
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2024

Efficient Quantum Multiplication in the Quantum Fourier Efficient Quantum Multiplication in the Quantum Fourier

Transform Domain Transform Domain

Aden Crimmins
abc8255@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Crimmins, Aden, "Efficient Quantum Multiplication in the Quantum Fourier Transform Domain" (2024).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11733?utm_source=repository.rit.edu%2Ftheses%2F11733&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Efficient Quantum Multiplication in the Quantum
Fourier Transform Domain

Aden Crimmins

Efficient Quantum Multiplication in the Quantum
Fourier Transform Domain

Aden Crimmins
May 2024

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

COE_hor_k https://www.rit.edu/engineering/DrupalFiles/images/site-lockup.svg

1 of 1 1/9/2020, 10:42 AM

Department of Computer Engineering

Efficient Quantum Multiplication in the Quantum
Fourier Transform Domain

Aden Crimmins

Committee Approval:

Sonia Lopez Alarcon Advisor Date
Department of Computer Engineering

Michael Zuzak Date
Department of Computer Engineering

Marcin Lukowiak Date
Department of Computer Engineering

i

Acknowledgments

I’d like to thank all my research colleagues, past and present, for the support that

was given as I progressed through this thesis. From tips and tricks to full discussions,

they were pivotal in my understanding of the subjects covered, and I couldn’t have

made it this far without them. Finally, I would like to thank my advisor, Dr. Sonia

Lopez Alarcon, for supporting my research as well as keeping me on the right track

with clear targets and guidance through the whole process.

ii

This work is dedicated to my family and my fiancée Savannah

iii

Abstract

The subject of Quantum Computing is in its early stages of development, and new

technologies and algorithms are constantly evolving. Even with all of this progress it

is important to recognize that current quantum computers are still in their infancy

and, as such, have notable issues. The “era” that we are in currently is known as the

Noisy Intermediate-Scale Quantum (NISQ) era, which is characterized by machines

of small size that are prone to quantum noise, which causes computational error the

longer the circuit runs. In order to make use of these quantum computers, algorithms

need to be developed that both use a minimal number of qubits and minimize the time

needed for them to run. Utilizing classical computing techniques as the inspiration

for this work, the aim is to reduce ”depth,” which is analogous to the run-time of

a quantum circuit. By taking advantage of the parallel computing techniques in

classical arithmetic logic units (ALUs), we are able to create quantum circuits that

can take advantage of their own parallelism, leading to a reduced run-time.

In addition to the potential benefits to the complexity of the algorithm, decreas-

ing run time reduces the potential for error to accrue and compound as the circuit

runs. This approach was chosen because, while other approaches exist which focus on

reducing the effects of noise, this one aims to increase the speed of the circuit itself,

leading to designs that will still be preferable on future machines. Much like classi-

cal computing, small-scale circuit designs are used as building blocks for large-scale

algorithms. Improvements made to a quantum multiplication algorithm could prove

useful for different applications, such as modular multiplication in Shor’s algorithm

[1], or could play a role in the implementation of oracles for Grover’s search algo-

rithm [2]. The designs presented in this thesis offer an efficiency improvement over

existing quantum multipliers coming from three sources: the efficient use of addition

on the phase domain (a quantum property), the classical hardware design of array

multipliers, and the use of approximation in the phase domain.

iv

Contents

Signature Sheet i

Acknowledgments ii

Dedication iii

Abstract iv

Table of Contents v

List of Figures vii

List of Tables 1

1 Introduction 2

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Thesis Contribution . 5

2 Background 6

2.1 Classical Multiplication . 6

2.2 Quantum Computing . 8

2.2.1 Superposition and Entanglement 9

2.2.2 Quantum Fourier Transform 10

2.3 Noise and Depth in Quantum computers 10

2.4 Related Works . 11

2.4.1 Computational . 12

2.4.2 Repeated Addition . 14

2.4.3 Quantum Fourier Multiplier 15

3 Quantum Array Multiplier 17

3.1 Classic Array Inspiration . 17

3.2 QFT and IQFT . 19

3.3 Quantum Array Multiplication . 21

3.3.1 Initialization . 22

3.3.2 QFT . 23

v

CONTENTS

3.3.3 Array Multiplication . 23

3.3.4 IQFT . 25

3.3.5 Measurement . 26

3.4 Approximate Phase Multiplication 26

4 Results 30

4.1 Summary of designs . 30

4.1.1 Qiskit . 31

4.2 Circuit Analysis . 31

4.2.1 Width of quantum multipliers 31

4.2.2 Depth of quantum multipliers 32

4.3 Depth Analysis . 33

4.3.1 Square Multiplication . 33

4.3.2 Identity Multiplication . 35

4.3.3 Varied Input Multiplication 37

4.4 Simulated Accuracy . 38

4.4.1 Ideal Simulation . 39

4.4.2 Noisy Simulation . 40

5 Conclusion 44

vi

List of Figures

2.1 Visualization of an Array Multiplier architecture utilizing both full

adders and half adders. 7

2.2 Example circuit which shows two single-qubit (Hadamard) gates fol-

lowed by a two-qubit controlled phase shift gate. 9

2.3 Computational basis implementation of the Carry operation on a quan-

tum computer using controlled-NOT and Toffoli gates 13

2.4 Computational basis implementation of the SUM operation on a quan-

tum computer using controlled-NOT and Toffoli gates. 13

2.5 Full 1x1 multiplication circuit utilizing the repeated addition approach

to multiplying two numbers. In this example the multiplier was initial-

ized to ’1’ but if it was larger then the addition and decrement stages

would repeat until the multiplier was reduced to 0. 14

2.6 An example of the least significant quantum fourier addition operation

showing each phase shift for a 2 bit by 2 bit multiplication. In this case

the least significant bit of the Multiplier is controlling the significance

of the phase shifts being applied. 15

3.1 The first row if the classical array multiplier. Utilizing 4 AND gates

the least significant bit of the multiplier operand is paired with each

bit of the multiplicand, outputting a 1 in each column only if both

inputs are high. 17

3.2 The first and second row, now with the full adder component included.

The same set of AND gates are used for the second row for the partial

product, then the result from the previous row is passed into the full

adder which handles any carries between the columns. This pattern

continues for each row going forward. 18

3.3 Quantum Fourier Transform Stage. 21

3.4 Inverse quantum fourier transform stage. 21

3.5 Initialization stage for the Quantum Array Multiplier. In this example

both the multiplicand and multiplier are being initialized to decimal

values of 3 using Pauli-X or NOT gates. These take the initial state of

‘0’ and flip it resulting in a ‘1’ stored in each of the qubits. 22

vii

LIST OF FIGURES

3.6 Quantum Fourier Transform stage changing the product register from

the computational to the phase basis. 23

3.7 Double control rotation decomposition. 24

3.8 Quantum Array Multiplication stage showing each phase shift for a 2

bit by 2 bit multiplication. 25

3.9 Inverse Quantum Fourier Transform stage changing the product regis-

ter from the phase to the computational basis. 26

3.10 Quantum Array Multiplier (QAM) with each stage included starting

with the QFT stage, followed by each of the row additions and finally

the IQFT. 27

3.11 Example Bloch diagram transformations showing the impact of approx-

imation in the quantum phase basis. Starting in (a) with the initial

state of |0⟩ a hadamard is applied transitioning to |+⟩ as shown in

(b). Once in the phase basis a sample rotation of π/8 is applied, (c),

followed by a Hadamard gate application returning the state almost to

|0⟩ as shown in (d). 28

4.1 Depth results for the square multiplication of each of the 5 algorithms

being compared. In order from worst to best scaling there is the Com-

putational Basis (CB), Repeated Addition (RA), Quantum Fourier

Multiplier (QFM), Quantum Array Multiplier (QAM), and finally Ap-

proximate Quantum Array Multiplier (AQAM) with the first two hav-

ing exponential scaling and the last three being polynomial. Addition-

ally a projected polynomial is presented for each of the QFM, QAM,

and AQAM. 34

4.2 Depth results for the identity multiplication of four of the different

algorithms. In order from worst to best scaling there is the CB, QAM,

AQAM, and RA. In this case the RA is the shortest as it only needs

to iterate once before finishing its multiplication. 36

4.3 Depth of each algorithm given a multiplicand value of 4095 and a

multiplier value scaling from 1 to 4095. The depths for the QFM,

QAM, and AQAM all remain constant regardless of the input value

due to their standardized structure. RA roughly doubles in depth at

each interval as the number of times it needs to repeat has been doubled. 37

viii

LIST OF FIGURES

4.4 The ideal simulation of the QAM and AQAM implementations. As

with all of the other algorithms, when in a noiseless environment, QAM

has 100% accuracy for any given input width. AQAM sees a reduction

in accuracy as the input size increases as it is removing an increasingly

large number of phase shifts from being executed. This accuracy can be

improved at the cost of depth by altering the function that determines

the minimum phase shift to allow a larger set of phase rotations. . . . 39

4.5 The ideal simulation comparing the QAM and AQAM implementa-

tions. As in the square multiplication case the QAM remains 100%

accurate while the AQAM begins to fall, but in this case the accuracy

of the AQAM falls much slower both due to its decreased depth and a

lower count of gates incurred. 40

4.6 A noisy simulation showing the accuracy of each algorithm given an

increasingly large input size. While initially the most accurate for an

input width of one, the RA quickly falls below the others. Following

this in terms of accuracy at higher bit widths is the QFM then the

QAM and the AQAM. The difference between the QAM and AQAM

shows that the AQAM has a slightly increased accuracy even with the

reduced accuracy present in an ideal simulation. 41

4.7 Results for a simulation which uses lower noise than the default back-

end. In this case the distinction between the algorithms is more ap-

parent, with the RA still falling at a faster rate than the others even

though it starts at the highest accuracy. Of the other 3 algorithms, in

terms of worst to best accuracy, they are consistently in the order of

QFM, QAM, and AQAM. 42

4.8 Simulation of trivial multiplication on a noisy system. Comparing the

different accuracies in these cases shows that, in relation to its lower

depth in identity cases, the RA outperforms both the QAM and AQAM

in all cases. 43

4.9 Similar to the noisy simulation, RA remains the best case algorithm

for trivial multiplication taking advantage of having only one iteration

required for the multiplication. 43

ix

List of Tables

3.1 Quantum Fourier Transform break down for two qubit case. When the

state is placed in the phase domain, this means that the information is

encoded in the relative phases of the states: n column represents the

classical decimal value encoded in the quantum state, CB column rep-

resents the computational basis encoding of this value. QFT (states)

represents the Quantum Fourier Transform of this computational ba-

sis encoding, and next to it, QFT (qubits q1, q0) represents the state

of each qubit in that global QFT state, in this case with two qubits of

significance qs. 19

1

Chapter 1

Introduction

1.1 Motivation

Quantum computing is still in its early stages of development, but it has the po-

tential to revolutionize many fields, including pharmacology, materials science, and

artificial intelligence. In order for quantum computations and quantum computers to

have a meaningful impact on industry and the world at large, they must be capable

of providing a Quantum Advantage (QA). The definition of QA is the demonstrable

and measurable success of processing some real-world problem faster or more effi-

ciently on a quantum computer than on a classical computer. Much of the research

in this field focuses on identifying algorithms which provide speedups compared to

those that are possible on a classical computer. One commonly referenced example

is Shor’s algorithm [3], which can factor large numbers exponentially faster than the

best-known classical algorithms. In addition to Shor’s algorithm, there are other

notable algorithms that could provide a speedup compared to classical alternatives

if implemented properly on a physical quantum computer. Some examples include

Grover’s Algorithm for unsorted search [2], Quantum Unconstrained Binary Opti-

mization, Variational Quantum Eigensolvers, and more.

In the Noisy Intermediate-Scale Quantum (NISQ) era [4], noise is a critically lim-

iting factor. In addition, computations are constantly challenged by the decoherence

2

Chapter 1. Introduction

time, the time that takes for a quantum system degrade and fall out of its quantum

state. The circuits that describe quantum computations are characterized by the

number of qubits that they require or width and the number of computational steps

necessary to completion or depth. In the NISQ era, circuits must reach completion

before qubits fall out of their delicate quantum state. In order to counter the noise

inherently present in these systems, and to make them more efficient, a focus must

be placed on reducing the time that each algorithm is run. As technology improves

and the number of qubits available grow while the error and noise levels decrease,

reaching post-NISQ era, the depth of the circuit will still be a critical factor that

needs to be reduced, and with direct impact on the performance of the computation.

There are two notable issues with the use of these algorithms. Firstly, there is

transfer to and from the quantum domain, which adds both complexity and time

constraints that would not exist if the entire algorithm were confined to one of the

domains [5]. Secondly, even if the computation was performed almost entirely in a

quantum system, there is still the presence of noise, which causes errors that com-

pound the longer the system runs. One method to reduce both of these issues is

to create algorithms that provide functionality that may not be faster than classical

systems but can be run in a quantum environment. This allows for fewer instances

of boundary crossing and, if optimized properly, could be roughly equivalent to their

classical counterpart.

The scalability problem of quantum circuit design is ubiquitous in this field, but

it is exacerbated by naive design practices. Good understanding of the properties

of quantum algorithms leads to more efficient designs, with reduced requirements

for number of qubits and quantum gates. On the other hand, the description of

quantum applications and circuits display strong similarities with the hardware design

approaches that have been commonly used in classical computing, for example in

the context of Field Programmable Gate Arrays (FPGAs), or Application Specific

3

Chapter 1. Introduction

Integrated Circuits (ASICs). Both are potentially described at the (qu)bit-wise level,

through logical one and two-(qu)bit gates in a sort of Quantum Description Language

—in parallel to Hardware Description Languages—. This paper looks into well known

HDL approaches for inspiration, and proposes a new and efficient quantum integer

multiplier design.

The focus of this work is on one such algorithm, which, in many of the different

quantum implementations, is lagging behind its classical counterpart. From basic

implementations of multiplication using repeated addition[6][7], to an algorithm uti-

lized by IBM Quantum for integer multiplication[8], we compare different techniques

to the one proposed by this work.

1.2 Objectives

In this thesis we propose a new quantum multiplication algorithm in the form of

the Quantum Array Multiplier (QAM) along with the Approximate Quantum Array

Multiplier (AQAM). The primary objective of this research is to outline, improve,

and analyze a quantum multiplication algorithm that takes advantage of both the

Quantum Fourier Transform (QFT) and the design of the classical array multiplier.

A generalized algorithm will be developed, which will then be scaled to different

degrees to get an estimate of the complexity of the algorithm in comparison to other

existing algorithms. Additionally, further research into the QFT will be incorporated

in the form of the Approximate Quantum Fourier Transform (AQFT), which, given

large enough circuits, will reduce the complexity by limiting certain operations beyond

a specific threshold.

Ultimately, the algorithm created through this research can help provide a back-

bone for current higher-level quantum applications. Since this design will be general-

izable and not require any prior knowledge of the inputs it can be used as a insertable

component, just as multiplication is one component of many different classical algo-

4

Chapter 1. Introduction

rithms. This feature is not entirely present in the other algorithms being compared,

either due to mid-circuit measurements required or identical input width. Addition-

ally, further improvements and research could potentially help create an algorithm

that is just as efficient, if not better than, the current best classical algorithms.

1.3 Thesis Contribution

Algorithms for performing arithmetic operations are an integral component for most

computable operations. As improvements to these algorithms surface, the have bene-

ficial rippling effects into other applications that utilize these algorithms. This thesis

specifically focused on the operation of multiplication as an area available for im-

provement. The contributions of this thesis to the area of quantum arithmetic is:

• A new quantum multiplication algorithm that significantly reduced

the depth overhead for quantum multiplication, especially as input

size increases.

• Provided a basis for the use of approximate phase estimation in quan-

tum phase domain, while also showing the potential for more accurate

results while on noisy hardware.

• Highlighted the scaling and accuracy of different multiplication algo-

rithms with input size.

5

Chapter 2

Background

2.1 Classical Multiplication

The design proposed in this work is based on the array multiplier structure, which is

commonly used in classical ALUs to perform multiplication. The Array Multiplier is

a combinational circuit that, in the classical domain, multiplies two binary numbers

using a shifted array structure of Full Adder (FA)s as shown in Fig. 2.1. Similar to

how multiplication is performed on paper, it finds the partial products and adds them

together. The benefits of the array multiplier come in the form of it’s repetitive shape

and simplicity of design. This allows it to be easily abstracted in the creation of a

generic algorithm that mimics the classical design. In the classical implementation

there is a relatively high delay present that scales with the width of the input size for

the multiplication. This is due to the fact that there is dependency on the outputs

of the previous partial products. This limitation is touched on in 3.3, in which it is

shown that in the quantum domain the delay can be reduced with the parallelization

of operations performed.

In the classical design, each FA has three inputs as well as a sum and a carry

output, which propagate through the circuit, eventually resulting in the product of

the two inputs. In order for a FA to compute its two outputs, it relies on the carry

from the previous column and the output of the FA in the previous row.

6

Chapter 2. Background

Figure 2.1: Visualization of an Array Multiplier architecture utilizing both full adders
and half adders.

Due to the purely logic-based nature of the array multiplier, it is possible to

directly implement the design using classically-analagous gates acting on qubits, but

this method requires an excessive amount of resources. This complexity increases

very quickly when considering the architecture of the array multiplier, which strings

together n-1 rows of these ripple carry adders in order to perform n∗n multiplication,

where n is the bit width of the inputs. A method of performing this multiplication in

the phase domain using the QFT will be designed and compared to existing quantum

multiplication algorithms to determine what relative speedup is achieved through

such an algorithm.

7

Chapter 2. Background

2.2 Quantum Computing

Quantum computing is a field in which advanced principles of physics are utilized to

perform computations that are otherwise impossible on our current classical comput-

ers. This subject started to grow in the latter half of the 20th century, though, it

was relegated mostly to theory until the early 2000’s as physical quantum computers

started to come into existence[9][10]. These computers started very basic, but as

time went on both their capacity and accuracy have been improving. Unlike classical

computers, which represent data using bits of either 0 or 1, quantum computers use

quantum bits (qubits), which can exist in multiple states simultaneously in a phe-

nomenon known as superposition. In addition to superposition, some of the major

concepts utilized in this work include entanglement as well as the QFT.

By utilizing these different properties available to quantum computers, one is able

to achieve QA. While hardware has yet to scale to a point that QA can be shown

for practical problems, it has been shown in sample problems and algorithms [11]

[12]. The impact of such an advantage is projected for fields such as cryptography,

machine learning, and even pharmaceutical drug development[13]. When manipulated

correctly, the fundamental quantum characteristics can enable quantum algorithms

to gain a QA over classical computers.

One of the most common frameworks for quantum computing is the quantum gate

model. This model is built on the basis of qubits being acted upon by sets of unitary

operators represented by “gates”. Quantum gates act upon the qubits to alter their

states, the evolution of which is governed by the operation of linear algebra in the

Hilbert space. These gates come mainly in the form of 1 and 2-qubit gates as shown

in Fig. 2.2.

The quantum algorithms are generated by sequentially applying these quantum

gates to the qubits until they reach the desired state. Once this point is reached, a

8

Chapter 2. Background

D
RA
FT

q0 H

q1 H ϕ

Figure 2.2: Example circuit which shows two single-qubit (Hadamard) gates followed by
a two-qubit controlled phase shift gate.

measurement is taken, collapsing the superposition and returning the output of the

algorithm. This formulaic approach to building algorithms through the combination

of smaller components is a widely adopted method and will be utilized going forward

in this research.

2.2.1 Superposition and Entanglement

In order to understand how qubits function, an basic understanding of superposition

must first be gained. The idea behind superposition is that the state of a given qubit

|ϕ⟩ can be expanded as a linear combination of eigenstates. These eigenstates form

a complete basis and as such, can be combined to describe any given state. The

two-dimensional basis states often associated with the classical values of 0 and 1 are

|0⟩ and |1⟩, which have vector representations shown in equation 2.1.

|0⟩ =

1
0

 , |1⟩ =

0
1

 (2.1)

When working with states that are a combination of multiple basis states it is

important to note that the probabilities of each state must add up to 1. This is

due to the fact that when measuring a qubit, you break down any superposition it

may be in to yield either a |0⟩ or a |1⟩. For example given a perfect superposition

between the 0 and 1 state you will have an equally likely, 50%, chance of measuring

a 0 or a 1. This relationship can be represented more generally with equation 2.2 for

9

Chapter 2. Background

a 1-qubit example where |α|2 is the percent chance of measuring |0⟩ and |β|2 is the

percent chance of measuring |1⟩. These variables (α, β) are complex numbers such

that |α|2 + |β|2 = 1.

|ϕ⟩ = α

1
0

+ β

0
1

 (2.2)

As more qubits are connected, the dimension of the available state space grows

exponentially, with the number of these basis vectors being equivalent to 2n, where

n is the number of qubits. When the state of this system cannot be expressed as

the tensor product of the individual qubit states it is called an entangled state. The

existence of these entangled states allows quantum computers an edge over classical

computers making it possible to represent a complex 2n dimensional vector space

using n qubits.

2.2.2 Quantum Fourier Transform

Taking root in the classical Discrete Fourier Transform (DFT), the QFT is an im-

portant quantum operation. Fundamentally, the QFT is the quantum version of the

discrete fourier transform. It is a linear transformation of qubits, moving from one

quantum basis to another. In this case we are moving from the computational basis

to the phase basis as will be discussed in more depth in section 3.2. There are many

different applications for this basis transformation but we will be focusing on its abil-

ity to aid in the accumulation of the partial products generated during multiplication

through phase rotations.

2.3 Noise and Depth in Quantum computers

As mentioned, there is ”noise” present in quantum computers that leads to a lower

accuracy when running a given algorithm. One of the most basic sources of this noise

10

Chapter 2. Background

is decoherence, which is the interaction of the quantum system with the external

environment. This usually results in the degradation the stability of a complex system

and will cause the off-diagonal components that are present in an entangled state

to disappear. Once this has occurred the system will have returned to a classical

equivalent state. There is still much work to be done in reducing this source of noise

including isolating the system and reducing the overall energy present that could

interact in an undesired way with the system. Other significant sources include noise

introduced by gates, inaccurate measurements, and cross-talk between qubits. All

of these factors reduce the time that quantum operations can be reliably performed,

leading to inaccurate results. The longer that the algorithm runs, the greater the

impact of noise on the system due to the way that noise compounds on a system over

time.

The algorithms run on a quantum computer are generally repeated a number

of times, each time storing the resulting measurement before running again. These

outputs can be viewed using a histogram to determine which occurred most commonly,

which in most cases would be the desired answer. As you decrease the depth or

how many gates need to be applied, there is less time for the noise to impact the

system, thus resulting in a more accurate result. In terms of a histogram, there

would be a focused probability distribution, leading to a more apparent solution from

the algorithm. As our systems are built with more noise-dampening technologies, the

impact of noise on the algorithms will reduce greatly. When the time comes that

systems are noise free or adjacent, there will still be a need for improved depth, as it

will lead to more efficient algorithm execution.

2.4 Related Works

Research into multiplication algorithms in quantum computing is a growing domain.

With the publicity that this field has garnered in recent years, many are making

11

Chapter 2. Background

progress in new applications and algorithms, multiplication included.

Another proposed method for multiplication utilizes similar quantum strategies

to those proposed in this work [8]. The QFT is utilized to perform multiple weighted

additions to calculate the product of two inputs. The focus of this work, however, was

more on the implementation of a weighted average algorithm. As such, it does not

go into depth on the gate-based implementation or depth predictions of its generated

circuit. The algorithm developed in this work was directly implemented within Qiskit

[14] as a callable function.

Research is also being performed on quantum implementations of classical very

large number multiplication techniques. From the Karatsuba Algorithm [15][16] to

the Schonhage-Strassen Algorithm [17]. While there are implementations that do

perform these algorithms with correct outputs, the design of the quantum circuits

utilizes a larger number of qubits and gates than is available on current and near-

future quantum hardware. While these may not be usable on current hardware, they

will be extremely important in future work for efficient large-number multiplication.

It is important to note that quantum multiplication algorithms are still in their

early stages, and while those introduced may not be optimal in terms of efficiency, they

are still important steps along the way to develop the most efficient implementation.

2.4.1 Computational

The Computational Basis (CB) method that will be discussed within this work is

an extremely naive approach that does not take advantage of any quantum prop-

erties. This method leaves the operands and product in their computational basis

and performs the same logical series of operations as it is performed on the repeated

addition multiplier using analogous quantum gates to the classical gates. This design

was first introduced by Vedral et al. [18] and referenced by Draper [19]. It utilized

a combination of carry and sum gates built from controlled-not and Toffoli gates as

12

Chapter 2. Background

shown in Fig. 2.3 and Fig. 2.4.

D
RA
FT

=

Carryin

CARRY
A

B

Carryout

Figure 2.3: Computational basis implementation of the Carry operation on a quantum
computer using controlled-NOT and Toffoli gates

D
RA
FT

=

A

SUMB

Sum

Figure 2.4: Computational basis implementation of the SUM operation on a quantum
computer using controlled-NOT and Toffoli gates.

The controlled-NOT or CNOT gate is the controlled version of the Pauli-X Gate.

The Pauli-X gate is analogous to the classical NOT gate and in this case is used to flip

the state of the target from 0 7→ 1 or 1 7→ 0. The controlled version will only perform

the NOT operation when the control qubit has a value of ‘1’. The toffoli gates used

are also just extensions of the CNOT gate in that they are doubly controlled-NOT

gates, which act only when each of the controls are ‘1’.

These operations are combined to perform the addition of two n-bit numbers,

which is then further expanded in the form of a controlled multiplier [18]. Achieved

by repeatedly performing the addition a number of times equal to the multiplier input

for the computation. This design is not intended to be an efficient one, but rather

to show the impact that taking advantage of quantum properties can have on the

performance of the algorithm.

13

Chapter 2. Background

2.4.2 Repeated Addition

One of the basic and proven methods of multiplication in the quantum domain also

uses Repeated Addition (RA) to compute a product [6][7]. This technique places the

product register into the phase domain using the QFT and then uses phase rotations

to repeatedly add the multiplicand. Each cycle the multiplier is decremented and

measured. In the case where it is not equal to 0, the addition repeats on the product

register. Once the multiplier has reached 0 the product is taken out of the phase

domain by reversing the QFT and finally the result is measured. A basic circuit

multiplying two 1-qubit numbers is shown in Fig.2.5 to better visualize the order

that operations are performed.

D
RA
FT

accumulator

H π H

H π/2 π/2 −π/2 H

multiplier x H −π H

multiplicand x

classical register

Init. QFT Acc. Addition Decrement IQFT Acc.

Figure 2.5: Full 1x1 multiplication circuit utilizing the repeated addition approach to
multiplying two numbers. In this example the multiplier was initialized to ’1’ but if it was
larger then the addition and decrement stages would repeat until the multiplier was reduced
to 0.

While rudimentary, this method has been shown to work in both simulation and

smaller implementations on physical quantum computers. There is an additional

benefit in that for small input sizes this will need to repeat very few times resulting

in small execution times. Due to these factors and its reproducibility, this method

will be used as a point of comparison between different multiplication techniques.

14

Chapter 2. Background

2.4.3 Quantum Fourier Multiplier

One additional method for multiplication in the quantum domain, the Quantum

Fourier Multiplier (QFM), utilizes a weighted addition to scale the basic addition

operation used in the repeated addition by a weight that is determined by bit signif-

icance [8]. This algorithm also uses the QFT on the product register, and performs

additions of the multiplicand onto the product. The main difference is that each

bit of the multiplier is used as a control for one of the additions performed. The

significance of the multiplier bit determines what weight is applied to the addition

on the product register scaling from 20 to 2n−1 for an n-bit multiplication. The least

significant addition performed in the case of a 2-bit by 2-bit multiplication is shown

in Fig. 2.6

D
RA
FT

Multiplier0

Multiplier1

Multiplicand0

Multiplicand1

Product0 π 2π

Product1
π
2 π

Product2
π
4

π
2

Product3
π
8

π
4

Figure 2.6: An example of the least significant quantum fourier addition operation showing
each phase shift for a 2 bit by 2 bit multiplication. In this case the least significant bit of
the Multiplier is controlling the significance of the phase shifts being applied.

The phase applied to each of the product bits in each addition performed is de-

15

Chapter 2. Background

termined by a combination of the significance of the multiplier, multiplicand, and

product using eq. 2.3, where s and j are the current index of the multiplier and

multiplicand respectively and n is the current index of the product.

R =
πi

2n−(j+s)
(2.3)

This method is similar to that studied in this work but includes inefficiencies in

the application of the phase shifts that will be discussed in more depth in the design

of the QAM. This algorithm is one which IBM Qiskit has created a function for to

multiply two binary integers and as such will be an important comparison as one of

the current leading resource efficient multiplication techniques.

16

Chapter 3

Quantum Array Multiplier

3.1 Classic Array Inspiration

This work proposes a new approach to performing multiplication in the quantum

domain based on the principles of the QFT and inspired by the classical array mul-

tiplier. In the classical design, the array multiplier can be separated into distinct

stages. Once these stages were outlined, they were then converted to the quantum

domain and improved through the use of quantum properties that allow the parallel

execution of stages without relying on the carries from previous stages.

In the case of the first row there is no input coming from a previous stage so it is

implemented using only AND gates between the least significant bit of the multiplier

and each bit of the multiplicand as shown in Fig.3.1.

Figure 3.1: The first row if the classical array multiplier. Utilizing 4 AND gates the
least significant bit of the multiplier operand is paired with each bit of the multiplicand,
outputting a 1 in each column only if both inputs are high.

As more significant bits of the multiplier, in this case ‘B’, are used in following

stages the significance of the result increases as well. In the example of the first row

the addition between ‘A0’ and ‘B0’ will only impact the least significant bit of the

17

Chapter 3. Quantum Array Multiplier

product. When we move to the second row, as shown in Fig.3.2, the addition between

‘A0’ and ‘B1’ will impact the next bit of significance. Continuing this pattern the

significance of each operation is determined by the significance of the inputs, ‘Ax’

and ‘By’ will directly add to the product bit with an index of (x+y).

Figure 3.2: The first and second row, now with the full adder component included. The
same set of AND gates are used for the second row for the partial product, then the result
from the previous row is passed into the full adder which handles any carries between the
columns. This pattern continues for each row going forward.

An additional component included in the second row and beyond is the FA. This

allows a carry from the previous column to propagate through each row of FA’s,

while the sum moves to the following row or product bit if there is not a FA under

it. This allows any addition overflow to roll over to the next most significant bit

and is a critical component to a functional array multiplier. The organization of the

second row repeats until there are as many rows as there are bits in the multiplier.

The important components present in this design, needed for its implementation on

a quantum computer, are the AND gate and the FA.

18

Chapter 3. Quantum Array Multiplier

3.2 QFT and IQFT

The use of the QFT was prompted by the poor scalability of the a strictly compu-

tational basis implementation. Table 3.1 1 summarizes the different ways in which

information is represented in the computational basis vs. the phase domain through

QFT, for a two qubit example. The information in the QFT case is encoded in the

relative phase of each basis state. For example, while the |00⟩ state gets transformed

into a state where there is no relative phase difference between the different basis

states, |01⟩ has a π
2
relative phase on |01⟩, π relative phase on |10⟩, and 3π

2
relative

phase on |11⟩ (π
2
) increments), which is also represented in a π phase difference on

the first qubit, and π
2
on the second. As one moves down the table, the last column

evolves by rotating each qubit an amount determined by eq. 3.1 where n is the num-

ber’s decimal value, N is the number of qubits used for the representation, and s is

the significance of each individual qubit. In the case of a three qubit representation,

the third qubit would change its relative phase at π
4
intervals.

Table 3.1: Quantum Fourier Transform break down for two qubit case. When the state
is placed in the phase domain, this means that the information is encoded in the relative
phases of the states: n column represents the classical decimal value encoded in the quantum
state, CB column represents the computational basis encoding of this value. QFT (states)
represents the Quantum Fourier Transform of this computational basis encoding, and next
to it, QFT (qubits q1, q0) represents the state of each qubit in that global QFT state, in
this case with two qubits of significance qs.

n CB QFT (state) QFT (qubits q1, q0)

0 |00⟩ |00⟩+ |01⟩+ |10⟩+ |11⟩ (|0⟩+ |1⟩)(|0⟩+ |1⟩)
1 |01⟩ |00⟩+ i |01⟩ − |10⟩ − i |11⟩ (|0⟩ − |1⟩)(|0⟩+ i |1⟩)
2 |10⟩ |00⟩ − |01⟩+ |10⟩ − |11⟩ (|0⟩+ |1⟩)(|0⟩ − |1⟩)
3 |11⟩ |00⟩ − i |01⟩ − |10⟩+ i |11⟩ (|0⟩ − |1⟩)(|0⟩ − i |1⟩)

φ =
nπ

2(N − s)
(3.1)

1QFT implementations requires swapping the qubits at the end. Misalignment between this table
and the circuit implementation showing reverse order is due to this swapping stage, but implemen-
tations are correct in all cases.

19

Chapter 3. Quantum Array Multiplier

Looking at Table 3.1, it can be noticed that adding two numbers can be achieved

rotating each individual qubit by the corresponding relative phase. For example to

take the state from n = 1 to n = 3, one would simply apply a rotation of 2π = 0

to q1’s relative phase, and 2π
2

= π to q0’s relative phase. This would be equivalent

to an addend a = (2)d = (10)b, each of the addend’s bits is represented by qa, where

a is the significance of each of the addend’s qubits. It can be said more generally

that controlled rotations of a phase determined by eq. 3.2 occur on each result qubit,

controlled by each of the addend’s qubits.

φ =
2aπ

2(N − s)
(3.2)

In order to place a given accumulator’s qubits into the phase domain to perform

addition, a QFT operation is performed to change the basis of the quantum state,

according to Equation 3.3.

QFT =
1√
N

N−1∑
j,k=0

e
i2πjk
N |k⟩⟨j| (3.3)

The QFT operator applied to the accumulator transforms its representation from

the computational basis |k⟩ to the phase basis |j⟩. An example of a two-qubit QFT

quantum gate implementation is shown in Figure 3.3. Table 3.1 shows the results

on the quantum state of this transformation —column QFT (state)—. The circuit

accounts for the phase rotations necessary for both qubits to transition into the phase

domain through the use of a controlled rotation after the first Hadamard gate. While

this operation is relatively simple, its depth quickly increases as more qubits become

necessary for multiplication.

Similar to the QFT operator, an IQFT operator is used to change the basis of

each qubit of the accumulator from the phase domain back to the computational

basis, allowing for the result of the multiplier to be measured into the classical bits.

20

Chapter 3. Quantum Array Multiplier

D
RA
FT

q0 H

q1 H
π
2

|Ψ1⟩ |Ψ2⟩|Ψ0⟩

Figure 3.3: Quantum Fourier Transform Stage.

The IQFT is performed as described by Equation 3.4. Similar to the QFT circuit it

utilizes two Hadamard gates as well as a controlled phase shift, though in this case,

the phase shift is negative rather than positive. IQFT has the same depth as the

QFT, which contributes to the rapid growth in depth as bit width increases.

QFT =
1√
N

N−1∑
j,k=0

e
−i2πjk

N |j⟩⟨k| (3.4)

D
RA
FT

q0 H

q1 −π
2 H

|Ψ0⟩ |Ψ2⟩

Figure 3.4: Inverse quantum fourier transform stage.

3.3 Quantum Array Multiplication

The efficiency improvement over existing quantummultipliers comes from two sources:

the efficient use of addition on the phase domain—which utilizes a quantum property—

, and the classical hardware design of array multipliers. Speedup is shown when the

unique capabilities of quantum computers are utilized, though, not every algorithm

can take advantage of these capabilities to see speed up on a quantum system.

21

Chapter 3. Quantum Array Multiplier

3.3.1 Initialization

The first stage for the multiplier is to set the qubits into their desired positions.

There are 3 main components that need to be initialized for this algorithm to work

properly. The first two are the multiplier and multiplicand registers. There are a

number of qubits in each register determined by the bit width of the correlated input.

For every binary 1 encoded in either input an “X” gate is placed on the corresponding

qubit to flip it from the initial 0 state into the 1 state as shown in Fig.3.5. The other

component is the product register. For this work the product register is automatically

initialized to a value of ‘0’ and will be used as such, but if a sum of multiplications is

desired then this register does not need to be reset to 0.

D
RA
FT

Multiplier0 X

Multiplier1 X

Multiplicand0 X

Multiplicand1 X

Product0
Product1
Product2
Product3

Figure 3.5: Initialization stage for the Quantum Array Multiplier. In this example both
the multiplicand and multiplier are being initialized to decimal values of 3 using Pauli-X or
NOT gates. These take the initial state of ‘0’ and flip it resulting in a ‘1’ stored in each of
the qubits.

This stage only takes one time step to accomplish as each of the “X” gates can

be run at the same time. Once they have been run the two multiplication inputs will

have successfully been encoded into the quantum system and the multiplication can

begin.

While it was not the focus of this work it can be noted that if the number of result

22

Chapter 3. Quantum Array Multiplier

qubits is restricted to a value n, multiplication modulo 2n is performed. This can be

useful both when the modulus operator is an important part of an algorithm, but

additionally as a method of reducing qubits used when higher order product bits are

unnecessary for the function implementing this multiplication.

3.3.2 QFT

Using the QFT discussed in 3.2, the product register is transformed from the compu-

tational basis to the phase basis as shown in Fig.3.6. 2

D
RA
FT

Product0 H

Product1 H
π
2

Product2 H
π
2

π
4

Product3 H
π
2

π
4

π
8

Figure 3.6: Quantum Fourier Transform stage changing the product register from the
computational to the phase basis.

This moves the product qubit register from the computational basis into the phase

basis. In order to perform the phase rotations integral to this algorithm the product

register has to be in this state.

3.3.3 Array Multiplication

In order to implement the array multiplication in the quantum domain the two main

components of the classical version, the AND gate and the FA, needed quantum

counterparts. Due to the fact that addition is performed while in the phase basis

2If all qubits in the product register are 0 then the phase shifts in the QFT operation can be
removed leaving only the Hadamard gate acting on each qubit. This can, especially with large inputs,
reduce depth greatly but will not be included in the analysis to see more realistic applications of the
algorithm.

23

Chapter 3. Quantum Array Multiplier

using phase shift gates, the AND can be substituted using a doubly-controlled phase

shift gate as shown in fig.3.7.

D
RA
FT

=

a-input

b-input

productn
α
2

−α
2

α
2 α

Figure 3.7: Double control rotation decomposition.

by using single controlled phase gates in this way we are able to ensure that a

phase shift of α only occurs if both inputs are high. In the case that only ‘a’ is high,

b will be inverted applying a negative phase shift. After which ‘b’ is un-inverted and

‘a’ applies a positive phase shift negating the previous phase shift. If only ‘b’ is high

then it will apply both a positive and negative phase shift, causing no affect. If both

are low then none of the controlled gates function and nothing happens. Finally if

both are high then two phase shifts of α/2 are applied equalling one full phase shift

of α as intended.

This gate must be applied to the product qubit of the index determined by the two

input qubits, as well as all qubits of greater significance than that index. The least

significant phase gate of the current set of inputs shifts by π. Each of the following

gates applied are divided by 2 following the form α = π
2n

as shown in Fig.3.8 where n

increases by 1 for each qubit of greater significance acted upon. It can be noted that

these phase shifts get exceedingly small when working with extremely large inputs,

which is the problem targeted in section 3.4.

Now that the AND gate has been implemented from the classical design, only the

FA is left. This is a very easy component to add as it is already handled with the

additional phase shifts as part of the AND gate implementation. On a classical system

the product is only reached after taking each of the previous stages and passing them

through their respective FA’s to see if there is any carry and sum. The difference in

24

Chapter 3. Quantum Array Multiplier

D
RA
FT

Multiplier0

Multiplier1

Multiplicand0

Multiplicand1

Product0 π

Product1
π
2 π π

Product2
π
4

π
2

π
2 π

Product3
π
8

π
4

π
4

π
2

Figure 3.8: Quantum Array Multiplication stage showing each phase shift for a 2 bit by
2 bit multiplication.

the quantum implementation is that each addition is acting directly onto the product

register independent of each other. When classical addition in a FA would result

in a carry, the phase shifts will have rotated the next most significant qubit by π/2

twice effectively adding one to that qubit. Meanwhile the original qubit will have had

two π rotations, rotating the phase around the unit circle back to 0 where it started,

effectively performing the carry that the classical FA performs.

Another benefit of the additions not depending on the outputs of the previous

stages is that these operations, when interacting with different qubits, can be run in

parallel with each other as determined during circuit optimization. This allows for

the potential of slight speedup and, while not the intended benefit of this work, is

nonetheless beneficial.

3.3.4 IQFT

After all the stages of the array multiplication are performed, the product is ready

to be measured or used in another computation. Using the Inverse Quantum Fourier

25

Chapter 3. Quantum Array Multiplier

Transform (IQFT) we can then take the product register back out of the phase and

into the computational basis. This allows for us to either measure it or continue to

use it as a continuation of another algorithm or process.

D
RA
FT

Product0 H

Product1
−π
2 H

Product2
−π
4

−π
2 H

Product3
−π
8

−π
4

−π
2 H

Figure 3.9: Inverse Quantum Fourier Transform stage changing the product register from
the phase to the computational basis.

3.3.5 Measurement

Finally the measurement of the product qubits is performed to read out the result

of the multiplication. The way the measurement is performed is dependant on the

quantum computer utilizes, but in the abstract quantum circuit form it follows the

same format. For each measured qubit in the system there is a classical bit that is

assigned the value measured from the qubit, forming a classical register. By reading

out the classical register one can tell what state the measured qubits resulted in,

which in this case is the product of the multiplication that was performed.

The full circuit with each of the stages combined is shown in Fig.3.10. In this

specific example it is multiplying 3 by 3 as each qubit of the inputs are being set to

’1’.

3.4 Approximate Phase Multiplication

As the input size increases, the minimum phase shift also begins to get increasingly

small. As they continue to get smaller and smaller, the rotation matrix that defines

26

Chapter 3. Quantum Array Multiplier

D
RA
FT

Multiplier0 X

Multiplier1 X

Multiplicand0 X

Multiplicand1 X

Product0

QFT

π

IQFT
Product1

π
2 π π

Product2
π
4

π
2

π
2 π

Product3
π
8

π
4

π
4

π
2

c4

Figure 3.10: Quantum Array Multiplier (QAM) with each stage included starting with
the QFT stage, followed by each of the row additions and finally the IQFT.

the phase shift begins to reach the identity. There are a few different issues that

could arise from this. One such issue arises when reaching a point where we are no

longer able to perform phase rotations below a certain threshold due to hardware

limitations. Another issue with these small rotations is their impact on accuracy.

Every gate inherently adds some amount of noise to the circuit. When the phase

incurred by the gate has less of an effect on the computation than the noise accrued

during that application, it may not be worth it to use the gate at all. Barenco, et.

al. showed that in the case of the QFT an approximate version, the AQFT, could

be more accurate than the full QFT[20]. The implications of this work are that the

QFT and IQFT stages of the multiplier are able to be reduced by limiting the phase

shifts to roughly ⌈Log2(Product width) + 2⌉. The reduction in the number of gates

applied is more easily noticeable on circuits with larger input sizes.

Approximation in the phase domain does not affect to output like it would when

precision is dropped in the classical setting. To better illustrate the effects of ap-

proximation, a one-qubit example is shown in Figure 3.11. Through this example, we

intend to show how small rotations in the phase domain (whether added or removed)

have a small impact on the measured outcome of the qubits. In this case, the rotation

is added rather than removed. As shown in Figure 3.11, the qubit is initially in state

27

Chapter 3. Quantum Array Multiplier

|0⟩. After applying a Hadamard gate, it will evolve to the |+⟩ state, now placed in the

phase domain. To simulate the impact of the approximate phase shifting technique

a (small) phase of π/8 is applied, taking it out of the |+⟩ state. After the small rota-

tion, a Hadamard gate is once again applied to return the qubit to the computational

basis. If there were no approximation, then the Hadamard would take it directly back

to the |0⟩ state, but with the small additional rotation, the final state is not exactly

set to |0⟩. Still, a measurement on the computational basis will project this state

to the |0⟩ state “most of the time” (pc = 0.96) this case with probability and only

sometimes it will wrongly measure the |1⟩ (pw = 0.04). This is the reason why even

when rotations are removed, it is still possible to measure the correct output with

high probability.

|0⟩

|+⟩
x y

|ψ⟩

(a) Initial State

|0⟩

|+⟩
x y

|ψ⟩

(b) Hadamard Applied

|0⟩

|+⟩
x y

|ψ⟩

(c) π/8 rotation

|0⟩

|+⟩
x y

|ψ⟩

(d) Second Hadamard

Figure 3.11: Example Bloch diagram transformations showing the impact of approxima-
tion in the quantum phase basis. Starting in (a) with the initial state of |0⟩ a hadamard is
applied transitioning to |+⟩ as shown in (b). Once in the phase basis a sample rotation of
π/8 is applied, (c), followed by a Hadamard gate application returning the state almost to
|0⟩ as shown in (d).

28

Chapter 3. Quantum Array Multiplier

The idea of the AQFT is taken a step further by Draper[19] which proposes using

the same technique as the approximation of the QFT, but this time applied to the

phase rotations of the quantum addition being performed. By eliminating the phase

additions that fall below a certain threshold, a reduced number of gates can be added,

and using the same logic as the AQFT, in the presence of noise or decoherence, there

is a potential increase in the accuracy of the circuit. Additionally highlighted by

Draper was a method for parallelizing the execution of the addition operations in

which each addition may be performed in log2n time slices.

Both of these techniques were utilized within this work in the design of the AQAM.

This design follows the same structure as the normal QAM, but includes a phase limit

determined using the qubit size of the product register.

29

Chapter 4

Results

4.1 Summary of designs

Following the explanation above (Section 3.4), four designs of a quantum multiplier

were implemented and compared:

• Computational Basis (CB): For comparison, a naive approach of multiplica-

tion through repeated addition is also performed on the computational basis as

opposed to the phase domain, through the use of Toffoli and CNOT gates.

• Repeated Addition (RA): This design implements multiplication of two integers

by repeatedly adding the value of the multiplicand into the accumulator as many

times as indicated by the multiplier. The multiplier is decremented towards a

zero value that indicates the end of the computation. This implementation also

requires the measurement and comparison of the multiplier during runtime.

• Quantum Fourier Multiplier (QFM): The Quantum Fourier multiplier also takes

advantage of the phase, but instead of performing repeated addition it utilizes

weighted addition.

• Quantum Array Multiplier (QAM): For the new approach inspired by the clas-

sical array multiplier, double controlled rotations realize the bit multiplication

and consequent addition.

30

Chapter 4. Results

• Approximate Quantum Array Multiplier (AQAM): Taking the same approach

as the QAM, this method additionally reduces the number of phase shifts by

implementing a threshold defined using the product register size.

4.1.1 Qiskit

In order to construct these quantum circuits, IBM’s open-source software development

kit, Qiskit[14], was used. Qiskit provides the ability to construct and test quantum

circuits and algorithms on simulators as well as actual hardware. With each of the al-

gorithms compared and proposed, quantum circuits were implemented and simulated

with and without noise on the Qiskit Aer Simulator [14]. The results were always

correct in the non-approximate implementations when simulated without noise. Sim-

ulations were run for both square and identity multiplication using classical input

sizes ranging from 1 to 12 bits when possible. With the larger test cases, hardware

limitations led to impractical simulation times, and as such, some cases beyond a

certain threshold are excluded. As per performance, since the execution was not per-

formed on real hardware, we present the depth and simulated accuracy of the circuits

as a metric of efficiency and an approximate metric of compared performance for all

different designs. This depth was provided by Qiskit’s depth function. Therefore,

it does not include swap gates to match any specific hardware layout; it is simply a

reflection of the number of computational quantum layers necessary for completion.

4.2 Circuit Analysis

4.2.1 Width of quantum multipliers

All five compared quantum multipliers use the same number of qubits for the same

size operands. Therefore, the width is 2(m + n) where m and n are the size in bits

(qubits) of the two integer operands. As they are the same in each of the algorithms

31

Chapter 4. Results

being compared, the number of qubits is not necessarily a limiting factor for the

implementation of the integer multiplier. Additionally, it is not a factor that can be

improved across the proposed designs since it remains equal or very similar for all of

them.

4.2.2 Depth of quantum multipliers

Depth is a critical parameter in the design of any quantum circuit. At the time

of this research, the correctness and efficiency of these circuits were only verified

through simulation, and as such, this research does not provide performance metrics

on real hardware. Depth, however, defined as the number of computational steps

necessary to completion, is a first approximation to the performance and performance

improvements that one design displays over the other.

Depth additionally depends on the parallelism that the computation is able to

extract out of the gates acting on their corresponding qubits. If two gates are acting

on independent qubits, then both of those can be performed at the same time, and

as such, the value added to depth is 1 rather than 2. The quantum array multiplier

approach uses parallelism and quantum phase computation to significantly improve

the depth of the design. On one hand, the computation on the phase domain and

the double-controlled rotations to implement the AND-adder combos make efficient

use of the quantum properties. Rotations can accumulate directly on the product

qubits, avoiding information exchange in between ”rows,” and there is no need to

pass carry information. In addition, parallelism is exploited since each controlled gate

can act independently as long as it acts on separate qubits. For example, looking

at Figure 3.10, the first double-controlled rotation (acting on qubits Multiplier0,

Multiplicand0, and Product0) can be performed at the same time as double-controlled

rotations eleven or twelve (on qubits Multiplier1, Multiplicand1, and Product2 or

product3).

32

Chapter 4. Results

On the other hand, as stated in Section 2.4.2, the repeated addition multiplier,

only performed the additions demanded by the multiplicand, while the new proposed

algorithm always performs the same number of additions for a given operand size. For

that reason, the circuits’ depth comparison depends on the numbers being multiplied.

The comparisons are presented for the two extreme cases: the trivial Mx1 product

and the square MxM product.

4.3 Depth Analysis

4.3.1 Square Multiplication

The first set of tests that were completed were the square multiplication tests. It

took numbers, each with bit widths from 1 to 20 having every bit initialized to 1, and

used them as both the multiplier and the multiplicand. This was done by initializing

each the input qubit registers using X-gates. Having all bits initialized high can

be regarded as the worst case scenario for execution as it leads to both the highest

number of repeated additions as well as the most gate activations needed to perform

the multiplication. Each gate that is executed attributes some amount of error to the

system, so more gates incurred means more error introduced and vice-versa.

The resulting depths of running this test set on each of the different multiplication

algorithms can be seen in Fig. 4.1.

Looking at the different slopes it is easy to identify the exponential scaling of the

CB and RA algorithms. These two, most notably the CB, do not readily scale up

to higher bit width multiplication as their depth quickly becomes too much for both

simulation and accurate results. The exponential increase in depth comes from the

number of repeated additions doubling each time the bit length of the inputs increases

by 1

Of the other three cases there is a notably similar polynomial trend. The main

33

Chapter 4. Results

Figure 4.1: Depth results for the square multiplication of each of the 5 algorithms being
compared. In order from worst to best scaling there is the CB, RA, QFM, QAM, and finally
AQAM with the first two having exponential scaling and the last three being polynomial.
Additionally a projected polynomial is presented for each of the QFM, QAM, and AQAM.

difference between the QFM and QAM depths comes from the efficient use of con-

trolled phase shifts. The QFM algorithm utilizes phase shifts of (2π, 4π, 8π, etc.)

when performing the weighted addition, which both does not fundamentally change

the resulting values on the qubit being operated on, and adds unnecessary gate noise.

Following the design of the classical array multiplier, the QAM ignores these oper-

ations by default as they are not part of the classical implementation. This would

be analogous to flipping bits of lesser significance twice, returning them to the same

value they had started in. The removal of these gates results in greatly reduced

depth, especially when considering higher order multiplication where the number of

these unnecessary rotations is almost equal to the number of necessary ones. Finally,

the AQAM further reduces its depth by limiting the extremely small phase shifts

which have relatively little impact on the final result of the multiplication. This re-

duction in depth does come at the cost of a loss of accuracy when compared to the

34

Chapter 4. Results

non-approximate solution as shown in Fig. 4.4.

It can be seen that the AQAM takes on a stepping form in which there are certain

points that the depth jumps slightly higher, not following the standard curve before

returning to normal rate of increase. The rise in depth between the 16 and 17 qubit

case comes from the calculation of the minimum phase allowed. When calculating the

phase the minimum is π/2N where N is calculated with ⌈log2(product width)+2⌉. In

the 16 input qubit case the product register has 32 qubits resulting in ⌈log2(32)+2⌉ =

7, whereas in the 17 input qubit case it is calculated to be ⌈log2(34) + 2⌉ = 8. This

increase in the value of N allows smaller phase shifts to be performed leading to the

slight increase in accuracy at the cost of an increase in depth. Following this same

logic there would a slight increase in depth at any stage between a value of 2N and

2N + 1 for the same reason. This relationship for minimum phase was first given in

[20] and built upon in [19]. A different relationship could be developed when systems

are less noisy to change how the minimum phase shift impacts the accuracy by setting

a smaller minimum phase shift than that which is currently utilized.

4.3.2 Identity Multiplication

The second case for comparison between the different implementations is identity

multiplication. In each of these cases increasingly large values are being multiplied

against 1 for a trivial example of multiplication. This test case provides an optimal

state in that the minimum number of controls are being triggered leading to lower

gate noise, and in the case of CB and RA there is a significantly lower depth incurred

as they only need to repeat once. The resulting depths of this test set can be see in

Fig.4.2.

Similar to the case of square multiplication, the CB implementation very quickly

exceeds the other methods in terms of depth. This shows that even when performing

a trivial test case it is not a viable method for multiplication on a quantum system,

35

Chapter 4. Results

Figure 4.2: Depth results for the identity multiplication of four of the different algorithms.
In order from worst to best scaling there is the CB, QAM, AQAM, and RA. In this case
the RA is the shortest as it only needs to iterate once before finishing its multiplication.

which is to be expected as it was notedly a naive approach when it was first introduced.

The RA method in this case outperforms the other algorithms as it only needs to

perform each addition once to calculate the product of the trivial multiplication. This

method shines when considering cases where one of the two multiplication operands

is extremely small in relation to the other operand. Looking at the QAM and AQAM

methods, they do fall behind RA due to the fact that they still need to form the

entire array structure used in the multiplication. The benefit that still holds true for

QAM and AQAM over RA is that they do not require mid-circuit measurements to

operate. This may limit the operation of the RA algorithm on systems where mid-

circuit measurements are either not possible or costly. In this test set the QFM was

not able to be included as, per limitations of its implementation in Qiskit, it cannot

be used in cases where the bit widths of the two operands are different.

36

Chapter 4. Results

4.3.3 Varied Input Multiplication

In order to better visualize how the depth changes between the trivial and square

multiplication an additional set of tests was run. The third set of tests simulated

how the depth of each circuit grows depending on varied input sizes. In all of the

simulations the multiplicand used as an input was 12 bits long, each of which were

initialized to ’1’ corresponding to a decimal value of 4095. The multiplier was then

varied from 1 to 4095 by left shifting the input and inserting a 1 into the least

significant bit. The results of which is shown in Fig. 4.3. Due to their structure not

being influenced by the decimal values of the operands the QFM, QAM, and AQAM

have a constant depth.

Figure 4.3: Depth of each algorithm given a multiplicand value of 4095 and a multiplier
value scaling from 1 to 4095. The depths for the QFM, QAM, and AQAM all remain
constant regardless of the input value due to their standardized structure. RA roughly
doubles in depth at each interval as the number of times it needs to repeat has been
doubled.

In the cases where the value of the multiplier is guaranteed or known to be small

relative to the multiplicand the RA algorithm has better depth, and consequently

accuracy. At an input value of 63, 127, and 255 it begins to perform worse than

37

Chapter 4. Results

the AQAM, QAM, and QFM respectively. This shows that the repeated addition is

only the desired choice for 1.5% of the possible input combinations when compared

to AQAM, or 3.1% and 6.2% for QAM and QFM. When the input value is not known

or guaranteed to be fairly large the ideal algorithms would be either the QAM or

AQAM depending on the noise present in the system.

4.4 Simulated Accuracy

When simulating these circuits Qiskit[14] was used for both the ideal and noisy sim-

ulation models. In the case of the ideal simulation, there is no noise included in the

calculation of the possible results making it similar to running on an ideal quantum

computer. The noisy simulations include simulated noise from each of the primary

sources as part of the qiskit aer simulation package. There are different models which

are created to mimic real systems and provide an outlet to test your code without

actual access to these systems. One model used to simulate noise in this work came

from the GenericBackendV2. This was selected because it allowed for a variable num-

ber of input qubits rather than being limited to a small sample of qubits like those on

real devices. The downside of this is that it has a high default noise model, so noise

accrues rather quickly in each of the following simulation. An additional noise model

was created with less noise than that of the default model for the GenericBackendV2

which was also used to show performance on systems with less noise present.

The accuracy presented within these experiments comes from analyzing the re-

sulting histogram of the simulations. Each time a circuit is simulated it is executed

and measured in 1024 shots. For example if one was measuring a qubit in perfect

superposition between 1 and 0 it can be expected that roughly half the shots would

return 1 and the other half would return 0. To calculate accuracy the number of shots

that resulted in the correct output is calculated and then divided by the total number

of shots. These results are limited to 7 input qubits for most of the implementations

38

Chapter 4. Results

Figure 4.4: The ideal simulation of the QAM and AQAM implementations. As with all
of the other algorithms, when in a noiseless environment, QAM has 100% accuracy for any
given input width. AQAM sees a reduction in accuracy as the input size increases as it is
removing an increasingly large number of phase shifts from being executed. This accuracy
can be improved at the cost of depth by altering the function that determines the minimum
phase shift to allow a larger set of phase rotations.

due to the hardware intensive nature of the executing each simulation. It was not

practical to try to simulate beyond 7 qubits due to both execution times and the

hardware required.

4.4.1 Ideal Simulation

The first set of tests were done using the ideal simulation in order to show how the

AQAM reduces in accuracy as the number of qubits increases. The results of these

simulations for square multiplication can be seen in Fig. 4.4.

Fig. 4.4 shows that, under ideal conditions, the QAM remains 100% accurate

regardless of bit width while the accuracy of the AQAM begins to decline as more

qubits are added. When it reaches an input qubit width of 7 the accuracy ends up

being 74%. This accuracy loss is less pronounced in cases where not every bit is high

in the inputs so this can be seen as the worst case accuracy for the given AQAM

39

Chapter 4. Results

Figure 4.5: The ideal simulation comparing the QAM and AQAM implementations. As in
the square multiplication case the QAM remains 100% accurate while the AQAM begins to
fall, but in this case the accuracy of the AQAM falls much slower both due to its decreased
depth and a lower count of gates incurred.

implementation. Additionally if the reduction in ideal accuracy becomes too great, it

can simply be adjusted to allow smaller phase shifts to occur than the current limit.

This will immediately bring the AQAM closer to the performance of the QAM. A

comparison of the accuracy of the two implementations in the trivial multiplication

case is shown in Fig. 4.5.

While there is still a reduced accuracy in the AQAM it has a noticeably lower loss

than the square multiplication. This can be attributed to both to the fact that the

identity cases have lower depth and to the lower number of phase shift activations

that are performed in the trivial multiplication.

4.4.2 Noisy Simulation

Each of the different multiplication algorithms were then run in noisy simulations to

see how their accuracy changes with increasing input width. The first set were run

on what is a more realistic environment as shown in Fig. 4.6, with the exception of

40

Chapter 4. Results

Figure 4.6: A noisy simulation showing the accuracy of each algorithm given an increas-
ingly large input size. While initially the most accurate for an input width of one, the RA
quickly falls below the others. Following this in terms of accuracy at higher bit widths is
the QFM then the QAM and the AQAM. The difference between the QAM and AQAM
shows that the AQAM has a slightly increased accuracy even with the reduced accuracy
present in an ideal simulation.

the computational basis implementation due to its unreasonable scaling of depth.

In a similar vein with the depth graph, it can be seen that, while the RA imple-

mentation starts with the most accuracy, it is the first to reach near 0% accuracy

at 4 qubits. The QFM does eventually perform better than the RA, but it remains

worse than both the QAM and AQAM implementations. Finally, comparing the per-

formance of the QAM and the AQAM, they are almost identical in accuracy, with

the AQAM having slightly better accuracy once it is greater than 3 input qubits.

The performance of the AQAM follows the same form as the QAM, even with the

lower accuracy in the ideal simulation case, because of the significant reduction in

depth that comes from removing the smaller phase shifts. This confirms that, while

working on a noisy system, there can be a benefit to reducing the depth at the cost

of accuracy. This relationship is more pronounced in the simulations with a reduced

noise model, as shown in Fig. 4.7.

41

Chapter 4. Results

Figure 4.7: Results for a simulation which uses lower noise than the default backend. In
this case the distinction between the algorithms is more apparent, with the RA still falling
at a faster rate than the others even though it starts at the highest accuracy. Of the other
3 algorithms, in terms of worst to best accuracy, they are consistently in the order of QFM,
QAM, and AQAM.

It is easier to see the potential benefit of the approximation technique in these

results as the AQAM performs noticeably better than the original implementation of

QAM. Both the QAM and AQAM outperform the other two algorithms once more

than 4 qubits are utilized in the multiplication. Once the performance had been

determined for square inputs, it was time to simulate the identity cases in noisy

systems. The first case was performed once again using the more noisy backend, with

the results shown in Fig. 4.8.

The simulated accuracy here shows that, in correlation to its lower depth, the RA

operation has the best accuracy. Only needing to perform one addition for each of the

sizes allows it to maintain a fairly high level of accuracy in comparison to the other

techniques. The QAM and AQAM are both extremely similar as they have nearly the

same depth, with AQAM beginning to have a noticeably lower depth once it reaches

an input width of 5. The difference between the algorithms is further analyzed using

a simulation in a less noisy environment, as seen in Fig. 4.9.

42

Chapter 4. Results

Figure 4.8: Simulation of trivial multiplication on a noisy system. Comparing the different
accuracies in these cases shows that, in relation to its lower depth in identity cases, the RA
outperforms both the QAM and AQAM in all cases.

Figure 4.9: Similar to the noisy simulation, RA remains the best case algorithm for trivial
multiplication taking advantage of having only one iteration required for the multiplication.

Both identity multiplication simulations follow the same trend as their respective

depth relationships, which is the expected output in these cases as higher depth has

a direct correlation to increased runtime and gate induced noise.

43

Chapter 5

Conclusion

This thesis proposes an improved design of an quantum integer multiplier inspired

by the classical array multiplier: the Quantum Array multiplier (QAM). The new

approach leverages quantum mechanics by performing the addition through controlled

rotations in the phase domain, while at the same time, it increases parallelism through

array multiplication. This design avoids the need to transfer information from one

row to the next in the array, and it also cancels the need to pass carry information,

thanks to the accumulated rotation on each individual qubit of the resulting product.

In addition to this, work in approximating operations in the phase domain was also

incorporated in the form of the AQAM algorithm. This allowed for a significant

reduction in depth without much loss in accuracy on noisy systems.

Another three quantum integer multipliers were implemented and compared against

the new approach: one similar to a classical implementation, through repeated addi-

tions on the computational basis (CB); a second one which initially proposed the re-

peated addition through phase rotation (RA); and a third one which utilizes weighted

additions to perform the multiplication without repetition (QFM). The width of all

designs was shown to be equivalent, and not necessarily a limiting factor for these

computations. The depth was also compared for each of the designs, as an approxi-

mate metric of scalability and performance. For small magnitude operands, repeated

addition performs better than the new QAM, since the structure of QAM is always

44

Chapter 5. Conclusion

the same no matter how small the value of the operand, while the others (CB and

RA) only repeat additions as many times as indicated by the multiplier. But for

the cases tested, as soon as operands surpassed a specific magnitude, the depth was

many times reduced in the case of QAM. In fact QAM’s depth grows with polynomial

O(n3), while the repeated addition algorithms display exponential growth in depth.

In comparison to QFM, the QAM rises much slower, incurring only slightly over half

the depth by a bit width of 8. AQAM improves this further by scaling as with just

over a polynomial O(n2) trend.

Due to limited access to quantum hardware, implementations for real performance

results and accuracy were not tested using actual quantum computers. Instead, sim-

ulations with and without noise show how these may function on said hardware. This

paper shows the new QAM’s potential as an efficient implementation an quantum

integer multiplier, with the addition of the AQAM for when a lower depth is re-

quired and a slight loss in ideal accuracy is not detrimental. This will particularly

benefit quantum algorithms that require multiplication of integers. By implementing

the multiplication directly on the quantum hardware, costly quantum-classical data

exchange is avoided.

45

Bibliography

[1] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Dis-

crete Logarithms on a Quantum Computer”. In: SIAM J. Comput. 26.5 (Oct.

1997), pp. 1484–1509. issn: 0097-5397. doi: 10.1137/S0097539795293172.

url: http://dx.doi.org/10.1137/S0097539795293172.

[2] Lov K. Grover.A fast quantum mechanical algorithm for database search. arXiv:quant-

ph/9605043. Nov. 1996. doi: 10.48550/arXiv.quant-ph/9605043. url: http:

//arxiv.org/abs/quant-ph/9605043 (visited on 10/28/2023).

[3] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and fac-

toring”. In: Proceedings 35th Annual Symposium on Foundations of Computer

Science. Nov. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[4] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quan-

tum 2 (Aug. 2018), p. 79. issn: 2521-327X. doi: 10.22331/q-2018-08-06-79.

url: http://dx.doi.org/10.22331/q-2018-08-06-79.

[5] John A. Cortese and Timothy M. Braje. Loading Classical Data into a Quan-

tum Computer. arXiv:1803.01958 [quant-ph]. Mar. 2018. doi: 10.48550/arXiv.

1803.01958. url: http://arxiv.org/abs/1803.01958 (visited on 10/24/2023).

[6] G. Florio and D. Picca. Quantum implementation of elementary arithmetic op-

erations. arXiv:quant-ph/0403048. Mar. 2004. doi: 10.48550/arXiv.quant-

ph/0403048. url: http://arxiv.org/abs/quant-ph/0403048 (visited on

02/18/2023).

[7] Sashwat Anagolum. Arithmetic on Quantum Computers: Multiplication. en.

May 2020. url: https://medium.com/@sashwat.anagolum/arithmetic-on-

quantum-computers-multiplication-4482cdc2d83b (visited on 02/16/2023).

46

https://doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
https://doi.org/10.48550/arXiv.quant-ph/9605043
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.48550/arXiv.1803.01958
https://doi.org/10.48550/arXiv.1803.01958
http://arxiv.org/abs/1803.01958
https://doi.org/10.48550/arXiv.quant-ph/0403048
https://doi.org/10.48550/arXiv.quant-ph/0403048
http://arxiv.org/abs/quant-ph/0403048
https://medium.com/@sashwat.anagolum/arithmetic-on-quantum-computers-multiplication-4482cdc2d83b
https://medium.com/@sashwat.anagolum/arithmetic-on-quantum-computers-multiplication-4482cdc2d83b

BIBLIOGRAPHY

[8] Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. “Quantum arithmetic with

the Quantum Fourier Transform”. In: Quantum Information Processing 16.6

(June 2017). arXiv:1411.5949 [quant-ph], p. 152. issn: 1570-0755, 1573-1332.

doi: 10.1007/s11128-017-1603-1. url: http://arxiv.org/abs/1411.5949

(visited on 09/11/2023).

[9] Isaac L. Chuang, Neil Gershenfeld, and Mark Kubinec. “Experimental Im-

plementation of Fast Quantum Searching”. In: Physical Review Letters 80.15

(Apr. 13, 1998). Publisher: American Physical Society, pp. 3408–3411. doi:

10.1103/PhysRevLett.80.3408. url: https://link.aps.org/doi/10.

1103/PhysRevLett.80.3408 (visited on 03/25/2024).

[10] Stephan Gulde et al. “Implementation of the Deutsch–Jozsa algorithm on an

ion-trap quantum computer”. In: Nature 421.6918 (Jan. 2003). Publisher: Na-

ture Publishing Group, pp. 48–50. issn: 1476-4687. doi: 10.1038/nature01336.

url: https://www.nature.com/articles/nature01336 (visited on 03/25/2024).

[11] Frank Arute et al. “Quantum supremacy using a programmable superconduct-

ing processor”. en. In: Nature 574.7779 (Oct. 2019). Number: 7779 Publisher:

Nature Publishing Group, pp. 505–510. issn: 1476-4687. doi: 10.1038/s41586-

019-1666-5. url: https://www.nature.com/articles/s41586-019-1666-5

(visited on 10/31/2023).

[12] Yulin Wu et al. “Strong Quantum Computational Advantage Using a Supercon-

ducting Quantum Processor”. In: Physical Review Letters 127.18 (Oct. 2021).

Publisher: American Physical Society, p. 180501. doi: 10.1103/PhysRevLett.

127.180501. url: https://link.aps.org/doi/10.1103/PhysRevLett.127.

180501 (visited on 10/31/2023).

[13] Nick S. Blunt et al. “Perspective on the Current State-of-the-Art of Quantum

Computing for Drug Discovery Applications”. In: Journal of Chemical Theory

47

https://doi.org/10.1007/s11128-017-1603-1
http://arxiv.org/abs/1411.5949
https://doi.org/10.1103/PhysRevLett.80.3408
https://link.aps.org/doi/10.1103/PhysRevLett.80.3408
https://link.aps.org/doi/10.1103/PhysRevLett.80.3408
https://doi.org/10.1038/nature01336
https://www.nature.com/articles/nature01336
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevLett.127.180501
https://link.aps.org/doi/10.1103/PhysRevLett.127.180501
https://link.aps.org/doi/10.1103/PhysRevLett.127.180501

BIBLIOGRAPHY

and Computation 18.12 (Dec. 13, 2022). Publisher: American Chemical Soci-

ety, pp. 7001–7023. issn: 1549-9618. doi: 10.1021/acs.jctc.2c00574. url:

https://doi.org/10.1021/acs.jctc.2c00574 (visited on 03/26/2024).

[14] Qiskit contributors. Qiskit: An Open-source Framework for Quantum Comput-

ing. 2023. doi: 10.5281/zenodo.2573505.

[15] Craig Gidney.Asymptotically Efficient Quantum Karatsuba Multiplication. arXiv:1904.07356

[quant-ph]. Apr. 2019. doi: 10.48550/arXiv.1904.07356. url: http://

arxiv.org/abs/1904.07356 (visited on 10/20/2023).

[16] Kevin Hartnett. A New Approach to Multiplication Opens the Door to Better

Quantum Computers. en. Apr. 2019. url: https://www.quantamagazine.

org/a-new-approach-to-multiplication-opens-the-door-to-better-

quantum-computers-20190424/ (visited on 10/20/2023).

[17] Mehdi Ramezani, Morteza Nikaeen, Farnaz Farman, Seyed Mahmoud Ashrafi,

and Alireza Bahrampour. Quantum Multiplication Algorithm Based on Con-

volution Theorem. arXiv:2306.08473 [quant-ph]. June 2023. doi: 10.48550/

arXiv.2306.08473. url: http://arxiv.org/abs/2306.08473 (visited on

10/22/2023).

[18] V. Vedral, A. Barenco, and A. Ekert. “Quantum Networks for Elementary

Arithmetic Operations”. In: Physical Review A 54.1 (July 1996). arXiv:quant-

ph/9511018, pp. 147–153. issn: 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.

54 . 147. url: http : / / arxiv . org / abs / quant - ph / 9511018 (visited on

08/30/2023).

[19] Thomas G. Draper. Addition on a Quantum Computer. arXiv:quant-ph/0008033.

Aug. 2000. doi: 10.48550/arXiv.quant-ph/0008033. url: http://arxiv.

org/abs/quant-ph/0008033 (visited on 03/20/2023).

48

https://doi.org/10.1021/acs.jctc.2c00574
https://doi.org/10.1021/acs.jctc.2c00574
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.48550/arXiv.1904.07356
http://arxiv.org/abs/1904.07356
http://arxiv.org/abs/1904.07356
https://www.quantamagazine.org/a-new-approach-to-multiplication-opens-the-door-to-better-quantum-computers-20190424/
https://www.quantamagazine.org/a-new-approach-to-multiplication-opens-the-door-to-better-quantum-computers-20190424/
https://www.quantamagazine.org/a-new-approach-to-multiplication-opens-the-door-to-better-quantum-computers-20190424/
https://doi.org/10.48550/arXiv.2306.08473
https://doi.org/10.48550/arXiv.2306.08473
http://arxiv.org/abs/2306.08473
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.147
http://arxiv.org/abs/quant-ph/9511018
https://doi.org/10.48550/arXiv.quant-ph/0008033
http://arxiv.org/abs/quant-ph/0008033
http://arxiv.org/abs/quant-ph/0008033

BIBLIOGRAPHY

[20] Adriano Barenco, Artur Ekert, Kalle-Antti Suominen, and Päivi Törmä. “Ap-

proximate Quantum Fourier Transform and Decoherence”. In: Physical Review

A 54.1 (July 1996). arXiv:quant-ph/9601018, pp. 139–146. issn: 1050-2947,

1094-1622. doi: 10.1103/PhysRevA.54.139. url: http://arxiv.org/abs/

quant-ph/9601018 (visited on 09/29/2023).

49

https://doi.org/10.1103/PhysRevA.54.139
http://arxiv.org/abs/quant-ph/9601018
http://arxiv.org/abs/quant-ph/9601018

	Efficient Quantum Multiplication in the Quantum Fourier Transform Domain
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Dedication
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Thesis Contribution

	Background
	Classical Multiplication
	Quantum Computing
	Superposition and Entanglement
	Quantum Fourier Transform

	Noise and Depth in Quantum computers
	Related Works
	Computational
	Repeated Addition
	Quantum Fourier Multiplier

	Quantum Array Multiplier
	Classic Array Inspiration
	QFT and IQFT
	Quantum Array Multiplication
	Initialization
	QFT
	Array Multiplication
	IQFT
	Measurement

	Approximate Phase Multiplication

	Results
	Summary of designs
	Qiskit

	Circuit Analysis
	Width of quantum multipliers
	Depth of quantum multipliers

	Depth Analysis
	Square Multiplication
	Identity Multiplication
	Varied Input Multiplication

	Simulated Accuracy
	Ideal Simulation
	Noisy Simulation

	Conclusion

