9.8 6.1

Table 6.1: Sentence-level EM and F1 for GoalBERT and Baleen, for dev set
claims requiring 2, 3, and 4 hops, as designated by the HoVer dataset. “All”
corresponds to average performance across all hops.

Passage EM Passage F1
Model/# of Hops All 2 3 4 All 2 3 4

Baleen 63.6 75.8 62.5 52.6 89.2 90.2 89.9 86.8
GoalBERT 0.6 1.9 0.1 0.0 15.4 25.2 13.1 9.0
GoalBERT
(Not Finetuned) 0.4 1.2 0.0 0.0 14.6 23.1 13.1 8.0

Table 6.2: Passage-level EM and F1 for GoalBERT and Baleen, for dev set
claims requiring 2, 3, and 4 hops, as designated by the HoVer dataset. “All”
corresponds to average performance across all hops.

an increase in performance compared to the model prior to finetuning. Be-
tween the trained and untrained variants, we see an increase in passage/sentence
EM, F1, and MRR@25, indicating that our training strategy does improve
performance on the task, compared to when we freshly initialize the model
with ColBERT weights. While this increase was not significant for EM and
F1, a two-tailed t-test showed that the final GoalBERT model significantly
(p < 0.05) improves MRR@25 on the “all” setting.

6.4 Discussion

The results from the experiment for RQ1 show that the benefit of additional
[MASK]s follows a log scale – we initially get a large increase in EM and F1,
but as more [MASK]s are added, we get diminishing returns along with a com-
binatorial explosion of action combinations. Surprisingly, we continue to see

CHAPTER 6. GOALBERT 53

MRR@25
Model/# of Hops All 2 3 4

FLIPR 57.5 67.1 58.3 51.0
GoalBERT 16.9 30.7 16.0 10.5
GoalBERT (Not Finetuned) 16.0 28.4 15.5 9.9

Table 6.3: MRR@25 for GoalBERT and FLIPR, for claims requiring 2, 3, and
4 hops, as designated by the HoVer dataset. “All” corresponds to average
performance across all hops.

performance increase even when using all [MASK]s, indicating this combina-
torial action space may not pose as big of a problem as originally envisioned,
contradicting the second half of our hypothesis. This may be due to the way we
restricted how [MASK] probability distributions are calculated; since [MASK]

and non-[MASK] embeddings are normalized, and we use cosine similarity be-
tween the two as logits for our softmax, the model can never learn to send a
[MASK] token so far away from other embeddings that it causes policy collapse.

In RQ2, we see that Baleen and FLIPR both outperform GoalBERT. The
latter result contradicts our hypothesis that our training strategy improves
performance due to being less “scattershot” than FLIPR, resulting in less
irrelevant documents sent downstream.

While disappointing, we wondered how much of this was due to our training
method versus our problem formulation. Ultimately, our aim was to have the
model learn to move [MASK]s in embedding space such that reward-maximizing
terms would have a higher chance of being selected. If we succeeded on this
front, it would indicate that poor performance on the task is due to how we
applied the model, not necessarily because the reinforcement learning failed.

Figures 6.5 and 6.6 show PCA-fit embeddings before and after 1000 train-
ing iterations, for two different claims. In the first, “Greater Swiss Mountain
Dog and Harrier are both dog breeds.”, the model must learn to retrieve the
passage for “Greater Swiss Mountain Dog”, then the passage for “Harrier”.
Thus, we would expect [MASK]s to have moved closer to either of the em-
beddings that make up these two phrases. In (a) of Figure 6.5, we see that
the embeddings for “breeds” and “swiss” are strongly preferred by [MASK]s.
However, after training, [MASK]s that select “breeds” become more similar
to the embedding for “swiss”, indicating that the model has indeed learned

CHAPTER 6. GOALBERT 54

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

[CLS]

[Q]greater
swiss

mountain

dog
and

ha

##rrier

are

both

dogbreeds

.[SEP]

"Greater Swiss Mountain Dog and Harrier
are both dog breeds."

Iteration 0

(a) Iteration 0

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

[CLS]

[Q]greater
swiss

mountain

dog
and

ha##rrier

are

both

dogbreeds

.[SEP]

"Greater Swiss Mountain Dog and Harrier
are both dog breeds."

Iteration 1000

(b) Iteration 1000

Figure 6.5: Query and [MASK] embeddings before and after 1000 training iter-
ations, for the query “Greater Swiss Mountain Dog and Harrier are both dog
breeds.”. Embeddings projected with PCA fit on query and [MASK] embed-
dings from Iteration 0. [MASK] embeddings are in red, while non-[MASK]s are
in black.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

[CLS]

[Q]before i
go

to

sleep

starsan

australian

actress,producer
and

occasional

singer

.[SEP]

"Before I Go to Sleep stars an Australian
actress, producer and occasional singer."

Iteration 0

(a) Iteration 0

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

[CLS]

[Q]before i
go

to

sleep

starsan

australian

actress,producerand

occasional

singer

.[SEP]

"Before I Go to Sleep stars an Australian
actress, producer and occasional singer."

Iteration 1000

(b) Iteration 1000

Figure 6.6: Query and [MASK] embeddings before and after 1000 training
iterations, for the query “Before I Go to Sleep stars an Australian actress,
producer and occasional singer.”. Embeddings projected with PCA fit on
query and [MASK] embeddings from Iteration 0. [MASK] embeddings are in
red, while non-[MASK]s are in black.

CHAPTER 6. GOALBERT 55

that these embeddings tend to match the relevant passage, “Greater Swiss
Mountain Dog”.

In Figure 6.6, the claim shown is “Before I Go to Sleep stars an Australian
actress, producer and occasional singer.” To answer this query, the model
must retrieve the passage for “Before I Go to Sleep”, obtaining information
about who starred in the movie. Then, it must retrieve information about the
star (Nicole Kidman), to verify that she is an actress, producer, and singer.
We would thus expect [MASK]s to learn to prefer embeddings that make up
the phrase “Before I Go to Sleep”. In (a) of this figure, we see that “singer”
is preferred by the [MASK]s. However, after training, we do see that [MASK]s
tend to cluster around the words “before” and “to”, indicating that it has
learned that these embeddings tend to retrieve the relevant passage, “Before
I Go to Sleep”.

While it does appear that the [MASK] embeddings tend to move towards the
center of all non-[MASK] embeddings, this may be due to our experiment using
a particularly high entropy coefficient (incentivizing the model to assign equal
probability to all non-[MASK] tokens for each [MASK]), we do believe that the
[MASK]s are closer to non-[MASK] embeddings that lead to relevant passages
than embeddings that do not, as seen in Figure 6.5. Additionally, we have
confirmed that with a lower entropy coefficient (e.g. 0.003), the embeddings
do move closer to the relevant non-[MASK] embeddings.

It is thus our belief that the low EM, F1, and MRR@25 compared to
Baleen and FLIPR can be attributed to how we formulated the problem,
rather than using RL to train the model modify its [MASK] representations to
maximize some reward signal. By retrieving facts instead of whole passages,
the retriever cannot rely on keywords present across sentences, which could
hamper performance. For instance, rather than referring to a subject by name,
a sentence may use their pronoun instead. We also greedily select the top fact
produced by our ranking directly, instead of using a condensing architecture
like Baleen, which would greatly reduce the quality of the context after the
first hop. In other words, low performance is due to attempting to perform
both initial retrieval and filtering in the same model, which is very difficult.

CHAPTER 6. GOALBERT 56

6.5 Conclusion

Building off of our understanding of ColBERT and its use of MASK tokens, we
propose GoalBERT. GoalBERT paramterizes a probability distribution over
non-[MASK]s for each MASK token, allowing it to probablistically select im-
portant terms in the query. This allows us to train it using a reinforcement
learning paradigm, where the results of previous queries can impact future re-
wards. We evaluate this approach using HoVer, a multi-hop claim verification
dataset that requires multiple rounds of retrieval to verify claims.

We find that even just using these MASK tokens as actions, the combina-
torial space is still far too large to perform effective reinforcement learning. To
rectify this, we also propose removing redundant non-[MASK] tokens from con-
sideration when parameterizing our action distributions, allowing us to only
focus on a select group of important tokens. We also test via RQ1 whether
all MASKs are truly necessary for good performance, and find that though
performance greatly degrades at 1 MASK token, with each successive token
EM and F1 greatly increases, with F1 at 4 MASK tokens obtaining an F1
score 2/3 as high as the full set of MASK tokens, while greatly cutting down
on the combinatorial space. At the same time, using all [MASK] tokens does
not cause catastrophic policy failure, indicating that reducing the number of
[MASK]s is not strictly necessary.

In RQ2, we evaluate GoalBERT against Baleen and FLIPR. We find that
Baleen strongly outperforms our model on every metric (EM, F1) and hop (2,
3, 4, combined), which we expected due to Baleen’s condenser architecture
providing it with the ability to filter out low quality facts. However, when
comparing FLIPR to GoalBERT using MRR@25, we find that even the initial
retriever of Baleen greatly outperforms our model. Despite poor performance
against the Baleen baseline, we identify an increase across all metrics compared
to our freshly initialized model (i.e. using ColBERT v2 weights), indicating
our training strategy is improving our model.

After further analysis, we find that our model performs the expected be-
havior of moving [MASK] tokens towards relevant query embeddings, indicat-
ing that the problem stems from having a single model perform both initial
retrieval and fact extraction at once. We thus argue that the increase we
observed in our metrics over the course of training demonstrates that using
[MASK]s to select relevant embeddings in the query is a viable strategy for

CHAPTER 6. GOALBERT 57

integrating RL into a late interaction framework.
In future work, we would like to follow up on these results by splitting

GoalBERT into a passage retrieval model and a sentence filtering model. The
retriever would work similarly to GoalBERT as outlined in this chapter, with
the exception of retrieving whole passages instead of just fact sentences. For
selecting relevant context sentences, we would have a second model that out-
puts a logit for each passage, similar to the condensers from Baleen. Since
the initial retriever and sentence selector can both be trained with RL, we
can combine them to create a system that performs end-to-end retrieval and
filtering for multi-hop iterative retrieval.

Chapter 7

Conclusion

In this thesis, we have focused on analyzing special tokens in ColBERT and
how they contribute to document scoring, in particular, the MASK tokens.
We investigated the role of [CLS], [SEP], [Q], and [MASK] in how documents
are scored, shedding light onto how these tokens contribute to the scoring
process. Using our findings, we proposed GoalBERT and evaluated it against
Baleen, another late interaction model that performs multi-hop claim verifica-
tion. Though our final model underperformed compared to Baleen, we argue
this was due to our specific problem formulation, and identify new directions
of research based on these results.

We started in Chapter 2 by examining the [MASK] and [Q] tokens. For our
first experiment, we remapped all [MASK] tokens to their most similar non-
[MASK] embedding, and found no significant reduction in performance. We
also perturbed queries by moving their tokens around in a way that preserved
their semantic meaning, and measured the cosine distance between query em-
beddings before and after perturbation. In doing this, we found that [CLS]
and [SEP] show little change as long as queries retain their semantic meaning,
while [Q] and [MASK] dramatically change, indicating the specific order of
words in the query heavily influence the representations of these tokens.

Next, in Chapter 3, we studied [Q], [CLS], and [SEP]. The existence of [Q]
and [D] tokens have little effect on how query text tokens are contextualized,
given that replacing [Q] with [D] or [PAD] showed no change in query text
representations. We also showed that [CLS] and [SEP] can act as single-
vector dense retrievers to a certain degree, as when we performed retrieval

58

CHAPTER 7. CONCLUSION 59

with just these tokens in isolation, they outperformed using just the first
query text embedding. This built off our results from Chapter 2, in that we
again demonstrated how [CLS] and [SEP] aggregate context across the entire
query in ColBERT.

Chapter 4, we returned to examining [MASK] tokens. To examine the effect
of [MASK] tokens on the model, we varied the number of [MASK] tokens from
0 to 128 and analyzed its performance. We found no significant performance
degradation even at 128, indicating these tokens add weight over and over
again to the same tokens in a pattern. We also showed that removing all
[MASK]s did not cause a huge reduction in performance, although as we added
more [MASK]s starting from 0, performance greatly increased, plateauing when
the number of [MASK]s were around the average number of [MASK]s seen
during training.

In preparation for our final experiment, Chapter 5 introduced Baleen. This
late interaction model performs retrieval in multiple steps, reformulating its
query after each hop. As we showed, Baleen’s usage of focused late interaction
and its two-stage condenser model allows it to retrieve a diverse set of relevant
documents in initial retrieval, then filter out distracting facts to obtain a small
set of relevant facts needed to validate a claim. Along with examining the
model and its components, we also defined the multi-hop open domain claim
verification task we evaluate our proposed approach on in the next chapter.

In Chapter 6, we finally introduced GoalBERT. Our results from Chap-
ter 2 showed that we could remap [MASK] tokens to their nearest non-[MASK]
neighbor, and our approach was built around this insight. Our proposed sys-
tem parameterizes a distribution for each [MASK] using its cosine similarity to
non-[MASK]s, then trains the model using reinforcement learning to maximize
a reward signal, e.g. the number of gold fact sentences retrieved in multi-
hop claim verification. We compared our model to Baleen, and found that it
performed poorly in comparison. However, after further examination of the
model, we found that the model indeed did maximize our objective function
to the best of its ability, moving [MASK]s towards relevant query and fact text
tokens. Despite these initially disappointing results, we identified new direc-
tions of research based on the aspects of this model that succeeded. Overall,
we believe that using [MASK] distributions to integrate reinforcement learning
into late interaction is a promising approach that warrants further research.

Chapter 8

Bibliography

[1] Nima Asadi, Donald Metzler, Tamer Elsayed, and Jimmy Lin. Pseudo test
collections for learning web search ranking functions. In Proceedings of the
34th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’11, page 1073–1082, New York, NY,
USA, 2011. Association for Computing Machinery.

[2] Andrea Bacciu, Florin Cocunasu, Federico Siciliano, Fabrizio Silvestri,
Nicola Tonellotto, and Giovanni Trappolini. Rraml: reinforced retrieval
augmented machine learning. arXiv preprint arXiv:2307.12798, 2023.

[3] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xi-
aodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri
Nguyen, et al. Ms marco: A human generated machine reading compre-
hension dataset. arXiv preprint arXiv:1611.09268, 2016.

[4] Richard Bellman. A markovian decision process. Indiana Univ. Math. J.,
6:679–684, 1957.

[5] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Man-
ning. ELECTRA: pre-training text encoders as discriminators rather than
generators. CoRR, abs/2003.10555, 2020.

[6] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos.
Overview of the TREC 2020 deep learning track. CoRR, abs/2102.07662,
2021.

60

CHAPTER 8. BIBLIOGRAPHY 61

[7] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and
Ellen M. Voorhees. Overview of the TREC 2019 deep learning track.
CoRR, abs/2003.07820, 2020.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[9] Yair Feldman and Ran El-Yaniv. Multi-hop paragraph retrieval for open-
domain question answering. In Anna Korhonen, David Traum, and Llúıs
Màrquez, editors, Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2296–2309, Florence, Italy,
July 2019. Association for Computational Linguistics.

[10] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. A white
box analysis of colbert. In Advances in Information Retrieval, pages 257–
263, Cham, 2021. Springer International Publishing.

[11] Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles Dognin, Maneesh
Singh, and Mohit Bansal. HoVer: A dataset for many-hop fact extrac-
tion and claim verification. In Findings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020.

[12] Omar Khattab, Christopher Potts, and Matei Zaharia. Relevance-guided
supervision for OpenQA with ColBERT. Transactions of the Association
for Computational Linguistics, 9:929–944, 2021.

[13] Omar Khattab, Christopher Potts, and Matei A. Zaharia. Baleen: Ro-
bust multi-hop reasoning at scale via condensed retrieval. In Advances in
Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 27670–27682, 2021.

[14] Omar Khattab and Matei Zaharia. Colbert: Efficient and effective

CHAPTER 8. BIBLIOGRAPHY 62

passage search via contextualized late interaction over BERT. CoRR,
abs/2004.12832, 2020.

[15] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in
neural information processing systems, 12, 1999.

[16] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau
Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-
augmented generation for knowledge-intensive nlp tasks. In Proceedings
of the 34th International Conference on Neural Information Processing
Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[17] Sean MacAvaney, Sergey Feldman, Nazli Goharian, Doug Downey, and
Arman Cohan. ABNIRML: Analyzing the Behavior of Neural IR Models.
Transactions of the Association for Computational Linguistics, 10:224–
239, 03 2022.

[18] Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, and Iadh Ounis.
Pyterrier: Declarative experimentation in python from bm25 to dense
retrieval. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, CIKM ’21, page 4526–4533, New
York, NY, USA, 2021. Association for Computing Machinery.

[19] Vaibhav Mavi, Anubhav Jangra, and Adam Jatowt. A survey on multi-
hop question answering and generation. ArXiv, abs/2204.09140, 2022.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[21] Ali Montazeralghaem, Hamed Zamani, and James Allan. A reinforcement
learning framework for relevance feedback. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’20, page 59–68, New York, NY, USA, 2020.
Association for Computing Machinery.

[22] Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
Qiaoqiao She, Hua Wu, Haifeng Wang, and Ji-Rong Wen. PAIR:

CHAPTER 8. BIBLIOGRAPHY 63

leveraging passage-centric similarity relation for improving dense pas-
sage retrieval. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli, editors, Findings of the Association for Computational Lin-
guistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 2173–2183. Association
for Computational Linguistics, 2021.

[23] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Dis-
tilbert, a distilled version of BERT: smaller, faster, cheaper and lighter.
CoRR, abs/1910.01108, 2019.

[24] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts,
and Matei Zaharia. Colbertv2: Effective and efficient retrieval via
lightweight late interaction. CoRR, abs/2112.01488, 2021.

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. CoRR,
abs/1707.06347, 2017.

[26] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, USA, 2018.

[27] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function
approximation. In Advances in Neural Information Processing Systems,
volume 12. MIT Press, 1999.

[28] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and
Iryna Gurevych. BEIR: A heterogeneous benchmark for zero-shot evalu-
ation of information retrieval models. In Joaquin Vanschoren and Sai-Kit
Yeung, editors, Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual, 2021.

[29] Nicola Tonellotto and Craig Macdonald. Query embedding pruning for
dense retrieval. CoRR, abs/2108.10341, 2021.

[30] Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman,
William R. Hersh, Kyle Lo, Kirk Roberts, Ian Soboroff, and Lucy Lu

CHAPTER 8. BIBLIOGRAPHY 64

Wang. Trec-covid: constructing a pandemic information retrieval test
collection. SIGIR Forum, 54(1), feb 2021.

[31] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas,
Jiangjiang Yang, Doug Burdick, Darrin Eide, Kathryn Funk, Yannis
Katsis, Rodney Michael Kinney, Yunyao Li, Ziyang Liu, William Mer-
rill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan,
Zhihong Shen, Brandon Stilson, Alex D. Wade, Kuansan Wang, Nancy
Xin Ru Wang, Christopher Wilhelm, Boya Xie, Douglas M. Raymond,
Daniel S. Weld, Oren Etzioni, and Sebastian Kohlmeier. CORD-19: The
COVID-19 open research dataset. In Karin Verspoor, Kevin Bretonnel
Cohen, Mark Dredze, Emilio Ferrara, Jonathan May, Robert Munro, Ce-
cile Paris, and Byron Wallace, editors, Proceedings of the 1st Workshop
on NLP for COVID-19 at ACL 2020, Online, July 2020. Association for
Computational Linguistics.

[32] Xiao Wang, Craig Macdonald, and Iadh Ounis. Improving zero-shot re-
trieval using dense external expansion. Information Processing Manage-
ment, 59(5):103026, 2022.

[33] Xiao Wang, Craig MacDonald, Nicola Tonellotto, and Iadh Ounis.
Colbert-prf: Semantic pseudo-relevance feedback for dense passage and
document retrieval. ACM Trans. Web, 17(1), jan 2023.

[34] Xiao Wang, Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. Re-
producibility, replicability, and insights into dense multi-representation
retrieval models: From colbert to col*. In Proceedings of the 46th In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’23, page 2552–2561, New York, NY, USA,
2023. Association for Computing Machinery.

[35] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transform-
ers: State-of-the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing:

CHAPTER 8. BIBLIOGRAPHY 65

System Demonstrations, pages 38–45, Online, October 2020. Association
for Computational Linguistics.

[36] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng.
Adapting markov decision process for search result diversification. In Pro-
ceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’17, page 535–544, New
York, NY, USA, 2017. Association for Computing Machinery.

[37] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N.
Bennett, Junaid Ahmed, and Arnold Overwijk. Approximate nearest
neighbor negative contrastive learning for dense text retrieval. In 9th In-
ternational Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[38] Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei Du, Patrick S. H.
Lewis, William Yang Wang, Yashar Mehdad, Scott Yih, Sebastian Riedel,
Douwe Kiela, and Barlas Oguz. Answering complex open-domain ques-
tions with multi-hop dense retrieval. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021.

[39] Jun Xu, Zeng Wei, Long Xia, Yanyan Lan, Dawei Yin, Xueqi Cheng,
and Ji-Rong Wen. Reinforcement learning to rank with pairwise policy
gradient. In Proceedings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’20,
page 509–518, New York, NY, USA, 2020. Association for Computing
Machinery.

[40] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so)
dirty: Unsupervised selection of justification sentences for multi-hop ques-
tion answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan, editors, Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 2578–
2589, Hong Kong, China, November 2019. Association for Computational
Linguistics.

CHAPTER 8. BIBLIOGRAPHY 66

[41] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Unsupervised
alignment-based iterative evidence retrieval for multi-hop question an-
swering. arXiv preprint arXiv:2005.01218, 2020.

[42] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Co-
hen, Ruslan Salakhutdinov, and Christopher D. Manning. HotpotQA: A
dataset for diverse, explainable multi-hop question answering. In Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP),
2018.

[43] Wei Zeng, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Multi
page search with reinforcement learning to rank. In Proceedings of the
2018 ACM SIGIR International Conference on Theory of Information
Retrieval, ICTIR ’18, page 175–178, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[44] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma.
Repbert: Contextualized text embeddings for first-stage retrieval. CoRR,
abs/2006.15498, 2020.

	GoalBERT: Goal-Directed ColBERT for Iterative Retrieval
	Recommended Citation

	tmp.1716473623.pdf.ioEP9

