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ABSTRACT 

 

Climate-driven land cover change and biodiversity loss are problems impacting food 

security, economic growth, human health, and cultural identity of arctic environments, 

such as Stordalen Mire, Abisko, Sweden (68.35’ N, 18.82’ E). The sensitive nature of 

these remote areas necessitates large-scale, less-invasive monitoring of environmental 

change via remote sensing combined with low-impact, cost-effective field validation of 

remote sensing products. This project assesses the accuracy and utility of two low-cost 

spectrometers, the Sherwin-Williams® ColorSnap® and the National Aeronautics and 

Space Administration (NASA) Science and Technology Education for Land/Life 

Assessment (STELLA-Q), in conjunction with ArcGIS and GoogleEarth Engine 

programs and aerial imagery to quantify plant species and land cover class changes 

from 2022 to 2023. This project presents the results of the landscape classifications and 

land cover change analyses, as well as the tradeoffs of these two devices. The 

ColorSnap® is an effective tool for collecting spectral data for individual species, while 

the STELLA is better suited to collect data for land cover class determination. The 

classifications created from these tools resulted in 77-84% overall accuracy and 0-40% 

errors of omission and commission. These classifications showed that intact permafrost 

palsas, are the dominant land cover type at Stordalen Mire, consistently covering just 

over a third (34-37%) of the landscape in both 2022 and 2023. The introduction of low-

cost field portable spectrophotometer tools may allow for increased accuracy and 

comprehensive analysis of vegetation, which will enable better monitoring of how 

ecosystems are changing over time. 
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INTRODUCTION 

 

Biodiversity plays an important, but often overlooked, role in many aspects of 

daily life, including food security, economic growth/stability, human health, and cultural 

identity (Badulescu et al., 2019, Laporta et al., 2013). Loss at any level– animals, 

insects, plants, or microbes– means less resilience and more vulnerability to diseases 

and pests which could lead to limited food supply, economic collapse, degradation of 

human health, and reduced cultural identity around the world (Helander-Renvall, 2014). 

One of the major drivers of biodiversity loss is climate change. This loss may manifest in 

many ways, including permafrost thaw, which results in arctic ecosystems facing 

unique, severe challenges. Monitoring the progression of thaw in arctic ecosystems 

over time will allow researchers to identify patterns and potentially target land 

management efforts to better protect natural resources and landscapes.  

Peatlands in subarctic 

regions underlain by 

permafrost are experiencing 

rapid changes in vegetation 

composition and biodiversity 

due to permafrost thaw. As 

permafrost thaw progresses, 

dry palsa habitats collapse 

and become wetter, forming 

Sphagnum-dominated bogs. 

As thaw continues, the area 

may become hydrologically connected to surface and groundwater, forming sedge-

dominated fens (Malmer et al., 2005, Varner et al., 2022). Plant biodiversity is lost at 

every stage of the palsa-bog-fen thaw gradient (Figure 1) as fewer plant species are 

suited for more inundated conditions and in the case of bogs, the low pH associated 

with high Sphagnum cover. While active layer depth, water table depth, and pH are 

defining environmental characteristics of each land cover type, species composition is 

Rubus chamaemorus Sphagnum sp.  Eriophorum russeolum 

Figure 1 – Thaw Progression: Examples of species found and 

water content at each stage of thaw found in Arctic  

ecosystems.  

Figure Adapted from Hannah Holland-Moritz 

Figure 1 - Thaw Progression 
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often used when identifying land cover classes in this region, with key species being 

used to classify land covers along the thaw gradient (Malmer et al., 2005, Malhotra and 

Roulet 2015). Some species are only found in one of the land cover types due to 

environmental characteristics that limit their distribution. For example, several sedge 

species, including Eriophorum angustifolium are almost exclusively found in fens 

whereas high Sphagnum moss cover is a key characteristic of bogs (Szetela, 2023, 

Malmer et al., 2005). Many plants, including Vaccinium uliginosum (arctic blueberry), 

Empetrum hermaphroditum (mountain crowberry) and lichens cannot survive wetter 

conditions and are lost when permafrost thaws (Bienau et al., 2016). It is known that 

land cover in Stordalen Mire is shifting to become wetter (Varner et al., 2022), so it is 

important to continue to monitor the rate of change to assess any potential loss of key 

species not suited to these new conditions.  

Monitoring changes in biodiversity over time is critical to ecosystem health 

assessment as well as scaling changes in ecosystem functions associated with key 

species. Many subarctic peatlands threatened by climate change in Scandinavia fall on 

land native to the Sámi people and include plant species that have cultural significance; 

for example, Rubus chamaemorus or cloudberry (Sztela, 2023). Lichen, which 

disappears completely when permafrost thaw leads to the formation of fens, is an 

important food source for the reindeer herds managed by the Sámi people (Sandström 

et al., 2016). Increased cover of tall graminoid species in fully thawed fens is also 

associated with high rates of methane production and a net positive feedback to 

warming (Bäckstrand et al., 2010, McCalley et al., 2014, Malholtra et al., 2015, Varner 

et al., 2022). By monitoring changes in species abundance and distribution over time, 

areas of high risk can be determined, and management efforts can be put in place such 

as reducing human-caused disruptions that accelerate thaw. However, traditional 

monitoring approaches can be costly and time-consuming, and often are stymied by 

system complexity.  

Standard methods of collecting species-presence and change data for monitoring 

biodiversity include field surveying, which is when researchers use transects to divide 

and record the composition of every species within a plot. This process is typically 
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repeated annually, and even multiple times during the growing season to understand 

how the landscape is changing over time, and it terms of phenology and to create 

legacy datasets by surveying frequently. Frequent surveying, while extremely important, 

has the potential to be a very subjective and inconsistent process, based on species 

knowledge and spatial judgment (Bantilan-Smith et al., 2009). Accessing sites and 

establishing transects in sensitive ecosystems such as subarctic and arctic habitats may 

also disrupt permafrost. Measures are taken to address these limitations such as 

surveying in groups of two or more and relying on identification guides. Another 

constraint to the field surveying process is its time-consuming and expensive nature, 

especially over a large study, which can be addressed by using remote sensing.  

The introduction of remote sensing for vegetation and biodiversity monitoring 

allows for practical, cost-effective, large-scale data collection. Habitat assessment 

through aerial imagery offers an alternate approach for monitoring changes in land 

cover, species composition and biodiversity loss, while minimizing damage to the 

environment. Remote sensing and aerial imagery can be used to monitor the different 

characteristics of a landscape including vegetation index, water content, and land cover 

change. Arctic studies have been able use remote sensing methods to show warming 

trends and permafrost collapse across the site (Palace et al., 2018). These classification 

maps may be made using unsupervised or supervised methods, meaning without or 

with the inclusion of training sites, which can be collected in-person at the site or 

selected in the aerial image.  

Accuracy of aerial assessment can be improved through the use of hand-held, 

field-portable spectrometers such as the Spectra Vista Corp. (SVC) or Analytical 

Spectral Device (ASD), which are considered industry standard for spectral signature 

collection and endmember creation, and two potential alternatives: the Sherwin-

Williams® ColorSnap® Tool and the NASA STELLA-Q. SVC and ASD spectrometers 

come in a range of sizes and measure reflectance continuously across the 

electromagnetic spectrum, which results in a large dataset that can be unwieldly and 

time consuming to analyze. While having reflectance measurements over a larger range 

of wavelengths can be an advantage to using a spectroradiometer, it can also provide 
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for an overwhelming sample size and can make the data difficult to decipher. Industry 

standard spectrometers may also be expensive, cumbersome to handle in the field, and 

collect point-based spectra, making them inaccessible to many researchers. Both the 

Sherwin-Williams® ColorSnap® Tool (Figure 2) and the NASA STELLA-Q (Figure 3) 

are simplified, but powerful alternatives that have the potential to provide high quality 

data in a field portable, cost-effective package.  

The Sherwin-Williams® ColorSnap® Tool was 

designed to measure the reflectance of paint colors and 

correctly identify the name of the paint used and provide the 

ability to match existing paint. The device connects via 

Bluetooth to a mobile app for display and comes with a 

pure-white calibration cap, built-in light source, and a 

pinhole diameter of 4mm. Measurements are taken by 

completely covering the aperture and not letting in other 

light to achieve a constant illumination condition. Three 

signature values are displayed as digital numbers in the 

blue, green, and red region of the electromagnetic 

spectrum. The small pinhole size and collection methods of this tool makes the 

ColorSnap® ideal for the collection of spectral signatures of individual plant species.  

NASA’s STELLA, (Science and Technology 

Education for Land/Life Assessment), has multiple 

versions to best fit the spectral needs of the 

researcher, all of which were designed by Paul Mirel. 

This project used the STELLA-Q, which collects 11 

unique bands ranging from 450-860nm, each with a 

5nm range. (See Appendix A for specific 

wavelengths). This device has a larger pinhole, 

resulting in a greater field of view, making it more 

suitable for land cover classification based on plant 

community composition. 

Figure 2 - ColorSnap® 

 

Figure 2 - ColorSnap®: 

Tool and Sherwin-

Williams® ColorSnap® App 

 

Figure 3a and 3b – NASA 

STELLA-Q: Images of the front and 

back of the STELLA. In this case, 

the front (left) is identified as the side 

with the sensors and the back (right) 

has the screen and buttons.  

a.

…

….

... 

b.

…

….

... 

b.

…

…..

.. 

Figure 3 - NASA STELLA-Q 
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This project used the ColorSnap® and STELLA devices to create a collection of 

known reflectance values at different wavelengths for a specific endmember (pure 

samples) under constant illumination conditions, so as to not be impacted by 

atmospheric noise such as cloud cover or haze, called a spectral library. Such 

endmembers typically are collected with a spectroradiometer. Given the differences in 

the diameter of the sensors, the ColorSnap® was used to collect spectral signatures for 

plant species, while the STELLA was used to collect spectral data with different land 

cover classes as the endmembers. With these devices, we proposed to simplify 

classification approaches that continuously cover the Visible, RedEdge, Near Infrared 

(NIR), and Shortwave Infrared (SWIR) spectral ranges (Costa et al., 2022), to only focus 

on small ranges of each section of the EMR. This approach has the advantage of using 

a smaller spectral range which yields a reduced sample size and provides a tractable 

dataset while still covering the major regions of the EMR. 

This research compared a variety of combinations of aerial imagery, field 

collection tools, and classification methods to monitor and quantify landscape changes 

in sensitive environments as well as efficiently and accurately predict potential areas of 

loss in the future. The Sherwin-Williams® ColorSnap® tool and NASA STELLA Q tools 

tested in this study can improve biodiversity and climate change research by enabling 

researchers to monitor plant species changes without significantly disrupting arctic 

ecosystems.   
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METHODS 

 

1.1 Study site 

 

This study was conducted at Stordalen Mire in Abisko, Sweden (68.35’ N, 18.82’ 

E), a sub-arctic peatland in the discontinuous permafrost zone (Figure 4) that is 

experiencing biodiversity losses and changes in carbon cycling due to permafrost thaw 

(Malmer et al., 2005, Varner et al., 2022). Stordalen Mire has a long history of 

environmental research ranging from ecology to remote sensing with a focus on 

understanding the effects of climate change on ecosystem structure and function 

(Jonasson et al., 2012). Land cover has been changing in Stordalen Mire drastically 

since first recorded in 1970, with palsa populations decreasing by 11% between 1970-

2014 (Varner et al., 2021). Landscape changes in Stordalen Mire can be especially 

detrimental as permafrost thaw leads to a shift in vegetation and hydrology to wetter 

land covers (Johansson et al., 2006). Continued monitoring of these changes can show 

if the rate at which land cover is changing is increasing as climate change progresses. 

 

  

Figure 4- Map of Study Site 

Figure 4 – Map of Study Site: Location of Stordalen Mire in Abisko, Sweden and the distribution of 

Permafrost Zones.  

Figure Credit: McKenzie Kuhn  
Figure Credit: GEE  
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1.2 Sherwin-Williams® ColorSnap® Tool and NASA STELLA-Q 

 

 Endmember spectral signatures collected by the Sherwin-Williams® 

ColorSnap® tool and NASA STELLA were analyzed in a few different ways to maximize 

data usage. One approach was to create a species composition map of Stordalen Mire 

by reclassifying pixels of an unmanned aerial system (UAS) imagery. Literature shows 

that these analyses can be used for land cover and vegetation classification across 

years if collection factors are consistent (Berberoglu, 1999). To quantitatively analyze 

the accuracy of the species composition map, species composition was determined in 

the field at ground truth sites. A Kappa-hat analysis was used to show not only the 

overall accuracy of the model, but also which species had the highest omission or 

commission error, i.e., which species are most frequently missed or overestimated 

(Choi et al., 2021). Kappa Statistic is generally a polarizing metric as in some cases it 

may be misleading or flawed (Pontius et al., 2011), but this analysis does not have a 

dominant cover classification to improperly skew the results, so it was an appropriate 

metric of accuracy for this project.  

1.3 Aerial Image Collection, Processing, and Calibration  

 

Aerial imagery of Stordalen Mire was collected with a DJI Phantom 4 Drone a 5-

band camera collecting at 450nm, 560nm, and 650nm in the visible range, 730nm in the 

RedEdge, and 840nm in the Near-infrared regions of the EMR. Drone flights occurred in 

mid-July of 2022 and 2023, during peak growing season at Stordalen Mire, and drones 

were flown between 70-80 meters to achieve 7-cm spatial resolution. While flying, the 

drone took 2-3 images per second and the images were later stitched together based 

on location information collected using a Real-Time Kinematics (RTK) system.  
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A two-toned, Group 8 Technology© calibration tarp was flown over and included 

in the final images to translate the endmember values collected by the drone in the air 

to the handheld spectrometer on the ground (Figure 5). A half light gray and half dark 

gray tarp was used. The tarp was scanned 30 times on each side of the tarp with the 

ColorSnap®, moving it around to reduce any bias or error. Additionally, the STELLA 

was used to collect another 30 spectral measurements on each side, following the same 

endmember collection criteria. The signatures collected were then averaged to 

determine the endmember value of the light and dark gray sections of the tarp. The 

RGB and reflectance values determined by the drone were different from those 

collected by the drone in the field because there is more atmospheric noise (Griffy, 

1989). To account for that noise, the RGB values were translated to match the 

ColorSnap® and STELLA values using the calibration tarp as reference for the 

correction equation. 

1.4 Field Surveying  

While collecting spectral measurements, field surveying was done to identify 

species composition and the land cover type (palsa, bog, fen, open water) based 

documented characteristics of each of these habitat types (Figure 1, Malmer et al 2005). 

Palsas are elevated areas of intact permafrost with a variety of plant species present 

Figure 5 Figure 5– Group 8 Calibration Tarp seen in on the ground (a) and from the drone (b): Ground 

image (a) and Aerial image of Group 8 Calibration tarp to show the visual differences that occur at 

different altitudes, thus need to calibrate.  
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(Appendix B), bogs are sphagnum-dominated and ombrotrophic, and fens have high 

sedge cover, no permafrost and a water table at or above the peat surface. Open water 

was also included as a land cover type, identified as areas with little-to-no canopy 

cover. Field surveying was done across 70 sites in 2023 and each was categorized as 

either palsa, bog, fen, or open water (Figure 6). These sites were picked as part of a 

2015 Mire-wide study where species composition, hydrology, and other important 

ecological features were studied. The same sites were used for ground truthing in 2022, 

using an aerial identification of land cover type which was possible due to the high 

spatial resolution of the drone imagery and the distinct visual characteristics of the land 

cover types (Palace et al. 2018). 

 
Figu6  

Figure 6– Field Surveying and Ground Truth Sites: Location and classification of 2023 plots. 

There are 24 palsas, 20 bogs, 19 fens, and 7 open water sites. White outline represents the 

overlap between 2022 and 2023 drone images. 
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 1.5 ColorSnap® -- Ground Truth and Endmember Collection  

 

Ground truth and endmember measurements for the ColorSnap® Tool were 

collected at separate plots due to the destructive nature of species-level endmember 

collection. For ground truthing, nine sites were set up per land cover type (open water 

was omitted due to the lack of plant species), with three 1.0x1.0m plots at each site. 

This resulted in a total of 27 total ground truth sites used for species composition 

ground truthing in 2022. Endmember collection using the ColorSnap® is an invasive, 

destructive process, so it required separate sites so as to not disrupt other phenology or 

composition monitoring happening at the ground truth sites. Endmember collection sites 

were set up in a 5.0x1.0m plot across the boardwalk from each ground truth site (Figure 

7). Thirty-one different endmembers (Appendix B) were collected including fifteen plant 

species across different stages of their phenological cycles, rocks, boardwalk, and 

soil/bare earth, with thirty measurements taken per endmember.  

 

Figure 7 – ColorSnap® Plot Set up - Field set-up for ColorSnap® ground truth and endmember 
collection. Three sets of 1x1m plots aligned along a 5m transect were set up across a 5x1m plot.  

Figure 7 
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1.6 STELLA -- Ground Truth and Endmember Collection  

 

Ground truth and 

endmember collection 

using the STELLA was 

done in the same 70, 

1mx1m plots: 24 palsa, 20 

bogs, 19 fens, and 7 open 

water sites (see Figure 

8a), where the corners 

and centers were both 

recorded several times 

using a handheld GPS. To 

collect spectral readings 

at each site, the STELLA device was held 1.0m above the center of each ground truth 

plot and the total area collected by each measurement was 0.416m2 (see Figure 8b). 

Forty-five measurements were taken at each plot and then averaged to create a single 

value for that plot.   

1.7 Statistical Analysis 

 

Two methods were used to determine the separability between and within each 

endmember, which allowed for predictions of which classes would be the most difficult 

to distinguish and might need additional samples collected, as well as identification of 

closely related species that were spectrally similar and needed to be grouped at the 

genus level for analysis. Additionally, these results indicated which wavelengths were 

key for identifying endmembers. For preliminary results, cluster analyses were done 

using JMP Pro (Version 16.2.0, SAS Institute, 2020-2021). A discriminant function 

analysis (DFA) was performed to visualize this information. Zonal Statistics were run in 

ArcGIS Pro (Version 3.2.0, ESRI, 2023) to calculate the average, range, and standard 

deviation of the reflectance for the sites within each cover type category.  

Figure 8a and 8b - NASA STELLA Endmember and Ground 

Truth Collection: The device was held 1m above the center of each 

1x1m study site plot to collect a 0.416m2 area centered over the plot 

where vegetation surveys were conducted.  

a.

…

….

... 

b.

…

….

... 

Figure 8 
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1.8 Reclassification  

1.8.1 Google Earth Engine  

 

Google Earth Engine (GEE) (Gorelick et al., 2017) was used to classify the drone 

images in 2022 and 2023 based on the endmembers collected by the ColorSnap® and 

STELLA devices, respectively. While the classification levels were different, the 

methods stayed consistent. The drone images were loaded into GEE and code was 

developed using the image.unmix feature to classify each image based on the assigned 

endmember values found by each device. Spectral unmixing is a process in remote 

sensing used to determine the composition of a pixel based on endmember values 

(Bioucas-Dias et al., 2013, Roberts, 1991). Unmixing essentially deconstructs each 

pixel to determine the composition of each species or land cover type and reassigns the 

pixel as the most prominent (Shi, 2015). The spectral unmixing code used can be found 

in Appendix C. The mosaicked image collected by the drone was uploaded to GEE and 

the endmember species and values were added as variables. In order to compare both 

classification methods, a second reclassification was done to the 2022 species-level 

map that assigned a suitable land-cover type to each species (Appendix B), creating a 

land cover map.  

1.8.2 ArcGIS  

  

ArcGIS Pro (Version 3.2.0, ESRI, 2023) has built-in classifiers which can be used 

without requiring ground-level calibration, as reference plots are recorded with the same 

sensor, under the same atmospheric and collection conditions. For this analysis, a 

Random Trees classifier was used. Only land cover level classification was done in 

ArcGIS as the aerial image resolution was not high enough for species-level 

classification using this method. The 2023 drone image and GPS points marking the 

corners and center of the ground truth plots were added into ArcGIS for this analysis. 

Seventy Feature Collections were made by connecting the corners of each plot for each 

land cover type and using the 1x1 meter areas as the training sites for a Supervised 

Classification. For ground-truth verification, the center point of each plot was used.  
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1.9 Accuracy Analysis  

Before using classification maps for further analyses, it was imperative to 

determine their accuracy. In addition to quantifying overall accuracy (proportion of 

correct classification of ground truth sites), we used several methods for calculating the 

success of map classification that looked at different factors associated with accuracy. 

We used the Kappa statistic, or k-hat, as the major metric for accuracy, as it quantifies 

how an analysis compares to a random classification (see Eq. 1). While there is some 

variation across studies, values above 0.6 are generally considered successful or ‘good’ 

classifications (McHugh, 2012).  

 

𝐾ℎ𝑎𝑡 = 
𝑁 ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 − ∑ (𝑥𝑖+∗ 𝑥+𝑖)𝑟

𝑖=1

𝑁2 −  ∑ (𝑥𝑖+∗  𝑥+𝑖)𝑟
𝑖=1

   Equation 1 

 

Omission and commission errors for each class were also calculated to find 

which species or land cover types were distinguishable from each other and which were 

easily confused in the model. Commission Error specifically targets when classes are 

overestimated by dividing the total number of correct classifications of an endmember 

by the total number of sites classified as that cover type (see Eq. 2). Error of omission 

uses reference points and correctly identified points to show error from incorrectly 

excluded data (see Eq. 3). A combination of these accuracy measures were used for a 

well-rounded and unbiased analysis.  

 

Error of Commission (User Accuracy) = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑃𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 
  Equation. 2 

 

 

Error of Omission (Producer Accuracy) = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑃𝑜𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 
      Equation. 3 

 



14 
 

1.10 Cover Type Changes 

1.10.1 Land Cover  

Quantifying land cover changes between 2022 and 2023 was done in ArcGIS 

using the classification maps made using the STELLA-collected data. Maps with area 

classified into four land cover classes (palsa, bog, fen, open water) from 2022 and 2023 

were clipped to the same size based on their overlapping areas. The Combine tool was 

then used to create 16 new classes showing all possible combinations of land cover 

change between the two years. These new classes were then recategorized into 3 

categories: land cover changes that follow thaw progression, land cover changes that 

go against thaw progression and no change. The total number of pixels in each new 

category were then multiplied by the pixel area to quantify the total amount of land cover 

change, loss, and gain, between 2022-2023.  

  

1.10.2 NDVI  

Normalized Difference Vegetation Index (NDVI) is a metric for quantifying the 

presence of photosynthetically active plant material, which can be used to quantify 

changes in vegetation over time (Huang et al., 2011). This change detection software is 

built into ArcGIS Pro and utilizes the red and NIR bands of the drone image (see Eq. 4). 

NDVI is measured on -1 to 1 scale, typically with anything above 0 being capable of 

photosynthesis and lesser values are typically too moisture stressed for photosynthesis. 

Photosynthetic material such as plants, can also be visualized using the red and NIR 

bands as red and everything else is displayed as a teal to black gradient. The 2022 and 

2023 images were input as the ‘From Raster’ and ‘To Raster,’ respectively to calculate 

changes in NDVI. Areas with at least 50% change were selected to show significant 

changes.  

  

NDVI = 
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑) 
     Eq. 4 
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1.10.3 Species Change  

In addition to quantifying vegetation change based on changes in land cover and 

NDVI, quantifying the loss of key species can be a powerful way to monitor habitat 

changes. Using the ColorSnap® tool, the presence and distribution of specific species 

can be identified and monitored over time. For this analysis, we focused on lichen cover 

at Stordalen Mire due to its sensitivity to warming (Bao et al., 2022), its role as a key 

food source for reindeer (Inga, 2007) and its unique spectral characteristics. Using GEE 

and the ColorSnap®-collected species endmembers, the presence of lichen was 

displayed on a white-black gradient for visualization purposes (Appendix D). 

Additionally, an alternative to Boolean maps showing the range of lichen across 

Stordalen Mire was created by selecting pixels with at least 10% lichen composition and 

the total area of lichen was calculated for 2022 and 2023 and used to quantify changes 

in lichen cover between years.  
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RESULTS AND DISCUSSION 

  

2.1 Aerial Imagery  

The final, mosaicked, 5-band images of Stordalen Mire collected in 2022 and 

2023 have 7-cm pixel resolution (Figures 9a and 9b). Images were collected in late 

June in their respective years to accurately capture land cover changes in peak growing 

season. 

 

Figure 9 

Figure 9a and 9b: Aerial Imagery of Stordalen Mire - Mosaicked images of Stordalen Mire in 
2022 (9a) and 2023 (9b).  
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2.2 Endmember Separation  

 

The separability within and between species (ColorSnap) and land cover classes 

(STELLA) analyzed in JMP provided preliminary results showing which endmembers 

would be the most difficult for the model to distinguish from one another.  

  

ColorSnap 

There was significant overlap between a majority of the species measured with 

the ColorSnap® (Figure 10). The results of the DFA are 24 misclassified species out of 

the 132 training samples, resulting in an 18.2% misclassification rate. The species with 

the most unique signature was Rubus chamaemorus leaves, which is expected, given 

its red color throughout the majority of growing season. The Red band was the most 

useful in distinguishing between species, and the Green band was the least useful. This 

is likely due to the high greenness across most of the species.  

 

   Figure 10  Figure 10 

Figure 10: Separation between endmembers based on Red, Green, and Blue regions of the EMR 

collected with the ColorSnap® - Several plant species have similar spectral signatures and heavily 

overlap each other, but key species can be easily identified such as Rubus chamaemorus. 
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STELLA 

 

The separability between the four land cover types was visualized in two different 

ways: a DFA and Reflectance vs. Wavelength plot (Figure 11). Model verification was 

done with 47 of the sites and yielding 87.2% overall accuracy. Both figures visualize the 

same results, there is not a lot of overlap between the different land cover spectra, but 

palsa and fens are the most similar; therefore, the most difficult to separate. In the DFA, 

there are two rings displayed for each cover type, with the innermost representing a 

50% confidence interval (CI) and the outer a 95% CI for a classification. The overlap 

between palsas and fens is minimal when only using the 50% CI, but it is more apparent 

using the 95% CI.  

The overlap may occur for many reasons, but two of the most are that there is 

spectral spectral similarity between dominant plant species found at palsas and fens or 

that there is another, transitionary phase of the thaw progression that is not included in 

our study. Eriophorum vaginatum is commonly found in palsa and Eriophorum 

angustifolium is typically found in wetter areas like fens, but they are visually and 

spectrally very similar, which can lead to spectral similarities between those land cover 

types. Another reason for this overlap could be sites collected at ‘in-between’ land 

covers that are in the process of thawing. Additionally, there is a land cover type not 

used in this analysis, described as ‘tall shrub,’ consisting mostly of willow and birch 

shrubs, located in the South West portion of Stordalen Mire (Palace et al 2018). This 

cover was excluded in this analysis as it is not part of the permafrost thaw progression 

and is mostly found on the outskirts of the research site. It is possible that the inclusion 

of tall shrubs may improve the accuracy and reduce the overlap between palsa and bog 

land covers.  
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Figure 11: Separation between land cover signatures based on each wavelength region collected 

by the STELLA - The easiest class to distinguish is Open Water as it has the most unique signature, and 

the most difficult are Palsa/Fen as they have the most overlap.  

Figure 11 

2.3 Reclassification  

Accuracy of the classification maps created using spectral unmixing in 

GoogleEarth Engine depended mostly on the tool used for endmember collection. Land 

cover classifications using species-level data collected with the ColorSnap® had, on 

average, lower accuracy and higher error than those created with the land cover data 

from the STELLA. 

2.3.1 GEE: ColorSnap®  

Determining the accuracy of the species-level classification map (Figure 12) is 

difficult, as the spatial resolution is too coarse to show the full extent of species 

presence, so a second-level classification was done based on which land cover type the 

most prominent species can be found in. This was done by reclassifying the species 

into their associated land covers. See Appendix B for this list. The land cover map 

created with the ColorSnap® (Figure 13) had the highest misclassification rate of 46%, 

which is expected given the spectral capabilities of the tool. The k-hat of this analysis is 

0.473, indicating poor agreement between the model and actual records, and there is 

not much improvement compared to a random classifier (Table 1). Due to the low 
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accuracy of the 2022 classification map, this analysis was not repeated on the 2023 

drone image.  

 

Figure 12a and 12b: Species Level Classification (12b) of 2022 Drone Imagery (12a) - Species-level 
reclassification of June 2022 image of Stordalen Mire. While there were 31 endmembers included in this 
analysis, only 7 were identified as the most prominent in a pixel.  

 

Figure 12 
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Species to Land Cover (ColorSnap) 

Figure 13a and 13b: Species to Land Cover Classification using the ColorSnap® - Based on the 
species-level spectral unmixing of the 2022 drone imagery, another classification map was assigning 
species into the land cover types they can be found. Due to the similarity and misclassification between 
palsa and fen species (Eriophorum sp.), there are a lot of omitted fen sites and overestimated palsa sites.  

 

 

 

 

  

Figure 13 
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Table 1 

Table 1: Accuracy of 2022 Species to Land Cover Classification –  

Classification accuracies for 2022 land cover map created using GoogleEarth Engine. 

The overall accuracy of this analysis was 64.3%, with the largest reason for this low 

classification being the overestimate of palsa sites and underestimate of bog sites.  

 

2.3.2 STELLA  

Land cover classification using the STELLA collected records were done using 

both 2022 and 2023 imagery (Figures 14a and 14b), yielding similar accuracy results, 

with the 2022 having a slightly lower overall accuracy and k-hat value, 71% and 0.8, 

respectively (Table 2). The results of the 2022 accuracy are just above with an overall 

accuracy of 78% and a k-hat value 0.84 (Table 3). These values indicate a substantial, 

near-perfect agreement between training and truth points, and these models are much 

better compared to a random classifier.  

The most noticeable change between the 2022 and 2023 land cover 

classifications is the amount of the change from palsa to fen sites. There are several 

potential reasons for this change, with the seemingly most obvious being that the 
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landscape is shifting to wetter conditions and permafrost is thawing. This drastic 

change, while possible, is more likely attributed to the conditions of Stordalen Mire when 

the aerial images were collected. In 2022, the mire was abnormally wet, but 2023 was 

one of the driest years in the mire’s recent history. Since all the spectral data for the 

land covers were collected in 2023 and given the spectral similarity between palsas and 

fens seen in Figure 11, it is likely that the model confused the drier fen sites of 2023 

with the uncharacteristically wet palsa sites in 2022. While image calibration was done 

to try to minimize the impact of environmental factors in this analysis, there will be slight 

natural variations between dates and years. This highlights the importance of repeat 

monitoring to account for these types of anomalies or variations of environmental 

conditions and ensure the most accurate classification.  
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Figure 14a and 14b: Classified 2022 and 2023 of Stordalen Mire made in GEE using STELLA 

endmember collection - Reclassified drone images created from the average reflectance in the red, 

green, blue, RedEdge, and NIR regions on the EMR collected using the STELLA.  

 

 

 

 

 

 

 

Figure 14 
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Table 2 

Table 2: Accuracy of 2022 Reclassification Map made in GEE –  

Classification accuracies for 2022 land cover map created using the STELLA and 

GoogleEarth Engine. The overall accuracy of this analysis was 80%, where Open Water 

accounts for the ‘most’ producer and consumer error given its low number of samples.  

 

 Table 3 

Table 3: Accuracy of 2023 Reclassification Map made in GEE –  

Classification accuracies for 2023 land cover map created using the STELLA and 

GoogleEarth Engine. This method has the highest overall accuracy at 84%, with the 

most misclassifications accounting from the overprediction of palsa sites.  
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2.3.3 ArcGIS 

Land cover classifications of the 2022 and 2023 drone imagery created without the use 
of endmembers collected with field spectrometers in ArcGIS (Figures 15a and 15b), had 
similar accuracy to each other, but lower than the maps created with the STELLA data. 
The 2022 map had an overall classification rate of 77% and a k-hat of 0.676 (Table 4), 
and the 2023 map’s overall accuracy and k-hat of 78% and 0.701, respectively (Table 
5). These accuracy values are indicative of a moderate to substantial classification, well 
above a random classifier. Figure 15 

 

 

Figure 15a and 15b: Land Cover Classified Map of Stordalen Mire made in ArcGIS - Reclassed 
2022 and 2023 images of Stordalen Mire created ArcGIS without the use of field spectrometers. 
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The classification analyses done in both GEE and ArcGIS use spectral unmixing 

as a point-based classifier as they use the components within a pixel to identify the land 

cover type present. One of the limitations to this method compared to an object-based 

classification is evident during the verification process, as it relies on a single pixel to 

determine whether a ground truth point is a hit or miss. An object-based classifier, on 

the other hand, uses image segmentation to create spectrally homogenous ‘objects’, the 

plots in this case (Jingxiao et al., 2014), and will use the most prominent signature in the 

object to determine hits and misses (Figure 16). In many cases of misclassification in 

this analysis, the surrounding area was correctly identified but the exact pixel was 

categorized as a different land cover. It is likely that aggregating the pixels before 

unmixing may account for some of this error.  

 

 

 

  

Figure 16 – Pixel-Based vs. Object-Based Classifiers: A comparison between the classifier 

verification between Pixel and Object Based Classifiers. Pixel-Based assess accuracy by using only 

the closest pixel to the ground truth site. Object-Based uses the overall classification of the entire plot 

(or designated ‘object’) to determine accuracy. The different assessment methods may result in 

different accuracy results.  

Figure 16 
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Tabl e 4 

Table 4: Accuracy of 2022 Reclassification Map made in ArcGIS -   

Classification accuracies for 2022 land cover map created using a Random Trees 

Supervised Classification in ArcGIS Pro. The overall accuracy of this analysis was 

77.1%. Similar to the 2022 GEE classifications, Open Water is overestimated, leading to 

a low consumer accuracy.  

 

Table 5: Accuracy of 2023 Reclassification Map made in ArcGIS –  

Classification accuracies for 2023 land cover map created using a Random Trees 

Supervised Classification in ArcGIS Pro. The overall accuracy is 78.6% with fens having 

the highest omission and commission error, meaning actual fens sites were missed and 

other sites were wrongfully classified as fens.  
Tabl e 5 
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2.4 Cover Type Changes  

2.4.1 Land Cover  

Identifying land cover change and resulting biodiversity loss in GEE was done 

using the STELLA data due to the high accuracy of the classification maps. No change, 

meaning the land cover stayed the same, was by far the greatest area of the map, 

covering 12km (Figure 17, Table 6). Some of these class changes can be attributed to 

the higher misclassification of palsa and fen site as those are the areas with the most 

change. Additionally, the ‘thawed’ section in the lake is a result of a misclassification on 

the 2022 map (Figure 18a-d).  

The purpose of creating these classification maps is not just to test the accuracy 

of these methods, but also to quantify the landscape changes in Stordalen Mire. Three 

methods of landscape change were analyzed based on the unique strengths of each 

classification tool: land cover changes based on thaw progression using the STELLA 

classifications, NDVI changes using drone imagery in ArcGIS, and change in individual 

species presence using the ColorSnap® tool. These methods for assessing landscape 

change can be used in conjunction with each other to fully understand an ecosystem’s 

response to climate change.  

Land cover changes were monitored in terms of thaw progression and how the 

vegetation is changing as permafrost thaws and creates wetter conditions. The 

RedEdge spike of the EMR is a key distinguishing feature of the moisture content 

recorded at each site and identifying cover type. The main factors for determining cover 

type, which can be a subjective process, are canopy cover and species composition. 

The STELLA collected measurements accounted for both of these factors across the 

EMR. The most unchanged cover type across 2022-2023 was Open Water, which forms 

when thaw progression results in the creation of thaw ponds. On the other hand, palsa 

had the most new area, which is likely due to misclassification errors in the 2022 image, 

given it is the first stage of the thaw progression. Approximately three-quarters of the 

total bog area in 2022 was not classified as bog in 2023, meaning permafrost thaw is 

affecting bogs the most compared to the other cover types. However, a majority of the 
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bog changes (~60%) were reclassified to a palsa. This change may be accurately 

representing the landscape, but it is possible that error from the different wetness 

conditions of the 2 years studied or the differences in location from the drone. It is 

unclear the exact reason for the significant change in bog cover. 

 

 

Figure 17 

Figure 17: Land Cover Change from 2022 to 2023 - Map showing changes in land cover based on the 
GEE/STELLA reclassified images in terms of thaw progression. Changes that followed the thaw 
progression (e.g. palsa to bog), are identified as Thaw, were changes that went against the thaw 
progression (e.g. open water to fen), are shown as Reverse Thaw.  
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Figure 18 
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Figure 18a-d: Changes in Land Cover Type 2022-2023 Based on GEE/STELLA Reclassification - 
These maps show how the land cover has changed per cover type, and specifically which land cover type 
it was changed from.  

Table 6: 2022-2023 Land Cover Changes: Changes in area for each land cover type 

between 2022 and 2023 in Stordalen Mire. The ‘grayed-out’ boxes along the diagonal 

show the area that remained the same for each land cover. Palsas covered the most 

new area and total area in 2023. Table 6 

 

2.4.2 NDVI 

Change in photosynthetic material can vary in a region, especially during the 

growing season, so collecting imagery in the same phase is important for ensuring an 

accurate analysis. Figure 19 shows a range of least to most NDVI change, with 

significant change (>50% NDVI Loss) highlighted in red. This loss typically occurs in 

new fens, as land covers lose canopy cover and biodiversity. The areas with the least 

change in NDVI are land cover types that stayed the same, but remaining open water 

was the most consistent. This likely indicates that changes in NDVI are not due to land 

cover or species, but rather the impact of a wet 2022 and a dry 2023.  

NDVI changes were analyzed in the ArcGIS Change Detection Model and are 

based on the Red and NIR bands of the 2022 and 2023 drone images. NDVI is 

measured on a -1 to 1 scale, and it is not uncommon to have variations in an area 

during a growing season. Additionally, only significant losses (>50%) in NDVI were 

selected to weed out any potential error from the growing season or interannual 

variation. The changes in NDVI are mostly attributed to changes in canopy cover, as 

land cover begins to transition to fens and thaw ponds, there is more open water and 

less vegetation, and as result, less photosynthetic material. The areas of significant 

NDVI loss correlate well with the area where palsa transitions to fen. This is another 

way to analyze the accuracy of the classification maps as this takeaway is expected. 

However, smaller scale thaw changes have been shown to lead to a temporary increase 
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in NDVI (Ogden et al., 2023) as the land cover transitions from palsa to sphagnum-

dominated bog, which goes against other research showing that mosses are only 

capable of about one-third of primary production compared to vascular plants (Yuan et 

al., 2014). This analysis does not have a strong enough correlation to draw significant 

conclusions between NDVI changes and the palsa-bog-fen thaw gradient. 

 

 

 

Figure 19: NDVI Change: At least 50% loss of photosynthetic material between 2022 and 2023 in 
Stordalen Mire is shown in red, over a black to-white gradient showing all NDVI change.  

Figure 19 
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2.4.3 Species Change 

Loss of individual species is and will continue to be a common case as 

permafrost thaw progresses and habitats become less suitable for several species. 

Lichen, for example, is a key moss species found in palsas and growing on rocks. Using 

the ColorSnap® to collect individual spectral signatures for Lichen as an endmember, 

Lichen composition maps were made for 2022 and 2023 and total loss can be 

compared (Figure 20, Table 7). In 2022, there was approximately 993m2 area of lichen, 

but only 83m2 in 2023 covering the same area. Vegetation plots monitoring species 

composition at this study site show similar trends (DeFelice, unpublished data, 2023). 

See Appendix D for the individual lichen composition maps for 2022 and 2023.  

The ColorSnap® tool was effective in creating a species-level spectral library for 

identifying individual species change between 2022 and 2023. Lichen was chosen to 

illustrate this change as it can be a key indicator of ecosystem health (Ockinger et al., 

2010) and a decline in its presence has been noted by field team members who have 

performed species composition regularly across these sites (DeFelice, unpublished 

data, 2023). Lichen decline shown in this research is comparable to other studies 

analyzing the relationship between climate change and lichen population (Stanton et al., 

2023). As boreal ecosystems warm from climate change, the lichen population shifts 

and declines (Meyer et al., 2022).  

Lichen was chosen specifically because of its noted decline during Mire-wide 

vegetation surveys across Stordalen (DeFelice, unpublished data, 2023). It is a unique 

case as it grows on rocks which should be unaffected by the landscape change 

occurring across the mire. This decline may be tied to grazing pressure by lemming, 

vole, or reindeer populations (Turunen et al., 2009) or lichen’s high sensitivity to 

moisture compared to other species found in the area (Sandström et al., 2016). Either 

way, lichen appears to be a keystone species when determining the impacts of climate 

change in boreal ecosystems as its population is the first to decline during warmth 

(Meyer et al., 2022).  

 
Tabl e 7 
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Table 7: Changes in Lichen Presence 2022-2023 – Total lichen coverage in 

2022, 2023, and change between. Almost half of the lichen population from 2022 

was lost in 2023. 

 

Lichen Presence  Pixel Count Total Area (m^2) 

2022 156,879 910.9 

2023 85,835 498.4 

Both 14,220 82.6 

Lichen Loss 71,044 412.5 
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Figure 20: Lichen Change Detection 2022-2023: This map shows the distribution and changes in 
Lichen population from 2022-2023. There was almost a 60% loss of lichen between the two years.  

Figure 20 
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CONCLUSIONS AND FUTURE WORK 

 

Finding non-invasive, accurate ways to monitor landscape and biodiversity 

changes can require the use of multiple tools to ensure a comprehensive analysis is 

being performed and change is analyzed under every lens. This research utilized two 

low-cost spectrometers, the Sherwin-Williams® ColorSnap® and the NASA STELLA-Q, 

in conjunction with ArcGIS and GoogleEarth Engine software and drone aerial imagery 

to quantify species and land cover level changes from 2022 to 2023. This project 

presents and assesses the results of the landscape classifications through land cover 

change, NDVI loss, and change in individual presence, as well as the tradeoffs of these 

devices.  

Image classification can be done at many levels based on the desired analysis 

and available resources. This research aimed to produce comprehensive analyses of 

sensitive ecosystems while comparing the functionality of inexpensive, field appropriate 

tools, including methods beyond tools’ original purposes. The ColorSnap® is an 

effective tool for collecting spectral data for individual species and creating a spectral 

library, while the STELLA is better suited to collect at the land cover level. The 

combination of these tools allows for a comprehensive analysis of how an ecosystem is 

changing over time. These offer a cost-effective alternative to higher priced instruments, 

such as SVC and ASD spectrometers. 

A large-scale, high species diverse study site such as Stordalen Mire proves 

difficult to accurately classify at the species-level using spectral unmixing, as only the 

species covering the most area in each pixel gets displayed and the spatial resolution of 

the drone imagery is greater than the leaf area for the species, which leads to many 

endmembers excluded from final classification maps. These factors combined to make 

it difficult to use species-level spectral measurements collected with the ColorSnap® for 

monitoring overall landscape changes over time, however monitoring the change in 

individual species presence was feasible.  
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As species-level classifications can be less reliable, it is common for researchers 

to create classes based on functional group or cover type and how they relate to 

biogeochemical processes, like permafrost collapse in this case, and many others in 

Arctic ecosystems. Other classifications in similar environments have been able to 

achieve similar classification accuracy without the use of field spectrometers, but in this 

case, the inclusion of the STELLA field spectrometer yielded higher accuracy (Palace et 

al., 2018).  

Land cover level classification of Stordalen Mire was done in two ways: 1) 

Collecting endmember spectra using the NASA STELLA and reclassifying the drone 

imagery in GEE using spectral unmixing, and 2) Creating training sites in ArcGIS to 

reclassify the same drone image. Both methods were effective in producing maps with a 

high classification accuracy and low errors of omission and commission and were 

superior to classifications using the drone imagery alone.    

The STELLA specifically is a very cost-effective field spectrometer and has 

produced higher classification accuracy and can be customized based on research 

interest and needs, which can lead to a more comprehensive data set with a small 

additional cost without requiring more work or collection. Customization of STELLA 

sensors can include air temperature, visible light in terms of brightness, air quality such 

as carbon dioxide and particulate matter, and other spectral sensors monitoring different 

bands of the EMR (STELLA Team, 2023). Since it was seen to increase classification 

accuracy in this analysis, it would be beneficial to equip several teams with STELLA 

devices to routinely collect ground-level spectral measurements to greatly increase the 

calibration and verification database.  

This research shows that classification accuracy improves when ground truth 

measurements are collected in the same time frame as the aerial imagery, but it is 

possible that this is due to a relatively small sample size of each cover type. A 

repository of measurements collected across several years and at different stages of 

the growing season may allow for higher accuracy. Future work should include 

comparing the classification accuracy for all spectral measurements used as land cover 
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endmembers against just measurements collected alongside the aerial imagery. A more 

comprehensive analysis should also be done comparing these data to species level 

measurements collected with higher end spectrometers to identify any variation in 

reflectance or classification accuracy.  
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APPENDICIES 

Appendix A: Comparison between Sherwin-Williams® ColorSnap®, NASA STELLA 1.0, 

and SVC HR-1024i-  

 ColorSnap® STELLA Q HR-1024i 

Cost $60-80 ~$275  ~$30,000* 

Diameter 4mm ~10cm Customizable  

Spectral Range  

RGB* 

450, 550, 570, 600, 

610, 650, 680, 730, 

760, 810, 860nm  

 

350-2500nm 

 

Size/Weight 1.08x2.17’ / 1 oz ~6.5x4.5’ /~ 1 lb.  8.75x11.5x3” / 8.5 

lb.  

Units Digital Number Radiance Reflectance 
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Appendix B – List of Species Measured with ColorSnap® Tool and their Associated 

Land Covers  

Endmember Name  Abbreviation Distinction  Associated Land Cover  

Andromeda polifolia  ANPO  Stem Palsa 

Andromeda polifolia  ANPOF Inflorescence Palsa 

Aulocomium sp.  AUPO * Palsa 

Betula nana  BENA * Palsa  

Boardwalk  BW_W Wet * 

Boardwalk  BW_W Dry * 

Carex spp.  CASP * Fen 

Carex spp.  CASPL Litter Fen 

Dirt  DIRT * * 

Empetrum hermaphroditum EMHE * Palsa 

Empetrum hermaphroditum EMHEL Litter Palsa 

Eriophorum angustifolium ERAN Tuft Fen 

Eriophorum russeolum ERRU Tuft Fen 

Eriophorum spp. ERL Litter Fen 

Eriophorum spp. ERS Stem Fen 

Eriophorum vaginatum ERVA Tuft Fen 

Lichen spp.  LICHG Green  Palsa 

Lichen spp.  LICHW White Palsa 

Polytrichum spp POSP * Palsa 

Rock ROCK * * 

Rubus chamaemorus RUCHF Red Leaves  Palsa 

Rubus chamaemorus RUCH * Palsa 

Salex spp.  SASPF Catcin Palsa 

Salex spp.  SASP * Palsa 

Sphagnum spp.  SPSPG Green  Bog  

Sphagnum spp.  SPSPA Amber Bog  

Vaccinium microcarpum VAMI * Palsa 

Vaccinium uliginosum VAUL * Palsa 

Vaccinium uliginosum VAULL Litter Palsa 

Vaccinium vitis-idaea VAVI * Palsa 



47 
 

Appendix C - Link to GEE Code for 2023 Land Cover Based Spectral Unmixing  

https://code.earthengine.google.com/beeaf08431bd06dfa0f9ed38ed3bac4b  

Appendix D - Lichen Presence in 2022 and 2023:  

 

 

 

 

 

https://code.earthengine.google.com/beeaf08431bd06dfa0f9ed38ed3bac4b
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