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Abstract

A key factor leading to the inefficiency of transportation systems is the lack
of real-time, fine-grained traffic analytics. An average motorist in the United
States spends a significant amount of time looking for parking spots during
their daily commute. Existing systems for traffic analytics are either not scal-
able to large metropolitan areas or require a human-in-the-loop. This project
focuses on automating the detection of fine-grained traffic analytics. Lever-
aging on-board stereo cameras, Autowaze utilizes a crowd-sourced strategy to
take time-windowed snapshots of the road containing 3D map points of the
environment. These snapshots are used to extract changes in the environment
which are uploaded to a central cloud server responsible for inferring traf-
fic analytics such as vacant parking spots. Evaluations show that Autowaze
correctly predicts the occupancy status of a parking spot 89% of the time.
Moreover, the use of this system can lead to great reductions in search time
for motorists looking for available parking as well as increased fuel efficiency
and cost savings.
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Chapter 1

Introduction

This chapter introduces the problem, presents the advantages and disadvan-
tages of existing software, and outlines the significance of the thesis.

1.1 Overview

1.1.1 The Problem

The INRIX 2022 Global Traffic Scorecard analyzed traffic congestion in over
a thousand cities world-wide and have reported a staggering 133 hours lost
to congestion for the average driver in New York City [16]. As such, a large
portion of the commute time is spent either stationary or moving well-below
the posted speed limits. Avoiding roadwork and accidents, and finding street-
level parking spaces are often major factors contributing to this congestion. In
New York City alone, the average commuter spent 107 hours per year searching
for vacant parking spots (Fig. 1.1) [15]. A primary cause for this is the lack
of real-time, fine-grained, and accurate traffic analytics about on-road events.
With access to such analytics, motorists and autonomous vehicles (AVs) of the
future can make well-informed decisions about their routes. They can plan
ahead of time using parking availability statistics instead of having to drive to
the location before starting their search. This leads to better fuel efficiency,
reduced travel times, and lower congestion rates in urban areas.

1.1.2 Widely Adopted Commercial Solutions

Waze is by far the most popular commercial system for traffic analytics among
motorists. It provides drivers with real-time information to help them reach
their destination efficiently. The app leverages data from its user base to detect
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Figure 1.1: Hours spent searching for parking in major U.S. cities [15]

and report on-road events such as traffic jams, accidents, diversions, roadwork
and speed traps [6].

At the core of Waze’s functionality is its ability to gather location and speed
data from users’ smartphones as they drive. The app runs in the background
and uses the positioning and gyroscopic sensors of a smartphone to determine
vehicle status anonymously transmit information from thousands of users to a
cloud server [6]. The cloud server analyzes this information to identify traffic
patterns and recognize notable events such as congestion on the road. It then
relays this information back to the users in the form of alerts or alternative
routing suggestions.

In addition to the systems automatic service, it also encourages the user
to manually report on-road events such as traffic accidents, road closures, and
speed traps [6]. These crowd-sourced reports are verified using a voting system
and shared to the rest of the user-base allowing everyone to make informed
decisions.

The benefits of using Waze are numerous but it requires a human-in-the-
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loop to fully realize on-road events and keep the user-base well-informed. Un-
der New York State law, a driver cannot use hand-held mobile telephone or
portable electronic devices [4]. Convictions for cell phone use while driving
can not only result in fines but also points being added to a driver’s DMV
driving record [4]. Moreover, it cannot report fine-grained traffic events such
as parking spot vacancy or occupied traffic spots due to imprecision in smart-
phone sensors. Any attempt to make reports on parking spot vacancy would
have to account for both human errors and sensor errors.

1.1.3 Confined Solutions

Many parking facilities, particularly in crowded urban areas, have deployed
sensor-based technology to detect parking spot availability. This type of park-
ing spot detection systems are useful for confined spaces such as multi-level
parking lots or garages at airports, shopping malls, or tourist attractions.
These sensor-based approaches typically involve a network of small sensors
installed at each individual parking spot or multiple overhead cameras that
achieve a birds eye view of the parking lot. These sensors relay their findings
to a central system which updates the parking spot vacancy statistics for the
drivers to see. Magnetic sensors are often installed curbside to detect mag-
netic signatures of parked vehicles, allowing them to determine if a space is
occupied or vacant [5]. Similarly, computer vision and deep learning models
can also be used on camera footage to identify not only vacant parking spaces
but also illegally parked vehicles [11].

While sensor-based approaches work well in confined locations, it faces
significant challenges in terms of scalability and large scale practicality. The
sheer number of parking spaces that would need to be equipped with sensors in
a city-wide system would be prohibitively expensive. Additionally, these sen-
sors need to be capable of withstanding the harsh conditions and maintenance
costs can skyrocket within a few years of deployment.

1.1.4 Scalable Solutions In Literature

To address the challenge of city-wide scalability, recent research has explore
the user of smartphone sensors as an alternative approach to determining
key parking events for vehicles [10, 20, 23, 25]. For instance, the ParkUs sys-
tem [10] collects data from the user’s smartphone, including accelerometer,
magnetometer, gyroscope, GPS speed, and GPS bearing readings. This sen-
sor data is then processed through supervised machine learning classifiers to
automatically determine if a vehicle is cruising or not cruising [10]. Using
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this information, ParkUs determines the probabilistic parking availability of
a given area visualized through a heat-map. Similarly, Park Here! [23] also
uses accelerometer and gyroscope data from smartphones coupled with Blue-
tooth connectivity to identify transportation modes for the driver i.e. walking
or driving. Parking-related events are then inferred by the system based on a
sequence transportation mode transitions. ParkSense on the other hand lever-
ages WiFi signature matching and rate of change of visible access points to
determine if a driver is returning to their vehicle or driving away [20]. When
a user pays for a parking spot, ParkSense captures their wireless signature
on their smartphone. This signature is checked periodically to determine if a
driver has returned to their vehicle.

While smartphone sensor-based approaches offer the scalability necessary
for city-wide parking spot detection, they come with limitations such as sensor
imprecision and the inability to determine parking occupancy at a spot-level.

1.2 Thesis Significance

This thesis seeks to automate the accurate detection and reporting of fine-
grained traffic in real-time by setting the following objectives:

1. Eliminate the need for a human-in-the-loop in generating fine-grained
traffic analytics;

2. Utilize pre-existing vehicle infrastructure to avoid extraneous costs of
installing and maintaining additional edge infrastructure;

3. Develop an end-to-end prototype, from perception to information dis-
semination, capable of reporting parking spot vacancy statistics in real-
time, and;

4. Address the system’s ability to scale to city-wide adoption.

The core idea of the thesis is to find differences in time-windowed snapshots
of the road and its surrounding to infer traffic analytics such as parking spot
vacancy. The system defines two modes of operation: on-vehicle operations
and cloud operations. On-vehicle operations occur at the vehicle nodes and it
involves using pre-existing on-board cameras, compute resources, and wireless
connectivity. As the vehicle drives through the street it captures snapshots
of the environment and accumulates the information over pre-defined time-
intervals. Snapshots are embodied as 3D maps of the environment containing
distinctive features of the surrounding vehicles and structures. The vehicle
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uses this 3D map to localize itself in the environment by matching its camera
view to the 3D map. It does so by matching the features collected from the
camera feed to the features present in the 3D map. In doing so, it can detect
the addition of new features or absence of previously detected features from
the environment which translates to finding differences between snapshots of
the environment. These differences are uploaded to a centralized cloud service
which updates its own version of the 3D map to infer traffic events based on
a set of rules.

1.3 Core Research Challenge

The road and the surrounding is digitally represented using a 3D map. In order
to reason about the high-level structure of objects in the environment, a dense
3D map with a large amount of features are required. However, performing
operations within a dense 3D map is computationally expensive. Additionally,
broadband mobile network speeds of today are not sufficient to support real-
time inference. In contrast, sparse 3D maps only capture landmark features
(e.g., the corner of a stop sign, cracks engraved in the road etc.) from the
surrounding using feature extraction algorithms. Each feature is defined by
its 3D position along with some feature signature.

The inherent sparsity of points in sparse 3D maps combined with the lack
of embedded semantic information (e.g. the objects these features belong to)
make it so that inferring high-level semantics from these maps using just their
positions is severely limited. If we were to do a straightforward comparison to
determine the differences between the 3D map and live sensor views, the result
would be a collection of sparse 3D features. While precise in location, these
features would provide little to no semantic information crucial for detecting
high-level traffic events.

To this end, the key insight with this thesis is to utilize segmentation
networks to enrich a sparse 3D map with semantic information such that
high-level reasoning about traffic events is possible (Fig. 1.2).

1.4 Thesis Contributions

This thesis will make the following contributions:

1. Enhance the resourcefulness of sparse feature-based 3D map by aug-
menting each feature with contextual clues
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Figure 1.2: Enhancement of sparse 3D maps

2. Infer fine-grained traffic analytics with sparse 3D maps by means of a
robust semantic map diff operation at the map-point level

3. Improve robustness to external factors such as occlusions and lightning
conditions by using time-windowed snapshots of the environment

4. Present a novel approach for segmenting the point cloud based on con-
textual clues rather than statistical clustering



Chapter 2

Background

2.1 3D Map

A 3D map is a digital representation of a physical environment that captures
depth, height, and width of terrain and the objects within it. Unlike 2D
maps, which provides a flat representation of the world, 3D maps offer a 1:1
correspondence with the real world. These maps can be built and represented
in a multitude of ways. Digital elevation models are used for topography,
photogrammetry is used on aerial/satellite imagery for 3D modeling cityscapes
[1], and sensors such as LiDARs and stereo cameras are used in generating
feature-based 3D maps.

Feature-based 3D maps are particularly relevant because they are exten-
sively used in localization and pose estimation tasks in robotics, autonomous
driving, and augmented reality. This is primarily because feature-based 3D
point clouds capture points from the surrounding with high precision and they
focus specifically on features belonging to objects in the environment such as
buildings, vehicles, trees, etc. These features capture the geometry, texture,
and color of objects which, when chosen with care, are robust to external fac-
tors such as lightning conditions and viewing angles. This allows a detailed
representation of tightly packed environment such as city streets.

2.1.1 3D Map Density

Spatial information regarding a 3D space can either be represented using a
dense 3D map or a sparse 3D map. The large amount of data points in a
dense 3D map captures fine-grained structural details and represents the ac-
tual object with much higher accuracy. However, mobile systems have limited
computational resources so operating on dense point clouds can be a chal-

7
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lenging task. Moreover, the bandwidth required to transfer dense 3D maps in
real-time exceeds the capabilities of current mobile network speeds. In con-
trast, a sparse 3D map can be used to represent the same 3D environment
with significantly fewer data points. Sparse 3D maps by themselves cannot
be used to infer structural properties about an object due to the low number
of samples belonging to one object. Instead, it focuses on key landmarks on
objects such as edges, corners etc. While the accuracy of sparse 3D maps in
representing the actual object is considerably lower than dense 3D maps, they
are better suited for systems with limited compute. Moreover, the reduced
data requirements of sparse 3D maps make them more practical for real-time
applications that interface with existing mobile network infrastructures.

2.1.2 Visual Simultaneous Localization and Mapping

Visual Simultaneous Localization and Mapping (vSLAM) is a technique used
in 3D mapping and navigation where a system builds a map of an unknown
environment while simultaneously tracking the position of the sensor using
only visual input [26] [17]. vSLAM algorithms can be divided into feature-
based methods and direct methods.

• Feature-based vSLAM: The system relies on the detection and tracking
of handcrafted feature descriptors which allows the system to extract
key landmarks from objects in the scene [26]. Using the feature corre-
spondences, the system estimates the camera’s position and orientation
within the environment.

• Direct vSLAM: Instead of relying on handcrafted features, the system
relies on pixel density or pixel intensity from the input image for tracking
and mapping [26]. It does not require features to be pre-defined and
matched.

While direct vSLAM can leverage all the information present in the input
image, it can be computationally demanding and slight changes in lightning
can yield different results. In contrast, feature-based vSLAM work only on
select features from the input image and the features are robust to lighting
changes.

2.1.3 Oriented FAST and Rotated BRIEF

Oriented FAST and Rotated BRIEF (ORB) features are a type of hand-
crafted image feature descriptor which is invariant to rotation and resistant
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to noise [21]. It was created as a faster alternative to Scale-Invariant Fea-
ture Transform (SIFT) features while still maintaining the same performance
in most situations. ORB uses the Feature from Accelerated Segment Test
(FAST) algorithm for detecting key-points in real-time and those key-points
are described using Binary Robust Independent Elementary Feature (BRIEF)
descriptors. In essence, FAST provides the necessary computational proper-
ties for real-time key-point detection while BRIEF generates a binary string
encoding for those key-points. On top of this, ORB introduces an orientation
component which makes key-point features robust to rotational changes.

2.1.4 ORB-SLAM

ORB-SLAM is an example of a vSLAM algorithm uses ORB features for map-
ping and localization [18]. At each camera frame, ORB-SLAM extracts ORB
features from visual landmarks (Fig. 2.1 left). It then matches these features
across consecutive frames to estimate the camera’s motion between frames.
As the camera moves through the environment it builds a 3D map of the en-
vironment (Fig. 2.1 right) by adding and pruning new features collected from
the environment. ORB-SLAM also has a concept called loop closure detec-
tion which allows the system to determine if camera is revisiting a previously
mapped area. In such a case, it is able to account for any deviations caused
by drifting features to maintain a robust feature set.

Figure 2.1: ORB feature extraction (left) and top down view of sparse 3D
map (right)
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2.2 Instance-level Segmentation

Instance-level segmentation is one step beyond semantic segmentation in that
it not only categorizes each pixel into fixed class labels but also differentiates
between objects belonging to the same category (Fig. 2.2). Instance-level
segmentation involves first detecting objects in the image and designating
their respective class labels followed by precisely segmenting each individual
object such that all instances of the same object are distinct. A common
and effective approach for instance-level segmentation is using deep learning,
specifically Mask R-CNN.

Figure 2.2: Instance-level segmentation. Image source: Facebook Research.
Accessed via https://github.com/facebookresearch/detectron2

2.2.1 Mask R-CNN

Mask R-CNN builds on the faster R-CNN framework by adding a branch
that predicts individual object masks in addition to the bounding box. The
seminal work conducted in [14] describes the exact architecture of a Mask
R-CNN framework. In essence, Mask R-CNN retains the two stage process:

1. Region Proposal Network (RPN) is the first stage of Mask R-CNN and it
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is identical to Faster R-CNN and it involves generating potential bound-
ing boxes of objects of interest. The input image is passed through a se-
ries of convolutional and pooling layers to produce a feature map. Then,
using a sliding window RPN generates anchor boxes with different aspect
ratios. Then RPN assigns a score to each anchor box corresponding to
the likeliness that an object is present within the anchor boxes. Then,
non-maximal suppression is used to retain only the highest confidence
bounding boxes.

2. The second stage involves detecting bounding boxes, assigning class la-
bels, and predicting binary masks for each region of interest (RoI) in par-
allel [14]. During training, Mask R-CNN uses a multi-task loss function
that trains classification, bounding-box prediction, and mask prediction
jointly on each of the sampled RoI.

2.2.2 R101-FPN Architecture Details

The R101-FPN model uses a Residual Network + Feature Pyramid Network
(ResNet+FPN) backbone with standard convolutional and fully connected
heads for mask and box prediction tasks respectively [29]. The FPN takes
a three channel BGR image along with its height and width (BGR, H, W)
as input and outputs several feature maps at different scales because of the
lateral connections in the FPN. The ResNet is contained within the FPN and it
contains stem blocks and bottleneck blocks. The stem block is responsible for
down-sampling the input using convolutions and max-pooling. The bottleneck
blocks contain convolution layers whose kernel sizes are 1x1 and 3x3 followed
by batch normalization and reLU activation. Some of these bottleneck blocks
contain skip connections allowing much deeper networks to be trained without
vanishing gradients.

2.3 Multi-Object Tracking

Multi-Object Tracking (MOT) is the task of identifying each object’s trajec-
tory across multiple video frames and maintaining its unique identity. MOT
is generally comprised of the following key aspects:

1. Object Detection: Before any tracking can be performed, all the objects
of interest in a scene must be extracted. This is generally performed
using object detection neural networks such as Faster R-CNN.
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2. Object Association: After the bounding boxes for objects have been
acquired, the next step is to compare bounding boxes over subsequent
video frames and perform a data association task to identify bounding
boxes that belong to the same object.

2.3.1 Simple, Online, and Real-Time Tracking

Simple, Online, and Real-Time Tracking (SORT) is a MOT algorithm designed
to combat the combinatorial complexity of traditional MOT through the usage
of approximations during data association [8]. Due to its simplistic approach,
it is designed to be used in real-time scenarios.

SORT capitalizes on the availability of fast object detection frameworks
such as Faster RCNN and utilizes the detections produced by these models
for its input. Using Kalman filter, SORT approximates the position, velocity,
and inter-frame displacement of each detection in the frame. Then, it employs
the Hungarian algorithm to associate the tracked objects from the previous
frame to the detection in the new frame using their estimated displacements.
Based on this process, SORT is able to assign unique and consistent identities
to new objects that enter the scene. Additionally, it also eliminates identities
for objects that exit the scene.

2.3.2 Kalman Filter

Kalman filter is a set of mathematical equations that solves the least-squares
method recursively and efficiently [28]. It is used to estimate the internal state
of a dynamical systems using past observations and current measurements
with a possibility of noisy instruments. A Kalman filter consists of two stages
- the prediction step, and the update step. In the prediction step, the past
observations are run through the idealized version of the dynamical system to
produce a predicted state. Then, in the update step, the new measurements
with potential noise are incorporated into the predicted state to account for
the uncertainty in measurements of the instruments.

2.3.3 Hungarian Algorithm

The Hungarian algorithm is often used to perform data association by config-
uring the problem as a bipartite matching graph. The two sets of bounding
boxes of subsequent frames are assigned to the two sides of a bipartite match-
ing graph and weighted connections are made between the two sides where
the weight corresponds to the cost of association between the two bounding
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boxes. The Hungarian algorithm is then responsible for finding the optimal
assignment that minimizes the cost of association.

2.4 R-Trees

R-trees are an efficient method for indexing spatial data using dynamic index
structures [13]. This structure corresponds to a height balanced tree where
the dimensions of each child node is encompassed by its parent node (Fig.
2.3). R-trees enable fast spatial queries by minimizing the number of nodes
that need to be visited in the search space [13].

Figure 2.3: An example of a set of rectangles being represented with an r-tree

Autowaze will utilize the R-tree structure during the parking spot occu-
pancy detection step which will require an efficient way to find the set of
bounding boxes that intersect.
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Methodology

3.1 Overview

Autowaze consists of a network of vehicle nodes and a centralized cloud service
(Fig. 3.1). Each vehicle node is equipped with stereo cameras for perception,
on-board compute resources, and wireless connectivity. The vehicle nodes and
the cloud nodes share a sparse 3D map (m) of the environment. Additionally,
the cloud service also has a pre-annotated map of all parking spots in the area.

As the vehicle nodes navigate through the street, it collects various fea-
tures from camera view (cv) and creates a semantically enriched map of the
surrounding. The system then compares (cv) with the contents of the stored
3D map (m) using a robust feature matching algorithm. This generates two
subsets of points: a) features present in (cv) but not in (m) and b) features
present in (m) but not in (cv). These points represent the semantic map diff
which is uploaded to the cloud service (Fig. 3.1 Cloud Upload).

At the cloud service, it updates the stored 3D map using the semantic map
diff. Following this, it infers parking spot occupancy by estimating individual
vehicle bounding boxes and comparing it with a 2D parking spot map of the
region. The locations of vacant parking spots and the updates to the 3D map
are broadcast back to the user-base where vehicle nodes incorporate the map
updates into their stored 3D maps (Fig. 3.1 Vehicle Updates).

3.2 On-Vehicle Operations

The input to the vehicle nodes is a pair of stereo images (Fig. 3.2a.) and a
stored 3D map of the environment (Fig. 3.2 b.). Autowaze performs segmen-
tation with multi-object tracking (Fig. 3.2 c.) and feature extraction with

14
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Figure 3.1: High-level system architecture

depth estimation (Fig. 3.2 d.) in parallel on a frame by frame basis. We
perform merge the outputs of (Fig. 3.2 c.) and (Fig. 3.2 d.) to formulate
map features, which are camera features containing 3D positions augmented
with class labels and instance IDs from segmentation and multi-object track-
ing. Then these features are compared with the features of the stored 3D map
to find differences in the scene over different time-windowed snapshots of the
environment.

Figure 3.2: Vehicle Operations Pipeline
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3.2.1 Perception

Perception takes place at the vehicle nodes using stereo cameras. Stereo vi-
sion is a common perception instrument that allows depth estimation using
triangulation. Stereo cameras consist of two cameras mounted in a fixed con-
figuration with a known short separation between the two cameras. Before
sensible data can be captured, the cameras need to be calibrated and their
intrinsic and extrinsic parameters must be determined. Then, as the vehicle
drives through the street it captures a video sequences containing left (Fig.
3.3a) and right (Fig. 3.3b) frames. These frames are used as inputs for the
rest of the system.

(a) Left Stereo Image

(b) Right Stereo Image

Figure 3.3: Stereo Image Pair

3.2.2 Mapping and Robust Feature Matching

At every stereo camera frame, Autowaze’s underlying visual SLAM algorithm
extracts ORB features [21] from the stereo camera images (Fig. 3.3). Using
the stereo matching algorithm described in [19], Autowaze estimates the po-
sition of each feature relative to the stereo camera. These features are called
camera features and currently they only consist of a 3D position and a feature
signature.
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3.2.3 Classifying Stereo Camera Image

On the same input frames, Autowaze performs instance-level segmentation to
acquire object detections. Object detections are classified into several cate-
gories: pedestrians, traffic lights, stop signs, cars, trucks, etc. Each detection
has the following properties:

1. Position (x, y) and dimension (width, height) of bounding box in the
frame

2. Class label that identifies the category of the object

3. Confidence score

4. Instance ID that differentiates objects of the same class label

5. Binary mask in form of a matrix with the same dimensions as the input
frame where each cell represents a pixel in the input frame. Here, cell
values that are True represent pixels that are part of the detected object
and cell values that are False represent pixels that do not belong to the
detected object.

Autowaze filters detections based on confidence score and retains only those
detections that have a high confidence for their assigned class. Instance seg-
mentation works on a frame by frame basis. This means that an instance ID
for one object is not consistent over subsequent frames. As such, the instance
ID for the same object could be different in two frames. To consolidate the
instance IDs, Autowaze performs multi-object tracking.

3.2.4 Multi-object Tracking

Tracking has to be performed in real-time and must only depend on informa-
tion collected from past frames. In an effort to keep the computational load
low, a lightweight multi-object tracker SORT is instantiated during start-up.
As detection are made using the instance segmentation model, the resulting
bounding boxes for each frame are passed onto the tracker. At each frame,
SORT approximates the inter-frame displacement of the vehicle bounding
boxes and using intersection-over-union as an association metric, associates
each vehicle to their corresponding bounding boxes in the next frame. As new
vehicles appear in the frame, SORT assigns unique identifiers to these vehicles.
On the other hand, when vehicles go out of frame, the identifier associated
with those vehicles are removed. This ensures that at any given time, the same
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ID does not belong to different vehicles (Fig. 3.4). The unique identifiers that
multi-object tracker assigns to vehicles are positive integers.

(a) Frame 1

(b) Frame 2

Figure 3.4: Consistent Instance IDs over different frames

3.2.5 Association

After both feature matching and multi-object tracking operations are com-
plete, Autowaze associates the camera features with the class label and in-
stance IDs. This process is simple since both camera features as well as in-
stance IDs can be mapped back to their 2D pixel positions on the stereo camera
frame. The camera features are by default captured from 2D stereo frames
before being transformed into 3D features using triangulation so this trans-
formation is straightforward. On the other hand, for instance IDs we can use
the fine-grained vehicle masks generated by the instance-level segmentation
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process to map each pixel to its corresponding instance ID.

3.2.6 Semantic Map Diff

During the feature matching process using visual SLAM, the algorithm can
determine which features from the (cv) matched with which features in the
(m). Using this information we can infer the following:

1. If a feature is present in (cv) and it is also present in (m), then it is a
persistent feature (Fig. 3.5 Green).

2. If a feature is present in (cv) but it is not present in (m), then it is a
new feature (Fig. 3.5 Blue).

3. If a feature is not present in (cv) but it is present in (m), then it is a
removed feature (Fig. 3.5 Red).

The semantic map diff, is a subset of the sparse 3D map that contains the
entire set of new features and removed features.

3.3 Cloud Operations

The cloud-based processing component receives the semantic map diff from
the vehicle nodes which it uses to update the stored 3D map, estimate vehicle
bounding boxes and detect parking spot occupancy (Fig. 3.6). These updates
are then broadcast back to the vehicle nodes.

3.3.1 Map Diff Integration

When the cloud service receives the map diff from the vehicle nodes, it inte-
grates it into the existing stored 3D map. New features are inserted into the
3D map while removed features are removed from the 3D map. Since both the
cloud service and the vehicle nodes share the same 3D map, this process does
not require any coordinate transformations.

3.3.2 InstanceID Based Clustering

A common solution to organizing unstructured data such as a 3D point cloud
is clustering. By clustering 3D points into distinct groups, it can be reasonable
to assume that points closer to each other originate from the same object and
thus belong to the same cluster. This can be useful in partitioning the scene
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Figure 3.5: Semantic map diff over two snapshots of the environment

into distinct regions such as roadways, buildings, sidewalk etc. However, the
low density of points present in a sparse 3D map coupled with the challenges of
densely packed objects such as parked vehicles can cause standard clustering
techniques to break down and produce erroneous results. The clusters may
not align with the objects in the scene and any attempt made at inferring
traffic analytics from these clusters will be marred with inconsistencies.

To address these issues, Autowaze proposes the use of semantically enriched
sparse 3D maps for scene understanding. Instead of relying purely on density-
based clustering to partition the point cloud, Autowaze filters the stored 3D
map to only contain vehicles using their class labels. Then, the labels and
vehicle IDs are used to partition the point cloud into distinct groupings. This
approach allows fine-grained segmentation of the point cloud where the group-
ings align much closer with the actual objects in the scene. Even in tightly
packed scenarios, the use of this technique will ensure that points originat-
ing from two closely parked vehicles are not conflated resulting in a robust
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Figure 3.6: Cloud Operations Overview

foundation for making inferences on traffic events.

3.3.3 Outlier Removal

To remove outliers from the grouped point cloud, Autowaze employs a neigh-
borhood outlier removal method. This process helps to identify and remove
map points that are too far away from the parked vehicle’s current position,
ensuring a more accurate and reliable representation of points emerging from
the vehicle. For each map points in the map diff a local neighborhood is de-
fined using the ID-based grouping. Any point in a grouping that is not close
enough to a sufficient number of neighbors of the same group are eliminated
from the group. The key advantage of neighborhood outlier removal is that
it allows us to take into account the shape and structure of different types of
vehicles rather than rely on global statistics.

3.3.4 Bounding Box Estimation

Autowaze employs a simple implementation of bounding box estimation. Es-
sentially, once the point cloud is grouped based on their unique identifiers,
it computes the centroid for each cluster. This centroid acts as the center of
mass for the vehicle. Then, originating outwards from the centroid, Autowaze
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draws a bounding box that is of a fixed size and roughly equals the size of an
average vehicle [2].

3.3.5 Vacant Parking Spot Detection

Autowaze detects parking spot occupancy using a two pass method. On the
first pass, it creates an r-tree using the 2D parking occupancy map where the
leaf nodes are parking spot dimensions and each parent node encompasses the
combined dimensions of the leaf nodes. Using this r-tree, Autowaze efficiently
extracts vehicle bounding boxes that are overlapped with parking spots on
the map. It iterates through the intersection set and determines the bounding
box containing the highest amount of overlap with the parking spot. This
bounding box is then associated to the parking spot and the parking spot
is considered occupied (Fig. 3.7 First Pass). Although this removes a good
chunk of occupied parking spots, the inherent uncertainty with SLAM can
cause false positives in this process.

Figure 3.7: Parking Spot Occupancy Detection

SLAM drift is a phenomenon that can cause inaccuracies in the position
of features in the environment. Features emerging from vehicles may be offset
from their true position in the world (Fig. 3.7 Inaccurate Points). In such a
case, the incorrect vehicle may be associated with a parking spot in the first
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pass. Without prior knowledge of how and when the SLAM drif occured, the
position of these features cannot be easily rectified. To reduce errors caused
due to SLAM drift, a second pass must be conducted where the goal is to
minimize false positives by culling any parking spot that contains a significant
overlap with any bounding box.

During the second pass, another r-tree is built but this time using the
bounding boxes in the leaf-nodes. Then, for each remaining vacant parking
spot, it finds the set of bounding boxes that share an overlap. If the overlap
is significant, it indicates that some SLAM drift may have occurred and these
parking spots are also considered occupied (Fig.3.7 Second Pass).

3.3.6 Transmission To Vehicle Nodes

The output of the vacant parking spot detection is a list of rectangles each
containing the following properties: x-coordinate, y-coordinate, width, height.
These rectangles can be packaged up into a JSON array of JSON objects
containing the key/values pairs for each of the aforementioned properties. The
JSON is broadcast from the cloud service to the vehicle nodes in addition to
any map updates.
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Evaluation

4.0.1 System Implementation

The on-vehicle operations involving extracting features from the stereo camera
frames using a modified version of ORB-SLAM2 [19] and creating the semantic
map diff are written in C++. The detection and tracking of vehicles in the
scene is written in python with the help of the Detectron2 library [29] and
the SORT source code [8]. The specific model that we use for instance-level
segmentation is a pre-trained model called R101-FPN trained on the COCO
dataset available via the Detectron2 model zoo [29]. Image transformations
and vehicle mask manipulation was carried out using OpenCV [9]. Operations
involving point-cloud manipulation or visualization were made possible with
the help of Point Cloud Library (PCL) [22] and Matplotlib [27].

In this section, we evaluate the performance of the system by conducting
a series of experiments that determine the accuracy of the results, application
benefits, and the responsiveness of the Autowaze. The end-to-end experiments
were conducted on computer equipped with an AMD Ryzen 7 7800X3D pro-
cessor with 16 CPUs running at approximately 4.2GHz with 32 GB DDR5
RAM and an NVIDIA RTX 4080 GPU containing 9728 CUDA cores and ca-
pable of 780 Tera Operations per Second.

4.1 Experiment Setup

4.1.1 CarLA Simulator

We used a photo-realistic autonomous driving simulator to collect about 50
traces. We isolated two streets in the “Town 10” map provided by CarLA and
spawned parked vehicles throughout the street parking zones on the side (Fig.

24
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4.1). We then equipped the ego-vehicle with stereo cameras to extract the left
and the right images. Finally, we established way-points for the ego-vehicle to
follow and collect key-points from the two blocks to formulate the 3D point
cloud.

In each scenario, there are a total of 15 fixed spots that the parked vehicles
could occupy. During each pass through, we select a random amount of spots
to be occupied and then start recording. The model, make, and color of the
parked vehicles is randomly selected excluding some over-sized vehicles.

(a) Top-down view of “Town 10” with
buildings and foliage layer active

(b) Top-down view of “Town 10” with
buildings and foliage layer inactive

Figure 4.1: CarLA map experiment setup

4.1.2 Real-world

In addition to the simulator, we also tested Autowaze in the real-world by
mounting a vehicle with a ZED 2i [30] stereo camera (Fig. 4.2a) and connecting
it to a gaming laptop within the vehicle (Fig. 4.2b). Using this, we collected 20
traces on three streets in the Rochester metropolitan area (Gold St., Langslow
St., and Stewart St.) including a few traces from the Rochester Institute of
Technology, Parking Lot B during different days and lighting conditions.
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(a) Mounted ZED 2i stereo camera (b) On-board compute resource

Figure 4.2: Real-world experiment setup

4.1.3 Accuracy Metric

To assess the performance of the parking spot detection, we computed the
precision, recall, and accuracy metrics. The ground truth for each trace was
manually annotated using the Carla environment.

Precision and recall are defined as following:

• Precision =
True Positive

True Positive + False Positive

• Recall =
True Positive

True Positive + False Negative

• Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

where,

• True Positive (TP) represents an accurately predicted vacant spot

• True Negative (TN) represents an accurately predicted occupied spot
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• False Positive (FP) represents an occupied spot being predicted as a
vacant spot

• False Negative (FN) represents a vacant spot being predicted as an oc-
cupied spot

4.1.4 Baseline Implementations

To evaluate the accuracy of our system, we compare it against two baselines.
The first baseline replicates visual SLAM [19]. In this, the vehicle sends a
feature-based 3D map to the cloud service, which then determines parking
spot occupancy by clustering points using DBSCAN [24]. The second baseline
replicates CarMap [7]. In this, the vehicle sends a map diff to the cloud service
which integrates it into the base map. Then, the cloud service filters out points
belonging to vehicles from the updated map and runs DBSCAN on them.

4.2 Parking Spot Detection Accuracy

In the experiments conducted in CarLA (Table. 4.1), the precision for Au-
towaze greatly outperformed both the baseline implementations. Autowaze
had a precision of 0.87 meaning that out of all the parking spots that Au-
towaze predicted as vacant, 87% of them were truly vacant. This higher
precision compared to ORB-SLAM2 and CarMap can be attributed to the
way Autwaze groups the point cloud based on instanceIDs rather than rely-
ing on statistical clustering. Autowaze also makes use a the two pass method
for minizing false positive results introduced by SLAM drift. Because ORB-
SLAM2 and CarMap have no mechanisms to deal with these errors, they have
a tendency to falsely mark occupied spots as vacant.

The baseline implementations had a higher recall than Autowaze because
ORB-SLAM2 and CarMap over-classify vacant spots, leading to reduced num-
ber of false negatives. However, the trade-off of this is that it also increases
the number of false positives. Autowaze on the other hand, manages to strike
a good balance between precision and recall. This balance is important for
detection systems and Autowaze not only achieves this, but it also has an
overall higher accuracy of 0.89.

A similar trend was observed in the real-world tests (Table. 4.2) with Au-
towaze outperforming the baseline in both precision and accuracy. Autowaze
was able to achieve a precision of 0.93, a recall of 0.82 and an accuracy of 0.84
further reinforcing its effectiveness over the baseline approaches.
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Approach Precision Recall Accuracy

ORB-SLAM2 [19] 0.67 0.98 0.76
CarMap [7] 0.77 0.88 0.82
Autowaze 0.87 0.91 0.89

Table 4.1: Parking spot occupancy detection (CarLA)

Approach Precision Recall Accuracy

ORB-SLAM2 [19] 0.78 0.87 0.75
Autowaze 0.93 0.82 0.84

Table 4.2: Parking spot occupancy detection (real-world)

4.3 System Latency

To measure Autowaze’s end-to-end latency, we profiled the vehicle and cloud
operations in the simulated CarLA dataset.

Figure. 4.3 (left), shows the average latency of the tracking (SLAM),
instance-level segmentation (Seg), multi-object tracking (MoT), and seman-
tic map diff (Diff). Based on these results we can see that tracking is the
most expensive operation taking on average 41ms. Tracking is performed in
the SLAM algorithm which is not an additional cost introduced by Autowaze.
Segmentation and multi-object tracking happen in parallel and with the com-
bined average run-time being less than the tracking operation, the tracking
operation dominates the run-time of the vehicle operations. The only addi-
tional cost on-top of SLAM would be the generation of the semantic map diff
which takes 9ms on average. This means that Autowaze is able to generate
a semantic map diff in about 50ms. This shows that if the stereo camera is
running at 10fps, the system is capable keeping up with the camera.

Figure. 4.3 (right) reports the latency of the cloud operations including
the integration of the semantic map diff as well as the detection of parking
occupancy. In these experiments, we had Autowaze capture semantic map
diffs every 5 seconds on a 10fps stereo camera which equal to 50 frames of
data. On average, it took the cloud service 47ms to perform both map diff
integration and parking occupancy detection.

Since the vehicle operations can run in about 50ms and the cloud service
can run in 47ms, Autowaze can detect and report vacant parking spots in
approximate 100ms which is a good benchmark for most vehicle assistance
systems.
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Figure 4.3: End-to-end latency of Autowaze’s vehicle operations (left) and
cloud operations (right)

4.4 Empirical Analysis of Applicational Benefits

4.4.1 Search Time Reduction

In order to quantify the potential reduction in search time per driver, we
modified a satellite image of Parking Lot D at the Rochester Institute of
technology to include additional vehicles and an annotated parking spot as
shown in Fig. 4.4. The captured section of the parking lot is approximately
80 meters long and 30 meters wide. Starting at the entrance of the parking
lot, given that a vehicle is travelling at 10mph, a vehicle without Autowaze
will travel a maximum of 195 meters to find the vacant parking spot which
will take 43.65 seconds. This is because the driver has no knowledge of the
whereabouts of the vacant spot and will perform an exhaustive search of the
parking lot to find the vacant parking spot. This is indicated by the red path
in Fig. 4.4. In contrast, a vehicle with Autowaze will always use the shortest
path to travel to the vacant parking spot because it has prior knowledge of
the location of the vacant parking spot. This is indicated by the green path
in Fig. 4.4. As such, it will only travel about 35 meters which will take 7.83
seconds. That is a reduction of 82.1% in search time for this particular parking
scenario.
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4.4.2 Fuel Efficiency and Cost Savings

Referring back to Parking Lot D given in Fig. 4.4, if the average mileage
given by the vehicle is 25 miles per gallon (mpg), and the cost of gas price
is $3.50 per gallon, then the vehicle without Autowaze will expend at-most
0.0048 gallons to travel 195 meters and the search will cost $0.0168. On the
other hand, the vehicle with Autowaze will only expend 0.00088 gallons to
complete the same search and it will only cost $0.0031. This improves both
the fuel efficiency and cost savings by about 81%.

Figure 4.4: Modified satellite imagery of Parking Lot D at RIT [3]

4.5 Network Costs

Over a period of 5 second, for a stereo camera with 10fps, the size of the
semantic map diff is anywhere from 1KB to 60KB. According to the Federal
Communications Commission (FCC) broadband deployment report [12], this
is well within the capabilities of modern broadband speeds.
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Conclusion and Future Work

5.1 Conclusions

The work presented in this thesis has demonstrated the design, implementation
and evaluation of Autowaze, a system capable of reporting accurate parking
spot occupancy status at real-time using a crowd-sourced strategy. Building
on exiting methods for feature-based sparse 3D maps designed for localization
tasks, Autowaze semantically enhances these maps with the help of instance-
level segmentation and multi-object tracking.

Through experiments conducted both in simulation and the real-world,
Autowaze is capable of determining the occupancy status of a parking spot
with an accuracy of 89%. Moreover, it showcases that with the help of fine-
grained traffic analytics such as the location of vacant parking spots, motorists
can make smarter decisions to reduce idle time and improved fuel efficiency.

Overall, this thesis demonstrates the feasibility of extracting high-level
semantics from sparse 3D maps. It also provides a solid foundation for future
research to be conducted on automated traffic analytics and driver assistance
domains.

5.2 Future Work

There are several areas in this thesis that are good avenues for future research.
Additional Traffic Analytics. This thesis solely focuses on parking spot
occupancy detection but in order to be a fully fledged traffic analytics system,
it must also account for road closures, accidents, construction etc. A similar
approach could be taken for construction where features originating from traf-
fic cones can point towards signs of road construction.

31
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Integration of LiDAR. While Autowaze uses stereo cameras for feature
maps, using a LiDAR to map the environment would result in higher accu-
racy and precision. In fact, many issues that Autowaze faced are corelated
to the inherent imprecision of SLAM on stereo camera images. False pos-
itives and false negatives arise when SLAM is unable to localize accurately
which results in the features being offset from their true positions. Future
work should focus on adapting semantic map diff with LiDAR point clouds
instead. However, one of the main goals of Autowaze is to adapt widely ex-
isting vehicular technology to solve the problem and using LiDARs, atleast in
it’s current state, would defeat the purpose of the study.
Dynamic Environments. Most of the traces that were used did not have
actively moving traffic. The inaccuracy of SLAM and the amount of moving
objects makes this a very difficult problem to solve in the dense cities with
bumper to bumper traffic. Further research is needed to investigate techniques
that are capable of dealing with high amounts of moving traffic in close prox-
imity of sensors and parking spots. This might potentially require a shift to
better sensing technologies.
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