
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2024

Evolutionary Neural Network for Optimized Clock Tree Synthesis Evolutionary Neural Network for Optimized Clock Tree Synthesis

Patrick Jeffery

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Jeffery, Patrick, "Evolutionary Neural Network for Optimized Clock Tree Synthesis" (2024). Thesis.
Rochester Institute of Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11712?utm_source=repository.rit.edu%2Ftheses%2F11712&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

EVOLUTIONARY NEURAL NETWORK FOR OPTIMIZED CLOCK TREE SYNTHESIS

by

PATRICK JEFFERY

GRADUATE PAPER

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE

in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Ferat Sahin, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

MAY, 2024

Dedication

To my parents, David, and Tricia Jeffery; my brothers, Christopher and Mathew Jeffery; and

my partner, Lily Kimpel. I could have never done it without you. Love you all.

Patrick Jeffery

Declaration

I hereby declare that except where specific reference is made to the work of others, that all

content of this Graduate Paper are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other University. This

Graduate Project is the result of my own work and includes nothing which is the outcome of

work done in collaboration, except where specifically indicated in the text.

Patrick Jeffery

May, 2024

Acknowledgements

I would like to first thank my graduate advisory and mentor, Mark A. Indovina, for his continu-

ous support and direction, this project, and many of my academic and professional achievements,

would have not been possible without his support. I would like to thank my academic advisers,

Stephanie Krebbeks and Sarah Dresnack-Radtke, for helping me navigate my college career

from start to finish. Finally, I’d like to thank the RIT Department of Electrical and Microelectri-

cal Engineering, for allowing me the opportunity to grow my professional and personal life in

such an incredible way.

Patrick Jeffery

Abstract

Clock Tree Synthesis (CTS) is a complex and in depth process that, in modern designs, would

take an individual months if not years to get a working design. Tools such as Cadence Innovus

and Synopsys ICC provide excellent support for CTS and can be used to create well optimized

trees; allowing the user to edit the tree’s generation down to a single buffer. However, even

these tools can fall short of a perfectly optimized route and oftentimes need a capable user to

direct them in the right direction just to get a functioning clock tree. The aim of this work

is to provide an additional tool to further aid users in pursuit of fully functional and highly

optimized clock trees. The developed network is an evolutionary neural network, built on

NEAT-Python, trained on ten variations of a results character conversion block designed for

a dual-tone multi-frequency receiver. The network is meant to provide users with clock tree

generation parameters such that the routed tree will be optimal. The network’s success is

evaluated based on its growth throughout training and its ability to suggest optimal parameters

for one hundred variations of the same design. It is found that the network grows steadily,

suggesting that given enough time it could master CTS. That being said, the final test reveals

that the network is only slightly superior to default CTS parameters and is far too inconsistent

to be considered successful. These results are carefully evaluated to suggest improvements for

future attempts to develop a similar neural network.

Contents

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Research Goals . 2

1.2 Organization . 2

2 Bibliographic Research 5

2.1 Clock Tree Synthesis . 5

2.2 ML and ANNs . 6

2.3 ML and ANNs for CTS . 8

2.4 Supporting Documentation . 8

3 Clock Tree Synthesis 10

3.1 Clock Tree Implementations . 11

3.1.1 Conventional . 11

3.1.2 Multi-Source . 12

Contents vi

3.1.3 Mesh . 13

3.2 Clock Tree Structure . 13

3.3 Multi-bit Versus Single-bit DFFs . 15

4 NeuroEvolution of Augmenting Topologies (NEAT) Algorithm 17

4.1 Brief NEAT Overview . 17

4.2 Configuration . 18

4.2.1 NEAT . 18

4.2.2 Stagnation . 19

4.2.3 Reproduction and Species Set . 20

4.2.4 Default Genomes . 21

4.2.4.1 Node Activation . 21

4.2.4.2 Node Aggregation . 22

4.2.4.3 Node Bias . 23

4.2.4.4 Genome Compatibility 24

4.2.4.5 Connection and Mutation 25

4.2.4.6 Feed Forward . 26

4.2.4.7 Network Parameters . 27

4.2.4.8 Node Response . 28

4.2.4.9 Connection Weight . 29

5 Training Environment 31

5.1 The Design . 31

5.2 Trainer . 37

5.2.1 Network Inputs . 37

5.2.2 Network Outputs . 37

Contents vii

5.2.3 Network Fitness Function . 40

5.2.4 Randomizing Floor Plans . 41

5.2.5 Data Reporting and Collection . 43

6 Results 44

6.1 Final Neural Network . 44

6.2 Analysis . 50

6.3 Discussion . 52

7 Conclusion 54

7.1 Future Work . 55

References 56

I Source Code I-1

I.1 Training Environment . I-1

I.2 Automatic File Management (FileMan) . I-17

I.3 Testing Environment . I-26

II Supporting Code II-36

II.1 Synopsys tcl Run File . II-36

III ICC Shell III-54

III.1 Clock Tree Options . III-54

III.2 Floor Plan Options . III-56

List of Figures

3.1 Clock Tree Implementations. Left to Right: Conventional, Multi-Source, and

Mesh Clock Tree Structure . 11

3.2 Clock Tree Structures. A) Y-Tree; B) H-Tree; C) X-Tree; D) Serial Tree . . . 14

3.3 Replacing Single-Bit with Multi-Bit Flip Flops 16

5.1 Results Character Conversion Block with Default Settings (Clock Tree High-

lighted in Yellow) . 33

5.2 ’L’ Shaped RCC Block . 35

5.3 ’X’ Shaped RCC Block . 36

5.4 Floor Plan Structures . 42

6.1 Average Fitness . 45

6.2 Best Fitness . 46

6.3 Standard Deviation . 47

6.4 Best Genome (top), Best Genome Without Newly Generated Genomes (bottom) 48

6.5 Generation Time . 49

6.6 Final Genome Layout . 50

6.7 Starting Genome Layout . 50

6.8 Final Results Histogram. Average = +6.4720 51

List of Tables

4.1 NEAT Configure Data . 19

4.2 Stagnation Configure Data . 20

4.3 Reproduction and Species Set Configure Data 21

4.4 Node Activation Configure Data . 22

4.5 Node Aggregation Configure Data . 23

4.6 Node Bias Configure Data . 24

4.7 Genome Compatibility Configure Data . 25

4.8 Connection and Mutation Configure Data 26

4.9 Feed Forward Configure Data . 27

4.10 Network Parameters Configure Data . 28

4.11 Node Response Configure Data . 29

4.12 Connection Weight Configure Data . 30

5.1 Design Characteristics used for Network Inputs 38

5.2 Non-Boolean CTS Parameters . 39

Chapter 1

Introduction

All digital designs require a clock to keep time and drive digital components, the clock is

somewhat comparable to a “heart” of a design. A well optimized clock can help a design avoid

critical issues such as excess power consumption, resource usage, area overhead and more. Un-

fortunately, the clock is also one of the most resource and power hungry components in modern

circuitry, sometimes consuming as much as 30-50% of the total power [1] and occupying a

quarter of the available metal layers. Moreover, optimizing a clock tree is becoming increasingly

challenging as the size and complexity of modern circuitry continues to grow. Along with this

growth, electronic design automation (EDA) tools have also grown in complexity, demanding

developers to be more well versed with settings and parameters that are often easily overlooked.

Further increasing the difficulty of optimized Clock Tree Synthesis (CTS), dozens of

developments have been made in the attempt to increase the size of a developers tool box. Mesh

and Multi-source CTS have become popular alternatives to conventional CTS, although each

has their own use case and conventional is still, arguably, the most popular [2]. Beyond the

layout of the tree, designers have to worry about the shape; H-Tree or otherwise, single-bit

versus multi-bit DFFs, differently sized inverters in place of buffers, and more [3].

1.1 Research Goals 2

To aid with the daunting task of optimizing a clock tree, multiple machine learning (ML)

models have been developed, often to great success [4, 5]. In specific scenarios, these models

can take the place of an experienced developer and tune the parameters for clock tree generation

to provide a well optimized tree for a range of designs. Specifically, [5] proposes a versatile

and effective generative adaptive neural-net algorithm trained on thousands of datum to provide

specific clock tree settings for the Cadence Innovus tool, and has become a major motivator for

the work presented here.

1.1 Research Goals

The objective of this work is to first, provide an overview of CTS and its variations, and second,

propose an effective Evolutionary Neural Network as a tool for further CTS optimization. The

tool will, ideally, take the place of an experienced designer and will suggest optimal CTS

parameters based on a given design. The neural net will be given a series of characteristics of

the design based on its default clock tree and will provide the optimal parameters to re-generate

the clock tree to have reduced maximum skew, power consumption, and resource consumption.

The primary goals of this research is summarized below:

• To research and understand clock tree synthesis, including its variations and limitations.

• To develop an effective evolutionary neural network which will aid designers by suggest-

ing effective CTS parameters based off a designs default routing.

1.2 Organization

The structure of this graduate paper is as follows:

1.2 Organization 3

• Chapter 2: This chapter gives an in depth analysis of each of the sources used for this

work. Including all CTS, machine learning, and neural network research.

• Chapter 3: This chapter provides an overview of clock tree synthesis. Including conven-

tional, multi-source, and mesh clock tree architectures, as well as a discussion of H-tree

versus X-tree structures and multi-bit versus single-bit DFFs.

• Chapter 4: This chapter discusses the evolutionary neural network and its python imple-

mentation, NEAT-Python. Specifically, this chapter discusses the configuration of the

neural network.

• Chapter 5: This chapter provides detail as to how the neural network was trained;

including the digital design used, how the design is randomized to provide variable inputs

to the network, and how the network interfaces with Synopsys IC and the digital design

itself.

• Chapter 6: This chapter discusses how the final, most fit, neural network is tested and its

performance on these tests.

• Chapter 7: This chapter gives an overview of the work done and provides suggestions for

how future attempts to train an evolutionary neural network for CTS might be improved.

• Appendix I: This section gives the entirety of the python training environment and testing

environment used for this work.

• Appendix II: This section gives the tcl file used for integrating the python environments

with Synopsys IC and for generating the post-route reports.

• Appendix III: This section gives complete definitions, as described by [6], of some

important terms; specifically, the leveraged CTS and floor plan parameters supported by

1.2 Organization 4

Synopsys.

Chapter 2

Bibliographic Research

2.1 Clock Tree Synthesis

The evolutionary neural network designed for this work is indented specifically for optimizing

clock tree synthesis through parameter suggestions. As such, much of the research conducted

was for CTS. To begin, both [2] and [7] compare the most popular CTS types: conventional,

multi-source, and mesh; with the main comparison being between conventional and multi-

source. It is found that multi-source takes advantage of the reduced latency and skew offered by

mesh, while maintaining a lower power and resource consumption than a pure mesh tree. Multi-

source seems to be the best of both worlds, though still limited by power consumption and, of

course, timing. Further, [2] discusses the superiority of multi-bit flip-flops as using these buffers

can significantly reduce the number of transistors required in VLSI, while [7] suggests some

heuristic approaches to improving multi-source specifically for skew optimization. Supporting

this research, [8] and [9] offer web article alternatives comparing the three types of clock trees

in a much easier to digest manner. Focusing more specifically on multi-source clock tree’s,

[10] gives an excellent example of how to apply a multi-source symmetric h-tree clock tree

2.2 ML and ANNs 6

for 7nm technology. Also backs the success of the tree with dozens of experiments performed

using Cadence Innovus. Similarly, [1] provides another good example of how to implement

a multi-source clock tree, though the “hybrid multi-source clock tree” they propose attempts

to a avoid any clock delay calculation accuracy issues by pre-calculating the clock tree driver

size needed based on the driver’s range. Going back to the multi-bit flip flops (MBFF), [11]

compares MBFF to SBFF, specifically for power optimization while taking into account the

clock tree to fully optimize power and time saves. Moreover, [12] suggests a method of clock

gating where the clock tree is constructed simultaneously with the insertion of clock gates.

Alternative methods insert the clock gates after the clock tree insertion, causing a large change to

the clock slew, however, building them together allows the slew to be kept in check throughout

insertion. Finally, [13] discusses the use of serial clock trees; that is, clock trees that connect

from one sink to another in a straight line, and how an averaging technique with a flexible and

re-configurable serial clock tree can provide good results with minimal wire usage. Further,

provides an excellent discussion of the difference of H-tree, X-tree, Y-tree, and serial clock

trees. Similarly, [14] is a web article which compares the popular clock tree shapes using

many straightforward and informative diagrams. Many of the sources gathered for this research

were found through the help of the index built by [3] which lists other publications discussing

different CTS techniques and gives brief overview of the paper’s results, making it easy to find

relevant sources.

2.2 ML and ANNs

A significant portion of the work presented here relies on machine learning (ML), specifically

artificial neural networks (ANNs). Because of this, much of the preliminary research conducted

focused on general purpose machine learning models and their applications. First, [15] gives an

2.2 ML and ANNs 7

excellent overview of how and when to use supervised and unsupervised learning. Specifically,

the different available approaches to both types of learning, including neural networks, and

some of their strengths and weaknesses. While discussed, neural networks are not the main

focus but rather the application of machine learning as a whole, hence why this paper is listed

here instead of next chapter. Similarly, [16] serves as a modern, real example of how to apply

machine learning to advanced driving assistance systems (ADAS). Likewise, [17] discusses

a new evolutionary system: evolutionary programming (EPNet) that focuses on developing

an artificial neural network’s behavior by using mutations such as partial training and node

splitting to maintain the behavioral links between generations. EPNet proves to be effective for

outcome prediction, though it takes more generations to highly root itself into any one solution.

[18] propose a recurrent neural network for any non-smooth convex optimization problem,

serving as a good example of the best practices for developing and applying neural networks.

More directly related to the work presented here, [19] delves deeper into NEAT, recall NEAT

is the evolutionary neural network model used for this work, and provides a comprehensive

comparison to the temporal difference method: Sarsa. They’re experiments find that NEAT

can be more accurate than Sarsa, though it takes more generations to do so. Further, they

find that NEAT learns deterministic environments best, making it preferable for more complex

problems. Finally, both [20] and [21] discuss in great detail the NeuroEvolution of Augmenting

Topologies (NEAT) used extensively throughout this work. [21] is the original and more

commonly referenced of the two, though both papers are used to gain the best understanding of

NEAT.

2.3 ML and ANNs for CTS 8

2.3 ML and ANNs for CTS

Many researchers have attempted to develop a machine learning model specifically for CTS,

as this work also does, many of whom succeeded. [5] is the primary motivator for the work

presented here. They discuss a generative adversarial network (GAN) capable of, first, predicting

the outcomes of certain CTS parameters on a given design and, second, optimizing the clock

tree by suggesting CTS parameters; this is almost identical to what is attempted in this grad

paper. However, GAN is a highly complex network requiring experienced developers to oversee

its development, while NEAT is more fluid and, ideally, independent during training. [4] also

uses machine learning, specifically TUNA, to fine tune CTS parameters for optimized timing

and power consumption. Although, they’re paper is very brief, while it doesn’t delve deep into

how the model is trained, it does give a good, easy to read overview of the possible effectiveness

of using machine learning for optimized CTS. Lastly, [22] builds a large database of 1300

samples from 65 designs of C-to-FPGA results to train a machine learning model to accurately

predict the post-implementation metrics of the entire design, not specifically CTS, given a large

set of features pertaining to the design. While the work they present is similar to the work of

this grad paper, the scope of their work is much larger and relies on a massive database that’s

infeasible for this graduate paper.

2.4 Supporting Documentation

Some manuals and open-source code is referenced throughout this work, the most relevant of

which are discussed here. First, [23] is used to gain the best understanding of the place and

route work flow. This manual is specific to Cadence Innovus, though its suggested flow and

explanations are universally applicable for EDAs. Likewise, the information provided in [6]

is invaluable for this work as it heavily relies on Synopsys ICC for placing clock trees and

2.4 Supporting Documentation 9

analyzing them.

On the other hand, [24] provides the open-source NEAT-Python implementation used for all

neural network training in this work, and has become a cornerstone of the research conducted

here. Similarly, [25], written by the developers of [24], is the excellent documentation for

NEAT-Python. The documentation is referenced constantly throughout this work, specifically

for the discussion of the configuration file used to structure the neural network.

Chapter 3

Clock Tree Synthesis

Clock tree synthesis is the step in the digital design process in which the clock is added to

a design. According to the design flow outlined by [23], the CTS step should come just

after placing and optimizing all standard cells and tie cells, and before adding filler cells and

routing the design. The mere fact that CTS comes before standard routing is proof of the

step’s importance. Even still, it may be surprising to learn that the clock can often consume a

significant amount of the total power budget; around 30-50% [1], and will usually have at least

two metal layers dedicated solely to the clock.

The goal of CTS is to ensure the clock is uniformly distributed to all sequential elements

of a design, allowing blocks to reliably communicate with each other. Further, CTS is often a

lengthy and complicated process as it aims to optimize the maximum skew, power consumption,

wire length, and other characteristics of a design. Oftentimes the optimization is necessary to

allow a design to work at all, for example, the first pass of CTS done by commercially available

tools may result in timing violations, meaning if the design were printed to actual silicon and

tested, it almost certainly would not work. As such, most commercial tools take multiple passes

and many attempts to get a well designed tree, even if the parameters are ideally set. If the tools

3.1 Clock Tree Implementations 11

parameters are poorly set, tools as powerful as Innovus or Synopsys IC may take many minutes

to build, test, and redesign a tree and, even still, it may never build a functioning one.

The parameters and their impact on CTS will be discussed in great detail later on, for now

it may be more valuable to discuss some of the variations and difficulties presented by CTS.

Beyond the tools specific parameters, designers will also have to worry about the clock tree’s

implementation. There are three common clock tree implementations: Conventional, Multi-

source, and Mesh [2], all of which will be described below. Further, designers are presented

with more choices such as the structure of the tree: H-tree, X-Tree, etc. [14], the buffers and

registers used [11], and more [3].

3.1 Clock Tree Implementations

Figure 3.1: Clock Tree Implementations. Left to Right: Conventional, Multi-Source, and Mesh
Clock Tree Structure

3.1.1 Conventional

Conventional clock tree’s are the most popular for smaller designs as it is significantly more

simple than its alternatives while still providing reliable results. A Conventional tree will

3.1 Clock Tree Implementations 12

have one source node, the system clock, which will branch out to buffers, inverters, and any

sequential logic blocks that need a clock, see Figure 3.1[8]. It is characterized by its similarity

to an actual tree’s roots, hence the name “clock tree.” The trade off for the simplicity of the

conventional tree structure is the relatively poorly optimized results; these trees will often

have greater skew and max latency than either mesh or multi-source, as the system will have

much greater fan-out and wire length between the root node and the furthest end node [8].

Conventional trees also suffer more from on chip variations (increasing skew and latency) as

designs grow larger and more complex. Further, the placement of the source node can have

dramatic effects on the final clock tree’s effectiveness, more on this later.

3.1.2 Multi-Source

Multi-source clock tree’s are similar in structure to conventional trees with the exception of a

large mesh like grid of metal connecting the clock nets a few layers into the tree, see Figure

3.1. The goal of the mesh is to provide, effectively, a reset for the clock signal as once it

reaches this mesh from any of the branches of the root node, the signal can be regenerated and

synchronized with neighboring nodes thus reducing on chip variation [2]. This way, the tree

can rely on a single source node but still benefit from the decreased skew and latency of having

many sources scattered throughout the design. In other words, the single source node allows for

decreased power consumption and more reliability in the main shared signal vein, while still

allowing the lower level blocks to benefit from well synchronized and minimal fan-out clock

nets. Multi-source clock trees are becoming increasingly popular for high performance and

high complexity designs such as fast ALUs or GPUs [8].

3.2 Clock Tree Structure 13

3.1.3 Mesh

Lastly, Mesh clock trees use a similar grid of metal as multi-source, but the grid is placed much

lower in the tree’s branches, see Figure 3.1, and is an order of magnitude or two more dense

than the multi source grid. This, as with multi-source, allows the clock signal to be somewhat

regenerated by neighboring nodes just before it is passed to terminal nodes such as sequential

logic blocks or registers. The purpose of placing the grid low is that the shared branches above

the mesh can be more easily prioritized and made faster, while lower level branches can be

very quickly and cheaply passed to terminal nodes. Nevertheless, the shared branches still

maintain the majority of the tree’s insertion delay and the dense mesh consumes significantly

more routing resources than the multi-source mesh but amplifies the synchronization and further

decreases skew [8].

3.2 Clock Tree Structure

Additionally, designers are faced with multiple clock tree structures, specifically Y-Tree, H-Tree,

X-Tree, or Serial, see Figure 3.2[13]. Y-Trees, or wishbones, are very simple and direct methods

to get a clock signal to terminal nodes and are very useful for small designs but can have

very high skew due to a design’s topology. H-Tree structures are the widely agreed upon best

solution, as they can minimize skew across all the terminal nodes while using relatively few

buffers, but can require more routing resources and are more difficult to implement than other

structures. Similarly, X-Trees function on the same principles as H-trees but are more direct and

can shorten wire lengths; however, they are only applicable to designs that are non-rectangular

which is fairly uncommon [14]. Lastly, serial tree structures, while simple, are very impractical

and more or less a proof of concept; however, they are useful in certain situations such as

pipeline or very basic designs.

3.2 Clock Tree Structure 14

Figure 3.2: Clock Tree Structures. A) Y-Tree; B) H-Tree; C) X-Tree; D) Serial Tree

3.3 Multi-bit Versus Single-bit DFFs 15

3.3 Multi-bit Versus Single-bit DFFs

Finally, another choice faced by designers is the use of Multi-bit flip flops (MBFFs) versus

Single-bit flip flops (SBFFs). Flip flops are used for CTS as they can, effectively, separate

the tree into smaller sections, reducing the head node’s required drive strength and, therefore,

reducing the overall complexity and power consumption of the tree. Multi-bit flip flops are

made up of one or more single-bit flops, using the same clock signal to drive drive multiple

outputs; Figure 3.3 exemplifies how to replace a series of single-bit flops with multi-bit ones.

While this can further reduce a designs complexity and power consumption [11], it also requires

a design to be structured such that single-bit flops are close enough to be replaced by a larger

flop. This consideration can greatly affect the final structure of a clock tree, adding more strain

to a designers work load.

3.3 Multi-bit Versus Single-bit DFFs 16

Figure 3.3: Replacing Single-Bit with Multi-Bit Flip Flops

Chapter 4

NeuroEvolution of Augmenting Topologies

(NEAT) Algorithm

NeuroEvolution of Augmenting Topologies (NEAT) is an evolutionary neural network algorithm

to create artificial networks. NEAT is first proposed in [20] which suggests NEAT’s success

is due to its crossover of different topologies, specification, and incremental growth, more

on these points later. NEAT was selected due to its adaptability, incredible versatility, and

speed for solving deterministic environments [19]. Further, [24]offers an excellent open-source

python module for neat as well as a website that compiles and discusses the majority of the

module’s functionality. This module and the training environment developed for this paper are

the cornerstones of the work presented here.

4.1 Brief NEAT Overview

Traditional neural network topologies rely on a developer to set the size and structure of the

network while the training is solely responsible for determining the weights of the node’s

4.2 Configuration 18

connections. This methodology can be incredibility effective for well known problem spaces,

however, evolutionary neural networks offer much greater versatility and often converge on

optimal solutions faster than fixed networks [17]. As mentioned above, NEAT specializes

in adaptation and incremental growth. That is to say, this method proposes the best way to

develop an evolving artificial neural network with genetic algorithms is to start small and allow

the network to grow and learn during its training. This idea is emphasized and made readily

available by the python module developed by [24].

4.2 Configuration

A configuration file is used for every new run of NEAT, it contains all the required information

for the source code to generate and train an Artificial Neural Network (ANN). Most notably,

the configure file houses details for the structure of the network and its evolution; mutation,

stagnation, reproduction, etc. Below, each section of the configure file is briefly explained and

each design choice is discussed. Please refer to [25] for the complete overview of all configure

file data and a user friendly overview of [24] as a whole. Note that all Parameter Overviews are

paraphrased or direct quotes from [25].

4.2.1 NEAT

There are a few mandatory parameters for every network, including the population size, fitness

threshold, fitness function, and whether or not to reset on extinction. Table 4.1 shows the

parameters set for this section. The most important of which are the fitness_threshold and

the pop_size. The threshold was set unachievable high, as the goal of this work is to produce

the best ANN possible with no upper limit. The pop_size was set such that each generation

would have many attempts to generate the best genome, while still completing simulations in a

4.2 Configuration 19

reasonable amount of time; at a population size of 50 each generation takes approximately one

hour to train.

Table 4.1: NEAT Configure Data

Parameter Data Overview

fitness_criterion max How a species’ success will be judged

fitness_threshold 1000.0 In this case, the minimum required fitness for a

genome to pass

pop_size 50 The number of individuals per generation

reset_on_extinction False Whether or not the network will reset with a full set

of new individuals in the case where the population

completely extincts

4.2.2 Stagnation

The stagnation parameters, shown in Table 4.2, determine when, if ever, a genome will be

declared stagnant and removed from the gene pool. Due to the relative complexity of CTS

and time constraints, the network was set to be fairly strict with species to encourage more

development of those showing improvements, even if improvements are only slight. As such,

the max_stagnation was set to only five generations to quickly remove poor species. To balance

this, species_elitism is set to two to guarantee that at least the best two species will persist,

avoiding total extinction.

4.2 Configuration 20

Table 4.2: Stagnation Configure Data

Parameter Data Overview

Species_fitness_func max How a species success will be judged

max_stagnation 5 The maximum number of generations any species

can show no improvement before being declared

stagnant and removed

species_elitism 2 The minimum number of species that will be

protected from stagnation

4.2.3 Reproduction and Species Set

Reproduction and Species Set are separate sections of the configuration file, but have been

grouped together to since both are quite small. Both sections are listed in Table 4.3. Re-

production determines when and how genomes will combine to generate new genomes for

the next generation. Elitism is set to five, ten-percent of the population, to encourage most

species to evolve, while still maintaining a significant portion of the best individuals as-is. Sur-

vival_threshold is, similarly, set low to allow only the most successful individuals to reproduce.

Species set is used to determine species. Individuals in a species are pitted against one

another such that only the best member from each species will be carried on. The compatibil-

ity_threshold is left as default.

4.2 Configuration 21

Table 4.3: Reproduction and Species Set Configure Data

Parameter Data Overview

elitism 5 The number of individuals of a species that will be

preserved from one generation to the next

survival_threshold 0.1 The fraction of each species allowed to reproduce

each generation

compatibility_threshold 3.0 The minimum genetic distance between individuals

in different species

4.2.4 Default Genomes

Characteristics for each default genome including the number of inputs, outputs, hidden nodes,

the mutation probability and more. Effectively, this section specifies how default genomes will

be shaped and behave.

4.2.4.1 Node Activation

The activation settings for newly created nodes, Table 4.4, specify the output type and mutation

rates. For this network, all nodes are forced to use sigmoid functions, which generate outputs

between (0, 1), since all valid outputs are positive numbers and so the outputs could be linearly

scaled to include all valid values.

4.2 Configuration 22

Table 4.4: Node Activation Configure Data

Parameter Data Overview

activation_default sigmoid The function that, effectively, dictates the range of

the outputs of any one node

activation_mutate_rate 0.0 The probability that node could mutate to use an

activation function other than that supplied by

activation_default

activation_options sigmoid A list of alternative activation functions a node

could mutate to use

4.2.4.2 Node Aggregation

The aggregation of a neural network is the method in which many weights and inputs are

combined to a single value. For this network, simple summation was selected as its the most

straightforward method which incorporates all weights and inputs in the final value while still

giving a high precision to the output given the wide variability, and high number, of inputs.

Shown in Table 4.5.

4.2 Configuration 23

Table 4.5: Node Aggregation Configure Data

Parameter Data Overview

aggregation_default sum The method in which all the weights and inputs of a

node are combined to a single value

aggregation_mutate_rate 0.0 The probability that a node could mutate to use an

aggregation method other than that supplied by

aggregation_default

aggregation_options sum A list of alternative aggregation functions a node

could mutate to use

4.2.4.3 Node Bias

The bias term supplies a high amount of randomness to the outputs of the network, allowing for

more versatility and exploration. All values for node bias a left as default to help balance the

exploration versus exploitation caused by node bias as shown in Table 4.6.

4.2 Configuration 24

Table 4.6: Node Bias Configure Data

Parameter Data Overview

bias_init_mean 0.0 The average value of the bias

bias_init_stdev 1.0 The standard deviation of the bias

bias_max_value 30.0 The maximum value of the bias

bias_min_value -30.0 The minimum value of the bias

bias_mutate_power 0.5 The standard deviation of the zero-centered normal

distribution from which a bias value mutation is

drawn

bias_mutate_rate 0.7 The probability that a node’s bias could mutate by

adding a random value to it

bias_replace_rate 0.1 The probability that a node’s bias could be replaced

with a completely new value

4.2.4.4 Genome Compatibility

The genome compatibility configure data aids with separating genomes into species; as men-

tioned earlier, species are used to organize competition to more quickly converge on an optimal

genome. Similar to the bias terms, genome comparability parameters are kept default, Table

4.7, to avoid over complicating the networks growth.

4.2 Configuration 25

Table 4.7: Genome Compatibility Configure Data

Parameter Data Overview

compatibility_disjoint_coefficient 1.0 The coefficient for the disjoint and excess gene

count’s contribution to the genetic distance

compatibility_weight_coefficient 0.5 The coefficient for the for the difference, between

any two genomes, of each comparability term’s

contribution to the genetic distance

4.2.4.5 Connection and Mutation

The connections and mutation rates, Table 4.8, determine the shape of the neural network,

specifically, where nodes are placed and how they’re connected. All of these values are left

default, similar to node bias, to achieve a balance of exploration versus exploitation.

4.2 Configuration 26

Table 4.8: Connection and Mutation Configure Data

Parameter Data Overview

conn_add_prob 0.5 The probability that a mutation will connect two

previously unconnected nodes

conn_delete_prob 0.5 The probability that a mutation will disconnect two

previously connected nodes

enabled_default True Whether or not a node is enabled by default

enabled_mutate_rate 0.01 The probability that a node will change its enabled

status

node_add_prob 0.2 The probability that a new node in place of a

connection

node_delete_prob 0.2 The probability that a node, and all its connections,

will be deleted

4.2.4.6 Feed Forward

The Feed Forward section of the configuration file, Table 4.9, gives critical information regarding

the shape and functionality of the generated networks. NEAT, and NEAT-Python, support

recurrent and non-recurrent (i.e. feed-forward) networks; for this work, all networks are forced

to be non-recurrent, meaning they have no feedback connections and therefore no “memory,”

this was selected to help balance the complexity of the networks and decrease training time. It

is likely, however, that this decision will also decrease the overall effectiveness of the network,

so this parameter may need to be scrutinized more closely in future experiments.

Further, the initial_connection parameter in this section determines the default connectivity

4.2 Configuration 27

of newly generated genomes. For this work, this is set to full_non-direct, meaning all new

genomes will have a direct connection between all input and all hidden nodes, all hidden nodes

are connected to all outputs, and all input nodes are never directly connected to outputs. The full

connectivity between input and hidden nodes is to, effectively, cover all the bases, allowing the

genome to determine for itself which connections are most valuable. Similarly, the disconnected

inputs to outputs, forcing all paths through the hidden network layers, is to account for the

known high complexity of CTS. Lastly, this fairly extreme connectivity status is well balanced

by the high conn_add/delete_probs discussed in the previous section.

Table 4.9: Feed Forward Configure Data

Parameter Data Overview

feed_forward True Whether or not generated networks are forced to be

non-recurrent

initial_connection full_nodirect Specifies the initial connectivity of newly generated

genomes

4.2.4.7 Network Parameters

The Network Parameters define the number of inputs, outputs, and hidden nodes of the network;

Table 4.10. Because NEAT is an evolutionary network, these parameters can be set to any

value. For this project, there are eleven input data and ten output parameters, discussed in

chapter 5. Two hidden nodes are used to accommodate for the vast complexity of CTS and high

number of inputs and outputs, while attempting to avoid over-fitting the problem. It is possible,

however, that the number of hidden nodes should have been set differently; while CTS is

complex and there are many inputs and outputs, its possible that the relations between the inputs

and outputs are more simple than originally assumed, meaning two hidden nodes will merely

4.2 Configuration 28

over complicate the networks and increasing training time. That being said, passing eleven

inputs through a single hidden node, or none at all, may result in a sever lack of interconnections

between inputs, causing networks to quickly stagnate. For these reasons, two hidden nodes were

chosen as a middle-ground, though future work may benefit from more closely investigating the

optimal number of hidden nodes.

Table 4.10: Network Parameters Configure Data

Parameter Data Overview

num_hidden 2 The number of hidden nodes to add to each genome

in the initial population

num_inputs 11 The number of input nodes

num_outputs 10 The number of output nodes

4.2.4.8 Node Response

The response configuration data, Table 4.11, determine the attributes of a node. The response

serves as a multiplying scalar, prior to the bias addition scalar, to the aggregation of the inputs.

They are left as default, off, for this work as the outputs are manually scaled in the training

environment, the bias scalar is in use, and keeping the response scalars disabled slightly reduces

the network’s training complexity.

4.2 Configuration 29

Table 4.11: Node Response Configure Data

Parameter Data Overview

response_init_mean 1.0 The mean value of the response multiplier

response_init_stdev 0.0 The standard deviation of the response multiplier

reponse_max_value 30.0 The maximum value of the response multiplier

response_min_value -30.0 The minimum value of the response multiplier

response_mutate_power 0.0 The standard deviation of the zero-centered normal

distribution from which a response multiplier

mutation is drawn

response_mutate_rate 0.0 The probability that a node’s response multiplier

could mutate by adding a random value to it

response_replace_rate 0.0 The probability that a node’s response multiplier

could be replaced with a completely new value

4.2.4.9 Connection Weight

The Connection Weight configure data, Table 4.12, represents the strength of the connection

between any two nodes. That is, when a node, input or hidden, passes a value to another, the

value is multiplied by the weight of the two node’s connection. For this work, the weights are

left as default to, again, achieve a fair balance of exploration versus exploitation.

4.2 Configuration 30

Table 4.12: Connection Weight Configure Data

Parameter Data Overview

weight_init_mean 0.0 The mean value of the weight value

weight_init_stdev 1.0 The standard deviation of the weight value

weight_max_value 30 The maximum value of the weight value

weight_min_value -30 The minimum value of the weight value

weight_mutate_power 0.5 The standard deviation of the zero-centered normal

distribution from which a weight value mutation is

drawn

weight_mutate_rate 0.8 The probability that a connection’s weight value

could mutate by adding a random value to it

weight_replace_rate 0.1 The probability that a connection’s weight value

could be replaced with a completely new value

Chapter 5

Training Environment

To train an evolutionary network to aid with clock tree synthesis, a synthesis tool and an

arbitrary, fairly complex, digital design are required. Originally, Candace Design System’s

Innovus was to be the tool in question, however, considering the sheer quantity of floor plans

and routes that would need to occur to train the network, the Synopsys IC Compiler (ICC) is

used instead due to its relatively quiet processing, quick turn around times and readily available

integration with the Synopsys Custom Compiler. A tcl launch file is used to quickly start the

tool and report the routers results, see appendix II for the complete tcl file. The remainder of

this chapter will discuss the design used to train the neural network and the python training

environment that did so.

5.1 The Design

The objective of the neural network is that it can be applied to relatively large designs and

quickly supply optimal CTS parameters for said design, as such, a relatively large design is

required to train the network on. Fortunately, Mr. Mark A. Indovina has access to his design

5.1 The Design 32

of the Results Character Conversion (RCC) Block created for a Dual Tone Multi-Frequency

(DTFM) Receiver. Below are the relevant characteristics of this RCC when routed using default

Synopsis ICC settings and a square floor plan post-route:

• Number Sinks: 157

• Max Global Skew: 0.00870 sec

• Number of Nets: 1598

• Number of Cells: 1414

• Buf/Inv area: 261.77 µm2

• Total Cell Area: 5737.05 µm2

• Total Dynamic Power: 21.51 µW

• Cell Leakage Power: 190.50 µW

Figure 5.1 shows the routed design with the clock tree highlighted in yellow.

5.1 The Design 33

Figure 5.1: Results Character Conversion Block with Default Settings (Clock Tree Highlighted
in Yellow)

Training the network on a single, rigid design would result in nearly perfect suggested

parameters for CTS, but only for this one design. To make the network more versatile, and

therefore usable on more than just this single design, the RCC’s floor plan is randomized for

each generation of the network. This way, from the network’s perspective, every design it is

working with is different, as changing the floor plan can randomly alter the design’s Max Global

Skew, Buf/Inv area, and many other characteristics that are used as inputs for the network.

5.1 The Design 34

Figure 5.2 shows the same RCC design using a pseudo-random ’L’ shaped floor plan instead

of a square one. Once again, the clock tree is highlighted in yellow. Giving the following altered

characteristics:

• Number Sinks: 157

• Max Global Skew: 0.01782 sec

• Number of Nets: 1618

• Number of Cells: 1434

• Buf/Inv area: 285.91 µm2

• Total Cell Area: 5518.74 µm2

• Total Dynamic Power: 21.24 µW

• Cell Leakage Power: 262.91 µW

5.1 The Design 35

Figure 5.2: ’L’ Shaped RCC Block

Similarly, figure 5.3 uses an ’X’ shaped floor plan, resulting in:

• Number Sinks: 157

• Max Global Skew: 0.02678 sec

• Number of Nets: 1617

• Number of Cells: 1433

• Buf/Inv area: 317.17 µm2

5.1 The Design 36

• Total Cell Area: 5561.69 µm2

• Total Dynamic Power: 22.85 µW

• Cell Leakage Power: 431.92 µW

Figure 5.3: ’X’ Shaped RCC Block

5.2 Trainer 37

5.2 Trainer

As discussed in chapter 4, NEAT-python is used to create and train the neural network. However,

the training environment needs to supply the network the Synopsys ICC’s results in order to

gauge the success of the networks proposed CTS parameters. Further, as discussed above, the

environment must randomize the designs floor plan before routing it to give each genome a new

challenge to learn from.

5.2.1 Network Inputs

To be trained, the Neural Network needs a reliable representation of the design its meant to

optimize to serve as the networks inputs. For this work, eleven design characteristics are chosen

based on their ease of access and nearly complete overview of the relevant parts of the design.

They are listed in table 5.1 below along with a brief overview of their relevance.

5.2.2 Network Outputs

Synopsys ICC supports a wide range of CTS optimization parameters, many of which are

simple Boolean inputs such as “buffer_sizing” and “advanced_drc_fixing.” The nature of neural

networks using a sigmoid activation function lends itself better to a range of possibilities rather

than Boolean expressions, as such, it was decided that this network would be responsible for all

non-Boolean parameters. This way, the network can experiment with a wide range of control

over the final design, while still keeping the number of outputs to a manageable ten, see table

5.2 for all ten parameters the network can control.

The overview of each parameter is a summary of its functionality, please see appendix III for

the complete description of all CTS parameters and their effect on the final design as explained

by [6].

5.2 Trainer 38

Table 5.1: Design Characteristics used for Network Inputs

Characteristic Overview
Number of Sinks The total number of terminating nets
Number of Nets The total number of nets, connections, within the

design
Number of Cells The total number of cells, combinational logic, filler

or otherwise, used in the design
Combinational Area The total area occupied by the combinational logic

cells
Buf/Inv Area The total area occupied by the buffers and inverters,

not necessarily used for CTS
Total Cell Area The total area occupied by all design cells

Max Global Skew The maximum global skew of the design
Cell Internal Power The total power required to switch the inputs of the

design, but not the outputs
Net Switching Power The total power required to switch the inputs and

output of the design
Total Dynamic Power The sum of the leakage and dynamic powers
Cell Leakage Power The total leakage power from all cells

5.2 Trainer 39

Table 5.2: Non-Boolean CTS Parameters

Expression Range Overview
target skew 0-1 s The maximum skew any specified clock tree can

have throughout the design
target early delay 0-1 s The minimum insertion delay the longest path of

any specified clock tree must have
leaf max transition 0-1 s The maximum allowable transition time the buffers

and inverters used for leaf nets may have
max transition 0-1 s The maximum allowable transition time the buffers

and inverters used, anywhere except for leaf nets,
may have

max capacitance 0-1200 nf The maximum capacitance any specified clock tree
may have

max fanout 0-4000 The maximum fanout any specified clock tree may
have

layer list for sinks start 0-8 The lowest metal layer the CTS router can use for
clock sinks

layer list for sinks length 2-10 The number of metal layers above the layer list for
sinks start the CTS router can use for clock sinks

layer list start 0-8 The lowest metal layer the CTS router can use for
clock signals

layer list length 2-10 The number of metal layers above the layer list for
sinks start the CTS router can use for clock signals

5.2 Trainer 40

5.2.3 Network Fitness Function

To judge the success of the network, each genome’s outputs are used to reroute the design using

the same floor plan as from when they were gathered. This way, the design characteristics

discussed in section 5.2.1 can be regathered and compared to those gathered using default

CTS parameters. See below for the python code which compares the characteristics, scales

them for the fitness function’s bias, and sums them. Note that genome.fitness is set to ’50’

prior to this subtraction; the “resultsData” python dictionary holds the designs characteristics

using the default CTS prameters while the “optimalResultsData” python dictionary holds the

characteristics of the design using the parameters suggested by the neural network.

Recall that the intention of this network is to provide optimized CTS parameters, focusing

on the design’s maximum global skew, power consumption and resource usage, in that order.

Therefore, the fitness function is scaled to represent these priorities.

1 d i f f = 0

2 d i f f += 15*(o p t i m a l R e s u l t s D a t a ["Max Gl ob a l Skew "] −

r e s u l t s D a t a ["Max G lo ba l Skew "])

3 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" C e l l I n t e r n a l Power "] −

r e s u l t s D a t a [" C e l l I n t e r n a l Power "])

4 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" Net S w i t c h i n g Power "] −

r e s u l t s D a t a [" Net S w i t c h i n g Power "])

5 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" T o t a l Dynamic Power "] −

r e s u l t s D a t a [" T o t a l Dynamic Power "])

6 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" C e l l Leakage Power "] −

r e s u l t s D a t a [" C e l l Leakage Power "])

7 d i f f += 1*(o p t i m a l R e s u l t s D a t a [" C o m b i n a t i o n a l a r e a "] −

5.2 Trainer 41

r e s u l t s D a t a [" C o m b i n a t i o n a l a r e a "])

8 d i f f += 1*(o p t i m a l R e s u l t s D a t a [" Buf / Inv a r e a "] − r e s u l t s D a t a ["

Buf / Inv a r e a "])

9

10 genome . f i t n e s s −= d i f f

Further, to more quickly train the network to output valid values, there is a check to ensure

the leaf_max_transition is equal to or less than the max_transition parameter. Similarly, to avoid

erroneous and unreliable routing, note that the in table 5.2, the layer list and layer list for sinks

parameters must be at least two metal layers long and must start below the eighth metal layer. If

any of this conditions are not met, the genome’s fitness is immediately set to zero and it does

not run the router, the next genome is started immediately.

1 i f (p r e d i c t e d P a r a m s [" l e a f _ m a x _ t r a n s i t i o n "] > p r e d i c t e d P a r a m s ["

m a x _ t r a n s i t i o n "]) o r

2 (p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ s t a r t "] >= 9) o r

3 (p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] >= 9) o r

4 (p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ s t a r t "] < 2) o r

5 (p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] < 2) :

6 genome . f i t n e s s −= 50

7 break

5.2.4 Randomizing Floor Plans

Synopsys ICC offers a wide range of floor plan versatility, allowing users to develop their

design into, almost, any shape. See appendix III for the complete list and explanations of each

floor plan options used. Considering only one design is used to train the neural network, the

5.2 Trainer 42

versatile floor plans are used to emulate multiple designs. Every ten generations of the neural

network is given a new randomized floor plan, ranging from the ’L’ and ’X’ shapes listed in

figures 5.2 and 5.3, to ’U’ and ’T’ shapes, all with randomized side lengths, resulting in ten

total “designs,” each generation of ten populations getting a different one. See figure 5.4 for

how the shapes are sized. When randomized, every side length, ’a-d’ for ’L’ and ’a-f’ otherwise,

are set between 10-40 units with a core utilization of 80% and an io2core distance of 0.5 units

on all sides. Using this method, every generation will receive a new design, at least from the

perspective of the neural network as all the network’s inputs will be scrambled since the routed

designs can be vastly different.

It was decided that every ten generations should be given a new floor plan, instead of one

per generation or one per one hundred generations, because, this way, the network has ten

opportunities to grow and learn from each floor plan before being given another one. However,

the network will still be made versatile since it is trained on a variety of floor plans rather than

just one. In other words, every member of every ten generations will receive identical inputs

and each will have the opportunity to suggest optimal CTS parameters.

Figure 5.4: Floor Plan Structures

5.2 Trainer 43

5.2.5 Data Reporting and Collection

Synopsys ICC further supplies excellent report generation options. Every genome, that proposes

valid CTS parameters, is routed; from the design, the post-route clock_tree, clock_tree_options,

timing, area, and power are all reported. These reports are used to gather a series of character-

istics, table 5.1, used to compare the default parameters to the proposed clock tree parameter

results.

Chapter 6

Results

Throughout the networks training processes statistics on its performance were being captured

constantly. This chapter will display and discuss these statistics, including what worked well,

what didn’t, and suggestions for how to improve future attempts at developing an evolutionary

neural network for optimized clock tree synthesis. Further, this chapter will discuss the final

and best genome’s ability to optimize clock trees by applying it to ten variations of the design it

has been trained on.

6.1 Final Neural Network

Shown below are the graphs of the networks performance throughout its training, accompanied

by a short discussion of the graphs.

Also, note that, though not well captured in the reports generated by the neural network

training environment, it is believed that trial six resulted in the extinction of a significant

portion of the population due to stagnation, leaving generation seven (populations 70-80) with a

large percentage of newly generated genomes, which would explain the fairly low fitness, low

6.1 Final Neural Network 45

Figure 6.1: Average Fitness

standard deviation, and low generation times for this generation. Fortunately, the configuration

of this network guarantees that at least the best two genomes will be protected from stagnation,

see Table 4.2, meaning the final genome used for analysis has been present in all ten generations.

Figures 6.1 and 6.2 below give the average and best fitness, respectively, of each of the ten

populations of each of the ten generations, one hundred members in total. These graphs give

the best indication to the success of the network, specifically the line of best fit. From this line

it can be seen that the average and best fitness of each population is trending upwards, though

very slowly, suggesting that given enough training time, the final network will provide more

and more optimal CTS parameters for a given design.

Figure 6.3 gives the standard deviation of the fitness of each of a populations members,

indicating to the exploration of the network; in other words, how well is the network converging

6.1 Final Neural Network 46

Figure 6.2: Best Fitness

6.1 Final Neural Network 47

Figure 6.3: Standard Deviation

on a single solution. Generally, the standard deviation of a successful network would go down,

as the network begins focusing down to one optimal solution. For this work, however, the

standard deviation rises rapidly throughout training.

For completion, Figures 6.4 and 6.5 are included to show the best fitness of each generation,

and the generation time of each population, respectively. Recall that generation seven’s popula-

tion consisted of a large number of newly generated genomes, hence the sudden drop in fitness

and generation time at genome eight and nine. Ignoring this drop, it can be seen that the best

genome’s fitness tends to rise, slowly, during training.

6.1 Final Neural Network 48

Figure 6.4: Best Genome (top), Best Genome Without Newly Generated Genomes (bottom)

6.1 Final Neural Network 49

Figure 6.5: Generation Time

6.2 Analysis 50

6.2 Analysis

Below, Figure 6.6, shows the layout of the final and most optimal neural network generated.

For reference Figure 6.7 shows the layout of an untrained network using the same configuration:

eleven inputs, ten outputs, and two hidden nodes. Obviously, the training process dramatically

affected the shape and connectivity of the network; in fact, seven of the starting eleven inputs

and five of the original ten outputs were disconnected completely, meaning the network, from

its training, deemed these inputs and outputs irrelevant. While a good designer would highly

disagree, Figures 6.1 and 6.2 suggest this method did in fact work, though only slightly.

Figure 6.6: Final Genome Layout

Figure 6.7: Starting Genome Layout

6.2 Analysis 51

Figure 6.8: Final Results Histogram. Average = +6.4720

To evaluate the effectiveness of the network, a series of one hundred designs using ran-

domized floor plans are fed into the final neural network. Each floor plan is first routed using

Synopsys default CTS parameters, and again using the networks recommended parameters. The

results are compared using the same fitness function as defined in section 5.2.3 to give each

floor plans “difference” value, where a positive difference is an improvement over the default

parameters, compiled and shown in Figure 6.8.

6.3 Discussion 52

6.3 Discussion

From Figure 6.8, it can be seen that, unfortunately, the final network was hardly successful. An

average improvement of only 6.472 is not enough to mark the network as better than the default

settings. However, given the rising average fitness and best fitness discussed in section 6.1, it is

likely that given enough time, the network would continue to improve.

That being said, knowing these results, there are some clear improvements that can be made.

First, using a single design is most likely the greatest bottleneck to the networks success. While

routing the design using randomized floor plans can emulate a variety of designs, the number

of sinks will always be the same, and the other characteristics can only shift by so much. The

network would likely benefit heavily from being trained using multiple, large designs.

Further, considering the networks immediate but slow growth and dramatic topology change,

the configuration file is likely too strict. It seems that the network was too quickly shoe horned

into a single, sub-optimal solution rather than exploring the complexities of CTS to find better,

more complex solutions.

Lastly, the fitness function developed and discussed in Section 5.2.3 likely weights the skew

too lightly. As shown, only the max global skew characteristic is used to represent the skew,

while there are six characteristics used to represent the size of the design, and four used for the

power consumption. While the fitness function would seem to weight the max global skew by

the most, as its scalar is the largest, one serious flaw with the function is that the data is never

normalized. That is, the difference in the max global skew can be in the hundredths of a decimal,

while the difference in area can be in the tens, making the scalar value almost useless. This

issue could be easily avoided by first dividing both the default and “optimized” characteristics

by the default, normalizing both before comparison. However, since the final results shown in

Figure 6.8 are gathered using the same fitness function, the fact that the characteristics are not

6.3 Discussion 53

normalized does not invalidate this data; normalized or not, the network still gives minimal

improvements to CTS parameters.

Chapter 7

Conclusion

The evolutionary neural network developed for this work was intended to aid designers by

suggesting optimal CTS parameters based on a set of characteristics of any given design. The

primary motivation for this work was to gain a better understanding of CTS and to reduce

the development time for complex digital designs. Research was conducted to form a solid

understanding of CTS as well as neural networks, specifically the NEAT methodology for

developing ANNs. The evolutionary neural network trained showed promising results based

on its average fitness’s growth throughout training. Unfortunately, testing the network via a

series of randomized designs proved its minimal ability to suggest optimal CTS parameters,

being only slightly more successful than the default CTS parameters posed by the Synopsys IC

Compiler. More work will need to be conducted to uncover the exact source of the network’s

shortcomings to ensure another attempt will be more successful.

7.1 Future Work 55

7.1 Future Work

The framework built here can be easily expanded upon for further research to develop a more

capable neural network. As mentioned in section 6.3, the primary issues with the network

is most likely the lack of variability in the deign used to train it; the randomized floor plan

method is powerful for emulating multiple large designs, though it falls short of the variety of

completely different designs. Similarly, the networks configuration is possible too strict, forcing

the network into a sub-optimal solution too early in its training, hence the immediate but very

slow improvements. Lastly, the fitness function used to judge the success of the network needs

to be normalized so the network can properly prioritize skew, power consumption, and resource

consumption.

References

[1] A. B. Chong, “Hybrid multisource clock tree synthesis,” in 2021 28th IEEE International

Conference on Electronics, Circuits, and Systems (ICECS), 2021, pp. 1–6.

[2] P. V. Vishnu, A. R. Priyarenjini, and N. Kotha, “Clock tree synthesis techniques for optimal

power and timing convergence in soc partitions,” in 2019 4th International Conference

on Recent Trends on Electronics, Information, Communication & Technology (RTEICT),

2019, pp. 276–280.

[3] G. M. Madhuri, J. Selvakumar, and K. S. Krishna, “Performance analysis on skew op-

timized clock tree synthesis,” in 2022 Fourth International Conference on Emerging

Research in Electronics, Computer Science and Technology (ICERECT), 2022, pp. 01–06.

[4] P. Ray, V. S. Prashant, and B. P. Rao, “Machine learning based parameter tuning for

performance and power optimization of multisource clock tree synthesis,” in 2022 IEEE

35th International System-on-Chip Conference (SOCC), 2022, pp. 1–2.

[5] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, “Gan-cts: A generative

adversarial framework for clock tree prediction and optimization,” in 2019 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[6] Synopsys, Synopsys IC Compiler Manual, Synopsys, Mar. 2024. [Online].

References 57

Available: https://www.synopsys.com/support/licensing-installation-computeplatforms/

synopsys-documentation.html

[7] W.-H. Chen, C.-K. Wang, H.-M. Chen, Y.-C. Chou, and C.-H. Tsai, “A comparative

study on multisource clock network synthesis,” in Proc. SASIMI, 2016, pp. 1–5.

[Online]. Available: https://scholar.google.com/scholar?q=A+Comparative+Study+on+

Multisource+Clock+Network+Synthesis&hl=en&as_sdt=0&as_vis=1&oi=scholart

[8] H. Toyama, “What’s the difference between cts, multisource

cts, and clock mesh?” Electronic Design, Mar. 2012. [On-

line]. Available: https://www.electronicdesign.com/news/products/article/21765665/

whats-the-difference-between-cts-multisource-cts-and-clock-mesh

[9] AnySilicon, “Ultimate guide: Clock tree synthesis,” AnySilicon, Sep. 2022. [Online].

Available: https://anysilicon.com/clock-tree-synthesis/

[10] V. Srivatsa, A. P. Chavan, and D. Mourya, “Design of low power and high performance

multi source h-tree clock distribution network,” in 2020 IEEE VLSI DEVICE CIRCUIT

AND SYSTEM (VLSI DCS), 2020, pp. 468–473.

[11] M. P.-H. Lin, C.-C. Hsu, and Y.-C. Chen, “Clock-tree aware multibit flip-flop generation

during placement for power optimization,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 34, no. 2, pp. 280–292, 2015.

[12] J. Lu, W.-K. Chow, and C.-W. Sham, “Fast power- and slew-aware gated clock tree

synthesis,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,

no. 11, pp. 2094–2103, 2012.

[13] A. Chattopadhyay and Z. Zilic, “Flexible and reconfigurable mismatch-tolerant serial

https://www.synopsys.com/support/licensing-installation-computeplatforms/synopsys-documentation.html
https://www.synopsys.com/support/licensing-installation-computeplatforms/synopsys-documentation.html
https://scholar.google.com/scholar?q=A+Comparative+Study+on+Multisource+Clock+Network+Synthesis&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com/scholar?q=A+Comparative+Study+on+Multisource+Clock+Network+Synthesis&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://www.electronicdesign.com/news/products/article/21765665/whats-the-difference-between-cts-multisource-cts-and-clock-mesh
https://www.electronicdesign.com/news/products/article/21765665/whats-the-difference-between-cts-multisource-cts-and-clock-mesh
https://anysilicon.com/clock-tree-synthesis/

References 58

clock distribution networks,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 20, no. 3, pp. 523–536, 2012.

[14] K. Sharma, “Clock tree routing algorithms,” VLSI- PHYSICAL DESIGN FOR

FRESHERS, Apr. 2020. [Online]. Available: https://www.physicaldesign4u.com/2020/03/

clock-tree-routing-algorithms.html

[15] O. Simeone, “A very brief introduction to machine learning with applications to commu-

nication systems,” IEEE Transactions on Cognitive Communications and Networking,

vol. 4, no. 4, pp. 648–664, 2018.

[16] A. Moujahid, M. ElAraki Tantaoui, M. D. Hina, A. Soukane, A. Ortalda, A. ElKhadimi,

and A. Ramdane-Cherif, “Machine learning techniques in adas: A review,” in 2018

International Conference on Advances in Computing and Communication Engineering

(ICACCE), 2018, pp. 235–242.

[17] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural networks,”

IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 694–713, 1997. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/572107

[18] L. Cheng, Z.-G. Hou, Y. Lin, M. Tan, W. C. Zhang, and F.-X. Wu, “Recurrent neural net-

work for non-smooth convex optimization problems with application to the identification

of genetic regulatory networks,” IEEE Transactions on Neural Networks, vol. 22, no. 5,

pp. 714–726, 2011.

[19] M. E. Taylor, S. Whiteson, and P. Stone, “Comparing evolutionary and temporal

difference methods in a reinforcement learning domain,” in Proceedings of the 8th annual

conference on Genetic and evolutionary computation, 2006, pp. 1321–1328. [Online].

Available: https://dl.acm.org/doi/abs/10.1145/1143997.1144202

https://www.physicaldesign4u.com/2020/03/clock-tree-routing-algorithms.html
https://www.physicaldesign4u.com/2020/03/clock-tree-routing-algorithms.html
https://ieeexplore.ieee.org/abstract/document/572107
https://dl.acm.org/doi/abs/10.1145/1143997.1144202

References 59

[20] K. Stanley and R. Miikkulainen, “Efficient evolution of neural network topologies,”

in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.

No.02TH8600), vol. 2, 2002, pp. 1757–1762 vol.2.

[21] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting

topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–127, 2002. [Online].

Available: https://ieeexplore.ieee.org/document/6790655

[22] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang, “Fast and accurate

estimation of quality of results in high-level synthesis with machine learning,” in 2018

IEEE 26th Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2018, pp. 129–132.

[23] I. Cadence Design Systems, Virtuoso Digital Implementation (VDI)Discovery KitRapid

Adoption Kit (RAK), Cadence Design Systems, Inc., Dec. 2023.

[24] A. McIntyre, M. Kallada, C. G. Miguel, C. Feher de Silva, and M. L. Netto, “neat-python.”

[Online]. Available: https://neat-python.readthedocs.io/en/latest/index.html

[25] CodeReclaimers, NEAT-Python Overview, llc revision 63f4cf81 ed., readthedocs, 2019.

[Online]. Available: https://neat-python.readthedocs.io/en/latest/neat_overview.html

https://ieeexplore.ieee.org/document/6790655
https://neat-python.readthedocs.io/en/latest/index.html
https://neat-python.readthedocs.io/en/latest/neat_overview.html

Appendix I

Source Code

I.1 Training Environment

1 from f i l e M a n i m p o r t *

2 i m p o r t s u b p r o c e s s

3 i m p o r t random

4 i m p o r t t ime

5 from d a t e t i m e i m p o r t d a t e t i m e

6

7 i m p o r t n e a t

8 i m p o r t p i c k l e

9

10 #dummy ()

11 ### c o n t r o l v a r i a b l e s ###

12 c o n f i g P a t h = " n e a t _ c o n f i g _ s t r i c t "

13 e n a b l e R o u t i n g = True

I.1 Training Environment I-2

14 n e w F l o o r p l a n P e r G e n e r a t i o n = F a l s e

15 g e n e r a t e F l o o r p l a n F o r G e n e r a t i o n = True

16 d e t a i l e d R e p o r t i n g = F a l s e

17 a t t e m p t s P e r F l o o r p l a n = 1

18 m i n F l o o r p l a n W a l l S i z e = 10

19 m a x F l o o r p l a n W a l l S i z e = 40

20 g e n e r a t i o n L i m i t = 10

21 checkpoin t sWhen = 2

22 r e p o r t F i l e = " n e a t _ r e p o r t _ r u n 4 _ 9 . t x t "

23

24 s t a r t F r o m C h e c k p o i n t = True

25 c h e c k p o i n t P a t h = " run4_8_nea t − c h e c k p o i n t −81 "

26

27 winnerPKL = " run4_9_bes t_genome . p k l "

28

29 ### r o u t i n g params ###

30 d e f a u l t P a r a m s = { " t a r g e t _ s k e w " : 0 . 0 , " t a r g e t _ e a r l y _ d e l a y " :

0 . 0 , " l e a f _ m a x _ t r a n s i t i o n " : 0 . 5 , " m a x _ t r a n s i t i o n " : 0 . 5 , "

m a x _ c a p a c i t a n c e " : 600 , " max_fanout " : 2000 , "

l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t " : 0 , " l a y e r _ l i s t _ f o r _ s i n k s _ l e n g

" : 10 , " l a y e r _ l i s t _ s t a r t " : 0 , " l a y e r _ l i s t _ l e n g " : 10}

31 f l o o r p l a n S h a p e s = ["L" , "T" , "U" , "X"]

32

33 ### d a t a r e t r e a v i l params ###

34 da t aTag = " "

I.1 Training Environment I-3

35 paramsTag = " "

36 d a t a _ r e q u i r e d = [" Number o f S i n k s " , "Max Gl ob a l Skew " , " Number

o f n e t s " , " Number o f c e l l s " , " C o m b i n a t i o n a l a r e a " , " Buf /

Inv a r e a " , " T o t a l c e l l a r e a " , " C e l l I n t e r n a l Power " , " Net

S w i t c h i n g Power " , " T o t a l Dynamic Power " , " C e l l Leakage

Power "]

37 p a r a m s _ r e q u i r e d = [" t a r g e t _ s k e w " , " t a r g e t _ e a r l y _ d e l a y " , "

l e a f _ m a x _ t r a n s i t i o n " , " m a x _ t r a n s i t i o n " , " m a x _ c a p a c i t a n c e " ,

" max_fanout " , " l a y e r _ l i s t _ f o r _ s i n k s " , " l a y e r _ l i s t "]

38 p r e d i c t e d _ p a r a m s _ r e q u i r e d = [" t a r g e t _ s k e w " , "

t a r g e t _ e a r l y _ d e l a y " , " l e a f _ m a x _ t r a n s i t i o n " , " m a x _ t r a n s i t i o n

" , " m a x _ c a p a c i t a n c e " , " max_fanout " , "

l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t " , " l a y e r _ l i s t _ f o r _ s i n k s _ l e n g " , "

l a y e r _ l i s t _ s t a r t " , " l a y e r _ l i s t _ l e n g "]

39

40 r e s u l t s D a t a = {}

41 r e s u l t s P a r a m s = {}

42 r e s u l t s D a t a L i s t = []

43 o p t i m a l R e s u l t s D a t a = {}

44 o p t i m a l R e s u l t s P a r a m s = {}

45

46 ### g e t s o u r c e f i l e t o r e a d and e v e n t u a l l y o v e r w r i t e ###

47 f i l e _ s r c = " i c c / c m p _ i c c _ s r c . t c l "

48 f i l e _ d e s t = " i c c / cmp_icc . t c l "

49 wi th open (f i l e _ s r c , ’ r ’) a s fh :

I.1 Training Environment I-4

50 f i l e d a t a = fh . r e a d ()

51 f i l e L i n e s = f i l e d a t a . s p l i t (" \ n ")

52

53 d e f eva l_genomes (genomes , c o n f i g) :

54 g l o b a l g e n e r a t e F l o o r p l a n F o r G e n e r a t i o n , n e w F i l e D e f a u l t ,

n e w F i l e D e f a u l t L i n e s

55 i f (g e n e r a t e F l o o r p l a n F o r G e n e r a t i o n) :

56 g e n e r a t e F l o o r p l a n F o r G e n e r a t i o n = n e w F l o o r p l a n P e r G e n e r a t i o n

57 ### s e t u p random f l o o r p l a n , d e f a u l t CTS params ###

58 ## i n s e r t d e f a u l t c t s params

59 n e w F i l e D e f a u l t P a r a m s D a t a = upda t e_pa rams (f i l e L i n e s ,

f i l e d a t a , d e f a u l t P a r a m s)

60 n e w F i l e D e f a u l t P a r a m s D a t a L i n e s = n e w F i l e D e f a u l t P a r a m s D a t a .

s p l i t (" \ n ")

61 ## i n s e r t psuedo random f l o o r p l a n

62 random . seed (t ime . t ime ())

63 d a t a = {}

64 d a t a [" shape "] = random . c h o i c e (f l o o r p l a n S h a p e s)

65 a = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

66 b = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

67 c = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

I.1 Training Environment I-5

68 d = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

69 e = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

70 f = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

71 i f d a t a [" shape "] == "L" :

72 d a t a [" dims "] = " { " + a + " " + b + " " + c + " " + d + "

} "

73 e l s e :

74 d a t a [" dims "] = " { " + a + " " + b + " " + c + " " + d + "

" + e + " " + f + " } "

75

76 r e p o r t _ f h . w r i t e (" \ n C r e a t i n g f l o o r p l a n : " + d a t a [" shape "] +

" " + d a t a [" dims "] + " \ n ")

77 n e w F i l e D e f a u l t = u p d a t e _ f l o o r p l a n (

n e w F i l e D e f a u l t P a r a m s D a t a L i n e s , n e w F i l e D e f a u l t P a r a m s D a t a

, d a t a)

78 n e w F i l e D e f a u l t L i n e s = n e w F i l e D e f a u l t . s p l i t (" \ n ")

79 wi th open (f i l e _ d e s t , ’w’) a s fh :

80 fh . w r i t e (n e w F i l e D e f a u l t)

81

82 ### r o u t e on random f l o o r p l a n wi th d e f a u l t CTS params

###

83 i f (e n a b l e R o u t i n g) :

I.1 Training Environment I-6

84 p = s u b p r o c e s s . Popen ([’ . / i c c . c sh ’ , ’−n ’])

85 p . w a i t ()

86

87 ### g e t d e f a u l t r e p o r t d a t a ###

88 wi th open (" r e p o r t / i c c / r e s u l t s _ c o n v _ s a e d 3 2 n m _ i c c _ p o s t R o u t e .

r p t " , ’ r ’) a s p o s t _ r o u t e _ r e p o r t _ f h :

89 p o s t _ r o u t e _ r e p o r t = p o s t _ r o u t e _ r e p o r t _ f h . r e a d () . s p l i t (" \ n "

)

90

91 g l o b a l r e s u l t s D a t a

92 g e t _ d a t a (r e s u l t s D a t a , d a t a _ r e q u i r e d , p o s t _ r o u t e _ r e p o r t ,

da t aTag)

93 g e t _ d a t a (r e s u l t s P a r a m s , p a r a m s _ r e q u i r e d , p o s t _ r o u t e _ r e p o r t ,

paramsTag)

94 # p r i n t (r e s u l t s D a t a)

95 # p r i n t (" ")

96 # p r i n t (r e s u l t s P a r a m s)

97 f o r x i n r e s u l t s D a t a :

98 r e s u l t s D a t a [x] = f l o a t (r e s u l t s D a t a [x])

99

100 ### f o r m a t d e f a u l t r e p o r t d a t a f o r n e u r a l n e t ###

101 g l o b a l r e s u l t s D a t a L i s t

102 r e s u l t s D a t a L i s t = []

103 f o r x i n d a t a _ r e q u i r e d :

104 r e s u l t s D a t a L i s t . append (r e s u l t s D a t a [x])

I.1 Training Environment I-7

105 # p r i n t (r e s u l t s D a t a L i s t)

106

107 f o r genome_id , genome i n genomes :

108 # r e p o r t _ f h . w r i t e (" \ nRunning genome_id " + s t r (genome_id) +

" a t " + d a t e t i m e . now () . s t r f t i m e ("%H:%M:%S "))

109 genome . f i t n e s s = 5 0 . 0

110 n e t = n e a t . nn . FeedForwardNetwork . c r e a t e (genome , c o n f i g)

111 f o r x i n r a n g e (a t t e m p t s P e r F l o o r p l a n) :

112 ### g i v e i n p u t s t o n e u r a l ne t , g e t p r e d i c t e d o p t i m i z e d

CTS params ###

113 o u t p u t = n e t . a c t i v a t e (r e s u l t s D a t a L i s t)

114 p r e d i c t e d P a r a m s = {}

115 f o r header , param i n z i p (p r e d i c t e d _ p a r a m s _ r e q u i r e d ,

o u t p u t) :

116 p r e d i c t e d P a r a m s [h e a d e r] = round (param , 4)

117

118 # # [" t a r g e t _ s k e w " , " t a r g e t _ e a r l y _ d e l a y " , "

l e a f _ m a x _ t r a n s i t i o n " , " m a x _ t r a n s i t i o n " , "

m a x _ c a p a c i t a n c e " , " max_fanout " , "

l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t " ,

119 # #" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g " , " l a y e r _ l i s t _ s t a r t " , "

l a y e r _ l i s t _ l e n g "]

120 ### s c a l e p a r a m e t e r s f o r f a s t e r t r a i n i n g t ime ###

121 p r e d i c t e d P a r a m s [" t a r g e t _ s k e w "] = p r e d i c t e d P a r a m s ["

t a r g e t _ s k e w "] * 1

I.1 Training Environment I-8

122 p r e d i c t e d P a r a m s [" t a r g e t _ e a r l y _ d e l a y "] = p r e d i c t e d P a r a m s [

" t a r g e t _ e a r l y _ d e l a y "] * 1

123 p r e d i c t e d P a r a m s [" l e a f _ m a x _ t r a n s i t i o n "] = p r e d i c t e d P a r a m s

[" l e a f _ m a x _ t r a n s i t i o n "] * 1

124 p r e d i c t e d P a r a m s [" m a x _ t r a n s i t i o n "] = p r e d i c t e d P a r a m s ["

m a x _ t r a n s i t i o n "] * 1

125 p r e d i c t e d P a r a m s [" m a x _ c a p a c i t a n c e "] = i n t (p r e d i c t e d P a r a m s

[" m a x _ c a p a c i t a n c e "] * 1200)

126 p r e d i c t e d P a r a m s [" max_fanout "] = i n t (p r e d i c t e d P a r a m s ["

max_fanout "] * 4000)

127 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] = i n t (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] * 9)

128 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] = i n t (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] * 10)

129 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ s t a r t "] = i n t (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ s t a r t "] * 9)

130 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ l e n g "] = i n t (p r e d i c t e d P a r a m s

[" l a y e r _ l i s t _ l e n g "] * 10)

131 # p r i n t (p r e d i c t e d P a r a m s)

132

133 ### check p r e d i c t e d v a l u e s f o r v a l i d i t y ###

134 i f (p r e d i c t e d P a r a m s [" l e a f _ m a x _ t r a n s i t i o n "] >

p r e d i c t e d P a r a m s [" m a x _ t r a n s i t i o n "]) o r (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ s t a r t "] >= 9) o r (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] >= 9)

I.1 Training Environment I-9

or (p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ s t a r t "] < 2) o r (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] < 2) :

135 genome . f i t n e s s −= 50

136 b r e a k

137

138 # r e p o r t _ f h . w r i t e (" genome " + s t r (genome_id) + " p a s s e d

c he ck s a t " + d a t e t i m e . now () . s t r f t i m e ("%H:%M:%S ") " .

Params : \ n \ t " + s t r (p r e d i c t e d P a r a m s) + " \ n ")

139 ### i f v a l i d , s e t u p p r e d i c t e d o p t i m a l CTS params

###

140 n e w F i l e P r e d i c t e d P a r a m s = upda t e_pa rams (

n e w F i l e D e f a u l t L i n e s , n e w F i l e D e f a u l t , p r e d i c t e d P a r a m s)

141 wi th open (f i l e _ d e s t , ’w’) a s fh :

142 fh . w r i t e (n e w F i l e P r e d i c t e d P a r a m s)

143

144 ### r o u t e p r e d i c t e d o p t i m a l c l o c k ###

145 i f (e n a b l e R o u t i n g) :

146 p = s u b p r o c e s s . Popen ([’ . / i c c . c sh ’ , ’−n ’])

147 p . w a i t ()

148

149 ### g e t p r e d i c t e d o p t i m a l r e p o r t d a t a

150 wi th open (" r e p o r t / i c c /

r e s u l t s _ c o n v _ s a e d 3 2 n m _ i c c _ p o s t R o u t e . r p t " , ’ r ’) a s

p o s t _ r o u t e _ r e p o r t _ f h :

I.1 Training Environment I-10

151 p o s t _ r o u t e _ r e p o r t = p o s t _ r o u t e _ r e p o r t _ f h . r e a d () . s p l i t (

" \ n ")

152

153 g l o b a l o p t i m a l R e s u l t s D a t a

154 g e t _ d a t a (o p t i m a l R e s u l t s D a t a , d a t a _ r e q u i r e d ,

p o s t _ r o u t e _ r e p o r t , da t aTag)

155 g e t _ d a t a (o p t i m a l R e s u l t s P a r a m s , p a r a m s _ r e q u i r e d ,

p o s t _ r o u t e _ r e p o r t , paramsTag)

156 i f (d e t a i l e d R e p o r t i n g) :

157 r e p o r t _ f h . w r i t e (d a t e t i m e . now () . s t r f t i m e ("%H:%M:%S") +

" : r e c i e v e d r e p o r t f o r genome # " + s t r (genome_id) +

" . \ n D e f a u l t D a t a : \ n \ t " + s t r (r e s u l t s D a t a) + " \

nParams : \ n \ t " + s t r (o p t i m a l R e s u l t s P a r a m s) + " . \

nNewData : \ n \ t " + s t r (o p t i m a l R e s u l t s D a t a) + " \ n \ n ")

158 e l s e :

159 r e p o r t _ f h . w r i t e (d a t e t i m e . now () . s t r f t i m e ("%H:%M:%S") +

" : r e c i e v e d r e p o r t f o r genome # " + s t r (genome_id) +

" . \ n ")

160

161 ### compare o p t i m a l t o d e f a u l t r e p o r t d a t a

162 # # [" Number o f S i n k s " , "Max Gl ob a l Skew " , " Number o f n e t s

" , " Number o f c e l l s " , " C o m b i n a t i o n a l a r e a " , " Buf / Inv

a r e a " , " T o t a l c e l l a r e a " ,

163 # #" C e l l I n t e r n a l Power " , " Net S w i t c h i n g Power " , " T o t a l

Dynamic Power " , " C e l l Leakage Power "]

I.1 Training Environment I-11

164 f o r x i n o p t i m a l R e s u l t s D a t a :

165 o p t i m a l R e s u l t s D a t a [x] = f l o a t (o p t i m a l R e s u l t s D a t a [x])

166

167 d i f f = 0

168 d i f f += 15*(o p t i m a l R e s u l t s D a t a ["Max Gl ob a l Skew "] −

r e s u l t s D a t a ["Max G lo ba l Skew "])

169 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" C e l l I n t e r n a l Power "] −

r e s u l t s D a t a [" C e l l I n t e r n a l Power "])

170 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" Net S w i t c h i n g Power "] −

r e s u l t s D a t a [" Net S w i t c h i n g Power "])

171 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" T o t a l Dynamic Power "] −

r e s u l t s D a t a [" T o t a l Dynamic Power "])

172 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" C e l l Leakage Power "] −

r e s u l t s D a t a [" C e l l Leakage Power "])

173 d i f f += 1*(o p t i m a l R e s u l t s D a t a [" C o m b i n a t i o n a l a r e a "] −

r e s u l t s D a t a [" C o m b i n a t i o n a l a r e a "])

174 d i f f += 1*(o p t i m a l R e s u l t s D a t a [" Buf / Inv a r e a "] −

r e s u l t s D a t a [" Buf / Inv a r e a "])

175

176 genome . f i t n e s s −= d i f f

177

178

179 d e f run (c o n f i g _ f i l e) :

180 c o n f i g = n e a t . Conf ig (

181 n e a t . DefaultGenome ,

I.1 Training Environment I-12

182 n e a t . D e f a u l t R e p r o d u c t i o n ,

183 n e a t . D e f a u l t S p e c i e s S e t ,

184 n e a t . D e f a u l t S t a g n a t i o n ,

185 c o n f i g _ f i l e ,

186)

187

188 i f n o t (s t a r t F r o m C h e c k p o i n t) :

189 r e p o r t _ f h . w r i t e (" r u n n i n g new p o p u l a t i o n a t " + d a t e t i m e .

now () . s t r f t i m e ("%H:%M:%S"))

190 pop = n e a t . P o p u l a t i o n (c o n f i g)

191 e l s e :

192 r e p o r t _ f h . w r i t e (" r u n n i n g from c h e c k p o i n t " +

c h e c k p o i n t P a t h + " a t " + d a t e t i m e . now () . s t r f t i m e ("%H:%

M:%S"))

193 pop = n e a t . C h e c k p o i n t e r . r e s t o r e _ c h e c k p o i n t (c h e c k p o i n t P a t h)

194

195 ### added custom r e p o r t i n g t o ’ / n e a t / nn / r e p o r t i n g . py −

S t d O u t R e p o r t e r ’ t o r e p o r t d a t a t o f i l e i n s t e a d o f

t e r m i n a l

196 pop . a d d _ r e p o r t e r (n e a t . S t d O u t R e p o r t e r (True , r e p o r t _ f h))

197 s t a t s = n e a t . S t a t i s t i c s R e p o r t e r ()

198 pop . a d d _ r e p o r t e r (s t a t s)

199 pop . a d d _ r e p o r t e r (n e a t . C h e c k p o i n t e r (checkpoin t sWhen))

200

201 # n e a t . C h e c k p o i n t e r . r e s t o r e _ c h e c k p o i n t

I.1 Training Environment I-13

202 winner = pop . run (eval_genomes , g e n e r a t i o n L i m i t)

203

204 wi th open (winnerPKL , ’wb ’) a s genome_fh :

205 p i c k l e . dump (winner , genome_fh)

206

207 r e p o r t _ f h . w r i t e (" \ nBes t Genome : \ n { ! s } " . f o r m a t (winner))

208

209 " " "

210 r e p o r t _ f h . w r i t e (" \ nOutpu t : \ n ")

211 w i n n e r _ n e t = n e a t . nn . FeedForwardNetwork . c r e a t e (winner ,

c o n f i g)

212 g l o b a l r e s u l t s D a t a L i s t , o p t i m a l R e s u l t s D a t a , r e s u l t s D a t a

213 o u t p u t = w i n n e r _ n e t . a c t i v a t e (r e s u l t s D a t a L i s t)

214

215 p r e d i c t e d P a r a m s = {}

216 f o r header , param i n z i p (p r e d i c t e d _ p a r a m s _ r e q u i r e d , o u t p u t) :

217 p r e d i c t e d P a r a m s [h e a d e r] = round (param , 4)

218

219 # # [" t a r g e t _ s k e w " , " t a r g e t _ e a r l y _ d e l a y " , " l e a f _ m a x _ t r a n s i t i o n

" , " m a x _ t r a n s i t i o n " , " m a x _ c a p a c i t a n c e " , " max_fanout " , "

l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t " ,

220 ##" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g " , " l a y e r _ l i s t _ s t a r t " , "

l a y e r _ l i s t _ l e n g "]

221 p r e d i c t e d P a r a m s [" t a r g e t _ s k e w "] = p r e d i c t e d P a r a m s ["

t a r g e t _ s k e w "] * 1

I.1 Training Environment I-14

222 p r e d i c t e d P a r a m s [" t a r g e t _ e a r l y _ d e l a y "] = p r e d i c t e d P a r a m s ["

t a r g e t _ e a r l y _ d e l a y "] * 1

223 p r e d i c t e d P a r a m s [" l e a f _ m a x _ t r a n s i t i o n "] = p r e d i c t e d P a r a m s ["

l e a f _ m a x _ t r a n s i t i o n "] * 1

224 p r e d i c t e d P a r a m s [" m a x _ t r a n s i t i o n "] = p r e d i c t e d P a r a m s ["

m a x _ t r a n s i t i o n "] * 1

225 p r e d i c t e d P a r a m s [" m a x _ c a p a c i t a n c e "] = i n t (p r e d i c t e d P a r a m s ["

m a x _ c a p a c i t a n c e "] * 1200)

226 p r e d i c t e d P a r a m s [" max_fanout "] = i n t (p r e d i c t e d P a r a m s ["

max_fanout "] * 4000)

227 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] = i n t (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] * 9)

228 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] = i n t (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] * 10)

229 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ s t a r t "] = i n t (p r e d i c t e d P a r a m s ["

l a y e r _ l i s t _ s t a r t "] * 9)

230 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ l e n g "] = i n t (p r e d i c t e d P a r a m s ["

l a y e r _ l i s t _ l e n g "] * 10)

231

232 # r e p o r t _ f h . w r i t e (" I n p u t : \ n \ t " + s t r (r e s u l t s D a t a) + " \ nOutpu t

Params : \ n \ t " + s t r (p r e d i c t e d P a r a m s) + " \ nOutpu t R e s u l t s

: \ n \ t " + s t r (o p t i m a l R e s u l t s D a t a) + " \ n ")

233 " " "

234

235 r e p o r t _ f h = open (r e p o r t F i l e , ’w’)

I.1 Training Environment I-15

236 # wi th open (r e p o r t F i l e , ’w ’) a s r e p o r t _ f h :

237 run (c o n f i g P a t h)

238 r e p o r t _ f h . w r i t e (" \ nDone : " + d a t e t i m e . now () . s t r f t i m e ("%H:%M:%S

"))

239

240 r e p o r t _ f h . c l o s e ()

241 p r i n t ("DONE! ")

242

243 " " "

244 psuedo :

245 D e f a u l t Route :

246 r o u t e semi −random f l o o r p l a n wi th d e a u l t c l o c k t r e e s e t t i n g s

247 g e t d e f a u l t r e p o r t d a t a

248 N eu ra l Net :

249 f e e d d e f a u l t r e p o r t d a t a t o NEAT n e t

250 g e t p r e d i c t e d o p t i m a l c t s i n p u t params

251 Opt imal Route :

252 r o u t e new c l o c k t r e e on same f l o o r p l a n

253 g e t o p t i m a l r e p o r t d a t a

254 N eu ra l Net

255 compare o p t i m a l t o d e f a u l t r e p o r t d a t a

256 u p d a t e N eu ra l n e t

257

258 r e p e a t u n t i l good enough ?

259 " " "

I.1 Training Environment I-16

I.2 Automatic File Management (FileMan) I-17

I.2 Automatic File Management (FileMan)

1 ### l i n e s = s o u r c e f i l e p a r s e d l i n e by l i n e (can be e d i t e d)

2 ### S t o r e _ t o _ f i l e = c o m p l e t e f i l e which w i l l have l i n e s

r e p l a c e d (c a n n o t be e d i t e d , opened as ’ r ’)

3 ### params = d i c t i o n a r y o f t h e params t o be f e d i n t o t h e new

f i l e

4 ### r e t u r n s : f u l l f i l e da t a , t o be used t o o v e r w r i t e

d e s t i n a t i o n f i l e

5 d e f upda t e_pa rams (l i n e s , S t o r e _ t o _ f i l e , params) :

6 m e t a l L a y e r s = ["M1" , "M2" , "M3" , "M4" , "M5" , "M6" , "M7" , "M8

" , "M9" , "MRDL"]

7 s t a r t F i l l = F a l s e

8 # p r i n t (" r e c i e v e d params ")

9 # p r i n t (params)

10 f o r l n i n l i n e s :

11 # p r i n t (" p a r s i n g l i n e " + l n)

12 i f " s e t _ c l o c k _ t r e e _ o p t i o n s \ \ " i n l n :

13 s t a r t F i l l = True

14 # p r i n t (" found params l i n e ")

15 e l i f s t a r t F i l l :

16 param , sep , v a l = l n . p a r t i t i o n (" ")

17 i f " \ " " n o t i n v a l :

18 v a l = v a l . r e p l a c e (" " , " ")

19 v a l = v a l . r e p l a c e (" \ \ " , " ")

I.2 Automatic File Management (FileMan) I-18

20 e l s e :

21 v a l = v a l . s p l i t (’ " ’)

22 v a l = v a l [1]

23

24 i f "− t a r g e t _ s k e w " i n param : ### d e f a u l t : 0 s

25 # p r i n t (" t a r g e t _ s k e w = " + v a l)

26 t a r g e t _ s k e w = params [" t a r g e t _ s k e w "]

27 # t a r g e t _ s k e w = 0 . 0

28 ln_new = l n . r e p l a c e (va l , s t r (t a r g e t _ s k e w))

29 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

30

31 e l i f "− t a r g e t _ e a r l y _ d e l a y " i n param : ### d e f a u l t : 0

s

32 # p r i n t (" t a r g e t _ e a r l y _ d e l a y = " + v a l)

33 t a r g e t _ e a r l y _ d e l a y = params [" t a r g e t _ e a r l y _ d e l a y "]

34 # t a r g e t _ e a r l y _ d e l a y = 0 . 1 5

35 ln_new = l n . r e p l a c e (va l , s t r (t a r g e t _ e a r l y _ d e l a y))

36 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

37

38 e l i f "− m a x _ t r a n s i t i o n " i n param : ### d e f a u l t : 0 . 5

ns

39 # p r i n t (" m a x _ t r a n s i t i o n = " + v a l)

40 m a x _ t r a n s i t i o n = params [" m a x _ t r a n s i t i o n "]

41 # m a x _ t r a n s i t i o n = 0 . 2

42 ln_new = l n . r e p l a c e (va l , s t r (m a x _ t r a n s i t i o n))

I.2 Automatic File Management (FileMan) I-19

43 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

44

45 e l i f "− l e a f _ m a x _ t r a n s i t i o n " i n param : ### d e f a u l t :

0 . 5 ns o r m a x _ t r a n s i t i o n

46 # p r i n t (" l e a f _ m a x _ t r a n s i t i o n = " + v a l)

47 ### l e a f _ m a x _ t r a n s i t i o n must be l e s s t h a n or e q u a l t o

m a x _ t r a n s i t i o n

48 l e a f _ m a x _ t r a n s i t i o n = params [" l e a f _ m a x _ t r a n s i t i o n "]

49 # l e a f _ m a x _ t r a n s i t i o n = 0 . 1

50 ln_new = l n . r e p l a c e (va l , s t r (l e a f _ m a x _ t r a n s i t i o n))

51 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

52

53 e l i f "− m a x _ c a p a c i t a n c e " i n param : ### d e f a u l t : 0 . 6

p f

54 # p r i n t (" m a x _ c a p a c i t a n c e = " + v a l)

55 m a x _ c a p a c i t a n c e = params [" m a x _ c a p a c i t a n c e "]

56 # m a x _ c a p a c i t a n c e = 300

57 ln_new = l n . r e p l a c e (va l , s t r (m a x _ c a p a c i t a n c e))

58 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

59

60 e l i f "−max_fanout " i n param : ### d e f a u l t : 2000

61 # p r i n t (" max_fanout = " + v a l)

62 max_fanout = params [" max_fanout "]

63 # max_fanout = 100

64 ln_new = l n . r e p l a c e (va l , s t r (max_fanout))

I.2 Automatic File Management (FileMan) I-20

65 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

66

67 e l i f "− l a y e r _ l i s t " i n param : ### d e f a u l t : a l l

m e t a l l a y e r s

68 # p r i n t (" l a y e r _ l i s t = " + v a l)

69 metalsNew = " "

70 f i r s t = params [" l a y e r _ l i s t _ s t a r t "]

71 l e n g = params [" l a y e r _ l i s t _ l e n g "]

72 f o r x i n r a n g e (f i r s t , f i r s t + l e n g) :

73 t r y :

74 metalsNew += m e t a l L a y e r s [x] + " "

75 e x c e p t I n d e x E r r o r :

76 b r e a k

77 ln_new = l n . r e p l a c e (va l , metalsNew)

78 # ln_new = l n . r e p l a c e (va l , "M2 M3 M4 M5 M6")

79 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

80

81 e l i f "− l a y e r _ l i s t _ f o r _ s i n k s " i n param : ### d e f a u l t :

a l l m e t a l l a y e r s

82 # p r i n t (" l a y e r _ l i s t _ f o r _ s i n k s = " + v a l)

83 metalsNew = " "

84 ### r an ge d t o omi t MRDL c a u s e i d k what i t means

85 f i r s t = params [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "]

86 l e n g = params [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "]

87 f o r x i n r a n g e (f i r s t , f i r s t + l e n g) :

I.2 Automatic File Management (FileMan) I-21

88 t r y :

89 metalsNew += m e t a l L a y e r s [x] + " "

90 e x c e p t I n d e x E r r o r :

91 b r e a k

92 ln_new = l n . r e p l a c e (va l , metalsNew)

93 # ln_new = l n . r e p l a c e (va l , "M1 M2 M3 M4 M5")

94 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

95 s t a r t F i l l = F a l s e

96 b r e a k

97 r e t u r n S t o r e _ t o _ f i l e

98

99 d e f u p d a t e _ f l o o r p l a n (l i n e s , S t o r e _ t o _ f i l e , d a t a) :

100 s t a r t F i l l = F a l s e

101 f o r l n i n l i n e s :

102 # p r i n t (" p a r s i n g l i n e " + l n)

103 i f ((" # C r e a t e f l o o r p l a n " i n l n) and n o t (s t a r t F i l l)) :

104 s t a r t F i l l = True

105 e l i f s t a r t F i l l :

106 param , sep , v a l = l n . p a r t i t i o n (" ")

107 i f " { " n o t i n v a l :

108 v a l = v a l . r e p l a c e (" " , " ")

109 v a l = v a l . r e p l a c e (" \ \ " , " ")

110 e l s e :

111 v a l = v a l . r e p l a c e (" \ \ " , " ")

112 i f " shape " i n param :

I.2 Automatic File Management (FileMan) I-22

113 ln_new = l n . r e p l a c e (va l , d a t a [" shape "])

114 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

115 e l i f " c o r e _ s i d e _ d i m " i n param :

116 ln_new = l n . r e p l a c e (va l , d a t a [" dims "])

117 S t o r e _ t o _ f i l e = S t o r e _ t o _ f i l e . r e p l a c e (ln , ln_new)

118 s t a r t F i l l = F a l s e

119 b r e a k

120 r e t u r n S t o r e _ t o _ f i l e

121

122 ### r e s u l t s = d i c t i o n a r y t o ho ld o u t p u t d a t a

123 ### a r g s = l i s t o f r e q u i r e d d a t a ’ s names

124 ### f i l e = f i l e t o s e a r c h

125 ### t a g = what t o append t o a r g s names i n t h e d i c t i o n a r y (ex : "

_p re " , " _ p o s t " , " ")

126 ### r e t u r n s : n u l l

127 d e f g e t _ d a t a (r e s u l t s , a rg s , f i l e , t a g) :

128 f o r l n i n f i l e :

129 f o r a r g i n a r g s :

130 i f a r g i n l n :

131 i f " l a y e r _ l i s t " i n a r g :

132 # p r i n t (" found l a y e r l i s t : " + l n)

133 s t a r t S t o r e = F a l s e

134 l a y e r s = " "

135 f o r x i n l n :

136 i f x == "M" :

I.2 Automatic File Management (FileMan) I-23

137 s t a r t S t o r e = True

138 i f s t a r t S t o r e :

139 l a y e r s += x

140 # r e s u l t s [a r g . r e p l a c e (" " , " _ ") + t a g] = l a y e r s

141 r e s u l t s [a r g + t a g] = l a y e r s

142 e l s e :

143 f o r t o k e n i n l n . s p l i t () :

144 t r y :

145 i f (i n t (t o k e n)) :

146 # r e s u l t s [a r g . r e p l a c e (" " , " _ ") + t a g] = t o k e n

147 r e s u l t s [a r g + t a g] = t o k e n

148 e x c e p t :

149 t r y :

150 i f (f l o a t (t o k e n)) o r (n o t f l o a t (t o k e n)) :

151 # r e s u l t s [a r g . r e p l a c e (" " , " _ ") + t a g] =

t o k e n

152 r e s u l t s [a r g + t a g] = t o k e n

153 e x c e p t :

154 p a s s

155 b r e a k

156

157 d e f m a k e _ r e s u l t s _ f i l e (h e a d e r _ d a t a , b u f f e r S i z e) :

158 h e a d e r = " run # "

159 f o r x i n h e a d e r _ d a t a :

160 b u f f = " "

I.2 Automatic File Management (FileMan) I-24

161 f o r y i n r a n g e (b u f f e r S i z e − l e n (x)) :

162 b u f f += " "

163 h e a d e r += x + b u f f + " | \ t "

164

165 ### c r e a t e r e s u l t s f i l e

166 wi th open (" r u n _ r e s u l t s . t x t " , ’w’) a s r _ f h :

167 r _ f h . w r i t e (h e a d e r)

168

169 d e f r e c o r d _ r e s u l t s (h e a d e r _ d a t a , r e s u l t s , runNum , f i l e ,

b u f f e r S i z e) :

170 r e s u l t s _ s t r = " \ n " + s t r (runNum) + " \ t # \ t "

171 f o r x i n a l l _ d a t a :

172 b u f f = " "

173 t r y :

174 f o r y i n r a n g e (o r g _ b u f f e r − l e n (s t r (r e s u l t s [x]))) :

175 b u f f += " "

176 r e s u l t s _ s t r += s t r (r e s u l t s [x]) + b u f f + " | \ t "

177 e x c e p t :

178 r e s u l t s _ s t r += "ERROR | \ t "

179

180 wi th open (" r u n _ r e s u l t s . t x t " , ’ a ’) a s r _ f h :

181 r _ f h . w r i t e (r e s u l t s _ s t r)

182

183 d e f dummy () :

184 p r i n t (" t h i s d o e s n t do a n y t h i n g ")

I.2 Automatic File Management (FileMan) I-25

I.3 Testing Environment I-26

I.3 Testing Environment

1 from f i l e M a n i m p o r t *

2 i m p o r t s u b p r o c e s s

3 i m p o r t random

4 i m p o r t t ime

5 from d a t e t i m e i m p o r t d a t e t i m e

6

7 i m p o r t n e a t

8 i m p o r t p i c k l e

9

10 e n a b l e R o u t i n g = True

11 m i n F l o o r p l a n W a l l S i z e = 10

12 m a x F l o o r p l a n W a l l S i z e = 40

13

14 d e f a u l t P a r a m s = { " t a r g e t _ s k e w " : 0 . 0 , " t a r g e t _ e a r l y _ d e l a y " :

0 . 0 , " l e a f _ m a x _ t r a n s i t i o n " : 0 . 5 , " m a x _ t r a n s i t i o n " : 0 . 5 , "

m a x _ c a p a c i t a n c e " : 600 , " max_fanout " : 2000 , "

l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t " : 0 , " l a y e r _ l i s t _ f o r _ s i n k s _ l e n g

" : 10 , " l a y e r _ l i s t _ s t a r t " : 0 , " l a y e r _ l i s t _ l e n g " : 10}

15 f l o o r p l a n S h a p e s = ["L" , "T" , "U" , "X"]

16

17 da t aTag = " "

18 paramsTag = " "

I.3 Testing Environment I-27

19 d a t a _ r e q u i r e d = [" Number o f S i n k s " , "Max Gl ob a l Skew " , " Number

o f n e t s " , " Number o f c e l l s " , " C o m b i n a t i o n a l a r e a " , " Buf /

Inv a r e a " , " T o t a l c e l l a r e a " , " C e l l I n t e r n a l Power " , " Net

S w i t c h i n g Power " , " T o t a l Dynamic Power " , " C e l l Leakage

Power "]

20 p a r a m s _ r e q u i r e d = [" t a r g e t _ s k e w " , " t a r g e t _ e a r l y _ d e l a y " , "

l e a f _ m a x _ t r a n s i t i o n " , " m a x _ t r a n s i t i o n " , " m a x _ c a p a c i t a n c e " ,

" max_fanout " , " l a y e r _ l i s t _ f o r _ s i n k s " , " l a y e r _ l i s t "]

21 p r e d i c t e d _ p a r a m s _ r e q u i r e d = [" t a r g e t _ s k e w " , "

t a r g e t _ e a r l y _ d e l a y " , " l e a f _ m a x _ t r a n s i t i o n " , " m a x _ t r a n s i t i o n

" , " m a x _ c a p a c i t a n c e " , " max_fanout " , "

l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t " , " l a y e r _ l i s t _ f o r _ s i n k s _ l e n g " , "

l a y e r _ l i s t _ s t a r t " , " l a y e r _ l i s t _ l e n g "]

22

23 r e s u l t s D a t a = {}

24 r e s u l t s P a r a m s = {}

25 r e s u l t s D a t a L i s t = []

26 o p t i m a l R e s u l t s D a t a = {}

27 o p t i m a l R e s u l t s P a r a m s = {}

28

29 ### g e t s o u r c e f i l e t o r e a d and e v e n t u a l l y o v e r w r i t e ###

30 f i l e _ s r c = " i c c / c m p _ i c c _ s r c . t c l "

31 f i l e _ d e s t = " i c c / cmp_icc . t c l "

32 wi th open (f i l e _ s r c , ’ r ’) a s fh :

33 f i l e d a t a = fh . r e a d ()

I.3 Testing Environment I-28

34 f i l e L i n e s = f i l e d a t a . s p l i t (" \ n ")

35

36 d e f t e s t _ g e n o m e (c o n f i g _ f i l e) :

37 c o n f i g = n e a t . Conf ig (

38 n e a t . DefaultGenome ,

39 n e a t . D e f a u l t R e p r o d u c t i o n ,

40 n e a t . D e f a u l t S p e c i e s S e t ,

41 n e a t . D e f a u l t S t a g n a t i o n ,

42 c o n f i g _ f i l e ,

43)

44 wi th open (" run4_9_bes t_genome . p k l " , ’ rb ’) a s genome_fh :

45 bes t_genome = p i c k l e . l o a d (genome_fh)

46 w i n n e r _ n e t = n e a t . nn . FeedForwardNetwork . c r e a t e (best_genome ,

c o n f i g)

47

48 f o r x i n r a n g e (3 0) :

49 ### s e t u p random f l o o r p l a n , d e f a u l t CTS params ###

50 ## i n s e r t d e f a u l t c t s params

51 n e w F i l e D e f a u l t P a r a m s D a t a = upda t e_pa rams (f i l e L i n e s ,

f i l e d a t a , d e f a u l t P a r a m s)

52 n e w F i l e D e f a u l t P a r a m s D a t a L i n e s = n e w F i l e D e f a u l t P a r a m s D a t a .

s p l i t (" \ n ")

53 ## i n s e r t psuedo random f l o o r p l a n

54 random . seed (t ime . t ime ())

55 d a t a = {}

I.3 Testing Environment I-29

56 d a t a [" shape "] = random . c h o i c e (f l o o r p l a n S h a p e s)

57 a = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

58 b = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

59 c = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

60 d = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

61 e = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

62 f = s t r (random . r a n d i n t (m i n F l o o r p l a n W a l l S i z e ,

m a x F l o o r p l a n W a l l S i z e))

63 i f d a t a [" shape "] == "L" :

64 d a t a [" dims "] = " { " + a + " " + b + " " + c + " " + d + "

} "

65 e l s e :

66 d a t a [" dims "] = " { " + a + " " + b + " " + c + " " + d + "

" + e + " " + f + " } "

67

68 r e p o r t _ f h . w r i t e (" \ n C r e a t i n g f l o o r p l a n : " + d a t a [" shape "] +

" " + d a t a [" dims "] + " \ n ")

69 n e w F i l e D e f a u l t = u p d a t e _ f l o o r p l a n (

n e w F i l e D e f a u l t P a r a m s D a t a L i n e s , n e w F i l e D e f a u l t P a r a m s D a t a

, d a t a)

I.3 Testing Environment I-30

70 n e w F i l e D e f a u l t L i n e s = n e w F i l e D e f a u l t . s p l i t (" \ n ")

71 wi th open (f i l e _ d e s t , ’w’) a s fh :

72 fh . w r i t e (n e w F i l e D e f a u l t)

73

74 ### r o u t e on random f l o o r p l a n wi th d e f a u l t CTS params

###

75 i f (e n a b l e R o u t i n g) :

76 p = s u b p r o c e s s . Popen ([’ . / i c c . c sh ’ , ’−n ’])

77 p . w a i t ()

78

79 ### g e t d e f a u l t r e p o r t d a t a ###

80 wi th open (" r e p o r t / i c c / r e s u l t s _ c o n v _ s a e d 3 2 n m _ i c c _ p o s t R o u t e .

r p t " , ’ r ’) a s p o s t _ r o u t e _ r e p o r t _ f h :

81 p o s t _ r o u t e _ r e p o r t = p o s t _ r o u t e _ r e p o r t _ f h . r e a d () . s p l i t (" \

n ")

82

83 g l o b a l r e s u l t s D a t a

84 g e t _ d a t a (r e s u l t s D a t a , d a t a _ r e q u i r e d , p o s t _ r o u t e _ r e p o r t ,

da t aTag)

85 g e t _ d a t a (r e s u l t s P a r a m s , p a r a m s _ r e q u i r e d , p o s t _ r o u t e _ r e p o r t

, paramsTag)

86

87 f o r x i n r e s u l t s D a t a :

88 r e s u l t s D a t a [x] = f l o a t (r e s u l t s D a t a [x])

89

I.3 Testing Environment I-31

90 ### f o r m a t d e f a u l t r e p o r t d a t a f o r n e u r a l n e t ###

91 g l o b a l r e s u l t s D a t a L i s t

92 r e s u l t s D a t a L i s t = []

93 f o r x i n d a t a _ r e q u i r e d :

94 r e s u l t s D a t a L i s t . append (r e s u l t s D a t a [x])

95

96 o u t p u t = w i n n e r _ n e t . a c t i v a t e (r e s u l t s D a t a L i s t)

97

98 p r e d i c t e d P a r a m s = {}

99 f o r header , param i n z i p (p r e d i c t e d _ p a r a m s _ r e q u i r e d , o u t p u t

) :

100 p r e d i c t e d P a r a m s [h e a d e r] = round (param , 4)

101

102 ### s c a l e p a r a m e t e r s f o r f a s t e r t r a i n i n g t ime ###

103 p r e d i c t e d P a r a m s [" t a r g e t _ s k e w "] = p r e d i c t e d P a r a m s ["

t a r g e t _ s k e w "] * 1

104 p r e d i c t e d P a r a m s [" t a r g e t _ e a r l y _ d e l a y "] = p r e d i c t e d P a r a m s ["

t a r g e t _ e a r l y _ d e l a y "] * 1

105 p r e d i c t e d P a r a m s [" l e a f _ m a x _ t r a n s i t i o n "] = p r e d i c t e d P a r a m s ["

l e a f _ m a x _ t r a n s i t i o n "] * 1

106 p r e d i c t e d P a r a m s [" m a x _ t r a n s i t i o n "] = p r e d i c t e d P a r a m s ["

m a x _ t r a n s i t i o n "] * 1

107 p r e d i c t e d P a r a m s [" m a x _ c a p a c i t a n c e "] = i n t (p r e d i c t e d P a r a m s ["

m a x _ c a p a c i t a n c e "] * 1200)

I.3 Testing Environment I-32

108 p r e d i c t e d P a r a m s [" max_fanout "] = i n t (p r e d i c t e d P a r a m s ["

max_fanout "] * 4000)

109 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] = i n t (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] * 9)

110 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] = i n t (

p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] * 10)

111 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ s t a r t "] = i n t (p r e d i c t e d P a r a m s [

" l a y e r _ l i s t _ s t a r t "] * 9)

112 p r e d i c t e d P a r a m s [" l a y e r _ l i s t _ l e n g "] = i n t (p r e d i c t e d P a r a m s ["

l a y e r _ l i s t _ l e n g "] * 10)

113

114 ### check p r e d i c t e d v a l u e s f o r v a l i d i t y ###

115 i f (p r e d i c t e d P a r a m s [" l e a f _ m a x _ t r a n s i t i o n "] >

p r e d i c t e d P a r a m s [" m a x _ t r a n s i t i o n "]) o r (p r e d i c t e d P a r a m s [

" l a y e r _ l i s t _ s t a r t "] >= 9) o r (p r e d i c t e d P a r a m s ["

l a y e r _ l i s t _ f o r _ s i n k s _ s t a r t "] >= 9) o r (p r e d i c t e d P a r a m s [

" l a y e r _ l i s t _ s t a r t "] < 2) o r (p r e d i c t e d P a r a m s ["

l a y e r _ l i s t _ f o r _ s i n k s _ l e n g "] < 2) :

116 r e p o r t _ f h . w r i t e (" i n v a l i d o u t p u t : " + s t r (p r e d i c t e d P a r a m s

))

117 d i f f = "INVALID"

118 e l s e :

119 ### i f v a l i d , s e t u p p r e d i c t e d o p t i m a l CTS params

###

I.3 Testing Environment I-33

120 n e w F i l e P r e d i c t e d P a r a m s = upda t e_pa rams (

n e w F i l e D e f a u l t L i n e s , n e w F i l e D e f a u l t , p r e d i c t e d P a r a m s)

121 wi th open (f i l e _ d e s t , ’w’) a s fh :

122 fh . w r i t e (n e w F i l e P r e d i c t e d P a r a m s)

123

124 ### r o u t e p r e d i c t e d o p t i m a l c l o c k ###

125 i f (e n a b l e R o u t i n g) :

126 p = s u b p r o c e s s . Popen ([’ . / i c c . c sh ’ , ’−n ’])

127 p . w a i t ()

128

129 ### g e t p r e d i c t e d o p t i m a l r e p o r t d a t a

130 wi th open (" r e p o r t / i c c /

r e s u l t s _ c o n v _ s a e d 3 2 n m _ i c c _ p o s t R o u t e . r p t " , ’ r ’) a s

p o s t _ r o u t e _ r e p o r t _ f h :

131 p o s t _ r o u t e _ r e p o r t = p o s t _ r o u t e _ r e p o r t _ f h . r e a d () . s p l i t (

" \ n ")

132

133 g l o b a l o p t i m a l R e s u l t s D a t a

134 g e t _ d a t a (o p t i m a l R e s u l t s D a t a , d a t a _ r e q u i r e d ,

p o s t _ r o u t e _ r e p o r t , da t aTag)

135 g e t _ d a t a (o p t i m a l R e s u l t s P a r a m s , p a r a m s _ r e q u i r e d ,

p o s t _ r o u t e _ r e p o r t , paramsTag)

136

137 f o r x i n o p t i m a l R e s u l t s D a t a :

138 o p t i m a l R e s u l t s D a t a [x] = f l o a t (o p t i m a l R e s u l t s D a t a [x])

I.3 Testing Environment I-34

139

140 d i f f = 0

141 d i f f += 15*(o p t i m a l R e s u l t s D a t a ["Max Gl ob a l Skew "] −

r e s u l t s D a t a ["Max G lo ba l Skew "])

142 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" C e l l I n t e r n a l Power "] −

r e s u l t s D a t a [" C e l l I n t e r n a l Power "])

143 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" Net S w i t c h i n g Power "] −

r e s u l t s D a t a [" Net S w i t c h i n g Power "])

144 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" T o t a l Dynamic Power "] −

r e s u l t s D a t a [" T o t a l Dynamic Power "])

145 d i f f += 3*(o p t i m a l R e s u l t s D a t a [" C e l l Leakage Power "] −

r e s u l t s D a t a [" C e l l Leakage Power "])

146 d i f f += 1*(o p t i m a l R e s u l t s D a t a [" C o m b i n a t i o n a l a r e a "] −

r e s u l t s D a t a [" C o m b i n a t i o n a l a r e a "])

147 d i f f += 1*(o p t i m a l R e s u l t s D a t a [" Buf / Inv a r e a "] −

r e s u l t s D a t a [" Buf / Inv a r e a "])

148

149 ### a c c o u n t f o r genome . f i t n e s s −= d i f f (i . e . t h e lower

d i f f (i n c l u d i n g n e g a t i v e s) t h e b e t t e r)

150 d i f f = − d i f f

151

152 r e p o r t _ f h . w r i t e (" Given : " + s t r (r e s u l t s D a t a) + " \ n ")

153 r e p o r t _ f h . w r i t e (" Gave : " + s t r (p r e d i c t e d P a r a m s) + " \ n ")

154 r e p o r t _ f h . w r i t e (" For : " + s t r (o p t i m a l R e s u l t s D a t a) + " \ n ")

155 r e p o r t _ f h . w r i t e (" d i f f = " + s t r (d i f f) + " \ n \ n ")

I.3 Testing Environment I-35

156

157

158 r e p o r t _ f h = open (" n e a t _ r e p o r t _ z F i n a l . t x t " , ’ a ’)

159 c o n f i g P a t h = " n e a t _ c o n f i g _ s t r i c t "

160 t e s t _ g e n o m e (c o n f i g P a t h)

161

162 r e p o r t _ f h . c l o s e ()

163 p r i n t ("DONE! ")

Appendix II

Supporting Code

II.1 Synopsys tcl Run File

1

2 #

3 # s e t d e s i g n name

4 #

5 s e t des ign_name r e s u l t s _ c o n v

6

7 s e t my_type " _ i c c "

8 # s e t m y _ r e p o r t _ p r e " _ i c c _ p r e R o u t e "

9 s e t m y _ r e p o r t _ p o s t " _ i c c _ p o s t R o u t e "

10 s e t my_ inpu t_ type " _scan "

11

12 s e t my_max_area 1200

13 #

II.1 Synopsys tcl Run File II-37

14 # compi l e e f f o r t can b e : l o w , medium, h igh

15 #

16 s e t m y _ c o m p i l e _ e f f o r t " h igh "

17

18 s e t h d l i n _ e n a b l e _ p r e s t o f a l s e

19 s e t h d l i n _ k e e p _ s i g n a l _ n a m e a l l

20

21 s e t b u s _ n a m i n g _ s t y l e {%s[%d] }

22 s e t b u s _ i n f e r e n c e _ s t y l e {%s[%d] }

23

24 # / * c o n n e c t t o a l l p o r t s i n t h e d e s i g n , even i f d r i v e n by t h e

same n e t * /

25 # / * c o m p i l e _ f i x _ m u l t i p l e _ p o r t _ n e t s = t r u e * /

26 s e t _ f i x _ m u l t i p l e _ p o r t _ n e t s − a l l − b u f f e r _ c o n s t a n t s

27

28 # / * do n o t a l l o w wi re t y p e t r i i n t h e n e t l i s t * /

29 s e t v e r i l o g o u t _ n o _ t r i t r u e

30

31 s e t v e r i l o g o u t _ e q u a t i o n f a l s e

32

33 # / * t o f i x t h o s e pesky e s c a p e d names * /

34 # / * t o be used wi th ’ change_names − h i e r a r c h y ’ * /

35 # / * a f t e r a compi l e − s h o u l d on ly be needed i n * /

36 # / * ex t r eme c a s e s when ’ b u s _ n a m i n g _ s t y l e ’ i s n ’ t f u l l y working

* /

II.1 Synopsys tcl Run File II-38

37 d e f i n e _ n a m e _ r u l e s V e r i l o g −a l lowed { a−z A−Z 0−9 _}

− f i r s t _ r e s t r i c t e d {0−9 _} − r e p l a c e m e n t _ c h a r " __ " − type c e l l

38 d e f i n e _ n a m e _ r u l e s V e r i l o g −a l lowed { a−z A−Z 0−9 _ [] }

− f i r s t _ r e s t r i c t e d {0−9 _} − r e p l a c e m e n t _ c h a r " __ " − type p o r t

39 d e f i n e _ n a m e _ r u l e s V e r i l o g −a l lowed { a−z A−Z 0−9 _}

− f i r s t _ r e s t r i c t e d {0−9 _} − r e p l a c e m e n t _ c h a r " __ " − type n e t

40 s e t d e f a u l t _ n a m e _ r u l e s V e r i l o g

41

42 #

43 # f o r SAIF f i l e g e n e r a t i o n

44 #

45 s e t p o w e r _ p r e s e r v e _ r t l _ h i e r _ n a m e s t r u e

46

47 remove_des ign − a l l

48 f i l e d e l e t e − f o r c e " . / gds / " " . / l i b "

49 f i l e d e l e t e " . / P I M _ C l u s t e r _ p o r t _ m a p . * "

50 f i l e d e l e t e − f o r c e " . / r e p o r t / i c c / "

51 f i l e mkdir " . / gds / " " . / l i b " " . / n e t l i s t " " . / s d f " " . / s p f " \

52 " . / r e p o r t " " . / r e p o r t / dc " " . / r e p o r t / p t " " . / r e p o r t / p r " " . / s a i f

" \

53 " . / r e p o r t / i c c / "

54

55 s e t r e p o r t _ d i r " . / r e p o r t / i c c / "

56 s e t s a i f _ d i r " . / s a i f / "

57

II.1 Synopsys tcl Run File II-39

58 # s e t m y _ r e p o r t _ d i r " . / r e p o r t / my_icc / "

59

60 s e t h d l i n _ u s e _ c i n t r u e

61 s e t s y n l i b _ m o d e l _ m a p _ e f f o r t " h igh "

62 s e t h d l o u t _ u s e s _ i n t e r n a l _ b u s s e s t r u e

63 # Turn on a u t o wi r e l o a d s e l e c t i o n

64 # (l i b r a r y must s u p p o r t t h i s f e a t u r e)

65 s e t a u t o _ w i r e _ l o a d _ s e l e c t i o n t r u e

66

67 s e t s y n l i b _ w a i t _ f o r _ d e s i g n _ l i c e n s e " DesignWare "

68

69 # / * s e t t e c h n o l o g y l i b r a r y * /

70 s o u r c e " dc / t e c h _ c o n f i g . t c l "

71

72 s e t l i n k _ l i b r a r y [c o n c a t $ l i n k _ l i b r a r y $ s y n t h e t i c _ l i b r a r y]

73

74 #

75 # / *** /

76 # / * * /

77 # / * S e t up e n v i r o n m e n t f o r i c c o m p i l e r * /

78 # / * * /

79 # / *** /

80 #

81 s e t SAED_EDK32nm_ROOT " / c l a s s / ee620 / maieee / l i b / s y n o p s y s /

SAED_EDK32−28nm / SAED32_EDK"

II.1 Synopsys tcl Run File II-40

82 s e t PR_MW_LIB [f o r m a t "%s%s " [f o r m a t "%s%s " " . / l i b / "

$des ign_name] $my_type]

83 s e t SAED_EDK32nm_MW_TF " saed32nm_1p9m_mw.tf "

84 s e t SAED_EDK32nm_OA_TF " saed32nm_1p9m_oa . t f "

85 s e t SAED_EDK32nm_REF_LIB [l i s t \

86 " ${SAED_EDK32nm_ROOT} / l i b / s t d c e l l _ r v t / milkyway /

saed32nm_rvt_1p9m " \

87 " ${SAED_EDK32nm_ROOT} / l i b / s t d c e l l _ l v t / milkyway /

saed32nm_lvt_1p9m " \

88 " ${SAED_EDK32nm_ROOT} / l i b / s t d c e l l _ h v t / milkyway /

saed32nm_hvt_1p9m " \

89]

90

91 # C r e a t e Milkyway l i b r a r y

92 c r e a t e _ m w _ l i b \

93 − t e c h n o l o g y ${SAED_EDK32nm_ROOT} / t e c h / milkyway / ${

SAED_EDK32nm_MW_TF} \

94 − m w _ r e f e r e n c e _ l i b r a r y ${SAED_EDK32nm_REF_LIB} \

95 − b u s _ n a m i n g _ s t y l e {[%d] } \

96 ${PR_MW_LIB}

97

98 # Add t i m i n g and cap l i b r a r i e s

99 s e t _ t l u _ p l u s _ f i l e s \

100 − m a x _ t l u p l u s ${SAED_EDK32nm_ROOT} / t e c h / s t a r _ r c x t /

saed32nm_1p9m_Cmax. t luplus \

II.1 Synopsys tcl Run File II-41

101 − m i n _ t l u p l u s ${SAED_EDK32nm_ROOT} / t e c h / s t a r _ r c x t /

saed32nm_1p9m_Cmin . t lup lus \

102 − t e c h 2 i t f _ m a p ${SAED_EDK32nm_ROOT} / t e c h / milkyway /

s a e d 3 2 n m _ t f _ i t f _ t l u p l u s . m a p

103

104 open_mw_lib ${PR_MW_LIB}

105

106 f i l e copy . o a l i b ${PR_MW_LIB}

107

108 i m p o r t _ d e s i g n [l i s t [f o r m a t "%s%s%s%s " " n e t l i s t / " $des ign_name

$ t e c h _ l i b " ${ my_ inpu t_ type } . v s "]] \

109 −fo rma t v e r i l o g \

110 −top $des ign_name \

111 − c e l $des ign_name

112

113 c u r r e n t _ d e s i g n $des ign_name

114 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

115

116 r e a d _ s d f [l i s t [f o r m a t "%s%s%s%s " " s d f / " $des ign_name

$ t e c h _ l i b " ${ my_ inpu t_ type } . s d f "]]

117

118 #

119 # a p p l y c o n s t r a i n t s

120 #

121 s o u r c e " cons / ${ des ign_name } _ c o n s _ d e f a u l t s _ i c c . t c l "

II.1 Synopsys tcl Run File II-42

122 s o u r c e " cons / ${ des ign_name } _ c l o c k s _ c o n s . t c l "

123 s o u r c e " cons / ${ des ign_name } _ c o n s . t c l "

124

125 s e t _ c l o c k _ u n c e r t a i n t y 0 c l k

126

127 c u r r e n t _ d e s i g n $des ign_name

128 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

129

130 # Add power r a i l s

131 s e t power "VDD"

132 s e t ground "VSS"

133 s e t powerPor t "VDD"

134 s e t g r o u n d P o r t "VSS"

135 f o r e a c h n e t {VDD} {

136 d e r i v e _ p g _ c o n n e c t i o n −power_net $ n e t −power_pin $ n e t

− c r e a t e _ p o r t s t o p

137 }

138 f o r e a c h n e t {VSS} {

139 d e r i v e _ p g _ c o n n e c t i o n −ground_ne t $ n e t −ground_p in $ n e t

− c r e a t e _ p o r t s t o p

140 }

141 d e r i v e _ p g _ c o n n e c t i o n − t i e

142

143 c u r r e n t _ d e s i g n $des ign_name

144 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

II.1 Synopsys tcl Run File II-43

145

146 echo [c o n c a t {++++ F l o o r p l a n Des ign }]

147 # C r e a t e f l o o r p l a n

148 # \

149 c r e a t e _ f l o o r p l a n \

150 − c o n t r o l _ t y p e a s p e c t _ r a t i o \

151 − c o r e _ u t i l i z a t i o n 0 . 8 0 \

152 − c o r e _ a s p e c t _ r a t i o 1 . 0 \

153 − l e f t _ i o 2 c o r e 0 . 5 0 \

154 − b o t t o m _ i o 2 c o r e 0 . 5 0 \

155 − r i g h t _ i o 2 c o r e 0 . 5 0 \

156 − t o p _ i o 2 c o r e 0 . 5 0

157 # save_mw_cel

158

159 i n i t i a l i z e _ r e c t i l i n e a r _ b l o c k \

160 −shape L \

161 − c o n t r o l _ t y p e r a t i o \

162 − c o r e _ s i d e _ d i m {16 27 26 1 3 } \

163 − c o r e _ u t i l i z a t i o n 0 . 8 \

164 − l e f t _ i o 2 c o r e 0 . 5 0 \

165 − b o t t o m _ i o 2 c o r e 0 . 5 0 \

166 − r i g h t _ i o 2 c o r e 0 . 5 0 \

167 − t o p _ i o 2 c o r e 0 . 5 0

168 save_mw_cel

169

II.1 Synopsys tcl Run File II-44

170 c u r r e n t _ d e s i g n $des ign_name

171 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

172

173 echo [c o n c a t {++++ C r e a t e Power Rings }]

174 # C r e a t e power r i n g s

175 c r e a t e _ r e c t a n g u l a r _ r i n g s \

176 − n e t s {VDD VSS} \

177 − l e f t _ o f f s e t 0 . 2 \

178 − l e f t _ s e g m e n t _ w i d t h 1 \

179 − r i g h t _ o f f s e t 0 . 2 \

180 − r i g h t _ s e g m e n t _ w i d t h 1 \

181 − b o t t o m _ o f f s e t 0 . 2 \

182 −bot tom_segment_wid th 1 \

183 − t o p _ o f f s e t 0 . 2 \

184 − top_segmen t_wid th 1

185 save_mw_cel

186

187 c u r r e n t _ d e s i g n $des ign_name

188 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

189

190 echo [c o n c a t {++++ P l a c e Des ign }]

191 g e t _ s c a n _ c h a i n s

192 # Run p l a c e r

193 p l a c e _ o p t \

194 − a r e a _ r e c o v e r y \

II.1 Synopsys tcl Run File II-45

195 − c o n g e s t i o n \

196 −power \

197 − c o n t i n u e _ o n _ m i s s i n g _ s c a n d e f \

198 − c t s

199 save_mw_cel

200

201 c u r r e n t _ d e s i g n $des ign_name

202 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

203

204 echo [c o n c a t {++++ Route Power R a i l s }]

205 # Route power r a i l s

206 p r e r o u t e _ s t a n d a r d _ c e l l s − n e t s {VDD VSS} \

207 − connec t h o r i z o n t a l \

208 − e x t e n d _ t o _ b o u n d a r i e s _ a n d _ g e n e r a t e _ p i n s

209 save_mw_cel

210

211 c u r r e n t _ d e s i g n $des ign_name

212 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

213

214 echo [c o n c a t {++++ I n s e r t Clock Tree Random S e t t i n g s }]

215 # I n s e r t c l o c k t r e e

216

217 s e t _ c l o c k _ t r e e _ o p t i o n s \

218 − t a r g e t _ s k e w 0 . 0 \

219 − t a r g e t _ e a r l y _ d e l a y 0 . 0 \

II.1 Synopsys tcl Run File II-46

220 − m a x _ t r a n s i t i o n 0 . 5 \

221 − l e a f _ m a x _ t r a n s i t i o n 0 . 5 \

222 − m a x _ c a p a c i t a n c e 600 \

223 −max_fanout 2000 \

224 − l a y e r _ l i s t "M1 M2 M3 M4 M5 M6 M7 M8 M9 MRDL" \

225 − l a y e r _ l i s t _ f o r _ s i n k s "M1 M2 M3 M4 M5 M6 M7 M8 M9 MRDL"

226

227 c l o c k _ o p t \

228 − f i x _ h o l d _ a l l _ c l o c k s \

229 − a r e a _ r e c o v e r y \

230 − c o n g e s t i o n \

231 − c o n t i n u e _ o n _ m i s s i n g _ s c a n d e f \

232 −power

233 save_mw_cel

234

235 # echo [c o n c a t {++++ Pre−Route Timing A n a l y s i s D e f a u l t S e t t i n g s

}]

236 # Check t i m i n g d e f a u l t

237 # c u r r e n t _ d e s i g n $des ign_name

238 # c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

239 # r e d i r e c t [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s "

$ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e } . r p t

"] { echo [c o n c a t { Pre−Route Timing A n a l y s i s Random

S e t t i n g s }] }

II.1 Synopsys tcl Run File II-47

240 # r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%

s " $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e }

. r p t "] { r e p o r t _ c l o c k _ t r e e }

241 # r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%

s " $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e }

. r p t "] { r e p o r t _ t i m i n g − s i g n 4 −max_paths 10 }

242 # r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%

s " $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e }

. r p t "] { r e p o r t _ a r e a }

243 # r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%

s " $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e }

. r p t "] { r e p o r t _ a r e a − h i e r a r c h y }

244

245 # r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%

s " $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e }

. r p t "] { r e p o r t _ c l o c k _ t r e e _ o p t i o n s }

246 # r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%

s " $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e }

. r p t "] { echo [c o n c a t { Pre−Route Power A n a l y s i s Random

S e t t i n g s }] }

247 # r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%

s " $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e }

. r p t "] { r e p o r t _ p o w e r − a n a l y s i s _ e f f o r t medium −ve rbose }

248 # r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%

s " $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p r e }

II.1 Synopsys tcl Run File II-48

. r p t "] { r e p o r t _ c l o c k _ t r e e _ p o w e r }

249

250 c u r r e n t _ d e s i g n $des ign_name

251 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

252

253 echo [c o n c a t {++++ Route Des ign }]

254 # r o u t e d e s i g n

255 r o u t e _ o p t − e f f o r t h igh

256 save_mw_cel

257

258 echo [c o n c a t {++++ Check , F ix DRC E r r o r s }]

259 # Check & Fix DRC E r r o r s

260 r o u t e _ s e a r c h _ r e p a i r \

261 − r e r u n _ d r c \

262 −loop " 4 " \

263 −num_cpus " 4 " \

264 − r u n _ t i m e _ l i m i t " 10 "

265 save_mw_cel

266

267 echo [c o n c a t {++++ Check , F ix LVS E r r o r s }]

268 # Check & Fix LVS E r r o r s

269 r o u t e _ z r t _ e c o − m a x _ d e t a i l _ r o u t e _ i t e r a t i o n s 5

270 v e r i f y _ l v s − c h e c k _ o p e n _ l o c a t o r − c h e c k _ s h o r t _ l o c a t o r

271 save_mw_cel

272

II.1 Synopsys tcl Run File II-49

273 # Add f i l l e r c e l l s

274 i n s e r t _ s t d c e l l _ f i l l e r \

275 − c e l l _ w i t h o u t _ m e t a l " SHFILL128_RVT SHFILL64_RVT SHFILL3_RVT

SHFILL2_RVT SHFILL1_RVT" \

276 −connec t_ to_power {VDD} \

277 − c o n n e c t _ t o _ g r o u n d {VSS}

278 save_mw_cel

279

280 # Fix power n e t s

281 f o r e a c h n e t {VDD} {

282 d e r i v e _ p g _ c o n n e c t i o n −power_net $ n e t −power_pin $ n e t

− c r e a t e _ p o r t s t o p

283 }

284 f o r e a c h n e t {VSS} {

285 d e r i v e _ p g _ c o n n e c t i o n −ground_ne t $ n e t −ground_p in $ n e t

− c r e a t e _ p o r t s t o p

286 }

287 save_mw_cel

288

289 echo [c o n c a t {++++ Check DRC}]

290 # Run DRC & LVS

291 v e r i f y _ r o u t e \

292 −num_cpu " 4 "

293

294 echo [c o n c a t {++++ Check LVS}]

II.1 Synopsys tcl Run File II-50

295 v e r i f y _ l v s

296

297 echo [c o n c a t {++++ Pos t−Rou te Timing A n a l y s i s }]

298 # Check t i m i n g

299 c u r r e n t _ d e s i g n $des ign_name

300 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

301 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { echo [c o n c a t { Pos t−Rou te Timing A n a l y s i s }] }

302 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { r e p o r t _ c l o c k _ t r e e }

303 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { r e p o r t _ t i m i n g − s i g n 4 −max_paths 10 }

304 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { r e p o r t _ a r e a }

305 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { r e p o r t _ a r e a − h i e r a r c h y }

306

307 echo [c o n c a t {++++ Pos t−Rou te Power A n a l y s i s }]

308 c u r r e n t _ d e s i g n $des ign_name

309 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

II.1 Synopsys tcl Run File II-51

310

311 i f { [f i l e e x i s t s [f o r m a t "%s%s " $ s a i f _ d i r " ${ des ign_name }

_ b w . s a i f "]] } {

312 r e s e t _ s w i t c h i n g _ a c t i v i t y

313 echo [c o n c a t { Reading Backwards SAIF F i l e }]

314 r e a d _ s a i f − i n p u t [f o r m a t "%s%s " $ s a i f _ d i r " ${ des ign_name }

_ b w . s a i f "] − i n s t a n c e _ n a m e t e s t / t o p

315 }

316

317 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { r e p o r t _ c l o c k _ t r e e _ o p t i o n s }

318 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { echo [c o n c a t { Pos t−Rou te Power A n a l y s i s }] }

319 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { r e p o r t _ p o w e r − a n a l y s i s _ e f f o r t medium −ve rbose }

320 r e d i r e c t −append [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s

" $ r e p o r t _ d i r $des ign_name] $ t e c h _ l i b] " ${ m y _ r e p o r t _ p o s t }

. r p t "] { r e p o r t _ p o w e r − a n a l y s i s _ e f f o r t medium −ve rbose

− h i e r }

321

322 echo [c o n c a t {++++ Stream o u t GDSII , N e t l i s t and SDF}]

323 c u r r e n t _ d e s i g n $des ign_name

II.1 Synopsys tcl Run File II-52

324 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

325 # Stream o u t GDSII

326 s e t _ w r i t e _ s t r e a m _ o p t i o n s \

327 − o u t p u t _ p i n { t e x t geomet ry } \

328 − k e e p _ d a t a _ t y p e

329

330 w r i t e _ s t r e a m \

331 −fo rma t gds \

332 [f o r m a t "%s%s " [f o r m a t "%s%s " " . / gds / " $des ign_name] " . g d s "]

333

334 #

335 # Wr i t e N e t l i s t and SDF

336 #

337 c u r r e n t _ d e s i g n $des ign_name

338 c u r r e n t _ m w _ c e l [get_mw_cel $des ign_name]

339 change_names − r u l e s V e r i l o g − h i e r a r c h y

340 w r i t e _ v e r i l o g [f o r m a t "%s%s " [f o r m a t "%s%s " [f o r m a t "%s%s "

" . / n e t l i s t / " $des ign_name] $ t e c h _ l i b] " ${ my_type } . v s "]

341 w r i t e _ s d f − c o n t e x t v e r i l o g [f o r m a t "%s%s " [f o r m a t "%s%s " [

f o r m a t "%s%s " " . / s d f / " $des ign_name] $ t e c h _ l i b] " ${ my_type

} . s d f "]

342 save_mw_cel

343 c lose_mw_ce l

344

345 echo [c o n c a t {++++ F i n i s h e d . . . }]

II.1 Synopsys tcl Run File II-53

Appendix III

ICC Shell

ICC_Shell is the users manual for the Synopsys IC Compiler [6], it provides descriptions,

examples, and more, for all available shell functions. Below are the ones most relevant to this

work.

III.1 Clock Tree Options

1. set_clock_tree_options: Specifies clock tree synthesis constraints and options for clocks

in the design.

(a) layer_list “layer_names”: Specifies the layers that can be used for routing the clock

nets in the specified clock trees. If the list has more than two elements, the lower

layer should appear before the upper layer. By default, all routing layers can be

used for clock nets.

(b) layer_list_for_sinks “layer_names”: Specifies the layers that can be used for routing

the clock leaf nets in the specified clock trees. If the list has more than two elements,

the lower layer should appear before the upper layer. This option overrides the

III.1 Clock Tree Options III-55

-layer_list option when routing leaf-level clock nets, if both options are specified.

(c) target_early_delay “insertion_delay”: Specifies the minimum insertion delay con-

straint in design unit for the specified clock trees. When you specify this option, the

clock tree synthesis engine builds an initial optimized clock tree. If the insertion

delay of the longest path of this clock tree is smaller than the specified value, the

clock tree synthesis engine adds a chain of cells from the reference list as needed to

meet this delay. By default, the target early delay is 0.

(d) target_skew “skew”: Specifies the required value for maximum skew in design unit

for the specified clock trees. After the tool meets this skew target, the optimization

concentrates more on other QoR goals, such as insertion delay and area. By default,

the target skew is 0.

(e) max_capacitance “capacitance”: Specifies the maximum capacitance design rule

constraint in main library units for the specified clock trees. This value takes

precedence over the maximum capacitance constraint set on the design, as well

as over the one coming from the library. This constraint is used when reporting

maximum capacitance violations during clock tree synthesis and is also used to

control maximum capacitance DRC fixing beyond exceptions. By default, the

maximum capacitance is 0.6 pf.

(f) max_transition “transition_time”: Specifies the maximum transition time design

rule constraint in main library unit for the buffers and inverters used while com-

piling the specified clock trees. This value takes precedence over the maximum

transition time constraint set on the design, as well as over the one coming from

the library, but can be overridden on all instances of specific types of buffers and

inverters in the clock tree by specifying a different value for this constraint on the

III.2 Floor Plan Options III-56

set_clock_tree_references command line. The clock tree root cell and clock-gating

cells present on the clock network are not affected by the set_clock_tree_references

design rule constraints unless they are instances of buffers or inverters with over-

ridden design rule constraints. By default, the maximum transition time is 0.5

ns.

(g) max_fanout “fanout”: Specifies the maximum fanout design rule constraint for the

cells in the specified clock trees. By default, the maximum fanout constraint set on

the design by using the set_max_fanout command, as well as the one coming from

the library are ignored during clock tree synthesis. By default, the maximum fanout

is 2000.

(h) leaf_max_transition “transition_time”: Specifies the maximum transition time de-

sign rule constraint in main library unit for the buffers and inverters used while

synthesizing the leaf nets during the compilation of the specified clock trees. A

leaf net is defined as a net which drives the clock pin of at least one register,

latch, or multibit register. This value must be tighter than the value specified

with the -max_transition option of the set_clock_tree_options command or the

set_max_transition command. By default, the maximum transition constraint for the

leaf nets is equal to the maximum transition constraint of the rest of the clock tree.

III.2 Floor Plan Options

2. initialize_rectilinear_block: Creates L-, T-, U-, and cross-shaped floorplans for rectilinear

blocks.

(a) bottom_io2core “distance”: Specifies the shortest distance between the I/O pin and

III.2 Floor Plan Options III-57

the bot- tom side of the core boundary.

(b) control_type “ratio | length”: Specifies how to interpret the list of dimensions

provided for the -core_side_dim option. When the control type is ratio, each

dimension in the list rep- resents the relative proportion of the dimension of the

edge to the sum of all the dimensions listed. For example, if the list of dimensions

of an L-shaped block is {1 2 1 1}, the tool inter- prets the dimension of side a, c, or

d is 20% of the sum of the dimensions listed, and the dimension of side b is 40%

of the summation. When the control type is length, the dimensions in the list rep-

resent the actual physical dimensions for each edge of the polygon.

(c) core_side_dim “{side_a side_b side_c side_d [side_e side_f]}”: Specifies the di-

mensions of the edges of the rectilinear block. This list contains a maximum of 6

values, depending on the shape specified by the -shape option. The semantics of the

values depends on the -control_type option specified. If you provide more values

than needed to describe the specified shape, the extra values are ignored. If you do

not provide all the values needed to describe the specified shape, the tool issues an

error.

(d) core_utilization ratio_val: Specifies a utilization number between 0 and 1.0. This

number indicates the amount of the core area used for cell placement. This number

is calculated as a ratio of the total cell area to the core area. The cell area is the total

area of all standard and macro cells. For example, a core utilization of 0.8 means

that 80 percent of the core area is used for cell placement and 20 percent is available

for routing.

(e) left_io2core “distance”: Specifies the shortest distance between the I/O pin and the

left side of the core boundary.

III.2 Floor Plan Options III-58

(f) right_io2core “distance”: Specifies the shortest distance between the I/O pin and

right side of the core boundary.

(g) shape “L | T | U | X”: Specifies a template shape used to determine the cell boundary

and core shape of the rectilinear block. The following diagram shows the definition

of the edges and the orientation of the L-, T-, U-, and X-shaped rectilinear blocks.

(h) top_io2core “distance”: Specifies the shortest distance between the I/O pin and the

top side of the core boundary.

	Evolutionary Neural Network for Optimized Clock Tree Synthesis
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Goals
	1.2 Organization

	2 Bibliographic Research
	2.1 Clock Tree Synthesis
	2.2 ML and ANNs
	2.3 ML and ANNs for CTS
	2.4 Supporting Documentation

	3 Clock Tree Synthesis
	3.1 Clock Tree Implementations
	3.1.1 Conventional
	3.1.2 Multi-Source
	3.1.3 Mesh

	3.2 Clock Tree Structure
	3.3 Multi-bit Versus Single-bit DFFs

	4 NeuroEvolution of Augmenting Topologies (NEAT) Algorithm
	4.1 Brief NEAT Overview
	4.2 Configuration
	4.2.1 NEAT
	4.2.2 Stagnation
	4.2.3 Reproduction and Species Set
	4.2.4 Default Genomes
	4.2.4.1 Node Activation
	4.2.4.2 Node Aggregation
	4.2.4.3 Node Bias
	4.2.4.4 Genome Compatibility
	4.2.4.5 Connection and Mutation
	4.2.4.6 Feed Forward
	4.2.4.7 Network Parameters
	4.2.4.8 Node Response
	4.2.4.9 Connection Weight

	5 Training Environment
	5.1 The Design
	5.2 Trainer
	5.2.1 Network Inputs
	5.2.2 Network Outputs
	5.2.3 Network Fitness Function
	5.2.4 Randomizing Floor Plans
	5.2.5 Data Reporting and Collection

	6 Results
	6.1 Final Neural Network
	6.2 Analysis
	6.3 Discussion

	7 Conclusion
	7.1 Future Work

	References
	I Source Code
	I.1 Training Environment
	I.2 Automatic File Management (FileMan)
	I.3 Testing Environment

	II Supporting Code
	II.1 Synopsys tcl Run File

	III ICC Shell
	III.1 Clock Tree Options
	III.2 Floor Plan Options

