Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

5-10-2024

Improving Automatic Refactoring Candidate Identification

Ryan Devoe
rmd9481@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation

Devoe, Ryan, "Improving Automatic Refactoring Candidate Identification" (2024). Thesis. Rochester
Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11737&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11737?utm_source=repository.rit.edu%2Ftheses%2F11737&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Improving Automatic Refactoring Candidate Identification

by

Ryan Devoe

A thesis submitted in partial fulfillment of the
requirements for the degree of
Master of Science

in Software Engineering

B. Thomas Golisano College of Computing and
Information Sciences
Rochester Institute of Technology
Rochester, NY

May 10, 2024

Approved by:
Dr. Mohamed W. Mkaouer
Dr. Christian Newman

Dr. Ali Ben Mrad

Abstract

Extract method refactoring is pivotal for enhancing code readability, main-
tainability, and modularity by segmenting complex code into clearer, isolated
methods. Identifying opportunities for such refactorings necessitates a deep
understanding of the codebase’s evolution and its intricate relationships. Cur-
rent methodologies utilize developer commit messages, advanced graph anal-
ysis, and diverse machine learning approaches to automate this identification
process.

This research delves into the application of deep learning-based Large Lan-
guage Models (LLMs) to tackle the complexities inherent in extract method
refactoring. We introduce innovative approaches, including the use of LLMs
to cluster code blocks based on complex patterns and dependencies, and the
analysis of developer commit messages to infer the intent behind refactorings.
These methods aim to enhance the precision of identifying refactoring oppor-
tunities by leveraging historical code data and contextual insights.

Through rigorous experiments, we compare the efficacy of our proposed
methods against traditional refactoring tools using metrics such as precision,
recall, and Fl-score. Our findings reveal the significant potential of integrating
deep learning techniques into the refactoring workflow, enhancing the automa-
tion and efficacy of software maintenance.

This study not only validates the use of deep learning-based approaches
for code refactoring but also paves the way for future research aimed at the

continuous improvement of automated software maintenance tasks.

i

This thesis is dedicated to my parents, whose love and guidance are with me
in whatever I pursue. They have given me the foundation of values which I
will carry all my life, and have taught me the importance of hard work and a
dedication to pursuing my dreams. Their sacrifices and unwavering support

have shaped who I am today, and for this, I am eternally grateful.

With all my love and gratitude,
Ryan Devoe

iii

Contents

1 Introduction 1

2 Background 4
2.1 Extract Method Refactoring 4
22 CodeSmells 5
2.3 Large Language Models 6
2.4 Natural Language Processing 6
2.5 Code Embeddings L. 6

3 Research Objective 8
3.1 Motivation and Contribution 8
3.2 Research Questions L L. 9

4 Related Work 10
4.1 Traditional Techniques for Refactoring Identification 10
4.2 Machine Learning Approaches to Refactoring 11
4.3 Advanced Code Representation Techniques 12

v

CONTENTS

5 Methodology
5.1 Dataset Generation
5.2 Feature Learning .

5.3 Classification . . .

5.4 Investigating Developer Intent

5.5 Investigating LLM Identified Clustering

5.6 Evaluation Metrics

6 Analysis & Discussion

7 Threats to Validity

8 Conclusion

9 Acknowledgement

14
14
17
18
20
22
24

25

33

36

39

List of Tables

5.1 Optimal Hyper-Parameter Values for Random Forest

6.1 Embeddings vs. Encoded Embeddings

6.2 Extracted Keywords for Different Refactoring Motivations . . .

vi

Chapter 1

Introduction

Refactoring is a fundamental practice in software engineering that aims to en-
hance the structure of code without altering its underlying functionality. This
practice is essential for maintaining the readability, flexibility, and testability
of codebases, making them more adaptable to changing requirements and eas-
ier to maintain [1], [2], [3]. Among the various refactoring techniques, extract
method refactoring is particularly significant due to its role in reducing code
duplication and improving code organization.

Identifying when and where to apply extract method refactoring remains
a complex issue that often relies heavily on a developer’s experience and
knowledge of the codebase’s history. Traditional approaches to identifying
refactoring opportunities are predominantly manual, making them both time-
consuming and susceptible to human error. In some instances, developers may
use automated tools to generate code quality metrics and identify code smells,

but the results of these tools still require careful interpretation to distinguish

CHAPTER 1. INTRODUCTION 2

true refactoring opportunities and which refactoring techniques to apply [4].

Recent developments in machine learning have impacted the methods used
to identify refactoring opportunities. Researchers have employed various ma-
chine learning techniques that utilize code properties and process metrics to
train algorithms for different types of refactoring [5], [6], [7]. These metric-
based approaches have demonstrated state-of-the-art performance in identify-
ing candidates for refactoring [5]. An issue is that these metrics focus predomi-
nantly on structural elements like the number of lines, loops, and assignments,
so they often fail to capture the more nuanced semantic and behavioral as-
pects of source code. These aspects are crucial for accurately classifying and
effectively improving the refactoring process.

While metrics provide a quantifiable measure of code complexity and struc-
ture, they do not necessarily reflect the underlying semantics that dictate
code behavior. This limitation has led researchers to explore additional meth-
ods to enhance the detection and classification of refactoring opportunities.
For instance, studies have attempted to encode the contextual and syntac-
tic characteristics of codebases using advanced embedding techniques such as
Code2Vec [8]. The effectiveness of these approaches is heavily dependent on
the quality of the embeddings produced, showing the need for sophisticated
techniques that can deeply understand the semantics of the source code.

In this paper, we attempt to advance the work of Palit et al. [9]. We at-
tempt to refine the process of automating the identification of extract method
refactoring opportunities by classifying refactorings based on commit messages,

which we believed would provide contextual insights that traditional metrics

CHAPTER 1. INTRODUCTION 3

may overlook, and we explored the use of a large language model to cluster
identified refactorings, thereby enhancing our understanding of refactoring pat-
terns and improving the classifier’s accuracy by training it on these grouped

refactorings.

Chapter 2

Background

This Background section provides an overview of five fundamental concepts

instrumental to our research:
1. Extract Method Refactoring
2. Code Smells
3. Large Language Models
4. Natural Language Processing

5. Code Embeddings

2.1 Extract Method Refactoring

Extract Method Refactoring is a technique used to improve code maintain-

ability and readability by isolating specific groupable code fragments into new

CHAPTER 2. BACKGROUND 5

methods without altering functionality. This refactoring is beneficial for reduc-
ing code complexity, improving testability, and improving code organization,
making future changes more manageable. Figure 2.1 shows an example of a

method of pre- and post-extraction method refactoring.

Figure 2.1: Method before extract method refactoring (left)(truncated) and

after extract method refactoring (right)

2.2 Code Smells

Code smells are an important concept to understand in the realm of extract
method refactoring because they are one of the main motivations behind it.
They are indicators of potenial issues in the code that may not fully break
it, but can lead to further issues later in the development process. Design
defects such as duplicate code, dead code, and long method are examples of
code smells. To resolve code smells, these design defects that violate software

design principles and decrease code quality should be removed [10].

CHAPTER 2. BACKGROUND 6

2.3 Large Language Models

Large Language Models (LLMs) are advanced artificial intelligence systems
designed to understand and generate human-like text by learning from large
amounts of textual data. These models have significantly influenced natural
language processing (NLP) tasks (defined in Section 2.4), ranging from trans-
lation and summarization to question-answering and text generation. Some
popular LLMs include GPT (Generative Pre-trained Transformer) and BERT
(Bidirectional Encoder Representations from Transformers), both of which are
integral components to many current NLP applications due to their deep un-

derstanding of language nuances [11] [12].

2.4 Natural Language Processing

Natural language processing is the field of artificial intelligence that aims to
enable computers to understand human language as naturally as humans, in-
volving tasks such as sentiment analysis, speech recognition, and response gen-

eration [13].

2.5 Code Embeddings

Code Embeddings are numerical representations of source code that capture
syntactic and semantic characteristics essential for various software engineering
tasks, such as refactoring and code search. These embeddings enable machine

learning models to process code similarly to natural language, using techniques

CHAPTER 2. BACKGROUND

like code2vec to learn from the structure and naming in code fragments. By

representing code snippets as vectors in a high-dimensional space, code em-

beddings facilitate the comparison of code parts based on functionality and

meaning, which is crucial for automated refactoring tools [6] [7] [8].

The following figure from Alon et al. shows a clear example of how code

embeddings can help extract core functionality from code blocks.

>

this.elements) {
0 {

for (Object elem:
em.equals (targ

return false;

(2)
Predictions:
contains S 90.93%
matches c—/—// 3.54%
canHandle /= 1.15%
equals c—/// 0.87%
containsExact CC°22=——00) 0.77%

Object f(int target) {

for (Object e
if (

eturn

return this.defaultValue;
}

(b)

Predictions

get [wwwwwwn)]
getProperty @3
getValue [rewewwews]
getElement W)
getObject | revererererererers |

his.elements) {
() .equals (target

31.09%
20.25%
14.34%
14.00%

6.05%

int f(Object target) {

o :_this.@lements) {
em.equals (target))
return (i)

(©

Predictions

indexOf 1
getIndex c—/—//
findIndex /=
indexOfNull c——//
getInstructionlndex CC2=°°00)

Figure 2.2: Code2vec Demonstration [8]

The three code blocks in Figure 2.2 all appear visually similar. When using

traditional techniques for code analysis, which are typically more rule-based

and syntactic in nature, the analysis might be limited to surface-level patterns

and structural elements, leading to a lack of understanding of the code’s context

and functionality. Code2vec is able to extract the core functionality from each

of the blocks of code, showing the correct predictions for each block.

Chapter 3

Research Objective

3.1 Motivation and Contribution

Our research builds on the work of Palit et al. [9], which is motivated by
the challenges inherent in extract method refactoring. Current approaches to
identifying refactoring opportunities include heuristic and metric-based tools
for automated code analysis [5] [6] [7], but often miss the semantics of the
code and context. The identification processes tend to overlook the historical
development of the codebase and the intricate semantic relationships, which
can lead to suboptimal refactoring suggestions and a lack of actionable insights.
Palit et al. does a good job addressing the shortcomings of other approaches
by utilizing code embeddings to capture the semantics of code blocks.

The contributions of this research are the introduction of novel approaches
that utilize large language models for the analysis of code segments to classify
and cluster similar semantical pieces, and utilizing developer commit messages

in order to identify refactorings based on their intent. Through extensive

CHAPTER 3. RESEARCH OBJECTIVE 9

experimentation, we seek to validate the efficacy of our models against the
approach of Palit et al. and set the stage for future research in automating

and enhancing software maintenance tasks.

3.2 Research Questions

e RQ1: Can deep learning-based natural language models effec-
tively be used to cluster code blocks based on complex patterns
and dependencies to improve the existing approach of identify-
ing extract method refactoring opportunities?

This question evaluates the capability of deep learning models in un-
derstanding the semantic relationships within code for clustering code

blocks together.

e RQ2: How can the integration of developer commit messages,
reflecting the intent behind extract method refactorings, en-
hance the accuracy of the classifier in the existing approach?
This question evaluates how using the intent of a refactoring based on
developer commit messages to cluster like refactorings together can effect

the performance of the existing approach.

Chapter 4

Related Work

Many studies addressed challenges in software maintenance in general [14-122],
and refactoring in particular. The landscape of software maintenance and
the identification of refactoring opportunities have been extensively explored,
with a particular focus on the methodologies for automating extract method
refactoring and the identification of refactoring opportunities. Extract method
refactoring is a vital maintenance activity that aims to improve code quality
and readability, which are essential factors in proper software development

practices.

4.1 Traditional Techniques for Refactoring Identifi-

cation

Traditional techniques in refactoring identification primarily focus on heuristic

rules and structural analysis of code. The literature review conducted by Al

10

CHAPTER 4. RELATED WORK 11

Dallal [123] provides a foundational perspective on the current uses of metrics
and patterns to detect code smells, which signal the need for refactoring. The
work of Czibula and Czibula [124] exemplifies this category with their hierar-
chical clustering-based algorithm to suggest refactorings for improved software
design, advocating for a systematic method restructuring.

Bavota et al. [125] uses semantic cohesion measures with structural metrics
to detect refactoring opportunities, arguing for the significance of understand-
ing method interrelations beyond mere structural attributes. Complementing
this is the approach of Tsantalis and Chatzigeorgiou [126], which automates
the identification of extract method refactoring opportunities by focusing on
complete computation slices and object state slices, combining the concepts of

functionality and state alteration.

4.2 Machine Learning Approaches to Refactoring

Machine learning introduces a novel lens to refactoring identification, with
Aniche et al. [5] pioneering the use of supervised algorithms to predict refac-
toring needs across multiple granularities. Their work motivated many more
studies where process and ownership metrics are as crucial as code metrics in
guiding refactoring decisions. Van Der Leij et al. [127] built on this premise, ap-
plying machine learning models within a financial organization to demonstrate
the real-world applicability and accuracy of such models in recommending
refactorings.

The exploration by Di Nucci et al. [128] of the use of machine learning

for the detection of multiple smell code smells addresses the limitations of

CHAPTER 4. RELATED WORK 12

the subjectivity of previous tools, suggesting a more objective and learning-
based approach to refactoring. The empirical analysis by Kumar et al. [129] on
software metrics prediction further attests to the potential of machine learning
to refine the precision of refactoring identification.

Priyadarshni et al. [130] offers a different perspective by analyzing commit
messages alongside code metrics to predict refactoring activity. Their findings
highlight the predictive power of commit messages in discerning method-level
refactoring types, giving importance to the relevance of developers’ intentions

in the refactoring process.

4.3 Advanced Code Representation Techniques

Advancements in code representation techniques provide an additional dimen-
sion to refactoring identification. Kurbatova et al. [7] employ a path-based rep-
resentation of code, leveraging machine learning to recommend move method
refactorings with high accuracy. This progression shows a shift towards recog-
nizing the importance of syntactic and semantic intricacies of code fragments.

Alon et al.’s [8] code2vec framework emerges as a significant step in rep-
resenting code snippets as continuous vectors, effectively predicting method
names and understanding semantic properties, establishing a linkage between
code syntax and semantics. Their work not only enhances the capability to
predict refactoring opportunities but also offers a nuanced understanding of
code functionalities through semantic representation.

The exploration of automated refactoring methods and tools has evolved

from rule-based heuristics to sophisticated machine learning models that con-

CHAPTER 4. RELATED WORK 13

sider a wide array of metrics and developer intent. The introduction of se-
mantic and structural representations of code further enriches the refactoring
landscape, pointing toward more nuanced and context-aware refactoring tools.
These diverse approaches underscore the ongoing efforts to refine software
maintenance practices and the potential of emerging technologies to support

this endeavor.

Chapter 5

Methodology

The following section will present our adopted methodology to identify candi-
dates for extract method refactoring. We start by demonstrating the approach
overview in Figure 5.1, we then discuss the details of each phase, and finally,
we extend the proposed methodology to explore whether this model is bet-
ter suited for specific refactoring intents. This methodology is adopted and

extended from Palit et al. [9].

5.1 Dataset Generation

To train a classification model, we need to either use existing datasets or create
our own. In the case of identifying extract method refactoring opportunities,
the dataset must include both positive and negative examples of potential
refactorings. Positive examples are typically derived from historical codebase

changes, identifiable using tools such as RefactoringMiner. Identifying suitable

14

CHAPTER 5. METHODOLOGY 15

RefactoringMiner '—O—'—Og’

Commit Containing
Extract method

Repositories collection +

Metadata about the related method(s)
before refactoring

‘ <positive cases>

after refactoring

Positive examples source code
< PyDriller

Negative examples source code

e ‘ Metadata about the related method(s) ‘ <negative cases>

Dataset generation

Dataset for
training the
classifier

—_— P Code embeddings
T e Auto-encoder I A
— ==
training the I 1 1
auto-encoder || 1

Feature learning

Classifier

<] !
1

v
@ @ Classification

Figure 5.1: Methodology overview

CHAPTER 5. METHODOLOGY 16

negative examples is more challenging, as not all unchanged code fragments
necessarily represent missed refactoring opportunities. Researchers often em-
ploy heuristic methods to classify these negative examples. Using pre-existing
datasets thus involves inheriting the underlying heuristics that were previously
established. We utilized the same approach as Palit et al., generating nega-
tive examples by designating a method as negative if it underwent extract
method refactoring in the preceding commit [9]. The assumption is that a
method which has just been refactored is unlikely to require immediate further
refactoring.

The dataset compilation begins by selecting a subset of repositories-5% of
the 11,149 open-source Java repositories analyzed in the study by Aniche et
al. [5]. This selection is then ran through RefactoringMiner to inspect each
commit’s version control history for instances of extract method refactorings.
Metadata, including the file path and the start and end lines of each method
before and after refactoring, are collected to facilitate the extraction of both
positive and negative examples.

Once the commit data, file paths, and specific method lines are identified,
PyDriller is used to extract the actual source code corresponding to these
examples. This procedure creates a dataset comprised of 55,430 positive and
negative examples. To ensure the study’s reproducibility, we modified the
dataset provided by the original replication package by Palit et al., which
involved the data cleansing of empty repositories and duplicates. The dataset
was divided into two distinct sets for training and testing both the autoencoder

and the classifier models, 27,634 and 27,796 respectively.

CHAPTER 5. METHODOLOGY 17

5.2 Feature Learning

We then utilize GraphCodeBERT (step 4), a pre-trained transformer model,
to derive the semantic and syntactic properties of the source code [131]. First,
the code undergoes tokenization to accommodate the model’s maximum token
length of 512, applying truncation as necessary. These tokenized input IDs are
then processed through the model’s 12 encoding layers. The resultant output,
a 768-dimensional vector, is computed by averaging the final representations
across the input tokens. This methodology has proven to be more effective
than relying solely on the embedding of the [SEP]| token.

We then use an encoder (step 5) both as an additional feature extractor
and a technique for dimensionality reduction of the GraphCodeBERT em-
beddings [132]. The autoencoder’s architecture includes three fully connected
linear layers with RelLU activation, designed to compress the input dimensions
down to a bottleneck layer of 128 units. This bottleneck layer captures the
essential features of the input, which the decoder then uses to reconstruct the
original 768-dimensional input. The autoencoder is trained on a subset of
27,634 examples from the initial dataset, using a 70:30 split for training and
testing. The model’s performance is assessed on the basis of the reconstruc-
tion loss, calculated using Mean Squared Error (MSE) loss, to evaluate the

accuracy of the reconstructed outputs against the original inputs.

CHAPTER 5. METHODOLOGY 18

5.3 Classification

After training the auto-encoder, only the encoder layers are utilized to gen-
erate dense representations of a subset of the source code, which are then
used to train a binary classification model (step 6). We then evaluate both a
Random Forest-based classifier and a Neural Network-based classifier using a
distinct subset of 27,796 examples. Palit et al.’s selection of the Random Forest
classifier was based on its robust capability to handle non-linear relationships
between features and its proven performance in various software engineering
tasks, including refactoring identification [128] [133] [5] [127] [9].

The data used for classifier training are divided into training, validation,
and test sets using a 70:20:10 stratified sampling approach. To optimize the
classifier’s performance, a GridSearchCV process is utilized to determine the
most effective hyperparameters for each model.

The Random Forest Classifier employs an ensemble learning approach,
which effectively captures the non-linear relationships between features. As
illustrated in Figure 5.2, the training begins with an initial feature set of 128
dimensions, derived from the encoded data of the autoencoder in step 5. This
results in a matrix of size n x 128, which is used across training, validation, or
test datasets according to the 70:20:10 split. During the training phase, boot-
strap sampling is used to generate varied datasets for different decision trees.
This process involves sampling with replacement of the initial encoded data,
which helps to understand the influence of each feature on predictive outcomes.
The final decision-making process of the Random Forest involves aggregating

the predictions from various trees through a majority voting system, enhancing

CHAPTER 5. METHODOLOGY 19

the overall prediction accuracy.

Auto-encoder

Inifial encoded data nx 128
after split I
n={70%N,20%MN,10%N |
N-
v
Bootstrap Sampling = == = ==

Random Feature Selection (x1,x3)
[xs X9) (xa x6)

W h A 45

‘ / Decision Tree n

‘ Dec slon Tree | Decision Tree 2 ‘ IDecision Tree 3

Aggregation 2 o B o
jority Vote Final Prediction

Figure 5.2: Classifying the extract method refactoring candidates using the
encoded data and the Random Forest Model

During the GridSearch, we tune a set of important parameters that control
the complexity and depth of the random forest. This helps prevent the model
from over-fitting to the training data. We present the set of parameters as

follows:

e Maximum Number of Trees: Maximum number of trees in the ran-

dom forest.

e Minimum Samples Split: The minimum number of samples that we

need at each internal node to split it.

e Minimum Leaf Node Samples: After splitting an internal node, the

CHAPTER 5. METHODOLOGY 20

Table 5.1: Optimal Hyper-Parameter Values for Random Forest

Parameter Search Space Best Value
Number of trees [100, 200, 300, 1000] 1000
Minimum samples split [8, 10, 12] 10
Minimum leaf node samples [3, 4, 5] 3
Maximum features (2, 3] 2
Maximum tree depth [80, 90, 100, 110] 80

resulting nodes must contain at least the Minimum Leaf Node Samples.

¢ Maximum Features: The maximum number of features selected per

tree during random feature selection.
e Maximum Tree Depth: The maximum depth of the decision trees.

We show in Table 5.1 the set of best values for the RandomForest model along
with their search space.

For the Neural Network Model, the architecture is made up of two fully
connected layers with ReLu activation function and a final Sigmoid activation

function.

5.4 Investigating Developer Intent

As an extension of the proposed approach, our aim is to investigate the effect
of developer’s motivation when performing extract method refactoring and
whether the approach is better suited for specific intents. We believe that if

the classifier is trained separately on different intents (e.g. “extract method

CHAPTER 5. METHODOLOGY 21

L
r 1 Positive

e e wil
- o
REfasElng PyDriller ‘ > ———— —0O
Miner) I —_—
Negative examples source code)\ Related negative examples source code

Extract source code
+

Filter based on
Motivation

commit messages

[GraphCodeBERT +
<+ Auto-encoder +

Classifier

Dataset for
training the
auto-encoder |}

Dataset for
training the
classifier

Figure 5.3: Proposed approach to investigating the effect of the intent of ex-

tract method refactoring on the performance of classification

refactoring for long methods”), it may perform better in real development sce-
narios. The proposed technique does not take into consideration these nuances
in motivation. By examining the motivations behind extract method refac-
toring instances, we can assess whether model performance correlates with
specific intents and whether our dataset comprehensively represents the range
of refactoring motivations. Should any motivations be underrepresented, we
also explore how the model performs in these cases.

To achieve this, we follow the approach demonstrated in Figure 5.3. We
utilize the existing dataset from our prior methodology (step 1), employing
RefactoringMiner to regenerate the necessary metadata for identified extract
method candidates. In step 2, we utilize PyDriller to retrieve both the method
bodies and their associated commit messages. We only extract negative exam-

ples related to the positive examples that satisfy the filter.

CHAPTER 5. METHODOLOGY 22

The filter (step 3) will be established through the analysis of the commit
messages associated with each case of extract method refactoring. The goal
is to identify relevant keywords related to specific refactoring intents, which
will be used later for filtering. After conducting the analysis, we will retest the
approach on specific filters (step 4), re-assessing the strength and weaknesses of
the technique based on this newly introduced dimension. Using this protocol,
we were able to extract 53,260 positive and negative methods with their commit
messages. These methods may come from commits that changed multiple files,
which limits the precision of the commit description. To mitigate this, we
further refined our dataset to include only those commits affecting a single
file, resulting in a more manageable and focused dataset of 5,678 entries. This
refinement ensures a more precise analysis of commit intents and their impact

on refactoring practices.

5.5 Investigating LLM Identified Clustering

This section extends our existing methodologies by introducing a novel ap-
proach that leverages Large Language Models (LLMs) for autonomously clus-
tering extract method refactoring instances. This approach enables the LLM
to identify natural groupings in refactoring data based solely on the informa-
tion extracted from the source code. It aims to enhance the classifier’s ability
to generalize across various scenarios without the constraint of label-induced
overfitting. We will follow the approach shown in Figure 5.4.

This extension will be performed similar to the previous, but the filtering

portion in step 4 will be the main difference in these two extensions. Uti-

CHAPTER 5. METHODOLOGY 23

H e Filter based on

LLM Clusters

L
r 1 Positive

e e wil
- o
REfasElng PyDriller ‘ > ———— —0O
Miner) I —_—
Negative examples source code)\ Related negative examples source code

Extract source code
+

commit messages

[GraphCodeBERT +
<+ Auto-encoder +

Classifier

Dataset for
training the
auto-encoder |}

Dataset for
training the
classifier

Figure 5.4: Proposed approach to investigating the effect of LLM-based clusters

on the performance of classification

lizing an LLM such as OpenAl’'s GPT, we will allow the model to uncover
subtle and complex patterns within the data in order to cluster refactorings
into groups (step 4). The LLM-identified clusters are expected to capture
various refactoring patterns that may not be explicitly defined by traditional
labeling approaches. Once the clusters are formed, each cluster is treated as a
distinct category within our dataset. This categorization allows us to train a
specialized classification model for each cluster to determine the specific refac-
toring needs of new code snippets more accurately. By training classifiers on
these dynamically identified clusters, our objective is to tailor the prediction
models to the nuances of each cluster, potentially increasing the precision and
relevance of the refactoring suggestions.

To validate the effectiveness of this approach, we will compare the perfor-

mance of classifiers trained on LLM-identified clusters against those trained

CHAPTER 5. METHODOLOGY 24

with traditional label-based methods. Additionally, we will conduct a detailed
analysis of the types of refactorings within each cluster to understand the
characteristics that the LLM has used to form these groups. This analysis will
help determine whether LLM-based clustering leads to more meaningful and

actionable refactoring insights compared to conventional methods.

5.6 FEvaluation Metrics

We evaluate the performance of the model using accuracy, precision, recall,
and F1 score. Palit et al. initially kept the initial ratio of 1:1 positive to neg-
ative examples in their testing data, but a number of researchers [134] [128§]
identify this ratio as unrealistic because it results in very inflated performance
of models that end up performing poorly in production [9]. To overcome this
issue, they sampled 20 repositories at random from the set of repositories they
acquired, which is also the approach we followed. We used RefactoringMiner
again to retrieve the identified commits for which extract method refactoring
was applied. For each commit, we calculate the ratio of the refactored meth-
ods to the total number of methods in the source code. To achieve this, the
posCount option in RefactoringMiner is used to get the number of refactor-
ing methods, and the totalCount in PyDriller is used to calculate the total
method count. This value is then averaged across the commits to obtain a
ratio of 15:85, which is more realistic. The test data are adapted to adhere to

this ratio.

Chapter 6

Analysis & Discussion

RQ1: Can deep learning-based natural language models effectively be
used to cluster code blocks based on complex patterns and dependen-
cies to tmprove the existing approach of identifying extract method
refactoring opportunities?

We encountered significant challenges in our attempt to leverage Large Lan-
guage Models (LLMs) for clustering code blocks to improve extract method
refactoring identification. The biggest challenge was the model’s requirement
to comprehend all refactoring samples simultaneously to effectively cluster
them, which proved impractical due to the extensive dataset size.

Initial trials involved feeding smaller subsets of the dataset into the LLM
to manage data volume and complexity. This method required predefined cat-
egories for clustering, which introduced a high risk of overfitting as the model
was unable to process enough data samples to form meaningful categories. At-

tempts to manage the dataset size by clustering encoded embeddings were also

25

CHAPTER 6. ANALYSIS & DISCUSSION 26

Figure 6.1: Class separation from Raw Embeddings (left) and from Autoen-
coded Embeddings (right)

considered. Encoded embeddings, being truncated, were expected to facilitate
easier handling by the LLM. This leads to our biggest overall challenge when
attempting to build off the work of Palit et al. [9]. We could not replicate
the same performance enhancements using autoencoded embeddings shown in
their study, and our results showed that models trained with autoencoded em-
beddings performed poorly compared to those trained with raw embeddings.
Figure 6.1 illustrates the t-SNE plots for the raw embeddings and the au-
toencoded embeddings, where it can be clearly seen that the intended bifurca-
tion/ class separation with the encoded embeddings is not present. Also, when
looking at the model performance in our replication, using the autoencoded
embeddings provides worse results then the regular embeddings (Table 6.1).
These discrepancies led us to abandon the approach of using encoded embed-
dings for clustering with the LLM. The inadequacy of the LLM to handle

extensive data without significant reduction, and the subsequent degradation

CHAPTER 6. ANALYSIS & DISCUSSION 27

Model Accuracy | Precision | Recall | Fl-score
Embeddings 0.93 0.93 0.93 0.93
Encoded embeddings 0.87 0.87 0.87 0.87

Table 6.1: Embeddings vs. Encoded Embeddings

in performance when using encoded embeddings, highlighted a critical limita-
tion in applying LLMs for clustering code in the context of extract method
refactoring.

Although this approach is theoretically promising, the practical implemen-
tation of LLMs to cluster code blocks for extract method refactoring identifica-
tion limited us in these trials. The data handling limitations, risk of overfitting,
and poorer performance of autoencoded embeddings significantly hindered the
effectiveness of this approach. Moving forward, alternative strategies that ei-
ther enhance the LLM’s capacity to handle large datasets or improve the qual-
ity of autoencoded embeddings might be necessary to harness the potential of

LLMs in this domain.

We encountered several significant challenges in our investigation into the
application of large language models (LLMs) for clustering code blocks
based on complex patterns and dependencies. Initially, the large size of
our dataset proved unmanageable for the LLM, as the model’s capacity
to handle such extensive data without a reduction in context was limited.
This limitation hindered our ability to perform clustering with a compre-
hensive understanding of all available data. Next, we attempted to input

a smaller subset of the dataset to allow the LLM to identify labels based

CHAPTER 6. ANALYSIS & DISCUSSION 28

on detected patterns and dependencies. This approach did not yield the
desired results due to insufficient data input, which impeded our ability to
derive accurate labels and effectively prevent model overfitting. Despite
these setbacks, we recognize the potential of this method. If the chal-
lenges associated with the input data size can be addressed, this approach
may significantly enhance the performance of the existing methodology for

identifying extract method refactoring opportunities.

RQ2: How can the integration of developer commit messages,
reflecting the intent behind extract method refactorings, enhance the
accuracy of the classifier in the existing approach?

The integration of developer commit messages into the classification model
for identifying extract method refactorings can significantly enhance the model’s
accuracy by providing context that directly reflects the developer’s intent. Our
analysis of commit messages revealed that while these messages could specify
the broader motivation behind code changes, they were not detailed enough
to categorize refactoring intents granularly. Even with this, by grouping com-
mit messages into broader categories such as "Adding Functionality /Enhance-
ments," "Fixing Issues," and "Refactor," we gained valuable insights into the
typical motivations for refactorings (Table 6.2).

For instance, developers might perform extract method refactoring to "Fix
Issues" without explicitly mentioning it as a refactoring, suggesting that it is
part of broader bug-fixing activities. Similarly, refactorings aimed at "Adding
Functionality" might not be recognized by developers as explicit refactorings,
affecting how models trained on code metrics interpret the need for refactoring.

By integrating these categorized intents, the model can be more finely tuned

to understand the context of changes, leading to improved prediction accuracy.

CHAPTER 6. ANALYSIS & DISCUSSION

29

Table 6.2: Extracted Keywords for Different Refactoring Motivations

Adding Fixing Issues Refactor
Add Fix Simplify
Adding fixed simplifying
Added fixes Refactoring
Implement fixing refactored
Implemented fixing up re-factored
Support Issues factored out
Introduce Wrong Duplication
Enhance Exception duplicated
Support Bugfix duplicate
Enable Reduced
Allow Clean up
Handle cleanup
Update cleans up
Updated cleaned
refined clean
cleaner
Better
Duplicated
Perfomance
Move
Extract
Readability
Improve
reorg

complexity

CHAPTER 6. ANALYSIS & DISCUSSION 30

For example, if a commit message includes terms like "clean up" or "simplify,"
it signals a clear intent for structural improvement, indicating a strong candi-
date for extract method refactoring. This contextual understanding can help
distinguish between necessary refactorings and mere code alterations that do
not improve code design.

Consider these two commit examples that illustrate the variability in how

developers describe their refactoring activities:

1. Poorly explained commit:

e repo name: vert.x
e repo url: https://github.com/eclipse-vertx/vert.x

e commit message: "Cleanup handshaking code”
2. Well explained message:

e repo name: react-native
e repo url: https://github.com/facebook/react-native

e commit message: "Refactor: Introduce methods to show/hide De-
vLoading View in DevSupportManagerBase
Summary:
Rationale: Throughout DevSupportManagerBase, we show/hide the
DevLoading View and simultaneously write to the ‘mDevLoading View Vis-
ible‘ boolean. This diff pulls all those boolean writes into methods,
so that subclasses of DevSupportManagerBase can show/hide the

DevLoading View without accessing the boolean directly.

CHAPTER 6. ANALYSIS & DISCUSSION 31

The second commit provides a clear, well-documented rationale for the
refactoring, which could help the classifier understand and categorize the refac-
toring intent accurately, thus improving prediction outcomes. The first commit
is a more common example of what we found, not providing enough informa-
tion to classify the refactoring into a specific type. We have understood from
these trials that if developers could leave informative commit messages in more
cases, they would be able to improve classifier performance in specific scenarios.

In future work, we aim to deepen the analysis by exploring more granu-
lar sub-categories of refactoring based on commit messages. This could in-
volve developing a more sophisticated categorization framework that can dis-
tinguish between different types of refactorings beyond the basic intents. By
re-evaluating the model with these refined categories, we can assess whether
specific types of refactorings, such as those aimed at improving readability or
reducing complexity, are better suited to certain contexts or codebases.

By integrating the intent reflected in commit messages, the classifier’s ac-
curacy in identifying valid refactoring opportunities is expected to improve,
leading to more precise recommendations for developers and, ultimately, to

higher quality software maintenance practices.

While exploring the impact of developers’ intent on identifying extract
method refactoring opportunities, we encountered a notable limitation in
the quality of commit messages. Our analysis revealed that commit mes-
sages are frequently not descriptive enough to conclusively determine the

intent behind the changes. Through keyword analysis of these commit

CHAPTER 6. ANALYSIS & DISCUSSION 32

Chapter 7

Threats to Validity

Construct validity in this study refers to the accuracy with which the tools
and measurements, namely RefactoringMiner and PyDriller, reflect the prop-
erties they are intended to measure. One of the biggest threats to the validity
of this study is the quality of the positive and negative samples extracted using
these tools. In order to mitigate this threat, a random subset of the identified
negative samples was selected and manually evaluated to ensure they were of
good quality.

The approach presented in this paper uses a dataset that is approximately
5% the size of the dataset used in the state-of-the-art approach, which can
also be considered a threat. This study design decision was made because of
the large amount of computing resources required to run the full dataset. The
other reason this smaller dataset was used was to explore the feasibility and
effectiveness of this approach, as with a much larger dataset it may be less

feasible. Repeating the experiments in this study with a larger dataset could

33

CHAPTER 7. THREATS TO VALIDITY 34

mitigate this threat.

Internal validity concerns the degree to which the results of this study can
be attributed to the conditions set out in the experimental design rather than
external factors. In this study, internal validity is potentially compromised
by several factors, particularly relating to the use of the autoencoder and the
large language model.

Firstly, the performance of the autoencoder is critical, as it is responsible
for reducing the dimensionality of the input data without significant loss of
information. There’s a risk that the autoencoder may not capture essential
features or might overfit to the training data. Such issues were evident from
the variable performance outcomes observed when comparing encoded ver-
sus raw embeddings, which suggested that the dimensionality reduction might
sometimes strip away useful information.

The use of LLMs to cluster refactoring instances encountered significant
hurdles due to the size and complexity of the dataset. Computational con-
straints meant that the LLM could not process the entire dataset simultane-
ously, which likely led to incomplete learning and suboptimal clustering per-
formance. This also raised concerns about the scalability of this approach and
its dependence on the quality of encoded embeddings.

Experimental reproducibility is another internal validity concern, high-
lighted by difficulties in replicating Palit et al.’s previous studies’ performance
improvements with autoencoded embeddings [9]. This discrepancy could stem
from variations in experimental setups or differences in parameter tuning,

which underscores the need for precise documentation and consistency in ex-

CHAPTER 7. THREATS TO VALIDITY 35

perimental procedures.

The external validity of this study refers to the generalizability and re-
peatability of the produced results. A threat to this paper is that this approach
is specific to extract method refactoring, and it is not generalizable to other
forms of refactoring. It would take extensive reworking of this approach in
order to make it apply to other forms of refactoring. An example of this threat
would be a move method refactoring-this approach does not have the code to

collect the refactored commit as the method would be moved to another class.

Chapter 8

Conclusion

This study has explored the feasibility and effectiveness of using large language
models and developer commit messages to improve the identification of extract
method refactoring opportunities. Through rigorous experimentation, we have
identified both the potential and the limitations of these advanced machine
learning techniques in the context of software refactoring.

The use of LLMs to cluster code blocks based on complex patterns and
dependencies showed promise but faced significant challenges due to the large
size and complexity of the dataset. Our findings indicate that while LLMs have
the potential to detect nuanced patterns in code that might be indicative of
refactoring needs, the practical application of these models is currently limited
by computational constraints and the risk of overfitting, particularly when
using autoencoded embeddings.

The integration of developer commit messages into the classification process

aimed to enhance the precision of the refactoring identification by providing

36

CHAPTER 8. CONCLUSION 37

context on the developer’s intent. This approach proved beneficial for under-
standing the motivations behind refactoring activities, which could potentially
improve model accuracy. However, the variability in how developers describe
their refactoring actions poses challenges for consistently categorizing intent
and applying it effectively in a predictive model.

Given these insights, future work could take several directions:

Enhancing Autoencoder Performance: Investigating different autoencoder
architectures or training strategies to improve their ability to capture essen-
tial information without losing important details. Scalable LLM Applications:
Addressing the computational challenges associated with applying LLMs to
large datasets could involve research into more efficient model architectures or
incremental clustering techniques that can handle data in manageable chunks
without losing the context necessary for effective clustering. Refined Intent
Analysis: Developing a more sophisticated framework for categorizing refac-
toring intents based on commit messages. This framework might include nat-
ural language processing techniques to extract and categorize intents more
precisely, potentially using unsupervised learning to discover new categories of
intent. Generalization to Other Refactorings: Expanding the current approach
to include other types of refactorings, such as move method or inline method,
could significantly increase the utility of the developed models. Each refactor-
ing type may require adjustments or extensions to the existing methodology
to address its unique characteristics. Integration with Development Environ-
ments: Integrating the refactoring identification models directly into devel-

opment environments as plugins would allow developers to receive real-time

CHAPTER 8. CONCLUSION 38

suggestions for refactoring opportunities, tailored to their current coding ac-
tivities and specific project contexts.

By pursuing these avenues, future work can build on the foundation laid
by this study to enhance the accuracy and applicability of machine learning
models in the identification of software refactoring opportunities, ultimately

contributing to more maintainable and high-quality software systems.

Chapter 9

Acknowledgement

I would like to express my sincere appreciation to my faculty advisor, Dr.
Mohamed Wiem Mkaouer, and for his support and guidance throughout my
research. His profound knowledge in code quality, refactoring, and artificial
intelligence helped to guide me through this process, providing direction and
inspiration. Dr. Mkaouer’s constant encouragement and confidence in my
abilities motivated me to extend the boundaries of my academic pursuits and
strive for excellence in every facet of my work, allowing me to explore an
emerging technology and develop a passion for it. Dr. Mkaouer has greatly
enriched my educational experience, making my academic journey not only
achievable but also deeply enriching.

Additionally, I extend my sincere thanks to Taha Draoui, whose collabo-
ration was crucial in replicating and expanding upon the work of Palit et al..
Our joint efforts have been instrumental in exploring new dimensions of this

research.

39

CHAPTER 9. ACKNOWLEDGEMENT 40

This thesis is not only a reflection of my own efforts but also a testament
to Dr. Mkaouer’s dedication to his students and his unwavering commitment
to advancing academic inquiry. I am profoundly thankful for his mentorship

and the opportunities I have been afforded under his guidance.

Ryan Devoe

Bibliography

1]

2]

3]

4]

[5]

William F. Opdyke. Refactoring: A Program Restructuring Aid in De-
signing Object-Oriented Application Frameworks. PhD thesis, University
of Illinois at Urbana-Champaign, 1992.

K. Beck J. Brant W. Opdyke M. Fowler, P. Becker and D. Roberts.
Refactoring: Improving the Design of Eristing Code. Addison-Wesley
Professional, 1999.

T. Mens and T. Tourwe. A survey of software refactoring. IEFEE Trans-

actions on Software Engineering, 30(2):126-139, 2004.

A survey on software smells. Journal of Systems and Software, 138:158—

173, 2018.

Mauricio Aniche, Erick Maziero, Rafael Durelli, and Vinicius Durelli.
The effectiveness of supervised machine learning algorithms in predicting

software refactoring, 2020.

41

BIBLIOGRAPHY 42

(6]

7]

18]

9]

[10]

[11]

[12]

Chitti Babu Karakati and Sethukarasi Thirumaaran. Software code refac-
toring based on deep neural network-based fitness function. Concurrency

and Computation: Practice and Experience, 35(4):e7531.

Zarina Kurbatova, Ivan Veselov, Yaroslav Golubev, and Timofey
Bryksin. Recommendation of move method refactoring using path-based

representation of code, 2020.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec:

Learning distributed representations of code, 2018.

Indranil Palit, Gautam Shetty, Hera Arif, and Tushar Sharma. Auto-
matic refactoring candidate identification leveraging effective code rep-
resentation. In 2023 IEEFE International Conference on Software Main-

tenance and Evolution (ICSME), pages 369-374, 2023.

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. To-
ward the automatic classification of self-affirmed refactoring. Journal of

Systems and Software, 171:110821, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners.

OpenAl blog, 1(8):9, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-

standing, 2019.

BIBLIOGRAPHY 43

[13]

[14]

[15]

[16]

[17]

Taweh Beysolow II and SpringerLink (Online service). Applied Natu-
ral Language Processing with Python: Implementing Machine Learning
and Deep Learning Algorithms for Natural Language Processing. Apress,
Berkeley, CA, 1st 2018.;1; edition, 2018.

Wajdi Aljedaani, Mohamed Wiem Mkaouer, Anthony Peruma, and
Stephanie Ludi. Do the test smells assertion roulette and eager test
impact students’ troubleshooting and debugging capabilities? arXiw

preprint arXiw:2303.042534, 2023.

Christian D Newman, Michael J Decker, Reem Alsuhaibani, Anthony
Peruma, Mohamed Mkaouer, Satyajit Mohapatra, Tejal Vishoi, Marcos
Zampieri, Timothy Sheldon, and Emily Hill. An ensemble approach
for annotating source code identifiers with part-of-speech tags. IEEFE

Transactions on Software Engineering, 2021.

Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey
Bryksin, and Mohamed Wiem Mkaouer. One thousand and one stories:
a large-scale survey of software refactoring. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1303—

1313, 2021.

Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian D Newman, and Ali Ouni. Behind the scenes: On the relation-
ship between developer experience and refactoring. Journal of Software:

Evolution and Process, page 2395, 2021.

BIBLIOGRAPHY 44

[18]

[19]

[20]

[21]

[22]

23]

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian New-
man, and Ali Ouni. On preserving the behavior in software refactor-
ing: A systematic mapping study. Information and Software Technology,

140:106675, 2021.

Eman Abdullah AlOmar, Ben Christians, Mihal Busho, Ahmed Hamad
AlKhalid, Ali Ouni, Christian Newman, and Mohamed Wiem Mkaouer.
Satdbailiff-mining and tracking self-admitted technical debt. Science of
Computer Programming, 213:102693, 2022.

Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Chris-
tian D Newman, Mohamed Wiem Mkaouer, and Ali Ouni. How do i
refactor this? an empirical study on refactoring trends and topics in

stack overflow. Empirical Software Engineering, 27(1):1-43, 2022.

Eman Abdullah AlOmar, Jiagian Liu, Kenneth Addo, Mohamed Wiem
Mkaouer, Christian Newman, Ali Ouni, and Zhe Yu. On the documenta-
tion of refactoring types. Automated Software Engineering, 29(1):1-40,
2022.

Eman Abdullah Alomar, Tianjia Wang, Vaibhavi Raut, Mohamed Wiem
Mkaouer, Christian Newman, and Ali Ouni. Refactoring for reuse: an
empirical study. Innovations in Systems and Software Engineering, pages

1-31, 2022.

Anthony Peruma, Emily Hu, Jiajun Chen, Eman Abdullah AlOmar, Mo-

hamed Wiem Mkaouer, and Christian D Newman. Using grammar pat-

BIBLIOGRAPHY 45

[24]

[25]

[26]

[27]

terns to interpret test method name evolution. In 2021 IEEE/ACM 29th
International Conference on Program Comprehension (ICPC), pages

335-346. IEEE, 2021.

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Min-
ing and managing big data refactoring for design improvement: Are we
there yet? Knowledge Management in the Development of Data-Intensive

Systems, pages 127-140, 2021.

Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi,
Mohamed Wiem Mkaouer, Ali Ouni, Christian D Newman, Abdullatif
Ghallab, and Stephanie Ludi. Test smell detection tools: A systematic

mapping study. Fwvaluation and Assessment in Software Engineering,

pages 170-180, 2021.

Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. On the use of
information retrieval to automate the detection of third-party java library
migration at the method level. In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC), pages 347-357. IEEE,
2019.

Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor Khokhlov, Leon
Reznik, Ali Ouni, and Jason Mcgoff. Learning to recommend third-party
library migration opportunities at the api level. Applied Soft Computing,
90:106140, 2020.

BIBLIOGRAPHY 46

[28]

[29]

[30]

[31]

[32]

[33]

Hussein Alrubaye, Stephanie Ludi, and Mohamed Wiem Mkaouer.
Comparison of block-based and hybrid-based environments in trans-
ferring programming skills to text-based environments. arXiv preprint

arXiw:1906.05060, 2019.

Anthony Peruma, Mohamed Wiem Mkaouer, Michael John Decker, and
Christian Donald Newman. Contextualizing rename decisions using
refactorings and commit messages. In 2019 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages
74-85. IEEE, 2019.

Christian D Newman, Mohamed Wiem Mkaouer, Michael L Collard, and
Jonathan I Maletic. A study on developer perception of transformation
languages for refactoring. In Proceedings of the 2nd International Work-

shop on Refactoring, pages 34-41, 2018.

Hussein Alrubaye and Mohamed Wiem Mkaouer. Automating the de-
tection of third-party java library migration at the function level. In

CASCON, pages 60-71, 2018.

Hussein Alrubaye, Mohamed Wiem Mkaouer, and Anthony Peruma.
Variability in library evolution: An exploratory study on open-source
java libraries. In Software Engineering for Variability Intensive Systems,

pages 295-320. Auerbach Publications, 2019.

Montassar Ben Messaoud, Ilyes Jenhani, Nermine Ben Jemaa, and Mo-

hamed Wiem Mkaouer. A multi-label active learning approach for mobile

BIBLIOGRAPHY 47

[34]

[35]

[36]

[37]

[38]

app user review classification. In International Conference on Knowledge

Science, Engineering and Management, pages 805-816. Springer, 2019.

Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. Migration-
miner: An automated detection tool of third-party java library migration
at the method level. In 2019 IEEFE international conference on software

maintenance and evolution (ICSME), pages 414-417. IEEE, 2019.

Deema Alshoaibi, Kevin Hannigan, Hiten Gupta, and Mohamed Wiem
Mkaouer. Price: Detection of performance regression introducing code
changes using static and dynamic metrics. In International Symposium

on Search Based Software Engineering, pages 75—88. Springer, 2019.

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and
Marouane Kessentini. On the impact of refactoring on the relationship
between quality attributes and design metrics. In 2019 ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measure-

ment (ESEM), pages 1-11. IEEE, 2019.

Licelot Marmolejos, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer,
Christian Newman, and Ali Ouni. On the use of textual feature extrac-
tion techniques to support the automated detection of refactoring doc-

umentation. Innovations in Systems and Software Engineering, pages

1-17, 2021.

Eman AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Can refactor-

ing be self-affirmed? an exploratory study on how developers document

BIBLIOGRAPHY 48

[39]

[40]

[41]

[42]

their refactoring activities in commit messages. In 2019 IEEE/ACM
3rd International Workshop on Refactoring (IWoR), pages 51-58. IEEE,
2019.

Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and
Ali Ouni. Increasing the trust in refactoring through visualization. In
2020 IEEE/ACM /jth International Workshop on Refactoring (IWoR),
2020.

Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian Newman, Ali Ouni, and Marouane Kessentini. How we refactor
and how we document it? on the use of supervised machine learning

algorithms to classify refactoring documentation. FExpert Systems with

Applications, 167:114176, 2021.

Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,
Ali Ouni, and Marouane Kessentini. Refactoring practices in the context
of modern code review: An industrial case study at xerox. In 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 348-357. IEEE,
2021.

Eman Abdullah AlOmar, Anthony Peruma, Christian D Newman, Mo-
hamed Wiem Mkaouer, and Ali Ouni. On the relationship between devel-
oper experience and refactoring: An exploratory study and preliminary
results. In Proceedings of the IEEE/ACM 42nd International Conference

on Software Engineering Workshops, pages 342-349, 2020.

BIBLIOGRAPHY 49

[43]

[44]

[45]

[46]

[47]

Eman Abdullah AlOmar, Philip T Rodriguez, Jordan Bowman, Tianjia
Wang, Benjamin Adepoju, Kevin Lopez, Christian Newman, Ali Ouni,
and Mohamed Wiem Mkaouer. How do developers refactor code to im-
prove code reusability? In International Conference on Software and

Software Reuse, pages 261-276. Springer, 2020.

Eman Abdullah AlOmar, Tianjia Wang, Raut Vaibhavi, Mohamed Wiem
Mkaouer, Christian Newman, and Ali Ouni. Refactoring for reuse: An
empirical study. Innovations in Systems and Software Engineering, pages

1-31, 2021.

Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. Tsdetect: An
open source test smells detection tool. In Proceedings of the 28th ACM
Joint Meeting on Furopean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ESEC/FSE 2020,
New York, NY, USA, 2020. Association for Computing Machinery.

Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali
Ouni, and Fabio Palomba. An exploratory study on the refactoring of
unit test files in android applications. In Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops, 1C-
SEW’20, page 350-357, New York, NY, USA, 2020. Association for Com-
puting Machinery.

Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. On the dis-

BIBLIOGRAPHY 20

[48]

[49]

[50]

[51]

tribution of test smells in open source android applications: An ex-
ploratory study. In Proceedings of the 29th Annual International Con-
ference on Computer Science and Software Engineering, CASCON ’19,
page 193202, USA, 2019. IBM Corp.

Sirine Gharbi, Mohamed Wiem Mkaouer, Ilyes Jenhani, and Montas-
sar Ben Messaoud. On the classification of software change messages
using multi-label active learning. In Proceedings of the 34th ACM/SI-
GAPP Symposium on Applied Computing, pages 1760-1767, 2019.

Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu,
Slim Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-objective software
remodularization using nsga-iii. ACM Transactions on Software Engi-

neering and Methodology (TOSEM), 24(3):1-45, 2015.

Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moy Deb, and Mel O Cinnéide. Recommendation system for software
refactoring using innovization and interactive dynamic optimization. In
Proceedings of the 29th ACM/IEEE international conference on Auto-

mated software engineering, pages 331-336, 2014.

Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moy Deb, and Mel O Cinnéide. High dimensional search-based software
engineering: finding tradeoffs among 15 objectives for automating soft-
ware refactoring using nsga-iii. In Proceedings of the 2014 Annual Confer-

ence on Genetic and Fvolutionary Computation, pages 1263-1270, 2014.

BIBLIOGRAPHY 51

[52]

[53]

[54]

[55]

[56]

Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel
O Cinnéide, and Kalyanmoy Deb. On the use of many quality at-
tributes for software refactoring: a many-objective search-based software
engineering approach. Empirical Software Engineering, 21(6):2503-2545,
2016.

Mohamed Wiem Mkaouer, Marouane Kessentini, Mel O Cinnéide, Shin-
pei Hayashi, and Kalyanmoy Deb. A robust multi-objective approach to
balance severity and importance of refactoring opportunities. Empirical

Software Engineering, 22(2):894-927, 2017.

Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, and Ali Ouni. Rec-
ommending relevant classes for bug reports using multi-objective search.
In 2016 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 286-295. IEEE, 2016.

Anthony Peruma, Khalid Almalki, Christian D Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. On the distribu-
tion of test smells in open source android applications: An exploratory
study. In Proceedings of the 29th Annual International Conference on

Computer Science and Software Engineering, pages 193-202, 2019.

Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Improving the
prediction of continuous integration build failures using deep learning.

Automated Software Engineering, 29(1):1-61, 2022.

BIBLIOGRAPHY 52

[57]

[58]

[59]

[60]

[61]

Wajdi Aljedaani, Mona Aljedaani, Eman Abdullah AlOmar, Mo-
hamed Wiem Mkaouer, Stephanie Ludi, and Yousef Bani Khalaf. I
cannot see you—the perspectives of deaf students to online learning dur-

ing covid-19 pandemic: Saudi arabia case study. FEducation Sciences,

11(11):712, 2021.

Islem Saidani, Ali Ouni, and Wiem Mkaouer. Detecting skipped com-
mits in continuous integration using multi-objective evolutionary search.

IEEE Transactions on Software Engineering, 2021.

Marwa Daaji, Ali Ouni, Mohamed Mohsen Gammoudi, Salah Bouktif,
and Mohamed Wiem Mkaouer. Multi-criteria web services selection: Bal-
ancing the quality of design and quality of service. ACM Transactions

on Internet Technology (TOIT), 22(1):1-31, 2021.

Nuri Almarimi, Ali Ouni, Moataz Chouchen, and Mohamed Wiem
Mkaouer. csdetector: an open source tool for community smells de-
tection. In Proceedings of the 29th ACM Joint Meeting on Furopean
Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pages 1560-1564, 2021.

Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem
Mkaouer. Bf-detector: an automated tool for ci build failure detection.
In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 1530-1534, 2021.

BIBLIOGRAPHY 53

[62]

[63]

[64]

[65]

[66]

[67]

Oumayma Hamdi, Ali Ouni, Mel O Cinnéide, and Mohamed Wiem
Mkaouer. A longitudinal study of the impact of refactoring in android

applications. Information and Software Technology, 140:106699, 2021.

Oumayma Hamdi, Ali Ouni, Eman Abdullah AlOmar, Mel O Cin-
néide, and Mohamed Wiem Mkaouer. An empirical study on the im-
pact of refactoring on quality metrics in android applications. In 2021
IEEE/ACM 8th International Conference on Mobile Software Engineer-
ing and Systems (MobileSoft), pages 28-39. IEEE, 2021.

Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Fabio Palomba.
On the impact of continuous integration on refactoring practice: An ex-
ploratory study on travistorrent. Information and Software Technology,

138:106618, 2021.

Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem Mkaouer, and Mon-
tassar Ben Messaoud. Augmenting commit classification by using fine-
grained source code changes and a pre-trained deep neural language

model. Information and Software Technology, 135:106566, 2021.

Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, and Mo-
hamed Wiem Mkaouer. On the classification of bug reports to improve

bug localization. Soft Computing, 25(11):7307-7323, 2021.

Makram Soui, Mabrouka Chouchane, Narjes Bessghaier, Mo-
hamed Wiem Mkaouer, and Marouane Kessentini. On the impact of

aesthetic defects on the maintainability of mobile graphical user inter-

BIBLIOGRAPHY 54

[68]

[69]

[70]

[71]

72|

faces: An empirical study. Information Systems Frontiers, pages 1-18,

2021.

Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,
Ali Ouni, and Marouane Kessentini. Refactoring practices in the context
of modern code review: An industrial case study at xerox. In 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 348-357. IEEE,
2021.

Moataz Chouchen, Ali Ouni, Raula Gaikovina Kula, Dong Wang,
Patanamon Thongtanunam, Mohamed Wiem Mkaouer, and Kenichi
Matsumoto. Anti-patterns in modern code review: Symptoms and preva-
lence. In 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 531-535. IEEE, 2021.

Xin Ye, Yongjie Zheng, Wajdi Aljedaani, and Mohamed Wiem Mkaouer.
Recommending pull request reviewers based on code changes. Soft Com-

puting, 25(7):5619-5632, 2021.

Hussein Alrubaye, Deema Alshoaibi, Eman Alomar, Mohamed Wiem
Mkaouer, and Ali Ouni. How does library migration impact software
quality and comprehension? an empirical study. In International Con-

ference on Software and Software Reuse, pages 245-260. Springer, 2020.

Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina

Kula, and Katsuro Inoue. Whoreview: A multi-objective search-based

BIBLIOGRAPHY 95

73]

[74]

[75]

[76]

[77]

[78]

approach for code reviewers recommendation in modern code review.

Applied Soft Computing, 100:106908, 2021.

Moataz Chouchen, Ali Ouni, and Mohamed Wiem Mkaouer. Androlib:
Third-party software library recommendation for android applications.
In International Conference on Software and Software Reuse, pages 208—

225. Springer, 2020.

Nuri Almarimi, Ali Ouni, Moataz Chouchen, Islem Saidani, and Mo-
hamed Wiem Mkaouer. On the detection of community smells using
genetic programming-based ensemble classifier chain. In Proceedings of
the 15th International Conference on Global Software Engineering, pages

43-54, 2020.

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. To-
ward the automatic classification of self-affirmed refactoring. Journal of

Systems and Software, 171:110821, 2021.

Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Web service api
anti-patterns detection as a multi-label learning problem. In Interna-

tional Conference on Web Services, pages 114-132. Springer, 2020.

Bader Alkhazi, Andrew DiStasi, Wajdi Aljedaani, Hussein Alrubaye, Xin
Ye, and Mohamed Wiem Mkaouer. Learning to rank developers for bug

report assignment. Applied Soft Computing, 95:106667, 2020.

Motaz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikov-

ina Kula, and Katsuro Inoue. Recommending peer reviewers in modern

BIBLIOGRAPHY o6

[79]

[80]

[81]

[82]

[83]

code review: a multi-objective search-based approach. In Proceedings of
the 2020 Genetic and Evolutionary Computation Conference Companion,

pages 307-308, 2020.

Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem
Mkaouer. Predicting continuous integration build failures using evolu-

tionary search. Information and Software Technology, 128:106392, 2020.

Anthony Peruma, Khalid Almalki, Christian D Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. tsdetect: an open
source test smells detection tool. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 1650-1654, 2020.

Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem
Mkaouer. On the prediction of continuous integration build failures us-
ing search-based software engineering. In Proceedings of the 2020 Genetic

and Evolutionary Computation Conference Companion, pages 313-314,

2020.

Nuri Almarimi, Ali Ouni, and Mohamed Wiem Mkaouer. Learning to
detect community smells in open source software projects. Knowledge-

Based Systems, 204:106201, 2020.

Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Aymen Saied.

Towards automated microservices extraction using muti-objective evolu-

BIBLIOGRAPHY o7

[84]

[85]

[86]

[87]

[88]

tionary search. In International Conference on Service-Oriented Com-

puting, pages 58—63. Springer, Cham, 2019.

Nuri Almarimi, Ali Ouni, Salah Bouktif, Mohamed Wiem Mkaouer,
Raula Gaikovina Kula, and Mohamed Aymen Saied. Web service api
recommendation for automated mashup creation using multi-objective

evolutionary search. Applied Soft Computing, 85:105830, 2019.

Makram Soui, Mabrouka Chouchane, Mohamed Wiem Mkaouer,
Marouane Kessentini, and Khaled Ghedira. Assessing the quality of
mobile graphical user interfaces using multi-objective optimization. Soft

Computing, 24(10):7685-7714, 2020.

Nasir Safdari, Hussein Alrubaye, Wajdi Aljedaani, Bladimir Baez Baez,
Andrew DiStasi, and Mohamed Wiem Mkaouer. Learning to rank faulty
source files for dependent bug reports. In Big Data: Learning, Analytics,
and Applications, volume 10989, page 109890B. International Society for
Optics and Photonics, 2019.

Vahid Alizadeh, Marouane Kessentini, Mohamed Wiem Mkaouer, Mel
Ocinneide, Ali Ouni, and Yuanfang Cai. An interactive and dynamic
search-based approach to software refactoring recommendations. IEEE

Transactions on Software Engineering, 46(9):932-961, 2018.

Anthony Peruma, Mohamed Wiem Mkaouer, Michael J Decker, and

Christian D Newman. An empirical investigation of how and why devel-

BIBLIOGRAPHY o8

[89]

[90]

[91]

92]

193]

[94]

opers rename identifiers. In Proceedings of the 2nd International Work-

shop on Refactoring, pages 26-33. ACM, 2018.

Makram Soui, Mabrouka Chouchane, Ines Gasmi, and Mohamed Wiem
Mkaouer. Plain: Plugin for predicting the usability of mobile user inter-

face. In VISIGRAPP (1: GRAPP), pages 127-136, 2017.

Tan Shoenberger, Mohamed Wiem Mkaouer, and Marouane Kessentini.
On the use of smelly examples to detect code smells in javascript. In
European Conference on the Applications of Evolutionary Computation,

pages 20-34. Springer, Cham, 2017.

Mohamed Wiem Mkaouer. Interactive code smells detection: An initial
investigation. In International Symposium on Search Based Software

Engineering, pages 281-287. Springer, Cham, 2016.

Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, and Mel
O Cinnéide. A robust multi-objective approach for software refactoring
under uncertainty. In International Symposium on Search Based Software

Engineering, pages 168-183. Springer, Cham, 2014.

Mohamed Wiem Mkaouer and Marouane Kessentini. Model transfor-
mation using multiobjective optimization. In Advances in Computers,

volume 92, pages 161-202. Elsevier, 2014.

Mohamed W Mkaouer, Marouane Kessentini, Slim Bechikh, and

Daniel R Tauritz. Preference-based multi-objective software modelling.

BIBLIOGRAPHY 29

[95]

[96]

97]

98]

[99]

In 2013 1st International Workshop on Combining Modelling and Search-
Based Software Engineering (CMSBSE), pages 61-66. IEEE, 2013.

Taryn Takebayashi, Anthony Peruma, Mohamed Wiem Mkaouer, and
Christian D Newman. An exploratory study on the usage and readabil-
ity of messages within assertion methods of test cases. arXiv preprint

arXw:2505.00169, 2023.

Eman Abdullah AlOmar, Salma Abdullah AlOmar, and Mohamed Wiem
Mkaouer. On the use of static analysis to engage students with soft-
ware quality improvement: An experience with pmd. arXiw preprint

arXiv:2302.0555, 2023.

Wajdi Aljedaani, Mona Aljedaani, Mohamed Wiem Mkaouer, and
Stephanie Ludi. Teachers perspectives on transition to online teaching
deaf and hard-of-hearing students during the covid-19 pandemic: A case
study. In Proceedings of the 16th Innovations in Software Engineering

Conference, pages 1-10, 2023.

Wajdi Aljedaani, Mohamed Wiem Mkaouer, Anthony Peruma, and
Stephanie Ludi. Do the test smells assertion roulette and eager test
impact students’ troubleshooting and debugging capabilities? arXiw

preprint arXiv:2303.04234, 2023.

Deema Adeeb Al Shoaibi and Mohamed Wiem Mkaouer. Understanding

software performance challenges an empirical study on stack overflow.

BIBLIOGRAPHY 60

[100]

[101]

[102]

[103]

[104]

In 2023 International Conference on Code Quality (ICCQ), pages 1-15.
IEEE, 2023.

Wajdi Aljedaani, Mohammed Alkahtani, Stephanie Ludi, Mo-
hamed Wiem Mkaouer, Marcelo M Eler, Marouane Kessentini, and Ali
Ouni. The state of accessibility in blackboard: Survey and user reviews
case study. In 20th International Web for All Conference, pages 84-95,
2023.

Waleed Alhindi, Abdulrahman Aleid, Ilyes Jenhani, and Mohamed Wiem
Mkaouer. Issue-labeler: an albert-based jira plugin for issue classification.
In 2028 IEEE/ACM 10th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), pages 40-43. IEEE, 2023.

Marwa Daaji, Ali Ouni, Mohamed Mohsen Gammoudi, Salah Bouktif,
and Mohamed Wiem Mkaouer. Bpel process defects prediction using
multi-objective evolutionary search. Journal of Systems and Software,

page 111767, 2023.

Ali Ouni, Islem Saidani, Eman Alomar, and Mohamed Wiem Mkaouer.
An empirical study on continuous integration trends, topics and chal-
lenges in stack overflow. In Proceedings of the 27th International Con-
ference on Evaluation and Assessment in Software Engineering, pages

141-151, 2023.

Moataz Chouchen, Ali Ouni, Jefferson Olongo, and Mohamed Wiem

Mkaouer. Learning to predict code review completion time in modern

BIBLIOGRAPHY 61

[105]

[106]

[107]

[108]

code review. Empirical Software Engineering, 28(4):82, 2023.

Ali Ouni, Eman Abdullah AlOmar, Oumayma Hamdi, Mel O Cinnéide,
Mohamed Wiem Mkaouer, and Mohamed Aymen Saied. On the impact
of single and co-occurrent refactorings on quality attributes in android

applications. Journal of Systems and Software, 205:111817, 2023.

Wajdi Aljedaani, Mohammed Alkahtani, Stephanie Ludi, Mo-
hamed Wiem Mkaouer, Marcelo M Eler, Marouane Kessentini, and Ali
Ouni. The state of accessibility in blackboard: Survey and user reviews
case study. In Proceedings of the 20th International Web for All Confer-
ence, pages 84-95, 2023.

Wajdi Aljedaani, Rrezarta Krasniqi, Sanaa Aljedaani, Mohamed Wiem
Mkaouer, Stephanie Ludi, and Khaled Al-Raddah. If online learning
works for you, what about deaf students? emerging challenges of online
learning for deaf and hearing-impaired students during covid-19: a litera-
ture review. Universal access in the information society, 22(3):1027-1046,

2023.

Deema Alshoaibi, Ikram Chaabane, Kevin Hannigan, Ali Ouni, and Mo-
hamed Wiem Mkaouer. On the detection of performance regression intro-
ducing code changes: Experience from the git project. In 2022 IEEFE 29th
Annual Software Technology Conference (STC), pages 206-217. IEEE,
2022.

BIBLIOGRAPHY 62

[109]

[110]

[111]

[112]

[113]

Wajdi Aljedaani, Furqan Rustam, Mohamed Wiem Mkaouer, Abdul-
latif Ghallab, Vaibhav Rupapara, Patrick Bernard Washington, Ernesto
Lee, and Imran Ashraf. Sentiment analysis on twitter data integrat-

ing textblob and deep learning models: The case of us airline industry.

Knowledge-Based Systems, 255:109780, 2022.

Wajdi Aljedaani, Ibrahem Abuhaimed, Furqan Rustam, Mohamed Wiem
Mkaouer, Ali Ouni, and Ilyes Jenhani. Automatically detecting and
understanding the perception of covid-19 vaccination: a middle east case

study. Social Network Analysis and Mining, 12(1):128, 2022.

Eman Abdullah AlOmar, Anton Ivanov, Zarina Kurbatova, Yaroslav
Golubev, Mohamed Wiem Mkaouer, Ali Ouni, Timofey Bryksin,
Le Nguyen, Amit Kini, and Aditya Thakur. Just-in-time code duplicates
extraction. Information and Software Technology, 158:107169, 2023.

Deema ALShoaibi, Hiten Gupta, Max Mendelson, Ilyes Jenhani, Ali Ben
Mrad, and Mohamed Wiem Mkaouer. Learning to characterize perfor-
mance regression introducing code changes. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, pages 1590-1597,
2022.

Wajdi Aljedaani, Mohamed Wiem Mkaouer, Stephanie Ludi, Ali Ouni,
and Ilyes Jenhani. On the identification of accessibility bug reports in
open source systems. In Proceedings of the 19th international web for all

conference, pages 1-11, 2022.

BIBLIOGRAPHY 63

[114]

[115]

[116]

[117]

[118]

Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Improving the
prediction of continuous integration build failures using deep learning.

Automated Software Engineering, 29(1):21, 2022.

Deema Alshoaibi, Mohamed Wiem Mkaouer, Ali Ouni, AbdulMutalib
Wahaishi, Travis Desell, and Makram Soui. Search-based detection of
code changes introducing performance regression. Swarm and Evolu-

tionary Computation, 73:101101, 2022.

Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian D Newman, and Ali Ouni. An exploratory study on refac-
toring documentation in issues handling. In Proceedings of the 19th In-

ternational Conference on Mining Software Repositories, pages 107-111,

2022.

Anthony Peruma, Eman Abdullah AlOmar, Christian D Newman, Mo-
hamed Wiem Mkaouer, and Ali Ouni. Refactoring debt: myth or re-
ality? an exploratory study on the relationship between technical debt
and refactoring. In Proceedings of the 19th International Conference on

Mining Software Repositories, pages 127-131, 2022.

Eman Abdullah AlOmar, Salma Abdullah AlIOmar, and Mohamed Wiem
Mkaouer. On the use of static analysis to engage students with soft-
ware quality improvement: An experience with pmd. arXiv preprint

arXiw:2502.05554, 2023.

BIBLIOGRAPHY 64

[119]

[120]

[121]

[122]

[123]

[124]

Eman Abdullah AlOmar, Anton Ivanov, Zarina Kurbatova, Yaroslav
Golubev, Mohamed Wiem Mkaouer, Ali Ouni, Timofey Bryksin,
Le Nguyen, Amit Kini, and Aditya Thakur. Anticopypaster: extracting
code duplicates as soon as they are introduced in the ide. In Proceedings
of the 37th IEEE/ACM International Conference on Automated Software

Engineering, pages 1-4, 2022.

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni.
Automating source code refactoring in the classroom. arXiv preprint

arXw:2311.10753, 2023.

Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian Newman, and Ali Ouni. How is software reuse discussed in

stack overflow? arXiv preprint arXiv:2311.00256, 2023.

Eman Abdullah AlOmar, Anton Ivanov, Zarina Kurbatova, Yaroslav
Golubev, Mohamed Wiem Mkaouer, Ali Ouni, Timofey Bryksin,
Le Nguyen, Amit Kini, and Aditya Thakur. Just-in-time code duplicates
extraction. Information and Software Technology, 158:107169, 2023.

Jehad Al Dallal. Identifying refactoring opportunities in object-oriented
code: A systematic literature review. Information and Software Tech-

nology, 58:231-249, 2015.

Istvan Czibula and Gabriela Czibula. Hierarchical clustering based au-
tomatic refactorings detection. WSFEAS Transactions on Electronics,

5:291-302, 01 2008.

BIBLIOGRAPHY 65

[125]

[126]

[127]

128]

[129]

Gabriele Bavota, Andrea De Lucia, and Rocco Oliveto. Identifying ex-
tract class refactoring opportunities using structural and semantic co-
hesion measures. The Journal of systems and software, 84(3):397-414,

2011.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of ex-
tract method refactoring opportunities for the decomposition of methods.

The Journal of systems and software, 84(10):1757-1782, 2011.

David van der Leij, Jasper Binda, Robbert van Dalen, Pieter Vallen,
Yaping Luo, and Mauricio Aniche. Data-driven extract method recom-
mendations: A study at ing. ESEC/FSE 2021, page 1337-1347, New
York, NY, USA, 2021. Association for Computing Machinery.

Dario Di Nucci, Fabio Palomba, Damian A. Tamburri, Alexander Sere-
brenik, and Andrea De Lucia. Detecting code smells using machine learn-
ing techniques: Are we there yet? In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pages 612-621, 2018.

Lov Kumar, Shashank Mouli Satapathy, and Lalita Bhanu Murthy.
Method level refactoring prediction on five open source java projects us-
ing machine learning techniques. In Proceedings of the 12th Innovations
in Software Engineering Conference (Formerly Known as India Software
Engineering Conference), ISEC 19, New York, NY, USA, 2019. Associ-

ation for Computing Machinery.

BIBLIOGRAPHY 66

[130]

[131]

[132]

[133]

[134]

Suresh S. Priyadarshni, Abdulah A. Eman, Mohamed W. Mkaouer, Ali
Ouni, and Christian D. Newman. Comparing commit messages and
source code metrics for the prediction refactoring activities. Algorithms,

14(10):289, 2021.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie
Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele
Tufano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training

code representations with data flow, 2021.

Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou.
Autoencoder for words. Neurocomputing, 139:84-96, 2014.

S. Delphine Immaculate, M. Farida Begam, and M. Floramary. Software
bug prediction using supervised machine learning algorithms. In 2019 In-
ternational Conference on Data Science and Communication (IconDSC),

pages 1-7, 2019.

Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis
Spinellis. Code smell detection by deep direct-learning and transfer-

learning. Journal of Systems and Software, 176:110936, 2021.

	Improving Automatic Refactoring Candidate Identification
	Recommended Citation

	tmp.1716469847.pdf.QnAf5

