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Abstract

High-Performance Computing (HPC) workloads are being widely used to solve complex problems in

scientific applications from diverse domains, such as weather forecasting, medical diagnostics, and

fluid dynamics simulation. HPC workloads are traditionally executed on baremetal HPC systems,

containers, functions, or as workflows or ensembles. These workloads consume a large amount of

data and have large memory and storage requirements that typically exceed the limited amount of

main memory and storage available on an HPC system. HPC workloads such as deep learning (DL)

are executed on platforms such as TensorFlow or PyTorch, are oblivious to the availability and per-

formance profiles of the underlying HPC systems, and do not incorporate resource requirements of

the given workloads for distributed training. Function-as-a-Service (FaaS) platforms running HPC

functions impose resource-level constraints, specifically fixed memory allocation and short task

timeouts, that lead to job failures, thus making these desirable platforms unreliable for guarantee-

ing function execution and ensuring performance requirements for stateful applications such as DL

workloads. Containerized workflow execution of HPC jobs requires several terabytes of memory

that exceed node capacity, resulting in excessive data swapping to slower storage, degraded job per-

formance, and failures. Similarly, co-located bandwidth-intensive, latency-sensitive, or short-lived

workflows suffer from degraded performance due to contention, memory exhaustion, and higher

access latency due to suboptimal memory allocation. Recently, tiered memory systems comprising

persistent memory and compute express link (CXL) have been explored to provide additional mem-

ory capacity and bandwidth to memory-constrained systems and applications. However, current

memory allocation and management techniques for tiered memory subsystems are inadequate to

meet the diverse needs of colocated containerized jobs in HPC systems that run workflows and

ensembles at scale concurrently.
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In this research, we propose a framework that makes HPC platforms, workflow management sys-

tems (WMS), and HPC schedulers aware of the availability and capabilities of the underlying

heterogeneous datacenter resources and optimize the performance of HPC workloads. We propose

architectural improvements and new software modules leveraging the latest advancements in the

memory subsystem, specifically CXL, to provide additional memory and fast scratch space for HPC

workloads to reduce the overall model training time while enabling HPC jobs to efficiently train

models using data that is much larger than the installed system memory. The proposed framework

manages the allocation of additional CXL-based memory, introduces a fast intermediate storage

tier, provides intelligent prefetching and caching mechanisms for HPC workloads. We leverage

tiered memory systems for HPC execution and propose efficient memory management policies in-

cluding intelligent page placement and eviction policies to improve memory access performance.

Our page allocation and replacement policies incorporate task characteristics and enable efficient

memory sharing between workflows. We integrate our policies with the popular HPC scheduler,

SLURM, and container runtime, Singularity, to show that our approach improves tiered memory

utilization and application performance. Similarly, we also integrate our framework with a popular

DL platform, TensorFlow, and Apache OpenWhisk to introduce infrastructure-aware scheduling,

performance optimization of DL workloads, introduce resilience and fault-tolerance to FaaS plat-

forms. The evaluation of our proposed framework reveals improved system utilization, throughput,

and performance, as well as reduced training time, failure rate, recovery time, latency, and cold-start

time for large-scale deployments.
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Chapter 1

Introduction

1.1 High-level Problem Statement

Running HPC workloads across heterogeneous datacenter resources as bare-metal, containerized,

functions, or workflows poses various challenges, since each execution environment has differ-

ent characteristics and distinct performance profiles. To avoid execution stalls and failures new

heterogeneity-aware resource management techniques need to be developed that exploit the capa-

bilities of heterogeneous datacenter servers and leverage advancements in hardware technologies to

maximize workload performance. Optimizing the performance of HPC and scientific workloads on

heterogeneous datacenters has several challenges:

1. Resource heterogeneity [170] in datacenters results in varying performance profiles. Unaware

of such profiles, schedulers and platforms schedule execution on resource-constrained servers,

which results in a significant increase in the overall execution time [52].

2. Unavailability of system resources causes a significant increase in overall training time as the

input training data and model parameters are frequently swapped to slower memory and

storage tiers during the training process.

3. Latest advancements in hardware technologies introduce new features that require platforms

to adapt and leverage such advancements to reduce the time-to-answer of time-sensitive ap-

plications and improve the utilization of available data center resources.

4. Serverless computing imposes resource-level constraints, specifically fixed memory allocation

1



CHAPTER 1. INTRODUCTION 2

and short task timeouts, that lead to job failures.

5. Failures in FaaS have not been fully investigated, which makes such platforms unreliable for

guaranteeing function execution and ensuring performance requirements of HPC workloads.

6. Traditional job scheduling and memory allocation approaches for GPU-based HPC workloads

leveraging tiered memory create contention, reduced throughput, and increase the overall data

transfer time.

7. Current memory allocation and management techniques for co-located containerized HPC

workflows on tiered memory systems are sub-optimal and inadequate to meet the resource

demands of large-scale workflows running at scale.

In this research, we focus on addressing the above challenges to make HPC and DL platforms aware

of the underlying resource heterogeneity, address the limitations of limited memory availability to

functions by leveraging tiered memory resources, and provide on-demand memory to functions.

We also aim to introduce fault tolerance to FaaS platforms and reduce recovery time for stateful

time-sensitive scientific workloads.

1.2 Detailed Problem Statement

Large-scale datacenters often consist of tens of thousands of servers, with new servers added incre-

mentally over time to meet the growing demands of modern high-performance computing (HPC)

applications. As hardware technologies evolve to support the compute and I/O requirements of

complex scientific workloads such as deep learning (DL), datacenters exhibit performance and ar-

chitectural heterogeneity. This leads to performance and architectural heterogeneity [170], which

must be addressed in managing datacenter resources. Managing resources in such heterogeneous

environments poses challenges, as most software platforms are designed for homogeneous data-

centers, leading to suboptimal performance. Most software platforms are designed for homoge-

neous datacenters and lead to sub-optimal performance when executing in heterogeneous environ-

ments [45, 70, 162, 217]. The increasing popularity of heterogeneous datacenters, equipped with

diverse compute, memory, storage, and network resources, aims to address the needs of time-

sensitive applications. Baremetal, containerized or Function-as-a-Service (FaaS) platforms running

HPC workloads such as TensorFlow [27], PyTorch [185], Pegasus [69], and Apache OpenWhisk [23],

often lack awareness of the underlying datacenter resources’ availability and performance profiles,

resulting in inefficient resource utilization during distributed training.
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HPC workloads such as DL [72] are extensively applied across various scientific domains, including

weather forecasting, medical diagnostics, and fluid dynamics simulation. DL workloads entail

significant data consumption and utilize large-scale HPC systems for model training. However,

these workloads often exceed the available main memory on HPC servers, leading to computational

losses and time delays. Additionally, resource inefficiencies arise, with some HPC servers idling

while others experience performance degradation due to congestion caused by straggling processes.

Apart from the traditional bare-metal execution of HPC workloads, serverless and FaaS execution

models are rapidly gaining traction due to their seamless application deployment and scalabil-

ity features. These platforms have recently been explored for running data-intensive HPC work-

loads [232, 241], including DL [41, 117], aiming to enhance application performance and reduce

execution costs. Stateful execution, where applications produce intermediate data required for sub-

sequent processing, contrasts with stateless execution, where application components’ states or data

production are independent. Many stateful applications have migrated [57] to FaaS platforms due

to their ease of deployment, scalability, and minimal management overhead. However, FaaS plat-

forms impose resource constraints such as fixed memory allocation, leading to job failures. Limited

system memory availability or inadequate memory allocation to application functions can result in

premature function termination. In summary, memory limitations imposed by FaaS platforms and

underlying servers contribute to application-level failures associated with memory constraints.

Running HPC workloads on accelerators like Graphics Processing Units (GPUs) for running HPC

workloads accelerates computation but exacerbates memory and data issues due to the faster pro-

cessing speed. GPU-based HPC workloads, often data-intensive, involve large-scale simulations,

complex computations, and massive data processing, necessitating efficient memory and data op-

erations for optimal performance and scalability. Such workloads encounter limitations in mem-

ory capacity and bandwidth, primarily due to the constrained onboard High Bandwidth Mem-

ory (HBM) [248]. To address this, GPUs frequently read/write data to the main memory, leading

to performance bottlenecks. In multi-GPU setups, memory pinning on the main memory restricts

memory availability for other GPUs, resulting in data transfer overheads and potential job failures.

The introduction of CXL-attached memory expands memory availability for GPU-based workloads.

However, suboptimal memory allocations by the underlying OS or GPU drivers may hinder effi-

cient memory mappings. These inefficient mappings can impede data movement, leading to reduced

memory throughput and increased application execution times.

HPC workflows, often comprising data and memory-intensive tasks, require efficient and coordi-

nated execution. These workflows exhibit unique memory demands based on factors like data size,
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computational complexity, and I/O activity. Containerized workflow execution of HPC jobs re-

quires several terabytes of memory that exceed node capacity, leading to excessive data swapping

to slower storage, degraded performance, and job failures. Similarly, co-located bandwidth-intensive

or latency-sensitive workflows face performance degradation [29,77,78,108] due to contention, mem-

ory exhaustion, and suboptimal memory allocation. Tiered memory systems, featuring multiple

memory tiers, aim to augment memory capacity and bandwidth for memory-constrained systems

and applications. However, current memory allocation techniques for tiered memory subsystems

are inadequate in addressing the diverse needs of colocated containerized jobs in large-scale HPC

systems running workflows and ensembles concurrently.

1.3 Motivation

In the following, we discuss the motivation for developing capability-aware scheduling and resource

management for heterogeneous datacenters and propose intelligent mechanisms to improve the

performance of HPC workloads.

1.3.1 Heterogeneity in Datacenters

Large-scale datacenters feature diverse compute, software, storage, and networking resources each

with unique capabilities and performance characteristics. Such heterogeneity in datacenters is

inevitable and arises from ongoing technological advancements and hardware upgrades [130, 170,

244], leading to infrastructure-level performance variations. This impacts the performance [116] of

complex workflows and large-scale distributed applications, which can be avoided by making them

aware of the performance variations of the underlying datacenter resources. Applications often lack

awareness of server performance heterogeneity, leading to task scheduling on sub-optimal servers

that leads to unpredictable performance and execution failures.

1.3.2 Platform Limitations to Support Resource Heterogeneity

The TensorFlow platform supports conventional multi-core processors and computational accelera-

tors but lacks awareness of underlying infrastructure type and resource capabilities during training

job execution. As a result, training jobs are often scheduled on worker nodes already running

other tasks, leading to increased overall training time. Similarly, training jobs assigned to straggler
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Figure 1.1: Effects of the background load on total execution time using different training batch

sizes.

worker nodes further exacerbate training time [51,81,102,242], as parameters of the DL model must

be gathered and updated from each node after every iteration. This can cause missed deadlines for

time-sensitive training processes [34, 191]. Hard-coding worker nodes and devices for model train-

ing using default TensorFlow is not scalable in large-scale datacenters shared by multiple users.

Additionally, this approach results in poor resource utilization, as accurately executing training

workloads on idle resources for distributed training becomes impractical for developers.

We conducted several experiments to study the impact of existing system load on the execution

duration of DL jobs across various batch sizes. Figure 1.1 illustrates the outcomes of this experi-

ment, using the ResNet322 [105] model with the CIFAR10 [139] dataset. Our experiments entailed

running jobs that utilized 10% CPU, 20% GPU, 4 GB of main memory, and 2.6 GB of GPU device

memory, thereby introducing background load on the worker nodes. Multiple instances of these

jobs were executed to achieve varying levels of background load, with the average load reported as

a combination of CPU, GPU, memory, and network resource utilization. For batch sizes 64, 128,

256, and 512, we observed an increase in training time by 37%, 43%, 45%, and 41%, respectively,

as the background load increased from 0% to 70%. We observe similar performance trends with

other ML models during our evaluation. This shows that it is critical to execute the training jobs

on resources with minimum interference from other tasks.
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Figure 1.3: Impact of the batch size on memory

using MobileNet on CIFAR10; Epochs=5.

1.3.3 Limitations of FaaS Platforms

FaaS environments [125, 199] are routinely used for running DL workloads since they reduce the

provisioning and management overhead and provide an easy-to-use, scalable, flexible, and cost-

effective alternative to the traditional server-centric compute model. They feature short-lived ex-

ecution environments, effectively managing resource limits on function execution to control the

cost and resource consumption of DL jobs. Distributed DL on serverless platforms demonstrates

superior performance for training DL models compared to IaaS platforms within the same cost

constraints [33,158,229]. Moreover, serverless computing is well-suited for periodic model training,

such as continuous learning for incremental learning systems like recommendation and anomaly

detection systems, where prediction models are periodically updated after acquiring new data.

Conventional serverless computing platforms are designed for short-lived tasks and impose restric-

tions on resource usage. For instance, Apache OpenWhisk, AWS Lambda, Azure Function, and

Google Cloud Function have default timeouts of 300 sec., 900 sec., 600 sec., and 540 sec., respec-

tively. DL tasks may fail if their training duration surpasses these default timeouts. Hence, ensuring

successful execution and training of high-quality models necessitates specifying appropriate memory

and timeout limits for each action.

Accurately estimating the training time, memory requirements, and epochs needed to achieve

the desired accuracy in DL jobs is challenging before job submission. Allocating lower resource

limits leads to job failures which must be restarted using a retry strategy with increased memory

and timeout limits. Each retry consumes additional time and resources until suitable limits are

identified. We implemented a simple retry strategy that increments the timeout by 240 sec. for

failed actions to train MobileNet [111] with the CIFAR100 [139] dataset using batch sizes of 64, 128,

256, and 512 over fifteen epochs. Figure 1.2 shows the results. The total execution time includes
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failed retry attempts time as failed actions exceed the allocated time limits. The retry strategy uses

7 and 5 retry attempts for a batch size of 64 and 128 respectively, and uses 4 retry attempts for a

batch size of 256 and 512 before successfully completing the job. We observe an additional latency

of 5,400 sec. and 2,640 sec. for batch sizes of 64 and 128 respectively, and a latency of 1,620 sec.

for batch sizes of 256 and 512. Therefore, retrying with different resource limits results in longer

training times and a loss of compute cycles.

We investigate the effect of serverless computing on DL job performance by adjusting the batch

size. Specifically, we train the MobileNet model for five epochs on the CIFAR10 [139] dataset to

evaluate the memory consumption and show in Figure 1.3 that there is a gradual increase in memory

utilization for larger batch sizes because more memory is allocated to the job to accommodate

larger input data. This underscores the importance of employing data parallelism for DL jobs

to ensure efficient memory management by dividing the dataset into smaller batches. Moreover,

training with large batch sizes leads to memory contentions, further highlighting the advantages of

serverless computing, as training can be parallelized with smaller batches, ensuring each batch fits

within the allocated resources for action execution.

1.3.4 Fault Tolerance in FaaS Platforms

FaaS Execution and Failure Types: Functions in a FaaS platform are modular code units

designed to execute specific tasks in response to events. When creating a function, developers

provide the code, runtime environment, memory allocation, trigger, and a unique identifier. Triggers

initiate function execution and the provided code runs within the specified runtime. Functions can

process input data through single or multiple phases known as states, reflecting the current status of

function variables and data structures. These states are referred to as the current state of function

variables and data structures. They generate intermediate and final data stored in storage media

for consumption by subsequent functions. After processing, functions can invoke other functions

to work on the produced data, forming a workflow as depicted in Figure 1.4.

Failures in the FaaS platform can occur at various stages of function execution, typically falling into

four categories: request, concurrency, function, and runtime. Request failures arise when resource

requests for a function exceed the limits associated with the account. Concurrency failures occur

when the number of simultaneous executions requested surpasses the maximum allowed. Function

failures stem from issues within the application code, while runtime failures relate to the setup and

preparation of the runtime environment. Both function and runtime failures are critical as they

can result in data loss, computation errors, and financial losses for stateful applications. To ensure
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Figure 1.4: Execution flow of a function in FaaS.

fault tolerance in FaaS, proactive measures must be taken to address these failures or recover from

them promptly to meet application-level SLAs.

Reliability and Fault Tolerance in FaaS Platforms: Failures occur at various levels such

as hardware [93, 224, 228], platform [193, 239], software stack [154, 243], and application [120, 219].

While FaaS platforms offer best-effort reliability guarantees, failures can lead to dropped requests

or repeated executions, necessitating stronger reliability assurances from applications. Implement-

ing stronger semantics, such as exactly once guarantees in FaaS platforms comes with significant

latency and resource overhead. Different types of failures, e.g., server, network links, and soft-

ware process can result in a loss of data and inconsistent stream processing across the data center.

Therefore, providing fault tolerance and reliability to stateful applications in FaaS platforms are

critical yet largely unexplored area. The adoption of serverless computing continues to rise with

more than 200% [10] increase in the average weekly invocations over the past years. Meanwhile,

the number of failures in function execution have increased from 1% for highly maintained runtimes

to about 25% for deprecated runtimes [10]. Therefore, there is a need to mitigate FaaS failures

and reduce the recovery time of failed functions to improve application reliability and response

time. FaaS deployed on HPC infrastructure is directly impacted by HPC failures [82, 86]. The

state-of-the-art fault tolerance techniques, e.g., checkpointing [132, 184] and replication [115, 214],

to mitigate HPC failures cannot be directly applied to FaaS platforms [129, 209] because of their

unique characteristics, e.g., the massive scale and short lifespan of invoked functions.

Stateless and Stateful Functions: Stateless functions execute independently without any ref-

erence to previous executions, while stateful functions retain information from previous executions

and the current execution may be affected by the status of previous executions. Execution failure

causes the function to lose its context and execution progress and is unable to return or resume

from the previous state. However, modern applications, e.g., iterative applications, are stateful and

depend on application data and results from previous executions. The challenge of maintaining

states exacerbates for FaaS platforms, which use containers designed to be stateless, portable, and
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Figure 1.6: Impact of available memory on DL

performance with 64 batch size and 3 epochs.

flexible. Because of its popularity and ease of use, existing applications are being migrated [56,57]

to FaaS platforms, and new stateful applications are developed using FaaS platforms. For stateful

execution, an approach is to make FaaS functions stateful by default. However, this violates the

basic design concepts of short-running and lightweight functions because persisting data would sig-

nificantly increase function execution times. Moreover, migration of stateful applications to FaaS

is inevitable. FaaS platforms must adapt to support both stateless and stateful applications. Due

to the ephemeral nature of data in FaaS computing, the impact of a failure would be significant

as all progress of the running function will be lost. Typically, stateful applications rely on fault

tolerance approaches, e.g., replication to external storage, for maintaining their states reliably. No

available end-to-end fault tolerance approach adapts to both stateless and stateful FaaS applica-

tions. Simple retry-based approaches do not address the challenges for stateful function execution

that would experience computation loss and inconsistent application data upon failure.

1.3.5 Data Movement Optimizations

Slow Storage Tiers and HPC Workloads: Each memory and storage tier in modern data

centers has a distinct access bandwidth and latency profiles resulting in unpredictable application

performance. Distributed HPC workloads are executed over several servers with varying memory

and storage capacity and performance profiles and require fast memory, low-latency I/O pipelines,

and a large storage medium to store huge datasets. The performance of HPC workloads heavily

depends on data transfer speed and how quickly the required data is made available to the pro-

cessing threads. Typically, the processing threads process the data at a much higher rate than

staging the data into the system memory. We observe that as the memory allocation moves farther

away, e.g., to other NUMA nodes, from the compute threads, the performance starts to drop due to

the impact of latency associated with accessing memory and storage resources over the respective
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interconnections. The result is shown in Figure 1.5. We ran STREAM Triad [174] and observed

maximum bandwidth when the data is accessed on the same node as the compute threads. Ef-

forts have been made to predict both optimal core allocation and memory bandwidth usage with

high accuracy and low overhead for memory-intensive multi-threaded applications on large-scale

clusters [231]. However, such optimizations do not directly apply to distributed HPC jobs over

heterogeneous memory and storage resources.

The memory footprint of most HPC workloads such as DL increases over time [169,173], which leads

to excessive swapping for servers with limited memory. The memory access patterns of a workload

determine the impact of using swap space on its performance. Most modern DL applications are

read-intensive and perform write operations at regular intervals and performance drops as the

memory footprint spills over to the swap storage resulting in increased epoch time and an increase

in the overall training time as shown in Figure 1.6. The memory footprint of the DL job is about

166 GB and fits entirely into the memory when 100% of memory is available to the DL workload.

The configured system swap space is 200 GB and the increased execution time is attributed to

increased reads and writes to swap. To mitigate the impact of using swap space, it is critical to

explore the use of high-capacity and low-latency alternatives, such as CXL-based memory.

I/O Challenges in DL Data Pipelines: Executing a DL workload requires processing large

datasets to achieve the desired training accuracy of the given DL model. The growing size of datasets

emphasizes the importance of designing highly efficient I/O pipelines, especially in distributed DL

environments where the dataset is distributed across multiple workers for processing. DL workloads

contain various I/O stages, e.g., data loading, caching, prefetching, model fitting, and checkpointing.

DL platforms provide methods and APIs to perform parallel I/O operations and improve the

performance of data staging and placement. For example, TensorFlow provides tf.data [178] whereas

PyTorch provides DataLoader [185] APIs to improve the performance of data staging. However,

these built-in methods and APIs for data staging do not incorporate different memory tiers for

storing large datasets.

During model training, the collection of data samples called batches is shuffled randomly [143]

before each epoch for model convergence and to prevent overfitting. Typically, the input data is

cached into memory during the first epoch to speed up the read operations in subsequent epochs.

However, the cache hit rate is severely impacted when the entire dataset cannot fit into the available

memory. The cached data is evicted after being processed during an epoch to load new batches

into the main memory, causing thrashing and forcing the workers to fetch data from slower storage

devices. Prefetching reduces I/O stalls by bringing data to a lower storage tier and moving the next
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Figure 1.7: Impact of caching and prefetching on DL workload performance with MobileNetv2 and

a subset of ImageNet with batch size of 64 and 3 epochs.

batch into the main memory before the next iteration. This becomes challenging for large datasets

as prefetching the next batch takes longer than processing the current batch [80]. Therefore, a data

staging strategy is required to incorporate the heterogeneity of underlying memory and storage

tiers to orchestrate the data pipeline and reduce I/O stalls.

Limitations of Data Pre-processing in DL Platforms: The size and location of the dataset

govern the creation of the data pipeline, pre-processing, and data loading into the main memory.

Typically, large datasets cannot fit into the memory subsystem of a single worker due to limited

memory and storage on each worker. A DL job fails to execute when available system memory

is not enough to hold the entire training dataset. To avoid such failures due to limited resources,

data is placed into pipelines and prefetching and caching techniques are used to efficiently manage

memory and storage resources. TensorFlow caches the dataset in memory for improving I/O,

however, its caching mechanism becomes ineffective if the memory is not large enough to host the

entire dataset and it does not yield any performance benefit because the dataset cannot be cached

in memory. TensorFlow also allows caching to disk, which becomes beneficial when caching to

local NVMe devices as compared to reading the batch from network-attached storage. Another

important factor that improves performance is prefetch, which ensures that the dataset is loaded

in the main memory before the training job has finished processing the previous batch of data.

We analyze the impact of caching and prefetching techniques for two scenarios. First, the training

data is greater than the available system memory resulting in excessive swapping, and second, the

training data is smaller than the available system memory and it can fit entirely into the memory
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without swap utilization. We used TensorFlow’s optimized data pipelines with limited memory

and observed performance degradation due to frequent disk accesses. Figure 1.7 shows the results.

We observe that prefetching and caching into memory yield better performance as compared to

using the swap storage. Moreover, the impact of data prefetching reduces when the available

system memory is less than the dataset size. With limited memory available, disk I/O becomes

a bottleneck as compute units consume data at a much higher rate. We observe this during data

loading, pre-processing, and training by analyzing the DL job’s footprint, available system memory,

and disk utilization with the help of PCM and SYSSTAT monitoring tools. Prefetching consumes

additional memory to store data batches and speeds up the training process. Therefore, less

available memory significantly increases application execution times and reduces throughput. This

impact is amplified with large batch sizes despite TensorFlow’s caching and prefetching mechanisms.

For a worker where less amount of memory is available, caching to the local storage is useful since

it reduces access latency as compared to the network storage to fetch the same data for subsequent

epochs. Moreover, caching to the local storage is beneficial if faster storage, such as NVMe [126]

and CXL devices are available at the worker nodes.

1.3.6 Tiered Memory Management

HPC Workflows and Workflow Management Systems: HPC workloads are composed of

a series of tasks, organized as workflows, that work in tandem to run larger scientific applications

such as (1) scientific simulations, which run in embarrassingly parallel or tightly coupled fash-

ion; (2) surrogate computations, which typically generate a deep-learning-based approximation to

assist the scientific simulation for faster convergence; (3) real-time data analysis, which includes

on-the-fly data manipulation and visualization based on which experiments and/or algorithms are

steered; (4) producer-consumer workflow patterns, where workflows consume data generated by

other workflows; and (5) checkpointing for fault-tolerance, posthoc analysis, supporting out-of-core

adjoint computations, or explaining the evolution of data and scientific model. Several Workflow

Management Systems (WMS), e.g., Pegasus [69], Cromwell [225], and Nextflow [75], facilitate the

orchestration and automation of such complex computational workflows. WMSs interact with so-

phisticated schedulers to efficiently allocate computing resources, optimize task dependencies, and

balance workflows. However, they face challenges in managing diverse workflows with varying re-

source demands, adapting to dynamic system conditions, and ensuring optimal resource utilization

amidst changing priorities and constraints [44, 87]. Additionally, optimizing memory allocation in

tiered memory systems, efficient data movement between memory tiers, optimal data placement,

catering for data locality, memory requirements, and inter-task communication further complicates
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the scheduling process and is not supported in modern WMSs [69,201,225].

Memory Characteristics for HPC Jobs: HPC jobs pose diverse requirements to memory

subsystems, such as combinations of large memory tiers, low latency, and high bandwidth. These

requirements can change dynamically during job execution. Moreover, HPC jobs are often composed

of several workflows with diverse memory requirements [114, 187, 222] causing memory starvation,

contention, and degraded performance. The basic allocation unit for HPC jobs is a compute node

that leads to reduced resource utilization and fragmentation. The available memory is limited by

the job-level allocations and the total physical memory installed on each server. To improve the

performance of HPC jobs, in-memory computation is becoming increasingly popular [203] leading

to higher memory demands in HPC clusters.

In containerized execution, memory is allocated at the start based on the memory requirement of

the job and does not support dynamic memory allocation based on different execution phases of

HPC workflows. Typically, HPC jobs are deployed as separate workflows [164], each catering to

a diverse range of resource profiles, e.g., compute and memory-intensive tasks, I/O, bandwidth-

intensive operations, and capacity- and latency-sensitive operations. Given the varying demands

of different resource profiles, accurately identifying the memory requirements associated with each

workflow is challenging. Similarly, colocated containerized HPC workflows and ensembles have

additional resource limitations, e.g., CPU, memory, storage, I/O, and network, which are specified

by the workflow and negatively impact its performance. These restrictions limit the performance

of highly parallel memory and data-intensive workflows where most tasks require a large amount

of memory to store the input, intermediate, and output data of various tasks of HPC workflow.

Similarly, it is challenging to accurately estimate the memory requirements of workflow tasks and

allocate enough memory, resulting in a loss of critical computation during failures [42].

Tiered Memory Systems: Tiered memory systems utilize the latest advancements in memory

subsystems to provide large memory to servers and workflows. It allows workflows to scale by

utilizing additional memory available beyond the total available DRAM on each server. In tiered

memory systems, the DRAM tier is utilized for high-speed, low-latency access to frequently accessed

data, whereas PMem [121] bridges the gap between volatile and non-volatile memory to provide a

balance between speed and persistence. Recently CXL [155,226] has been explored to provide high-

speed, low-latency I/O between the host processor and devices while expanding memory capacity

and bandwidth [30, 227]. CXL memory also enables direct access to additional memory resources

and optimizes data movement across the system by providing byte-addressable, cache-coherent

memory in the same physical address space and allowing transparent memory allocation using



CHAPTER 1. INTRODUCTION 14

 0

 100

 200

 300

 400

 500

Data Comp. Deep Learning Scientific Data Mining

E
x
e

c
u

ti
o
n

 T
im

e
 (

s
e

c
)

Local Memory w/o Swap
Local Memory w/ Swap
Tiered Memory w/o Swap
Tiered Memory w/ Swap

Figure 1.8: Impact of tiered memory on workflows with SSD-based swap.

standard memory allocation APIs. Even with colocated memory-intensive tasks, HPC jobs rarely

use the entire allocated memory and often leave a large amount of unused memory during their

life cycles. For instance, our evaluations (Section 8.2) demonstrate that in the case of BERT [74]

model training, during the initial 120 seconds of application execution, ∼55%-80% of the allocated

memory remains idle, thereby becoming cold memory pages. Moving these cold memory pages

to a slower memory tier can allow hot memory pages to reside in fast memory tiers and improve

application-level performance. Furthermore, fast memory tiers reduce the reliance on slow swap

storage. Optimizing access to different memory tiers based on data access patterns ensures that

frequently used data remains in high-speed memory, minimizing the need for costly swaps to slower

persistent storage.

Figure 1.8 shows the impact of allocating tiered memory to different containerized workflows.

The performance of all workflows significantly drops when onboard system memory is limited and

memory pages are swapped to disk-based swap storage. Allocating memory from different tiers

improves the performance of each workflow regardless of the workload type and memory access

pattern, however, bandwidth-intensive tasks benefit more due to additional bandwidth available

over the CXL interface. Moreover, the performance is further improved when the memory pages

are actively swapped out to CXL-based swap space instead of disk-based swap storage.

With the popularity of containerized HPC workflows, there is a need to rethink the management of

tiered memory to support granular memory allocation for workflow tasks, intelligent data placement

techniques for latency-sensitive tasks, and enable fast data sharing between local and remote tasks

from the same or different workflows to increase the resource utilization and reduce the execution

time of HPC jobs. To the best of our knowledge, we are the first to explore tiered memory for
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containerized HPC jobs and propose specialized memory allocation and management policies to

meet workflow tasks’ latency, bandwidth, and capacity requirements. Similarly, HPC jobs scheduled

to execute on GPUs face memory contention, lower throughput, and degraded performance due to

suboptimal scheduling and tiered memory management.

1.4 Objectives and Approach

1.4.1 Infrastructure-Aware Distributed Systems

To address datacenter heterogeneity, we propose architectural improvements and new software

modules in the default TensorFlow platform to make it aware of the availability and capabilities

of the underlying datacenter resources. This will enable TensorFlow to make efficient resource

management decisions, and will result in reduced training time and improve datacenter utilization

by scheduling jobs on idle resources. The proposed Infrastructure-Aware TensorFlow efficiently

schedules the training tasks on the best possible resources for execution, isolates and limit the

impact of busy and straggler worker nodes in large datacenters on the performance of distributed

training. This will significantly improve the performance of the training process by reduces the

overall training time. The proposed design alleviates application developers from managing the

underlying datacenter resources and enables full utilization of the available resources.

1.4.2 HPC Application Support for FaaS Platforms

We address the fixed memory and timeout constraints by developing an effective runtime framework

to determine the appropriate memory and timeout limits for executing serverless functions that

improve the performance of DL jobs by leveraging data splitting techniques, and ensuring that an

appropriate amount of memory is allocated to containers for storing application data and a suitable

timeout is selected for each job based on its complexity in serverless deployments. We implement our

approach using Apache OpenWhisk and TensorFlow platforms and evaluate it using representative

DL workloads to show that it eliminates DL job failures and reduces action memory consumption

and total training time. The proposed design eliminates function execution failures in FaaS to

improve the utilization of datacenter resources and improves the performance of DL workloads by

reducing their function execution time on serverless platforms.
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1.4.3 Fault Tolerant FaaS Execution

We propose a highly resilient and fault-tolerant framework for FaaS that mitigates the impact of

failures and reduces the overhead of function restart. This enables FaaS platforms to tolerate faults

in function execution and invocation guaranteeing exactly once execution and reducing the total

recovery time for failed functions. The proposed design utilizes replicated container runtimes and

application-level checkpoints to reduce application recovery time over FaaS platforms by enabling

faster recovery of serverless applications from faults by using intelligent and dynamic checkpointing

and replication techniques. The replication of container runtimes ensures faster function execution

after a failure by restoring the saved state and data in the replicated runtimes.

1.4.4 Leverage Latest Advancements in Memory Technology

We use the latest advancements in the memory subsystem, specifically Compute Express Link

(CXL), to provide additional memory and fast scratch space for DL workloads to reduce the overall

training time while enabling DL jobs to efficiently train models using data that is much larger than

the installed system memory. We propose a framework, that manages the allocation of additional

CXL-based memory, introduces a fast intermediate storage tier, and provides intelligent prefetching

and caching mechanisms for DL workloads. We implement and integrate the proposed framework

with TensorFlow, to show that our approach reduces read and write latencies, improves the overall

I/O throughput, and reduces the training time.

1.4.5 Leverage Tiered Memory

We leverage tiered memory that includes various memory types categorized into distinct memory

tiers to propose application-attuned intelligent memory management policies and incorporate the

access latency associated with memory tiers to optimize the performance of workflows while incor-

porating the performance characteristics, i.e., sensitivity to latency, bandwidth, and capacity, of

each workflow task. Our policies leverage workflow memory access patterns and system memory

utilization to evict data from memory tiers. Our approach improves tiered memory utilization and

application performance and reduces the cold-start time for large-scale deployments. Similarly, for

GPU-based HPC workloads leveraging tiered memory, we propose an algorithm to mitigate the

contention on the CXL memory, maximize throughput, and reduce the overall data transfer time.

The algorithm addresses the performance bottlenecks of default memory allocation on CXL-enabled
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systems when running multiple jobs on a single multi-GPU system. Our schedule-aware memory

allocation approach incorporates memory requirements on each socket of a multi-GPU system and

provides an efficient memory placement map to mitigate memory contention.
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Chapter 2

Literature Review

The focus of this research is to improve the performance of HPC workloads by introducing heterogeneity-

aware scheduling and resource management to HPC platforms on baremetal and FaaS platforms,

leverage advancements in hardware technologies, use tired memory, and introduce fault tolerance

to FaaS platforms. This section summarizes the prior work that is closely related to these areas.

2.1 DL Platform Optimizations

Many recent efforts have focused on improving the performance of the TensorFlow [27] platform.

Horovod [204] extends the capabilities of using TensorFlow in a distributed setting by improv-

ing inter-GPU communication via the ring reduction method. Similarly, MARBLE [101] proposes

an approach to select an optimal number of GPUs per node for an ML workload. While these

approaches significantly improve TensorFlow, they rely on the node placement approach of Ten-

sorFlow that does not avoid executing ML jobs on busy or straggler nodes. Another effort [124]

addresses the challenge of straggler and heterogeneity for distributed training, but it heavily relies

on the parameter server approach and is not applicable in other distributed training methods.

A recent effort [223] proposes using the message passing interface (MPI) primitives for multi-node

TensorFlow deployments to improve portability without requiring application-level changes. These

efforts address the performance of the TensorFlow platform from a communication perspective but

do not address challenges related to scheduling ML jobs in heterogeneous datacenter environments

with worker nodes having diverse performance profiles.

18
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Tensor-tracing [104] proposes collecting application-level run-time metrics and exchanging them

between ML job executions to improve the execution performance of the TensorFlow applications.

However, this approach incurs additional run-time overhead. Another approach [176] extends the

TensorFlow platform and introduces a hierarchical model for efficient graph placement by incorpo-

rating the heterogeneity in worker nodes. Although it incorporates various compute resources, i.e.,

CPU and GPU, it does not incorporate other performance metrics, e.g., GPU capabilities, memory,

and network latency, while making the placement decisions.

Previous efforts have explored different aspects to improve the performance of the TensorFlow

platform, however, they do not holistically address the challenges of resource and performance

heterogeneity.

2.2 FaaS Optimizations

Serverless computing provides an efficient, reliable, flexible, and scalable infrastructure to a variety

of HPC applications. FaaS enables applications development by using granular functions, offering

benefits similar to modern workflow management systems [221]. This is aligned with recent efforts

to design distributed systems for DL by leveraging data parallelism, model parallelism, or hybrid

strategies [92] to optimize resource utilization and enable resource sharing in HPC clusters.

Open-source FaaS: The widespread adoption of open-source software has become a driving force

for cloud computing [96], and many of these systems benefit from serverless computing which

provides simplified deployment and management for a variety of applications. Open-source FaaS

platforms, e.g., Apache OpenWhisk, Kubeless [16], Fn Project [9], SAND [32], and funcX [60]

offer flexible options for private deployments. However, these platforms do not support dynamic

memory allocation or timeout adaptation.

FaaS for DL Applications: Existing efforts to use serverless computing for DL applications

mainly target lightweight computations, specifically on edge devices [182] and inference engines [21].

Lin and Glikson [159] deploy a cat/dog image classification model on Knative [21] for inference

using TensorFlow, while Ishakian et al. [119] use AWS Lambda to serve large DL models using

TensorFlow. Rausch et al. [195] explore the use of an Edge AI workflow on serverless platforms

and propose a serverless model using edge devices as cluster resources for edge-cloud platforms.

Palade et al. [182] explore the hypothesis that incorporating serverless computing into IoT devices

for small tasks reduces processing time.
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There is a growing interest to deploy serverless functions for tensor-parallel operations and for

end-to-end model training to achieve higher parallelism [125, 218]. Feng et al. [147] argue that

serverless is ideal for training small models, and minimizing data transfer between subsequent

actions improves the performance of the platform. Cirrus [55] expands the design of serverless

architecture to support ML systems. It integrates a stateless server-side back-end and addresses

challenges of resource constraints and workers’ scalability. It addresses memory resource limits by

streaming batches of training data from storage, however, jobs are exposed to failures when training

large models. Our proposed memory estimation strategy addresses this by proactive allocations of

memory before starting model training. Furthermore, Cirrus cannot run TensorFlow workloads in

serverless environments due to resource constraints, whereas, we fully supports DL training using

TensorFlow over serverless platforms. SIREN [229] proposes a distributed ML framework over AWS

Lambda. It deploys cloud actions at each epoch to process training jobs and the scheduler selects

the number of actions and handles memory allocation. This approach is similar to our approach,

however, we assigned actions per mini-batch instead of epoch to eliminate system overload, and

minimize additional data access latency. Moreover, controlling the number of actions eliminates

CPU over/under utilization.

Existing efforts have explored different aspects to ensure the execution of DL workloads with

serverless resources. These efforts propose problem-specific or job-specific designs and do not focus

on improving the resource utilization of serverless platforms.

2.3 Performance Optimizations in Tiered Memory Systems

Many recent efforts have focused on improving the I/O performance of the TensorFlow platform.

In this section, we provide an overview of efforts that are closely related to our contributions.

Several other efforts have been made to optimize the I/O path in DL, such as, [65] which studies the

impact of the BeeGFS filesystem on DL workload performance. NoPFS [80] predicts data access

patterns and performs prefetching and caching based on these patterns. It provides a distributed

caching policy using local and distributed memory to improve the I/O performance of DL jobs.

However, NoPFS does not support CXL-based memory or storage devices that introduce additional

tiers in the memory and storage layer. In [62], the authors study the impact of multi-threading on

the I/O pipelines on improving the performance of DL jobs. Recent efforts also explore optimizing

data loading in the I/O pipelines and pre-processing to accelerate DL applications by utilizing

Nvidia’s Data Loading Library (DALI) [25]. Prisma [166] decouples storage I/O optimization using
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software-defined storage that is composed of a control plane that maintains user-defined caching

policies and a data plane that implements parallel data prefetching. However, it does not leverage

CXL-based memory and storage devices.

Informed Prefetching Data Loader (IPDL) [200] prefetches data from remote data stores to reduce

the I/O wait times in PyTorch based DL and edge computing environments. Similarly, in [138] the

authors employ caching and prefetching techniques to improve the performance of DL training in

cloud environments. Quiver [143] is an informed storage cache designed to improve the performance

of DL jobs on GPU-enabled clusters using secure hash-based addressing to reuse cached data

across jobs and avoid cache thrashing. The approaches are tailored for GPUs and cannot be

applied to all stages of DL jobs. Moreover, they do not explore the use of CXL-based memory and

storage tiers. PreFAM [136] improves the performance of fabric-attached memory architectures

by predicting future data access and prefetching data blocks from fabric-attached memories to

node-local memory resulting in improved access latency. While this approach is similar to ours

in leveraging the latest advancements in memory subsystem to provide additional memory and

optimize data access, however, our approach reduces the uncertainty in predicting future data

access and improves the accuracy of prefetching by integrating with the DL frameworks. We also

propose a caching mechanism to maintain prefetched blocks that will be accessed in the future in

the closest memory tier.

Distributed remote memory accesses can be performed by using fast low latency networks and

protocols involving RDMA, NVMEoF [100] and SEMERU [230]. Remote memory paging system

over RDMA called Infiniswap [99] that provides memory disaggregation. In [126], the authors

use prefetching over NVRAM and DRAM to bridge the I/O gap between hard disk to RAM.

RAMCloud [181] aggregates server memories into a single coherent key-value store and provides low-

latency access to large-scale datasets enabling faster access to large datasets for various applications

including DL workloads. Fanstore [247] provides a runtime file system to optimize DL I/O on

existing hardware and software architecture by distributing datasets to all compute nodes, and

maintains a global namespace. DLFS [249] provides I/O services on top of an emerging industrial

standard NVMeOF leveraging storage disaggregation.

Previous efforts have explored different aspects of DL I/O to improve training and optimize input

pipelines by introducing middleware, runtimes, file system abstractions, and utilizing caching and

prefetching techniques. However, these efforts do not holistically incorporate multiple memory and

storage tiers and do not leverage emerging technologies to optimize the data pre-processing and

input pipelines in DL platforms. In this paper, we propose a holistic framework that improves
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the performance of DL workloads by incorporating and utilizing CXL-based memory and storage

devices in the TensorFlow platform.

2.4 Stateful Serverless Fault Tolerance

Modern applications are composed of several closely connected components launched as functions.

These components communicate and share states using an additional storage layer that requires fine-

grained state management at a low cost [47]. A well-orchestrated state sharing technique is required

to avoid issues with non-atomic updates, concurrency control, duplication, etc. [7]. Existing research

has addressed the design of such data layer for stateful FaaS in three main directions, i.e., function

composition, external storage, and low latency shared memory layer. State sharing between FaaS

functions is achieved through function composition when two consecutive functions are executed

such that the output of the first function is the input of the second function. This sharing technique

is solely applicable when the output size remains within the quotas of the FaaS platform. When

large data transfer is required between functions, FaaS applications rely on external storage such

as AWS S3 [1], Google Cloud Storage [24], IBM Cloud Object Storage [12], etc. Despite their high

data access latency, these solutions are used to facilitate the design of stateful applications and

ensure data persistence in FaaS. In-memory KV stores such as Redis [18], MemcacheDB [175], etc.

are used to provide low latency, high bandwidth, but non-persistent data storage. To facilitate

function auto-scaling, FaaS systems, such as Cloudburst [213] maintain states in auto-scaling and

fault tolerant KV stores as Anna [234]. Distributed shared memory layer provides a trade-off

between latency and data size while improving state management [47, 49]. However, concerns

regarding memory address space isolation [208] are not addressed in such approaches. Similarly,

Faaslets [208] employs WebAssembly software-fault isolation tool to provide isolation while sharing

memory regions between FaaS functions.

Failures are addressed in cloud computing using approaches such as replication [168], checkpoint [35],

checksum [63], self-healing [73], retry [177], safety-bag checks [186], task re-submission [190], etc.

Fault tolerance techniques are grouped into two categories, i.e., proactive and reactive. Proactive

fault tolerance [160] involves preemption migration [85], self-healing [73], periodically reboot with

a clean copy [43], or load balance when resource utilization threshold is reached [58]. Reactive

fault tolerance [28] includes techniques, such as, retries [177], task re-submission to the same or a

different node [190], reconfiguration [186], etc. Proactive and reactive fault tolerance techniques

are often used together to improve system reliability [194]. We combines both techniques by pre-

emptively saving checkpoints and maintaining runtime replicas during execution, and completing
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the remainder of the workload execution in a replica after failure.

The most targeted types of failures in serverless computing are related to resource limitations on

FaaS platforms [94]. Existing research addresses hardware and network issues but hardware failures

are mainly explored from the perspective of cloud providers [224]. Serverless platforms have built-

in fault tolerance techniques such as check-pointing [246], retries [212], object replication [48], etc.

However, function failure can still occur due to memory, timeout, network, concurrency, and user

quotas. These failures are more detrimental to stateful applications due to the cost associated with

loss of computation. Existing efforts provide fault tolerance and reliability to stateful applications

by integrating object storage, KV stores or optimizing file systems [202] to facilitate function retries

or re-submission. Moreover, log-based techniques that monitor execution logs are explored for fault

tolerance and data consistency [123]. Monitoring logs facilitate the detection of function states

and the coordination of chained FaaS applications. To further optimize state management for

data consistency guarantees, transaction processing techniques are used to control read and write

operations on intermediate data [245]. These techniques involve data staging and commit after

transaction validation. Nevertheless, transaction processing techniques add an overhead to the

system [68]. Similarly, as more FaaS applications depend on network-based services, node failures

cause requests to be re-executed multiple times [142]. Two strategies, i.e., request replication and

active standby are proposed [54] to improve fault tolerance. Request replication involves having

multiple replicas to execute the same request and returning results to the client once any of the

replicas successfully returns. Active standby refers to maintaining one passive instance whenever

there is an active function. The passive function is activated when the function fails and triggers

the creation of a new passive instance. These approaches proved better than function retries, but

can yield high expenses as more requests are submitted. Request replication results in multiple

unused function instances, and one passive instance becomes a bottleneck with multiple consecutive

function failures.

Our dynamic replication and checkpointing approach adjusts the replication factor and checkpoint-

ing frequency to provide improved fault tolerance and reduced cost as compared to these approaches.

These shortcomings in existing approaches necessitate further exploration efforts to improve fault

tolerance and reliability in FaaS.
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2.5 Tiered Memory Systems

Tiered memory systems in HPC address the increasing memory capacity, bandwidth, and latency re-

quirements of HPC workflows. These systems leverage different memory technologies, e.g., DRAM,

PMem, and CXL-based memory, where each memory type offers distinct performance characteris-

tics [89, 149]. DRAM provides high-speed and low-latency access while PMem offers non-volatile

memory and bridges the gap between DRAM and storage, enabling data persistence even during

power loss [113,137,145]. CXL memory provides fast, high-capacity, and low-latency access to ap-

plications enhancing scalability and resource pooling in tiered memory systems for improved HPC

performance [97,153,155,237]. Tiered memory systems also improve overall memory utilization by

intelligently allocating data to the most appropriate tier based on access patterns and performance

requirements [133, 161, 206]. However, neither the applications nor the platforms are optimized to

leverage the true potential of tiered memory systems resulting in degraded application performance

and system utilization.

Tiered memory management approaches have been extensively explored by several studies such

as Nimble [235], TPP [171], HeMem [196], Pond [155], AutoTM [110] etc. These approaches per-

form application-agnostic memory allocations and page movement across various memory tiers.

However, these techniques result in degraded performance for colocated HPC workflows with di-

verse memory requirements. Moreover, they perform strictly hierarchical page movement and do

not perform concurrent tiered memory allocation to optimize bandwidth through parallel inter-

connects. Other efforts [127, 134, 144, 197, 205] either solve the challenge of memory management

for terabyte-scale applications (e.g., HM-Keeper [197]) or partially optimize and automate memory

management across multiple memory tiers. Similarly, MTM [198] performs application-transparent

page management based on profiling, multi-tiered page migration policy, and huge page awareness.

Our approach extends on the general design ideas of the above state-of-the-art tiered memory ap-

proaches, and incorporates applications’ memory characteristics for efficient memory management.

Lastly, none of these approaches are optimized for GPU-based workloads and do not cater for

pinned memory allocated on CXL-enabled multi-GPU setups, and the bandwidth bottleneck of

CXL memory connected over PCIe lanes.
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Infrastructure-Aware TensorFlow for

Heterogeneous Datacenters

3.1 System Design

To make the TensorFlow platform aware of the underlying datacenter resource heterogeneity we

extend the platform that enables it to catalog and monitor datacenter resources. Our approach [40]

enables the TensorFlow platform to utilize resource metrics from worker nodes such as CPU, GPU,

memory, and network utilization to make informed scheduling decisions for DL jobs. Figure 3.1

shows the proposed architecture of the Infrastructure-Aware TensorFlow platform. The software

modules developed as a part of this research are described as follows:

Figure 3.1: Infrastructure-Aware TensorFlow Architecture
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Workload Specification Module: This module allows application developers to provide re-

source requirements for the DL job that ensure guaranteed execution by extending the TensorFlow

configuration specification and adding a section called resources. Developers can specify the

number of required CPU/GPU, memory, and network bandwidth. These resource requirements

are processed and used by the Infrastructure Module for identifying appropriate worker nodes to

run the given DL job.

Resources Module: This module captures the compute, accelerator, memory, and network re-

source information of workers and stores them in the database under distinct tables. The in-

formation from each worker table is used to build a list of available worker nodes for distributed

execution. This list contains the hostname, IP address, and optional port numbers that are required

for monitoring worker resources. It uses the information to populate each worker table with in-

stalled hardware resources, i.e., CPU/GPU count, capabilities, system memory, and network speed.

The Resources Module automatically detects changes in the installed hardware on each worker and

updates the record accordingly by utilizing the monitoring capabilities provided by the Monitoring

Module which continuously monitors resources on each worker.

Infrastructure Module: This module is the core component of the Infrastructure-Aware Ten-

sorFlow tasked with making informed scheduling decisions for DL job execution. The default

TensorFlow does not leverage the latest resource utilization metrics of the worker nodes and sched-

ules DL jobs on sub-optimal worker nodes with busy CPU and GPU resources, limited available

memory, and network bottlenecks. The Infrastructure Module enables TensorFlow to incorporate

the latest resource utilization metrics to make an informed decision while selecting a suitable worker

to schedule the given DL job. The Infrastructure Module categorizes worker nodes as a straggler if

the historic and current resource utilization exceeds the predefined threshold and the information

is stored back in the database and later utilized during the worker selection process.

Monitoring Module: We have developed a lightweight Python utility that periodically col-

lects the CPU, GPU, memory, and network utilization metrics, and stores them in the configured

database. The initial monitoring frequency is set to 10 seconds, however, the frequency is automat-

ically adjusted to reduce the monitoring overhead on worker nodes. Similarly, historical monitoring

data for the workers is stored in the database, which is used to identify straggler worker nodes by

the Infrastructure Module. This information is also correlated with the current resource utilization

metrics reported by the Monitoring Module and the job completion statistics stored in the database.
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This data is also used to determine if a given worker node can experience high resource utilization

or resource contention during job execution.

Figure 3.2: Internal workflow of modules included in our proposed design.

The internal workflow of Infrastrucutre-Aware TensorFlow is shown in Figure 3.2. Once all mod-

ules are initialized and synchronized with the database, the Resources Module starts capturing

information of all worker nodes followed by the Monitoring Module capturing the current resource

utilization as instructed by the Resources Module. The Workload Specification Module accepts

new job submissions and the Infrastructure Module fetches the up-to-date information about the

underlying infrastructure from the database and selects appropriate workers to execute the given

workload. This decision, along with the job execution information, is stored back in the database

for future use.

Algorithm 1 outlines the procedure employed by the Infrastructure Module to select suitable worker

nodes for executing a given DL job. Initially, it retrieves the list of worker nodes from the database

along with their installed resources to identify straggler nodes that are excluded from the list of

available workers along with the worker nodes lacking sufficient resources to execute the DL job.

Then the current resource utilization of each worker node is accessed, excluding those surpassing

an adaptive threshold derived from historical job profiling data for each job. The remaining nodes

undergo a weighing and scoring process based on resource utilization metrics, utilizing predefined

numeric multipliers as weights. These scores are aggregated for each node, with higher scores

indicating lower resource utilization. The node with the highest aggregated score, signifying the

most suitable node, is selected to execute the DL job, aiming for balanced resource utilization

across all nodes. Finally, the final list of worker nodes is sorted based on the aggregated scores,

and the required number of nodes are selected based on the resource specifications of the DL job.
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Algorithm 1: Workers Selection in the Infrastructure-Aware TensorFlow.
Input: worker nodes (N), job resource requirements (R)

Output: List of ideal worker nodes.

1 begin

2 Get list of straggler nodes (stragglers)

3 Get cpureq, memreq, netbw, gpureq

4 Get cpuwt, memwt, netwt, gpuwt

5 Get cputh, memth, netth, gputh, gpumemth

6 for all workers nj ∈ N do

7 if nj ∈ stragglers then

8 Skip this node and continue to the next node

9 else

10 Retain worker node

11 Get cputot, memtot, netbw, gputot, gpumemtot

12 if cputot ≥ cpureq AND memtot ≥ memreq AND netbw ≥ netreq AND gputot ≥ gpureq then

13 Retain worker node

14 else

15 Skip this node and continue to the next node

16 Get cpuutil, memutil, netutil, gpuutil, gpumemutil

17 if cpuutil ≥ cputh OR memutil ≥ memth OR netutil ≥ netth OR gpuutil ≥ gputh OR

gpumemutil ≥ gpumemth then

18 Skip this node and continue to the next node

19 else

20 Retain worker node

21 score[nj ] = cpuutil × cpuwt + memutil ×memwt + netutil × netwt + gpuutil × gpuwt

22 Sort score for all workers in descending order

23 Select and return top w workers from sorted list, where w represents the number of workers specified in R

3.2 Performance Evaluation

3.2.1 Testbed Setup

Our evaluation setup consists of eight Dell PowerEdge R730 servers having two 2.30 GHz Intel

Xeon E5-2670 v3 processors, 128 GB main memory, two NVIDIA P100 GPUs, and a 10G net-

work interconnect between the servers. We run a distributed TensorFlow environment on these

servers using Ubuntu 18.04 LTS server operating system. We use multiple TensorFlow jobs to

create background noise on the TensorFlow worker nodes. We use MNIST [151], ImageNet [71]

and CIFAR10/100 [139] datasets and Keras [64], ResNet32/56 [105], Inception-V1 [215] and Mo-
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bileNet [112] models to evaluate the performance of distributed training using different execution

environments. For evaluating our proposed Infrastructure-Aware TensorFlow platform on vary-

ing load scenarios, we overload the servers by increasing the CPU, GPU, memory, and network

utilization. To this end, we use netem [107] along with ethtool [8] to simulate different network

constraints on the links between the master and worker nodes. Moreover, we use stress [19],

which is a Linux utility to overload CPU and memory on the worker nodes to mimic the behavior

of stragglers and busy nodes in the datacenter.

3.2.2 Execution Environments

We define three TensorFlow execution environments in our evaluation where each environment

showcases various capabilities of the TensorFlow platform to address changing resource availability

in datacenter settings. These environments are:

1. Unconstrained TensorFlow Environment: This environment is based on an ideal sce-

nario where a single job has dedicated access to the worker node with no resource constraints.

We use the default TensorFlow platform to run the given DL job in this environment.

2. Constrained TensorFlow Environment: This environment is subjected to resource con-

straints, such as increased CPU, GPU, memory, and network bandwidth utilization of the

heterogeneous datacenter resources. We use the default TensorFlow platform to run the given

DL job in this environment with background jobs that utilize 10% CPU, 20% GPU, 4 GB

of main memory, and 2.6 GB of GPU memory to introduce constraints on the worker nodes.

We run multiple instances of these background jobs to mimic different load scenarios.

3. Infrastructure-Aware TensorFlow Environment: This is the same as the constrained

TensorFlow environment, however, we use a hand-tuned implementation of the proposed

Infrastructure-Aware TensorFlow platform to run the given DL job.

3.3 Performance Results

3.3.1 Training Makespan using Multiple Nodes:

We ran several experiments using a combination of DL models and datasets with varying numbers

of training iterations, batch sizes, and epochs and reported the total execution time for the studied
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execution environments. Figure 3.3 shows the performance comparison of the studied environments

using a batch size of 64 to train the studied models. We note that training takes the longest in

the constrained environment for all models, primarily due to resource limitations on worker nodes.

Additionally, the default TensorFlow platform lacks awareness of resource constraints, often utiliz-

ing nodes with limited resources for job execution. The Infrastructure-Aware TensorFlow utilizes

resource availability and constraints to avoid scheduling jobs on sub-optimal worker nodes. We

observe similar performance trends when using the training batch size of 128 and 256, as shown in

Figure 3.4 and Figure 3.5, for the models used in our evaluation. Figure 3.6 shows the performance

comparison using the batch size of 512. Here, we observe that the Inception-V1 model fails to

execute using the constrained TensorFlow environment because of the resource constraints. On

average, the execution time of the Infrastructure-Aware TensorFlow for the studied models is 37%

more than the unconstrained (dedicated) environment. However, on average, the execution time for

the Infrastructure-Aware TensorFlow is 24% less than the constrained TensorFlow environments for

the studied models. This occurs because the straggler node delays the training process, leading to

prolonged training times in the constrained TensorFlow environment. As other worker nodes wait

for the straggler node to aggregate model parameters, they experience execution stalls, ultimately

diminishing the overall performance of DL jobs.
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Figure 3.3: Training performance of studied ex-

ecution environments with 64 batch size.
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Figure 3.4: Training performance of studied ex-

ecution environments with 128 batch size.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Keras 
 (MNIST)

Resnet56 
 (CIFAR10)

Resnet32 
 (CIFAR10)

Resnet56 
 (CIFAR100)

Resnet32 
 (CIFAR100)

Inception-V1 
 (CIFAR10)

MobileNet 
 (ImageNet)

T
o

ta
l 
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Unconstrained TensorFlow
Constrained TensorFlow
Infrastructure-Aware TensorFlow

Figure 3.5: Training performance of studied ex-

ecution environments with 256 batch size.
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Figure 3.6: Training performance of studied ex-

ecution environments with 512 batch size.
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Overall, Infrastructure-Aware TensorFlow reduces the overall execution time by up to 54% as

compared to the default TensorFlow platform for scenarios when a limited amount of compute,

graphics processing unit (GPU), memory, and network resources are available at the worker nodes.

3.3.2 Impact of Available Network Bandwidth:

To study the impact of network bandwidth on the training performance for the studied execution

environments, we limit the available bandwidth on the network link from 1 Gbps to 100 Mbps

between workers. Figure 3.7 shows the result of this experiment using ResNet32 with the CIFAR10

dataset. We observe that the overall training time increases significantly as the available network

bandwidth decreases. The default TensorFlow platform does not incorporate busy network links

in scheduling the training jobs to the worker nodes increasing the overall model training time

as the network link gets fully congested. However, the Infrastructure Module of our proposed

platform addresses this constraint by incorporating the available bandwidth metric reported by

the Monitoring Module assigning appropriate weights during the scoring phase. This enables our

TensorFlow platform to exclude a possibly powerful worker from executing the DL job as it will

increase the overall training time due to network congestion between the worker and the master

nodes. On average, the proposed TensorFlow platform results in a 42% reduction in the overall

training time when the available network bandwidth is between 100 Mbps and 700 Mbps.
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Figure 3.7: Impact of decreasing network bandwidth on execution time.
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3.3.3 Impact of Increased Network Latency:

We study the impact of network latency on the performance of the studied DL models using un-

constrained, constrained, and Infrastructure-Aware TensorFlow execution environments. Workers

that are physically located far away from the master node add additional latency, which leads to

an increase in the overall execution time. Figure 3.8 shows the result of this experiment where

additional network latency is added to one of the worker nodes using the netem tool to mimic the

behavior of a straggler node for a ResNet32 model using the CIFAR10 dataset. An induced network

latency of 0 millisecond for the constrained TensorFlow represents the unconstrained TensorFlow

environment. As the network latency increases, the overall training time increases proportionally

showing that the distributed training is highly sensitive to variations in the network latency be-

tween the worker and the master nodes. Infrastructure-Aware TensorFlow handles heterogeneous

network latencies between the worker nodes and avoids scheduling jobs on workers with increased

network latencies. The Infrastructure Module accounts for the latency between the nodes and ex-

cludes straggler nodes from the list of available workers. We also observe that increased latency

causes additional time to fetch the updated model parameters from the worker nodes. However, in

the unconstrained TensorFlow environment, the worker nodes are selected regardless of their cur-

rent network latencies, which leads to increased overall model training time. Overall, the proposed

Infrastructure-Aware TensorFlow performs 52%, 54%, 41%, and 36% better than the constrained

TensorFlow environment for model training when using the batch size of 64, 128, 256, and 512,

respectively, with increased network latency between the worker and the master node.
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Figure 3.8: Impact of increasing network latency on training time.
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3.3.4 Impact of GPU Utilization:

To study the impact of available GPU resources on training, we run resource-intensive TensorFlow

jobs in the background to overload the GPU resources at the worker nodes simulating a shared

environment. We use nvidia-smi [17] to monitor the GPU core and memory utilization to achieve

specific levels of resource saturation. Figure 3.9 shows the result as we compare the constrained

and Infrastructure-Aware TensorFlow platforms with ResNet32 model with the CIFAR10 dataset.

A GPU utilization of 0% represents the unconstrained TensorFlow environment since no jobs are

running in the background. For the constrained TensorFlow environment, the total execution time

increases as the GPU is overloaded until enough GPU memory is available to successfully run the

given DL job. We also observe that as the amount of available GPU resources is reduced, the train-

ing process slows down increasing the overall execution time. However, the Infrastructure Module of

the Infrastructure-Aware TensorFlow accounts for the GPU resource availability by ensuring that

the training job is not scheduled on the worker nodes with overloaded GPU resources. Overall,

the Infrastructure-Aware TensorFlow performs 5%, 7%, 9%, and 8% better than the constrained

TensorFlow environment on average for model training using the batch size of 64, 128, 256, and

512, respectively, when the GPU resources are shared between multiple DL workloads.
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Figure 3.9: Impact of background GPU utilization on training time.
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3.4 Summary

To summarize, we introduced an Infrastructure-Aware TensorFlow platform, that enhances the

TensorFlow framework by integrating new software modules that enable developers to specify

resource requirements for DL jobs, capture heterogeneous resources on worker nodes, consider

real-time monitoring data, and schedule DL jobs accordingly. Our evaluation demonstrates that

Infrastructure-Aware TensorFlow reduces overall execution time by up to 54% over the default

TensorFlow execution environment in scenarios with limited compute, GPU, memory, and network

resources.



Chapter 4

On Realizing Efficient Deep Learning

Using Serverless Computing

4.1 System Design

To address the limitation of fixed memory allocation and static timeout limit of each function

execution in serverless platforms, we propose Distributed Serverless Deep Learning (DiSDeL) [42],

which is an efficient runtime framework for running long-running DL jobs on serverless platforms.

DiSDeL ensures that the appropriate memory and timeout limits are allocated to each function.

DiSDeL improves performance by leveraging data parallelism to assign jobs to concurrent actions,

uses an in-memory data store to maintain the intermediate states, and aggregates intermediate

outputs to generate the final parameters of the trained model.

Figure 4.1: High-level architecture of DiSDeL.

35
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A high-level architecture of DiSDeL is shown in Figure 4.1. The system interacts with two

main external components, i.e., the core and the container runtime of the serverless platform

i.e. Apache OpenWhisk. DiSDeL includes self-contained modules exposing the core functionality

e.g., configure, schedule, and process requests, as APIs for future work. DiSDeL includes two

core components, i.e., a controller and a job executor, which drive the execution flow as shown in

Figure 4.2. The submitted request contains the model name, training dataset, batch size, and the

number of epochs. The controller validates the request, fetches the dataset attributes, creates a

package to wrap the entire composition, and starts the training process.

Figure 4.2: Execution flow of our framework for distributed DL using serverless.

Controller: It is the main component of DiSDeL and contains three main sub-components, i.e.,

request validator, event manager, and aggregation service. All operations, e.g., request validation,

application parameters configuration, and collection of execution results are coordinated by the

controller. The controller splits the target dataset into smaller chunks to fit into individual actions

and estimates memory for each action from the job executor based on the required number of

actions. Similarly, the input dataset is divided into equal parts for balanced workload distribution.

The number of deployed containers cd > 1 is initially set to its minimum possible value 2, which

is dynamically adjusted based on the estimated action memory. Whenever the estimated memory

me > M , where M represents the configured action memory limit, the number of containers is

increased by ⌈(me −M)/M⌉, and is resubmitted for memory estimation. Once a valid allocation

scheme is determined, the controller orchestrates fork-join operations and returns the execution

results to the user.
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Algorithm 2: Execution workflow of Event Manager.
Input: model, data, batch size (bch), #. of epoch (epc).

Output: Status of the execution (Succeeded OR Failed OR Error).

1 begin

2 parse DL job request request

3 if is valid(request) then

4 Retrieve model, data, bch, and epc from request

5 else

6 Return Error

7 Get job execution history from file execution.log

8 if job not in execution.log then

9 Estimate memory ma and timeout etime

10 Determine aggregation scheme agg

11 Get #. of training ntr and #. of aggregation nagg actions

12 else

13 Load ma, etime, and agg from execution.log

14 Invoke ntr training actions concurrently

15 for all cluster ncst ∈ nagg do

16 for all action nidx ∈ ncst do

17 join nidx

18 Invoke aggregation action of cluster ncst

19 Return status Succeeded OR Failed

Request Validator validates incoming requests, validity, completeness, and verification of request

parameters, and whether the arguments contain required information such as model name, training

dataset, batch size, and the number of epochs. Once validation is complete the request is forwarded

to the Event Manager.

Event Manager coordinates all events between the controller and the job executor as illustrated

in Algorithm 2. It interacts with other components to request, assign, and collect responses to

various tasks, e.g., memory estimation, timeout assignment, number of containers to launch, job

submission to OpenWhisk, and coordinates responses back to the user.

Aggregation Service determines the number of aggregation actions to launch to meet the memory

requirements of training actions. Starting with level-1 aggregation, this service determines if one

level-1 container is sufficient to handle the workload from all level-0 containers. If the memory

requirement to aggregate all level-0 containers exceeds the current allocation to level-1 containers,

then two or more level-1 containers are launched along with one additional level-2 container for

all level-1 containers. This process continues until the entire aggregation process is completed.
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The training containers are divided into logical clusters based on the total number of deployed

containers with each cluster assigned to an aggregation action launched as soon as the containers

in that cluster complete the training process. Each aggregation action updates its copy of the model

before the controller launches the highest-level aggregation container to complete the aggregation

service and store the final trained model in the data storage.

Job Executor is tasked with estimating the memory requirement of each action by considering

model and dataset attributes, determining appropriate timeout, and analyzing various failure sce-

narios. It handles failures associated with insufficient memory allocation to run the job. The Job

Executor contains a Memory Estimator, Timeout Manager, and Failure Manager to perform these

tasks. The memory estimation depends on the configuration of the serverless platform, i.e., max-

imum action memory, and container pool memory. Therefore, in addition to parameters e.g., the

batch size, and input data dimensions which are used to determine the total number of activations

and parameters generated during DL jobs, our memory estimator correlates the action memory

and the container pool memory limits to ensure that the estimated memory does not exceed the

system memory limit. Similarly, the memory required by a DL job also depends on the model,

dataset, runtime environment, and execution logs stored in the container.

Timeout Manager analyzes the job and utilizes the historical job execution information to assign

an appropriate timeout limit and stores the execution time of submitted jobs to build execution

history. This ensures that the job is executed once without failure due to insufficient timeout. If

historical execution data is not available the Timeout Manager considers the expected computation

cost ecost provided by the user. ecost is used along with the estimated memory to determine an

expected maximum execution time etime = (ecost/cd)/(µ × me). etime is used for training and

aggregation actions. This does not guarantee successful execution since the timeout is only based

on the user’s expected computation cost. If this computation cost is not provided, the Timeout

Manager applies the maximum action timeout of the serverless framework. DL frameworks, e.g.,

TensorFlow, provide a mechanism to track the execution time of each epoch, which can be recorded

by profiling one or two initial epochs and used to estimate the timeout for a particular job. However,

the profiled execution time varies depending on many factors, such as the load on each server [40]

and leads to inaccurate estimations. Moreover, large training jobs require a significant amount of

time for profiling. Our approach avoids this overhead by estimating timeout before an action’s

execution.

Failure Manager collects errors during execution to detect anomalies due to the predicted memory

and timeout allocations. It analyzes job execution logs and the physical resource utilization to
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identify the cause of a failure, i.e., container out-of-memory (OOM) and out-of-time (OOT) errors.

Based on the root cause the memory and timeout allocations are adjusted and stored for future

executions of the same model.

Following the initial memory estimation, the Event Manager triggers DL job training actions on

the provided dataset. To ensure timely completion and to meet the accuracy targets, a bi-objective

optimization approach minimizes the loss function cost is used. Each action incurs a cost denoted

by µ, representing memory consumption multiplied by execution duration. With cd containers

deployed, total memory consumption sums the memory used by each action. The execution duration

is determined by the time difference between the latest and earliest container’s finish and start times.

Both memory consumption and execution time are multiplied by the unit cost µ to obtain the total

job cost. Each action is independently run and the performance of ongoing jobs is evaluated at

the end of each epoch to determine if the required loss is achieved. A custom callback function is

developed to define an early stopping criterion for each action. The training actions check if the

loss value la has reached a certain threshold ϵ at the end of each epoch. The designed optimization

problem minimizes the total cost fcost and the mean loss obtained by averaging the loss la of

each action. Next, we apply the ϵ-constraint method [172] incorporating the average loss objective

function as a constraint.

4.2 Performance Evaluation

4.2.1 Testbed Setup

Our testbed consists of a cluster of 8 bare-metal servers from the Chameleon testbed [131] with

each server having two Intel Xeon Gold 6126/6240R/6242 processors containing 192 GB of main

memory and running the Ubuntu 18.04 LTS server operating system. We deploy OpenWhisk on a

Kubernetes cluster along with Docker, OpenWhisk CLI (wsk), CouchDB [36], and Redis to store

the model weights.

Models: We use popular DL models including InceptionV3 [216], ResNet50/152 [106] and VGG-

16 [210]. InceptionV3, developed by Google, is a Convolutional Neural Network (CNN) renowned

for object classification in computer vision. ResNet, an Artificial Neural Network (ANN), integrates

identity shortcut connections via skip connections, allowing for faster training. Various ResNet

variants exist, differing in layer count and weight training. VGG-16, another CNN architecture,

boasts 16 layers and approximately 138 million parameters. Each model is compiled with categorical
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cross-entropy loss function [167] and Adam optimizer [135], serving as standard benchmarks for

assessing TensorFlow platform optimizations and larger DL models.

Datasets: We used three popular datasets from the TensorFlow catalog: 1) MNIST [152] dataset

of size 33.55 MB containing handwritten digits used for image classification jobs. 2) CIFAR10 [140]

of size 308.28 MB containing images from ten categories commonly used to train machine learning

and computer vision models. 3) DMLAB [6] of size 3221.22 MB contains 360×480 color images

used to evaluate the distance between an agent and objects in a 3D environment.

4.2.2 Execution Environments

We use the following three execution environments to analyze the performance of DiSDeL:

• Default Serverless TensorFlow : This is the default TensorFlow running over the Open-

Whisk platform. This scenario directly executes the user’s request on OpenWhisk without

any optimization or middleware to control the deployment of action containers. We assume

that appropriate memory and timeout values are selected using multiple retries to successfully

execute DL jobs in a single attempt using one container. We consider this environment as

a baseline serverless environment because this environment avoids run-time failures due to

inadequate memory and timeout allocation.

• DiSDeL: This implementation of OpenWhisk includes our proposed modules. It dynamically

selects suitable memory and timeout allocation for each action.

• Bare-metal TensorFlow : In this environment, we run DL jobs on a dedicated bare-metal

cluster where no limit is imposed on the amount of memory, and DL jobs are allowed to run

till completion. This is the ideal scenario where the entire server is available to run the given

DL job. Distributed Training on a single server uses mirrored strategy [183] on multiple local

CPUs concurrently. Distributed training on a cluster uses a multi-worker mirrored strategy [5]

that utilizes multiple distributed CPUs.
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4.3 Performance Results

4.3.1 Impact on Memory Footprint and Execution Time

We train the studied DL models using popular datasets and report the memory footprint Figure 4.3

of all execution environments for the studied models and datasets. DiSDeL successfully executes

the submitted jobs staying within 11.5%, and 8.9% of the total memory consumption of Bare-metal

TensorFlow and Default Serverless TensorFlow approaches, respectively. DiSDeL consumes more

memory due to the replication of DL models in each container and the batch splitting approach

of DiSDeL allows each action to consume less than half of the total memory of Default Server-

less TensorFlow and Bare-metal TensorFlow . For example, using DiSDeL, the ResNet50 model

is successfully trained with CIFAR10 using two independent containers and consumes 44% and

39% less memory over the Default Serverless TensorFlow and Bare-metal TensorFlow approaches,

respectively.
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Figure 4.3: Memory footprint for the three execution environments; Batch size=64, Epochs=50.

Figure 4.4 shows the total execution time of DL jobs on all execution environments. DiSDeL com-

pletes the DL job in significantly less time than Bare-metal TensorFlow and Default Serverless

TensorFlow because of the efficiency of concurrent DL job executions on a serverless platform.

The memory estimation for each action in DiSDeL is fine-tuned based on the model and dataset

type, enabling simultaneous execution of multiple actions. For example, Bare-metal TensorFlow

and Default Serverless TensorFlow trained the InceptionV3 model over 60,000 data records of the

MNIST dataset, but DiSDeL launched two concurrent containers for training on 30,000 data records
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Figure 4.4: Total execution time for stud-

ied execution environments; Batch size=64,

Epochs=50.
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Figure 4.5: Training makespan of InceptionV3

on MNIST for the three execution environ-

ments.

each to reduce the overall training time. With a reduced data size for processing, containers in

DiSDeL complete data pre-processing within 16 seconds while Bare-metal TensorFlow and Default

Serverless TensorFlow take 30 and 20 seconds, respectively. Overall, both training actions com-

plete their processing in 143.7 and 144.3 seconds. Despite the additional overhead caused by the

aggregation containers, DiSDeL yields an average training time reduction of 46%, and 40% over

Default Serverless TensorFlow and Bare-metal TensorFlow , respectively.

4.3.2 Impact on the Training Makespan

We evaluate the makespan of a DL training job on the three execution environments to examine

their memory usage as training progresses. Figure 4.5 shows the amount of memory used at job

submission, after data pre-processing, and after model fitting. We observe a memory consumption

of approximately 280 MB across all environments at job submission due to the memory consumption

of different software modules. While the data pre-processing phase completes within the same time

and consumes the same memory for Default Serverless TensorFlow and Bare-metal TensorFlow ,

DiSDeL requires less time and memory due to high parallelism. For all environments, we observe

a significant increase in memory consumption during the training phase for storing weights, biases,

and other hyper-parameters required by the training process. DiSDeL requires less memory per

action and leads to a reduced overall execution time by using concurrent actions.

4.3.3 Impact of Memory Utilization on Execution Time

Apache OpenWhisk imposes memory limits on the action and the container pool and assigns a

default memory limit of 2 GB to container pools, which cannot be adjusted dynamically for each
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Figure 4.6: Impact of system load on training

time of ResNet152 on DMLAB dataset.
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Figure 4.7: Memory footprint of a batch of eight

jobs in all three execution environments.

job. Typically DL jobs require much more memory compared to the container pool limit. Figure 4.6

shows the result of running a DL training job with DMLAB using four training actions in DiSDeL.

An action consumes 32 GB of memory and the container pool memory limit was set to 70 GB.

Once the DL job is submitted an action container is launched, which consumes 49% of the container

pool limit. At this point, another container is launched which consumes the entire pool memory,

and further actions are queued until one of the previous actions is completed. Hence, lower pool

limits result in queuing of action increasing the overall execution time. Increasing the pool limit

to 140 GB enables more actions to run concurrently reducing the total execution time by 52.3%.

DiSDeL efficiently allocates the appropriate number of containers and ensures that the underlying

hardware resources are not exhausted while concurrently running multiple actions.

4.3.4 Impact of Batch Jobs on Execution Time

To evaluate the behavior of the three execution environments in a shared multi-tenant setup we

submit a batch of eight DL jobs and show its impact on memory and total execution time. The

action memory limit was set to 70 GB and the container pool memory limit to 190 GB to analyze

the performance of DiSDeL when the available memory is the same as of Bare-metal TensorFlow .

In Figure 4.7, sufficient memory resources allow DiSDeL to deploy several actions to execute DL

jobs. A higher variation in memory footprint was observed with DiSDeL due to data parallelism

that enables concurrent invocation of short-lived functions. Overall, DiSDeL achieves 55% and

29% faster execution of batch jobs compared to Default Serverless TensorFlow and Bare-metal

TensorFlow , respectively. This shows higher scaling capabilities and confirms the effectiveness

of DiSDeL in a multi-tenant environment as compared to Bare-metal TensorFlow and Default

Serverless TensorFlow .
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4.4 Summary

In summary, the evaluation DiSDeL highlights the advantages of dynamically adjusting resource

allocations, particularly memory allocation and timeout limits, to enhance the performance of DL

workloads in serverless settings. While Default Serverless TensorFlow runs actions concurrently, it

doesn’t consider the impact on system resources, resulting in over-utilized and unresponsive servers.

Conversely, DiSDeL limits concurrent container launches, employs batch splitting to distribute less

work per action, and reduces overall memory consumption, effectively optimizing the container pool.

Moreover, DiSDeL reduces the training time by up to 40% as compared to Bare-metal TensorFlow .

In a shared multi-tenant setting, DiSDeL reduces the training time by 55% and 29% on average as

compared to Default Serverless TensorFlow and Bare-metal TensorFlow , respectively.



Chapter 5

Exploiting CXL-based Memory for

Distributed Deep Learning

5.1 System Design

To improve the performance of DL workloads, we present a framework, DeepMemoryDL [39], that

efficiently leverages storage and memory tiers to prefetch and cache training data proactively. We

emulate CXL memory to provide additional memory and fast scratch storage space to workloads

to reduce overall training time. DeepMemoryDL is integrated with the TensorFlow platform to

improve the performance of its I/O requests for data pre-processing and training stages.

Figure 5.1: Proposed architecture of DeepMemoryDL.

Figure 5.1 shows the high-level architecture of the DeepMemoryDL framework. We develop a

45
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lightweight Resource Gatherer Module that collects the compute, memory, network, and storage

resources of all servers included in the cluster. We implement a Workload Analyzer Module that

analyzes the submitted DL workload and breaks down the job in I/O and compute phases. More-

over, we develop a Prefetcher Module that prefetches data and loads it in the main memory before

it is required by the processing thread to minimize I/O stalls.

Workload Analyzer Module: This module analyzes the submitted DL jobs to isolate the I/O

operations from the computation phases. It is responsible for the following tasks:

• Analyze DL Job: The submitted DL jobs are analyzed to capture the DL model, param-

eters, dataset, epochs, batch size, data pre-processing stage, and model training steps. It

also identifies if TensorFlow’s native checkpoint or data caching option is enabled for the

submitted job.

• Separate Data Processing from Execution: The submitted DL jobs are divided into data

processing and model execution phases. In the data processing phase, the dataset is loaded

and pre-processed, while in the model execution phase, the model is trained, validated, and

evaluated.

• Analyze Dataset and Batches: The dataset shards assigned to each TensorFlow worker

are tracked at the start of the training process and used to estimate memory and storage

allocations on each worker to accurately determine the completion time for prefetching the

required data in memory tiers.

Core Module: It is the main component of DeepMemoryDL and divided into manager and

workers. The manager resides on the same node as the master node in TensorFlow and supervises

all operations of DeepMemoryDL. The Core Module computes the batching schedule for each worker

and shares it with each worker along with metadata that specifies the location of each batch for

the corresponding epochs. It instructs workers on when to launch the prefetching threads and the

location of each batch based on the memory and storage tiers available at each worker for proactive

prefetching to memory tiers. The workers reside at the worker nodes and perform tasks such as

monitoring local buffers, prefetching, and caching the required data. The Core Module exposes an

API that is used by the DL workloads to request memory space and once the request is received,

DeepMemoryDL fetches the latest resource availability data, computes the ideal execution strategy,

and services the request.
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Figure 5.2: Control flow between DeepMemoryDL components.

Figure 5.2 shows the interactions between various components of DeepMemoryDL. Once the DL

job is submitted to the Core Module, it collects information on the existing memory and storage

tiers from the Resource Gatherer Module. Concurrently, the Workload Analyzer Module analyzes

the submitted DL workload to identify data processing and training operations. The Core Module

forwards all the information on the DL job to the prefetcher module for creating prefetching and

caching schedules. The Prefetcher Module executes the schedule on the manager node and on all

the worker nodes to ensure that the data is available on the fastest memory and storage tiers for

optimized I/O. The Core Module forwards the DL job to the manager for execution followed by

the manager sharing the batching schedule with the workers and coordinating the execution of the

DL job with all the worker nodes.

The Core Module defines prefetching and caching buffer sizes at each memory and storage tier on

the worker nodes. The allocated buffers are adaptive to handle batches with varying sizes depending

on the available system resources. A training batch contains n elements of width xi, height yi, and

depth zi stored in memory as arrays of di bytes objects. The memory size in bytes of one element

is the product of the width, height, depth, and the number of bytes consumed per pixel. Therefore,

the size Sb of a batch b is computed as Sb =
∑n

i=1 xi×yi× zi×di. The manager works closely with

the Prefetcher Module on all the workers to ensure appropriate buffer sizes. DeepMemoryDL starts

with reserving 20% of available space at the memory or storage tier and adjusts the allocation of

buffer St based on the available space at tier t and the total number of batches B scheduled to be

loaded onto t such that the total number of elements at the memory or storage tier does not exceed

the space allocated to the buffer (B × Sb ≤ St). The buffer sizes increase as we traverse from the

fastest to the slowest tier based on the assumption that the fastest tier is the most expensive and

with limited storage space.

Proactive Data Prefetching and Scheduling The manager is tightly integrated with Ten-

sorFlow’s core coordinating dataset preparation and pre-processing, to ensure that each training



CHAPTER 5. EXPLOITING CXL-BASED MEMORY FOR DISTRIBUTED DL 48

Algorithm 3: Data prefetching and caching scheduling.

1: for each worker in cluster do

2: determine location for n batches

3: if tier t avail. buffer space ≥ space for n batches then

4: prefetch n batches from location x to tier t

5: else

6: prefetch (n− k) batches from location x to tier t

7: prefetch k batches from location x to tier t− 1

8: end if

9: if buffer space in tier t ≥ util. threshold at tier t then

10: if batch b is needed in upcoming i iterations then

11: cache batch b to tier t− 1

12: else

13: evict batch b

14: end if

15: end if

16: end for

batch is loaded into the memory before the next iteration. The manager gets information about

the DL job from the Workload Analyzer Module and determines a schedule and deadlines for I/O

operations to stage the required data in the main memory of the worker nodes. Initially, the

dataset resides in a cold storage tier, e.g., network-attached storage accessible from each server.

The manager locates the dataset and creates a schedule to ensure that the initial dataset required

for pre-processing is loaded into the main memory to minimize I/O stalls. The data prefetching

and caching approach in DeepMemoryDL is shown in Algorithm 3. Given the dataset, the target

batch size, and available memory and storage space at each tier, it determines the initial location of

each data batch and defines a prefetching and caching schedule. The schedule includes instructions

to stage the pre-processed data in the memory subsystem. If the pre-processed data is larger than

the available system memory, the additional data is cached in the CXL-based memory instead of

slower local storage.

Figure 5.3 shows the flow of data to the prefetching and caching buffers. The prefetching schedule

follows priority rules for storing the prefetched data. The priority is: 1) main memory; 2) CXL-

based memory; 3) storage tier 0, i.e., CXL scratch storage; and 4) storage tier 1. The prefetching

strategy begins with the fastest storage tier and progresses through slower tiers, working alongside

the caching mechanism to manage data evictions. Caching operates in reverse order of prefetching

to ensure essential data remains accessible in main memory. However, if dataset sizes exceed main



CHAPTER 5. EXPLOITING CXL-BASED MEMORY FOR DISTRIBUTED DL 49

Figure 5.3: Dataflow for prefetching and caching in DeepMemoryDL using CXL-based memory and

storage subsystem.

memory capacity, eviction coordination halts, allowing prefetching buffers to utilize memory and

storage fully. DL tasks can directly access CXL-based memory to enhance I/O performance, despite

slightly higher latency compared to prefetching from the local storage.

Allocation of CXL-based Memory and Storage The manager tracks CXL-based memory

allocations on all worker nodes and increases the CXL memory allocation in chunks of 512 MB

once a request for additional memory is received to avoid using swap space after consuming the

entire system memory. Throughout the training phase, each worker node allocates memory to

hold both the model parameters and the training dataset. However, as the system’s memory

availability fluctuates based on concurrent job activity, this can result in memory shortages for DL

tasks, thereby impeding training progress. To mitigate this, the manager ensures sufficient memory

allocation to accommodate the model’s growth over the designated training epochs.

Allocation of Fast Scratch Storage The manager oversees the allocation of fast scratch storage

space via CXL-based storage which is crucial for mitigating I/O wait times caused by slower storage

tiers within the data processing workflow. Leveraging CXL-based storage for storing intermediate

data proves beneficial when system memory is insufficient to hold cached data, a common scenario

in DL workloads with sizable datasets. Similarly, it proves beneficial when processed data needs to

be written back to local storage.

Prefetcher Module

The Prefetcher Module is a part of the manager and worker components taking instructions from the

Core Module to ensure that the data is prefetched and available to DL workloads before execution
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begins. The schedule contains information about the worker nodes, assigned chunks of the dataset,

memory and scratch space allocation, and a resource map for data placement. For extremely

large datasets, the size of a single batch becomes substantially large causing the Core Module to

define large buffer sizes and launch the prefetching threads ahead of schedule. The Prefetcher

Module executes the prefetching schedule and reports the prefetching latency back to the Core

Module. This information is used to dynamically adjust prefetching buffer sizes and the number

of prefetching threads to further improve the I/O throughput. The Prefetcher Module tracks

the memory footprint of each sample and the size of the entire training batch. This gives the

Prefetcher Module the total size of a single prefetch block which is used to estimate the time it

takes to prefetch a batch. For data transferred over the network, DeepMemoryDL incorporates the

available link bandwidth and the latency to compute an estimated time to prefetch a given batch.

This information is subsequently used to launch the prefetching threads and execute the prefetching

schedule. The prefetching threads execute the schedule concurrently with the DL training job to

ensure that the batch required in the next iteration is prefetched in the main memory.

The manager also defines a caching policy that is implemented by all worker nodes to ensure quick

access to the training data not in the main memory. Figure 5.4 illustrates the caching policy of

DeepMemoryDL. The policy uses the resource map provided by the Prefetcher Module. Once the

main memory is fully used, the workers run the eviction policy to free up the main memory. The

I/O buffers at each memory and storage tier hold the prefetched data. The size of I/O buffers

are dynamic to incorporate the variations in the size of each batch. The manager defines and

uses an eviction strategy to evict data from these buffers to make space for new data for the next

iterations. The eviction strategy in DeepMemoryDL works closely with the TensorFlow training

schedule and the Prefetcher Module. The policy is based on the following rules: 1) data is evicted

in FIFO order; and 2) samples within a batch that are marked for prefetching will be cached to

a lower memory tier. The eviction policy in DeepMemoryDL ensures that enough space remains

available in the buffers of each tier and unnecessary expansion of a buffer is avoided at each tier.

The worker nodes cache the evicted data to a lower memory and storage tier if the data is required

by subsequent training iterations. The caching policy of DeepMemoryDL ensures that: 1) data

is cached until the buffers are full; 2) the cached data is evicted in the first-in-first-out (FIFO)

order; 3) data is always cached from a higher (faster) tier to a lower (slower) tier based on the

prefetching schedule. The data that is needed first by the Prefetcher Module is kept in the CXL-

based memory. Once the buffers in the CXL-based memory are full, the lower priority batches

are cached into the storage tiers. DeepMemoryDL is more effective for workloads with high data

re-use, such as DL jobs, due to prefetching and caching policies that ensure data to be prefetched

is available in the fastest tier. However, for workloads with low data re-use, the prefetcher ensures
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Figure 5.4: Caching workflow in DeepMemoryDL.

that the required data is available in local/CXL-based memory before it is required for processing.

For such workloads, DeepMemoryDL’s caching policy avoids aggressive caching to lower memory

and storage tiers because data is not re-used by the workload.

By default, the Linux operating system employs a caching mechanism to store application data

read from local storage, assuming that this data will be accessed again soon. Subsequent reads are

then served from this cache, reducing I/O latency by avoiding disk access. However, as the memory

demands of a DL job increase, requiring more memory, data from the cache is evicted to accommo-

date the needed data. Hence, DeepMemoryDL’s caching policy plays a crucial role in ensuring that

essential data remains in the main memory. This is because Linux’s caching policy may evict data

crucial for upcoming training iterations. Through its caching policies, DeepMemoryDL minimizes

the need to read training batches from cold storage, thereby enhancing I/O throughput.

5.2 Performance Evaluation

5.2.1 Testbed Setup

Our evaluation setup consists of eight servers running Ubuntu 20.04 LTS server operating systems

each with two 2.40 GHz Intel Xeon Gold 6240R processors, with 192 GB main memory, out of which

96 GB of the main memory is reserved for emulating CXL-based memory and CXL-based storage

scenarios, and 10 Gbps Ethernet between servers. We emulate the provisioning of CXL-based

memory by allocating memory from the remote NUMA domain and CXL-based storage devices

by creating a RAMDisk [88] on the remote NUMA domain. We stress the memory and storage
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subsystem with large datasets as we focus on realistic scenarios where HPC servers have less memory

available to store the entire dataset. To evaluate DeepMemoryDL, we use ImageNet [71] dataset

and ResNet50 [105], Inception-V3 [215], and MobileNetV2 [112] models. We use Intel PCM [15],

and sysstat [26] to monitor the memory, disk, swap, NUMA domains, and network activity during

the execution of DL workloads. We develop a memory hogger to hog system memory on the worker

nodes to mimic the behavior of background jobs in production data centers. We investigate the

impact of limited system memory, the availability of CXL-based memory and storage tiers, and

the impact of proactive prefetching and caching on the performance of DL jobs. Existing state-of-

the-art prefetching and caching approaches [80, 166] are either developed for a single server or do

not incorporate the characteristics of additional memory and storage tiers, specifically, CXL-based

devices.

5.2.2 Execution Environments

We analyze the performance of DeepMemoryDL using five realistic TensorFlow environments de-

pending on the availability of memory and storage subsystems. These environments are:

(1) Unconstrained Baseline Environment : This environment represents an ideal scenario

with no resource constraints or sharing between DL jobs.

(2) Constrained Baseline Environment : This environment represents a realistic scenario

where resources are shared and limited memory is available for DL jobs.

(3) CXL-based Storage Environment : This environment has CXL-based storage available

with limited system memory.

(4) CXL-based Memory Environment : This environment has CXL-based memory available

with limited system memory.

(5) CXL-based Memory and Storage Environment : This environment has CXL-based

memory and CXL-based storage available with limited system memory.

(6) DeepMemoryDL: This environment has our proposed framework, DeepMemoryDL, inte-

grated with TensorFlow, which manages system resources including CXL-based memory and

CXL-based storage to run DL jobs.
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5.3 Performance Results

5.3.1 Total Execution Time of the DL Job

We evaluate the effectiveness of DeepMemoryDL in reducing the overall training time and compare

it with the studied environments. Figure 5.5 shows the result for training a DL job over 3 epochs

with a batch size of 64. For all models, we observe that Constrained Baseline Environment takes

the longest time due to limited memory availability on worker nodes and excessive swapping of

pages to the underlying SSD-based storage. The CXL-based Memory Environment enables DL

jobs to train using a larger working set by allowing access to CXL-based memory, however, the

additional latency of the CXL-based memory increases the training time by 14% on average com-

pared to the Unconstrained Baseline Environment . The CXL-based Storage Environment provides

fast storage space to DL jobs to read the input data from CXL-based storage which results in

a significant performance increase over reading data from the SSD. However, due to the limited

system memory, the training time increases by 10% on average compared to the Unconstrained

Baseline Environment but reduces the training time by 9% as compared to the Constrained Base-

line Environment . Overall, we observe that DeepMemoryDL reduces the training time by up to

20%, 34%, 27%, and 25% as compared to the Unconstrained Baseline Environment , Constrained

Baseline Environment , CXL-based Memory Environment , and CXL-based Storage Environment ,

respectively. The performance improvement of DeepMemoryDL is attributed to the allocation of

CXL-based resources, prefetching of data batches to main memory, caching data into CXL-based

storage instead of the underlying SSD-based storage, and tailored data eviction policies.
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Figure 5.5: Total execution time of DL job with batch size of 64 and 3 epochs.
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5.3.2 Data Pre-Processing Phase

Optimizing the performance of the input data pipeline is crucial to the performance of DL jobs.

To evaluate the impact of DeepMemoryDL on the pre-processing stage we pre-process 40 GB of

images from the ImageNet dataset. The pre-processing phase consists of downloading, extracting,

generating training and validation data, shuffling, and reshaping images. Figure 5.6 shows the

results. Before pre-processing, DeepMemoryDL proactively prefetches the input dataset to CXL-

based storage to significantly reduce loading time and then caches the data in CXL-based memory

to move data closer to compute threads allowing for faster prefetching onto main memory. These

policies defined by the Core Module of DeepMemoryDL yield better I/O performance as compared

to Constrained Baseline Environment and reduce overall data pre-processing time by 56%, 43%,

and 23% as compared to Constrained Baseline Environment , CXL-based Memory Environment ,

and CXL-based Memory and Storage Environment , respectively. The impact of DeepMemoryDL is

further observed while training a model with the pre-processed data as data batches are prefetched

to reduce the training time for subsequent iterations. We note that the experiment results shown in

Figure 5.6 only involve data pre-processing, therefore, the change in the batch size does not impact

pre-processing time.
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Figure 5.6: Data pre-processing time for ImageNet dataset with limited main memory.
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5.3.3 Impact of Using CXL-based memory on DL Job

Large memory systems allow DL jobs to train large models and datasets with sufficient system

resources, however, limited memory leads to premature termination of DL job causing computation

loss. In such a scenario, a DL job is either restarted or resumed from the last checkpoint. We

conduct experiments with varying CXL-based memory allocation to DL jobs to study the impact

on the execution time using a batch size of 64. Figure 5.7 shows that as memory footprint of DL

jobs increases, DeepMemoryDL allocates CXL-based memory to expand its working set size to the

CXL-based memory and as the CXL-based memory footprint increases, the total training time is

reduced due to the usage of a faster memory tier as compared to the SSD-based swap storage.

We evaluated the impact of available CXL-based memory and dynamic buffer sizes on the total

execution time of DL jobs. Figure 5.8 shows that as the buffer size increases, the execution time

reduces due to the increased prefetching and caching capacity at the CXL-based memory tier.

We observe that as the batch size increases the execution time increases proportionally, however,

DeepMemoryDL adjusts the I/O buffer sizes based on the footprint of a data batch for prefetching

and caching. DeepMemoryDL mitigates the impact of using large batch sizes on the execution time

of a DL job and also enables TensorFlow to manage a much larger working set size.
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on DL job with batch size of 64 and 3 epochs.
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tal execution time of DL job with 3 epochs.

5.3.4 Impact for Using CXL-based Storage for Staging Data on DL Job

We conduct experiments to study the impact of using CXL-based storage on read and write oper-

ations for staging large datasets. Figure 5.9 shows that CXL-based Storage Environment reduces

the execution time by up to 30% as compared to the Constrained Baseline Environment due to the

improved I/O performance of the CXL-based storage. Overall, DeepMemoryDL reduces the execu-

tion time by up to 20%, 32%, and 24% as compared to the Unconstrained Baseline Environment ,
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Constrained Baseline Environment , and CXL-based Storage Environment , respectively. DeepMem-

oryDL stages data in the CXL-based storage resulting in improved performance as compared to

the other execution environments since storing the entire dataset in the staging area ideally yields

higher read bandwidth and IOPS.
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Figure 5.9: Impact of data staging storage on DL

job with batch size of 64 and 3 epochs.
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Figure 5.10: Impact of proactive prefetching &

caching on DL job with 64 batch size & 3 epochs.

5.3.5 Impact of Proactive Data Prefetching and Caching on DL Job

We study the impact of proactive data prefetching and caching on the execution time of DL jobs

while training MobileNetV2, InceptionV3, and ResNet50 models using the ImageNet dataset over

3 epochs and a batch size of 64. Figure 5.10 shows that by effectively managing the CXL-based

memory, DeepMemoryDL reduces the execution time of DL jobs by 15%, 30%, 25% as compared

to the Unconstrained Baseline Environment , Constrained Baseline Environment , and CXL-based

Memory Environment , respectively. Moreover, the Unconstrained Baseline Environment performs

better than the CXL-based Memory Environment when enough space is available in the main mem-

ory by an average overhead of up to 10%. The CXL-based Memory Environment provides additional

CXL-based memory to DL jobs that reduces the execution time by up to 17% as compared to the

Constrained Baseline Environment . Data eviction contributed to the worst performance of the

Constrained Baseline Environment . The manager in DeepMemoryDL optimizes the caching mech-

anism by preparing a caching policy that is implemented on all worker nodes running the training

job. Additional memory is pooled from CXL-based memory to cache processed data to ensure

that the required data is always available in the faster available tier. In tandem with prefetching,

caching improved the performance of DeepMemoryDL and optimized memory resource utilization.
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5.3.6 Scalability Analysis of DeepMemoryDL on DL Job Performance

To evaluate the performance of DeepMemoryDL we use a combination of real-world use cases and

vary the available system resources and workers. Single worker training is resource-intensive since

the entire dataset has to be processed on a single node requiring more memory and storage resources.

Multi-worker training divides the dataset between workers to reduce the resource requirement on

each worker. However, for large datasets, memory and I/O remain the bottlenecks. We studied

the impact of increasing the number of workers on DeepMemoryDL by training MobileNetV2 and

compare its execution time with Constrained Baseline Environment . Figure 5.11 shows that Deep-

MemoryDL outperforms the Constrained Baseline Environment , and the respective performance

gap remains similar as we increase the number of worker nodes. Moreover, the performance of a

DL job improves linearly using DeepMemoryDL as we increase the number of worker nodes.
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Figure 5.11: Scalability analysis on total execution time of DL job with 64 batch size & 3 epochs.

5.4 Summary

To summarize, DeepMemoryDL improves DL performance by efficiently leveraging storage and

memory tiers to proactively prefetch and cache training data. We emulate CXL memory to provide

additional memory and fast scratch storage space to DL workloads and reduce the overall training

time. Overall, DeepMemoryDL reduces the overall training time of a DL job by up to 34% and 27%

as compared to the default TensorFlow and CXL-based memory expansion approaches, respectively.

In our future work, we will extend DeepMemoryDL to support other DL platforms, specifically the

PyTorch platform, to improve its performance by eliminating I/O stalls.



Chapter 6

Fault-tolerant FaaS for Stateful

Time-sensitive Applications

6.1 System Design

To provide fault tolerance to stateful time-sensitive applications we present a fault-tolerant and

resilient stateful FaaS framework, Canary [38], that extends existing FaaS platforms by adding

new software modules that store function states, critical checkpoint data and replicate function

runtimes for faster failure recovery. Canary ensures that functions execute exactly once on FaaS

platforms for achieving minimal application execution time. Canary achieves this by proposing a

modular architecture, as shown in Figure 6.1.

Figure 6.1: High-level architecture of Canary .

58
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Canary consists of a Core Module that handles end-to-end job execution, failure recovery, and

coordination between various components. The Request Validator Module is used by the Core

Module to avoid failures regarding the submitted job request. The Checkpointing Module handles

the state and critical data checkpointing. The Runtime Manager Module keeps track of all the

function runtimes deployed and the runtime replicas for the jobs created by the Replication Module.

The database stores the function states and the checkpoints.

Core Module: It orchestrates execution between various components and modules, as shown in

Figure 6.2. It exposes a lightweight listener that receives incoming user requests and forwards them

to the Request Validator Module for validation and generates a set of unique IDs for the submitted

jobs functions, checkpoints, and replicas used to identify functions, corresponding applications,

location of functions, identification of failed functions, and the associated checkpoints.

Figure 6.2: High-level orchestration of Canary modules.

The Core Module handles the creation and maintenance of the required database tables. The five

main tables created in the database are worker info, job info, function info, checkpoint info, and

replication info. The worker info table stores information about the platform, including the number

of nodes in the cluster and worker-specific information, i.e., assigned roles and system specifica-

tions. The job info table stores information about the submitted job, its unique ID, the number of

functions launched for each job, and other critical information required by the Core Module. The

function info table stores information about all the functions launched for the submitted jobs, their

unique IDs, the job ID to which they belong, runtime for each function, and the worker on which

the function is deployed. The checkpoint info table stores information about the checkpoints of each

function, its unique ID, job ID, function ID, and the state information related to the checkpoint.

Finally, the replication info table stores information about the replicated runtimes deployed on the

FaaS platform. It also includes the runtime information, job ID, and the worker information where

the replicated runtime is deployed.

The Core Module forwards the validated requests for scheduling and creates database entries based

on the type of job, its runtime, number of scheduled functions, checkpointing frequency, and the

replication factor. The Core Module forwards the information to the Checkpointing Module, which
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Algorithm 4: State and Critical Data Checkpointing.

Input: Func. ID fid, Job ID jid, State st, Checkpoint ckpt

1 begin

2 for each st do

3 if user ckpt then

4 get ckptdata, ckptname, ckptloc

5 if ckptdata > dblimit then

6 ckptdata → disk

7 ckpt← {ckptname, ckptloc}
8 else

9 ckpt← {ckptdata}

10 else

11 ckpt← {st, datacric}

12 if ckptcur > ckptthresh then

13 remove ckptoldest from db

14 push {jid, fid, ckptid, ckpt} to db

stores the checkpoint metadata in the database. It coordinates between different components of

Canary ’s runtime, which includes scheduling of function runtimes, usage details, and the entire

life cycle, through the Runtime Manager Module. It also keeps track of all scheduled functions

and their current states. Upon function failure, the Core Module detects the failure, identifies the

function runtime, gathers checkpoint information, and initiates the recovery process. The recovery

process restores the function from its latest checkpoint available on the runtime associated with

the failed function.

Request Validation Module: Its primary purpose is to prevent request failures before Canary

starts processing the request. It accepts requests from the Core Module and uses the job information

and the resources requested from the FaaS platform for validating the job request. The Request

Validator Module verifies if the requested resources are within the resource limits of the FaaS

platform, and the user has not reached the associated maximum concurrent function limit. For

example, if invoking a new function would result in a concurrency failure because the requested

functions, if launched, will exceed the maximum limit, the Request Validator Module notifies the

Core Module which queues the job until there is enough limit available to launch new functions.

Runtime Manager Module: It tracks all runtimes used by the running functions in the cluster

and works alongside the Replication Module to replicate these runtimes. It maintains information
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about the used runtimes and their corresponding replicated runtimes and enables the Core Module

to map the failed functions to the replicated runtimes in the event of a function failure. More-

over, the Runtime Manager Module stores the location information of replicated runtimes that are

deployed in the cluster.

Checkpointing Module: Stateful functions produce data that must be stored and persisted

during and after the function execution along with the state information. Functions that belong to

the same application require the state information and data from the previous functions for their

successful execution. Canary supports fault-tolerant stateful function by maintaining the state

information of all functions along with the application data. The Checkpointing Module exposes

its core functionality via an API that interacts with other modules to monitor and record the

state of running functions. Application states can be defined in the application code that will be

used by the Checkpointing Module for checkpointing. With minimum modification to the function

code, application states are registered by calling the Canary APIs. The specified states are stored

throughout application execution and are used to recover a failed function.

The Checkpointing Module allows the definition of critical data within the application code that

should be replicated and persisted after the successful function execution. This functionality is crit-

ical when an application must store its critical data structures along with the function state. This

data is added to the state information. We show Canary ’s approach of checkpointing application

states and critical data in Algorithm 4. The location for storing critical datasets is determined by

the total size of the dataset. Checkpoints in Canary are primarily maintained in an in-memory

key-value (KV) data store. We use Apache Ignite [22] as the KV store for storing the state infor-

mation. However, in-memory databases limit the size of data stored per key. The Checkpointing

Module transfers the checkpoint data to a faster storage tier available in the system such as persis-

tent memory, Ramdisk, or to a shared storage accessible to all cluster nodes. The storage hierarchy

is determined at the deployment phase of the FaaS platform and can be overwritten by a custom

storage endpoint, such as an S3 bucket. The Checkpointing Module executes in a linear time to

checkpoint the state of each function in a given job. Algorithm 4 yields O(S) complexity, where S

denotes the number of states within a function.

Canary records a series of state checkpoints throughout the function execution and stores the

latest n checkpoints in an in-memory data store. The initial value of n is set to 3, which is

dynamically adjusted throughout the execution based on the application data to be checkpointed

and the frequency of states produced during function execution. An application state is comprised

of current values of its critical data structures that are registered with the Checkpointing Module.
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The critical data remains available in the persistent storage or a KV store and is used to restore

the corresponding failed function. For enabling quick lookup, application states are stored in a KV

store where the key corresponds to the function ID and the value corresponds to its states. When

a new function is assigned the task of a failed one, the Checkpointing Module issues a query to the

KV store to retrieve the state of the given function ID. When the size of the checkpoint and the

data exceed the database limits, the data is then stored in a fast storage tier or external storage,

e.g., an in-memory storage or a distributed persistent memory, and the location of the checkpoint

is pushed to the database along with the state information. For a DL workload, the checkpoint

also includes a copy of pre-processed data, model weights, and other data required to resume the

training process from the failed epoch.

By default, Canary implements an implicit checkpointing strategy, which has coarse-grained control

over checkpoint intervals, location of stored checkpoints, and restoring function state from the

stored checkpoint in the event of a failure. Canary also supports explicit checkpointing where the

application can specify its state and data for creating checkpoints, thus reducing the checkpoint

size and the associated overhead while increasing the programming complexity. In both of these

approaches, checkpoints are first stored in either the KV-store or written in-memory and then

flushed asynchronously to the shared storage that is available to all nodes in the cluster.

The Checkpointing Module handles the recovery of failed functions by restoring the function state

and data to a new function. Checkpointing provides the record of previous states of the function

to avoid restarting the function from the beginning. The Core Module detects failed functions

in the cluster and handles the end-to-end recovery process. It identifies the execution runtime

required by the failed function, the latest checkpoint available, and the location of the checkpoint

data. The Core Module ensures that the best possible replicated runtime is selected to minimize

the recovery time. Once the replicated runtime is located, the function is deployed on it along

with the checkpointed function state and data. The Core Module notifies the Runtime Manager

Module about the runtime utilized during the recovery process. Once the function state has been

recovered, the function resumes normal execution and continues execution from its previous state.

In the event of multiple function failures, the default retry-based strategy concurrently restarts all

the failed functions which leads to resource contention and further increases the recovery time.

Replication Module: It ensure that Core Module quickly recovers failed functions, the Repli-

cation Module replicates the runtimes used for launching functions of the scheduled jobs. The

runtimes used at any given point are replicated throughout the cluster to enable faster recovery

by reducing initialization and cold-start latencies by providing warm function runtime. Instead of
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Algorithm 5: Runtime Replication at Job Submission

Input: Act. funcs. (funcact), Act. repl. (repact), Repl. loc. (reploc), Sched. funcs. (funcsch), Sched.

runt. (runsch)

Output: Req. repl. (repreq), Repl. loc. (reploc), Repl. thresh. repth

1 begin

2 compute functot given (funcact, funcsch)

3 for each runsch do

4 compute repreq

5 if repreq ≥ 1 then

6 compute cur repfactor given (funcact, repact)

7 compute new repfactor given (functot, repact)

8 if cur repfactor < new repfactor then

9 determine reploc

10 launch repreq at reploc

creating a replica of each running function’s runtime, the Runtime Manager Module detects the

runtime of an invoked function and verifies whether a corresponding replica is active. The Runtime

Manager Module only triggers the replication when a function is created with a runtime that is

not already replicated in the cluster. Once a replica is assigned to a failed function, the Runtime

Manager Module creates a new replica if an active function is deployed with the same runtime to

replace the existing replica. Therefore, throughout the execution of a function, an active replicated

runtime is available to use for failure recovery.

Algorithm 5 explains the runtime replication workflow in Canary . Once a new job is submitted to

the FaaS platform, the Core Module determines the number of functions funcsch to launch for the

job and the function runtimes runsch to schedule. The replication module uses a linear-time method

to compute the total number of functions functotal, including active functions funcact, and iterate

through the scheduled runtimes for replication. For each runsch, the replication module computes

the required number of replicas repreq for a given job. The current replication factor cur repfactor

is the ratio of funcact and repact and the new replication factor new repfactor includes the functotal

and repact. The replication factors determine if enough runtime replicas are available for all running

functions. The runtime replication module keeps the current and new replication factors consistent

and if the cur repfactor is less than the new repfactor, a new runtime replica is launched at the

replica location reploc which is determined to avoid a single point of failure for the submitted job

as well as for the FaaS platform. The reploc is crucial to recover failed functions as it provides

enough replicas to the Core Module to select a suitable replica to ensure minimal recovery time on

heterogeneous resources.
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The runtime replication factor maps running functions to the replicated runtimes. A higher factor

value shows that the number of replicated runtimes for each runtime is higher. This provides

redundancy and allows faster recovery for large function failures but results in higher operating

costs. A lower value of the replication factor means that less number of replicated runtimes are

launched. This results in lower cost, but, in the event of large function failures, the initialization

time of Canary for launching new functions becomes the same as the default retry-based strategy.

The Replication Module dynamically adjusts the replication factor to achieve an optimal operating

point which results in less frequent restarts and lower operating costs. The Replication Module

handles the placement of runtime replicas in the cluster. The replica placement follows a set of

rules that determines the ideal location for a replica based on the location of the running functions.

The first replica is placed on any worker that hosts the job function. Further replicas are placed

away from the worker hosting the first replica to avoid a single point of failure for the replicated

runtimes. The placement decisions are locality aware and take into account the location of worker

nodes in the data center.

6.2 Performance Evaluation

6.2.1 Testbed Setup

Our testbed consists of a cluster of 16 bare-metal servers from the Chameleon Cloud testbed [131]

with two Intel Xeon Gold 6126/6240R/6242 processors, contains 192 GB of main memory, runs

Ubuntu 20.04 LTS server operating system, and connected using 10G Ethernet. We deploy Open-

Whisk [23] on a Kubernetes [109] cluster along with Docker [220], OpenWhisk CLI (wsk), and

CouchDB [36]. We deploy Apache Ignite [22] to store data in the highly scalable distributed cluster

using replicated caching mode which ensures that the data is available in the entire cluster. We

also enable Ignite native persistence to provide data persistence. The underlying storage for storing

large files is shared over NFS [207] across the cluster nodes. We also enable the option to use Intel

Optane persistent memory [122] in AppDirect mode [236] or Ramdisk [88] for storing large files

and to avoid I/O bottlenecks.

Workloads: To evaluate Canary , we use five classes of application workloads: deep learning (DL),

web service, Spark [2] data mining, data compression, and graph search. These applications are

developed using Python, Node.js, and Java programming languages and use their corresponding

execution runtimes. We used these workloads as these are the most widely used function runtimes
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in FaaS based on the current FaaS adoption trends [10], and include representative serverless HPC

applications from the SeBS [66] benchmark. The DL workload is a TensorFlow [27] application

that trains ResNet50 [106] model on the MNIST [152] dataset over 50 epochs. Checkpoint data for

a DL application include weights and biases collected after every successful completion of an epoch.

Web service workload is composed of responding to 50 requests from a web front-end to a database,

i.e., PostgreSQL [3]. Each request is composed of five queries and checkpoints include queries and

responses after each request. Spark data mining workload entails extracting, transforming, loading,

and analyzing the given dataset to get meaningful insights, where each part of the computation is

implemented as serverless functions. Specifically, it computes the diversity index at the local and

national levels over the US census data [20]. A checkpoint is collected when the output for each

location is computed and aggregated with the existing results. Data compression workload is a

modified version of the SeBS 311.compression benchmark that performs zip compression [103] on

50 input files (∼1 GB each). The input and output files are stored in the local storage instead of

S3. Each function processes multiple input files and a checkpoint is performed after compressing an

input file. Finally, the Graph search workload is based on the SeBS 501.graph-bfs benchmark which

performs Breadth-First Search (BFS) using igraph [13] in a binary tree with 50 million vertices.

Each function is checkpointed after 1 million vertices have been traversed. Depending upon the

experiment, these workloads require invoking one or more functions where each function is invoked

in a separate container.

Performance Metrics: We consider the total execution time, i.e., the time required to complete

the submitted application including the time consumed in recovering from failures to study the

effectiveness of the studied approaches. We also measure the failure recovery time and perform a

cost-benefit analysis of Canary in terms of dollar cost incurred to quickly recover from failures by

leveraging additional resources, e.g., for function runtime replication.

6.3 Performance Results

6.3.1 Impact of Runtime Replication on Recovery Time

We run the workloads as functions on OpenWhisk and report the impact of replicated runtimes on

the failure recovery time for the given workload runtimes. Figure 6.3 shows the impact of replicated

runtimes on the workload execution time with varying failure rates for 100 invocations of Python,

Node.js, and Java container runtimes. We observe that the replicated runtimes reduce the recovery
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Figure 6.3: Impact of replicated runtimes on

recovery time for 100 function invocations.
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Figure 6.4: Impact of replicated runtimes on

recovery time with 15% failure rate.

time by up to 81% as compared to the default retry-based recovery strategy. Moreover, we observe

that as the failure rate increases, the recovery time of the default retry-based strategy increases

almost linearly due to the increasing number of failed functions. However, due to the replicated

runtimes, Canary keeps the recovery time fairly constant and stays close to the ideal scenario where

there are no function failures. Similarly, the replica placement also incorporates resource hetero-

geneity to mitigate the impact of variation in recovery time on application performance. As more

functions fail, the replicated runtimes are utilized effectively and Canary dynamically increases the

replication factor to cope with the failures and reduces function initialization time. Overall, Canary

reduces the recovery time by 76%, 81%, 78%, 79%, and 80% on average as compared to the default

retry-based approach for DL, web service, Spark data mining, data compression, and graph search

workloads, respectively.

We also run experiments to observe the performance of replicated runtimes for a large number

of function invocations in a cluster setup with a fixed failure rate of 15%. The functions fail at

random intervals during function execution. The results are shown in Figure 6.4. We observe that

the runtime replication strategy performs better than the default retry-based strategy by up to

82%. The recovery time of Canary remains close to the ideal scenario where there are no failed

functions. The additional time as compared to the ideal scenario is due to the time required to

migrate the function to the replicated runtime and includes cases where the platform has to wait

for the replicated runtimes to be ready where large numbers of functions fail simultaneously and

there are not enough replicated runtime to host the failed functions. Canary strategically places

the replicated runtimes based on the job, locations of the functions, types of runtime containers

used by the failed functions, and the current resource availability in the cluster. Overall, we observe

that for this experiment, Canary reduces the recovery time by 63%, 82%, 80%, 70%, and 71% on

average as compared to the default retry-based approach for DL, web service, Spark data mining,

data compression, and graph search workloads, respectively.
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6.3.2 Impact of Checkpointing on Recovery Time

We study the impact of checkpoints in recovering from function failures by increasing the failure

rate for a fixed number of function invocations. To simulate failures at the given failure rate, the

functions are killed at random times during the job execution. The result is shown in Figure 6.5.

We observe that the recovery time depends on the function failure rate and the time at which

the failure occurs during the function execution. The recovery time for the retry-based strategy is

large when a failure occurs close to the function completion. Moreover, we observe that the total

execution time of a failed job remains close to the ideal execution scenario of failure-free execution

specifically when the failure rate is low. Canary reduces the recovery time of the failed function by

up to 83% as compared to the default retry-based recovery strategy.
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Figure 6.5: Impact of checkpoints on recovery time for 100 function invocations.

Overall, we observe that for this experiment Canary reduces the recovery time by 82%, 81%, 79%,

83%, and 82% on average as compared to the default retry-based approach for DL, web service,

Spark data mining, data compression, and graph search workloads, respectively. Canary ensures

that the function is recovered from the latest checkpoint, thus reducing the recovery time and

keeping it consistent regardless of when the failure occurs during the function execution.
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6.3.3 Impact of Using Canary on the Workload’s Makespan

We study the impact of Canary on the total execution time of the studied workloads. Figure 6.6

shows the result of the total execution time of Canary with the default retry-based approach for

various failure rates using the studied DL workload. The replicated runtimes provide a quick way

to restore the latest checkpoints of the failed functions. We observe that Canary is more effective

than the retry-based approach as the failure rate increases and when a failure occurs towards the

end of workload execution. We also compare the execution time with the ideal scenario where there

is no function failure. The retry-based strategy diverges from the ideal execution time as the failure

rate increases, however, we observe that the execution time using Canary is comparable to the ideal

execution time. Overall, Canary increases the execution time by 14% on average as compared to

the ideal scenario without any failure. The overhead associated with Canary is because of the

worst case scenario where the function fails right before a checkpoint is taken and recovers from

the previous saved checkpoint. The retry-based recovery strategy performs the worse because of

the loss of the entire computation of the failed function and restarting of the execution from the

start upon failure. Our evaluation shows that Canary reduces the total execution time by up to

83% with a failure rate of 50% over the default retry-based recovery strategy. We observe similar

performance trends in terms of the execution time for the web service and Spark data mining

applications.
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Figure 6.6: Execution makespan of 100 function invocations for the DL workload with replication

and checkpointing.
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6.3.4 Impact of Using Canary on Dollar Cost

We perform a dollar cost analysis of using Canary by calculating the total cost of the launched

functions and the replicated runtimes. We consider the pricing model of $0.000017 per second of

execution, per GB of memory allocated from IBM Cloud Functions [11] as it is based on Apache

OpenWhisk which we use for prototyping Canary . However, the pricing model of AWS Lambda [4]

is comparable, i.e., ∼$0.0000167 per second of execution, per GB of memory allocated. We correlate

the cost with the total job execution time. For our analysis, we consider the total execution time as

the time from the first launched function to the completion of the last function. Moreover, the cost

of concurrent functions is aggregated to represent the overall dollar value of a workload’s execution.
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Figure 6.7: Impact of failure on cost and time of training ResNet50 on CIFAR10 over 50 epochs.

Figure 6.7 shows the cost and execution time of Canary as compared to the retry-based recovery

strategy. We observe that as the failure rate increases, the total cost for both Canary and the

default strategy increases proportionally. Moreover, the difference between the cost of the retry-

based strategy and Canary becomes larger with the increase in error rate. Canary has a lower cost

by up to 12% as compared to the default retry-based strategy due to the replicated runtimes and

checkpointing strategy. Overall, Canary improves application availability at an average additional

cost of 8% as compared to the ideal scenario without any failure. We also observed that the cost

of the retry-based strategy is much higher as compared to Canary for high failure rates. For

the retry-based recovery strategy, functions failing close to the end of their execution incur much

higher costs as they have to redo the entire execution from the beginning. In the case of Canary , the

function is recovered from the latest available checkpoint and completes the remaining execution.

We observe that the execution time for Canary is 43% less on average as compared to the retry-
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based technique demonstrating the benefits of Canary at a reduced cost even with the additional

overhead of replicating the runtimes. The overhead of function checkpointing and data replication

in Canary results in an additional cost that depends on the error rate, checkpoint location, network

congestion, and the number of replicated runtimes.

We also evaluate the impact of replication on the cost and execution time of functions. We evaluate

three replication strategies: dynamic, aggressive, and lenient replication. Dynamic replication (DR)

is the default strategy of Canary in which the replication factor is dynamic and adjusted based on

the failure rate. Aggressive replication (AR) uses a higher replication factor for each running job.

Lenient replication (LR) maintains one active replica throughout the execution of each job. The

results of this experiment are shown in Figure 6.8. We observe that when Canary increases the

replication factor, the associated cost also increases because of concurrently running the additional

runtimes with the application functions. LR strategy results in slightly lower cost as compared

to the DR strategy, however, the job execution time with LR increases at a higher rate with the

increase in the failure rate. Moreover, we observe a slower increase in the execution time using

AR as compared to LR and DR. This trend shows that dynamic replication used by Canary scales

better and provides better reliability as compared to the LR approach. AR yields a higher overall

cost but has the lowest execution time. As more functions fail, the number of deployed replicas

under the AR approach increasingly matches the number of failed functions. This trend results in

fewer unused instances and a lower cost per replica. Overall, the DR approach outperforms AR

and LR approaches by 25% and 2% on-average dollar cost savings, respectively.
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Figure 6.8: Impact of replication on cost and time of training ResNet50 on CIFAR10 over 50 epochs

with aggressive replication (AR), lenient replication (LR), and dynamic replication (DR).
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6.3.5 Comparison of Canary with State-of-the-Art Fault Tolerance Techniques

We compare the performance of Canary with state-of-the-art fault tolerance techniques i.e., request

replication (RR) [84] and active-standby (AS) [54]. RR launches multiple replicated functions for

each given function based on the given replication factor. Similarly, AS creates two function

instances; one for serving all requests and the other as standby. In our evaluation, we launch one

replica per request. The incoming requests are forwarded to all functions and the first successful

response is accepted and the rest are discarded. Figure 6.9 shows the comparison of Canary with

RR and AS approaches. We observe that both RR and AS result in higher costs than Canary by

up to 2.7× and 2.8×, respectively, because of launching additional functions as replicas or standby.

As the error rate increases, the probability of active, standby, and replicas functions being killed

at the same time increases, thus increasing the overall execution time and cost as failed functions

must be restarted from the beginning. Similarly, we observed that the standby function stays

dormant while replicas process incoming requests, hence, consuming additional system resources,

resulting in resource contention, and increasing the resource requirements for functions execution.

We observe that as the error rate increases, the execution time of Canary increases by 5% on

average as compared to RR due to the checkpoint restore approach of Canary . The execution time

of AS increases with the error rate because an increased number of failed functions are redeployed

on the standby instances. Overall, the execution time of AS is up to 34% higher than Canary .

This is because stateful functions depend on previous states for correct operation and functions are

restarted as there is no checkpoint in the AS technique.
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6.3.6 Impact of Scaling on Canary Performance

We increase the size of the computing cluster and the number of submitted jobs to observe the

performance of Canary . We concurrently launch several hundred, i.e., 200, 400, 800, and 1000,

functions and randomly kill the running functions that belong to various FaaS jobs and observe

the total execution time of the submitted jobs. We also increase the failure rate proportional to

the number of functions launched. Figure 6.10 shows the results of this experiment. We observe

that as the number of functions increases, the total recovery time of the submitted batch of FaaS

jobs remains fairly constant as compared to the default retry-based approach. The recovery time of

Canary stays close to zero which matches the optimal failure-free scenario. However, with increased

failure rates Canary experiences a slight increase in the recovery time due to recovery overhead.

Our experiments include cases with node-level failures that lead to total loss of computation for the

jobs scheduled on the failed node. For large function invocations, the retry-based strategy shows

an interesting behavior, i.e., the recovery time depends on the time at which the function fails and

if there is any node-level failure. For node-level failures, a large number of functions are restarted

at the same time, hence, the recovery time for these functions overlap and is equal to the longest

recovery time of any single failed function. Node-level failures in Canary are treated differently

due to the availability of checkpoints in the shared storage system that is accessible throughout the

cluster. Overall, in this experiment, we observe that Canary reduces the average recovery time by

up to 80% as compared to the retry-based approach.
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Figure 6.10: Impact of Canary on recovery time with a cluster size of 16 and increased function

invocations.
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Next, we study the scalability of the studied approaches by increasing the cluster size from 1 to 16

nodes. In this experiment, we use a failure rate of 15% and a fixed number of function invocations,

i.e., 5000. Figure 6.11 shows the results. We observe that as the cluster size increases, the total

execution time of batch jobs decreases for all three execution scenarios. The performance of Canary

is close to the ideal case, with an average increase of 2.75% in the execution time, when increasing

the number of nodes from 1 to 16. However, Canary reduces the overall execution time by up

to 17% as compared to the retry-based approach. Overall, we observe the scalability of 1.2×,

1.18×, and 1.10× for the ideal, Canary , and the default retry-based approach, respectively, when

increasing the number of nodes from 1 to 16.
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Figure 6.11: Impact of Canary on recovery time with 5000 function and a 15% failure rate.

6.4 Discussion

Existing FaaS platforms implement a retry-based recovery strategy for all failed functions which may

not guarantee successful function execution. Moreover, using a retry-based approach re-executes

the failed functions multiple times leading to significantly higher execution time and associated cost

as compared to the proposed Canary framework. The performance of retry-based failure recovery is

worse when functions fail frequently and towards the end of a function’s execution. In this section,

we discuss the implications of the replication and checkpointing techniques on the performance of

Canary and analyze its potential benefits for both cloud and FaaS service providers.
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Replicating Function Runtimes: The replication of execution runtime and critical applica-

tion data significantly improves the function recovery time. Replication provides warm containers

to resume the execution of the failed functions, however, replication performance depends on the

number of replicas per job. Our analysis of dynamic, aggressive, and lenient replication strategies

shows that Canary achieves better performance by determining the number of replicas based on

the error rate. Consequently, Canary yields a trade-off between time and cost of execution. Lenient

replication incurs less computation overhead for the same cost as compared to the dynamic repli-

cation approach when the failure rate is low. This performance gap reduces as the number of failed

functions increases because a workload with the lenient function replication strategy spends more

time on starting the new replicas of function runtimes. The aggressive replication strategy spends

slightly higher time for a significantly higher cost as compared to dynamic replication. There-

fore, dynamic replication with Canary performs better than the aggressive and lenient replication

strategies.

Checkpointing Function States and Data: The retry-based fault tolerance strategy forces

re-executing a function from its first instruction. The use of checkpoints to store function states

and critical data significantly reduces the job execution time in case of function failures. The

frequency of checkpoints adds overhead to FaaS computing, however, it addresses the challenges of

unpredictable system failures, such as network failures. The ideal scenario is to checkpoint function

states and data right before a failure or state completion, and restart the failed function using the

latest checkpoint. However, it is challenging to accurately predict these events. Canary maintains

up-to-date checkpoints after successful completion of function states to ensure quick recovery of

failed functions.

Benefits of Canary for FaaS Platforms: Fault tolerance and resiliency are key features for

measuring the quality of services provided by the cloud platforms. Canary integrates replication

and checkpointing techniques to ensure a reduced execution time. The traditional retry-based

approach employed by the existing FaaS platforms leads to a higher job execution time, which

negatively impacts time-sensitive applications and may violate their SLAs. Moreover, longer func-

tion execution requires occupying the same resources for the same job for a longer period of time.

Canary addresses these issues and alleviates the challenges of resource scheduling of incoming jobs

by significantly reducing the impact of failures thus freeing up expensive data center resources.
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Benefits of Canary for FaaS Users: FaaS offers an attractive computing model for reducing

the cost of using cloud resources without negatively impacting application performance. However,

the cost benefits of deploying application on FaaS platforms is undermined by unexpected failures.

The default retry-based strategies used at large by cloud providers significantly increase FaaS costs.

Canary alleviates the burden of extending the expected duration of a job and enables FaaS users to

reduce the function completion time as compared to the retry-based approach. Specifically, Canary

improves the reliability of time-sensitive applications by reducing their failure recovery time.

6.5 Summary

In summary, Canary provides fault-tolerance and resilience to stateful FaaS framework and extends

the existing FaaS platforms by adding new software modules for storing function states, replicating

function runtimes, and checkpointing critical data for faster failure recovery. Canary can tolerate

large failures and reduces the recovery time and dollar cost by up to 83% and 12%, respectively

over the default retry-based recovery strategy. Moreover, Canary provides improved application

availability at the additional average execution time and cost overhead of 14% and 8%, respectively

over the ideal scenario that does not incur any failure.



Chapter 7

Accelerating GPU-based Workloads

Using Tiered Memory

7.1 System Design

To improve the performance of GPU-based HPC workloads on tiered memory systems, we envision

a reference CXL-enabled multi-GPU system architecture as shown in Figure 7.1. We extend this

architecture from the Nvidia DGX-A100 system, which consists of 8 GPUs distributed evenly

across the two sockets. Using PCIe switches, a pair of GPUs share the available PCIe bandwidth

to connect with the main and CXL memory. All PCIe links are composed of ×16 lanes each.

GPUs are interconnected to each other using a hybrid mesh-cube topology using NVLinks and

NVSwitches (which we omit from this figure for simplicity). Next, we mount a CXL memory on

each socket using a dedicated PCIe link (×16 lanes) to expand the capacity of the main memory.

Although the processors in the DGX-A100 system can support up to 128 PCIe lanes, we map a

limited number of lanes to each CXL device since most commercially available CXL expansion

cards are based on PCIe ×8 configuration. Similarly, multiple CXL cards can be attached to the

system PCIe interface. Therefore, when all GPUs are actively reading/writing data to/from the

CXL memory of a single socket, the bandwidth of the CXL memory gets evenly distributed across

all 8 GPUs, thereby creating contention on the PCIe interconnect of the CXL memory.

To alleviate memory contention, throughput bottlenecks and sub-optimal memory allocation we

propose an algorithm that leverages heuristics from the job scheduler, system configuration, and

statistics to generate efficient memory placement maps for main and CXL memory on multi-GPU
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Figure 7.1: CXL-enabled multi-GPU system architecture.

systems. Our memory placement approach leverages tiered memory to identify optimal memory

sources to maximize the data transfer rate and reduce the total execution time. Our proposed

approach is shown in Algorithm 6. We consider a series of batch jobs J enqueued on the scheduler

ready for execution. The job configuration enlists the number of GPUs required and the total

memory footprint which is either known in advance or can be estimated using predictors [180].

Additionally, the system-level statistics, such as the amount of available memory per tier and

data movement bandwidth, are provided to the scheduler using resource monitoring tools, micro-

benchmarks, and node specifications.

Our proposed algorithm, listed in Algorithm 6 works as follows: select a list of jobs S for execution

on the available GPU resources (Lines 2-5). Next, the scheduler determines the excess amount

of memory required by each GPU, referred to as spill based on the scheduled jobs and available

memory on the CXL and DRAM cache tiers (Line 8). The calc_spill function computes the

fraction of DRAM memory requested by the GPU g of job j which exceeds the DRAM capacity

when all the scheduled jobs on socket(g) are allocated fair proportions of the DRAM memory.

Based on the spill, CXL memory available on that socket, and bandwidth of DRAM, PCIe, and

CXL, respectively, the routine calc_cxl computes the amount of memory that can be efficiently

allocated on the CXL device, such that none of the jobs scheduled on the peer-GPUs face DRAM

starvation (Line 9-10). Once the efficient memory allocations are computed, they are mapped to

the job j, and deducted from the available DRAM (D) and CXL (C) memory for the next set of

jobs (Line 12-15). Finally, the algorithm outputs an efficient multi-tier memory allocation plan for

the scheduled S jobs.
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Algorithm 6: Our proposed memory allocation approach.

Input : N : # sockets per node, J : list of jobs containing tuples ⟨j id, total mem, n gpus⟩, G: list of

vacant GPUs IDs, D: List of DRAM memory available per socket, C: List of CXL memory

available per socket, BWD: DRAM bandwidth per socket, BWP : PCIe bandwidth, BWC :

CXL bandwidth

Output: S: Amount of main and CXL memory to be allocated

1 begin

2 S ← [j ∈ J if j[n gpus] < avail gpus]

3 for j ∈ S do

4 j[gpus]← allocate gpus(G, j[n gpus])

5 j[mpg]← j[total mem]/j[n gpus] // req mem/GPU

6 for j ∈ S do

7 for g ∈ j[gpus] do

8 spill← calc spill(j,N, socket(g), D,C)

9 cxl pull← calc cxl(spill, C,BWD, BWP , BWC)

10 on cxl← min(cxl pull, j[mpg])

11 on dram← min(j[mpg]− on cxl,D[socket(g)])

12 j[‘dram‘][socket(g)]+ = on dram

13 j[‘cxl‘][socket(g)]+ = on cxl

14 D[socket(g)]− = on dram

15 C[socket(g)]− = on cxl

16 return S

7.2 Performance Evaluation

7.2.1 Testbed Setup

We simulate a series of different testbed profiles using the aforementioned simulation. We vary the

profiles of the testbed starting from the default configuration of the Nvidia DGX-A100 machine,

with the exception of considering 64 GB memory available per socket instead of the default 512 GB.

Multiple GPUs are connected to the host system using PCIe Gen 5.0 as per the topology shown in

Figure 7.1. The idle memory access latency for local memory is approximately 71 ns and 136 ns for

remote memory. Similarly, the loaded latency for such a system is 228 ns. Similarly, the maximum

attainable memory bandwidth is 243 GB/s for read-only traffic.
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7.2.2 Compared Approaches

We compare the following approaches for pinned memory allocation on CXL-enabled multi-GPU

devices:

• Naive: This is the default approach adopted for memory allocation where the system starts

allocating memory from the main memory followed by the CXL memory tier. In this approach,

jobs that get scheduled first end up consuming all the available main memory, forcing the

later jobs to allocate memory from the CXL device.

• Uniform: In this approach, the scheduler attempts to uniformly distribute the available

main memory across all GPUs. This approach ensures that all jobs get an equal portion of

the main memory.

• Our Approach: This approach is detailed in § 7.1.

7.3 Performance Results

We evaluate the performance of various compared approaches by measuring the total amount of

time taken by the job to perform data transfer across the main and CXL memory allocations. In our

evaluations, GPUs access data concurrently to the host memory tiers, as observed in GPU-bound

HPC and DL applications. We measure the data transfer time for an increasing amount of main

memory available per socket, varying PCIe bandwidth available (the GPU PCIe switches and CXL

connected through ×8 lanes), and varying degrees of CXL penalty.

7.3.1 Increasing Available Main Memory per Socket

Our first set of experiments evaluates the data transfer times for an increasing main memory

capacity. As observed in Figure 7.2a, our approach yields faster data transfer times with increasing

capacity. This is because with increased main memory capacity our approach can perform better

memory placement and load distribution across both main and CXL memory. For varying job

profiles, our approach demonstrates a reduction in data transfer overheads from 15.4% to 61.2% as

compared to the naive memory allocation approach.
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(c) Varying degrees of CXL penalty

Figure 7.2: Data transfer time for varying memory, PCIe bandwidth per GPU, and CXL penalties.

7.3.2 Varying PCIe Bandwidth

Our next set of experiments measures data transfer overheads of varying available PCIe bandwidth

for both GPUs and the CXL memory. This experiment studies the impact of various PCIe genera-

tions (starting from PCIe 3.0). As shown in Figure 7.2b, our approach performs 65.35% and 21.3%

better on average compared to naive and uniform allocation-based allocation approaches, respec-

tively. The bandwidth reported on the x-axis is the actual share of PCIe bandwidth available to

each GPU when two GPUs share a single PCIe bus using the PCIe switch. In real-world testbeds,

we achieve only ∼75% of the theoretical transfer throughput from the GPU to the host memory.

We use this to estimate the PCIe bandwidth of the next-generation PCIe protocols.

7.3.3 Varying Degrees of CXL Penalty

As specified in the CXL 3.0 specification, the CXL protocol is capable of achieving only 60%-90%

of actual PCIe bandwidth, which we refer to as the CXL penalty. Therefore, in our last set of

experiments, we evaluate data transfer times for the compared memory allocation approaches for

different degrees of CXL penalties. As observed in Figure 7.2c, our approach demonstrates 17.7%

to 67% lower data transfer overheads over the naive and uniform memory allocation policies.

7.4 Summary

To summarize, CXL offers promising benefits in terms of main memory expansion, increased data

transfer throughput, and low latency, however, the limited PCIe bandwidth connecting these CXL

devices can become a bottleneck when the memory allocation on multi-GPU systems is done using

the default schedulers. To address this challenge, we propose a reference architecture for enabling

CXL on the Nvidia DGX A100 system and propose an efficient memory allocation approach that

leverages job schedules and additional memory tiers to mitigate contention at the CXL memory

tier and maximize the performance of HPC workloads. Our evaluations show up to 65% lower data

transfer overheads compared to the default memory allocation approach.



Chapter 8

Intelligent Memory Management for

HPC Workflows

8.1 System Design

To improve the performance of containerized HPC workflows, we propose memory management

policies and runtime that minimize the execution time of HPC workflows by mitigating the impact

of inefficient memory allocations, replacement, and movement policies of existing tiered memory

approaches. Such policies are designed for heterogeneous memory systems that include at least two

memory tiers including the DRAM, PMem, and CXL memory supported by NVMe, SSD-based

storage, and similar technologies in memory and storage subsystems.

The intelligent memory management policies fully utilize distributed heterogeneous memory sub-

systems to improve the overall memory utilization and reduce workflow failures due to limited

memory [141, 179], thus improving the overall system throughput. They mitigate the impacts of

using tiered memory on workflow performance by using intelligent page allocation and replacement

policies that leverage the access latencies of different memory tiers, the interconnection bandwidth,

and local memory availability. Our proposed runtime manages the allocation and movement of

additional memory requests from HPC workflows and transparently moves memory pages between

memory tiers to maximize the overall system performance.
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Figure 8.1: High-level system architecture with IMME leveraging tiered memory for containerized

HPC workflows.

The high-level architecture of our proposed runtime is shown in Figure 8.1. The workflow is first

submitted to the WMS where it is converted to an executable workflow represented by a DAG.

Our proposed runtime ensures that the HPC workflows optimally leverage additional memory from

the memory tiers and enable workflow-aware memory allocation to jobs. Workflow containers

can request memory from specific memory tiers which can be different from the initial memory

allocation. Our allocation policy serves such memory requests by efficiently allocating memory

pages from the requested memory tier. It identifies the best memory tier based on the workflow

characteristics, i.e., latency sensitivity, bandwidth and capacity intensive, and execution makespan,

and allocates either the entire block from a single tier or from multiple memory tiers including the

local and CXL memory. Our target capacity-intensive jobs, such as training DL models [39, 146]

and large-scale simulations [118], require large memory capacity for continued execution and are

independent of their latency and bandwidth requirements. If enough local memory is not available,

then our page replacement policy and proactive swapping mechanism move existing memory pages

to the appropriate lower memory tiers to provide large contiguous memory space for workflows.

The Tiered Memory Manager is the main component of our runtime, that handles coordination

between components of our proposed runtime by using a manager and a client deployed on the

cluster nodes. The main responsibilities of Tiered Memory Manager are: 1) identify various memory

types; 2) categorize memory into tiers; 3) create staging buffers on each tier; 4) dynamically adjust

buffers based on utilization; and 5) track the hotness/coldness of workflow pages. The Tiered
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Memory Manager identifies various memory types available on the HPC systems and classifies them

into tiers with the primary tier being the DRAM memory. The classification of memory into tiers

depends on the available memory capacity, access latency, maximum attainable bandwidth, and

the interconnect type. It also creates staging buffers on each tier based on the fair-share approach,

tier characteristics, and available memory. These buffers are dynamically adjusted based on the

memory utilization on each tier and the workflow requirements. Moreover, staging buffers required

for transparent data movement across memory tiers are created for each compute node. Lastly,

Tiered Memory Manager also tracks the hotness of each page of the workflows. The heatmaps

are used to identify frequently accessed pages and least frequently accessed pages for efficient page

movement between the memory tiers.

The memory allocation, deallocation, and management are done transparently by the runtime

based on the workflow requirements and the memory access patterns of the given application. The

Tiered Memory Manager exposes APIs that can be used by workflows to request tiered memory

for expansion, staging input data, or storing intermediate and output data beyond the initial

memory allocation. These APIs are used to allocate and deallocate memory from a specific tier

by setting the appropriate flag and for creating shared memory regions between workflows. For

example, HPC workflows can use the APIs to request memory from the PMem tier to store data

structures that need to be retained. Similarly, for frequently accessed data memory from the CXL

tier can be requested to store the prefetched data for caching purposes. The APIs are designed

for seamless integration, allowing them to be incorporated into the existing workflow code with

minimal modifications.

Once a request is received, the Tiered Memory Manager services the request by identifying the

ideal memory tier and returning the address space. The requested memory size is in bytes and the

flag accepts a combination of the following values: LAT,BW,CAP, SHL which represent latency-

sensitive, bandwidth-intensive, capacity, and short-lived, respectively. The LAT flag represents

memory that is extremely sensitive to access latency and the page placement necessitates the

use of the fastest memory tier. Similarly, the BW flag represents a memory access pattern that

requires the highest access bandwidth from either a single or multiple memory tiers. The CAP

flag represents memory that is not susceptible to access latency or bandwidth and is primarily

use to store pages that are not actively accessed. Lastly, the SHL flag represents memory that is

shared between multiple workflows. The flags passed through these APIs allow the user to pass

hints regarding the memory resource requirement of workflows. However, these flags are purely

advisory and are not mandatory for successful execution. If no flags are provided, then the Tiered

Memory Manager assigns either single or multiple flags to each workflow based on the previous
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Figure 8.2: Tiered memory layout for HPC workflows.

execution logs, heuristics, and predictor [42]. The Tiered Memory Manager also monitors page

access patterns and uses this monitoring data for efficient memory allocation and moving data

across memory tiers.

Figure 8.2 shows the layout of the tiered memory system, which consists of CXL-based memory

and PMem resources and can span across a cluster of servers. Tiered Memory Manager handles all

memory access from each workflow to the tiered memory and keeps track of the memory allocations

to workflows. It also monitors the memory allocations on each server and dynamically adjusts the

memory allocation based on the current memory utilization on each server.

Page Allocation Policy

By default, memory is allocated for workflows from the local system memory to maximize perfor-

mance and reduce the total execution time. However, memory pages are excessively swapped to the

slower tiers, e.g., swap space, when the system memory runs out which degrades the performance of

running jobs [50,163]. Our page allocation policy maximizes job performance and reduces the im-

pact of swapping to slower tiers by efficiently utilizing tiered memory and by considering workflow

characteristics and the execution sequence. Similarly, it also handles the allocation of additional

memory from the tiered memory once the DRAM memory runs out of available space. The policy

ensures that the additional memory allocated from the tiered memory has minimal overhead and

takes into account the latency requirements of HPC workflows.

Our proposed page allocation policy is shown in Algorithm 7. It takes workflow attributes as input,

which includes a unique workflow identifier (w id), the size of the requested memory (s), and an

optional list of flags regarding the memory characteristics of the workflow (f). We predict the

amount of memory required for each flag using previous execution logs, heuristics, and existing

memory predictors [42, 157]. Specifically, the heuristics generate page temperatures by analyzing

the page access frequency on each memory tier. For instance, if a job allocates 40 GB of memory
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Algorithm 7: Page Allocation Policy for HPC workflows with Tiered Memory.
Input : w id: unique workflow identifier, s: requested mem size, f : list of flags to denote mem characteristics

(LAT : lat-sensitive, BW : bw-intensive, CAP : cap-intensive, SHL: short-lived), alloc map: global

mem alloc maps for all workflows, ev: global map of evictable mem available on each tier-(local,

pmem, and cxl)

Output: A: memory allocation plan containing a map of memory allocation required from each memory

resource

1 Function TierAlloc(w id, s, ⟨f⟩):
2 if f == NULL then

3 f = predict flags(w id, s)

4 if type(f) == list then

5 ffirst = f.pop()

6 sizefirst = predict flag mem size(ffirst, w id)

7 TierAlloc(w id, sizefirst, ffirst)

8 TierAlloc(w id, s− sizefirst, f)

9 A← ⟨local : 0, pmem : 0, cxl : 0⟩
10 if alloc map.find(w id) then

11 A← alloc map[w id] // Find prev. alloc

12 m = A[local] +A[pmem] +A[cxl] // Alloc’d memory

13 while m < s do

// Prioritize local memory for lat-sensitive and short-lived tasks

14 if f == LAT or f == SHL then

15 if ev[local] > 0 then

16 A[local]+ = min(s−m, ev[local])

17 else if ev(pmem) > 0 then

18 A[pmem]+ = min(s−m, ev[pmem])

19 else if m < s then

20 A[cxl]+ = s−m // Unlimited CXL mem

// Tiered memory allocation for high-bw

21 else if f == BW then

22 r ← 0 // Remainder for the next tier

23 for tier ∈ [local, pmem, cxl] do

24 frac[tier] = r + s× (BW [tier]/BW [total])

25 curr max = min(frac[tier], ev[tier])

26 A[tier]+ = curr max

27 r = curr max− frac[tier]

// Addn. memory capacity through CXL

28 else if f == CAP then

29 A[cxl]+ = s−m

30 m = A[local] +A[pmem] +A[cxl]

31 alloc map← alloc map ∪A

32 update evictable(A)

33 return A
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and only 512 MB of pages are accessed 80% of the time during the first 20 seconds of execution,

then 512 MB of memory is determined to be latency-sensitive (LAT ) while the remaining memory

is classified as capacity-sensitive (CAP ) for the first 20 seconds of execution. To look up execution

logs, we utilize workflow configuration information, parameters, flags, etc. For cases where logs

are not available or the exact match is not found, we utilize the nearest match as hints for the

predictor.

Once the flags are recursively decomposed in atomic values with their corresponding sizes, the

current memory allocation of the function on each memory tier (Lines 9-12) is fetched. The total

size required is updated for the given function based on previous allocations (Line 13). Next, we

iteratively allocate suitable memory pages from each memory tier based on the function require-

ments (Lines 14-33). For latency-sensitive (LAT ) and short-lived (SHL) workflows, the policy

attempts greedy allocation of memory starting from the fastest to the slowest tier in a cascading

fashion (Lines 15-21). This approach mitigates the challenge of higher access latency for such work-

flows. Part of the memory belonging to the latency-sensitive and short-lived workflows is pinned

to guarantee the required performance and the remaining portion is tagged as a pageable region

that can be used for swapping and replacement as shown in Figure 8.3. For simplicity, our pol-

icy assumes that an unlimited memory is available over the CXL interconnect and the remaining

memory can be directly allocated from CXL. Although such greedy-based decomposition leads to

suboptimal initial allocations for workflows that are launched at a later time by forcing them to al-

locate memory from high-latency slower memory tiers (e.g., CXL), our page replacement algorithm

(discussed in Section 9) effectively mitigates this overhead. For latency-sensitive workflows, our

runtime pre-faults [79] the memory addresses to reduce the overhead of page faults during memory

access.

Figure 8.3: Memory allocation and page movement for workflows.

For bandwidth-intensive workflows (BW ), we use a multi-path memory access approach that allo-

cates memory on each available tier (local, pmem, cxl) to provide maximum available bandwidth

to the workflow. The memory allocated on each tier is directly proportional to the available

read/write throughput observed from that tier. For cases where faster memory tiers experience

higher contention levels, and the required memory is not available (Line 26), only partial memory

is allocated (Line 27), and the remainder of memory from the next fastest memory tier (Line 28).
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Algorithm 8: Page Replacement Policy to manage hot/cold pages across multiple memory

tiers.
Input : r: Number of pages to replace from memory

Output: None

1 begin

2 t← 0 // Number of replaced pages

3 while t < r do

4 victim pages← lru pagable(r − t)

5 victim pages← remove lat or shl(victim pages)

6 t+ = victim pages

7 move out(victim pages)

8 update pg table(victim pages)

9 update alloc map(r)

Finally, for capacity-intensive (CAP ) workflows, the entire memory is allocated directly from the

CXL memory tier. Finally, based on the amount of memory allocated on each tier, the correspond-

ing allocation entry in the global allocation and eviction maps are updated (Lines 34-35) and the

memory allocation plan A is returned.

We note that the algorithmic complexity of the proposed page allocation policy is a linear function

of the number of memory tiers. However, since we consider the case of only three memory tiers, the

complexity becomes constant O(1). Such low complexity is particularly important for time-sensitive

HPC workflows.

Page Replacement Policy

Many page replacement techniques have been extensively studied for conventional memory subsys-

tems [61, 91, 211, 235] to create space in DRAM for pages that have been swapped out to slower

storage tiers. The default behavior of the Linux kernel is to select a set of candidate pages based on

various heuristics [61], such as least-recently-used, most-recently-used, and optimal page replace-

ment, that can be evicted to a disk-based swap partition to be replaced with the requested page.

However, this approach is agnostic to the underlying heterogeneous memory tiers and results in sub-

optimal page replacements to slower disk-based storage tiers, leading to resource underutilization,

performance degradation due to major page faults, and low system throughput.

To address the above challenges, we propose a page replacement policy, shown in Algorithm 8,

to mitigate the impact of suboptimal page faults to accommodate bandwidth-intensive and time-

critical HPC workflows. We adopt a dynamic memory eviction model based on the characteristics



CHAPTER 8. INTELLIGENT MEMORY MANAGEMENT FOR HPC WORKFLOWS 88

of the function such as latency-sensitivity or short-lived function. Our page replacement does

not depend on the input flags or predictor output, however, these flags enable fine-tuned page

replacement for specific workflow types. Note that the predictor is only used for estimating initial

allocation using previous execution logs or heuristics in the absence of flags. The replacement policy

also considers page temperatures and memory access patterns for all colocated workflows to identify

and prioritize the eviction of cold pages. The algorithm takes the number of pages to be replaced

(r) as input based on the system-level page faults and filters out the memory pages belonging to

the above class of applications (Lines 4-5) based on the victim pages identified by the Linux kernel.

The filtered pages are tracked and moved to the lower memory tier rather than swapped out to

the underlying disk-based swap space (Line 7). Once the victim pages are identified, they are

swapped to the swap space and replaced with the requested page by the application. Finally, the

allocation map is updated with the replaced pages (Line 8). Our page replacement policy ensures

that the memory pages belonging to the latency-sensitive and short-lived workflows are not blindly

swapped out by the Linux kernel resulting in major page faults that eventually degrade application

performance.

Intelligent Page Movement Policy

To improve application performance and reduce the latency of accessing memory pages, we propose

an intelligent page movement policy that proactively moves memory pages between various memory

tiers and implements a proactive page-swapping mechanism that swaps out memory pages to the

CXL memory. To mitigate the negative impacts of proactive swapping, the swapped-out memory

pages are cached in the page cache if there is enough memory available on the main memory and

are marked as dispensable and the corresponding page table entry is updated. If enough system

memory is not available, then the memory pages are simply moved to the CXL memory tier.

Once the system memory runs out, instead of swapping pages to the swap space, the pages in the

page cache are first swapped out and then the workflow memory pages are swapped. The page

movement from the main memory is based on workflow characteristics, e.g., latency-sensitivity, to

the CXL memory and then eventually to the local disk. The proactive page swapping also performs

memory compaction to reduce fragmentation and enable contiguous memory blocks to be allocated

to workflows for colocating more workflows on the system, thus improving system utilization.

The proposed page movement policy also moves pages between persistent and CXL-attached mem-

ory tier based on the available page access heatmaps. This enables the runtime to effectively move

pages to faster memory tiers that were previously identified as cold but later categorized as hot
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pages. Our application-aware intelligent page movement policy prioritizes application pages that do

not belong to latency-sensitive or short-lived applications. If a page belonging to the above classes

of applications must be moved, then the policy prioritizes pages belonging to the pageable memory

region as defined in the page allocation map. Our intelligent page movement policy minimizes the

impact of page swapping by enabling the swapped pages to be available in the fastest available

memory tier. Finally, our page movement policy reduces the number of major page faults and

subsequently increases the number of minor page faults as the page is accessible on other memory

tiers or the page cache.

Management of Shared Memory Across Workflows

CXL memory provides a fast backend to improve the performance of shared memory regions for

HPC workflows. Input or read-only data shared between workflows can be staged in the CXL

memory, which can be leveraged by the HPC job scheduler e.g. SLURM, to launch workflows at

scale and minimize the scale-up time and data transfers between workflows. For example, launching

thousands of HPC workflows using a custom Singularity container image requires the image to be

moved to all the servers that will run the job workflows. This creates a network and I/O bottleneck

when a large number of workflows access the same data resulting in an increased execution time to

prepare the runtime and increase the cold-start latency for containers. For simplicity, we assume

that the workflow manages the shared memory and handles locking mechanisms as offered by sev-

eral libraries [53,76] to block read or write operations during an ongoing write to the shared memory

region. We provide three strategies for efficiently managing shared memory between workflows at

the workflow and platform levels. First, shared memory pages are made locality-aware by incor-

porating the location of workflows accessing the shared memory by the HPC job scheduler. Such

memory pages are hosted on the CXL memory accessible to both workflows, and the memory pages

are cached in the local buffers for fast access on each server. Second, to improve the capability of

the HPC job scheduler to scale up workflows and reduce the cold start latency, we leverage the CXL

memory to host container images and application data. Third, our proposed runtime keeps track

of the memory tagged as shared memory and ensures that during a scale-down event, the shared

memory is not deallocated. The shared memory is freed when all references in the corresponding

page tables have been removed. These approaches ensure that the shared memory is effectively

allocated, managed, and utilized for large-scale containerized HPC workflow deployments.
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8.2 Performance Evaluation

In this section, we present the evaluation of the proposed memory management policies for HPC

workflows using tiered memory. We explain our prototype implementation, evaluation methodology,

testbed, workflows, and performance metrics that we use to analyze and compare our proposed

runtime with baseline and other alternative execution approaches.

8.2.1 Evaluation Methodology

We compare our runtime with the baseline scenario where HPC workflows are colocated and fre-

quently run out of memory resulting in swapping out of memory pages. We also compare its

performance with a more realistic scenario where workflows memory is allocated from CXL mem-

ory without considering the workflow performance characteristics. In our evaluation, we study

the following metrics to demonstrate the effectiveness of our proposed approach: total workflow

execution time, number of page faults, total execution makespan of HPC workflows submitted as

batch jobs, and workflow and cluster scalability. The total execution time is the time required to

complete the scheduled workflows and return the results. The bandwidth and latency numbers

are reported for the CXL memory allocated to the workflows and compared to the local memory

and swap space. Lastly, we use the number of memory accesses, the amount of data swapped

to disk, and CXL memory to gauge the performance of the memory management policies. To

evaluate workflows that have varying memory access patterns we randomly select workflows and

substitute them with versions that request additional memory during execution using our APIs and

incorporating specific flags. This approach ensures that the experimentation environment remains

dynamic, facilitating the exploration of various memory access patterns that may evolve during ex-

ecution. We run each experiment 10 times and report the average. Overall, we observe a negligible

variance, i.e., less than 5% between different executions of the same experiment in our evaluation.

8.2.2 Evaluation Setup

Testbed Setup

Our evaluation setup consists of a cluster of 8 bare-metal servers connected using 10G Ethernet.

Each server has two Intel Xeon Gold 6126/6240R/6242 processors, contains 512 GB of main mem-

ory, 1 TB of Intel Optane DC persistent memory, and runs Ubuntu 22.04 LTS server operating
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system. We deploy SLURM along with Singularity on all servers in our evaluation setup. We

provision the tiered memory using the local DRAM, persistent, and CXL memory available on the

servers via the CXL interconnection. The CXL memory is emulated [31,226,238] using the remote

NUMA socket as advocated by POND [156] and CXLMemSim [238]. In our testbed, we observe

the local and remote NUMA latencies to be ∼80 ns and ∼140 ns, respectively, which represent the

approximate latency of a CXL-attached memory [39,156].

8.2.3 Evalation Workflows

Modern HPC workflows [67, 98, 165, 189] typically consist of core scientific computing (SC) simu-

lations [188], surrogate deep-learning (DL) tasks that assist the core simulation [37, 59, 240], data

compression/decompression (DC) [46,148,192] for collective communications and storage, and data

mining (DM) [95,150,233] required by analytics engines to steer the experimental trajectory in real-

time. In our evaluations, we consider HPC workflows composed of these where each workflow rep-

resents jobs with unique characteristics, i.e., computing (requires powerful CPUs), data (processes

large volumes of data), bandwidth-intensive (requires large bandwidth), latency-sensitive (requires

fast access), and short-lived. DL is a data and bandwidth-intensive workflow in which we train

the popular NLP model, i.e., Bert [74], over the IMDB dataset [14] for a total of 5 epochs. The

DM workflow is a latency-sensitive workflow running a task on Spark that performs ETL [83] over

the US census data [20] and computes the diversity index. The DC workflow is a compute and

data-intensive workflow in which we run Zip [90] compression on a set of 50 GB input files. The

SC workflow runs BFS using igraph [128] on a binary tree.

8.2.4 Execution Environments

To study the impact of our memory management policies, we define four realistic execution envi-

ronments for running HPC workflows based on the availability of memory and storage subsystems.

These execution environments are:

1. Ideal Environment (IE) represents an ideal baseline environment with enough local mem-

ory.

2. Constrained Baseline Environment (CBE) represents a more realistic environment with

limited system memory and memory pages are frequently swapped out.
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Figure 8.4: Impact of our runtime on the studied execution environments.

3. Tiered Memory Environment (TME) is based on the Constrained Baseline Environ-

ment but uses tiered memory for memory allocation with default Linux page promotion and

demotion based on page temperatures.

4. Intelligent Memory Management Environment (IMME) is based on the Tiered Mem-

ory Environment and uses our intelligent memory management policies.

8.3 Performance Results

In this section, we present the performance results of our proposed approaches by executing the

workflows on the studied execution environments and comparing their performance.

8.3.1 Impact of Tiered Memory on Total Execution Time of HPC Workflows

We study the impact of allocating tiered memory to HPC workflows and report the total execution

time for the studied execution environments. The results are shown in Figure 8.4. We observe that

the Ideal Environment takes the least execution time for all studied workflows because sufficient

system memory is available to host the entire footprint of HPC workflows in memory. We observe

degraded performance for the Constrained Baseline Environment as compared to Ideal Environment

due to the limited system memory availability and frequent swapping of workflow memory pages to

slower tiers. Similarly, the performance of latency-sensitive and short-lived, i.e., the DM workflows,

drops significantly due excessive swapping and contention. However, the availability of tiered
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Figure 8.5: Impact of IMME on the workflow performance with varying tiered memory availability.

memory in the Tiered Memory Environment reduces this impact by providing a faster alternative

and performs better than the Constrained Baseline Environment . Similarly, for Intelligent Memory

Management Environment , we observe that our runtime utilizes tiered memory to improve the

performance of workflows by allocating memory to appropriate workflows, intelligently moving

pages between memory tiers, and proactive swapping memory pages to the CXL memory tier.

Overall, we observe that the Intelligent Memory Management Environment reduces the execution

time of studied workflows by up to 7%, 87%, and 25% as compared to the Ideal Environment ,

Constrained Baseline Environment , and Tiered Memory Environment , respectively.

We also study the impact of varying tiered memory allocations on the execution time. Figure 8.5

shows the results. Here, we vary the tiered memory allocation from 10% to 50%, where each data

point represents the percentage of workflow memory allocated from the CXL memory tier. In the

Tiered Memory Environment , we observe that as we increase the allocation of CXL memory to the

workflows, the execution time increases due to the additional latency associated with accessing the

CXL memory. We also observe that the Tiered Memory Environment does not manage tiered mem-

ory efficiently and causes bandwidth-intensive workflows to not fully utilize the additional available

bandwidth, and latency-sensitive workflows to experience additional latency over the CXL inter-

connect. Since our proposed runtime allocates tiered memory based on workflow requirements and

characteristics, we observe a reduced execution time for the studied workflows. Moreover, work-

flows that require additional memory continue to execute by expanding their memory footprint

on the tiered memory which would otherwise crash due to limited local memory or fixed memory

allocations. Overall, we observe that our memory management policies improve workflow perfor-

mance by up to 80% as compared to the Tiered Memory Environment by efficiently allocating and

managing memory tiers based on workflow characteristics and requirements.
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Figure 8.6: Impact of our memory allocation policy on execution time.

8.3.2 Impact of Page Allocation Policy on Workflow Performance

We study the impact of our page allocation policy on workflow performance by launching multi-

ple instances of the studied workflows on the HPC cluster. To evaluate the effectiveness of our

allocation policy, we report the total execution time of each workflow in Figure 8.6. We compare

our page allocation policy with two approaches: 1) the Default Allocation policy where the sys-

tem memory and CXL memory are allocated to workflows regardless of its requirements; 2) the

Uniform Allocation policy allocates CXL memory to all workflows in a uniform fashion regardless

of the workflow requirements. We observe that the Default Allocation policy allocates CXL mem-

ory to workflows based on its demand without catering to the class it belongs to and results in

degraded performance for latency-sensitive and short-lived workflows. This approach is beneficial

for latency-sensitive workflows and capacity-intensive workflows, but the performance of latency-

sensitive workflows degrades as soon as the memory footprint overflows to tiered memory. The

Uniform Allocation policy results in the worst performance for latency-sensitive workflows as they

experience additional access latency of the tiered memory due to interleaving. However, interleaving

results in improved performance for bandwidth-intensive workflows due to the availability of addi-

tional bandwidth. Overall, the Uniform Allocation outperforms the Default Allocation, however,

the memory allocation is not aware of the workflow characteristics. The performance of Uniform

Allocation can be further improved with weighted interleaving, however, setting weights does not

consider the characteristic for all workflow types. We also observe that our memory allocation pol-

icy reduces the total workflow execution time by intelligently allocating CXL memory to workflows

to minimize the impact of additional access latency. Overall, we observe that our allocation policy

reduces the execution time by 44% and 8% on average as compared to the Default Allocation and

Uniform Allocation strategies, respectively.
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We also study the impact of our memory allocation policy on each class of workflow by varying the

percentage of available DRAM to each workflow as a function of its working set size (WSS). The

results are shown in Figure 8.7. We observe that as the amount of DRAM available to latency-

sensitive workflows decreases, the memory access time increases resulting in a significant impact

on makespan and performance. Similarly, for bandwidth-intensive workflows, we observe that our

memory allocation policy leverages the available CXL memory to improve the overall throughput

by leveraging the additional memory tiers.
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Figure 8.7: Impact of our memory allocation policy on the execution makespan of the studied

workflows.

For Tiered Memory Environment , we observe that as the memory available to workflows decreases,

the hot pages are promoted to DRAM reducing the impact of additional latency of CXL memory.

Moreover, the speedup is achieved as the additional memory availability reduces the impact of

swapping to slower storage for the Ideal Environment . Moreover, workflows that require large

memory capacity to successfully execute, benefit from potentially unlimited memory availability

from the CXL memory. Overall, we observe that our memory allocation policy reduces the overall

makespan by 25%, 85%, 35%, and 71% on average compared to Ideal Environment for deep learning,

data mining, data compression, and scientific workflows, respectively. Similarly, we observe that

our memory allocation policy reduces the overall makespan by 8%, 31%, 9%, and 22% on average

compared to Tiered Memory Environment for deep learning, data mining, data compression, and

scientific workflows, respectively.
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Figure 8.8: Impact of our page movement policy on workflow page faults.

8.3.3 Impact of Page Movement Policy on Workflow Performance

We study the impact of our intelligent page movement policy by observing the page fault statistics

for the studied workflows. The results are shown in Figure 8.8. We observe that in the Ideal

Environment , the Linux kernel swaps out memory pages based on the least recently used (LRU)

policy regardless of the workflow requirements or characteristics. This causes a performance drop

in latency-sensitive workflows which are most susceptible to additional latency when pages are

swapped back in by the Linux kernel. We observe that with the availability of CXL memory,

our page movement policy reduces the number of pages that are swapped to the disk by reducing

the major page faults, thereby, improving workflow performance. However, workflows that are

extremely sensitive to latency suffer additional latency when reading and writing from CXL memory.

Our intelligent page movement policy reduces the number of major page faults by moving pages

to the CXL memory which in turn increases minor page faults for each workflow. Furthermore,

Linux swapping increases workflow execution time even with CXL memory. We observe that

our intelligent page movement policy performs workflow-attuned page movement and ensures that

the memory pages are available in the fastest tier and pages of latency-sensitive and short-lived

workflows are protected from swapping. Our intelligent memory movement also performs proactive

swapping in the background in addition to moving memory pages between various memory tiers.

Our proactive swapping moves out workflow memory pages that are less sensitive to the overhead

of moving pages back into the memory. This enables keeping more pages of latency-sensitive and

short-lived workflows in the memory. Overall, we observe that our workflow-attuned page movement

and proactive page-swapping improve workflow performance by 46% as compared to the default

swapping policy.
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Figure 8.9: Impact of our runtime on execution

time of 3000 workflows on an 8-node cluster.
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Figure 8.10: Impact of our runtime on execution

time on an 8-node cluster.

8.3.4 Scalability Analysis of our Proposed Runtime on Workflow Performance

We increase the size of the HPC cluster and concurrent workflows to study the impact of our

proposed runtime on a large HPC cluster. We launch 2000 instances of the studied workflows (150

for DL, 1100 for DM, 150 for DC, 600 for SC workflows) concurrently and observe the workflow

execution time. Figure 8.9 shows the results of this experiment. We observe that the execution time

is significantly reduced with the increasing number of cluster nodes thanks to the overall memory

allocation and page movement on each server leveraging the CXL memory effectively. With the

Constrained Baseline Environment , the execution time is the highest due to the limited resource

availability and the contention at each node of the cluster. As memory utilization of the system

increases due to colocation, the Tiered Memory Environment efficiently utilizes the tiered memory

to promote hot pages to faster tiers improving the overall workflow performance. Moreover, we

observe that for large-scale invocations, the overall execution time and the workflow startup time

are reduced with Intelligent Memory Management Environment due to the effective placement of

shared files on the CXL memory that is accessible to all the nodes in the cluster. Overall, we observe

a performance improvement of up to 51%, 76%, and 32% compared to the Ideal Environment ,

Constrained Baseline Environment , and Tiered Memory Environment , respectively.

We also study the impact of concurrent workflow invocations on the overall execution time of batch

HPC jobs containing all studied workflows with varying, i.e., 100, 200, 400, and 800, instances. The

results are shown in Figure 8.10. We observe that as the number of concurrent workflows increases,

the execution time also increases due to resource contention at servers. We observe a negligible

overhead, i.e., 4%, of our proposed runtime as the workflows are scaled up due to efficient multi-

tiered memory allocation policy and intelligent page movement to ensure that the workflow startup

time is reduced. Overall, we observe that our proposed runtime reduces the execution time by up

to 19%, 48%, and 4% compared to the Ideal Environment , Constrained Baseline Environment , and

Tiered Memory Environment , respectively.
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8.4 Summary

In summary, we explore tiered memory systems for running containerized HPC workflows and

propose application-attuned intelligent page allocation, movement, and replacement policies to

improve performance. We integrate our proposed runtime with popular HPC scheduler (SLURM)

and container runtime (Singularity) and evaluate its performance using diverse HPC workflows with

various computing, capacity, bandwidth, and latency requirements. Our evaluation shows that our

proposed runtime reduces workflow execution times by up to 51%, 87%, and 35% as compared to

the ideal, realistic, and optimized tiered execution environments, respectively.



Chapter 9

Conclusion

High-performance computing (HPC) workloads are pivotal in solving complex scientific challenges

across various domains, including weather forecasting, medical diagnostics, and fluid dynamics sim-

ulation. Traditionally executed on bare-metal systems, containers, functions, or workflows, these

workloads pose substantial memory and storage demands that often surpass available resources.

Platforms like TensorFlow or PyTorch, used for executing HPC tasks such as deep learning (DL),

lack awareness of underlying system performance and resource availability, hindering efficient dis-

tributed training. Similarly, Function-as-a-Service (FaaS) platforms impose fixed memory allocation

and short task timeouts, leading to unreliable performance and job failures, especially for stateful

HPC applications. Lastly, containerized workflows require extensive memory, causing data swap-

ping and degraded performance, while bandwidth-intensive or latency-sensitive tasks suffer from

sub-optimal memory allocation. Tiered memory systems, like persistent memory and compute ex-

press link (CXL), offer potential solutions by enhancing memory capacity and bandwidth. However,

existing memory management techniques fail to adequately address the diverse needs of colocated

containerized jobs in HPC systems that run workflows and ensembles at scale concurrently.

In this research, we introduce a comprehensive framework aimed at enhancing the efficiency of

HPC platforms, workflow management systems (WMS), and HPC schedulers. By leveraging ad-

vancements in memory subsystems, particularly CXL, our framework optimizes HPC workloads’

performance by ensuring that heterogeneous datacenter resources are efficiently utilized. Our pro-

posed architectural enhancements and software modules manage the allocation of additional CXL-

based memory and introduce a fast intermediate storage tier, alongside intelligent prefetching and

caching mechanisms tailored for HPC tasks. We integrate tiered memory systems and implement

99
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efficient memory management policies, including intelligent page placement and eviction policies,

to enhance memory access performance. These policies consider task characteristics and facilitate

efficient memory sharing between workflows. Integration with popular HPC schedulers, such as

SLURM, and container runtimes like Singularity, demonstrates improved tiered memory utilization

and application performance. Furthermore, integration with TensorFlow and Apache OpenWhisk

enables infrastructure-aware scheduling and performance optimization for DL workloads, enhanc-

ing resilience and fault tolerance in FaaS platforms. Evaluation results showcase enhanced system

utilization, throughput, and performance, along with reduced training time, failure rate, recovery

time, latency, and cold-start time across large-scale deployments.

9.0.1 Future Work

In the future, we aim to enhance our Infrastructure-Aware TensorFlow platform by addressing

the challenges posed by a large number of straggler nodes in scheduling and executing DL jobs on

heterogeneous resources. Additionally, we will explore techniques to adapt the platform to different

distributed training approaches, such as parameter-server-based distributed training. Expanding

our focus on DiSDeL, we intend to minimize the cold start latency of containers and incorporate

model parallelism to cater to various DL applications. Furthermore, refining the scheduling of DL

jobs in multi-tenant environments will further improve serverless resource utilization. For Deep-

MemoryDL, extending support to other DL platforms, particularly PyTorch, to eliminate I/O stalls

and enhance overall performance. Additionally, we plan to leverage accelerator-based systems, such

as GPUs, to utilize their High Bandwidth Memory (HBM) interconnects, creating an additional

tier for prefetching and caching training data, thereby enhancing DL workload performance in

distributed settings. Expanding the capabilities of the Canary framework, we aim to proactively

predict and mitigate failures and explore advanced techniques like request and function replication

for robust failure recovery. Moreover, integrating user requirements into the failure recovery strat-

egy will be a key focus to maximize performance and cost benefits when utilizing FaaS platforms.

In terms of memory allocation, we plan to introduce dynamic memory resizing and intelligent data

movement between different memory tiers to optimize resource utilization. Furthermore, extending

our page allocation policy to support variable latency and bandwidth will enable more efficient

page replacement and movement. Additionally, we aim to incorporate accelerator memory into our

implementation to further enhance system performance.
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López. On the faas track: Building stateful distributed applications with serverless architec-

tures. In Proceedings of the 20th International Middleware Conference, 2019.

[49] Daniel Barcelona-Pons, Pierre Sutra, Marc Sánchez-Artigas, Gerard Paŕıs, and Pedro Garćıa-
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