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Abstract

Human intelligence is strong at adapting to a small number of observations, partially because of

the human ability to 1) use given knowledge and 2) distill knowledge from related but different

data to guide learning for future tasks, where such ability is the inductive bias during learning.

Deep learning shows a promising solution to artificial intelligence. However, generalizing or adapting

deep learning models to heterogeneous tasks remains an open question. Existing data-driven models

often ignore prior knowledge about the underlying problems of interest, or have limitations in

incorporating complex knowledge into neural networks. The one-size-fit-all formula assumes the

training and testing data follow the same distribution, while the heterogeneity within the training

data and the distribution shift from training time to test time lead to generalization error.

In this dissertation, we approached these challenges from the perspective of improving the adap-

tation with inductive bias, primarily examining the following three research questions: 1) how to

learn to adapt with unknown knowledge that can be learned from data, 2) how to adapt deep

learning models with known prior knowledge, and 3) how to learn to identify hybrid knowledge

with both known prior and unknown errors.

To answer the first research question, we proposed a novel concept of learning to adapt to diverse

dynamic environments in high-dimensional long-term time series forecasting. To answer the second

research question, we first designed neural functions to model the spatiotemporal physics relation-

ships defined on geometrical domains. We then proposed to improve the learning of neural networks

given partially known physics with a hybrid state-space framework. For the last research question,

we proposed a hybrid gray-box modeling combining the strength of learning to identify unknown

errors from data and adapting with known physics.
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In this dissertation, we proposed several novel adaptation methods with good adaptation ability by

drawing ideas from different well-studied areas such as variational inference (e.g. variational Bayes),

image reconstruction (e.g. electrocardiographic imaging), time-series forecasting (e.g. sequential

latent variable models), and few-shot learning (e.g. feedforward meta-learning). We evaluated our

algorithms on synthetic data and real data in both general and clinical settings, and show that our

approach yields significant improvement over existing methods. This, furthermore, opens the door

for many new directions of research related to adaptation.
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Chapter 1

Introduction

1.1 Overview

Deep learning has shown great promise in a broad range of domains such as computer vision [48,103],

speech recognition [51], and more recently modeling and inference of complex systems [30,76,92,131].

Standard deep learning follows a general framework that the neural function learns to fit the direct

mapping between data samples and their corresponding labels. This framework, however, faces two

critical challenges. First, a large set of well-labeled data needs to be available to train a model with

sufficiently good performance before the model is used for future tasks. Second, the learned model

is not able to be directly applied to future tasks that are related but different from the training

tasks. These two challenges hinder the standard deep learning in adaptation.

Human intelligence, on the other side, has a strong ability to adapt to a small set of observations.

This is partially because humans can use knowledge in learning. We call such ability as inductive

bias. This ability can be further categorized into two types. The first type is that humans are

able to incorporate given knowledge to guide learning, which is called known inductive bias. For

instance, physicists can predict the state of objects in different dynamic systems given physics

knowledge and related factors to each system. The other type is that humans are able to extract

knowledge from observations for future tasks, considered as unknown inductive bias. For the same

example of the dynamic systems, suppose small sets of observations from each system are available,

even one with limited physics knowledge can summarize the key factors that cause the difference

among these dynamics. The two types of inductive bias enable humans to learn in a data-efficient

and adaptive formula, providing a perspective from human intelligence on adaptation.

1
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To improve the adaptation of deep learning, we need to better understand the bottlenecks in

standard deep learning. The first bottleneck in standard deep learning is that the models are

fixed and specific to training tasks, assuming that the training and testing data follow the same

distribution. However, this task-specific formula prevents the model from being directly applied

to related but different tasks at test time. It further faces challenges in training a model on tasks

where the task-related factors change over time. In both scenarios, the task-specific model is not

able to extract the shared knowledge under heterogeneous tasks. The second bottleneck of standard

deep learning lies in its black-box nature that it learns a direct mapping over the dataset. However,

the prior knowledge about the underlying problems of interest has limited contribution to the deep

learning model. There is no specific design to represent prior knowledge in neural networks. The

learning objective of neural networks is usually an abstract function that is not guided by prior

knowledge.

In this dissertation, our main objective is to approach challenges in deep learning models from

the perspective of improving adaptation with inductive bias. We examine key research questions

including: 1) how to learn to adapt with unknown knowledge that can be learned from data, 2) how

to adapt deep learning models with known prior knowledge, and 3) how to learn to identify hybrid

knowledge both known prior and unknown errors. In the first aspect, the goal is to learn – instead

of a single neural network – a learning rule that is able to summarize the knowledge underlying the

data from related tasks about how to adapt a neural network to different data distributions. In the

second aspect, the prior knowledge of the data can be fully known or partially known. Therefore,

the goal is to impose prior knowledge into neural networks when it is fully known, or leverage the

partially known knowledge in a hybrid neural formulation to improve learning. In the third aspect,

we consider a more hybrid setting where the underlying knowledge of the data contains both known

prior knowledge and unknown errors. Therefore, the goal is to learn the rule of identifying the task

by given knowledge and estimating the error from data.

We first resolve the research question of learning to adapt to heterogeneous tasks. Instead of learn-

ing a single model for all heterogeneous tasks or multiple models for each individual, we proposed

to learn a learning rule of summarizing knowledge from related but different tasks about adaptation

across different data distributions. We then address the research question about adaptation with

known prior knowledge, where we primarily focus on incorporating physics-based inductive bias

into neural networks. Depending on whether the inductive bias is perfectly known, we explicitly

designed neural functions for spatiotemporal relationships in perfectly known physics, then lever-

aged imperfect or inexact physics rules to guide learning in neural functions. Finally, to answer

the third research question, we proposed a hybrid gray-box modeling combining the foundation of
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learning to identify knowledge from data in the first research question and the strength of adapting

with given knowledge in the second research question.

1.2 Contribution

The goal of this research is to improve the adaptation of deep learning models with inductive bias.

To this end, we present four major contributions:

What-how Framework: We proposed to learn the inductive bias of how to adapt in a what-how

framework for the adaptation of neural functions: 1) what is the dynamic environment underlying

a small set of observations and 2) how to adapt the neural function to the learned environment. We

implemented the framework via Bayesian meta-learning with a latent dynamic function conditioned

on knowledge derived from few-shot support series and a meta-model learning to extract such

dynamic-specific knowledge via feed-forward embedding of the support set. We demonstrated

improved performance with various sizes of support sets on diverse forecasting tasks and further

proved that the framework is agnostic to the latent dynamic function of choice [58]. We further

presented the application of the what-how framework on cardiac signal simulation with improved

personalization and predictive accuracy [57].

Adaptation with Physics – Geometry: We presented a novel spatiotemporal graph convolu-

tional neural network to reconstruct non-Euclidean image sequences. This approach describes the

spatiotemporal variables (unknowns and measurements) over their separate geometrical domains,

and learns the inverse mapping in between as a function of the graphical embedding of these two

geometrical domains. We first proved the feasibility of the framework [56]. In a series of gener-

alization tasks with increasing difficulty, we demonstrated the improved ability of the network to

generalize across geometrical changes underlying the data with reduced training data and fewer

geometrical variations needed [61].

Adaptation with Physics – Forward Imaging Physics: We proposed a novel hybrid state-

space modeling framework to solve image sequence reconstruction where the dynamic function of

the source variable is unknown, and the label of the data is absent or partially available. We

leveraged the advantage of structured state-space modeling in data-driven learning, with a par-

tially learnable state-space function to model physics and Bayesian filtering strategies to enable

supervision by physics without labels. We proved the feasibility of unsupervised learning utilizing

physics [60]. We further presented that the proposed method is able to accumulate knowledge
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from minimal unlabeled observations and combine the strength of physics-based constraints and

data-driven learning with better reconstruction performance on partially labeled data [59].

Identifiable Hybrid Model: We present a novel hybrid modeling framework to describe a per-

sonalized cardiac digital twin as a combination of a physics-based known expression augmented

by neural network modeling of its unknown gap to reality. We then present a novel meta-learning

framework to enable the separate identification of both the physics-based and neural components in

the hybrid model. We demonstrate the feasibility and generality of this hybrid modeling framework

with a proof-of-concept in synthetic experiments.



Chapter 2

Background

2.1 Electrocardiographic Imaging (ECGI)

Cardiac electrical sources produce time-varying voltage signals on the body surface, following quasi-

static electromagnetism [94]. Given a pair of heart and torso geometries represented by their

enclosing surfaces, the governing physics can be numerically approximated to relate signals on the

heart Xt to those on the body surface Yt [119]:

Yt = H(g)Xt ∀t ∈ {1, ..., T}. (2.1)

where Xt = [xt(1), xt(2), . . . , xt(M)]T represents electrical potentials on M vertices of the heart

mesh, and Yt = [yt(1), yt(2), . . . , yt(N)]T the electrical potentials on N vertices of the torso mesh,

at time instant t. The forward operator H(g) defines the physics of their relationship, dependent

on the given heart-torso geometry g. Specifically, the signal on each torso vertex can be computed

as a linear combination of signals on all heart vertices yt(i) =
∑

j xt(j) · h(g(i, j)) for i = 1, 2, . . . N

and j = 1, 2, . . .M , where linear coefficients h(g(i, j)) are known to be inversely proportional to

the relative distance between torso vertex i and heart vertex j [6, 96]. ECGI then addresses the

reconstruction of X1:T from given measurements of Y1:T .

2.1.1 Traditional ECGI Approaches

In classic methods, imaging physics is incorporated as prior knowledge in the forward operator

H(g). Numerical optimization and statistical inference methods are then used to seek the inverse

5
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solution that best fits the measurements under H(g), in combination with certain constraints

R(Xt) about Xt. Representative constraints include the smoothness of the solution in space and

time at different orders of derivatives [106], such as Tikhonov regularization [35, 108], truncated

singular value decomposition (SVD) [88], and spatiotemporal regularization [16]. Other constraints

consider the sparsity of the cardiac signal in the gradient domain by L1 norm [43] and total variance

[124]. Alternatively, model-based regularization encodes a priori physiological knowledge about the

spatiotemporal dynamics of the solution, including logistic functions [117] and step jump functions

[95] to describe the activation of action potential and 3D electrophysiological simulation model

[47,86,119] or network-based representation [42] of spatiotemporal propagation of action potential

for transmural sources throughout the myocardium.

The various existing works discussed above can be conceptually summarized in a general state-

space framework, where different types of constraints R(Xt) can be translated to designs of dif-

ferent dynamic transition functions. For instance, temporal smoothness of Xt can be described by

Xt = Xt−1 + ωt which assumes that Xt changes minimally over consecutive time frames and ωt is

a noise term. If no temporal constraint is imposed, the dynamic transition function can be simply

interpreted as Xt = ωt. For instance, the spatial smoothness constraint for Xt [16, 108] can be

interpreted as a Gaussian assumption for ωt, and the spatial sparsity constraint [43, 124] can be

summarized as a Laplacian assumptions for ωt. Alternatively, the dynamic transition function in

model-based regularization can be translated as PDEs [117, 119] or neural networks trained from

such PDEs [42]. In general, while simpler functions (e.g., smoothness) have limited capacity to

express rich knowledge, complex functions (e.g., PDEs of action potential propagation) are asso-

ciated with increased structural and parameter assumptions and thus a higher risk of introducing

errors when applied to an individual subject.

In traditional Bayesian filtering, after the choice of the dynamic transition function is made, it is

kept fixed to provide predictions that constrain the estimation given ECG data. Incorrect assump-

tions may thus lead to incorrect estimations; furthermore, Bayesian filtering is typically performed

independently across different ECG data, with a missed opportunity to pull knowledge across data

to refine the dynamic transition function to improve its application to future ECG data.

2.1.2 Data-Driven ECGI Approaches

As in many other areas, deep learning ECGI methods have started to show great promise [41, 61,

64,89,99]. These approaches typically learn a direct inverse mapping using data pairs of signals on

the body and the heart. For instance, fully connected layers have been used to learn the temporal



CHAPTER 2. BACKGROUND 7

correlation between body and heart potentials from the sequence of ECG data and reconstruct heart

potentials in future timesteps [53,63,79]. Long short-term memory (LSTM) networks [52] have been

used to learn the sequence-to-sequence relationship between ECGs and cardiac transmembrane

potentials (TMPs) [41].

Unlike classic ECGI methods, these data-driven approaches also have the following challenges.

First, few data-driven ECGI approaches considered the fact that the inverse mapping should be spe-

cific to the underlying geometry. As a result, the learned inverse mapping has to be restricted to the

same geometry on which the training was performed. This largely limits the clinical value of these

approaches to be applied across patients. To address this challenge, investigators have performed

the learning of the inverse mapping between BSPs and activation maps offline and transferred the

results onto patient-specific anatomies to achieve fast personalized predictions online [44]. A similar

approach is to learn an inverse mapping that is invariant to geometry by removing geometry-related

information from the input ECG data using an information bottleneck [41]. However, this approach

requires additional training data that represent variations from different geometries. Alternatively,

the geometry can be incorporated by conditioning the reconstructions of electrical potentials on

2D image scans of the heart shape [5]. It is not clear how to extend this approach to consider the

most important geometrical factors in ECGI—the relative position between the heart and torso.

Another challenge in these data-driven approaches is the large requirement of pairs of Xt and Yt to

train. In practice, however, cardiac electrical activity Xt is hardly available. Training on simulated

data offers a potential alternative, as adopted in many existing data-driven ECGI models [41,61,63].

However, the generalizability of the resulting model to real data remains to be tested.
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Figure 2.1: Sequential latent-variable models for forecasting high-dimensional sequences. A) time-

varying state estimation models infer the latent state from the current and past observations. B1)

Time-varying state identification models infer the system parameters from the current and past

observations. B2) Time-invariant system identification models predict the whole sequence with a

global system parameter and an initial state inferred from observations. C) The proposed meta-

SLVM framework that learns to predict diverse dynamics with system parameters inferred from

few-shot support sets and latent dynamic model conditioned on inferred parameters.

2.2 Time Series Forecasting

2.2.1 Sequential Latent Variable Models (SLVMs)

Among the first SLVMs is the variational recurrent neural networks (VRNN) [21], followed by a

series of deep state-space models (SSMs) [71, 73, 77] focused on modeling the dependence of the

posterior and transitional density of the latent state zk on past latent states z<k and observations

x<k (Fig. 2.1A) – resembling the deep extensions of the classic Kalman filter [71] and particle filter

[77]. An alternative line of deep SSMs aims to infer the parameters of the latent dynamic function

instead [37,62,70,101]. Existing approaches along this line assumed linear latent dynamics, where

the linear transition matrix at each time frame k is modeled as a linear combination of a set of global

matrices. The linear coefficients are modeled to be time-varying and inferred from observations

x≤k as illustrated in Fig. 2.1B1. In both formulations, the latent dynamic function’s reliance on

inferred time-varying variables reduces its ability to forecast without near-term observations.

In parallel, a set of models (Fig. 2.1B2) have been presented that aims to learn a latent dynamic
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function that forecasts a sequence using only an inferred initial state, in stochastic [107, 127] or

deterministic forms [13]. The resulting latent dynamic function is strong at forecasting, albeit only

a single function is learned at a time. We build on and advance this formulation of learning to

learn a dynamic-specific function from few-shot observations.

Modeling switching dynamics in SLVMs, often based on the formulation in Fig. 2.1A, shares the

presented idea of using context variables to control the latent dynamics [10, 74]. They however

are concerned with the switching of dynamics within a time series, whereas we are interested in

learning to learn dynamics from k-shot support series.

Sequential neural processes (SNPs), based on SLVM formulation in Fig. 2.1A [97, 114], are under-

lined by Bayesian meta-learning similar to the presented work. They are originally designed for

supervised learning of a regression function over time instead of forecasting. In this work, we will

extend SNP to realize a meta-version of the SLVM formulation in Fig. 2.1A, as a counterpart to

be compared with the presented meta-SLVM in Fig. 2.1C.

2.2.2 Autoregressive dynamics

Autoregressive models are also popular for modeling and forecasting dynamics, especially for ap-

proximating physics-based simulations [93, 120]. Some recent works have focused on generalizing

across dynamics by, for instance, disentangling spatial and temporal modeling [29] or learning

dynamic-specific functions in addition to a global dynamic function [128]. A recent autoregres-

sive model considered ”meta-learning” dynamics by using task-embedding to condition the fore-

caster [121], although this task encoder is trained separately from the forecasting model via weak

supervision and it infers the task from the observed frames of a forecasting series. Moreover,

autoregressive models cannot support the controlled generation of time series.

2.3 Few-Shot Learning

2.3.1 General few-shot learning

Few-shot learning has seen substantial progress with static data, including weight initialization

[36, 129], model optimizers [102], and feed-forward models to condition [39] or parameterize the

primary networks [12,115]. Among these, feed-forward meta-models replace test-time optimization
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with simple feed-forward passes using support data. It also has an interesting high-level relation

to Exemplar VAE [87] where the few-shot support samples can be viewed as the exemplar. It thus

constitutes the basis of the presented few-shot forecasting methods.

2.3.2 Few-shot time-series forecasting

Meta-learning is well studied in univariate time-series forecasting [83] including recent deep-learning

advances [90]. Few-shot forecasting for high-dimensional time-series, however, has not been at-

tempted to our knowledge.



Chapter 3

What-how Framework

In this chapter, we focused on the methodology of a what-how framework that allows adaptation

to heterogeneity across tasks at training and testing time published in ICLR 2023 [58]. Its direct

application on personalized neural surrogates for cardiac simulation is detailed in MICCAI 2022 [57].

3.1 Introduction

In many applications, an ultimate goal is to forecast the future states or trajectories of a dynamic

system from its high-dimensional observations such as a series of images. Compared to the relatively

well-studied univariate time-series forecasting [78,91,109], high-dimensional time-series forecasting

raises new challenges: it requires the extraction of the dynamics of an abstract latent state that is

not directly observed [13].

Sequential latent variable models (SLVMs) provide an attractive solution that, unlike autoregressive

models, abstracts a latent dynamic function zi = f(z<i;θz) with state zi and parameter θz, along

with zi’s emission to observations xi = g(zi) [21]. This pair of learned models can support long-

term forecasting given only initial frames of observations, as well as the controlled generation of

new dynamics. Critical bottlenecks however remain in reaching these goals.

The earlier formulation of SLVMs relies on a natural extension of the static LVMs: as illustrated

in Fig. 2.1A, the latent state zi is modeled as the latent variable for the generation of xi, and

a sequential encoder is used to facilitate the inference of zi from current and past observations

x≤i [21, 71]. Recent works have argued to instead model and infer the parameter of the latent

11
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dynamic function, often modeled as time-varying linear coefficients θz,i [37,62,70,101]. This results

in an LVM formulation as illustrated in Fig. 2.1B1, where the latent variable θz,i is inferred at

each i from observations x≤i. While strong at time-series reconstructions and classifications, a

fundamental limitation makes these SLVMs less suited for long-term forecasting: the latent dynamic

function has a limited ability to forecast without near-term observations to support the inference

of zi or θz,i.

This limitation in the mainstream SLVMs raises a natural question: are we able to relax the

assumption of linear dynamic function and directly infer its θz? Works adopting this idea have

emerged: as illustrated in Fig. 2.1B2, by modeling a single θz – either deterministic [13, 107] or

stochastic [127] – f(z<i;θz) can be asked to predict a time sequence using only an inferred initial

state. This formulation has shown strong long-term forecasting, although with its own fundamental

limitation: it learns a single dynamic function global to all training sequences. This would not only

require all training data to share identical latent dynamics, but also has difficulty to forecast test

sequences with dynamics different from or unknown to the training.

In this chapter, we answer this important open question of long-term forecasting for diverse dy-

namics. We first present a conceptual framework of SLVMs to unify existing works, and identify

an intuitive solution to the underlying critical gap via meta-learning: instead of learning a single

dynamic function, we can learn to pull knowledge across datasets of different dynamics and learn

to adapt a dynamic function to few-shot high-dimensional time-series. We then present a Bayesian

meta-learning framework as illustrated in Fig. 2.1C: instead of being a single fixed function as in

Fig. 2.1B2, we let the latent dynamic function be conditioned on knowledge derived from few-shot

support time-series via a feed-forward set-embedding meta-model; given k-shot time-series of a

specific dynamics, the model is asked to forecast for query time-series using only the initial frames,

meta-learned across dynamics. We develop this framework to be agnostic to the latent dynamic

functions of choice, and with the flexibility to forecast with a variable size of k.

We evaluated the presented framework in benchmark image sequences with mixed physics includ-

ing bouncing balls [37], pendulum [13], and mass-spring [13]. We further applied it to forecasting

complex physics of turbulence flow [121] and electrical dynamics over 3D geometrical meshes of

the heart. We compared the presented work with SLVMs representative of each of the formu-

lations in Fig. 2.1A-B, along with a recent autoregressive model designed to forecast for diverse

dynamics [29]. Each baseline model was trained on 1) the large meta-training set with diverse

dynamics, and 2) each dynamics individually, both with and without fine-tuning to k-shot sup-

port data. Representative SLVMs were further tested in their feed-forward or optimization-based
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meta-extensions. Results demonstrated clear margins of improvements by the presented work in

forecasting diverse dynamics, with added ability to recognize clusters of distinct dynamics and

allow controlled time-series generation given only initial conditions.

3.2 Unifying conceptual framework for learning latent dynamics

We first describe an LVM framework that unifies existing works under two choices of probabilistic

graphical models (PGMs). It includes a dynamic function of latent zk and its emission to data xk:

zk = f(z<k;θz),xk = g(zk), where θz represents the parameter of the latent dynamic function.

System states as latent variables: One natural choice of the latent variable is the latent state

zk underlying the observations xk. This gives rise to the PGM as illustrated in Fig. 2.1A, where

the marginal likelihood of an observed sequence x0:T can be expressed as:

p(x0:T ) =

∫
z0:T

p(x0|z0)p(z0)
∏T

i=1
p(xi|zi)p(zi|z<i,x<i)dz0:T , (3.1)

where p(xi|zi) describes emission and p(zi|z<i,x<i) describes latent dynamics. To facilitate in-

ference, a variational approximation of the posterior density q(z0:T |x0:T ) is often modeled as

q(z0:T |x0:T ) =
∏T

i=1 q(zi|z<i,x≤i). The evidence lower bound (ELBO) of (3.1) is:

log p(x0:T ) ≥
∑T

i=0
Eq(zi|z<i,x≤i) [log p(xi|zi)]−KL(q(zi|z<i,x≤i)||p(zi|z<i,x<i)). (3.2)

Existing works adopting this PGM [21,71,73] differ primarily in how p(zi|z<i,x<i) and q(zi|z<i,x≤i)

are modeled. The first term above encourages reconstruction using the inferred q(zi|z<i,x≤i) at each

time frame i; this weakens the latent dynamic function underlying p(zi|z<i,x<i) that is constrained

only by the KL-divergence term. This leads to limited ability to forecast without near-term x≤i to

support the inference of q(zi|z<i,x≤i).

System parameters as latent variables: An alternative choice of the latent variable is the

parameters themselves of the LVM equation, especially θz of the latent dynamic function. This

gives rise to the PGM in Fig. 2.1B, where the marginal likelihood of x0:T can now be expressed as:

p(x0:T ) =

∫
z0

p(x0|z0)p(z0)dz0
∫
θz

∏T

i=1
p(xi|zi)|zi=f(z<i;θz)p(θz)dθz, (3.3)

where the observations are explained by an initial latent state z0 and parameter θz of the latent

dynamic function. With a variational approximation of the posterior density q(θz, z0) and an
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assumption of their prior densities p(z0) and p(θz), the ELBO of (3.3) becomes:

log p(x0:T ) ≥ Eq(θz ,z0) [log p(x0:T |z0,θz)]−KL(q(z0)||p(z0))−KL(q(θz)||p(θz)), (3.4)

This covers different lines of existing works depending on how q(θz) and p(θz) are modeled. In a

series of works [37,62,70,101], θz is modeled as time-varying system parameters θz,0:T . This involves

intricate temporal modeling of q(θz,i|x≤i) and p(θz,i|z≤i) over time as illustrated in Fig. 2.1B1.

Because the latent dynamic function relies on time-varying θz,0:T , its forecasting again relies on

near-term observations to support the inference of θz,i. Alternatively, q(θz) can be simply assumed

to be global across observations and the dynamic function becomes a Bayesian neural network as

presented by [127]. As a more special case, θz can be deterministic which leads to the latent ODE

model presented by [107]. If we further assume z0 to be deterministic, we arrive at the set of

deterministic encoding-decoding network with latent dynamic functions examined by [13]. This set

of formulations, as summarized in Fig. 2.1B2, shares the advantage of strong long-term forecasting,

albeit a fundamental limitation in learning a single dynamic function at a time.

In Section 3.4, we will include representative models from each PGM to provide empirical evidence

for the identified limitations. With this basis, we derive an intuitive solution to the identified

critical gaps by extending the PGM in Fig. 2.1B2 to the presented PGM in Fig. 2.1C: instead of

learning a single dynamic function, we will learn to adapt a latent dynamic function to few-shot

support time-series.

3.3 Few-shot forecasting via Bayesian meta-learning

Consider a dataset D of high-dimensional time-series withM similar but distinct underlying dynam-

ics: D = {Dj}Mj=1. For eachDj , we consider disjoint few-shot support seriesDs
j = {xs,1

0:T ,x
s,2
0:T , ...,x

s,k
0:T }

and query series Dq
j = {xq,1

0:T ,x
q,2
0:T , ...,x

q,l
0:T } where k ≪ l. Instead of maximizing the marginal like-

lihood of x0:T for all x0:T ∈ D as in (3.3), we formulate a meta-objective to learn to maximize the

marginal likelihood of xq
0:T for all query series xq

0:T ∈ Dq
j when conditioned on support series Ds

j ,

for all dynamics j ∈ {1, 2, ...,M}:

p(xq
0:T |D

s
j ) =

∫
c
p(xq

0:T |c)p(c|D
s
j )dc, xq

0:T ∈ Dq
j (3.5)

where p(xq
0:T |c), though similar to (3.3), is now conditioned on (thus adapted to) knowledge derived

from support series of a specific dynamics. p(c|Ds
j ) is the meta-model describing how to extract

such dynamic-specific knowledge from few-shot support set Ds
j .
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Set-conditioned latent dynamic functions: We model p(xq
0:T |c) based on (3.3) as:

p(xq
0:T |c) =

∫
z0

pθx(x0|z0)p(z0)dz0
∏T

i=1
pθx(xi|zi)|zi=f(zi−1,c;θz), (3.6)

where the latent dynamic function is parameterized by θz but conditioned on embedding c from

the support set. To focus on c, we assume θz to be deterministic and global as in [13, 107]. As an

example, we can describe zi = z̃i−1 +∆zi where ∆zi conditions gated recurrent units (GRUs) [20]

on c, as detailed in Appendix A.2. This conditioning can be generalized to other functional forms

of f(·), which we will demonstrate in experiments.

Meta-model for amortized variational inference: We model pζ(c|Ds
j ) with a meta-model pa-

rameterized by ζ in the form of feed-forward embedding of support set Ds
j . Specifically, each support

sequence xs
0:T ∈ Ds

j is first encoded through a neural function hϕ(x
s
0:T ) with blocks of interlaced

spatial convolution and temporal compression layers. To extract knowledge shared by the set, the

embedding from all sequences in Ds
j is aggregated by an averaging function: 1

k

∑
xs
0:T∈Ds

j
hϕ(x

s
0:T ),

where k is the size of the support set. The value of k can be fixed or variable in our framework.

This set embedding parameterizes pζ(c|Ds
j ) ∼ N (µc,σ

2
c ) via separate linear layers.

To enable inference, we approximate the posterior density p(c|Ds
j ,x

q
0:T ) as qζ(c|Ds

j ∪ xq
0:T ), sharing

the same meta set-embedding model by augmenting Ds
j with xq

0:T . The ELBO of (3.5) across all

dynamics D = {Dj}Mj=1 can then be derived as:∑M

j=1

∑
xq
0:T∈Dq

j

log p(xq
0:T |D

s
j ) ≥

∑M
j=1

∑
xq
0:T∈Dq

j
Eqϕ(z

q
0),qζ(c|Ds

j∪x
q
0:T )[log pθx(x

q
0:T |z

q
0, c)] (3.7)

−KL(qϕ(z
q
0|x

q
0:lz0

)||p(z0))−KL
(
qζ(c|Ds

j ∪ xq
0:T )||pζ(c|Ds

j )
)
,

where qϕ(z
q
0|x

q
0:lz0

) ∼ N (µz0 ,σ
2
z0) is parameterized by an encoder with lz0 = 2 in all experiments.

p(z0) is assumed to be N (0, I). The likelihood term is estimated with reparameterization trick [69],

and the KL-divergence terms are calculated analytically.

The optimization of (3.7) is realized via episodic training where, in each training episode, data in

each dynamic set Dj is divided into disjoint support set Ds
j and query set Dq

j . For each query series

across all dynamics, starting with an initial latent state z0 (inferred from lz0 frames) and k-shot

support embedding c, the latent dynamic function is asked to propagate forward to forecast the

entire sequence of z0:T and their corresponding high-dimensional observations x0:T .
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3.4 Experiments on benchmark image sequences

Data: We first considered benchmark images generated with controllable physics, including bounc-

ing ball [37], Hamiltonian pendulum [13], and Hamiltonian mass-spring systems [13]. Details of

data generation are available in Appendix A.7. To intentionally create data with diverse dynam-

ics, we included 1) a bouncing ball dataset with 16 different directions of gravity, each with 3000

samples simulated using a combination of different initial positions and velocities (gravity-16 );

and 2) a mixed-physics dataset consisting of bouncing balls under 4 gravity directions, and pen-

dulums and mass springs each with four different values of friction coefficients of 0, 0.05, 0.1, 0.15

(mixed-physics). Each physics with a unique parameter includes 3000 samples.

Models: We considered baseline models representative of each formulation outlined in Fig. 2.1.

This includes VRNN [21] and DKF [71] representing Fig. 2.1A, DVBF [62] and KVAE [37] rep-

resenting Fig. 2.1B1, and three models representing Fig. 2.1B2 with latent dynamic functions as

residual GRUs (GRU-res), neural ordinary differential equation (NODE), and residual Recurrent

Generative Networks (RGN-res) [13]. We also considered a recent autoregressive model designed

to tackle forecasting diverse dynamics [29]. All baseline models were 1) trained using the entire

meta-training data consisting of mixed dynamics, 2) trained in 1) and further fine-tuned to the

meta-test k-shot support set (k = 15) (except for [29] as we were uncertain about a proper ap-

proach of fine-tuning due to its specialized architecture), and 3) trained individually for each single

dynamics, with and without fine-tuning to the meta-test k-shot support set (k = 15).

For each of the global latent dynamic models (GRU-res, NODE, and RGN-res), we extended it

into our few-shot framework. While few-shot learning with the rest of the SLVMs is not yet

reported in literature, we further selected DKF as a representative of the SLVM in Fig. 2.1A

and extended it into a feed-forward meta-formulation via a variant of the SNP (meta-DKF). We

also attempted optimization-based meta-learning of MAML [36] to the DKF and GRU-res models,

although challenges of stability and convergence as noted in literature [2, 80] were encountered,

suggesting that MAML extensions to SLVMs may not be trivial due to issues such as vanishing

gradient issues over the complex computation graph.

All GRE-res, NODE, and RGN-res based models were trained to forecast for a sequence of 20

frames using only the first 3 frames. We investigated k-shot forecasting when k is fixed at different

values of k = 1, 5, 10, 15, or allowed to be variable at both meta-training and -test with 15 as

the upper limit. For VRNN, DKF, DVBF, and KVAE, we used their public implementations

for training and evaluation. Similar network components with the meta-models were scaled to
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Table 3.1: Comparison of the presented meta-models with all baselines trained on the meta-training

set for gravity-16 data. The improvement of meta-GRU-res (best-performing) over its closest

baseline is statistically significant in all metrics (p < 0.01, paired t-test).

PGM type Model MSE↓ VPT-MSE↑ Dist↓ VPT-Dist↑

Fig. 2.1C

meta-GRU-res 1.44(0.34)e-2 0.68(0.26) 2.88(1.45) 0.97(0.07)

meta-NODE 1.60(0.26)e-2 0.58(0.22) 6.10(2.63) 0.80(0.12)

meta-RGN-res 1.59(0.24)e-2 0.56(0.21) 6.97(3.08) 0.76(0.13)

Fig. 2.1B2

GRU-res 1.63(0.21)e-2 0.50(0.17) 10.4(3.30) 0.61(0.09)

GRU-res finetune 1.65(0.24)e-2 0.50(0.18) 9.35(3.33) 0.66(0.12)

NODE 1.69(0.18)e-2 0.48(0.16) 10.9(3.32) 0.59(0.08)

NODE finetune 1.70(0.19)e-2 0.48(0.17) 10.4(3.23) 0.61(0.09)

RGN-res 1.70(0.17)e-2 0.47(0.16) 11.2(3.39) 0.58(0.09)

RGN-res finetune 1.72(0.19)e-2 0.47(0.17) 10.0(3.36) 0.62(0.11)

Fig. 2.1B1

DVBF 2.32(14.4)e-2 0.02(0.10) 45.3(0.00) 0.00(0.00)

DVBF finetune 2.33(13.4)e-2 0.02(0.10) 45.3(0.00) 0.00(0.00)

KVAE 3.37(1.36)e-2 0.24(0.19) 4.81(3.61) 0.57(0.29)

Fig. 2.1A

meta-DKF 3.80(0.59)e-2 0.10(0.11) 7.35(3.26) 0.70(0.25)

DKF 3.84(0.59)e-2 0.10(0.11) 7.39(3.21) 0.69(0.25)

DKF finetune 3.85(0.58)e-2 0.10(0.11) 7.51(3.26) 0.69(0.25)

VRNN 1.78(10.9)e-2 0.24(0.11) 23.1(21.6) 0.51(0.07)

VRNN finetune 2.15(12.2)e-2 0.21(0.16) 8.31(11.6) 0.75(0.19)

Autoregressive Donà et al 3.52(0.26)e-2 0.001(0.01) 13.7(3.05) 0.06(0.15)

have comparable parameter scales. Because of their reliance on observed time frames to support

prediction, 8 observed frames were exposed to the encoder to reconstruct the 8 frames and forecast

the additional 12 frames.

Metrics: We considered four quantitative metrics on meta-test series. We included the commonly

used mean squared error (MSE) of forecasted images, and the recently proposed metric of Valid

Prediction Time (VPT) that measures how long the predicted object’s trajectory remains close to

the ground truth trajectory based on the MSE (VPT-MSE) [13]. Because pixel-level MSE does

not necessarily well capture the quality of the predicted dynamics due to the small object size

on the image, we further introduced two new metrics: distance (Dist) between the ground truth
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Figure 3.1: Forecasting on gravity-16 under (blue) full dynamics and (orange) single dynamics

training. The three meta-models had better forecasting performance compared to all baselines.

DKF/VRNN/KVAE and meta-DKF had strong reconstruction and near-term forecasting ability

but incorrect long-term forecasting (marked by red vertical lines). GRU-res/NODE/RGN-res and

their fine-tuned versions showed difficulty in describing mixed gravity.

and predicted location of the moving object; and VPT determined based on this distance error

(VPT-Dist).

Comparison with baseline models trained on full dynamics: For gravity-16 data, we used

10 gravity in meta-training, 2 in meta-validation, and 4 in meta-testing. Table 3.1 summarizes the

quantitative test performance of the three k-shot meta-models obtained with k = 15, in compar-

ison to each of the baseline models trained from the full meta-training set. We include complete

results across all models in Appendix A.4 with Table A.1. Visual examples for these quantita-

tive results are in Fig. 3.1 (shaded blue): all the baseline models, including their fine-tuned and

meta-versions, struggled with limited forecasting ability, especially evidenced by the error in pre-

dicting the movement of the ball over time (Dist and VPT-Dist). For DKF/VRNN/KVAE and

meta-DKF, there were strong reconstruction and near-term forecasting from partially observed

frames (marked by red vertical lines), but incorrect forecasting further away from the observed

frames. GRU-res/NODE/RGN-res and their fine-tuned versions exhibited difficulty to describe

mixed gravity.

For mixed-physics data, for each of the three physics, we included three dynamic settings in meta-
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Figure 3.2: A: Comparison with baselines trained on mixed-physics. B: Forecasting examples. The

meta-model showed superior performance to all baselines.

training and left out one in meta-testing. Fig. 3.2A summarized the test results of the presented

meta-GRU-res (with variable k) with representative baseline models. Visual examples are shown in

Fig. 3.2B. As shown, meta-DKF, DKF, and DVBF again demonstrated limited ability for long-term

forecasting across all physics. KVAE, VRNN, and the finetuned global latent GRU-res were more

successful with the mass spring and pendulum systems with relatively simpler dynamics, yet they

struggled with the gravity system. The presented meta-GRU-res model consistently outperformed

all the baselines across all dynamics, with a larger gain in more complex dynamics.

Comparison with baseline models trained on single dynamics: Table 3.2 summarizes the

performance of representative baseline models when trained on a single gravity on gravity-16 data in

comparison to meta-GRU. As shown, in both test dynamics known and unknown to the training, the

meta-models outperformed the single-dynamic baselines, suggesting the added benefits of learning

across dynamics. This margin of improvements remained even when the single-dynamics baselines

were fine-tuned to the k-shot support series of unknown test dynamics. Visual examples of these

baselines are also shown in Fig. 3.1 (orange shade).

Ablation study: Table 3.3 summarized the effect of k on k-shot forecasting using the meta-GRU-

res model. As expected, model performance improved as the size of k increased. Even with k = 5,

however, the performance was significantly better than all the base models summarized in Table
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Table 3.2: Comparison with baselines trained on single dynamics in meta-training data on gravity-

16.

Model Dynamics MSE↓ VPT-MSE↑ Dist↓ VPT-Dist↑

meta-GRU-

res

known 1.43(0.34)e-2 0.68(0.26) 2.86(1.44) 0.97(0.06)

unknown 1.45(0.33)e-2 0.67(0.25) 2.96(1.49) 0.97(0.07)

GRU-res
known 1.80(0.29)e-2 0.46(0.23) 6.86(3.95) 0.77(0.19)

unknown 1.99(0.277)e-2 0.37(0.18) 8.07(3.56) 0.69(0.17)

GRU-res finetune unknown 2.03(0.27)e-2 0.35(0.17) 8.51(3.42) 0.66(0.18)

meta-DKF
known 3.81(0.59)e-2 0.10(0.11) 7.37(3.27) 0.70(0.25)

unknown 3.80(0.59)e-2 0.10(0.11) 7.30(3.21) 0.70(0.25)

DKF
known 3.74(0.55)e-2 0.10(0.11) 8.37(3.79) 0.63(0.28)

unknown 3.79(0.52)e-2 0.09(0.10) 8.72(3.75) 0.60(0.27)

DKF finetune unknown 3.82(0.52)e-2 0.09(0.10) 8.77(3.77) 0.59(0.27)

KVAE
known 3.42(1.30)e-2 0.39(0.34) 5.05(3.57) 0.5(0.34)

unknown 3.46(1.36)e-2 0.22(0.19) 5.17(3.91) 0.53(0.28)

Donà et al
known 3.58(0.33)e-2 0.00(0.01) 13.7(3.36) 0.07(0.18)

unknown 3.56(0.34)e-2 0.00(0.01) 14.1(3.84) 0.08(0.19)

Table 3.3: Performance metrics of meta-GRU-res models with fixed vs. variable k values

K Mode MSE↓ VPT-MSE↑ Dist↓ VPT-Dist↑

1 Fixed 1.80(0.21)e-2 0.44(0.16) 10.6(3.40) 0.60(0.10)

5 Fixed 1.53(0.36)e-2 0.61(0.25) 3.49(1.89) 0.94(0.10)

10 Fixed 1.46(0.34)e-2 0.65(0.26) 3.08(1.58) 0.96(0.08)

15 Fixed 1.44(0.34)e-2 0.68(0.26) 2.88(1.45) 0.97(0.07)

Variable 1.50(0.34)e-2 0.64(0.25) 3.44(1.80) 0.94(0.10)

3.1. Allowing k to be variable had no noticeable effect on model performance. This flexibility

highlights the practicality of the presented framework to forecast with any given size of support

series.

Latent embedding and generation of diverse dynamics: Fig. 3.3A shows the distribution

of the latent embedding c obtained from a randomly-selected support set, in comparison to a
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Figure 3.3: A: t-SNE plot of support-set embedding c from stochastic (left) and deterministic

(right) meta-models. The framework was able to recognize and separate the three dynamics in

well-structured clusters. B: Generated forecasting by sampling the distribution of c given the same

z0. The stochastic model allows changes within and across dynamics by sampling on c.

deterministic version of the presented meta-model on mixed-physics data. As shown, the presented

framework was able to recognize and separate the three dynamics using the k-shot support set:

given an initial z0, it was then able to generate different time-series within the same dynamics as

well as across dynamics by sampling the distribution of c ( Fig. 3.3B). This was not possible with

its deterministic counterpart.

3.5 Experiments on Complex Physics Simulations

We then considered learning and forecasting two more complex physics-based dynamics: turbulent

flow dynamics and cardiac electrical dynamics.

Turbulent flow dynamics: We customized the meta-GRU model to a dataset of turbulent flow

dynamics, simulated with 25 varying buoyant forces acting on the fluid. Each dynamic contains

64×64 velocity fields of turbulent flows. We use 20 dynamics in meta-training and meta-validation

with 80-20 split, and the rest 5 in meta-testing. We followed the experimental setup in [121] with an

observed window (20 frames in theirs vs. 5 in ours) and a prediction roll-out of 20 frames. Despite

using a smaller number of observed frames, the presented meta-GRU model obtained a rooted MSE
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Figure 3.4: Visual examples (A) and performance metrics of meta-GRU versus other baselines

trained on the meta-training set for forecasting electrical dynamics on the heart. The meta-model

predicts better signal propagation blocks than other baseline models.

(RMSE) of 0.26 ± 0.05 on seen dynamics and 0.49 ± 0.05 on unseen dynamics, in comparison to

respective RMSEs of 0.42 ± 0.01 and 0.51 ± 0.02 reported in [121], all reported on the 20 roll-out

frames. We included trajectory visualizations in Appendix A.5.

Cardiac electrical dynamics: The propagation of electrical waves in the heart is governed by

reaction-diffusion partial differential equations (PDEs) [1]. While direct PDE-based simulation

holds clinical potential (e.g., for virtually testing treatment response), its patient-specific parame-

ters are difficult to estimate and its computational cost is high. Although neural approximations

provide a promising computationally-efficient alternative [38], how to personalize such a neural

model remains an open challenge where existing models are typically trained for a PDE with given

parameter configurations. Here, we apply the presented framework for few-shot learning of a per-

sonalized neural model that can be used to efficiently forecast how a patient-specific heart may

respond to electrical simulations at different locations.

We simulate electrical propagation originating from various locations in a 3D heart mesh, with 15

settings of PDE parameters representing 15 dynamics with different locations of injury to the heart

muscle. We use 9 dynamics in meta-training, 3 in meta-validation, and 3 in meta-testing, with

disjoint time series with different initial conditions (meta-training: 450; meta-test: 2,020). Each

time series describes 3D+T propagation of electrical wave with blocks at locations of muscle injury

specific to each dynamics (see an example if Fig. 3.4A column 1). The quality of the forecast series

is measured by its MSE and spatial correlation coefficient (CC) with the actual time series.

We adopted a graph-CNN encoder/decoder and an ODE-GRU latent dynamic function zk =

f(z<k;θz) similar to that described in [60]. We trained it with a global θz (global GRU), an

individual θz for each PDE parameter (single-dynamics GRU), a conditioned f(zi−1, c;θz) with

c encoded from individual training series (instance-specific GRU), and the presented framework
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(meta GRU) with k varying between 1 and 5. We further added a strong personalized virtual heart

(PVH) baseline using the original PDE simulation, with the PDE parameter optimized by a SOTA

approach from k-shot support series as described in [26].

As shown in Fig. 3.4A and additional examples in Appendix A.6, only meta-GRU was able to accu-

rately forecast the propagation block while the other baseline models missed the correct locations of

muscle injury specific to a subject (black circles in column 1): note that the single-dynamics GRU

performed well on the training dynamics Fig. 3.4A, but fails on unknown dynamics (Appendix A.6).

Unable to identify injury to patient-specific heart, the forecasting model will be of little value in

clinical tasks such as personalized prediction and treatment planning. This gain in forecasting per-

formance by meta-GRU is quantitatively summarized in Fig. 3.4B across all meta-test time-series.

Note that meta-GRU exhibited a notable margin of improvement even versus the PVH: PVH takes

on average 5 minutes to forecast each series, versus 0.24 seconds by the meta-GRU; moreover, to

optimize PDE parameters of the PVH on average required 100 calls to the PDEs (i.e., ∼ 10 hours),

versus 0.032 seconds for meta-GRU to adapt to patient-specific dynamics. This substantial gain in

efficiency without loss of accuracy holds significant value for clinical applications.

3.6 Conclusions and discussion

In this chapter, we present a sequential LVM framework to unify existing approaches to learning

latent dynamics, identify their limitations associated with the underlying choices of PGMs, and

provide empirical evidence for the identified limitations. We further identify meta-learning as an

intuitive solution to the identified open gaps, present a framework for few-shot high-dimensional

time-series forecasting, and demonstrate that its performance gain is agnostic to the underlying

choice of latent dynamic functions. Limitations: An avenue of future work is to expand the latent

dynamic functions in this framework, especially those integrating strong inductive biases based on

physics such as Hamiltonian mechanics [13].



Chapter 4

Adaptation with Physics – Geometry

In this chapter, we describe how to explicitly design neural functions for spatiotemporal relation-

ships in physics. We considered electrocardiographic imaging (ECGI) systems and focused on

incorporating geometry into neural networks. This work has been published in MICCAI 2020 [56]

and IEEE TMI 2023 [61].

4.1 Introduction

Deep learning has shown state-of-the-art performance across a variety of image reconstruction

tasks [30,40,76,126,131,133]. In some tasks, the imaging physics is partially known and modulated

by specific parameters. For instance, the heart or brain generates potentials that can be measured

on the body or skull surface [42, 81]. This gives rise to (forward and inverse) mapping operators

following the underlying quasi-static electromagnetic theory, but specific to the geometry on which

the sources and measurements reside (e.g., the heart and body surface).

In the context of Euclidean deep learning, one would attempt to learn such inverse mapping without

the knowledge of the underlying geometry, such as the heart shape and relative position of between

heart and torso [5,41,53,55,63,79]. This approach, as we will show, increases the need for training

data and produce an inverse mapping not generalizable across geometries. It is possible to tackle

the latter issue by using an information bottleneck to remove geometrical information from input

data and thus make this inverse mapping invariant to geometrical factors [41]. Such an approach,

unfortunately, requires even more training data to represent the variations arising from different

24
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geometries.

An interesting open question is thus whether learning such inverse mapping as a function of the

underlying geometry would reduce the need of training data and improve the generalization of the

learned function. Graph convolutional neural networks (GCNN) provide a promising approach to

describe non-Euclidean variables defined over geometrical domains [15]. Significant efforts have

been made in GCNN, such as node- and graph-level classifications, graph embedding, and graph

generation [123]. However, to our knowledge, no previous works have reported learning inverse

mappings between spatiotemporal variables defined on two separate graphs.

In this chapter, we present a novel network to reconstruct non-Euclidean image sequences by di-

rectly learning inverse mapping as a function of the underlying geometry of the problem. To

describe the spatiotemporal variables (unknowns and measurements) over their respective geomet-

rical domains, we first introduce an encoding-decoding architecture consisting of spatial-temporal

graph convolutional neural networks (ST-GCNN) defined separately on each domain. To model

the geometry-dependent physics in between, we then learn the inverse mapping as a function de-

fined on a bipartite graph over the graphical embedding of these two geometrical domains with

the functional form informed by the underlying physics. We focus on the generalization ability

of this non-Euclidean image reconstruction network from two aspects. First, previous studies [41]

based on Euclidean deep networks described that a stochastic formulation of the same network,

based on the theory of information bottleneck (IB) [116], could improve the generalization ability

of the network by removing from the input data geometry information that is not present in the

output solutions. By allowing the inverse mapping to change with the underlying geometry in the

presented non-Euclidean network, we anticipate that this particular benefit of the IB would be

reduced. To test this conjecture, we develop the non-Euclidean network in both deterministic and

stochastic formulations, and investigate their reconstruction performance differences. Second, we

test the presented network in a series of generalization tasks with increasing difficulty, in compari-

son to Euclidean baselines with and without a geometry-invariant bottleneck [41], to test its ability

to 1) reduce the diversity of the training data needed on the same geometry, 2) reduce the number

of geometrical variations needed in the training data, and 3) train across different geometry (i.e.

different graphs), a process that is not possible with Euclidean learning unless these geometries

are pre-registered. Finally, in in-vivo animal experiments, we demonstrate the ability of the pre-

sented network – after training on simulation data – to be quickly fine-tuned to a small amount

of in-vivo data. All experiments are performed in the application of reconstructing spatiotemporal

electrical potentials on the ventricular surface from body-surface potentials (commonly known as

electrocardiographic imaging (ECGI)) [119].
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The main contributions of this chapter include the following:

1. We present, to our knowledge, the first ST-GCNN approach to learning an inverse mapping

between non-Euclidean variables that is geometry dependent and informed by the underlying

imaging physics.

2. We present the first geometric deep learning approach to ECGI [119] that addresses the

importance of geometry-specific mapping, which has been widely established in the ECGI

literature [100,119], but only rarely considered in emerging machine or deep learning solutions

to ECGI.

3. We investigate the generalization ability of our method, both by examining its stochastic

formulations based on the theory of IB, and by experimentation in a series of generalization

tasks with increasing difficulty. We provide evidence for its ability to generalize without the

stochastic formulation, to learn from a small amount of training data, as well as to learn and

test across multiple different geometries.

4. We further investigate the ability of our method to be fine-tuned to a small amount of data

on a new geometry.

5. We perform in-depth examinations into the effects of different neural network architecture

designs, and introduce random edge dropping within the presented framework.

4.2 Methods

To respect the geometry-dependent physics behind the problem, our method learns a geometry-

dependent inverse mapping by 1) describing Xt and Yt in their respective geometrical domains,

and 2) explicitly modeling their relationship at the latent space as a function of the geometry. We

realize our method in an encoder-decoder architecture with ST-GCNNs as summarized in Fig. 4.1:

an ST-GCNN encoder embeds Yt over the torso geometry, and an ST-GCNN decoder generates Xt

over the ventricular geometry; at the latent space, the relationship between the latent variables of

Yt and Xt – as informed by the actual imaging physics – is assumed to be linear with coefficients

as a function over the graph embedding of the two geometries. Following past ECGI works that

showed the importance of including the temporal dimension in the reconstruction, we consider

reconstructing the spatiotemporal signals on the heart over time.
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Figure 4.1: Outline of the ST-GCNN inverse imaging network. The size of the feature maps follows

the format of #Vertices×#Feature×#Time.

Figure 4.2: Illustration of the structure of one ST-GCNN layer followed by a spatial pool-

ing/unpooling layer from Fig. 4.1. C1 and C2 are the numbers of channels before/after the

spatial/regular convolution. T1 and T2 are the temporal dimensions before/after the temporal

convolution.

4.2.1 Encoding-Decoding with ST-GCNNs

As Xt and Yt are temporal sequences that exist within a 3D geometry, we describe their genera-

tion/embedding with ST-GCNNs that consist of interlaced graph convolution in space and regular

compression in time as illustrated in Fig. 4.1.
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Geometrical Representation in Graphs

Triangular meshes of the heart and torso surfaces are represented as two separate undirected graphs:

G = (V, E ,U,F), where vertices V consist of all V mesh nodes and edges E describe the vertex

connection as defined by the triangular mesh. U ∈ [0, 1]V×V×3 consists of edge attributes u(i, j)

between vertex i and j as normalized differences in their 3D coordinates if an edge exists. F ∈
RV×M×T represents the time sequences of features across all vertices, where the feature represents

the signals at the input/output level when M = 1 and feature maps in the middle layers, where M

is the size of the feature dimension.

During encoding and decoding, we apply hierarchical graph representations that coarsen as it gets

closer to the bottleneck of the two geometries. In contrast to general graphs, this hierarchical

representation should satisfy a constraint that the topology of the geometry must be preserved in

its hierarchical representations to prevent non-physical spatial propagation of signals. The hierar-

chical representations are obtained by a specialized mesh coarsening method in the Computational

Geometry Algorithms Library (CGAL) [18], defined prior to the training of the ST-GCNN.

Spatial Graph Convolution

We use a continuous spline kernel for spatial convolution such that it can be applied across different

graphs [34]. For each channel of the feature map at each time instant, the convolution kernel is

defined as:

gl(u) =
∑
p∈P

wp,lBp(u), (4.1)

where 1 ≤ l ≤ C and C is the number of channels. The spline basis Bp(u) =
∏d

r=1N
m
r,pr(u)

with Nm
r,pr denoting d, an open B-spline basis of degree m based on equidistant knot vectors,

P = (Nm
1,r)r × . . . × (Nm

d,r)r is the Cartesian product of the B-spline bases, and wp,l are trainable

parameters.

Given kernel g = (g1, . . . , gC) and graph node features f ∈ RV×M at each time instant, spatial

convolution for vertex i ∈ V with its neighborhood N(i) is defined as:

(fl ∗ gl)(i) =
∑

j∈N(i),p∈P(u(i,j))

fl(j) · gl(u(i, j)). (4.2)

Since the B-spline basis in the (4.1) is conditioned on local geometry, the learned kernel can be

applied across graphs and the convolution incorporates geometrical information within the graph.
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This spatial convolution is independently applied to each time instant of the signal sequence in

parallel.

To make the network deeper and more expressive in feature representation, residual blocks are

introduced to pass the input of spatial convolution through a skip connection with 1D convolution.

Fig. 4.2 illustrates all components in an ST-GCNN layer.

Temporal Modeling

The spatial convolution is interlaced with temporal modeling. Common approaches for temporal

modeling include using a standard convolutional kernel [72] or a recurrent unit of time sequences

[52]. Here, we apply directly the fully connected layers on time sequences, where the parameter of

the layer is shared across each vertex and feature. The size of the output of the fully connected layer

is set to compress the time sequence in dimension in the encoder, while expanding in the decoder.

The geometry graph remains the same for the complete temporal sequences. In Section 4.3.6,

this temporal modeling will be compared with alternative RNN or CNN options in experimental

evaluations.

Pooling and Unpooling

Pooling and unpooling in space are carried out on the hierarchical graph representation of the two

geometries described in Section 4.2.1. Using Go to denote a graph with N1 vertices and Gc its

coarsened graph with N2 vertices, we use a binary matrix P ∈ RN1×N2 , where Pij = 1 if vertex

i in Go is grouped to vertex j in Gc, and Pij = 0 otherwise. Here, each vertex on Go is grouped

to its nearest vertex on Gc. Given a feature map fo ∈ RN1×M over Go and fc ∈ RN2×M over Gc,

the pooling operation is defined by fc = PT
n fo and the unpooling operation is defined by fo = Pfc,

where PT
n is column normalized from P.

Summary

As summarized in Fig. 4.2, each ST-GCNN block consists of spatial graph convolution, temporal

compression, and spatial pooling/unpooling, as described above. Denoting the latent features of

the body-surface signals as zb and those of the heart-surface signals as zh, respectively, we can

represent the encoder and decoder as zb = Eθ(Y) and X̂ = Dϕ(zh), where θ and ϕ are parameters
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of the encoder and decoder, respectively.

4.2.2 Learning Latent Geometry-Dependent Physics

As explained in (2.1), Yt on one torso vertex can be represented as a linear combination of Xt

from all heart vertices, where the coefficients are determined by the relative position between each

pair of torso-heart vertices. We assume this linearity to hold between zh and zb in the latent space.

Specifically, for zh(i) on vertex i of the latent heart mesh, we define it as a linear combination of

latent features zb(j) across all vertices j of the latent torso mesh.

One option to learn this linear mapping between zb and zh is a fully connected layer. However,

the resulting learned relationship will not consider the underlying geometry and, more importantly,

will not be applicable to different heart-torso geometries with different numbers of graph vertices.

Instead, we explicitly model the learnable coefficients as functions of the relative position between

embedded heart and torso geometries. To do so, we construct a bipartite graph such that an edge

with attribute u(i, j) exists between each pair of heart and torso vertices in their graph embeddings.

We then define zh(i) as a linear combination of zb(j) across all vertices j, where linear coefficients

ĥ are learnable as a function over u(i, j):

zh(i) =
∑
j

zb(j) · ĥ(u(i, j)). (4.3)

Exploiting the similarity between (4.3) and (4.2), we describe (4.3) using spline convolution with

the geometry-dependent coefficients ĥ learned as the spline convolution kernel. We denote the

geometry-dependent inverse function as zh = hρ(zb) with network parameter ρ. Aside from being

physics-informed, this geometric parameterization allows the learned function to generalize across

different geometries.

4.2.3 Deterministic and Stochastic Formulations

As explained earlier, we developed both a deterministic and stochastic formulation of the non-

Euclidean encoding-decoding networks, in order to investigate whether the use of IB theory is still

necessary for improving the ability of the network to generalize to different geometries.

For the deterministic model, its parameters θ, ρ and ϕ are optimized by minimizing the mean square
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error between the reconstructed X̂(i) on training data {X(i),Y(i)}Ni=1:

L =
1

N

N∑
i=1

||X(i) −Dϕ

(
hρ

(
Eθ

(
Y(i)

)))
||22. (4.4)

For the stochastic model, zb is modeled with a Gaussian distribution whose mean and variance

are obtained by neural networks: pθ(zb|Y) = N (zb|µb(Y),σ2
b (Y)). We apply reparameterization

zb = µb + σb ⊙ ϵ as described in [69], where ϵ ∼ N (0, I) and ⊙ is Hadamard product. We draw a

random sample from the distribution of zb, and then apply zh = hρ(zb) to obtain the sample for zh.

The decoder then reconstructs from this sample. From the theory of information bottleneck [116],

we minimize:

lossIB = −I(X; zh) + βI(zb;Y) (4.5)

where I(X; zh) is the mutual information between the output and latent features of the heart

signals, I(zb;Y) is the mutual information between the measurement and latent features of the

torso signals, and β is the multiplier of the KL-divergence term. For the first term in (4.5) we have:

I(X; zh) =

∫
p(X, zh) log

p(X|zh)
p(X)

dXdzh

= H(X) +

∫
p(X, zh) log p(X|zh)dXdzh

= H(X) +

∫
p(zh)p(X|zh) log

p(X|zh)
q(X|zh)

dXdzh

+

∫
p(zh)p(X|zh) log q(X|zh)dXdzh

= H(X) +DKL(p(X|zh)||q(X|zh))

+

∫
p(X,Y, zh) log q(X|zh)dXdYdzh

≥ Ep(X,Y)[Ep(zb|Y)[log q(X|zh)]],

where zh = Ĥ(g)zb and H(X) =
∫
p(X) log p(X)dX. We set qϕ(X|zh) to be a Gaussian distribution

parameterized by the decoder: qϕ(X|zh) = N (X|µh, σ
2
h).
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For the second term in (4.5):

I(zb;Y) =

∫
p(Y, zb) log

p(zb|Y)

p(zb)
dYdzb

=

∫
p(Y, zb) log

p(zb|Y)r(zb)

r(zb)p(zb)
dYdzb

=

∫
p(Y)p(zb|Y) log

p(zb|Y)

r(zb)
dYdzb

−DKL(p(zb)||r(zb))

≤
∫

p(X,Y)p(zb|Y) log
p(zb|Y)

r(zb)
dXdYdzb

= Ep(X,Y)[DKL(p(zb|Y)||r(zb))],

where the KL divergence is analytically available when r(zb) is set to be a standard Gaussian

distribution: r(zb) = N (zb|0, I) and the latent distribution of torso graph embedding as a Gaussian

distribution: pθ(zb|Y) = N (zb|µb(Y)). Therefore, we have:

lossIB = −I(X; zh) + βI(zb;Y)

≤ Ep(X,Y)[−Epθ(zb|Y)[log qϕ(X|zh)]]

+ βDKL(pθ(zb|Y)||r(zb)) = LIB.

4.3 Simulation Data Experiments

In controlled simulation experiments, we evaluated the performance of the reconstruction network

in a series of generalization tasks, with increasing difficulty in terms of how close the test geometry

is to those in training data. We further assessed how the performance of the network changed as

the diversity of the training data decreased. We compared the performance of our network to that

of a Euclidean encoding-decoding network, as described by Ghimire et al. [41] in a deterministic

formulation as well as a stochastic formulation with a geometry-invariant bottleneck. In a subset

of experiments where Euclidean networks do not apply (Section 4.3.4, training across multiple

geometries), we further compared the performance of our network to classic ECGI approaches

utilizing known physics-based forward operators.

4.3.1 Models, Data, and Training

Our presented network consisted of three ST-GCNN blocks and two standard convolutional layers

in the encoder, one spline convolutional layer in the latent inverse mapping, and four ST-GCNN
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blocks and two standard convolutional layers in the decoder, as detailed in Fig. 4.1. We used

B-spline basis degree of m = 1 with kernel size of k1 = k2 = k3 = 3 in all graph convolution

layers. The spatial and temporal dimensions in each level of the encoder were [120, 63, 34, 19]

and [101, 60, 40, 20], respectively; and [115, 164, 234, 334, 477] and [20, 40, 60, 80, 101] in the decoder,

respectively. We used ELU activation [22], an ADAM optimizer [68], and a learning rate of 5×10−4.

The Euclidean baselines followed the architectures presented in [41] consisting of cascaded LSTMs

and fully-connected layers.

For training, we generated pairs of simulated potentials on a heart-torso mesh. We simulated

realistic spatiotemporal propagation sequences of action potentials by the Aliev-Panfilov model [1],

considering a combination of 38 origins of activation and 16 spatial distributions of scar tissue

(totaling 531 data samples for a single geometry). We then rotated the heart by -2◦ to 2◦ around

the z-axis, obtaining approximately 2700 sets of body-surface potentials. All body-surface potentials

were corrupted with 20 dB SNR of Gaussian noises before performing inverse imaging.

Testing data were generated in a similar fashion, with additional geometry changes as detailed

below. The reconstruction accuracy was measured by the mean square error (MSE), spatial cor-

relation coefficient (SCC), and temporal correlation coefficient (TCC) between the reconstructed

and actual potential sequence on the heart surface. While MSE measures the quantitative errors

of the reconstructed signals on the heart, the SCC and TCC measure the correlation between the

reconstructed and reference signals. We considered the correlation both for spatial signals at each

time instance (SCC) and temporal signals at each location of the heart (TCC).

4.3.2 Generalization to Unseen Heart Rotations

In this set of experiments, we first applied the trained models to 21,771 sets of body-surface po-

tentials generated by rotating the heart by -20◦ to 20◦ around the z-axis, a range far outside that

considered in training. We then tested the trained models on a different set of 64,782 body-surface

potentials generated from novel heart rotations around the x-axis (-20◦ to +40◦) and y-axis (-20◦

to +40◦), types of rotations not seen in training. In both experiments, we examined the change of

performance of the trained models when 1) we randomly sampled the training data with respect

to the combinations of sites of activation and scar locations by a rate of 2%, 4%, 10%, 25%, 50%,

75%, and 100% of the complete training data, and 2) we reduced the number of rotations around

z-axis in the training data from -2◦ to 2◦ (five geometries), to -1◦ to 1◦ (three geometries), and

eventually to no rotation at all (one single geometry).
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Figure 4.3: Summary of average performance with respect to different percentages of full training

data among the three comparison models.

Figure 4.4: Examples of reconstructed electrical activity trained on 25% of full training data,

tested at rotation x = 10◦. The MSE value is shown for each model at each timestep. Both

of the two baseline models showed high errors on the free wall of the left ventricle during depo-

larization/repolarization (arrows), while our presented model predicted the most accurate signal

propagation pattern and the scar location (circles).
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Generalization with reduced diversity in training data

Fig. 4.3A1 shows quantitative metrics of the three models on z-axis rotations unseen in the training

set (21,771 cases), against the number of combinations of earliest activation sites and scar locations.

The decrease in performance (reduced accuracy and increased standard deviation) in the face of

reduced training data was significantly slower by our method (red) compared to the deterministic

(green) and stochastic (blue) Euclidean baselines. Fig. 4.3A2-3 lists the performance of the three

models on geometry with novel x- and y-rotations, showing a similar trend. While the performance

of the ST-GCNN was similar and occasionally worse than the stochastic Euclidean baseline (e.g.,

generalizing to y-rotations in Fig. 4.3A3) at the full diversity of the training data, it outperformed

both baselines in all metrics as the training diversity decreased to 25%. In fact, its performance did

not show notable change in performance until the number of training cases was reduced to below

5-10% of the complete set.

As an example, Fig. 4.3B shows the detailed quantitative metrics of the three models trained on

25% of the full training data, against x-axis rotations of the heart as measured by differences from

training data. The presented method (red) outperformed the deterministic (green) and stochas-

tic (blue) Euclidean baseline in all metrics, and its performance changed only slightly compared

to that using full training data (yellow). Fig. 4.4 provides visual examples of the comparisons.

The presented ST-GCNN model predicted the most accurate signal propagation pattern and scar

location, while both baseline models showed errors on the free wall of the left ventricle.

Generalization with reducing training geometry

Fig. 4.5A1 summarizes quantitative metrics of the three models against the number of geometrical

models in training. Our method (red) again showed a slower decrease in the average error and an

increase in standard deviation than the two Euclidean baselines. The testing results on novel x-

and y-rotations showed a similar trend (Fig. 4.5A2-3). Note that these experiments were performed

using training data that contained the full diversity, as described in the section above, thus the

performance of ST-GCNN was lower than the stochastic Euclidean baseline when generalizing to

y-rotations of the heart using five or three geometries.

Fig. 4.5B shows quantitative metrics of the three models when trained on a single geometry and

tested on data following z-axis rotations of the heart. The decrease in performance compared

to using more geometries (yellow curve) was more evident compared to the results in Fig. 4.3B,

although it was much less significant compared to the two baselines. Fig. 4.6B provides visual



CHAPTER 4. ADAPTATION WITH PHYSICS – GEOMETRY 36

Figure 4.5: Summary of average performance with respect to geometrical variations among the

three comparison models.

Figure 4.6: Visual examples of reconstructed electrical activity trained on one single geometry and

tested on the heart with a rotation at z = 10◦. The MSE value is shown for each model at each

timestep. Both baseline models showed substantial errors in locating the scar, while our model

predicted the most accurate signal propagation pattern and the scar location (circles).
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Figure 4.7: Convergence of reconstruction accuracy on new geometry by the fine-tuned (red) vs.

retrained model (yellow).

Figure 4.8: Examples of reconstructed electrical activity by the fine-tuned model at epoch = 100,

the retrained model at epoch = 100, and the retrained model at epoch = 300 on A) patient #2

and B) patient #3. The MSE value is shown for each model at each timestep. The fine-tuned

model has the most accurate reconstruction of the signal propagation pattern and the scar location

(circles).

examples of the reconstructed image sequences. Similar to the example shown in Fig. 4.4, ST-

GCNN was the most accurate at predicting signal propagation and locating the scar, while both

baseline models indicated incorrect scar locations.

4.3.3 Generalization to New Geometry

We then applied the model to 491 and 444 sets of simulated potentials generated on each of two

new heart-torso meshes, respectively. This scenario is realistic in that the network trained on one

group of patients will be applied to new patients. The blue flat line in Fig. 4.7 shows the accuracy
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Figure 4.9: Performance of our ST-GCNN method vs. ECGI.

of the results, trained on the full data set as described earlier and directly applied to the test data

from the two new geometries. The performance (patient #2: MSE = 0.11, SCC = 0.23, TCC =

0.76; patient #3: MSE = 0.08, SCC = 0.19, TCC = 0.80) showed a larger decrease compared to

those in Section 4.3.2, yet it is satisfactory overall. Note that Euclidean networks cannot be applied

directly on a new geometry without re-training [41]. We then fine-tuned the model on a small set

of data for each new geometry (122 and 111 sets, respectively), in comparison to retraining the

model from scratch. As shown in Fig. 4.7, the fine-tuned model was much faster (< 100 epochs) to

converge than the retrained model (> 300 epochs). Fig. 4.8 provides examples of the results. The

fine-tuned model had the most accurate reconstruction of both the signal propagation pattern and

the scar location among all the models we compared.

4.3.4 Training and Testing on Multiple Geometries

We further evaluated the ability of our model to be trained and tested across different geometries

of the heart and torso, i.e., across different input graphs. Such cross-training is not possible

with Euclidean models unless the different heart and torso geometries are pre-registered. Even

after registration, the learning will completely miss the different geometry information underlying

the data. Therefore, in this set of experiments, we compared our method with traditional ECGI

methods that rely on first building a forward mapping operator based on the given geometry,

and then optimizing for the reconstruction, given the forward operator and applying second-order

Tikhonov regularization [108]. Since unipolar extracellular potential, instead of transmembrane

potential, is more commonly used as the source model in traditional ECGI methods, we chose to

apply the presented method to reconstruct extracellular potential as well. Specifically, we considered

the meshes in Section 4.3.1 and Section 4.3.3 for the simulation of extracellular potentials. We

trained our model on a small subset of data for each geometry (50, 50, and 50 sets, respectively).

We then evaluated the model on each geometry used in the training set but with rotations unseen
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in the training set. Fig. 4.9 shows that our method had a much better reconstruction accuracy

than the ECGI method.

4.3.5 Effect of Stochastic IB Formulation

As observed in Section 4.3.2, in the Euclidean baselines, the stochastic model outperformed the

deterministic one. This result was consistent with published results [41], which attributed this

gain to the theory of information bottleneck in helping remove geometry-related information from

the latent space. With our network trained as a function of the geometry, we expected that the

stochastic IB formulation would bring less significant benefits. The results in Fig. 4.10B verified this

assertion, as the performance of the stochastic model changed only minimally when using different

values of β. Using β = 1 × 10−2 as an example (Fig. 4.10C), the performance gap between the

stochastic and deterministic models was marginal.

4.3.6 Effect of Alternative Model Architectures

Temporal Modeling

We investigated several alternatives for temporal modeling in our network including: 1) interlaced

spatial graph convolution and local temporal convolution [72] (L-Conv), which uses a 5×1 standard

convolutional kernel to slide through the time sequence on each node and feature, 2) interlaced

spatial graph convolution and regular Long Short-Term Memory (LSTM) networks [52] on temporal

sequences, and 3) graph LSTM (GCN-LSTM), which replaces the fully connected operator in

LSTM [52] with graph convolution so that the layer can operate on graph data. Table. 4.1 shows

that the presented ST-GCNN model was the most efficient and achieved the best performance.

Residual Blocks

We further trained a geometric network without residual blocks on the dataset used in Section 4.3.1

and tested it on the same dataset of rotations as described in Section 4.3.2. Fig. 4.10A summarizes

the mean square error of two networks against the change in heart rotations from the training data.

As shown, without the residual blocks, the network was not able to accurately reconstruct heart

potentials.
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Table 4.1: Comparison of Architectures

Architecture Type Time Complexitya Average MSEb

L-Conv 12.1 min 0.0144

LSTM 29.5 min 0.0118

GCN-LSTM 32.6 min 0.0139

ST-GCNN 9.5 min 0.0096
a Average time per epoch.
b Average mean square error tested on all z-rotations

with all models trained for 300 epochs. The other

metrics followed the same trend.

Figure 4.10: A) Effect of residual blocks; B) Effect of hyperparameter value of β; C) Comparison

of model performance at β = 0.01.

Figure 4.11: Performance of GCNN and non-linear fully-connected (FCN) latent inverse mapping.

Latent inverse mapping

We investigated a more general modeling option at the latent space for the relationship between

latent embedding Zh and Zb: a fully-connected layer with ELU activation [22]. This describes Zh
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Figure 4.12: Examples of the relation between the norm of zb(j)·ĥ(u(i, j)) (y-axis) and the distance

u(i, j) between vertex i and j on the bipartite graph (x-axis).

as a general nonlinear function of Zb without considering the underlying geometry. We trained

this network on 50 data samples on one single geometry and tested it on 3,095 data samples

from the same geometry but with five different rotations of the heart. As shown in Fig. 4.11, the

resulting network – while performing well on the training geometry – struggled with testing data

from different geometries.

To further understand the learned latent inverse mapping in (4.3), we examined empirical evidence

on how the coefficient of the linear inverse mapping ĥ(u(i, j)) changed with the relative distance

between vertex i and j in the latent torso and heart graphs. Due to the high dimensionality of zh

and zb, this was difficult to observe directly. Instead, we set all zb(j) on the torso graphs to be

identical constants, chose random vertex i on the heart graph, and obtained the norm of ĥ(u(i, j))

for each j which describes how each zb(j) contributed to zh(i) for different vertices j. Fig. 4.12

shows three examples of randomly selected i on the heart graph: consistent with the known physics,

the contribution of each zb(j) to zh(i) decreased as the distance of (i, j) increased. This suggests

that the inverse mapping learned geometry-dependent functions consistent with the underlying

physics.
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Figure 4.13: A flexible epicardial sock array encircled the isolated heart, which was perfused from

a second support animal through the aorta with blood returned under suction from the right

ventricle. The human-torso-shaped tank was filled with electrolytic fluid consistent with human

torso conductivity and contained 192 embedded Ag/AgCl electrodes. The recording system sampled

cage and torso potentials simultaneously. Bipolar stimulation was initiated from intramural plunge

needles.

4.4 Real Data Experiments

4.4.1 Experimental Data Description

Torso Tank Experimental Preparation

The experimental data sets used in this study were acquired from a modified Langendorff-perfused

torso tank preparation [11]. As illustrated in Fig. 4.13, an isolated canine heart was suspended

within a human-shaped torso tank and perfused via arterial blood from a second support dog.

Blood was returned to the support dog from a right ventricular cannula to the jugular vein. The

human-shaped torso tank was filled with an electrolytic solution (resistivity was 500 Ω-cm), which

approximates the electrical conductivity of a human torso. The animals were under deep anesthesia

using procedures approved by the Institutional Animal Care and Use Committee of the University

of Utah and conformed to the Guide for the Care and Use of Laboratory Animals.
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Signal Acquisition

Cardiac activation was generated with bipolar stimulation using plunge needles at five sites: left

ventricular (LV) base, LV Apex, LV freewall, LV septum, and right ventricular (RV) free wall. All

stimulation was initiated near the endocardium and signals were recorded for five seconds.

Cardiac potentials were recorded using an epicardial sock with 247 electrodes (inter-electrode spac-

ing 6.5±1.3 mm) stretched over the ventricles of the heart. The torso tank had 192 silver/silver-

chloride electrodes (with inter-electrode spacing 40.2±16.8 mm) distributed across the outer sur-

face. All signals were referenced to a Wilson’s Central Terminal and were simultaneously sampled

at 1000 Hz. Signals were filtered, annotated, and post-processed using PFEIFER [105].

Geometric Model Creation

The surface geometries were constructed based on electrode locations acquired during each experi-

ment. Template geometries for both the torso tank and epicardial sock were registered using known

correspondence points, which were measured using a 3D mechanical digitizer (Microscribe from Im-

mersion Corp). The epicardial sock registration was further refined as described previously [25].

4.4.2 Evaluation & Results

120 out of 192 torso-tank measurements were selected for inverse imaging, to be consistent with the

number of input measurements used in the synthetic training data. The measured QRST signals

were downsampled using polyphase filtering to the length of the simulated training signals. The

epi-endocardial geometry used in Section 4.3.1 was registered to the epicardial sock geometry with

transition, rotation, and scaling operations. The measured epicardial potential and the sites of

stimulation were registered to this epi-endocardial model, to provide reference data for evaluation.

The inverse imaging results were evaluated by MSE, SCC, and TCC metrics against the measured

epicardial potentials.

We carried out cross-validation by leaving out the signals from one stimulated activation sequence

(5 sequences) each time. We first directly applied a model trained on simulated data, considering

a subset from those described in Section 4.3.1 including 72 different combinations of activation

origins and scar tissues. We then fine-tuned the trained model using measured signals from the

remaining four stimulation sites (20 sequences). Finally, we retrained the same model from scratch
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Figure 4.14: Performance of comparison models on measured data: A) Convergence of fine-tuned

vs. retrained model; B) Final accuracy of various models.

Figure 4.15: Examples of reconstructed electrical activation sequences stimulated from A) LV base

and B) LV free wall. The SCC value is shown for each model at each timestep. The fine-tuned

model and the retrained model at epoch = 200 had similar performance.

using the same experimental data. Fig. 4.14A illustrates the quantitative metrics on the test data,

averaged over the cross-validation folds as the training of the fine-tuned and re-trained models

converged. Similar to the results presented in Section 4.3.3, the fine-tuned model took many fewer

epochs (80 epochs) to converge than the retrained model (200 epochs). Fig. 4.14B summarizes
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quantitative metrics obtained by these models. As shown, all metrics of the fine-tuned model were

significantly better than the retrained model at epoch 80 (p = 0.05 (MSE), 0.013 (SCC), and

0.001 (TCC), paired t-tests), and moderately better than the retrained model after convergence

(p = 0.32 (MSE), 0.10 (SCC), and 0.14 (TCC), paired t-tests). Fig. 4.15 provides visual examples

of two paced activations. The fine-tuned model and the retrained model at epoch = 200 had similar

performance on the prediction of propagation of activation.

4.5 Discussion and Conclusions

We have presented a novel non-Euclidean network for learning geometry-dependent and physics-

based inverse mapping between spatiotemporal variables mapped to 3D geometrical domains. We

demonstrated its ability to improve generalization to unseen geometrical variations in comparison

to its Euclidean alternatives, to directly apply to new geometry in a way that is not possible with

Euclidean approaches, and to be quickly fine-tuned to a new geometry using a small amount of

data. To our knowledge, this is the first report of a geometry-dependent non-Euclidean inverse

imaging network. Our method is general for problems with spatiotemporal data living on graphs

and linked with a linear imaging operator. Future studies will extend its application to other

problems that fall into this category as well as incorporate more general physics. Furthermore,

as observed in the results using data from experiments, there is still a performance gap between

models based on simulation and measured data, even after fine-tuning. Given the challenges in

obtaining labeled data in the types of application considered in this study (e.g., measurement of

whole-heart electrical potential), there is considerable motivation to investigate how to supervise

the network with the governing physics in addition to data-driven losses.

Several aspects of the presented ST-GCNN could also be further investigated. One of the chal-

lenging factors lies in the hierarchical graph representations of the heart-torso mesh. One critical

consideration in this problem is to prevent non-physical spatial propagation of signals, which re-

quires the coarsened graph in hierarchical graph representations to preserve the topology of the

geometry. Unlike down-sampling strategies on 2D Euclidean spaces, there is no established au-

tomatic method for down-sampling node features on realistic geometrical spaces. Existing graph

pooling methods use the clustering method based on graph topological structure to coarsen the

graph [28, 113]. However, we found significant structural information loss that, for instance, in-

troduced holes on the right ventricle (RV) of the coarsened heart mesh. We also noticed that the

activation did not always propagate over the surface of the coarsened heart. Therefore, we adopted

a specialized mesh-coarsening approach from CGAL [18], to preserve the topological information
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of the coarsened heart and torso mesh. This mesh coarsening method also allowed us to control

the down-sampling rate to prevent the unacceptable loss of structural information.

There are various choices of source models to represent the electrical activity of the heart in ex-

isting ECGI approaches, including heart surface potentials [53,63,79], or transmembrane potential

defined on the volumetric mesh of the heart [27,40,41,42,119]. We based this study on the former

because this is the most common formulation and the one used in commercial systems and also

because surface-based methods are more straightforward to implement. Any further extension of

the ST-GCNN to a more complete volumetric representation of the cardiac electrical sources will

require appropriate hierarchical graph representations, which will certainly become more challeng-

ing. Furthermore, the size of the graph and thus the computational cost of training the ST-GCNN

can also be expected to increase substantially.

There are many sources of geometric variation that we did not evaluate; in addition to variations

between subjects, breathing can expand and contract the torso and alter the location of the heart

relative to the torso; the heart geometry and position change every time the heart beats; regular

human posture and activities may also cause slight transition or rotation of the heart. Considering

all these scenarios of geometrical variation in any data-driven method could be challenging, given

the volume and variation in the required geometric and signal information required for training. In

this study, we simplified the geometrical variation to heart rotations, following the most common

settings in the previous reports [41].



Chapter 5

Adaptation with Physics – Forward

Imaging Physics

In this chapter, we propose how to leverage imperfect or inexact physics rules to guide learning in

neural functions. We focused on the forward imaging physics in ECGI systems and used that to

improve the learning of neural networks to solve the inverse problem. The proof-of-concept work

has been published in MICCAI 2021 [60]. The complete study has been published in IEEE TMI

2024 [59].

5.1 Introduction

ECGI, in analogy to tomographic imaging, aims to computationally reconstruct electrical potential

signals of the heart from non-invasive external observations (i.e., body-surface ECGs) [119]. The

forward imaging physics between the cardiac sources and their ECG measurements is relatively well-

understood. Given heart and thorax geometrical meshes, the forward operator can be numerically

constructed by solving the governing equations for quasi-static electromagnetic fields [9]. The

inference/optimization of the inverse solutions given ECG measurements, however, is challenging

due to the ill-posedness of the problem. A significant amount of effort in ECGI literature has focused

on regularization techniques to leverage prior knowledge of cardiac electrical activity. Examples

include spatial and/or temporal smoothness [16,108] or sparsity [43,124] of the solution, as well as

a priori physiological knowledge about the spatiotemporal dynamics of the solution [42, 117, 119].

Many of these existing works can be represented as special cases within the general framework

47
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of state-space modeling (SSM) [132], where the prior knowledge can be expressed in a dynamic

transition function that makes a prediction of the system state to constrain the inverse solution.

Solving a maximum a posteriori (MAP) optimization, this prediction can then be corrected by

the actual observations (i.e., ECG data) to obtain an optimal reconstruction of the system state.

Such a framework provides flexibility in explicitly incorporating various spatiotemporal knowledge

about the system, such as complex partial differential equations (PDEs) describing the electrical

dynamics of the cardiac system [119].

However, the traditional SSM framework faces several challenges. First, the reliance on strong

structural and parameter assumptions in the state-space functions – although representing general

knowledge about the systems – introduces potential errors when applied to individual subjects.

Second, state-space Bayesian filtering is typically applied independently to each set of ECG ob-

servations to estimate the corresponding cardiac electrical activity, while the prior knowledge as

described in the state-space functions is kept fixed. Even if information across multiple sets of ECG

data from the same subject may indicate errors in the prior knowledge, they are not assimilated to

refine the state-space functions for improving future estimations.

In recent years, traditional ECGI approaches have been increasingly replaced by data-driven machine-

learning approaches that extract information from data without needing sophisticated prior knowl-

edge or physics-based modeling [5, 41, 61]. Its blackbox model however lacks interpretability, and

training requires large amounts of labeled data – in the form of electrical activity measured on

the heart surface – that are typically not available in the real world. While it is clear that SSM

frameworks naturally complement these limitations, direct integration of traditional SSM frame-

work (with fixed state-space functions) with data-driven learning is challenging for ECGI and the

attempt has been limited.

In this chapter, we propose a novel hybrid SSM framework for ECGI to leverage the advantage of

state-space formulations in data-driven learning, with partially-learnable state-space functions and

unsupervised Bayesian filtering strategies. We follow structured state-space modeling to leverage

the physics-based forward emission function, such that the learning is supervised by the known

physics free from the need of labeled data of cardiac electrical activity. In the meantime, instead

of completely fixed state-space functions, we introduce neural modeling of the dynamic transition

function (to predict the signal propagation in the heart) and the associated Bayesian filtering

strategy. In an initial publication [60], we demonstrated the proof-of-concept of learning this hybrid

SSM in an unsupervised fashion across subjects on in-silico data, followed by its fine-tuning on in-

vivo data. In this work, we formalize two new scenarios to improve the learning of this hybrid
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SSM: 1) Unsupervised learning where, when previous ECG observations from the same subject

accumulate without ground truth recordings in the heart, the hybrid SSM utilizes these past ECG

data to improve its future ECGI solutions on the same individual; and 2) Combined supervised

and unsupervised learning where, when both in-silico simulation and clinical ECG observations

are available, simulation data corresponding to different rhythms can be generated to augment the

learning. In both scenarios, we develop the hybrid SSM to take ECG observations and reconstruct

the epicardial and endocardial extracellular potentials.

To elaborate, in the scenario of unsupervised Bayesian filtering across different ECG observations

on the same subject, the learning does not require any a priori data of cardiac electrical activity.

Instead of relying on potentially incorrect prior assumptions in fixed SSM functions, we allow part

of the state-space functions to be learnable to accumulate knowledge from past data of an individual

subject. Compared to independently applying Bayesian filtering with a fixed SSM, we show that

the learnable SSM can accumulate knowledge from unsupervised Bayesian filtering across a (small)

number of ECG observations, and thus deliver improved ECGI results on new ECG observations.

We demonstrated this via both in-silico and in-vivo experiments.

Furthermore, the neural formulation of the SSM allows it to be supervised by paired data of

ECG observation and its corresponding cardiac electrical activity when such data are available.

This allows the integration of supervised data-driven learning utilizing available data of cardiac

electrical activity (e.g. via in-silico simulation), with unsupervised Bayesian filtering utilizing only

ECG data (e.g. in typical clinical settings). In this scenario, the same learnable state space

functions are supervised by ground truth of electrical cardiac data when available (i.e., data-driven

loss), along with supervision by ECG data via the physics-based forward operator (i.e., physics-

based loss). On in-vivo test data for human subjects, we demonstrated that this mixed-loss SSM

allowed us to combine simulated data – either from the same subject or from other subjects – with

real ECG data of the subject to improve ECGI performance over using either model alone.

5.2 Preliminary: Bayesian Filtering

The traditional SSM for ECGI consists of a prior dynamic transition function and an emission

function:

Transition function: Xt = f(Xt−1) + wt, (5.1)

Emission function: Yt = HXt + νt (5.2)
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Figure 5.1: Overview of the presented network: ODE-GCN. The dashed box means the data-driven

term in the mixed loss may not be always available.

where Xt is the heart signal and Yt is the body surface potential at time t, and wt and νt are noise

variables introduced to account for modeling errors in these two functions. The transition function

f(·) is typically designed to describe prior knowledge about Xt as discussed earlier. Based on this

SSM, Bayesian filtering involves iterative estimations following a two-step procedure below:

Prior prediction: X−
t = f(Xt−1), (5.3)

MAP estimation: X̂t = X−
t +Kt(Yt −HX−

t ), (5.4)

where the prediction in (5.3) leverages the prior assumption in the SSM transition function in (5.1),

and the MAP estimation in (5.4) utilizes the Kalman gain Kt = P−
t H

T (HP−
t H

T +Rν)
−1 (P−

t is

the covariance of Xt) to optimally weigh the prior prediction with its discrepancy to observed Yt.

Typically the state-space functions are kept fixed when the above Bayesian filtering is applied to

different observations of Y1:T . This means that the knowledge of the discrepancy between the prior

assumption and the observations, while present in each of such observations, is not being utilized

to refine the prior assumptions nor to improve future estimations.
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5.3 Hybrid SSM for Neural Filtering

In this work, we present a novel hybrid SSM framework and realize it with an encoding-decoding

network to make the state-space function and the associated Bayesian filtering strategy learnable.

Specifically, the decoder will model the SSM in (5.1) and (5.2) as a generator network, and the

encoder will learn the Bayesian filtering in (5.3) and (5.4) as an inference network.

5.3.1 Decoder: Hybrid SSM

The decoder (as illustrated in blue boxes in Fig. 5.1) models state-space functions (5.1) and (5.2)

as:

Transition :


dst
dt

= Fϕ(st), Temporal Transition,

Xt = Dη(st), Spatial Decoding,

(5.5)

(5.6)

Emission : Yt = HXt, (5.7)

where st ∈ RV×M is the state of the latent dynamics at time t, V is the number of nodes (∼60,

depending on the anatomy of the subject) on the sparse heart mesh and M is the feature dimension

(64 for all subjects) in the latent space. Here we introduce spatial-temporally disentangled neural

modeling of the transition function in Equation (5.1). Specifically, we introduce neural functions

Fϕ to model the temporal dynamics of cardiac electrical activity in a lower-dimensional latent

space, and Dη to model the generation of cardiac electrical activity from this latent space. Both

ϕ and η are learnable parameters. We preserve the physics-based emission function leveraging the

forward operator H to supervise the learnable SSM with ECG data without labeled data of cardiac

electrical activity. We term this a hybrid SSM.

Latent Dynamic Transition with Neural ODEs: We chose to model the latent dynamics of

cardiac electrical activity with a neural ODE due to its ability to handle irregular data availability.

Given that the temporal resolution of ECG varies, the ability to propagate forward indefinitely

without requiring data allows the transition models’ temporal resolution to be decoupled from that

of the available ECG. In data settings with high density, both spatially and temporally, the NODE

also has the advantage of an O(1) memory cost in its forward solution with the usage of the adjoint

method [111].

More specifically, as illustrated in Fig. 5.1, the dynamics of the latent variable st of Xt can be
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described by numerically integrating the neural ODE function Fϕ in Equation (5.5) as:

st = st−1 +

∫ t

t−1
Fϕ(sτ )dτ. (5.8)

We implemented the ODE function as a stack of multi-layer perceptrons and activation functions.

We then apply a fourth-order Runge-Kutta solver [17] to solve the ODE on [t− 1, t] to obtain the

prediction of the current state st.

Spatial Decoding via GCNNs: As heart signals live on a 3D non-Euclidean geometry, we

describe the spatial decoding model from the learned latent space to the reconstruction Xt with a

stack of GCNNs Dη with learnable parameters η.

As detailed in our previous work [61], we represent the triangular mesh of the heart as an undirected

graph. Note that the number of vertices of the heart graph varies among different subjects. The

spatial decoding is performed over hierarchical graph representations of the heart geometry obtained

by a specialized mesh coarsening method [18] to preserve the topology of the geometry.

Following the previous work [60], we use the graph convolution with a continuous spline kernel

across graphs [34], then introduce residual blocks to make the network deeper and more expressive.

Emission to ECG Data: The emission fromXt toYt employs the physics-based forward operator

H. This allows us to supervise the hybrid SSM with this physics operator and observed ECG data,

rather than data of cardiac electrical activity that is rarely available in practice. Indeed the physics

operator may have errors, which may degrade the performance of the hybrid-SSM compared to a

neural network that is fully supervised by cardiac electrical activity data. However note that such

data is hardly available in practice, thus the potential performance drop of the hybrid SSM will be

in exchange for a significant advantage in terms of real-world applicability. We will compare the

presented hybrid-SSM with fully-supervised baselines in the experiments.

5.3.2 Encoder: Neural Bayesian Filtering

We then use the encoder network (as illustrated in green boxes in Fig. 5.1) to learn Bayesian

filtering:

Prediction function: s−t = ŝt−1 +
∫ t
t−1Fϕ(sτ )dτ, (5.9)

Estimation function: ŝt = Gγ(z
h
t , s

−
t ), (5.10)

where zt = Eρ(Yt), zt ∈ RV×M is the latent embedding of the observation Yt, V is the number

of nodes (∼60, depending on the anatomy of the subject) on the sparse heart mesh and M is the
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feature dimension (64 for all subjects) in the latent space, and the prediction of the latent state s−t

is modeled as the solution to the neural ODE in Equation (5.5) given the previous state estimation

ŝt−1. The encoder consists two parts: the spatial embedding function Eρ encodes Yt to a latent

variable zht , and the correction function Gγ combines s−t with the embedded zht to get an optimal

state estimation ŝt.

GCNNs for Embedding Observed Data: As torso signals Yt also live on 3D geometry, we

follow a similar design in Section 5.3.1 to describe the spatial embedding function Eρ with a stack of

GCNNs with learnable parameters ρ. The geometry of the torso is also represented as an undirected

graph, where edges and vertices are defined similarly as described in Section 5.3.1. For torso graphs

on different subjects, the number of vertices is the same but the edge attributes are different. To

learn the relationship between heart and torso, we follow [61] and assume the linearity to hold

between Xt and Yt in the latent space during inverse imaging. We construct a bipartite graph

between the graph embedding of the heart and torso geometry: the edge attribute u(i, j) between

torso vertex i and heart vertex j describes their relative geometrical relationship. Using spline

convolution, we model the latent representation zh(i) on vertex i of the latent heart mesh as a

linear combination of latent representation zb(j) across all vertices j of the latent torso mesh as:

zh(i) =
∑
j

zb(j) · ĥ(u(i, j)), (5.11)

where ĥ’s are learned as the spline convolution kernel.

Latent Dynamics Correction with GCN-GRU: The final estimation of the latent variable ŝt

is given as a weighted combination of the latent representation zht of the measurement Yt on the

heart, and the prediction of the latent dynamics s−t . This is achieved by a Gated Recurrent Unit

(GRU) cell [19] whose underlying architecture contains GCN layers as both the hidden state and

input to the cell are graphs. We call it a GCN-GRU cell and denote it as Gγ . Specifically, each

linear operator in the regular GRU cell is replaced by GCN:

rt = σ
(
Gz1(z

h
t ) +Gs1(s

−
t )

)
,

gt = σ
(
Gz2(z

h
t ) +Gs2(s

−
t )

)
,

nt = tanh
(
Gz3(z

h
t ) + r⊙Gs3(s

−
t )

)
,

ŝt = (1− gt)⊙ nt + gt ⊙ s−t ,

(5.12)

where σ(·) is the sigmoid function, {Gzi, Gsi}3i=1 are GCN operators, and γ = {zi, si}3i=1 are

learnable parameters.
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5.4 Learning the Hybrid SSM

The presented encoder-decoder as described in Section 5.3 is denoted as Fθ, where θ are learnable

parameters. We consider the following two scenarios in learning Fθ. First, we learn Fθ without the

supervision of ground truth cardiac signals X, where the loss function (which we call physics-loss)

between the input body surface potentials Y and the output of the emission model Ŷ provides an

alternative supervision to the model. Second, we introduce mixed-loss by combining unsupervised

learning on in-vivo real data when ground truth data X is not available, with data-driven learning

on synthetic data when ground truth data X are available.

5.4.1 Unsupervised Learning of Hybrid SSM

Traditional methods seek to find a solution Xt that minimizes the fitting of Yt while satisfying

constraints R(Xt):

argmin
Xt

T∑
t=1

||Yt −HXt||22 + λR(Xt), (5.13)

where the regularization parameter λ is often empirically tuned: it usually increases from an

extremely small value until the error of reconstructing Yt stops decreasing significantly. The

proposed physics-loss (as illustrated in purple dashed boxes in Fig. 5.1) utilizes the physics-informed

relationship in (5.13) to supervise the neural function X̂t = Fθ(Yt) of the hybrid SSM, where

F = {E ,F ,G,D} and θ = {ρ, ϕ, γ, η}. The optimization problem in (5.13) is then converted to

learning parameters of Fθ(Yt) for:

argmin
θ

N∑
i=1

T∑
t=1

||Yi
t −HFθ(Y

i
t)||22 + λR(Fθ(Y

i
t)), (5.14)

where N is the number of data points. While different choices of R(Xt) can be considered, as

a proof of concept we adopt the popular Laplacian smoothing over the heart geometry, and λ is

empirically tuned as in (5.13).

5.4.2 Combined Supervised and Unsupervised Learning

The neural formulation of the SSM allows it to be learned with supervision when partial data of

cardiac electrical activity Xt are available. In this scenario, we propose mixed-loss (as illustrated in

orange dashed boxes in Fig. 5.1) that combines the strength of both the physics loss in (5.14) and
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Heart 1 Heart 2 Heart 3

Figure 5.2: Overview of the sampled pacing locations (black) for each heart geometry.

Figure 5.3: Performance of the proposed model with respect to different data availability in training

(right side of the vertical dashed line) and the four baseline models (left side of the vertical dashed

line).

data-driven learning. Specifically, the learnable state-space function is supervised by the in-silico

data with ground truth Xt available, along with the same physic loss in (5.14) for in-vivo ECG

data without Xt. Additionally, we ask the physics loss to be satisfied on in-silico data as well. In

summary, the mixed-loss can be represented as follows:

argmin
θ

N∑
i=1

T∑
t=1

||Yi
t −HFθ(Y

i
t)||22 + λR(Fθ(Y

i
t))

+ µi||Xi
t − Fθ(Y

i
t)||22,

(5.15)

where µi is 0 when there is no available Xi, and non-zero when Xi is available for sample Yi. µi

is empirically determined by balancing the scale of the reconstruction error terms of Yi and Xi

in Equation (5.15) such that the measurements and the source have similar contribution to the

supervision.
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5.5 Experiments and Results on Unsupervised Learning of Hybrid

SSM

In this set of experiments, we demonstrate that when the hybrid SSM is trained to do unsupervised

Bayesian filtering on multiple data from the same subject, its performance on new data increases

and improves over independent ECGI solutions on the same data. In this setting, the hybrid SSM

does not need the supervision of Xt. This represents a common use scenario that, as multiple ECG

data from the same individual are collected over time, the hybrid SSM keeps refining the learned

function of the underlying cardiac system for future use on the same subject. We tested this on

both simulation and in-vivo data.

5.5.1 Models, Baselines, and Evaluation Metrics

Our presented hybrid SSM contains the following components: a spatial embedding network with

three GCNN blocks, two standard convolutional layers, and a spline convolutional inverse mapping;

a neural-ODE-based latent transition model with four linear layers; a correction model with a GCN-

GRU cell; and a spatial decoder with two standard convolutional layers and four GCNN blocks,

with 1,051,594 parameters in total. We used ELU activation [22] for most of the layers and the

hyperbolic tangent function for the last layer of the neural function.

In this set of experiments, the model is supervised only by the ECG data through the forward

operator via the loss function in Equation (5.14): in other words, the model is unsupervised (by the

label Xt). We call this unsupervised model U-SSM. The network parameter is optimized by Adam

optimizer [68] with a learning rate of 5×10−4 and a learning rate scheduler decreasing the learning

rate every 200 epochs with a decay rate of 0.5. We compared the performance of unsupervised

SSM with classic ECGI approaches utilizing three different types of dynamic transition functions

as temporal constraints: 1) no temporal constraints which correspond to second-order Tikhonov

regularization [108], and 2) temporal smoothness constraint and 3) transmural constraint [33]. We

also trained a data-driven version of the same hybrid SSM (we call this model S-SSM) where the

hybrid SSM is supervised by available cardiac data Xt corresponding to the ECG data.
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5.5.2 Simulation-Data Experiments

Data and Training

We considered three human heart-torso meshes, with 448, 475, 480 heart nodes and 120, 120, 120

torso nodes respectively. For each heart, we considered two different spatial configurations of scar

tissues, resulting in total six subject-specific hearts for training and testing the hybrid SSMs. On

each heart, we simulated realistic spatiotemporal propagation sequences of action-potentials by

the Aliev-Panfilov model [1] considering different origins of activation. To obtain the extracellular

potential on the heart surface from volumetric action potential, we obtained the forward operator

by solving Possoin’s equation using the coupled meshfree method and boundary element methods

as described in [14, 75, 119]. The forward operator from the heart-surface extracellular potential

Xt to body-surface potential Yt was then obtained using the open-source SCIRun toolkit solving

the Laplace equation using the boundary element method [54]. On the simulated body-surface

potential, 30 dB Gaussian noises were added for reconstructing Xt. Because the action potential

simulated by the Aliev-Panfilov model was unitless in both amplitude and time, the generated

signals on the heart and torso were also unitless. Specifically, in our experiments, we considered

the depolarization process that was downsampled in time and represented by 65 discrete time steps.

To generate disjoint training and testing sets for each subject, we partition the data based on the

locations of activation origins. To examine the performance of the U-SSM as the number of training

data increases, we randomly sampled the simulated data with an increasing number of origins (25,

50, 75, 100).

We also considered simulation data generated from a different pipeline on the three healthy subjects.

For these simulations, each bi-ventricular mesh of targeted resolution 1200 µm was equipped with

rule-based fibers [8] and a physiologically-detailed His-Purkinje system representing the cardiac con-

duction system [45]. Universal ventricular coordinates were computed for spatial navigation [7,46].

On each heart, simulations of the trans-membrane voltages were run using a reaction-Eikonal model

in monodomain formulation without diffusion using CARPentry [84, 118] considering 500 different

origins of activation evenly sampled across the entirety of the endocardium (see Figure 5.2). Au-

tomated sampling of activation sites was facilitated using the universal ventricular coordinates in

open-source meshtool [85]. Cellular dynamics within the heart were modeled using the Mitchell-

Schaeffer ionic model with a set membrane voltage of −86.2mV and a plateau of 40mV [82]. Heart

conductivities were assigned according to [104] and the torso conductivity was assigned a value

of 0.22 Sm−1 [67]. Conduction velocities within the myocardium were assigned 0.6m s−1 with an

off-axis ratio of 4:2:1. A general conduction velocity of 2.0m s−1 was prescribed within the His-
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Figure 5.4: Visual examples of reconstructed electrical activity among four comparison models.

Both epicardial and endocardial surfaces are presented. The arrow indicates the pacing site location.

The color bar shows the scaled range of the signal since it is unitless in synthetic data. The U-SSM

is trained on 50% of the full set. The MSE value is shown for each model at each timestep. The

U-SSM showed better performance in predicting signal propagation and scar localization (circled)

compared to the three ECGI baselines. The S-SSM demonstrated an upper bound in both signal

propagation prediction and scar localization.

Purkinje System, with slight deviations assigned in the fascicular branches. An anterograde and

retrograde delay of 8 ms and 3 ms, respectively, was assigned. The simulated transmembrane

voltages were rescaled to [0, 1], and we followed the similar steps mentioned above to obtain ex-

tracellular potentials and then 120-lead ECGs. Therefore, the generated signals on the heart and

torso were all unitless. The sampling frequency was 1000Hz. The temporal dimension was 600

discrete time steps and then downsampled to 200 discrete time steps. The three subjects have the

spatial dimensions of 350, 350, 350 on the heart and 120, 120, 120 on the torso and we consider

the depolarization process represented by 90 discrete time steps. For each subject, we randomly

sampled the simulated data with an increasing number of origins (100, 200, 300, 400) to examine

the performance of the U-SSM with an increasing number of training data.
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Figure 5.5: Summary of average performance on in-silico data among three comparison models

with respect to different temporal models.

Evaluation Metrics

The accuracy of ECGI solutions in reconstructing Xt was measured by the mean square error

(MSE), spatial correlation coefficient (SCC), and temporal correlation coefficient (TCC) between

the reconstructed and actual potential sequence on the heart surface. While MSE measures the

quantitative errors of the reconstructed signals on the heart, the SCC and TCC measure the

correlation between the reconstructed and reference signals. We considered the correlation for both

spatial signals at each time instance (SCC) and temporal signals at each location of the heart

(TCC).

Results

Fig. 5.3 summarizes the quantitative metrics of the four models with respect to different numbers

of training data. The reconstruction accuracy of the U-SSM surpassed the three ECGI baselines

as the data availability increased. Note that the TCC of the U-SSM was better than the Tikhonov

and temporal smooth ECGI baselines even when the training dataset is small among all subjects

(25% training data). The SCC by the U-SSM outperformed all three ECGI baselines when there

were over 50% training samples. The S-SSM set up a strong upper bound for the performance of

the U-SSM, even at a small training size of 25. Note that the U-SSM’s performance is approaching

that of the supervised model as the number of unlabeled data increases. Fig. 5.4 provides visual

examples demonstrating improved signal propagation patterns and scar locations obtained by the

U-SSM. Notice that the U-SSM shows better reconstruction details of the signal propagation on

the endocardial surface compared to all ECGI baseline models.
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Alternative Architecture of Latent Transition Functions

As mentioned in Section 5.3.1, we chose the neural ODE as the latent dynamic transition function

because of its generality as a continuous dynamic model, which has the advantage of decoupling the

transition model’s temporal resolution from that of the available ECG measurements, to accom-

modate irregularly sampled time-series data, and to handle missing data in time – the latter two

scenarios, however, are not commonly expected in the setting of ECGI. Nevertheless, it is impor-

tant to note that the presented hybrid SSM is agnostic to specific choices of function architectures

or types for latent dynamic transitions. To demonstrate this, we investigated an alternative for

temporal modeling: s−t = ŝt−1 +∆st, where ∆st is given by GRU (denoted as GRU-res):

s
(1)
t−1 = ELU(α1ŝt−1 + β1), gt−1 = σ(W1s

(1)
t−1 + b1)

s
(2)
t−1 = ELU(α2ŝt−1 + β2), ht−1 = ELU(W2s

(2)
t−1 + b2)

s̃t−1 = α3ŝt−1 + β3,

∆st = (1− gt−1)⊙ (W3s̃t−1 + b3) + gt−1 ⊙ ht−1,

where θz = {Wi,bi,αi,βi}3i=1 are learnable parameters of the dynamic function [58]. We compared

GRU-res with the proposed method (denoted as Neural ODE) on a subset of synthetic data in

Section 5.5.2 with changing of origin. Fig. 5.5 summarizes the quantitative results of the two

temporal models with respect to different numbers of training data. The reconstruction accuracy

of GRU-res is compatible with Neural ODE and has a similar trend with increasing training data.

This proves that hybrid SSM was not affected by the choice of latent dynamic models.

5.5.3 Real-Data Experiments

Data and Training

We then repeated the evaluation and comparison experiments on in-vivo 120-lead ECG data from

three subjects with premature ventricular contraction (PVC) on structurally healthy hearts [33]

(termed as Healthy 1, Healthy 2, and Healthy 3), which have been made available at EDGAR [3],

and three post-infarction subjects [3, 110] (termed as Post 1, Post 2, and Post 3), all undergoing

ventricular pacing. The healthy subjects have the same geometry as the geometry of the three

healthy subjects used in Section 5.5.2. The body surface potentials of the three healthy subjects

are sampled at 2000Hz and further downsampled using polyphase filtering to 201 steps, with the

depolarization represented in 90 steps used in experiments. The heart-torso geometry of the three
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Table 5.1: Summary of localization errors for the origin of ventricular activation in each subject.

(Unit: mm. Paired p-test is performed between ECGI Tikhonov and other comparison models.

nss: non-subject-specific)

Type Model Post 1 Post 2 Post 3 Healthy 1 Healthy 2 Healthy 3 Overall p-value

Non-ML

ECGI

Tikhonov 33.87(17.81) 51.60(12.07) 39.09(39.05) 22.49(20.78) 44.69(26.60) 49.82(15.01) 40.26(22.69) /

Transmural 30.63(17.50) 38.00(16.40) 14.19(11.46) 25.56(24.86) 30.75(13.68) 64.65(5.45) 33.97(20.79) 0.321

Supervised

Baselines

S-SSM 41.33(20.35) 45.39(16.98) 50.70(6.41) 35.82(7.18) 38.15(19.80) 39.16(23.51) 44.00(12.22) 0.481

ST-GCNN 34.05(18.65) 62.41(22.31) 65.90(23.50) 46.11(18.76) 30.59(11.87) 55.67(13.47) 49.12(20.81) 0.165

Euclidean 46.83(28.39) 56.75(16.04) 53.10(20.44) 39.82(15.28) 49.43(8.21) 47.47(9.74) 48.90(15.26) 0.129

MARS 39.69(21.79) 43.40(47.43) 37.37(23.49) 29.97(24.13) 32.30(15.02) 48.11(26.05) 38.48(25.04) 0.797

U-SSM

25% 39.68(19.82) 48.91(19.26) 32.11(16.23) 28.32(17.01) 33.47(11.98) 42.59(18.17) 37.51(15.69) 0.628

50% 37.42(20.02) 44.82(27.66) 26.09(8.63) 25.96(21.27) 32.58(11.74) 41.42(21.11) 34.71(17.88) 0.352

100% 35.12(19.55) 39.70(21.47) 26.82(27.66) 24.85(19.38) 33.16(13.90) 38.41(17.73) 33.01(18.18) 0.228

M-SSM

25% 31.41(16.61) 32.50(23.76) 36.75(12.79) 18.14(5.02) 31.88(13.29) 28.19(12.76) 29.81(13.83) 0.060

50% 24.45(17.76) 30.02(16.04) 35.22(14.08) 15.97(6.84) 29.55(15.26) 25.44(13.42) 26.77(13.81) 0.017

100% 23.23(13.96) 27.20(16.32) 25.34(7.65) 13.16(1.57) 29.29(13.39) 25.28(9.85) 23.92(11.03) 0.003

nss 26.66(14.93) 24.79(7.98) 24.55(11.13) 24.52(20.02) 33.35(13.79) 27.34(12.58) 26.87(12.09) 0.014

F-SSM

25% 36.48(22.22) 39.06(18.94) 42.54(15.13) 25.09(4.35) 30.58(12.14) 35.59(17.31) 34.89(14.51) 0.334

50% 43.10(27.05) 32.28(18.23) 40.64(19.63) 23.76(4.44) 29.94(12.63) 35.68(12.29) 34.23(15.60) 0.289

100% 31.51(14.89) 39.29(20.28) 37.14(18.74) 22.00(3.04) 29.48(11.62) 28.25(10.64) 31.28(13.09) 0.100

nss 32.31(17.08) 44.40(3.76) 21.61(5.10) 26.66(19.84) 34.51(11.72) 30.99(11.48) 31.75(12.56) 0.115

Figure 5.6: Visual examples of reconstructed electrical activations on in-vivo data (Unit: mm; ss:

subject-specific; nss: non-subject-specific). The arrows are predicted pacing sites and the dots

highlight actual pacing sites. The localization error is shown for each model. The U-SSM and

both subject-specific and non-subject-specific M-SSM showed generally better accuracy in early

activation localization among all comparison models.

subjects with post-infarction is the same as the geometry of the three subjects with scar tissues

used in Section 5.5.2. The body surface potentials of the three subjects with post-infarction are

sampled at 1000Hz and further downsampled using polyphase filtering to 101 steps, with the

depolarization represented in 65 steps used in experiments. For each subject, patient-specific heart

torso geometry was extracted from computed-tomography images, on which extracellular potential

signals were reconstructed from ECG data. Each healthy subject contains ECG data acquired from



CHAPTER 5. ADAPTATION WITH PHYSICS – FORWARD IMAGING PHYSICS 62

21, 14, and 17 different origins of pacing, respectively. Each post-infarct subject contains ECG data

acquired from 22, 20, and 23 different origins of pacing respectively. For each subject, we randomly

left out four sites for testing. Because the S-SSM cannot be directly trained on in-vivo data due

to lack of Xt, we considered directly applying the S-SSM trained on the complete in-silico dataset

in Section 5.5.2 to in-vivo data. Similarly, we also evaluated existing data-driven methods, such

as ST-GCNN [61], Euclidean method [41], and MARS [89], by training them on the same in-silico

dataset and testing on in-vivo data. We also considered ECGI with the second-order Tikhonov

regularization and transmural regularization in comparison. To examine the performance of the

U-SSM given different training data availability, we randomly selected 50% and 25% of the training

data on each subject. All results below are reported on the same four test cases each on the six

subjects totaling 24 cases.

Evaluation Metrics

Due to the lack of in-vivo measurement of heart-surface potential, quantitative accuracy was mea-

sured by the Euclidean distance between the reconstructed origins of the activation and the known

sites of pacing. To localize the site of the earliest activation by the steepest descent of the recon-

structed extracellular potential during depolarization in itself presents non-trivial challenges [24].

We consider 5mm as the best case target in clinical settings, since it is the diameter of the ablation

catheter, and thus the best ablation resolution. We thus resorted to manual identification of the

region of the earliest activation by visual inspection of the reconstruction electrograms sequence,

and the centroid of the identified region was calculated as the site of the earliest activation.

Results

Table 5.1 summarizes the localization errors for the early activation site with respect to different

amounts of training data. Directly applying supervised data-driven models trained on simulation

data to in-vivo data (supervised baselines) had a worse overall localization error (S-SSM: 44.00±
12.22, ST-GCNN: 49.12±20.81, Euclidean: 48.90±15.26, MARS: 38.48±25.04) than the Tikhonov

(40.26±22.69) and transmural-based regularization (33.97±20.79) ECGI baselines, highlighting the

challenges of generalization when training an ECGI reconstruction network supervised by simulation

data. When using 25% of the full training set, the overall localization accuracy of the U-SSM

(37.51± 15.69) was comparable with the Tikhonov method (40.26± 22.69) and less accurate than

transmural-based regularization (33.97 ± 20.79). The accuracy of U-SSM surpassed the Tikhonov
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ECGI baseline when the training data increased (25%: 37.51 ± 15.69, 50%: 34.71 ± 17.88, 100%:

33.01±18.18). When using the full training data, the accuracy of U-SSM became comparable with

the transmural-based ECGI baseline. Fig. 5.6 provides visual examples.

This set of experiments demonstrates that the presented U-SSM can learn to perform unsupervised

Bayesian filtering on individual hearts, with a reconstruction accuracy higher than the supervised

ECGI networks trained on simulation data and traditional ECGI methods with a similar regu-

larization choice, and on par with traditional ECGI methods using more advanced regularization

options.

5.6 Experiments and Results on Combined Learning of Hybrid

SSM

In this set of experiments, we demonstrate the use scenario for the hybrid SSM to leverage available

simulation data – either from different subjects or from the same subject – and combine it with

in-vivo ECG data available on a subject, to improve ECGI performance than using either data

alone.

5.6.1 Models, Baselines, and Evaluation Metrics

We considered two specific experimental settings. For each subject on whom to test the hybrid

SSM, we combined unsupervised training using in-vivo ECG data with supervised training on in-

silico data 1) generated on this specific subject, versus 2) generated from two different subjects.

This helps us test if we need to generate subject-specific simulation data for a subject in order to

use this mixed-loss SSM (we call this model M-SSM).

For the three healthy subjects and the three post-infarction subjects, the simulation and in-vivo

data are as described in Sections 5.5.2 and 5.5.3. For each healthy subject, we chose the same 400

origins in training as in Section 5.5.2, and the same selection of four pacing sites for testing and the

rest for training on in-vivo data as in Section 5.5.3. For each post-infarction subject, we chose one

configuration of scar tissue with the same 100 origins in training as in Section 5.5.2, and the same

selection of four pacing sites for testing and the rest for training on in-vivo data as in Section 5.5.3.

All results below are reported on the same in-vivo test cases each on the six subjects totaling 24

cases.
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Similar to Section 5.5.3, we compared the M-SSM with: 1) ECGI with second-order Tikhonov

regularization and transmural-based regularization, 2) existing supervised data-driven models (S-

SSM, ST-GCNN, Euclidean, and MARS) by training on in-silico data and testing on in-vivo data,

and 3) unsupervised fine-tuning of the same supervised SSM on in-vivo data using the physics-

based loss in (5.14) (we call this F-SSM). Similar to Section 5.5.3, we also examine the performance

of the M-SSM concerning the change in data availability of in-vivo data by randomly selecting 50%

and 25% of in-vivo data in training on each subject. We continued to use the Euclidean distance

of pacing site localization similar to that in Section 5.5.3.

5.6.2 Combining with Subject-Specific Simulation Data

Table 5.1 shows localization errors of early activation sites among the comparison models. The

M-SSM demonstrated the best overall localization accuracy (23.92± 11.03) among all comparison

models. Note that directly applying supervised data-driven models trained on simulation data to

in-vivo data showed worse overall performance (S-SSM: 44.00 ± 12.22, ST-GCNN: 49.12 ± 20.81,

Euclidean: 48.90 ± 15.26, MARS: 38.48 ± 25.04) than both M-SSM and F-SSM (31.28 ± 13.09).

When using 25% of the full training set, the overall performance of the M-SSM (29.81± 13.83) was

better than the Tikhonov baseline (40.26±22.69) and the transmural-based regularization baseline

(33.97 ± 20.79). In Post 1, 2, 3, and Healthy 1, 3, the performance of the M-SSM using 25% of

the full training set (Post 1: 31.41 ± 16.61, Post 2: 32.50 ± 23.76, Post 3: 36.75 ± 12.79, Healthy

1: 18.14± 5.02, Healthy 3: 28.19± 12.76) was even better than the F-SSM using the full training

set (Post 1: 31.51 ± 14.89, Post 2: 39.29 ± 20.28, Post 3: 37.14 ± 18.74, Healthy 1: 22.00 ± 3.04,

Healthy 3: 28.25± 10.64). The overall localization accuracy of both M-SSM (25%: 29.81± 13.83,

50%: 26.77 ± 13.81, 100%: 23.92 ± 11.03) and F-SSM (25%: 34.89 ± 14.51, 50%: 34.23 ± 15.60,

100%: 31.28 ± 13.09) showed an increasing trend with the increase in data availability. Fig. 5.6

provides visual examples of reconstructions of early activation.

5.6.3 Combining with Non-Subject-Specific Simulation data

As summarized in Table 5.1, the non-subject-specific M-SSM showed a better localization accuracy

(26.87 ± 12.09) in early activation sites in comparison with the Tikhonov baseline (40.26 ± 22.69)

and transmural-based regularization baseline (33.97±20.79), even though there is a small reduction

of performance compared to the subject-specific M-SSM (23.92± 11.03). The overall performance

of the non-subject-specific M-SSM in Post 1, 2, and all Healthy subjects (Post 1: 26.66 ± 14.93,
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Post 2: 24.79± 7.98, Healthy 1: 24.52± 20.02, Healthy 2: 33.35± 13.79, Healthy 3: 26.87± 12.09)

was better than F-SSM (Post 1: 32.31 ± 17.08, Post 2: 44.40 ± 3.76, Healthy 1: 26.66 ± 19.84,

Healthy 2: 34.51 ± 11.72, Healthy 3: 31.75 ± 12.56), while the performance of F-SSM was better

in Post 3 (21.61 ± 5.10) than M-SSM (24.55 ± 11.13). Visual examples in Fig. 5.6 show that the

non-subject-specific M-SSM also improved the early activation localization.

This set of experiments demonstrated that the hybrid SSM allows us to combine supervised training

using simulation data and unsupervised training using in-vivo data, to obtain improved performance

over using either data alone. It can utilize non-subject-specific simulation data which reduces the

burden of having to conduct subject-specific in-silico simulations.

5.7 Conclusions and Discussion

We have presented a novel hybrid SSM framework for ECGI to leverage the advantage of state-space

formulations in data-driven learning, with partially learnable state-space functions and unsuper-

vised Bayesian filtering strategies. We demonstrated its improved ECGI performance under un-

supervised Bayesian filtering on both in-silico and in-vivo experiments and under mixed-loss SSM

setting on in-vivo data combined with simulation data either from the same subject or from other

subjects. Our method is general for problems with spatiotemporal data with disentangled dynamic

transition and spatial emission. Future studies will extend its application to other problems that

fall into this category.

Several aspects of the presented hybrid SSM framework can be further investigated. One of the

challenging factors exists in the subject-specific nature of Bayesian filtering, in which a critical com-

ponent is that it accumulates the information of each subject. One may naively consider learning

the knowledge shared across subjects by training the model on different subjects together. How-

ever, we found the improvement in reconstruction was marginal. How to model diverse dynamics

across subjects with few-shot data remains an open question.

There are various choices of source models to represent the cardiac electrical activity in existing

ECGI approaches, including heart surface potentials [53,63,79], or transmembrane voltages defined

on the volumetric mesh of the heart [27,40,41,42,119]. Our study is based on the former because this

is the most common formulation and the one used in commercial systems. Further extension of the

hybrid SSM to the volumetric representation of the cardiac electrical activity will bring challenges

in building appropriate hierarchical graph representations for spatial decoding. Furthermore, the
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substantial increase of the size of the graph can also lead to a higher computational cost of training

the hybrid SSM.

This work uses Laplacian smoothing as the regularization in the objective function because this

is one of the most popular choices and the Laplacian operator can be directly derived given the

heart geometry. When using the Laplacian operator, the reconstruction accuracy of hybrid SSM

was lower compared to traditional methods using more advanced regularization with small training

data and increased to be comparable with the transmural-based method when more data were

available. However, many alternative constraints on cardiac electrical activities such as spatial

sparsity [43,124] and PDEs [117,119], have not been investigated. Future works will seek to better

incorporate physiological knowledge into the hybrid SSM by tackling challenges in the modeling of

spatial and temporal gradients to make physics-informed neural networks.

The two major scenarios of hybrid SSM are 1) unsupervised learning of hybrid SSM when previous

ECG observations from the same subject accumulate, and 2) combined supervised and unsuper-

vised learning when both in-silico simulation and clinical ECG observations are available. In both

scenarios, the hybrid SSM is unsupervised on the real data, meaning that all it requires is past

ECG data from the same subjects. Because no label (actual knowledge about the underlying con-

ditions) is required, in theory, ECG observations under any arrhythmic conditions can be used

such as sinus rhythm, pacing, or various arrhythmic conditions. In our experiments, we considered

pacing rhythms primarily because of the availability of data. In future works, we will investigate

the general applicability of the hybrid SSM to various ECG conditions owing to its unsupervised

nature.

We considered the localization of the pacing site by manual identification of the earliest activation

region as the quantitative evaluation of the proposed method on in-vivo data. The ECGI validation

remains an open question as the challenges come from the choice of the implementation methods,

the unavailability of in-vivo data, and variations in clinical application interest [23]. As one of the

typical local comparison metrics, the estimation of activation time and site from reconstructed elec-

trograms itself is a difficult problem that is investigated among many groups [31,32]. Future works

will investigate more generalized and automated localization methods for pacing and alternative

metrics based on the corresponding arrhythmic conditions.

A complete heart signal has two main stages: depolarization and repolarization, in which using

ECGI to detect the time of electrical activation and recovery of local cardiac tissue from trans-

membrane voltages or extracellular potentials remains an open question. Our study only considered

the depolarization stage in all experiments, given the limitation of the neural network in describing
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complex dynamics. Future works will explore more advanced neural networks to describe the exact

physical processes.

Ideally, the performance of hybrid SSM should keep improving with the increase of available train-

ing data. However, we noticed a common phenomenon in our experiments that improvement of

performance slowed down when the number of training data was above a certain amount. Future

work on the hybrid SSM will investigate whether the hybrid SSM is sufficiently expressive for the

data governed by physics equations.



Chapter 6

Identifiable Hybrid Model

In this chapter, we focused on learning to identify hybrid knowledge with both the physics-based

model and neural components.

6.1 Introduction

Personalized virtual heart models, such as those describing the electrophysiological (EP) process of

the heart, have shown significant progress in risk stratification [4], treatment planning [130], and

outcome predictions [112]. Effective personalization of virtual heart models, especially estimation

of model parameters pertaining to patient-specific tissue properties, however, remains a critical

challenge due to the ill-posed nature of the inverse problem, the myriad of modeling assumptions

involved, and the computational cost associated with these models.

Many efforts have been devoted to personalizing the parameters of virtual EP models of the heart.

Earlier works have focused on iterative optimization/inference to minimize the discrepancy between

model outputs and measured data [112, 122]. Despite significant progress, the iterative nature of

these approaches involving multiple runs of the EP model makes it less appealing for clinical use.

More importantly, they attribute discrepancies between model outputs and data observations solely

to the model parameters being optimized, essentially assuming the absence of structural or other

errors in the model. This overlooks unknown errors within a virtual EP model associated with

its structural assumptions and simplifications, which may in turn lead to erroneous parameter

identification if this unknown error is non-negligible. We refer to this as white-box models.

68
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Recent machine learning (ML) and deep learning (DL) advances have brought success in the person-

alization of virtual heart models. Examples include learning the input-output relationship between

the parameters and outputs of the EP model [65], or the recent meta-learning approach to learn to

adapt a neural network as a surrogate for the EP model [57]. These data-driven approaches bypass

the underlying physical principles governing the cardiac EP process, but instead heavily rely on the

availability of large datasets on the input-output relationship being learned. Since these data (e.g.,

tissue property as model input, or spatiotemporal activity of action potential as model output) are

not always available in in-vivo settings, most data-driven approaches resort to simulated data for

supervision. As a result, its training involves computationally prohibitive data generation, while

its deployment to real data faces challenges of generalization. We refer to this as black-box models

which are further limited in interpretability.

To bridge the gap between white-box and black-box modeling, recent works have proposed the

use of physics-informed neural networks (PINNs) in personalized virtual heart models [50]. In

PINNs, the neural network’s output is governed by a partial differential equation (PDE) with known

mathematical expressions, representing prior knowledge and removing the need for data supervision;

the parameter of the PDE can be optimized at the same time as the PINN is being trained, achieving

a personalized PINN and PDE at the same time. However, although informed by a given PDE in the

training loss, the PINN is still a black-box function; moreover, the constraining PDE assumes exact

and perfect mathematical descriptions of the underlying system of interest: this parallel integration

of white- and black-box modeling thus, unfortunately, inherits their respective limitations: the

PINN has limited interpretability, while its personalization may suffer if the constraining white-

box models are imperfect. Additionally, the joint optimization of the PINN and PDE parameters

has to be performed for each individual subject, limiting its clinical applicability.

To overcome the above challenges, we propose a novel hybrid modeling approach towards person-

alized virtual heart models, replacing existing white-box or black-box modeling approaches with a

gray-box approach. Unlike existing physics-informed gray-box models, we further move towards a

physics-integrated gray-box model that explicitly hybridize physiological models with neural net-

work models inside the digital twin. While the concept of hybrid models has emerged in various

domains including virtual heart models [49, 66, 98, 125], a critical roadblock is the assumption of

direct supervision on the variables being modeled, which is not applicable in virtual heart models

where the modeled variable (e.g., spatiotemporal propagation of action potentials in the heart) is

often only partially or indirectly observed. To this end, we further address the challenge of un-

supervised identification of hybrid models by a novel meta-learning strategy to separately identify

the parameters of the physiological model and its gaps to observed data. At training time, the
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proposed method for meta-learning hybrid personalized cardiac EP (HyPer-EP) models does not

require the ground truth of the variables being modeled, leveraging prior physiology while learning

to identify its gap to observed data. At test time, HyPer-EP enables the personalization of a hybrid

cardiac digital twin – composed of an interpretable physiological component and a neural compo-

nent accounting for its errors – using subject-specific data via efficient feedforward computations.

We demonstrate the feasibility and generality of HyPer-EP with two examples of instantiations,

providing evidence for their feasibility and benefits over physics-based or neural modeling alone in

synthetic experiments.

6.2 Problem Formulation

Consider the goal of obtaining a personalized model M(θ) describing the EP process of the ventri-

cles in the form of the spatiotemporal propagation of action potentials X0:T , with patient-specific

parameter θ and observations Y0:T = g(X0:T ).

In a white-box approach, M is a known mathematical expression MPHY and, when given measure-

ments Yobs, the value of θ is optimized to fit the output of MPHY to Yobs via data-fitting metrics

such as mean-squared-errors (MSE):

θ̂ = argmin
θ

||g(MPHY(θ))−Yobs||22 (6.1)

where all potential errors in MPHY due to model assumption and simplifications are neglected, and

its difference from Yobs is solely attributed to parameter θ.

In a black-box approach, M is often a deep neural network (DNN) Mϕ and its weight parameters

ϕ is typically learned given a large number of paired data {θi,Xi
0:T }Ni=1 in a supervised loss using,

for instance, MSE:

ϕ̂ = argmin
ϕ

N∑
i=1

||Mϕ(θ
i)−Xi

0:T ||22 (6.2)

where {θi,Xi
0:T }Ni=1 are often obtained via simulation data because they are not readily available

in practice, raising challenges of generalization to real data.

In the recently-emerged PINN approach, a DNN Mϕ with weight parameters ϕ, is supervised by

a partial differential equation (PDE) MPHY with known mathematical expressions and potentially

unknown parameter θ. Given the available data on x0:T , both ϕ and θ of the two models can be
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simultaneously optimized:

{ϕ̂, θ̂} = argmin
ϕ,θ

{||Mϕ −X0:T ||22 + λ||MPHY(Mϕ; θ)||22} (6.3)

where the first term fits Mϕ’s output to available data (data-fitting loss), and the second term en-

courages Mϕ’s output to follow the governing PDE specified by MPHY (PDE residual loss). With

this parallel integration, Mϕ is still a black box while MPHY is assumed to represent exact knowl-

edge of the system. Furthermore, because θ is unique to each individual, this joint optimization of

ϕ and θ must be repeated for each given set of observations x0:T .

6.3 Methodology

In this work, we propose a novel Hybrid Personalized (HyPer) modeling framework to address

the limitations of purely white-box or black-box models while marrying their respective strengths.

Unlike the parallel integration in current physics-informed approaches as described in Section 6.2,

HyPer is underpinned by a physics-integrated hybrid model MHybrid consisting of known math-

ematical expression MPHY augmented by an unknown neural component Mϕ to account for its

potential gap to reality, each parameterized by learnable parameters. This hybrid model is then

situated within the latent space of an encoding-decoding architecture to bridge the variables being

modeled to their indirect observations in the data space, enabling a novel unsupervised learning

paradigm with a learn-to-identify meta-learning formulation to address the identifiability issue as-

sociated with the separate identification of MPHY and Mϕ in the hybrid model. This hybrid

generative modeling and the learn-to-identify inference strategy constitute the backbone of HyPer,

which we elaborate on below in the context of cardiac EP models (referred to as HyPer-EP).

6.3.1 Hybrid Modeling of Cardiac EP Process

The proposed hybrid model MHybrid is a combination of known mathematical expression MPHY

and an unknown neural function Mϕ, where the latter is intended to capture potentially unmodeled

complexities or errors inherent in the simplified white-box representation MPHY:

MHybrid = MPHY +Mϕ (6.4)

Note that Equation (6.4) denotes a general framework where the hybridization of MHybrid and

MPHY can be realized in various strategies.
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In this chapter, we use HyPer-EP to bridge simple and data-generating physics. We consider the

single-variable Eikonal model as MPHY due to its popularity associated with its simplicity and fast

computation for personalized EP modeling. While the Eikonal model computes only the arrival

time of activation wavefront in space, we use Mϕ to bridge its gap to the spatiotemporal action

potential depolarization and repolarization process.

MPHY: We consider the isotropic but heterogeneous Eikonal PDE given by:

|∇T (r)|θ(r) = 1 (6.5)

where T (r) denote the arrival time of activation wavefront at spatial location r, and θ(r) denotes

the local conduction velocity at r. Given the initial locations of electrical activation and the

heterogeneous conduction velocity θ(r) across the myocardium of the heart, Equation (6.5) can be

solved in real-time to describe the isotropic propagation of action potential wavefront through the

myocardium. It however does not model the realistic depolarization and repolarization dynamics

of local action potential, nor the anisotropic spatial diffusion due to fiber orientation, which will be

accommodated in an unknown neural component.

Mϕ: We model Mϕ to take inputs from Eikonal’s output T (r) and convert it to action potential

x0:T throughout the myocardium over time [0, T ]:

X0:T = Mϕ(T (r)). (6.6)

Because x0:T lives on a 3D geometry of the heart, we represent the myocardial mesh with an

undirected k-nearest-neighbors (kNN) graph: each node of the myocardial mesh represents a vertex

in the graph, and an edge is formed between a mesh node and its k nearest node neighbors as

measured by Euclidean distance; the edge attributes between vertices are defined as the normalized

differences in their 3D coordinates if an edge exists. On a given graph, Mϕ is realized as a spatial-

temporal graph convolutional neural network (ST-GCNN) built on the spline-GCNN [56, 61] with

interlaced graph convolution and temporal feature extraction operations:

f ∗ g =
∑

j∈N(i)

f(j) ·
∑
p∈P

ωpBp(u(i, j)) (6.7)

where f is graph node features at each time instant, u(i, j) is the edge attribute between vertex i

and j, g(·) is the convolution kernel, Bp(·) is the spline basis with its the Cartesian product P and

ωp are trainable parameters. And the temporal feature extraction operation is implemented by

the fully connected layers. The choice of spline-GCNN with its spatial convolution kernels allows

the modeling across different hearts at both training and test times. This hybrid formulation
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leverages the fast conduction physics described by the Eikonal model, while allowing data-driven

modeling of its gap to reality. Once θ(r) and ϕ are each identified for MPHY and Mϕ, respectively,

a personalized hybrid cardiac EP model will be obtained.

6.3.2 Learning to Identify

The identification of MHybrid requires simultaneous identification of the parameter of MPHY and

MNN. Formally, we cast this into a meta-learning formulation. Consider a dataset D of action

potentials with M similar but distinct underlying dynamics: D = {Dj}Mj=1. For each Dj , we

consider disjoint few-shot context instances Ds
j =

{
Ys,1

0:T ,Y
s,2
0:T , . . . ,Y

s,k
0:T

}
and query instances

Dq
j =

{
Yq,1

0:T ,Y
q,2
0:T , . . . ,Y

q,d
0:T

}
, where k ≪ d. Then we formulate a meta-objective to learn to

identify the underlying true parameter vector θ of MPHY from k -shot context instances Ds
j , such

that the identified HyPer is able to forecast for any query instances in Dq
j given only an estimate

of its initial state x̂q
0,j . More specifically, we have a feed-forward meta-model Gζ(Ds

j ) to learn to

identify θ for dynamics j as:

θ̂j = Gζ(Ds
j ) =

1

k

∑
Xs

0:T∈Ds
j

ξζ(Y
s
0:T ) (6.8)

where an embedding is extracted from each individual context instance via a meta-encoder ξζ and

gets aggregated across Ds
j to extract knowledge shared by the set. k is the size of the context set,

and its value can be fixed or variable which we will demonstrate in the ablation study.

Given the inferred X̂q
0,j and θ, we minimize the forecasting accuracy on the query instances.

{
ϕ̂, ζ̂

}
= argmin

ϕ,ζ

M∑
j=1

∑
Yq

0:T∈Dq
j

∥∥∥Yq
0:T − g(X̂q

0:T )
∥∥∥2
2

(6.9)

6.4 Experiments and Results

Our proof-of-concept experiments were run on synthetic data generated by the two-variable Aliev-

Panfilov model [1] for both instantiations.

du

dt
= ∇(D∇u) + k ∗ u(1− u) ∗ (u− a)− uv

dv

dt
= −e(k ∗ u(u− a− 1) + v),

(6.10)
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Figure 6.1: Summary of signal reconstruction performance on MHybrid, MNN, and MPHY.

where u represents action potential, v recovery current, D the conductivity tensor, and the rest of

the parameters controlling the temporal shape of the action potential. In particular, parameter a is

known to control the excitability of heart tissue, where an increased value of a results in a reduced

action potential duration and amplitude until an inability to activate. We consider parameter a as

spatially varying to mimic regions of infarcted tissue for different subjects.

We use the signal generated as by the full Aliev-Panfilov model (Equation (6.10)) as the ground

truth of the experiments. The signal is generated on 1,862 volumetric heart meshes with 186

different points of activation, each repeated for how many different parameter settings.

In HyPer-EP, as described earlier the partial physics MPHY represents the Eikonal model and

MNN that has two linear layers followed by three layers of interlaced graph convolution for spatial

features and 1D convolution to recover the signal from the activation time map. The meta-encoder

is modeled using another three layers of interlaced graph convolution to extract spatial features and

1D convolution to aggregate temporal features, then averaging on all context samples to estimate

the parameter mask. Hyper-EP is trained to, given the initial excitation point of a query sample

and parameter θ estimated from k = 5 context samples, to reconstruct the action potential sequence

for the query example. Hyper-EP was trained on three parameter settings in total with around 200

data samples, and tested on five parameter settings with around 60 data samples in each parameter

setting.

Fig. 6.1 compares the performance of using only MPHY, MNN, and MHybrid in the same meta-

learning framework, considering metrics of mean squared error (MSE), spatial correlation coefficient

(SCC), and temporal correlation coefficient (TCC) between the reconstructed and true action

potential. Visual examples are shown in Fig. 6.2. These results demonstrate the advantages of the

hybrid model over either physics-based or neural-network modeling alone in learning personalized
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Figure 6.2: Visual examples of the action potential obtained from MHybrid versus MNN and MPHY.

MHybrid had the best details compared to the baselines. MNN only had the information of depo-

larization and repolarization, while MPHY only showed the signal propagation blocks.

cardiac EP models.

6.5 Conclusion

In this paper, we present a HyPer-EP framework that hybridizes physics-based modeling of prior

knowledge with data-driven modeling of errors in prior physics and demonstrates the feasibility of

meta-learning how to identify both components to realize personalized hybrid modeling of cardiac

EP. A proof of concept is presented on the example of HyPer-EP on cardiac synthetic data. Future

works will investigate more extensive experimental evaluations as well as real-data use.



Chapter 7

Conclusion and Future Works

In this thesis, we pointed out and reviewed important aspects of improving the adaptation of deep

learning models with inductive bias. We approached the challenges by examining key research

questions including: 1) how to learn to adapt with unknown knowledge that can be learned from

data, 2) how to adapt deep learning models with known prior knowledge, and 3) how to learn to

identify hybrid knowledge with both known prior and unknown errors. We demonstrated several

advanced methods to learn to adapt with the summarized knowledge from data, incorporate known

physics knowledge into deep learning, and a hybrid model that combines the strengths of both, with

comprehensive experiments to demonstrate their improved performance.

7.1 Future Works

With the foundation of existing works, the future goal is to improve adaptive deep-learning models

and focus on interdisciplinary directions of fundamental methodological developments and their

applications to health care. Below are the three major aspects towards the goal:

Hybrid Modeling: Hybrid modeling has great significance at the intersection of deep learning

and real-world systems, showing a promising future direction to expand the methodology and

application of our initial works in hybrid SSM and Hyper-EP. However, two critical bottlenecks need

to be overcome. The first one comes from the high-dimensional nature of the variables in physics,

where these variables are usually defined in more complicated and detailed domains in general

scientific applications. Toward this, we will investigate modeling the physics in abstract latent
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space, which can be realized by physics-based neural operators and learning strategies. The second

one lies in the unmeasured effects between existing physics models and real-world observations,

where such error effects and physics parameters are not able to be directly identified. Toward this,

we plan to extend the Hyper-EP into a setting with weaker supervision. We plan to follow the two

directions to develop physics-informed neural networks for complex systems.

Learning to Adapt Anytime Anywhere: There is a growing interest in high-dimensional time

series forecasting, in which our initial work of what-how framework can be expanded as an emerging

future direction. Two major issues need to be tackled. The first issue is that the assumption that

the training and testing tasks follow the same distribution is not always true Toward this, we plan

to further enable the inductive bias of learning to adapt to out-of-distribution data at test time,

which is related to domain invariance learning. The second issue is that the dynamic parameters

change over time within the time series at training time. We will investigate the inductive bias

of continually adjusting the learned environmental knowledge from sequentially-arrived dynamics

controlled by time-varying parameters, which links to continuous learning and online learning.

Personalized Health Care: One of the biggest goals in health care is to improve the precision

of each individual, making personalized health care a future direction with great potential. The

two future directions of methodology above can play a critical role in personalized health care.

Many real-world clinical models are usually built on a limited batch of data that does not reflect

the complete demographics. Toward this, we will explore the application of the first direction to

improve the personalization of clinical models on diverse subjects. In addition, medical experiments

cannot be directly done on patients and are usually performed offline repeatedly at discrete time

instants. To this end, we plan to apply the inductive bias of continuous adaptation to develop

real-time tracking systems for patients’ health progressions.

7.2 Ethical Impact

The presented work is applicable to a broad spectrum of social problems such as personalized

health care, business analysis, and ecological sustainability. This impact can be further enhanced

by various practices such as respecting different demographics, transparency of bias, as well as

continuous reflection and improvement of ethical practices. The outcome of the presented research

work is expected to disseminate a broader impact on social trustworthiness and responsibility.
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[29] Jérémie Donà, Jean-Yves Franceschi, Sylvain Lamprier, and Patrick Gallinari. Pde-driven

spatiotemporal disentanglement. arXiv preprint arXiv:2008.01352, 2020.

[30] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using

deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence,

38(2):295–307, 2015.

[31] Josselin Duchateau, Mark Potse, and Remi Dubois. Spatially coherent activation maps for

electrocardiographic imaging. IEEE Transactions on Biomedical Engineering, 64(5):1149–

1156, 2016.

[32] Burak Erem, Dana H Brooks, Peter M Van Dam, Jeroen G Stinstra, and Rob S MacLeod.

Spatiotemporal estimation of activation times of fractionated ecgs on complex heart surfaces.

In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, pages 5884–5887. IEEE, 2011.

[33] Burak Erem, Jaume Coll-Font, Ramon Orellana, Petr Stovicek, and Dana Brooks. Using

transmural regularization and dynamic modeling for noninvasive cardiac potential imaging of

endocardial pacing with imprecise thoracic geometry. IEEE transactions on medical imaging,

33:726–38, 03 2014.

[34] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geo-

metric deep learning with continuous b-spline kernels. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 869–877, 2018.
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Appendix for Chapter 3

A.1 Derivation of (3.7)
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A.2 Gated Recurrent Unit (GRU) Set-Conditioning

We condition the GRU cell of the transition function through (A.1),

z
(1)
i−1 = ELU(α1zi−1 + β1c+ γ1), gi−1 = σ(W1z

(1)
i−1 + b1)

z
(2)
i−1 = ELU(α2zi−1 + β2c+ γ2), hi−1 = ELU(W2z

(2)
i−1 + b2)

z̃i−1 = α3zi−1 + β3c+ γ3, ∆zi = (1− gi−1)⊙ (W3z̃i−1 + b3) + gi−1 ⊙ hi−1,

(A.1)

where θz = {Wi,bi,αi,βi,γi}3i=1 are learnable parameters of the dynamic function.

A.3 Extra Constraint to Meta-Model

We considered adding an additional regularization to the set embedding pζ(c|Ds
j ) so that it is

constrained to a reasonable range. Since the true posterior density pζ(c|Ds
j ) is unknown, we assume

that it is bounded by a standard Gaussian distribution N (0, I). Therefore, the objective function

of the model becomes:
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We applied the extra constraint to the proposed meta-GRU-res model for both fixed and variable

k at different value of k = 1, 5, 9, 15 and evaluated on gravity-16 dataset. Fig. A.1 summaries the

quantitative test performance of the two models trained with and without the constraint on the

set embedding. The constraint generally had no noticeable effect on model performance. Visual

examples at k = 1 are also shown in Fig. A.2. It shows that when k is small, the model with the

constraint had a slightly better performance.

A.4 Additional Gravity-16 Results

Here we provide the complete results of all baseline models trained on gravity-16 in Table A.1

when split between the known dynamics during training and the unknown ones during testing. We

note that the VRNN fails to converge in any of the single dynamics cases, in contrast to its full
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Figure A.1: Comparison with models with and without constraint.

Figure A.2: Examples of models with and without constraint.

Figure A.3: Example of forecasting known turbulent flow dynamics.

Figure A.4: Example of forecasting unknown turbulent flow dynamics.

dynamics training, which is likely due to the lower data availability in these settings. The other

baselines DKF and KVAE see similar decreases in performance compared to their full meta-training

set performance.

A.5 Turbulent Flow Visualizations

Here we provide visualizations of predicted trajectories for both known and unknown buoyancy

factors on the turbulent flow dataset within Fig. A.3 and Fig. A.4.
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Table A.1: Comparison of the presented meta and base models on known and unknown dynamics.

Model Dynamics MSE↓ VPT-MSE↑ Dist↓ VPT-Dist↑

meta-GRU-

res

known 1.43(0.34)e-2 0.68(0.26) 2.86(1.44) 0.97(0.06)

unknown 1.45(0.33)e-2 0.67(0.25) 2.96(1.49) 0.97(0.07)

meta-NODE
known 1.60(0.26)e-2 0.58(0.23) 6.05(2.65) 0.80(0.12)

unknown 1.62(0.26)e-2 0.57(0.22) 6.23(2.54) 0.80(0.12)

meta-RGN-

res

known 1.59(0.25)e-2 0.57(0.21) 6.89(3.08) 0.76(0.13)

unknown 1.60(0.23)e-2 0.56(0.20) 7.23(3.09) 0.75(0.13)

GRU-res
known 1.80(0.29)e-2 0.46(0.23) 6.86(3.95) 0.77(0.19)

unknown 1.99(0.277)e-2 0.37(0.18) 8.07(3.56) 0.69(0.17)

GRU-res finetune unknown 2.03(0.27)e-2 0.35(0.17) 8.51(3.42) 0.66(0.18)

NODE
known 1.97(0.21)e-2 0.30(0.20) 10.6(4.13) 0.60(0.17)

unknown 2.06(0.22)e-2 0.27(0.17) 11.1(3.71) 0.57(0.16)

NODE finetune unknown 2.07(0.21)e-2 0.27(0.17) 11.2(3.72) 0.55(0.16)

RGN-res
known 1.93(0.22)e-2 0.34(0.20) 10.1(4.11) 0.61(0.18)

unknown 2.03(0.22)e-2 0.30(0.16) 10.8(3.72) 0.57(0.16)

RGN-res finetune unknown 2.05(0.22)e-2 0.29(0.16) 10.7(3.62) 0.56(0.16)

meta-DKF
known 3.81(0.59)e-2 0.10(0.11) 7.37(3.27) 0.70(0.25)

unknown 3.80(0.59)e-2 0.10(0.11) 7.30(3.21) 0.70(0.25)

DKF
known 3.89(0.32)e-2 0.08(0.06) 10.7(3.17) 0.46(0.20)

unknown 3.88(0.32)e-2 0.08(0.06) 10.7(3.23) 0.45(0.20)

DKF finetune unknown 3.89(0.32)e-2 0.08(0.06) 10.8(3.24) 0.45(0.20)

VRNN
known 2.32(14.6)e-2 0.02(0.11) 45.3(0.00) 0.00(0.00)

unknown 2.32(14.6)e-2 0.01(0.08) 45.3(0.00) 0.00(0.00)

VRNN finetune unknown 2.34(14.5)e-2 0.04(0.15) 45.3(0.00) 0.00(0.00)

DVBF
known 2.32(14.3)e-2 0.01(0.02) 45.2(0.00) 0.00(0.00)

unknown 2.43(14.1)e-2 0.01(0.07) 45.3(0.00) 0.00(0.00)

DVBF finetune unknown 2.35(14.1)e-2 0.01(0.08) 45.3(0.00) 0.00(0.00)

KVAE
known 3.42(1.30)e-2 0.39(0.34) 5.05(3.57) 0.5(0.34)

unknown 3.46(1.36)e-2 0.22(0.19) 5.17(3.91) 0.53(0.28)

Donà et al
known 3.58(0.33)e-2 0.00(0.01) 13.7(3.36) 0.07(0.18)

unknown 3.56(0.34)e-2 0.00(0.01) 14.1(3.84) 0.08(0.19)
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Figure A.5: Example of forecasting unknown electrical dynamics on the heart.

A.6 Additional Cardiac Figure

Here we provide an additional result on the cardiac experiments in Figure A.5, this time highlighting

the performance of the model on unknown dynamic cardiac dynamics when compared against the

baselines. We use a varying support set k size between 1 to 5 samples. The proposed model manages

to effectively model around the scar tissue present in the ground truth. The baselines, besides the

expensive personalized virtual heart (PVH), are unable to account for the specific dynamics of this

subject and propagate over it.

A.7 Data Details

In this section, we give the specific data sizes and splits used for training throughout the experi-

ments, as well as generation procedures and considerations for each.

For the bouncing balls, we leveraged the PyMunk Physics Engine (www.pymunk.org) to perform

simulations under various gravity following [37]. For pendulum and mass-spring systems, we lever-

aged the Hamiltonian Dynamics Suite presented in [13]. The suite’s default physical parameters

were used and friction coefficients were introduced to build non-energy conserving systems. For data

consistency, we extracted the red color channel of pendulum and mass-spring systems to generate

gray-scale images.
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For gravity-16 experiments, we generated bouncing balls dynamic trajectories on 32 × 32 images.

All dynamics are under 16 different gravitational constants, where g = 3 + ϵ, ϵ ∼ U(0, 1) and the

direction of each gravity is evenly distributed over the 2D space. We took the trajectories samples

at every ∆t = 0.2 intervals. The initial position of the ball is set to a 16×16 region centered in the

image, and the initial velocity is randomly sampled from [0, 10] on both x and y directions. Each

gravity setting has 3,000 samples in total. For gravity-16 data, we used 10 gravity in meta-training,

2 in meta-validation, and 4 in meta-testing. We also left out samples from both meta-training and

meta-validation sets (∼1500 for each gravity) to evaluate the performance of the model on the

known dynamics.

For mixed-physics experiments, we generated a mixed-physics dataset consisting of bouncing balls

under 4 gravity directions, and pendulums and mass springs each with four different values of

friction coefficients of 0, 0.05, 0.1, 0.15. The bouncing ball dataset is similar to gravity-16 experiment

except for the 4 gravity directions. Both pendulums and mass springs took the trajectories samples

at every ∆t = 0.2 intervals. In pendulums, the mass of the particle m = 0.5, the gravitational

constant g = 3 and the pivot length l = 1. The friction coefficients are chosen in 0, 0.05, 0.1, 0.15.

In mass springs, the mass of the particle m = 0.5, the spring force coefficient k = 2. The friction

coefficients are chosen in 0, 0.05, 0.1, 0.15. For each of the three physics, we included three dynamic

settings in meta-training and left out one in meta-testing.

For the turbulent flow dataset, we generated the tasks as given by the instructions and scripts found

within the official code repository from [121], https://github.com/Rose-STL-Lab/Dynamic-Adaptation-

Network. We split the seen and unseen buoyancy factors according to the same task split used within

their work and directly compare RMSE values based on their implementation and magnitude co-

efficients.

For cardiac electrical dynamics, we generated 3D electrical signal propagation in the heart simulated

by the Aliev-Panfilov model [1] on 3 heart meshes and a total of 12 different tissue parameters (4

on each heart) representing different injury to the heart muscle. This was treated as 12 tasks in

meta-learning. All 12 tasks appeared in meta-training and -testing, with disjoint time sequences

resulting from different external stimulations (meta-training: 300; meta-test: 2,020).
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