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Abstract

Sensitivity analysis (SA) systematically assesses and quantifies a model’s uncer-

tainty by examining the impact of parameter variations on the model’s output. An

objective of sensitivity analysis is to ascertain model-input parameters that con-

tribute the most to the uncertainty of a model’s output and could serve as a gauge

to determine whether a parameter’s variation is suitable, expected, or a realistic

representation of the phenomenon being modeled. Incorporating sensitivity analy-

sis for assessing the importance of a model feature is imperative for decision-making.

Therefore, as a statistical methodology, SA’s application in investigating coastal re-

gions that are vulnerable to sea-level rise and extreme weather events—exacerbated

by climate change—is crucial to effectively plan for and mitigate the consequences

that follow. Quantifying the uncertainty of future forcings of coastal hazards and

their impacts on risk estimates would better inform decision and policy making.

Using random forest (RF) regression, this research provides a framework for assess-

ing uncertainty in coastal risk predictions by proposing an extension of permuta-

tion variable importance for second-order interactions of model parameters. The

second-order permutation variable importances assesses the importance of a com-

bination of features by computing the mean-squared-error between the model’s true

value and its prediction computed over randomly permuted spaces that include the

combination of features itself. The second-order permutation variable importances

are tested on a simple mechanistically-motivated emulator, using a semi-empirical

model and dataset for global mean sea-level (GMSL) change and a coupled sea

level-coastal impacts model for the U.S. Gulf Coast. Our results demonstrate and
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provide another relationship between permutation variable importances and Sobol

sensitivity indices.
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1 Introduction

The capacity of humans and the rate at which they can alter and affect the climate grows

as technology grows. Investigating how they’re contributing to climate change (i.e., how

much?) and its resulting impacts on sea-level rise has been of interest since the 1960s.[29]

Like any phenomenon, the climate accompanies considerable uncertainty as a result of

the number of phenomenal interactions there are, such as the increase in greenhouse

gasses and, consequently, global temperatures (e.g., global mean surface temperature), ice

sheet disintegration, ozone depletion and a variety of other climate forces and drivers.

In order to understand these phenomenal interactions and human contribution thereof,

many climate scientists and modelers have considered special scenarios—specifically cli-

mate trajectories—to gain insight into potential futures and their accompanying model

drivers.[18][19] 1 These model-based climate trajectories capture potential climate condi-

tions, permit the quantification of uncertainty of human contribution to climate change,

and illuminate the practicality of proposed mitigation and adaptation strategies.[26]

Model-based climate trajectories (i.e.,scenarios) can be categorized as being either

emission, environmental, vulnerability, or earlier scenario work, each of which consists

of analyzing a multitude of climate forcings in isolation or in conjunction with economic,

technological, political, etc. trends.[27] As a result of the variety of climate forcings, their

uncertainties, and the growing complexity of climate models, the additional uncertainty

1To be clear here, I define a "model driver" to be a variable within a mathematical model that makes large or minuscule
contributions to the uncertainty of the model output.
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accompanying climate models, resulting from assumptions reflected within representa-

tions of climate processes and, generally, differences in the models developed, pose the

issue of discrepancy among climate risk estimations and projections. Moreover, the time

expense required for developing model-based climate scenarios have caused delays in

availability of these climate scenarios and employment within climate modeling, result-

ing in further inconsistencies among risk assessments. [28]

The process by which climate scenarios were developed for understanding uncer-

tainties associated with potential futures followed assumptions or relied upon a posteriori

knowledge germane to socioeconomic influences of greenhouse gas emissions. [26] pro-

posed a parallel approach in which climate scenarios were developed nonsequentially by

identifying characteristics of radiative forcings that permit broad climate modelling, and

captures various combinations of climate forcings that effectuated that level of radiative

forcing. In contrast to the sequential approach (i.e. the original climate scenarios), which

began with socioeconomic influences and, then, progressively linking climate forcings in

a linear fashion and using the resultant climate projections for risk assessment, the paral-

lel approach starts with a desired radiative forcing characteristic(s) that is representative

of a potential climate scenario. These climate scenarios were given the name: represen-

tative concentration pathways (RCP), since each pathway (i.e., trajectory) corresponds to

a single radiative forcing characteristic, whose concentration levels overtime are, again,

a result of a plethora of combinations of climate forcings.
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Representative Concentration Pathways (RCP) are a new collection of model-based

climate scenarios that substitute climate scenarios originally proposed by the Intergov-

ernmental Panel of Climate Change (IPCC).2 This approach allows for climate modellers

to produce new climate models, experiments, and climate scenarios using the emissions

generated by RCPs, effectively reducing the time between the availability of the climate

scenario and employment in climate modelling.[28] What’s unique about RCPs are that

there are only four to select from: RCP2.6, RCP4.5, RCP6.0, and RCP8.5, each of which

being distinct and offer a broad range of potential climate scenarios for exploration. Two

such radiative forcing trajectories, RCP2.6 and RCP8.5, were explored by [18] to ascer-

tain how climate drivers affect global mean sea-level rise overtime, using the Building

blocks for Relevant Ice and Climate Knowledge (BRICK) model from [45] in conjunction

with Random Forest—in the context of quantifying uncertainty in future coastal hazards.

Radiative forcing trajectories, RCP2.6 and RCP8.5, correspond to climate scenarios in

which the difference between incoming solar radiation absorbed by the Earth and energy

radiated back to space achieves a maximum value of ∼ 3Wm−2 before the year 21003

and any radiative forcing retaining values > 8.5Wm−2 in the year 2100 for RCP2.6 and

RCP8.5, respectively. In the year 2020, [18] initial findings reveal that thermal expansion

is predominately responsible for the increase in global mean sea-level rise, contribut-

ing 13.5 % in importance but saw a gradual reduction to 4.9% by the year 2055 under

the RCP2.6 climate scenario. In contrast, [18] findings of RCP8.5 climate scenario re-

vealed that the importance of thermal expansion was 12.3% for the year 2020 and, then,

2RCPs are potential futures and are not true or actual climate projections and/or estimates
3RCP2.6, as explained by [28], declines after the year 2100
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decreases to 7.2% by the year 2040. Between the years 2020 and 2040, the relative im-

portance of glacier ice-sheet disintegration is 6.2% to 4.2% and 6.8% to an apparent 0% for

RCP2.6 and RCP8.5, respectively.[18] The former findings suggest that while thermal ex-

pansion remained a contributing factor of climate change (specifically, the rise in global

mean sealevel), the decline of importance of thermal expansion is due to other contri-

butions of global mean sealevel: ice sheet disintegration, despite its relative importance

diminishing, in the case of RCP8.5.

To expound, as greenhouse gases accumulate, heat becomes trapped within Earth’s

atmosphere, causing a differential between the Earth’s absorption and conversion of

solar radiation to thermal radiation and its subsequent emission out into space. This

heat not only melts glaciers and ice-caps and, in the long-term, Antarctic ice-sheet but

also is absorbed by the Earth’s ocean, causing it to expand and increase the global

mean sealevel (i.e., thermal expansion). The uncertainty of thermal expansion equipped

with the uncertainty in global mean temperature rise aggrandizes the overall uncertainty

accompanying projections of global mean sea-level rise—twofold.

Furthermore, in both climate scenarios, there’s substantial agreement: thermal ex-

pansion, as a consequence of low-high greenhouse gas emissions, and ice-sheet disin-

tegration are climate, model drivers of global mean sea-level rise. This is consistent

with IPCC’s Sixth Assessment Report (AR6), "Impacts, Adaptation, and Vulnerability",

in which they present an assessment of climate risks within the near-term, analyzing
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various climate trajectories and emphasizing that the increase in global temperature and,

consequently, sealevel will result in the inundation of major coastal cities and degrada-

tion of ecosystems.[19] The latter and [18] research and findings, by themselves, stresses

the significance of UQ and SA as indispensable tools for informed decision-making, and

the potential impact it may have if absent for assessing climate risk projections—for

modeling in general. This emphasis is prevalent among the climate science community

as newer model configurations are publicized, consisting of a combination of repre-

sentative concentration pathways, shared-socioeconomic pathways (SSP), and regional

sea-level rise (RSLR) scenarios for robust and accurate climate risk projections. One

such publication by [35], who assessed the uncertainties resulting from combinations of

RCP and SSP scenarios and their influence on risk estimates of the expected annual

damage and adaptation cost using the Dynamic Interactive Vulnerability and Assess-

ment (DIVA) modelling framework in conjunction with Random Forest regression as its

substitution. Briefly, like RCPs, SSPs are postulated alternative futures of global mean

sealevel, in terms of socio-economic challenges, intended for assessing the efficacy of

proposed mitigation and adaptation strategies. To quantify the uncertainty of expected

annual damage and adaptation cost, [35] used the predictions of RF model to obtain

sensitivity indices for the output variables of interest. They found that the time evolution

of the uncertainties associated with the expected annual damage and adaptation costs,

as a result of the rise of global mean sealevel, increased during the 21st-century. Specif-

ically, the relative contribution to the uncertainty of the expected annual damage was

largely due to SSP by the year of 2030 with a sensitivity exceeding 50%, whereas RCP
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largely contributed to the uncertainty of the adaptation cost with a sensitivty of 80%. By

the year 2050-2060, SSP scenarios’ influence on the uncertainty of the expected annual

damage declined in relative importance as a result of the emergence of RCP scenarios’

influence on the global mean sea-level rise (i.e., rise in coastal flood damages). Initially,

the relative contribution to the uncertainty of the adaption cost were due to RSLR with

a sensitivity index exceeding 40%. While this pertains to local or regional, coastal sea-

level contributions, the uncertainty accompanying the rise in greenhouse gas emissions

globally dominated, resulting in a rise in sealevel and accordingly the rise in adaptation

cost. By the year 2050, RCP exceeded RSLR in relative contribution to the uncertainty

of adaptation cost, attaining a sensitivity index >60%.[35] To this end, [35] noted that

improved knowledge acquisition regarding RSLR prior to the year 2050 would aid in

climate mitigation strategies by reducing uncertainty accompanying adaptation costs, as

well as reduce the uncertainty associated with the expected annual damage provided the

capability to unambiguously identify the specific SSP scenario "...when accounting for

the occurrence likelihood of SSP-RCP combinations."[36]

These research findings demonstrate the power and utility of incorporating SA and

UQ into models whose intended use is for decision and policy making.

Uncertainty is a characteristic inherent within all phenomenon. It refers to the lack

of assurance or the degree of uncertainty germane to accuracy and reliability of re-

sults. Uncertainty comprises of two subcategories of uncertainty: aleatoric and epistemic
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uncertainty. Epistemic uncertainty arises when a modeller lacks a comprehensive under-

standing of the phenomenon being modelled. This could come in the form of having

an incomplete understanding of the underlying physics, insufficient or imprecise data, or

simplifications and assumptions made during the model development process. Aleatoric

uncertainty refers to the inherent stochasticity or randomness within the system being

modelled, for example, climate processes.

In this context, uncertainty quantification (UQ) is a process that involves assessing

the range and likelihood of potential futures in climate projections. This approach sys-

tematically addresses many of the inherent uncertainties accompanying climate model-

ing, namely variability in climate systems, model inadequacy, residual variability etc.[22]

Sensitivity analysis (SA) complements uncertainty quantification by examining how vari-

ations in model inputs affect the model output. The latter statistical methodology (i.e.,

SA) is crucial for identifying key drivers of climate change and determining the robust-

ness of model projections. Exploring how different assumptions and parameters influence

model results, SA provides insight into the relative importance of various climate pro-

cesses, forcings, and climate model drivers. It is essential for prioritized research and

policy efforts, and for assessing the confidence in model projections and their implica-

tions for adaptation and mitigation strategies.

In the realm of climate modeling and managing climate risks, the pervasive nature

of uncertainty demands meticulous attention and thoughtful analysis. This is crucial not
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just for understanding current climate dynamics but also for predicting future climate

conditions and informing policy and decision-making processes aimed at mitigating cli-

mate change impacts. The identification of sources of uncertainty within climate-risk

projections and understanding the roles these uncertainties play—both individually and

in combination with other variables—is a fundamental aspect of climate science. Cli-

mate models are simplifications of the Earth’s climate system, which are either developed

using mathematical representations of that physical process or are data driven—or both.

They, at their incipience, introduce uncertainty within climate projections and is exac-

erbated by assumptions made during the model development stage. Model calibration

is a quintessence of how climate models "imbibe" uncertainty, by estimating model pa-

rameters using empirical data that may possess measurement errors due to human and

technological limitations; this is an example of parameter uncertainty and usually arises

within the initial phases of the model development stage, in the case of a prognostic

model (see §2.1). The stochastic nature of the climate system means that small differences

in initial conditions could result in divergent outcomes which, as aforementioned, is an

example of aleatoric uncertainty and residual uncertainty.[23] The presence of these un-

certainties complicates the assessment and management of climate risks. It affects the

ability to accurately predict the frequency and intensity of extreme weather events, the

rate of sea-level rise, the impacts on biodiversity and ecosystems, and socioeconomic im-

pacts, among others. This, in turn, poses challenges for developing effective adaptation

and mitigation strategies.
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Understanding the roles of different processes and their associated uncertainties in

climate modeling is crucial for several reasons: improving model fidelity, risk assessment,

and planning. To manage and understand uncertainty in climate modeling and risk

management, the employment of statistical methodologies for uncertainty quantification

and sensitivity analysis are paramount, and research and development of novel methods

for attributing and characterizing that uncertainty to model inputs are necessary. By

placing uncertainty at the forefront of climate science, researchers and policymakers

can better navigate the complexities of climate modeling and risk management. This

approach facilitates a more nuanced understanding of potential future conditions and

supports the development of flexible, adaptive strategies for mitigating and adapting to

climate change.

The objective of SA is to quantify and attribute model-output uncertainties to its

input parameters. There are various SA methodologies that can be used for this task

and any one of them fall in one of the two categories: local or global methods.

Local methods of SA examine the effects of small perturbations within a region of

space on the output of a model. Specifically, it explores the sensitivity of the model near

a specific point within the parameter space by differentiating the model or performing

a "one-at-a-time" (OAT) method, which entails changing the value of a parameter OAT

while keeping all other model parameters fixed.[32] On the other hand, global methods of

SA examines the influence of input parameters over their entire range of possible values,
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considering the entire input space rather than just a local region. These methods in-

clude variance-based sensitivity analysis (i.e., Sobol indices, more on these later),Fourier

Amplitude Sensitivity Testing (FAST), Pearson, Spearman, and Kendall correlation co-

efficients, which can quantify the contribution of each input parameter to the output

variance or (in the case of the latter three) the linear dependence between features.[24]

A major distinction between local and global methods of SA are the assumptions made

about the model—about the phenomenon being studied. Local methods assume that

the modelled phenomenon (or phenomena) behaves linearly within the proximity of a

specific point being analyzed and, thus, unable to detect nonlinearity if present within

a model, whereas global methods can. Another difference is the computational com-

plexity between the two categories, as local methods happen to be less computationally

expensive than global methods by virtue of the fact that it does not examine the entire

parameter space. The choice between local and global sensitivity analysis depends on

the specific goals of the analysis, the nature of the model, and available computational

resources. Local sensitivity analysis is useful for a quick, initial assessment of sensitivity

around a specified point, which can be particularly useful in the early stages of model

development or when computational resources are limited. Global sensitivity analysis,

while more computationally intensive, provides a comprehensive view of the importance

and influence of input parameters across their entire range, offering deeper insights into

the model’s behavior under uncertainty.

In light of these differences, global methods are more appropriate and suitable for
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assessing climate models since climate forcings are not isolated phenomena but rather af-

fect and interact with each other—a kind of compound uncertainty.[37] Therefore, global

methods, specifically variance-based SA, will be the primary statistical methodology of

focus.

Variance–based sensitivity analysis is a global SA method that’s interested in ascer-

taining how perturbations of a model input parameter affect a model’s output of interest

or metric, which uses variance as the primary metric of uncertainty for this method.

The variance of the model output can be decomposed as the sum of individual and

combinations of model-input partial variances. Sobol sensitivity analysis, a variance-

based SA method, operationalizes this concept through the application of the Hoeffding

Decomposition, also known as high-dimensional model representation (HDMR), facili-

tating the isolation and aggregation of model-input uncertainties. It provides a robust

quantitative measure of a model parameter’s relative importance and can handle nonlin-

earity among inputs. Subsequently, Sobol SA provides what are called first, second, third

etc., and total-order indices (or measures) which are the quantifiers of uncertainty within

a model. These measures are computed under the assumption that each model input

is independent and identically distributed, using a predefined design of experiments.[33]

Indeed, the model undergoes a simulation in which it is computed on pseudo-random

or stratified-random low-discrepancy samples, to explore parameter relationships and

complex behaviors. The choice of sampling strategy is contingent on the model de-

sign and the modeller’s choice of method for quantifying and attributing uncertainty



Dinkins 15

among input—which is largely dependent upon the phenomenon being studied. Sobol

first-order measures quantifies individual, model-input contributions to our model’s out-

put variance, which is represented as a percentage of the total variance of the model.

Similarly, the second and total-order Sobol measures quantifies variable combinations’

and total effect (i.e. the sum of first, second, etc. order measures) contributions to the

model output variance. It quantifies the relative influence that each model parameter

has on the prediction of the model output (i.e. factor fixing and mapping), etc and en-

ables the modeller to pay selective attention on more influential model parameters, as

they are contributing the most to the uncertainty of the model output.[40] This aspect

may incentivize the modeller to either simplify the proposed model by the removal of

a non-influencial model parameter or the inclusion of a influential model parameter for

analysis.[1]

Many complex, modeled phenomena are expressed either vectorially or as a system

of equations. In this context, multivariate Sobol SA is a generalization of Sobol SA for

models of the latter type, in which each component or equation is a function that may

or may not be expressed as a combination of other functional outputs present within a

system or vectorial equation. It relies on a multivariate Hoeffding Decomposition, like

traditional Sobol SA, and provides insight into the relative influence of model-inputs on

a model output of interest.[17]

Despite the advantages of this approach,viz., can handle nonlinearity and estimate a
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model parameter’s global influence on the output of the model, a drawback of Sobol SA

is the computational complexity of computing the Sobol indices, since one would have

to compute it for each model feature and combinations of features, which can quickly

become computationally expensive if the proposed model is highly parameterized. For

instance, in the case of Sobol first and total-order indices, a model with d-variables and

N model runs, would require N(d+ 2) model evaluations.

Researchers have used a variety of approaches, in order to overcome this challenge.

For example, the aforementioned [18] used Random Forest classifiers for quantifying

the uncertainty associated with model features overtime, which uses an impurity-based

approach (specifically, gini impurity for classification) for assessing model-input uncer-

tainties and, more importantly, its impacts on global, mean sea-level rise.

Random Forest is a concoction of predictive models in the form of finitely many

decision trees to make predictions for classification and regression models, ensuring4

robustness and accuracy. A decision tree is a hierarchical model in which a randomly

chosen feature is initialized and successively split based upon a threshold that offers the

greatest reduction of impurity (see Figure 1). [5][8] Random Forest provides, as a tool, a

’generalized’ model for the purpose of classification and regression problems but, also,

offers an intuitive approach for quantifying model-input uncertainty. It is nearly an ’all-

in-one’ model in the sense that it provides a model with hyperparameters for calibration

and allows for the modeling of complex interactions between features and observational

4This assumes that sufficient hyperparameter tuning was performed for improved accuracy
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Figure 1: A Random Forest decision tree

data, making it applicable to a wide range of real-world phenomena, provided that

relevant data is available. To expound, during machine learning model development, the

modeller partitions the available dataset into three separate datasets: training, validation,

and testing datasets using a desired split. This procedure is done to iteratively assess

the model’s performances on the validation set, after repeatedly learning and calibrating

the model on training data, in order to determine the model’s generalizability (and/or

accuracy) on unseen data (i.e., test dataset). The validation set allows for the tuning of

model parameters without using the test set. This way, the test set remains an unbiased,

independent measure of model performance—preventing data leakage and over-fitting.

An important aspect of random forests is its ability to assess the importance of

different input variables when making predictions, which is achieved through measures

such as mean impurity decrease or gini importance that aid in determining the im-
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portance of a feature by examining its contribution to the predictability of the model’s

output. By analyzing variable importances, modellers can gain valuable insights into the

underlying relationships within their data and prioritize features accordingly for further

analysis or feature selection. This enables a better understanding of the driving factors

behind the model’s decisions and enhances interpretability, making it a popular choice

for both predictive modeling and exploratory data analysis. In contrast to conventional

modeling wherein the modeller develops a mathematical representation of a real-world

phenomenon then quantifies the relative importance of model features as an independent

procedure, RF uses the calibrated model and adjoins SA by traversing the decision trees,

accumulating node purities corresponding to features that offer the greatest reduction of

impurity. In other words, it uses the resultant impurity-decrease as well as the frequency

of a feature’s split, to quantify how important such a feature is regarding the predictabil-

ity of the model; RF utilizes an impurity-based methodology for assessing model-input

uncertainty. This procedure alleviates the necessity of computing Sobol indices for each

model feature, as a result of its computational efficiency and presents an alternative,

complementary methodology to traditional SA—with a focus on understanding model

uncertainty through the lens of predictability.

Although random forests mitigate the computational expense accompanying Sobol

Indices, RF’s variance5 reduction for regression isn’t effective at capturing model-input

interactions (that is, its algorithm see §2.2), particularly the attribution of uncertainties

5the modeller has the option to choose different criterions.
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for nonlinear models.[41] This underscores the need for refinement in methodologies to

balance computational efficiency with analytical precision.

Developing a procedure that retains the predictive power of Random Forests and

incorporates global sensitivity analysis is the motivation of this thesis.

To rectify RF’s inability to detect and quantify combined features’ contributions to

a model’s output variance, I propose a second-order permutation variable importance as

an appendage to ascertain the presence of nonlinear features within a model and can be

employed for both data-driven (e.g., Random Forests) and deterministic models. Second-

order permutation variable importances uses a model’s prediction of perturbed features

and estimates its mean-squared deviation from the model’s true values, yielding a vari-

ance decomposition congruous with the Hoeffding-Variance Decomposition—which is

fundamental for estimating Sobol variance-based indices. These measures, therefore,

bare a relationship with Sobol SA (specifically, its indices), provide an alternative formu-

lation for variance-based SA, and are generalizable in application–despite its intended

remedial use for RF.

To this end, the paper is outlined in the following fashion: in Section 1, I provide a

brief, yet detailed, introduction of sensitivity analysis, specifically Sobol sensitivity analy-

sis and RandomForest’s variance reduction and their motivation; in Section 2, I introduce

the concept behind Random Forest, its “under-the-hood” mechanics in preventing over-

fitting, predictive power, but with a focus on its ability to select features of importance
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in predicting the models output. Moreover, in Section 2, I provide a formulation of

Sobol Sensitivity Analysis, recent development of total and first-order permutation vari-

able importances and their relationship with Sobol Indices, as well as introduce a new

proposition of second-order permutation variable importances. In Section 2, I introduce

test functions: Ishigami Function and Rahmstorf (2007) Global Mean Sea-level (GMSL)

model along with a real-world application using the BRICK-CIAM dataset; in Section

3.1,3.2,3.3, I compare the results of the second order measures of permutation variable

importances to corresponding Sobol second-order measures for the Ishigami function

and Rahmstorf model and present their respective confidence intervals;Conclusion, Ac-

knowledgements, Appendix, Bibliography.

2 Methods

2.1 Sobol

Prognostic models are developed using well-founded mathematical concepts for gaining

insight into an observed phenomenon. But, occasionally, a modeller may overlook un-

derlying phenomenon or be inclined to consider a plethora of potential model variables

that are believed to play a role in the observed phenomenon, resulting in either under or

over-parameterized models. Even if the developed model aligns with observational data,

the potential that a perturbation of a model parameter results in a considerable or negli-
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gible deviation from the predicted model output could be a consequence of overlooking

underlying phenomenon or the inclusion of frivolous parameters (or variables), respec-

tively, necessitating further investigation prior to its use for decision-making. The ability

to select model features and parameters that are pertinent to the observed phenomenon

at-hand would aid in curtailing over-parameterized models. When modelling real-word

phenomena, the consideration of the unforeseen—especially in climate modeling—is

worthy of investigation. Investigating relevant (including unforeseen) features and their

roles’ played, ascertaining known ’model-drivers’ are components of the "checks and

balances" process and is essential for model development. In other words, this is the

modeler’s chance to validate or confirm that their prescriptions and assumptions were

correctly encoded, relevant, and appropriate (i.e. realistic) for the observed phenomenon.

Therefore, developing a quantitative correspondence between model-input and output

uncertainties is of paramount importance for validating the suitability of a model’s de-

sign.

Sensitivity analysis is the study of the variation in a model’s output, Y , as a function

of uncertainties in its input, X .[38] Suppose we have a generalized model f(X) = Y ,

where X = [X0k, X1k, . . . , Xnm] (n and m denote the nth-column and mth-row) are

assumed to be independent, identically distributed random variables (i.e. each feature,

Xi, is similar (∼ in probability distribution). One can decompose the model output, Y ,
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as the sum of partial functions of X by

Y = f(X) = f◦ +
n∑

i=0

fi(Xi) +
n∑

i<j

fij(Xij) + · · ·+ f0,1,...,n(X0,1,...,n), (1)

where

f◦ = E[Y ] (2)

fi(Xi) = E[Y | Xi]− f◦ (3)

fij(Xij) = E[Y | Xi, Xj]− fi − fj − f◦. (4)

This functional decomposition is known as high dimensional model representation

(HDMR) or ANOVA (i.e., Analysis of Variance) decomposition, which is a statistical

method used in SA for isolating individual and combinations of model-input contri-

butions to the model output.[39][30] The model, f , must be a quadratically integrable

function (i.e., L2-function), and the integral of each term (namely fi, fij , etc.) equals

zero; that is,

∫
Ω

fi0...,ir(Xi0...,ir)dXl = 0, for l = i0 . . . , ir (5)

where Ω is the input space for which Xi ∈ Ω. Using equation (1), one can decompose the

model output variance as the sum of individual and combinations of model-input partial
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variances of the former quantities (see Equations (2)-(4)), yielding

V(Y ) =
n∑

i=0

Vi +
n∑

i<j

Vij + · · ·+ V0,...,n, (6)

where the notation, V, denotes the variance operator and indexed Vi and Vij are the

partial variances of individual and combinations of model inputs. These partial variances

are, mathematically,

Vi = VXi
(EX∼i

[Y | Xi])

Vij = VXij
(EX∼ij

[Y | Xi, Xj])

...

V0,...,n = VX0,...,n(EX∼0,...,n [Y | X0, . . . , Xn]),

(7)

in which the notation X∼i is shorthand for the set of all model inputs, XN , N =

{0, . . . , n}, except input Xi (i.e., X∼i ≡ XN\{i}), and the sub-scripted operators denotes

the space over which the operators are computed. To determine the relative influence

that model-inputs have on the variance of the model out, the ratio of the partial vari-

ances with respect to the total model variance (i.e., V(Y ) yields the quantities: Sobol

Indices (or measures) of the first, second, and total order measures. These indices are

represented, respectively, as

Si =
Vi

V(Y )
Sij =

Vij

V(Y )
Sτi =

EX∼i
[VXi

(Y | Xi)]

V(Y )
, (8)
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requiring that the summation

1 =
n∑

i=0

Si +
n∑

i<j

Sij + · · ·+ S0,...,n (9)

The first-order Sobol index could be used for factor prioritization wherein a model-

input is regarded as influential provided that it has the largest percentage-variance.

Likewise, the total-order Sobol index, which quantifies the total uncertainty attributed to

an individual model input, may be discarded from analysis provided that its contribution

is minuscule (i.e., ≈ 0) and possesses no interactions.[1] The latter is an example of factor

fixing, in which variations of a model parameter has no significant contribution to the

variance of the model-output.[40] Second-order Sobol indices captures the contribution

of model-input combinations (that is, their interaction6) to the variance of the model

output.

In summary, Sobol sensitivity indices quantify the relative influence of each model

parameter in the variance of the model output (i.e. factor fixing and mapping, factor

prioritization)[40]. Sobol SA isn’t limited in application. However, the computational ex-

pense becomes encumbering and slows the modeling and analytical progress, especially

since law-driven models are often highly parameterized. In the case of high-dimensional

or highly parameterized models, applying Sobol SA could further confound the interpre-

tation of model results. This computational challenge has been overcome by employing

6A combination of features are said to interact, if the sum of their individual effects on the model output cannot be expressed as
a sum [39]
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alternative global or local methodologies: Shapley Effects for machine learning and the

Method of Morris, to name a few. The former method is nearly as computationally de-

manding as Sobol SA, whereas the latter (i.e., Method of Morris) is more computationally

efficient, especially for models with a large number of model-inputs since it requires fewer

model evaluations than relatively comprehensible methods like Sobol SA. The Method

of Morris (MoM) works by systematically and sequentially varying one input at a time

(i.e., OAT sampling) across a predefined grid, quantifying the change in a model’s output.

In contrast to Sobol SA, MoM estimates what are called "elementary effects," which are

global sensitivity measures.[34]

2.2 Sobol Indices: Implementation

The computation of Sobol first and total-order measures entails several model evalua-

tions, using a Monte-Carlo based numerical procedure. First, the modeller must gen-

erate low-discrepancy, stratified, pseudo or quasi-random samples following an a priori

assumption germane to the distribution of each feature (i.e., design of experiment). For

simplicity, assume that the model f(X) = Y , where each Xi ∈ X are independent,

uniformly distributed random variables within the unit interval (i.e., Xi ∈ U[0, 1]) and

Y is the output of interest; we’d like to know how variation of our model features affect

the variance of our model output. The procedure experiment by [39] goes as follows:
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i. Generate a matrix with dimension (2k,N) with the appropriate feature transfor-

mation, where k denotes the number of random samples and N the total number

of features, and divide the matrix into two, distinct sub-samples: A and B.

ii. Create matrices, Ci, by interchanging a column (i.e., feature) of B with that of a

column of A

iii. Evaluate the model over the samples spaces, yielding

YA = f(A) YB = f(B) YCi
= f(Ci) (10)

These measures suffice in computing the Sobol first and total-order measures whose

formulas are given by [39]

Si =
Vi

V(Y )
=

1
N

∑
Y j
AY

j
Ci
− 1

N2

∑
Y j
A

∑
Y j
B

1
N
(Y j

A)
2 − f 2

◦
(11)

Sτi =
EX∼i

[VXi
(Y | Xi)]

V(Y )
= 1−

1
N

∑
Y j
BY

j
C − f 2

◦
1
N
(Y j

A)
2 − f 2

◦
(12)

where the mean

f◦ =

(
1

N

N∑
j=1

Y j
A

)2

.
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2.3 Random Forest Feature Importance

Random Forest is an ensemble machine learning model that [5][8] proposed as a solution

for curtailing over-fitting by introducing randomized node optimization (RNO), out-of-

bag (OOB) bootstrapping and permutation variable importances (PVi) due to decision

tree algorithms’ (i.e., Classification and Regression Trees (CART)) proclivity to over-fit

training data during the model development stage. Again, a decision tree is a model

with a hierarchical structure in which features are randomly chosen and then successively

split (producing child nodes) based on a threshold that offers the greatest reduction of a

criterion (see Figure 1). Throughout this process, RNO introduces a degree of randomness

in the selection of split points and features at each node of a decision tree.[9] Instead

of exhaustively searching for the most optimal split, RNO randomly selects a subset of

features and split points, thereby reducing computational complexity. This approach not

only accelerates the training process but also contributes in diversifying the decision trees

within the forest, potentially leading to improved model robustness and generalization

capabilities. The randomization aspect aids in mitigating over-fitting, as it ensures that

the trees in the ensemble are not overly sensitive to specific features in the training data.

In the background, OOB samples data points with replacement to create multiple subsets,

each of which is used to train a separate model in the ensemble.[10] The key feature of

OOB bootstrapping is that some data points are left out (i.e., not sampled) for each

subset. These ’out-of-bag’ samples are then used to evaluate the model’s performance,

providing an internal mechanism for cross-validation and aiding with estimating the
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generalization error of the ensemble model without the need for a separate test set.

OOB bootstrapping is particularly advantageous in scenarios with limited data, as it

maximizes the use of available data for both training and validation. Therefore, given its

ensemble nature wherein multiple decision trees are consolidated to make a prediction,

RF’s structure can be exploited to gauge the importance of each feature by observing

how frequently a feature is used to split data across the numerous trees. Consequently,

this frequency provides, as proxy, a measure for a variable’s importance, permitting us

to ascertain model-input contribution to the prediction of our model by assigning more

weight to a feature that reduces the variance (or more generally, a criterion) at each split.

Mathematically, assume we have a regression model f(X) = Y , where eachXk ∈ X,

Xk = (X0,k, . . . , Xl,k), denotes a model feature of the dataset X and Y is the model’s

output of interest. Let On = {(Xk, Yk) | 0 ⩽ k ⩽ m} be n-bootstraps of the training

data. For each tree, Random Forests selects a bootstrap Oi ∈ On to train.[2] That is, trees

are grown by first generating bootstrap samples of the training samples On, performs a

split on the k-features, and chooses the feature among them that reduces the variance

between the parent and child nodes.[3] To this end, random forest makes a prediction by

averaging over the T -decision trees. The prediction of a point xc
l from the test dataset

is, therefore

f̂T (x
c
l ;RT ,On) =

1

T

T∑
t=1

f̂(xc
l ;Rt,On), (13)
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in which each Rt ∈ RT is independent, independent ofOn and randomize the T -decision

trees by resampling the bootstrap training data On, denoted as On(Rt) ⊂ On; heretofore,

I will refer to decision trees as estimators.[3]

After all T -estimators are fully grown, the impurity of a node is simply a measure

that maximizes how well or certain a random forest model prediction is at that node.

Let S be a set of splitting nodes t ∈ T and define a split function ϕ(s, t) for every

s ∈ S and t ∈ T . Then for every parent node t, there is a split s∗ that maximizes the

goodness of the split function ϕ(s, t). Suppose we have a learning sample Oi ∈ On for

an RF-estimator to train and that contains a node corresponding to a feature Xk ∈ t and

satisfying a condition c (i.e., Xk ⩽ c) and c ∈ C . Let N be the total number of elements

in Oi (i.e.,
∥∥Oi

∥∥), Nc be the total number of cases satisfying the condition ⩽ c, and

Nc(t) be the total number of elements satisfying the condition Xk ⩽ c at the node t.[7]

Breiman (i.e., [5]) defines the goodness of a split as one that reduces the overall impurity

of a node t. In order to determine the best split s∗, [6] represents ϕ(s, t) in terms of the

impurity function for any node t, namely

ϕ(pct) = ϕ(p(c1 | t), p(c2 | t), . . . p(cn | t)) (14)
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where pct = p(c | t) = p(c,t)
p(t)

are estimated, frequency-probabilities and satisfy

∑
c∈C

p(c | t) = 1 (15)

p(c, t) =
π(c)Nc(t)

Nc

(16)

p(t) =
∑
c∈C

p(c, t) (17)

Thus, p(c | t) are the proportions of cases for which Xk ⩽ c in Oi for node t, and π(c)

are prior probabilities, which are either supplied by the analyst or are π(c) = Nc

N
; in the

latter case

p(c | t) = Nc(t)

N
.

For each parent node t, a split is performed, allotting a proportion pR,ct to a child-right

node and a proportion pL,ct to a child-left node. Then, the best split s∗ is determined

by the minimum difference of impurity function at node t, ∆ϕ(s, t) = ∆ϕ(pct), which is

given by

∆ϕ(s, t) = ϕ(pct)− pR,ctϕ(pctR )− pL,ctϕ(pctL ), (18)

where, for clarity, ϕ(pctR ) and ϕ(pctL ) are the impurities at the child-right and child-left

nodes t = tR and t = tL, satisfying the conditionXk ⩽ c andXk > c, respectively. Let T̃

denote set of ordered splits and terminal nodes (i.e., leaf nodes), and let Φ(t) = ϕ(s, t)p(t).
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Then, the total impurity of an estimator

Φ(T ) =
∑
t∈T̃

Φ(t) (19)

=
∑
t∈T

ϕ(s, t)p(t) (20)

=
∑
t∈T̃

ϕ(pct)p(t) (21)

.[7] The choice of impurity function (i.e., gini criterion, mean-squared-error, etc.) de-

pends on the choice of random forest model: classification or regression. The above

impurity function, taking as argument probabilities pct , is a generalization for comput-

ing the impurity for regression problems; nevertheless, the formulation is generalizable

for random forest classification problems as well.

To summarize, this procedure entails traversing a collection of estimators and com-

puting the reduction of impurity at each decision node. Since each decision node corre-

sponds to a feature, the reduction of impurity corresponds to the amount of uncertainty

associated with that feature; the accumulated impurities for the features are the total

uncertainties apportioned among the features—for that estimator. For a collection of

estimators, a feature’s importance is the average total reduction of impurity over all

estimators—for all nodes.

Despite the apparent attractiveness of this approach at quantifying uncertainty,

impurity-based sensitivity measures for variable importances suffer from the bias in-
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duced by the proportion of samples allotted for each child node. For example, suppose

you have a classification model wherein a feature(s) have a sizable amount of unique

values (e.g.[11]). That feature will have a greater chance to split in a way that reduces

the impurity at its decision node. In other words, that feature’s impurity will be al-

lotted a higher proportion of samples (i.e. a higher weight), thereby biasing the true

importance of other features and the feature itself. In the case of a regression model,

if the model possesses interaction between features, the impurity-based procedure will

yield misleading results. The latter was proven by Scornet (2010) and Baptiste (2017),

demonstrating that if each model-input feature is independent and interactions are ab-

sent, then the impurity-based procedure yields a variance decomposition similar to that

of Sobol.[41][16] Most real-world phenomena often necessitate complex models that have

interactions (see §.

At present, there isn’t a consensus as to the interpretability of the impurity-based

measures—nor a theoretical substantiation for the justification of impurity-based mea-

sures as quantities of uncertainty for variable importance. Although the aforementioned

methodology fails for models wherein interactions are present, their absence yields a

variance decomposition that reduces the accompanying computational expense, over-

coming a disadvantage of Sobol SA.

Nevertheless, Breiman(2001) suggested the adoption of permutation importance in

which a feature is permuted so as to break the relationship between it and the model’s
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output, then evaluated on the random forest out-of-bag samples for which the prediction

error is calculated before and after the permutation—averaged over all estimators. This,

too, suffers as a variable importance measure, since it overestimates the importance of

features that possess interactions. Strobl (2008), using the present framework of permu-

tation importances, thought to define a conditional permutation grid for conditioning on

groups of model features.[42] The values of a model’s features are randomly permuted

for each estimator, using the samples that were generated for the tree-growing process

and the binary splitting. Using these binary splits, one can create a grid by bisecting the

sample space within which feature values are permuted; the prediction error is similarly

computed before and after the permutation in order to assess individual variable contri-

bution to the prediction of the model’s output. The conditional permutation importances

are computed individually for each estimator and then averaged.[43] Strobl’s procedure

for estimating variable importances also failed in quantifying variable importances, as it

had overestimated the importance of variables that possessed interactions. The former

and latter are merely examples in attempting to overcome the artifact of Random Forest

feature importances and aforementioned permutation importances proposed by Breiman

(2001).The reader is directed to other considerations proposed by authors to mitigate

this downfall. [47][14][48][25][13]
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2.4 Permutation Variable Importances

In this section, we will first start off discussing recent developments of permutation

variable importances and their relationship to Sobol (variance-based) sensitivity indices.

We shall, again, consider a model with random variables Y , X , defined as f(X) = Y ,

where for each i ∈ N Xi ∈ X = [X0k, X1k, . . . , Xnm] are independent and identically

distributed random variables. As aforementioned, random forest makes a prediction

by computing the expectation of the predictions made by a pre-initialized collection of

estimators (see §0.2.2).

Let E be such a collection, whereby E = {(Xk, Yk) | 0 ≤ k ≤ m} be a collection

of bootstrap training data of the data X , and let Ek := E \ Ek, Ek ⊂ E, represent the

out-of-bag bootstrap samples. After training the estimator with random sample Em, the

out-of-bag prediction error, Bk, of a Random Forest predictive model f̂(Xk) = Yk is

defined as

Bk =
1∣∣∣∣Ek

∣∣∣∣ ∑
(Xj , Yj)∈Ek

(
Yj − f̂(Xj)

)2
(22)

where the quantity on the right is simply the mean-squared-error (MSE) and
∣∣∣∣·∣∣∣∣ is

the magnitude of the sample. Using MSE as the measure of model uncertainty, it is

reasonable to expect that a variable’s importance is contingent on the error that amounts

after perturbing model features; in other words, higher error implies more importances.



Dinkins 35

Let Bi
k be the resultant out-of-bag error after evaluating the model, f̂(X(i)), where

X(i) is an independent, identically distributed random copy of Xj ∈ Ek such that the

ith-feature of the parameter data is randomly permuted; this is done so as to break the

relationship between it and the model’s output, similar to that proposed by Breiman

(2001).[2] The expected out-of-bag error for each estimator is defined as

Îf̂ (X(i)) =
1

K

K∑
k=1

[
Bi

k − Bk

]
(23)

Zhu et al., (2015) demonstrated that the latter measure converged to the difference be-

tween the expected squared error over X∼i and the squared-error of the model noise;

that is,

Îf̂ (X(i)) = E
[
(Y − f(X(i)))

2
]
− E

[
(Y − f(X))2

]
. (24)

[2][49] As we are considering a deterministic model, equation (18) can be simplified by

substituting the equation f(X) = Y , yielding

Îf̂ (X(i)) = E[(f(X)− f(X(i)))
2]. (25)
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2.5 Sobol & PVi Relationships

We are now in a position to introduce the work of [15], who established the first relation-

ship between Sobol sensitivity indices and permutation variable importance, deserving

of the title

Lemma 2.1. Let Xi ∈ X = [X0k, X1k, . . . , Xnm] be independent and identically distributed

subgroup of random variables, and let Xi denote the group of variables that does not appear

in Xi . Assume that we observe Y and X in the following additive regression model:

Y = f(X) + ε

= fi(Xi) + fi(Xi) + ε,

in which E[ε] = 0. Then the total-order Sobol-PVi relationship is

Sτi =
Îf̂ (X(i))

2V(Y )
, (26)

where Îf̂ (X(i)) is from equation (19)

Since the latter quantity returns the total importance of feature Xi–over the space

Xi–, a natural extension is the importance of a feature Xi (i.e., X∼i) over the space

Xi. With this in mind, [4] established the first-order Sobol-PVi relationship, which we

introduce as
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Lemma 2.2. Let X = [X0, . . . , Xi, . . . , Xn] be a random-vector of independent components,

let X∼i be a independent copy of X such that X is randomly permuted except feature Xi, and

assume Y = f(X). Then, for each component Xi

Si = 1−
If̂ (Xi)

2V(Y )
, (27)

where the new quantity

If̂ (Xi) = E
[
(f(X)− f̂(X∼i))

2
]
. (28)

In a similar fashion, it is sensible to consider grouped variable importances, which

I proffer in the form of a proposition

Proposition 2.3. Suppose Y = f(X) in which X∼ik ∈ X is defined as in Lemma 2.2.

Then the second-order Sobol-PVi relationship, for each combination of components Xik,

Sik = 1−
If̂ (Xik)

2V(Y )
− Si − Sk, (29)

where the quantities Si and Sk are defined as in equation (21).

The proof for the latter proposition is in Appendix C. It should be clear that the

relationships between Sobol and PVi are not unique, as PVi employs the same technique

as Sobol SA and utilizes an alternate variance measure: mean-squared-error. The mean-
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squared-error of a models prediction from its true value can be expressed as the sum of

the model’s variance, squared bias, and irreducible error. Since Lemma 2.2 and Propo-

sition 2.3 considers an unbiased model (i.e., the bias term is zero) with a sufficiently

large number of samples, the estimators If̂ (Xi) and If̂ (Xik) quantify how much the

predictions vary between different spaces (e.g., X∼i, etc.) and can decrease or increase

but will not converge to the model’s variance (i.e., V(Y )). Instead, the estimators yield

individual and combinations of model-input variances plus some irreducible error, which

is the noise inherent in the data that no perfect model can eliminate.

Proposition 2.3 is a mere extension of [4]’s first-order permutation variable impor-

tances, which was developed by considering the "first-order" PVi of a combination of

variables (i.e., originally If̂ (X(ik))).

2.6 Test Functions

I tested the latter findings using RandomForestRegressor as an emulator for both the

Ishigami function and Rahmstorf model [31], using sea-level data provided by [12] and the

National Oceanic and Atmospheric Administration (NOAA) historical temperature data

set. The Rahmstorf model is a semi-empirical model, consisting of three parameters:

α (mm
◦C

), Teq (◦C), and S◦. The α-parameter functions as the rate at which sea-level

changes with respect to changes in global temperature, Teq-parameter is the temperature
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at equilibrium (i.e., no change in observed temperature), and S◦-parameter is simply the

initial condition of global mean sea-level, relative to the years 1951-1980. The Rahmstorf

model and Ishigami function is given as follows, respectively:

dS

dt
= α(T (t)− Teq) (30)

f(x) = sin(x1) + a sin2(x2) + bx4
3 sin(x1), (31)

where a = 7 and b = 0.1. Moreover, for the Rahmstorf model, I centered the temperature

and sea-level data relative to 1951-1980 by computing the mean corresponding to those

years and subtracting it from the former and latter datasets. I used first-order Euler’s

Method for solving equation (30), using α = 3.6, Teq = −0.5, and S◦ = −118.156 on

the centered dataset (see Figure 2).

Figure 2: Fitted Rahmstorf model on using NOAA temperature and Church and White (2011)
sea-level datasets.
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Furthermore, I used random forest regression to model the BRICK-CIAM dataset

as a real-world application to demonstrate the generality of PVi for sensitivity analysis.

The BRICK-CIAM dataset has 57 features (tables of features are provided in Appendix

§A.3 Tables 13 & 14), each of which contain sampled statistics of ensemble members

corresponding to different U.S. Gulf coast segments; the model’s output of interest is

the aggregated cost of protection, retreat, inundation (loss of unprotected land), wetlands,

and flooding (i.e., ensemble) for each member associated with distinct U.S. Gulf coast

segments.[46]

2.7 Test Function: Rahmstorf Model Experimental Design

In order to test our findings, I assumed that each model-input were independently, uni-

formly distributed random variables; thus, each parameter of Rahmstorf model had

uniform prior distributions. The model-inputs of the Rahmstorf model were scaled, hav-

ing distributions α ∼ U(0, 5), Teq ∼ U(−1, 2), and S◦ ∼ U(−125, 100) whose ranges

were determined based on empirical observations—a posteriori; I generated the uniform

distributions using 60,000 Latin-hypercube samples (i.e., stratified, low-discrepancy, ran-

dom sampling). For each sample, the Rahmstorf model-output returned the last element

of its prediction, using the available data then loaded into a separate dataset of the

same length. I partitioned the dataset into training and test datasets and performed

bayes-search 4-fold cross-validation using the training data (see Appendix A.1 Table 11).
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2.8 Test Function: Ishigami Function Experimental Design

In the case of the Ishigami function, I adopted the assumptions in [20], in which the

prior distributions of the model variables were xi ∼ U(−π, π) (i.e., i.i.d uniform priors)

and were generated using a 60,000 Latin-Hypercube samples. I partitioned the dataset

into training and testing and performed bayes-search 4-fold cross-validation using the

training dataset.

2.9 BRICK-CIAM: Random Forest Regression Model

No assumptions were made germane to the prior distribution of each feature, as BRICK-

CIAM is of the form of a dataset whose model is random forest regression itself; therefore,

hyperparameter tuning was the only performed task. Therefrom, the BRICK-CIAM

dataset was partitioned into two subsets: 80% for training the model and 20% for testing

the model’s performance. A bayes-search, 4-fold cross-validation was performed, and

the best hyperparameters are reported in Appendix §A.3 Table 15.

Both grid-search and bayes-search, 4-fold cross-validation used a negative mean-

squared-error (MSE) scoring method—for both test functions and the BRICK-CIAM

RF model (i.e., the highest MSE corresponds to the best hyperparameters). All code,

pertaining PVi estimation, were implemented in Python programming language and can
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be found in Appendix D.

3 Results: Sobol Indices & PVi Estimation and Com-

parison

3.1 Rahmstorf Model Test Function

Using the best hyperparameters in Appendix A.1, Tables 1 & 2 and Tables 3 & 4 rep-

resent the first and second-order PVi and Sobol measures, respectively; like combina-

tions denote first-order importances, otherwise they represent second-order importances.

There’s a strong similarity between the importances reported in Tables 1 & 2 and Tables

3 & 4. For example, the second-order Sobol indices and PVi estimates for (α, S◦) and

(Teq, S◦) are negative. In principle, partial variance measures shouldn’t be negative, since

variance is the squared-deviation from the mean. Recall from §2.1 that the sum of the

first, second, etc. order importances for variance-based measures must be 1. The sum

of the first and second-order PVi is 0.9951, whereas the first and second-order Sobol

indices sum to 0.993. This may be a consequence of rounding to four significant figures

or (in the case of PVi) the squared bias that accompanies computing the mean-squared-

error. Notwithstanding their minor differences, there is clear agreement between the two

importance measures: S◦ contribute little to no variance of the model’s output.
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Pi 5th 95th Quantile Difference
α 0.0844 0.0714 0.0966 0.0252
Teq 0.6701 0.6650 0.6751 0.0101
S◦ 0.0381 0.0285 0.0481 0.0196

Table 1: First-Order Permutation Variable Importances and corresponding quantile difference.
95% Confidence Interval using 1,000 bootstraps.

Pik 5th 95th Quantile Difference
α Teq 0.2124 0.2123 0.2123 0.0000

S◦ -0.0050 -0.0013 -0.0013 0.0000
Teq S◦ -0.0049 -0.0032 -0.0032 0.0000

Table 2: Second-Order Permutation Variable Importances and corresponding quantile difference.
60,000 Latin-Hypercube Samples were used and 1,000 bootstraps for 95% confidence interval.

Si 5th 95th Quantile Difference
α 0.0849 0.0743 0.0947 0.0204
Teq 0.6738 0.6666 0.6804 0.0138
S◦ 0.0399 0.0318 0.0479 0.0162

Table 3: First-Order Sobol sensitivity measures for the Rahmstorf model with corresponding
1,000 bootstrap 95% Confidence Intervals.

Sik 5th 95th Quantile Difference
α Teq 0.2082 0.9650 0.9690 0.0039

S◦ -0.0069 0.1073 0.1285 0.0212
Teq S◦ -0.0069 0.7002 0.7138 0.0136

Table 4: Second-Order Sobol Indices for the Rahmstorf Model with corresponding 95% Confi-
dence Intervals computed using 1,000 bootstrap samples.
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Figure 3: Rahmstorf Model First & Second-Order PVi Pie chart
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Figure 4: Sobol First & Second-Order Indices



Dinkins 46

3.2 Ishigami Test Function

I used the best hyperparameters reported in Appendix §A.2 Table 12 for first and second-

order PVi and Sobol indices. For the Ishigami function, the first and second-order PVi

were underestimated (or over, in the case of the first-order importance of x1 and x3) po-

tentially due to the nonlinearity (or, simply, the nature) of the function, despite the appar-

ent convergence in Table 6. The sum of the permutation variable importances is exactly

0.9878, whereas the sum of the Sobol indices is 1.0014; so, Sobol over-approximated the

contribution of features (x1, x2), (x2, x3), and (x1, x3). The over or under-estimation

of parameter importances could be a consequence of an insufficient amount of samples

supplied to random forest and Sobol SA or the accumulated squared bias accompanying

the mean-squared-error.7

Pi 5th 95th Quantile Difference
x1 0.3228 0.3153 0.3298 0.0145
x2 0.4500 0.4432 0.4577 0.0145
x3 0.0123 -0.0015 0.0264 0.0279

Table 5: Ishigami First-Order PVi and corresponding quantile difference. 95% Confidence Inter-
val were computed using 1,000 bootstrap samples.

Pik 5th 95th Quantile Difference
x1 x2 -0.0123 -0.0126 -0.0126 0.0000

x3 0.2316 0.2320 0.2320 0.0000
x2 x3 -0.0166 -0.0142 -0.0142 0.0000

Table 6: Second-Order PVi and corresponding quantile difference. 95% Confidence Intervals
were computed using 1,000 bootstrap samples.

7Note that the PVi were computed using the mean-squared-error between the model’s true value and random forest’s prediction.
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Si 5th 95th Quantile Difference
x1 0.3096 0.3004 0.3189 0.0186
x2 0.4402 0.4310 0.4493 0.0182
x3 -0.0037 -0.0159 0.0093 0.0252

Table 7: Ishigami First-Order Sobol sensitivity measures with corresponding 1,000 bootstrap
sampled 95% Confidence Interval Widths.

Sik 5th 95th Quantile Difference
x1 x2 0.0013 0.7439 0.7582 0.0144

x3 0.2527 0.5503 0.5660 0.0157
x2 x3 0.0013 0.4258 0.4478 0.0221

Table 8: Second-Order Sobol Indices with corresponding 95% Confidence Intervals computed
using 1,000 bootstrap samples

Figure 5: Ishigami First & Second-Order PVi Pie chart
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Figure 6: Sobol First & Second-Order Indices
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3.3 BRICK-CIAM Model

I estimated the first and second-order PVi using the best hyperparameters in Appendix

§A.3 Table 15. The BRICK-CIAM dataset is parameter-less and lacks a design of ex-

periment, so the Sobol first and second-order indices couldn’t be computed. Since the

BRICK-CIAM dataset has 57 features, the first and second-order PVi estimates are re-

ported in the Appendix §B. The second-order PVi estimates were all negative with low

confidence intervals widths. As a result, this I’ve determined that there were an insuffi-

cient number of samples to attain the desired level of accuracy. Figure 8 illustration the

total-order importances of categorized features.

Figure 7: BRICK-CIAM Categorized First-Order PVi
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Figure 8: BRICK-CIAM (Summed) Total-Order Importances of Categorized Features
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3.4 BRICK-CIAM: Identifying Important Features

As a result of the absence of second-order PVi, I sought to improve the predictive per-

formance of the model by removing features that contributed little to the variance of

the model’s output. Using the BRICK-CIAM dataset, I appended a feature, introduc-

ing "white-noise", to the dataset to accentuate the importances of other features present

within the dataset. This feature (with moniker "SignalVar") was Gaussian with a mean of

zero and variance of one and was trained (in conjunction with the other features of the

dataset) using the best hyperparameters reported in Appendix A.3 Table 15. A feature

was deemed important if the total-order PVi contribution to the model’s output vari-

ance were ⩾ 0.0068 (see Table 9). I reduced the number of features from 57 to 22 total

features. Thereafter, I used these model features as the new dataset and re-performed

Parameters Pτ

dvbm s 0.5397
antarctic temp threshold 0.1946
climate sensitivity 0.1644
rf scale aerosol 0.0276
antarctic lambda 0.0246
movefactor s 0.0195
thermal alpha 0.0085
greenland beta 0.0077
antarctic precip0 0.0075
wvpdl s 0.0074
greenland b 0.0072
Q10 0.0071
temperature 0 0.0070
antarctic mu 0.0070
heat diffusivity 0.0069
rho gmsl 0.0068
greenland alpha 0.0068
ocean heat 0 0.0068
rho greenland 0.0068
antarctic runoff height0 0.0067
std. antarctic 0.0067
anto alpha 0.0067

Table 9: BRICK-CIAM: Feature Selection



Dinkins 52

bayes-search, 4-fold cross-validation with the same specifications as the previous parti-

tioning (i.e., 80/20 split for training and testing, respectively); the best hyperparameters

are reported in Appendix §A.3 Table 16.

Figure 9: BRICK-CIAM Bayes-Search Cross-Validation using the newly selected features.

After feature selection, the new first and total-order PVi measures are8

8Second-Order PVi are reported in Appendix §B Table 20.
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Pi 5th 95th Quantile Difference
dvbm s 0.5809 0.5697 0.5927 0.0230
climate sensitivity 0.2377 0.2173 0.2583 0.0410
antarctic temp threshold 0.2084 0.1872 0.2276 0.0403
rf scale aerosol 0.1300 0.1067 0.1531 0.0464
movefactor s 0.0712 0.0481 0.0963 0.0482
antarctic lambda 0.0689 0.0442 0.0942 0.0500
temperature 0 0.0530 0.0275 0.0787 0.0512
greenland beta 0.0520 0.0260 0.0767 0.0507
antarctic precip0 0.0517 0.0254 0.0770 0.0516
ocean heat 0 0.0515 0.0263 0.0758 0.0495
rho greenland 0.0504 0.0273 0.0757 0.0485
wvpdl s 0.0504 0.0253 0.0755 0.0502
rho gmsl 0.0501 0.0260 0.0747 0.0487
antarctic mu 0.0496 0.0262 0.0744 0.0482
std. antarctic 0.0495 0.0230 0.0739 0.0509
anto alpha 0.0494 0.0258 0.0746 0.0488
antarctic runoff height0 0.0493 0.0241 0.0731 0.0490
greenland b 0.0492 0.0229 0.0746 0.0517
greenland alpha 0.0489 0.0248 0.0751 0.0503
heat diffusivity 0.0488 0.0237 0.0739 0.0502
Q10 0.0482 0.0243 0.0736 0.0493
thermal alpha 0.0463 0.0208 0.0729 0.0521

Pτ 5th 95th Quantile Difference
dvbm s 0.5397 0.5244 0.5543 0.0300
antarctic temp threshold 0.1946 0.1878 0.2014 0.0136
climate sensitivity 0.1644 0.1588 0.1702 0.0113
rf scale aerosol 0.0276 0.0266 0.0285 0.0019
antarctic lambda 0.0246 0.0231 0.0262 0.0031
movefactor s 0.0195 0.0188 0.0202 0.0013
thermal alpha 0.0085 0.0082 0.0088 0.0006
greenland beta 0.0077 0.0074 0.0080 0.0006
antarctic precip0 0.0075 0.0073 0.0078 0.0005
wvpdl s 0.0074 0.0071 0.0077 0.0006
greenland b 0.0072 0.0069 0.0074 0.0005
Q10 0.0071 0.0068 0.0074 0.0005
temperature 0 0.0070 0.0067 0.0073 0.0005
antarctic mu 0.0070 0.0067 0.0073 0.0006
heat diffusivity 0.0069 0.0066 0.0072 0.0006
rho gmsl 0.0068 0.0065 0.0070 0.0005
greenland alpha 0.0068 0.0065 0.0070 0.0005
ocean heat 0 0.0068 0.0065 0.0070 0.0005
rho greenland 0.0068 0.0065 0.0070 0.0005
antarctic runoff height0 0.0067 0.0065 0.0070 0.0005
std. antarctic 0.0067 0.0064 0.0069 0.0005
anto alpha 0.0067 0.0064 0.0069 0.0005

Table 10: BRICK-CIAM First & Total-Order PVi with 95% Confidence Intervals computed using
1,000 bootstrap samples.
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4 Conclusion

I have demonstrated the relationship between second-order permutation variable impor-

tances and Sobol second-order indices, as well as their generality and adaptability—for

both deterministic and data-driven models—for estimating the importance of a indi-

vidual and combinations of features. The BRICK-CIAM random forest regression model

revealed an apparent shortcoming of Sobol sensitivity analysis: when the proposed model

is data-driven (e.g., a machine learning models), performing Sobol SA would be a metic-

ulous task, as it would require generating prior, distributional data—most of which likely

absent within the original dataset—alongside a prior distribution for the model’s output

which may or may not align with the generated, observational statistics of our model’s

input; second-order permutation variable importances effectively remedied that. By

merely breaking the relationship between individual and combinations of model inputs,

one can determine how variations of model inputs—and resulting prediction—affect the

expected-squared-deviation from the model’s true value.

The second-order permutation variable importances is an extension of [4]’s first-

order PVi for estimating second-order PVi. It was designed as an auxiliary, computa-

tionally efficient methodology for ascertaining major contributors of the model input to

the variance of the model’s output.
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A Appendix: Hyperparameter Tuning

A.1 Rahmstorf Model

To verify that RF Rahmstorf model had an adequate number of samples, Figure 10

illustrates gradual increments in sample size with respect to the mean-squared-error.

Furthermore, I partitioned the dataset into two subsets in preparation of random forest

hyper-parameter tuning. Specifically, the data was split into 80% for training and 20% for

testing the model. I performed a bayes-search, 4-fold cross validation using the training

data so that the model was trained on 60%, validated on 20%, and left the remaining

20%—untouched—for testing.

Table 11: Rahmstorf Hyperparameter Tuning 1: Top 10 hyperparameters for RandomForestRe-
gressor

rank test score max. depth max. features num. estimators mean test score std. test score
1 18 2 500 -29.5664 0.6932
2 30 2 500 -29.6813 0.5597
2 28 2 500 -29.6813 0.5597
2 29 2 500 -29.6813 0.5597
5 27 2 500 -29.6838 0.5605
6 25 2 500 -29.6858 0.5852
7 26 2 500 -29.6867 0.5571
8 23 2 500 -29.7030 0.5989
9 24 2 500 -29.7248 0.5317
10 27 2 479 -29.7364 0.5469
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Figure 10: 4-Fold Cross-Validation
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Figure 11: Bayes-Search, 4-Fold Cross-Validation Hyperparameter Tuning Paths
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A.2 Ishigami Function

I verified that the RF Ishigami model had a sufficient sample size by gradually incre-

menting the sample size and reporting the model’s performance using the test data;

Figure 12 illustrates the decrease in the model’s mean-squared-error. Furthermore, I par-

titioned the dataset into two subsets for a bayes-search, 4-fold cross-validation whereby

80% of the training data was supplied and further partitioned into 60% for training the

RF model and 20% for validation; the remaining 20% was left untouched for testing the

model’s predictive performance (see Table 12).

Table 12: Ishigami Hyperparameter Tuning: Top 10 hyperparameters for RandomForestRegressor

rank test score max. depth max. features num. estimators mean test score std. test score
1 33 2 500 -0.0657 0.0021
2 29 2 500 -0.0658 0.0022
3 39 2 500 -0.0658 0.0024
4 27 2 500 -0.0658 0.0022
5 38 2 500 -0.0658 0.0021
6 37 2 500 -0.0658 0.0023
7 40 2 500 -0.0659 0.0022
8 29 2 398 -0.0659 0.0023
9 32 2 324 -0.0660 0.0019
10 36 2 500 -0.0660 0.0021
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Figure 12: 4-Fold Cross-Validation
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Figure 13: Bayes-Search, 4-Fold Cross-Validation Hyperparameter Tuning Paths
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A.3 BRICK-CIAM Random Forest Regression Model

Model Parameters Parameter Description
std. temp standard deviation of IPCC AR1 residuals for temperature (◦C)
std. ocean heat —-"—-ocean heat uptake (1022J)
std. glaciers —-"—-glacial sea-level contribution (m)
std greenland —-"—-Greenland sea-level contribution (m)
std antarctic —-"—-Antarctic sea-level contribution (m)
std gmsl —-"—-global mean sea-level rise (m)
sigma whitenoise co2 White noise standard deviation for CO2

rho temperature Lag-1 (i.e., single time step) autocorrelation coefficient for temperature
rho ocean heat —-"—-ocean heat uptake
rho glaciers —-"—-glacial sea-level contribution
rho greenland —-"—-Greenland sea-level contribution
rho antarctic —-"—-Antarctic sea-level contribution
rho gmsl —-"—-global mean sea-level rise
alpha0 CO2 Measure of autocorrelation memory for CO2

CO2 0 Initial CO2 concentration (ppm)
N2O 0 —-"—-N2O concentration (ppb)
temperature 0 —-"—-temperature anomaly (◦C
ocean heat 0 —-"—-ocean heat uptake (1022J)
thermal s0 Initial condition for thermal expansion sea-level contribution (m SLE)
greenland v0 —-"—-Greenland ice sheet sea-level contribution (m SLE)
glaciers v0 —-"—-glacier/ice cap volume (m sea level equivalent (SLE))
glaciers s0 —-"—-glacier/ice cap sea-level contribution (m SLE)
antarctic s0 —-"—-Antarctic sea-level contribution (m SLE)
Q10 Respiration sensitivity
CO2 fertilization Carbon fertilization factor
CO2 diffusivity Ocean carbon diffusivity (my )

heat diffusivity Ocean vertical diffusivity ( cm
2

s )
rf scale aerosol Aerosol radiative forcing scaling factor
climate sensitivity Equilibrium climate sensitivity to doubling CO2 (◦C)
thermal alpha Global ocean-averaged thermal expansion coefficient ( kg

m3◦C )
greenland a Equilibrium Greenland ice sheet volume temperature sensitivity ( m◦C )
greenland b Equilibrium Greenland ice sheet volume (m SLE)
greenland alpha Greenland ice sheet response timescale temperature sensitivity ( 1

◦Cy )
greenland beta —-"—-(1y )
glaciers beta0 Initial glacial/ice cap mass balance temperature sensitivity ( m

v◦C )
glaciers n Exponent for glacier/ice cap area-volume scaling
anto alpha Antarctic ocean temperature sensitivity to global temperature (

◦C
◦C )

anto beta Equilibrium Antarctic Ocean Temperature (◦C)
antarctic gamma Power for relation of Antarctic ice flow speed to water depth
antarctic alpha Effect of ocean subsurface temperature on ice flux partition parameter
antarctic mu Parabolic ice surface parameter (m0.5)
antarctic nu Antarctic runoff and precipitation proportionality constant ( 1

(my)0.5 )
antarctic precip0 Annual Antarctic precipitation for surface temperature 0◦C (m)
antarctic kappa Coefficient, dependency of Antarctic precipitation on temperature ( 1

◦C )
antarctic flow0 Antarctic ice flow at grounding line proportionality constant (my )
antarctic runoff height0 Antarctic runoff line height at 0◦C surface temperature (m)
antarctic c Antarctic runoff line height temperature sensitivity ( m◦C )
antarctic bed height0 Undisturbed bed height at Antarctic continent center (m)
antarctic slope Slope of Antarctic ice sheet bed before ice loading
antarctic lambda Fast Antarctic dynamic disintegration rate (m)
antarctic temp threshold Fast Antarctic dynamic disintegration trigger temperature (◦C)

Table 13: BRICK-CIAM Feature Description (No.1)
Model Parameter Parameter Description Units Central Value Distribution Source
dvbm s Benchmark land Value Million 2010 ( $

km2 ) 5.376 N [µ = 5.376, σ = 2.688][0,∞) FUND; Darwin et al. (1995)
movefactor s Relocation cost as fraction of income (0, 1) 1 N [µ = 1, σ = 1][0.5, 3] Anthoff & Tol (2014) and Dias (2016)
vslel s Elasticity of value of statistical life (VSL) Unitless 0.47 N [µ = 0.47, σ = 0.15][0,∞) FUND; Viscussi & Aldy (2003)
vslmult s VSL multiplier on US GDP Unitless 200 N [µ = 200, σ = 100][0,∞) FUND; Cline (1992)
wvel s Income elasticity of wetland value Unitless 1.16 N [µ = 1.16, σ = 0.46][0,∞) Brander et al. (2006)
wvpdl s Population density elasticity of wetland value Unitless 0.47 N [µ = 0.47, σ = 0.12][0, 1] Brander et al. (2006)

Table 14: BRICK-CIAM Feature Description (No.2)

I partitioned the dataset into two subset: 80% for training the model and 20% for
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testing the predictive performance of the model. I performed bayes-search, 4-fold cross-

validation using the training dataset, with hypereparameters n_estimators:[390,425]

and max_features:[20,57] (see Table 15) The scoring method used on the validation

set was the negative mean-squared-error (i.e., the highest MSE is the best).

rank test score max. features num. estimators mean test score std test score
1 39 425 -169.173677 5.294332
2 39 406 -169.204068 5.223874
3 39 405 -169.210433 5.221445
4 39 407 -169.212157 5.214966
5 45 407 -169.212598 5.380295
6 45 425 -169.235793 5.379624
7 45 422 -169.237222 5.404831
8 45 390 -169.247635 5.448536
9 39 398 -169.268758 5.234401
10 39 390 -169.283428 5.281460

Table 15: BRICK-CIAM Random Forest Regression Bayes-Search Hyperparameter Tuning

Figure 14: BRICK-CIAM Bayes-Search Hyperparameter Tuning. The y-axis is the cross-
validation mean-squared-error and the x-axis is the number of features.
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rank test score max. depth max. features num. estimators mean test score std test score
1 20 16 284 -149.423725 4.296720
2 20 16 281 -149.429844 4.354963
3 20 16 300 -149.474921 4.311994
4 21 16 300 -149.529267 4.084101
5 18 16 275 -149.532301 4.214400
6 25 15 300 -149.559345 3.460700
7 20 16 251 -149.570159 4.402607
8 20 16 235 -149.573129 4.529260
9 20 16 223 -149.581624 4.459024
10 20 16 229 -149.583658 4.449387

Table 16: BRICK-CIAM Bayes-Search CV Best Hyperparameters for newly selected features
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B BRICK-CIAM: First & Second-Order PVi estimates

Parameters Pi 5th 95th Quantile Difference
std. temp 0.052 0.026 0.077 0.051
std. ocean heat 0.052 0.029 0.078 0.048
std. glaciers 0.052 0.029 0.077 0.048
std. greenland 0.052 0.027 0.078 0.051
std. antarctic 0.053 0.028 0.077 0.050
std. gmsl 0.053 0.029 0.078 0.049
sigma whitenoise co2 0.052 0.028 0.077 0.050
rho temperature 0.052 0.026 0.078 0.051
rho ocean heat 0.052 0.028 0.076 0.048
rho glaciers 0.052 0.026 0.078 0.052
rho greenland 0.054 0.028 0.079 0.051
rho antarctic 0.053 0.029 0.079 0.050
rho gmsl 0.053 0.027 0.078 0.051
alpha0 CO2 0.052 0.028 0.077 0.049
CO2 0 0.052 0.029 0.077 0.048
N2O 0 0.052 0.026 0.077 0.052
temperature 0 0.056 0.031 0.079 0.049
ocean heat 0 0.055 0.029 0.082 0.053
thermal s0 0.052 0.028 0.077 0.049
greenland v0 0.052 0.027 0.078 0.050
glaciers v0 0.052 0.028 0.078 0.050
glaciers s0 0.052 0.027 0.077 0.050
antarctic s0 0.052 0.028 0.077 0.049
Q10 0.052 0.027 0.077 0.049
CO2 fertilization 0.052 0.027 0.077 0.049
CO2 diffusivity 0.052 0.026 0.078 0.052
heat diffusivity 0.053 0.028 0.078 0.050
rf scale aerosol 0.134 0.111 0.158 0.047
climate sensitivity 0.240 0.220 0.261 0.041
thermal alpha 0.051 0.027 0.077 0.050
greenland a 0.053 0.026 0.077 0.050
greenland b 0.053 0.027 0.079 0.051
greenland alpha 0.052 0.026 0.078 0.052
greenland beta 0.055 0.027 0.079 0.052
glaciers beta0 0.053 0.028 0.079 0.051
glaciers n 0.052 0.028 0.076 0.048
anto alpha 0.053 0.028 0.077 0.049
anto beta 0.052 0.027 0.077 0.050
antarctic gamma 0.052 0.028 0.077 0.049
antarctic alpha 0.052 0.028 0.077 0.049
antarctic mu 0.053 0.027 0.078 0.051
antarctic nu 0.052 0.028 0.077 0.049
antarctic precip0 0.055 0.028 0.079 0.051
antarctic kappa 0.052 0.027 0.078 0.052
antarctic flow0 0.052 0.028 0.079 0.051
antarctic runoff height0 0.053 0.027 0.078 0.051
antarctic c 0.053 0.028 0.079 0.051
antarctic bed height0 0.052 0.028 0.078 0.051
antarctic slope 0.053 0.028 0.078 0.049
antarctic lambda 0.072 0.048 0.095 0.047
antarctic temp threshold 0.213 0.191 0.234 0.043
dvbm s 0.587 0.576 0.598 0.023
movefactor s 0.074 0.050 0.099 0.049
vslel s 0.052 0.027 0.076 0.049
vslmult s 0.052 0.025 0.076 0.051
wvel s 0.052 0.027 0.077 0.050
wvpdl s 0.054 0.027 0.077 0.050

Table 17: BRICK-CIAM First-Order PVi and 95% Confidence Intervals using 1,000 bootstrap
samples.
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Parameters Pτ 5th 95th Quantile Difference
std. temp 0.007 0.006 0.007 0.001
std. ocean heat 0.007 0.006 0.007 0.001
std. glaciers 0.007 0.006 0.007 0.001
std. greenland 0.007 0.006 0.007 0.000
std. antarctic 0.007 0.007 0.007 0.001
std. gmsl 0.007 0.006 0.007 0.001
sigma whitenoise co2 0.007 0.006 0.007 0.000
rho temperature 0.007 0.006 0.007 0.001
rho ocean heat 0.007 0.006 0.007 0.000
rho glaciers 0.007 0.006 0.007 0.000
rho greenland 0.007 0.007 0.007 0.001
rho antarctic 0.007 0.006 0.007 0.001
rho gmsl 0.007 0.007 0.007 0.001
alpha0 CO2 0.007 0.006 0.007 0.001
CO2 0 0.007 0.006 0.007 0.001
N2O 0 0.007 0.006 0.007 0.001
temperature 0 0.007 0.007 0.008 0.001
ocean heat 0 0.007 0.007 0.007 0.001
thermal s0 0.007 0.006 0.007 0.001
greenland v0 0.007 0.006 0.007 0.001
glaciers v0 0.007 0.006 0.007 0.001
glaciers s0 0.007 0.006 0.007 0.001
antarctic s0 0.007 0.006 0.007 0.001
Q10 0.007 0.007 0.007 0.001
CO2 fertilization 0.007 0.006 0.007 0.001
CO2 diffusivity 0.007 0.007 0.007 0.001
heat diffusivity 0.007 0.007 0.007 0.001
rf scale aerosol 0.029 0.028 0.030 0.002
climate sensitivity 0.158 0.152 0.162 0.010
thermal alpha 0.008 0.008 0.008 0.001
greenland a 0.007 0.007 0.007 0.001
greenland b 0.007 0.007 0.007 0.001
greenland alpha 0.007 0.007 0.007 0.001
greenland beta 0.008 0.007 0.008 0.001
glaciers beta0 0.007 0.006 0.007 0.001
glaciers n 0.007 0.006 0.007 0.001
anto alpha 0.007 0.007 0.007 0.001
anto beta 0.007 0.006 0.007 0.001
antarctic gamma 0.007 0.006 0.007 0.001
antarctic alpha 0.007 0.006 0.007 0.000
antarctic mu 0.007 0.007 0.007 0.001
antarctic nu 0.007 0.006 0.007 0.001
antarctic precip0 0.007 0.007 0.008 0.001
antarctic kappa 0.007 0.006 0.007 0.001
antarctic flow0 0.007 0.006 0.007 0.001
antarctic runoff height0 0.007 0.007 0.007 0.001
antarctic c 0.007 0.006 0.007 0.001
antarctic bed height0 0.007 0.006 0.007 0.001
antarctic slope 0.007 0.006 0.007 0.000
antarctic lambda 0.023 0.022 0.025 0.003
antarctic temp threshold 0.193 0.186 0.199 0.013
dvbm s 0.540 0.525 0.554 0.029
movefactor s 0.018 0.017 0.019 0.001
vslel s 0.007 0.006 0.007 0.001
vslmult s 0.007 0.006 0.007 0.001
wvel s 0.007 0.006 0.007 0.001
wvpdl s 0.007 0.007 0.008 0.001

Table 18: BRICK-CIAM Mode Total-Order PVi with 5th and 95th-percentile Confidence Intervals
using 1,000 bootstrap samples
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Categorized Second-Order PVi
Variables Climate -0.0512

Glaciers -0.0512
Thermals -0.0512
Cost -0.0512
Greenland -0.0512
Antarctic -0.0512

Climate Glaciers -0.0512
Thermals -0.0512
Cost -0.0512
Greenland -0.0512
Antarctic -0.0512

Glaciers Thermals -0.0512
Cost -0.0512
Greenland -0.0512
Antarctic -0.0512

Thermals Cost -0.0513
Greenland -0.0512
Antarctic -0.0512

Cost Greenland -0.0512
Antarctic -0.0512

Greenland Antarctic -0.0512

Category (Averaged) Categorized Pi

Variables 0.0525
Climate 0.0799
Glaciers 0.0523
Thermals 0.0517
Cost 0.1453
Greenland 0.0530
Antarctic 0.0638

5th 95th Quantile Difference
Variables Climate -0.0531 -0.0495 0.0036

Glaciers -0.0536 -0.0487 0.0049
Thermals -0.0538 -0.0484 0.0054
Cost -0.0534 -0.0495 0.0040
Greenland -0.0536 -0.0487 0.0050
Antarctic -0.0526 -0.0498 0.0028

Climate Glaciers -0.0546 -0.0483 0.0062
Thermals -0.0553 -0.0482 0.0071
Cost -0.0546 -0.0497 0.0049
Greenland -0.0547 -0.0483 0.0064
Antarctic -0.0531 -0.0498 0.0033

Glaciers Thermals -0.0590 -0.0433 0.0157
Cost -0.0556 -0.0481 0.0075
Greenland -0.0569 -0.0452 0.0116
Antarctic -0.0533 -0.0489 0.0044

Thermals Cost -0.0569 -0.0475 0.0095
Greenland -0.0587 -0.0431 0.0155
Antarctic -0.0537 -0.0486 0.0052

Cost Greenland -0.0557 -0.0481 0.0076
Antarctic -0.0536 -0.0499 0.0038

Greenland Antarctic -0.0534 -0.0489 0.0045

Category (Averaged) Categorized Pτ

Variables 0.0067
Climate 0.0241
Glaciers 0.0067
Thermals 0.0074
Cost 0.0975
Greenland 0.0071
Antarctic 0.0195

Table 19: BRICK-CIAM: Categorized Permutation Variable Importance. 95% Confidence Inter-
vals were computed using 1,000 bootstrap samples.
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Table 20: BRICK-CIAM Second-Order PVi (Full Matrix).
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B.1 BRICK-CIAM: Categories of Features

Variables
std. temp
std. ocean heat
std. glaciers
std. greenland
std. antarctic
std. gmsl
sigma whitenoise co2
rho temperature
rho ocean heat
rho glaciers
rho greenland
rho antarctic
rho gmsl
alpha0 CO2

Antarctic
antarctic gamma
antarctic alpha
antarctic mu
antarctic nu
antarctic precip0
antarctic kappa
antarctic flow0
antarctic runoff height0
antarctic c
antarctic bed height0
antarctic slope
antarctic lambda
antarctic temp threshold
antarctic s0
anto alpha
anto beta

Climate
CO2 0
N2O 0
temperature 0
ocean heat 0
Q10
CO2 fertilization
CO2 diffusivity
heat diffusivity
rf scale aerosol
climate sensitivity

Glaciers
glaciers v0
glaciers s0
glaciers beta0
glaciers n

Thermals
thermal s0
thermal alpha

Cost
dvbm s
movefactor s
vslel s
vslmult s
wvel s
wvpdl s

Greenland
greenland a
greenland b
greenland alpha
greenland beta
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C Appendix: Formal Proof of Proposition 2.3

Proof: Assume f(X) = Y in which X = [X0, . . . , Xi, . . . , Xn] is a random vector

of independent components and X∼ik is an independent copy of X such that X is

randomly permuted except for variables Xi and Xk. Then

If̂ (Xik) = E
[(
f(X)− f̂(X∼ik)

)2]
= E

[(
f(X) + E[Y ]− E[Y ]− f̂(X∼ik)

)2]
= E

[(
f(X)− E[Y ]

)2]
+ E

[(
f̂(X∼ik)− E[Y ]

)2]− 2E
[
(f(X)− E[Y ])(f̂(X∼ik)− E[Y ])

]

By independence, E
[(
f̂(X∼ik)− E[Y ]

)2]
= V[Y ] (i.e., the variance of Y ), therefrom,

If̂ (Xik) = 2V[Y ]− 2E
[
(f(X)− E[Y ])(f̂(X∼ik)− E[Y ])

]
. (32)

The second term on the right-hand side of equation (32) can be rewritten as an integral,

with probability density function p, such that

=

∫
R

∫
R

[ ∫
Rn−2

(f(x)− E[Y ])
n∏

g=1, g ̸=i,k

pXg(xg)dxg

]

·
[ ∫

Rn−2

(f̂(x∼ik)− E[Y ])
n∏

h=1, h ̸=i,k

pXh
(x′

h)dxh

]
pXi,Xk

(xi,k)dxidxk (33)
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=

∫
R

∫
R

[ ∫
Rn−2

(f(x)− E[Y ])
n∏

h=1, h ̸=i,k

pXh
(xh)dxh

]2
pXi,Xk

(xi,k)dxidxk (34)

= V[E[Y | Xi, Xk]] (35)

Hence,

If̂ (Xik) = 2V[Y ]− 2V[E[Y | Xi, Xk]] (36)

1−
If̂ (Xik)

2V[Y ]
=

V[E[Y | Xi, Xk]]

V[Y ]
(37)

Let Vik = V[E[Y | Xi, Xk]] as in §2.1. Then, inserting identities of Lemma 2.2 for each

variable, one obtains

1−
If̂ (Xik)

2V[Y ]
+ Si − Sk + Sk − Si =

Vik

V[Y ]
(38)

=⇒ 1−
If̂ (Xik)

2V[Y ]
− Si − Sk =

Vik

V[Y ]
− Si − Sk (39)

=⇒ 1−
If̂ (Xik)

2V[Y ]
− Si − Sk = Sik (40)

as desired. ■
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D Code Schematics

Algorithm 1 First-Order PVi(data: Rm×n, y_pred: Rm, f: callable) → Rn

Require: data is a matrix of shape m× n, y_pred is a vector of length m, f is a callable

function

Ensure: Returns vector S of length n

1: rows, columns← shape of data

2: Vy ← variance of y_pred

3: S ← zeros vector of length columns

4: for i in [0, 1, . . . , columns− 1] do

5: d← copy of data

6: k ← d[:, i]

7: d← roll(d, 1, axis = 0)

8: d[:, i]← k

9: S[i]← 1− mean(square(y_pred−f(d)))
2×Vy

10: end for

11: return S
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Algorithm 2 Second-Order PVi2(data: Rm×n, y_pred: Rm, f: callable, *, S_I: Rn,
n_boots: N, alpha: R)→ (tuple[Rn×n, DataFrame])

Require: data is a matrix of shape m× n, y_pred is a vector of length m, f is a callable
function, S_I is a vector of length n, n_boots is an integer, alpha is a real number

Ensure: Returns a tuple containing matrix S of shape n× n and a Dataframe CI
rows, columns← shape of data

2: n← n_boots
CI ← empty dictionary

4: S ← zeros matrix of shape n× n
Vy ← variance of y_pred

6: S_CI ← empty dictionary
for i in [0, 1, . . . , columns− 1] do

8: for j in [0, 1, . . . , columns− 1] do
d← copy of data

10: k ← d[:, [i, j]]
d← roll(d, 1, axis = 0)

12: d[:, [i, j]]← k

S[i, j]← 1− mean(square(y_pred−f(d)))
2×Vy

− SI [i]− SI [j]

14: S_CI[(i, j)]← 1− bootstrapp(y_pred, d, n_boots)/(2× Vy)− SI [i]− SI [j]
p0, p1← quantile(S_CI[(i, j)], [α, 1− α])

16: CI[(i, j)]← [p0, p1, p1− p0]
end for

18: end for
CI ← DataFrame(CI.values(), index = CI.keys(), columns =
[′5th′,′ 95th′,′ QuantileDifference′])

20: CI.index.name←′ Interactions′

CI.columns.name←′ ConfidenceIntervalDifference′

22: return S,CI
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