
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2024

Digital Beamforming Implemented in Hardware Digital Beamforming Implemented in Hardware

Nicole Dulieu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Dulieu, Nicole, "Digital Beamforming Implemented in Hardware" (2024). Thesis. Rochester Institute of
Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11713?utm_source=repository.rit.edu%2Ftheses%2F11713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

DIGITAL BEAMFORMING IMPLEMENTED IN HARDWARE

by

NICOLE DULIEU

GRADUATE PAPER

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE

in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Senior Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Ferat Sahin, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

MAY, 2024

Dedication

I dedicate this research paper to my mom Stephanie Dulieu and my dad Paul Dulieu. Thank

you for always believing in me and pushing me to become a better engineer and person.

Nicole Dulieu

Declaration

I declare that except where specific reference is made to the work done by others, that the entirety

of this graduate paper is my work. The submission of the graduate paper is not considered for

any other degree in this University or any other University. The Graduate Project is the work of

my own and does not include any work done in collaboration, except where work is referenced

to others.

Nicole Dulieu

May, 2024

Acknowledgements

I would like to thank my parents Stephanie Dulieu and Paul Dulieu for their unwavering

support throughout my life. Thank you for giving me the privilege of a undergraduate and

graduate education, I am so grateful for you both. To my advisor Mark Indovina for sharing the

knowledge and experience that provided me an exceptional education of digital design. Your

continuous support of my education from my freshman to senior year has had such a positive

effect on my academic career. Thank you for advising my graduate paper and allowing me to

explore a topic outside of your expertise and still provided me with knowledgeable insight.

Nicole Dulieu

Abstract

Digital beamforming is a popular method used in modern communication systems. The ability

to track and locate a transmitting signal adaptively is necessary in communication systems.

Beamforming is one solution to this problem. Beamforming uses an array or matrix of isotropic

antenna elements. This eliminates the need to create a physically larger antennas to achieve

the same radiation pattern and gain of a phased array of antenna elements. Additionally, the

antennas are electronically controlled allowing the radiation pattern and gain to adapt quickly.

It is necessary to use a digital platform for beamforming because hardware can digitize analog

signals efficiently. The research done in this paper starts with a system created in Matlab’s

Simulink environment. This system has both software and hardware beamforming algorithms.

The results from the two algorithms is verified in waveforms. The hardware beamforming system

is converted to hardware description language (HDL) using Simulink’s HDL Coder application.

The HDL files are used in a simulation environment using Cadence Incisive simulator to verify

the beamforminf results. The digital beamforming HDL project is implemented on different

application specific integrated circuit (ASIC) technologies. Using Synopsys compiler suites the

project is synthesized, placed and routed on the ASIC technologies. This paper will analyze the

results from implementing a beamforming algorithm on digital hardware.

Contents

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Research Goals . 2

1.2 Contributions . 2

1.3 Organization . 3

2 Bibliographical Research 5

2.1 A brief overview of beamforming and phased arrays 5

2.1.1 Beamforming Algorithms . 6

2.1.1.1 Direction of Arrival and power method 7

2.1.1.2 Null-steering techniques 7

2.1.1.3 Adaptive Beamforming 7

2.1.1.4 Phase-shift beamforming 8

2.2 Digital Hardware Implementation . 9

2.2.1 Types of hardware platforms . 10

Contents vi

2.2.1.1 Field Programmable Gate Arrays 10

2.2.1.2 Digital Signal Processor 10

2.2.1.3 Application Specific Integrated Circuits 11

3 MATLAB and Simulink Environment 12

3.1 Behavioral Algorithm . 12

3.2 Hardware Description Language Algorithm 13

3.2.1 Digital Conversion of the signal information 13

3.2.2 Generating the Steering Vector . 14

3.3 Generating HDL code . 16

3.3.1 Target Platform . 16

3.3.2 HDL and Testbench Generation . 17

4 Simulation Results 18

4.1 Simulation Results . 18

4.2 Co-simulation Results . 22

4.3 Testbench files . 25

5 Hardware Results 27

5.1 Synthesis . 28

5.2 Pre and Post Scan Insertion Results . 29

5.3 Integrated Custom Compiler Results . 36

6 Conclusion 41

6.1 Future Work . 42

References 43

List of Figures

2.1 Delay and Sum Beamformer . 9

3.1 Simulink Beamforming System . 13

3.2 HDL Logic to Find Steering Vector . 15

3.3 System with the Co-simulation Platform . 16

4.1 Behavioral Beamformed Signal Result . 19

4.2 Output Signals from the HDL and Behavioral Models 20

4.3 Error between Behavioral and HDL Beamformed Signals 21

4.4 Co-simulation Environment . 23

4.5 Co-simulation Error Console . 24

4.6 Waveform of Generating Steering Vectors 25

4.7 Waveform of the Beamformed Signal . 26

5.1 Pre-Scan Insertion Technology vs Area Graph 29

5.2 Pre-Scan Insertion Technology vs Internal Power Graph 30

5.3 Pre-Scan Insertion Technology vs Switching Power Graph 30

5.4 Pre-Scan Insertion Technology vs Leakage Power Graph 31

5.5 Pre-Scan Insertion Technology vs Total Power Graph 31

List of Figures viii

5.6 Pre-Scan Technology vs Slack . 32

5.7 Post-Scan Insertion Technology vs Area Graph 34

5.8 Post-Scan Insertion Technology vs Internal Power 34

5.9 Post-Scan Insertion Technology vs Switching Power 35

5.10 Post-Scan Insertion Technology vs Leakage Power 35

5.11 Post-Scan Insertion Technology vs Total Power 36

5.12 Post-Scan Insertion Technology vs Slack 37

5.13 Place and Route of the Digital Beamforming Design 38

5.14 Detailed View of the Place and Route Result 39

List of Tables

5.1 Pre-Scan Insertion Area Results . 28

5.2 Pre-Scan Insertion Power Results . 29

5.3 Pre-Scan Timing Results . 32

5.4 Post-Scan Insertion Area Results . 33

5.5 Post-Scan Insertion Power Results . 33

5.6 Post-Scan Insertion Timing Results . 37

5.7 Results From the IC Compiler . 39

Chapter 1

Introduction

Digital beamforming is a concept first proposed in 1980 [1]. The advancement of beamforming

allowed designers to configure the antenna’s radiation pattern while not altering the physical

dimensions of the antenna. The power of an antenna’s signal is measured by its gain. The

antenna will emit a radiation pattern that encompasses phase and amplitude. The phase and

amplitude are parameters the designer can set. For an array of antennas their radiation patterns

can constructively add or subtract, this enables a precise and stronger radiation pattern compared

to a single antenna element. A widely used implementation of beamforming is null-steering

beam. Radar technology and other communication applications can use null-steering to block a

signal from being transmitted or received [2].

Analog beamforming uses a similar configuration as digital beamforming with elements

spaced at half wavelengths of each other. The disadvantages of analog beamforming include the

amount of space needed to package the hardware. Analog beamforming uses power dividers and

phase shifters for each element of the array and for every beam created which is cumbersome.

Digital beamforming performs the calculations after the signal has been digitized through

and Analog to Digital Converter (ADC). This allows for a compact and efficient system. The

1.1 Research Goals 2

operations needed to perform the computations of beamforming require either application

specific integrated circuits (ASIC) or a field programmable gate array (FPGA) [1, 3]. The

success of digital beamforming is constrained by the sample rate and power needed by the

ADC. Complementary metal oxide semiconductors (CMOS) allow higher speed and less power

consumption for ADCs. Most digital beamforming configurations have an ADC set behind the

RF front end of all the elements in a phased array of antennas.

1.1 Research Goals

This research is a proof of concept that digital beamforming can be applied to digital hardware.

The goals set for this digital beamforming implementation on hardware involved generating a

behavioral system of the algorithm in software using MATLAB, simulate beamforming of an

array of elements receiving a generated input signal and calculating the steering vectors. After

verifying the functionality of the software algorithm the hardware description language (HDL)

equivalent algorithm is implemented in Simulink and the results are compared to the behavioral

algorithm. The HDL algorithm is validated and the HDL code is generated using an app in

Simulink called HDL Coder. The HDL code is transferred to a logic synthesis environment.

Using Synopsys Design Compiler HDL code is synthesized for hardware implementation. Scan

ports are added to the design to for testing. The scan insertion will provide power consumption,

timing analysis and hardware area used. Lastly, the HDL beamforming model is placed and

routed on 4 different ASIC technology sizes 32 nm, 65 nm, 90 nm and 180 nm.

1.2 Contributions

The significant contributions to the projected are listed below:

1.3 Organization 3

1. Generated HDL files from MATLAB using the application HDL Coder.

2. Simulated the beamforming output from Simulink and Cadence Incisive simulation

environment.

3. Synthesized the HDL project with and without scan insertion for data analysis.

4. Routed the design using Custom Compiler.

5. Synthesized the HDL project on different ASIC hardware technology for data analysis

6. The obtained information is analyzed and is presented using graphs and charts.

1.3 Organization

The structure of the thesis is as follows:

• Chapter 2 Bibliographic Research: This section will explain the theory behind beam-

forming and use of phased arrays. Different beamforming techniques will be described

that have been implemented on digital hardware. Discussion of how digital hardware is

implemented for beamforming algorithms and the different hardware platforms that are

most commonly used.

• Chapter 3 Description of the Project: Chapter 3 describes the Simulink model generated

to model phase-shift beamforming and the corresponding hardware algorithm. This

section will explain how the HDL files are generated using Simulink.

• Chapter 4 Simulation Results: The results presented in this section show the beamforming

output from the Simulink behavioral model as well as the HDL equivalent algorithm

1.3 Organization 4

output. Next, the results from creating a co-simulation test bench environment within

Simulink and using Cadence Incisive simulation environment.

• Chapter 5 Results from Hardware Implementation: This section will describe data

analyzed from synthesizing the HDL code with and without scan insertion. Results from

routing the design on an ASIC. Lastly, data analysis from implementing the design on

different ASIC technology.

• Chapter 6 Conclusion: This section will summarize the results and analysis of the

beamforming model implemented in hardware. Additionally, this section will include

future work on advancements that can be implemented with digital beamforming.

Chapter 2

Bibliographical Research

2.1 A brief overview of beamforming and phased arrays

Antenna theory is broad and extensive. It is crucial to comprehend the fundamentals of antenna

knowledge and the capabilities of an array of antennas for the research done in this work.

A single antenna provides a wide radiation pattern with a low gain. For signal processing

it is imperative to have a high gain when transmitting information. The gain of an antenna

characterizes the antennas directivity and radiation efficiency. If the gain of an antenna is high

that signifies the input power applied to the antenna is almost completely converted to the

electromagnetic wave produced. A lower gain implies power inefficiency this results in a weak

electromagnetic wave since power has been lost [4, 5].

By increasing the physical dimensions of the antenna the gain can increase if the antenna can

output more power. This leads to a higher directivity but impractical for some implementations.

Instead of changing the physical dimensions of an antenna, using an array of multiple antenna

elements together can create high gain and directivity. The elements are used in a specific

electrical and geometrical configuration to allow maximum efficiency. To create directive

2.1 A brief overview of beamforming and phased arrays 6

patterns with an array of elements the radiation field of each element should constructively

interfere with one another. When designing the directivity of a phased array of antenna elements

the engineer has parameters to optimize. These variables include the configuration of the array,

the research done in this paper uses a linear configuration. The distance between each element

is set by the designer and consistent between all elements. The amplitude and phase of each

antenna can be independent of one another and affect the directivity of the resulting radiation

pattern. Lastly, the relative pattern of radiation can be manipulated for each element [6] [7].

The digital beamforming studied in this paper uses MATLAB’s Simulink narrowband

receive element array design block. The phased array creates a beam of radiation resulting from

each antenna elements phase and amplitude directed towards the incoming signal’s location.

For this experiment the direction of the incident angle is known and used in the beamforming

algorithm. An overview of different beamforming algorithms and hardware platforms are

explained below.

2.1.1 Beamforming Algorithms

The received signals from each antenna in a phased array are multiplied by complex weights that

can be individually created for each antenna element. This allows the gain of the whole phased

array to be manipulated electronically [8]. The conventional beamforming techniques are based

on digital signal processing theory. Convolution is used to find the response of the phased array

of elements from some input signal received from the phased array. The system is linear time

invariant (LTI). The theory of superposition is used to find the individual responses from each

input signal as a weighted sum of the signals applied to each individual signal. Moreover, the

theory of linearity deals with complex exponentials that are realized in space-time signals [4].

2.1 A brief overview of beamforming and phased arrays 7

2.1.1.1 Direction of Arrival and power method

In a receiving phased array the direction of arrival of the input signal is used to calculate the

steering vectors to change the direction of the radiation pattern. If the direction of arrival (DOA)

is not known there is an additional algorithm to estimate the DOA. The research done in [9]

developed an algorithm to estimate the DOA. A projection matrix is created from the vectorized

phase and magnitude of the input signals which are found using an autocorrelation matrix. Once

finding the largest projection values of this matrix these will be used as estimates for the DOA.

A uniform linear array (ULA) of antenna elements are the most common configuration for

beamforming. The number of antenna elements, the incident angle of the signal intercepting the

antenna, and the white noise that the phased array also receives are all part of a mathematical

relationship. To filter the signal spatially amongst the array of antennas, weights are applied to

each output signal [10–12].

2.1.1.2 Null-steering techniques

Many applications of beamforming include technology for the military. When communicating it

is important to maintain a safe and reliable signal that can withstand adversarial attacks. Using

nulls at certain angles causes no radiation towards that direction. Null-steering deflects any

incoming signals that are deemed undesirable to the system. The research done in [13] uses

a population-based, evolutionary, and stochastic method to assign certain coefficients to each

antenna to create a desired radiation pattern [14].

2.1.1.3 Adaptive Beamforming

There are blind beamforming algorithms that do not need a reference signal to train the algorithm

where the direction of arrival is. With no reference there is less computation needed. For non-

2.1 A brief overview of beamforming and phased arrays 8

blind algorithms the reference signal is required and will slow down the overall computation

however, the non-blind algorithm converges faster than the blind algorithm [15, 16]. Research

conducted in [17] acknowledges the advantages of both algorithms and implements hybrid

beamforming. This hybrid beamforming research combines blind and non-blind algorithms

with a modified normalized least mean square normalized constant modulus algorithm. The

system will start at convergence then accept signals from the phased array and generate an

output through a normalized least mean square algorithm. This research done is adaptive since

the system will iterate this process and update the weights assigned to each antenna based off

the output found.

2.1.1.4 Phase-shift beamforming

There have been many different variations of beamforming applied to hardware systems that

were considered before applying a specific beamforming technique [18–23]. The algorithm

used in the research conducted in this paper uses Simulink’s narrowband receive antenna array

design clock. A linear time invariant filter is applied to all the antenna elements to obtain an

output array. After applying the LTI filter the outputs are added together as shown in Figure 2.1.

When using a narrowband array of antennas the signals are all approximated by a phase

shift in the frequency domain. This is equivalent to a delay in the time domain. Equation 2.1

shows the input field f (t, pn) as the input signal. Individual antenna elements are multiplied by

a time delay e jwct . There are N elements. Next, the travel time of a plane wave between two

elements is calculated as τn. Equation 2.2 shows the narrowband antenna elements multiplied

by the time delay. Multiplying by a time delay in the time domain is equivalent to a phase shift

in the frequency domain [4].

f (t, pn) =
√

2Re
{

f (t, pn)e
jwct} ,n = 0, ...,N −1 (2.1)

2.2 Digital Hardware Implementation 9

Figure 2.1: Delay and Sum Beamformer

f (t, pn) =
√

2Re
{

f (t, pn)e
− jwcτne jwct} (2.2)

The delay and sum method which uses time delays is displayed in Figure 2.1. The functions

of time shifts are put into vector form and weighted individually to form the steering vectors

needed for the resulting beam.

2.2 Digital Hardware Implementation

The research conducted in this paper involves targeting a field programmable gate array (FPGA)

through MATLAB. The hardware description language (HDL) is generated by MATLAB

and then implemented on different application specific integrated circuit (ASIC) technology.

The main difference between ASIC and FPGA platforms, is ASIC platforms cannot be repro-

2.2 Digital Hardware Implementation 10

grammed and draw less power than FPGAs. FPGA contains the word “field”, meaning the

programming of the device is done outside of a factory and in the field. Within FPGAs there

are simple logic gates such as AND, OR, XOR or more complicated logic such as encoders and

decoders. Incorporating a microprocessor embedded in the FPGA has become quite popular.

These processors connected to the FPGA are called system on chip (SoC) boards. Whereas, if a

processor core is implemented within the FPGA such as Xilinx’s Microblaze this is considered

a “soft” processor core alternative [8, 24] .

2.2.1 Types of hardware platforms

2.2.1.1 Field Programmable Gate Arrays

Beamforming algorithms require complex mathematical computations since the electromagnetic

wave has phase and amplitude components, which requires the hardware to deal with real and

imaginary numbers. Additionally, when receiving information from the analog world it is

necessary to use an analog to digital converter (ADC) that can digitize the received signal

without losing any precision. The research conducted in [25] relied on a MATLAB program to

generate the weights applied to each antenna element then convert these values to floating point

and assign these to registers in an FPGA. The digital signal processor is described in the next

section however, it is important to note that the FPGA can outperform a digital signal processor

(DSP) by as much as 1000:1 [8].

2.2.1.2 Digital Signal Processor

A Digital signal processor (DSP) is a processor or microprocessor able to provide fast sequences

of instructions with emphasis on operations related to digital signal processing. DSPs are able

to represent mathematical operations such as shift or multiply digitally. The DSPs used in

2.2 Digital Hardware Implementation 11

designs today are able to multiply and accumulate (MAC) in a single instruction cycle. DSP

architecture incorporated the multiply-accumulate processors within the data path. Additionally,

some processors have numerous multiply-accumulate processors within the data path to perform

these calculations in parallel. DSPs are able to complete many tasks concurrently. For example

fetching an instruction, accessing memory to obtain an operand, or storing a result in memory

can all be done in the same machine cycle.

2.2.1.3 Application Specific Integrated Circuits

Depending on the system ASICs are more appealing than FPGAs. The digital beamforming

within an FPGA involves many signal channels that are put through analog to digital con-

verters and there corresponding interfaces. Other implementations include multiple analog

beamformers fed to a digital beamformer. These implementations are notable however the

FPGA image quality differs slightly compared to an ASIC platform. The power consumption

of a digital beamformer in an FPGA is high and must be mitigated. The research conducted in

[26] decided the digital beamformer power consumption did not outweigh the quality of the

resulting beamformed signal and decided to use ASIC instead. The beamforming algorithm

involved adaptive-resolution on an energy-scalable ASIC. This method uses a sliding window

that will minimize the memory storage of input data. The resolution of the sliding window can

be adjusted to decrease the memory storage constraints needed.

Chapter 3

MATLAB and Simulink Environment

A system that generates a transmitting signal to a phase shift beamforming algorithm is created

in Simulink. This model contains another algorithm that is equivalent to the Simulink phase

shift beamformer block except that it uses hardware description language functional blocks that

are synthesizable for a digital hardware platform. This section will describe the behavioral and

HDL algorithms created in Simulink. Both algorithms implement a phase shift beamforming

method to calculate a simulated received signal. Simulink’s phase-shift beamformer is applied

to an array of ten narrowband receiver antenna elements. The output of this algorithm is sent to

a waveform window and compared to the HDL equivalent phase-shift beamformer. The full

system is shown in Figure 3.1.

3.1 Behavioral Algorithm

The behavioral or software based beamforming algorithm involves generating input signals at a

known angle to a ULA of 10 elements. MATLAB created a phase shift beamformer function.

This function will estimate a delay in time to perform beamforming. This function has many

3.2 Hardware Description Language Algorithm 13

Figure 3.1: Simulink Beamforming System

parameters such as the as the number of elements, distance between elements, and type of

antenna element used. The user must also specify the propagation of the signal, the frequency

that the system will operate at. For the beamforming algorithm the direction of arrival must

be known, this implies that this method is conventional beamforming since it must start with

having the direction of arrival. The output of this function will provide the dimension of the

input signal in matrix form along with their corresponding beamforming directions, and the

coefficient weight that is applied to each vector. This output is then sent to a waveform window

along with the output of the HDL algorithm for comparison. The full system in Simulink is

shown in Figure 3.1 [27–29].

3.2 Hardware Description Language Algorithm

3.2.1 Digital Conversion of the signal information

The behavioral algorithm mentioned above is a floating point model whereas, the equivalent

HDL model uses fixed point arithmetic. From Figure 3.1 there is a waveform design block

that generates a multi-channel signal. After the multi-channel signal is generated there are

3.2 Hardware Description Language Algorithm 14

antenna elements that capture the signal and the received target echo that is generated from the

incident angle. The signal received is then sent through the receiver pre-amplifier this will aid

in reducing the noise captured.

After capturing the analog floating point information the data must be converted to fixed-

point which is done through a quantize signal block from Simulink. The 10 different channels

that each have 300 samples are converted to 12-bit words with 9-bits for fractional precision.

The conversion from floating to fixed point is constrained by the target FPGA platform. The

target FPGA is a Xilinx Virtex-7. The Virtex-7 contains a 12-bit analog to digital converter.

Converting the data to 12-bit word length was needed to meet the ADC constraints. The next

part of the HDL algorithm involves the phase-shift beamforming algorithm. The multi-channel

input signal is converted to a 12 bit word and processed serially by the HDL algorithm. The

computations required of this algorithm require delays to enable synchronization. If there are

any processes that are implemented in parallel the algorithm will compensate for these delays

by adding the equivalent delay to the parallel function.

3.2.2 Generating the Steering Vector

From the input signals direction of arrival the HDL algorithm will create a steering vector. The

steering vector is obtained by sampling the angle at each antenna element and aligning the data

in a matrix. Using matrix multiplication the information from the multi-channel input signal

can be found at each element by using the position of each element within the computation.

The data obtained by the array of elements will be complex and require computational delays

added to the system. For this specific application the CORDIC algorithm is used. The steering

vector implementation in hardware is shown in Figure 3.2.

The CORDIC algorithm or coordinate rotation digital computer, is used to calculate trigono-

metric functions as well as other complex mathematical operations with an arbitrary base. In

3.2 Hardware Description Language Algorithm 15

Figure 3.2: HDL Logic to Find Steering Vector

most cases this algorithm is used in lieu of a hardware multiplier. The CORDIC system is

necessary for many beamforming algorithms and implemented in hardware to minimize the

number of gates needed.

The spacing between elements is used to find the steering vector. The position is based off

the center array and measured outward. Spacing between elements is half a wavelength which

is roughly 1.5 meters or half the propagation speed divided by the operating frequency. The

operating frequency is 100 MHz and used to sample the incoming signal. The pulse generated

by the phase shift beamformer is 1 kHz. The spacing is represented by an 8-bit word and 4-bit

fractional length. The result of the HDL algorithm is pulses of the beamformed signal this is

shown in the results section.

MATLAB’s co-simulation environment is used to compare the result from the behavioral

algorithm and the HDL algorithm. This platform implemented in Simulink will support co-

simulation between different servers. The co-simulation platform can link Simulink and another

simulation environment such as Cadence Incisive. The implementation of the co-simulation

environment is shown in Figure 3.3.

3.3 Generating HDL code 16

Figure 3.3: System with the Co-simulation Platform

3.3 Generating HDL code

3.3.1 Target Platform

The Simulink model targets specific FPGA boards. The target used is a Xilinx Virtex-7 FPGA

with xc7vx485t microprocessor. The package is ffg1761 with a target frequency of 300 MHz.

The Virtex-7 is part of the 7 series family of boards. It has the largest number of logic cells in the

family at 1955K cells. It has 68 Mb of RAM, 2784 Gb/s serial bandwidth and 1200 input/output

pins. This board is referenced earlier as a soft core FPGA since it has a microprocessor

embedded within the FPGA. The Virtex-7 has the MicroBlaze CPU. The device xc7vx485t

includes 485,760 logic cells and 2,800 DSP slices this information is found in the data sheet

[30]. The device-package ffg1761 used with the xc7vx485t has 700 inputs and outputs.

3.3 Generating HDL code 17

3.3.2 HDL and Testbench Generation

The HDL Coder is an application created by MATLAB and used in the Simulink environment.

This application has parameters set by the designer. Within the HDL Coder properties the

HDL Algorithm system is selected for HDL code generation, the language chosen is Verilog.

After implementing all necessary parameters for the target platform explained in 3.3.1 the

designer can choose specific parameters to increase optimization of the design. The choices

for optimization include choosing the size of RAM for register mapping, removing redundant

registers from the design and timing constraints for the model.

A testbench is automatically generated from HDL Coder. Cadence Incisive simulator is

used for the HDL testbech as well as for the co-simulation model. The co-simulation will

link the Simulink simulation with the HDL compatible simulator in this case Cadence Incisive.

The HDL Algorithm will have two interfaces that communicate to the third party simulation

environment this is shown in Figure 3.3 [28, 29].

Chapter 4

Simulation Results

4.1 Simulation Results

The behavioral beamforming algorithm using Simulink blocks creates a vectorized beamformed

output. The result of the behavioral beamforming algorithm is shown in Figure 4.1. The

generated signal is in blue and shows distinct pulses at 300 and 600 milliseconds. There is noise

that is received from the antennas and carried through the system to the output however, this

can be mitigated with a high pass filter for higher quality results. It is important to note that the

signal to noise ratio (SNR) of the beamformed pulse is 1.2:0.5 or 2.4. For many systems this

SNR is adequate.

The result from the HDL algorithm will be compared to the output from the behavioral

algorithm to verify that the HDL implementation of beamforming is equivalent. The result from

the HDL and behavioral models are shown in Figure 4.2.

From looking at Figure 4.2 it is not easy to discern the difference between the behavioral

and HDL beamformed signal. The error between the two signals is shown in Figure 4.3

Figure 4.3 shows the error between the behavioral and HDL beamformed signals are in the

4.1 Simulation Results 19

Figure 4.1: Behavioral Beamformed Signal Result

4.1 Simulation Results 20

Figure 4.2: Output Signals from the HDL and Behavioral Models

4.1 Simulation Results 21

Figure 4.3: Error between Behavioral and HDL Beamformed Signals

4.2 Co-simulation Results 22

order of 10−3 for this research this is statistically insignificant. Since the error is so small the

HDL algorithm’s functionality has been verified and can now be generated into HDL code.

4.2 Co-simulation Results

A co-simulation testbench is created to run the behavioral simulation in Simulink while running

the HDL simulation in Cadence Incisive. Unfortunately, this was not able to work successfully.

There is an issue connecting Simulink to the Cadence Incisive simulator. There are .sh files

that are generated that compile the HDL files and the testbench file. After compiling there is

a separate .sh file to simulate this project. Running these scripts on their own work and the

results are shown in section 4.3. The error when running the co-simulation environment in

shown in Figure 4.4. The error states that the simulator library is not using shared memory.

To share memory between the simulator library and MATLAB a server using inter-processing

communication called HDL Daemon is used. Unfortunately, even with this server enabled the

co-simulation environment does not run. In Figure 4.5 a MATLAB function nclaunch() is used

to launch the Cadence Incisive simulator environment from the MATLAB terminal. Within

this function the socket used for the HDL Daemon server is set at 4449. After running this

function, the new error states the version of Incisive cannot be determined. After checking the

simulator is on the path of the machine the nclaunch() function has the same error. Even though

the co-simulation environment was not achievable the HDL Algorithm can be verified using a

separate environment with Cadence Incisive to simulate the HDL files.

4.2 Co-simulation Results 23

Figure 4.4: Co-simulation Environment

4.2 Co-simulation Results 24

Figure 4.5: Co-simulation Error Console

4.3 Testbench files 25

Figure 4.6: Waveform of Generating Steering Vectors

4.3 Testbench files

The generated Verilog files are implemented in a test environment that can communicate with

Cadence Incisive simulator environment. The figures below Figure 4.6 and Figure 4.7 show the

operation of the HDL Algorithm model when test signals are applied. The testbench used for

this model generates a 16 bit word as the angle to the 10 antenna elements. This angle is then

used in modules within HDL Algorithm. The testbench will send 12 bit input signals as the

input pulse. The testbench will generate a 16 bit angle value that will be used in the phase shift

algorithm. The pulse signals are sent to the Angle2SteeringVec.v module that will output the

steering vector results this is shown in 4.6. This waveform shows the resulting steering vectors

for each antenna element 0-9 with corresponding real and imaginary parts.

The resulting beamformed signals are beamformingOutHDL_im and beamformin-

gOutHDL_re which are each 32 bit signals with values for the imaginary and real components

of the beamformed output signal. The values of the resulting signals change rapidly to show the

4.3 Testbench files 26

Figure 4.7: Waveform of the Beamformed Signal

computations in progress. Once the stimuli is done inputting information the done signal is set

high once the algorithm calculates the result as shown in Figure 4.7.

Chapter 5

Hardware Results

The synthesis tool from Synopsys called Design Compiler (DC) is used for this design. This

will generate report files to analyze the performance of the circuit. The synthesis tool is used

to optimize the design for timing, area and power. Instead of implementing the design on an

FPGA board the design is implemented on different ASIC technologies. The Virtex 7 which

is the target platform described in Section 3.3.1 is not available for use in this project. The

synthesis tool is applied to the design for each technology available. The 32 nm, 65 nm, 90 nm

and 180 nm ASIC libraries are used for implementation.

After analyzing the data obtained from the DC tool the design is placed and routed using the

Synopsys’ tool Integrated Circuit Compiler (ICC). This tool will use the synthesized design to

route signals and place components on up to 11 different metal layers. This tool will optimize

the design to efficiently route all signals while optimizing timing, power and area.

5.1 Synthesis 28

Table 5.1: Pre-Scan Insertion Area Results

5.1 Synthesis

Synthesis is used for digital designs to convert Hardware Description Language into a netlist.

The netlist will describe the hardware as gates and wires to connect signals to each other.

The DC compiler tool from Synopsys provides optimization of timing, area and power. After

this optimization the tool is able to correlate the results to within 10% of what the physical

implementation would be. This tool is comprehensive and includes PrimeTime, DesignWare IP,

DFTMAX and Power Compiler [31]. The PrimeTime Suite offers static timing analysis. For

designs 90 nm and below PrimeTime will improve signal to noise ratio and delay caused by

cross talk [32]. The Power Compiler is another Synopsys tool used to analyze consumption

of static power of designs less than 90 nm. This tool will also analyze leakage, dynamic,

multi-voltage and threshold voltage power use. The compiler will optimize the design around

power consumption based off of the activity from the nets generated in the design. The results

from using Design Compiler, PrimeTime, and Power Compiler are presented and analyzed in

Section 5.2.

5.2 Pre and Post Scan Insertion Results 29

Figure 5.1: Pre-Scan Insertion Technology vs Area Graph

Table 5.2: Pre-Scan Insertion Power Results

5.2 Pre and Post Scan Insertion Results

The results of the area analysis shows a steep increase from 65 to 90 nm technology. This could

be the result of the Design Compiler not being able to accommadate designs larger than 90 nm.

The relationship between the different technology and power analysis shows a common trend

of technology under 90 nm having a much smaller power consumption than power consumption

over 90 nm. The results from the PrimeTime tool are shown in Table 5.3[33].

The PrimeTime synthesis tool within Design Compiler shows a very high discrepancy

between the 32 nm and 90 nm technology. A possible explanation for the 65 nm technology

5.2 Pre and Post Scan Insertion Results 30

Figure 5.2: Pre-Scan Insertion Technology vs Internal Power Graph

Figure 5.3: Pre-Scan Insertion Technology vs Switching Power Graph

5.2 Pre and Post Scan Insertion Results 31

Figure 5.4: Pre-Scan Insertion Technology vs Leakage Power Graph

Figure 5.5: Pre-Scan Insertion Technology vs Total Power Graph

5.2 Pre and Post Scan Insertion Results 32

Table 5.3: Pre-Scan Timing Results

Figure 5.6: Pre-Scan Technology vs Slack

5.2 Pre and Post Scan Insertion Results 33

Table 5.4: Post-Scan Insertion Area Results

Table 5.5: Post-Scan Insertion Power Results

having a much higher slack time could be the result of a less efficient technology library used

compared to the other technology libraries.

The Design Compiler is also applied to the scan inserted design and the results from this

tool are shown in Table 5.4 and Figure 5.7.

In Table 5.4 this shows the different area results from each technology which shows a similar

pattern to the pre-scan insertion results from Figure 5.1. For all technologies used, the total cell

area increased after scan-insertion. Implementing test insertion ports adds combinational logic

such as flip flops and multiplexors which add to the total cell area. The results from post-scan

insertion power analysis are displayed in Table 5.5 and Figure 5.8 through Figure 5.11.

The power analysis from post-scan insertion differ from the pre-scan insertion power results

5.2 Pre and Post Scan Insertion Results 34

Figure 5.7: Post-Scan Insertion Technology vs Area Graph

Figure 5.8: Post-Scan Insertion Technology vs Internal Power

5.2 Pre and Post Scan Insertion Results 35

Figure 5.9: Post-Scan Insertion Technology vs Switching Power

Figure 5.10: Post-Scan Insertion Technology vs Leakage Power

5.3 Integrated Custom Compiler Results 36

Figure 5.11: Post-Scan Insertion Technology vs Total Power

by increasing the total power for the 32 nm technology which changed from 18.72 mW to

5.2432 mW. The 65 nm Technology did not have a drastic change in power consumption

between pre and post scan insertion. The 90 and 180 nm technology also shows significant

increase in power by roughly a factor of 5 for 90 nm and almost a factor of 2 for 180 nm

technology.

The last parameter analyzed by PrimeTime is slack time. This is shown in 5.6 and 5.12.

5.3 Integrated Custom Compiler Results

The Synopsys tool Integrated Circuit Compiler to place and route the digital beamforming

design. The IC Compiler will plan the hierarchical design. This tool will efficiently find where

congestion is most prevalent and reorganize the design. This compiler uses clock tree synthesis

and route node convergence. The resulting design after the place and route tool is used is shown

in Figure 5.13.

This shows the whole design routed with 11 different metal layers. For a detailed view of

5.3 Integrated Custom Compiler Results 37

Table 5.6: Post-Scan Insertion Timing Results

Figure 5.12: Post-Scan Insertion Technology vs Slack

5.3 Integrated Custom Compiler Results 38

Figure 5.13: Place and Route of the Digital Beamforming Design

5.3 Integrated Custom Compiler Results 39

Figure 5.14: Detailed View of the Place and Route Result

Table 5.7: Results From the IC Compiler

the routing a zoomed in part of the place and route design is shown in Figure 5.14.

The results from running the IC Compiler tool are shown in Table 5.7.

These results show that the total cell area is 432629.0768 nm2. Whereas, the total design

which incorporates power rails is roughly double the cell area at 791062.0837 nm2. Combina-

tional area refers to combinational circuitry which uses sequential logic or any circuit where

the output is dependent on the state of the input signals. The IC Compiler shows results that

the combinational and non-combinational area are roughly the same. It is a difficult balance to

5.3 Integrated Custom Compiler Results 40

incorporate sequential logic since the circuitry can decrease complexity of the design but will

increase propagation delay.

Chapter 6

Conclusion

A beamforming algorithm has been studied and implemented in software to simulate incoming

signals received by an array of antenna elements. The results from this simulation are shown in

Figure 4.1. Using the HDL Coder application in Simulink the HDL Algorithm is generated using

HDL synthesizable Simulink blocks. The result of the HDL and behavioral model’s beamformed

output signal is shown in Figure 4.2. The code generated from HDL Coder has a testbench

file that simulated an incoming signal with a specific direction of arrival (DOA) that is used

within the algorithm to form a receiving radiation pattern that will maximize the information

received. Unfortunately, the co-simulation feature in Simulink did not successfully run with

errors shown in Figure 4.4. The algorithm is verified through the Cadence Incisive waveform

simulation environment as shown in Figure 4.7. Lastly, after verifying the functionality of the

HDL Algorithm the code is synthesized using Cadence DC compiler then applied to different

ASIC technology such as the 32, 65, 90 and 180nm technology. The HDL project could not have

been implemented on an FPGA board since there was not a board available for the dimensions

of this project. The data extracted from the synthesis tool reports are displayed in 5.2 and shows

the varying results compared to the technology.

6.1 Future Work 42

6.1 Future Work

Further experimentation from the work done in this project would involve implementing

beamforming using an antenna to transmit a narrowband signal to an array of isotropic antenna

elements. The signal information from all the antennas would then be transferred to the FPGA

or ASIC platform to generate the beamforming signal results. Unfortunately, the materials

required for this experiment were not attainable at the time of this research.

Wireless communication continues to use beamforming techniques that must continually

be improved on to meet consumers bandwidth demands. The hardware cost of a digital

beamforming model and power consumption is built up of smaller radio frequency chains

which is not efficient [34]. Hardware components necessary in a digital beamforming design

such as phase shifters are a relatively new technology that is expensive and not supplied at the

commercial level. There is future research work done in finding efficient alternatives to costly

phase shifters such as switches [15, 24] .

Research done in [35] shows an effective solution to improve the signal-to-noise ratio in

radar images by using a hybrid strp-map/spotlight mode. This mode allows multilook processing

that enhances the SNR value of the digital beamformed result. Additionally, this method does

not require further complexity to increase the SNR.

Reconfigurable intelligent surfaces (RIS) are a novel technology used in communication

systems. A RIS consists of 2D array of cells that are movable and can adapt to how a transmit

or receive wave is reflected, refracted, absorbed or modulated. RIS platforms use phase shifting

with multiple antennas to optimize the channel information. Phase shifting and beamforming

is difficult to express within the cascaded channels however, the research published in [36]

uses joint phase shift and beamforming that will account for individual channel’s information

received by the reconfigurable intelligent surface.

References

[1] P. K. Bailleul, “A New Era in Elemental Digital Beamforming for Spaceborne Com-

munications Phased Arrays,” Proceedings of the IEEE, vol. 104, no. 3, pp. 623–632,

2016.

[2] X. Xiao and Y. Lu, “Data-Based Model for Wide Nulling Problem in Adaptive Digital

Beamforming Antenna Array,” IEEE Antennas and Wireless Propagation Letters, vol. 18,

no. 11, pp. 2249–2253, 2019.

[3] G. Malamal and M. R. Panicker, “VLSI architectures for Delay Multiply and Sum Beam-

forming in Ultrasound Medical Imaging,” in 2020 International Conference on Signal

Processing and Communications (SPCOM), 2020, pp. 1–5.

[4] H. L. V. Trees, Optimum array processing: Part IV of detection, estimation and modulation

theory. John Wiley and Sons, 2002.

[5] S. H. Talisa, K. W. O’Haver, T. M. Comberiate, M. D. Sharp, and O. F. Somerlock,

“Benefits of Digital Phased Array Radars,” Proceedings of the IEEE, vol. 104, no. 3, pp.

530–543, 2016.

[6] C. A. Balanis, Antenna Theory Analysis and Design. John Wiley and Sons, Inc., 2005.

[7] F. Sohrabi and W. Yu, “Hybrid Digital and Analog Beamforming Design for Large-Scale

References 44

Antenna Arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp.

501–513, 2016.

[8] D. B. Casas, Digital beamforming implementation on an FPGA platform, 2007.

[9] W.-H. Ma, K.-Y. Chang, K.-T. Chen, Y.-T. Hwang, and J.-F. Lin, “Projection Matching Pur-

suit based DoA Estimation Scheme and its FPGA Implementation,” in 2019 International

SoC Design Conference (ISOCC), 2019, pp. 109–110.

[10] A. Chinatto, C. Junqueira, and J. M. T. Romano, “Low cost smart antenna array hardware

implementation,” in 2011 SBMO/IEEE MTT-S International Microwave and Optoelec-

tronics Conference (IMOC 2011), 2011, pp. 784–788.

[11] T. Roy, D. Meena, and L. G. M. Prakasam, “FPGA based Digital Beam Forming for

Radars,” in 2009 IEEE Radar Conference, 2009, pp. 1–5.

[12] J. Zhang, W. Wu, and D.-G. Fang, “Single RF Channel Digital Beamforming Multibeam

Antenna Array Based on Time Sequence Phase Weighting,” IEEE Antennas and Wireless

Propagation Letters, vol. 10, pp. 514–516, 2011.

[13] R. N. Biswas, A. Saha, S. K. Mitra, and M. K. Naskar, “Realization of adaptive beam-

forming in smart antennas on a reconfigurable architecture,” in 2018 Emerging Trends in

Electronic Devices and Computational Techniques (EDCT), 2018, pp. 1–7.

[14] A. Hamza and H. Attia, “Fast Beam Steering and Null Placement in an Adaptive Circular

Antenna Array,” IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 9, pp.

1561–1565, 2020.

[15] J. Zhang, X. Yu, and K. B. Letaief, “Hybrid Beamforming for 5G and Beyond Millimeter-

References 45

Wave Systems: A Holistic View,” IEEE Open Journal of the Communications Society,

vol. 1, pp. 77–91, 2020.

[16] S. Lavdas, P. K. Gkonis, Z. Zinonos, P. Trakadas, and L. Sarakis, “An Adaptive Hybrid

Beamforming Approach for 5G-MIMO mmWave Wireless Cellular Networks,” IEEE

Access, vol. 9, pp. 127 767–127 778, 2021.

[17] B. K. Imtiyaz Ahmed, D. F. Jabeen, and D. Thangadurai, “Performance Comparison and

FPGA Synthesis of MNLMSNCMA Adaptive Beamforming Algorithm,” International

Journal of Emerging Technologies in Engineering Research (IJETER), 2018.

[18] N. H. Noordin, T. Arslan, B. W. Flynn, A. T. Erdogan, and A. O. El-Rayis, “Single-Port

Beamforming Algorithm for 3-Faceted Phased Array Antenna,” IEEE Antennas and

Wireless Propagation Letters, vol. 12, pp. 813–816, 2013.

[19] A. Liu, W. Sheng, and T. Riihonen, “Per-Antenna Self-Interference Cancellation Beam-

forming Design for Digital Phased Array,” IEEE Signal Processing Letters, vol. 29, pp.

2442–2446, 2022.

[20] Z. Li, F. Yang, Y. Chen, S.-W. Qu, J. Hu, and S. Yang, “Wideband Receive Beamforming

Based on 4-D Antenna Arrays With Postmodulation,” IEEE Antennas and Wireless

Propagation Letters, vol. 21, no. 4, pp. 740–744, 2022.

[21] G. Ni, Y. Song, J. Chen, C. He, and R. Jin, “Single-Channel LCMV-Based Adaptive

Beamforming With Time-Modulated Array,” IEEE Antennas and Wireless Propagation

Letters, vol. 19, no. 11, pp. 1881–1885, 2020.

[22] W. Ren, J. Deng, and X. Cheng, “MMSE Hybrid Beamforming for Multi-User Millimeter

Wave MIMO Systems,” IEEE Communications Letters, vol. 27, no. 12, pp. 3389–3393,

2023.

References 46

[23] T. Liang, Y. Pan, and Y. Dong, “Compact Multimode Beamforming Antenna for Space-

Division Multiple Access Application,” IEEE Antennas and Wireless Propagation Letters,

vol. 22, no. 8, pp. 1907–1911, 2023.

[24] G. Zang, L. Hu, F. Yang, L. Ding, and H. Liu, “Partially-Connected Hybrid Beamforming

for Multi-User Massive MIMO Systems,” IEEE Access, vol. 8, pp. 215 287–215 298,

2020.

[25] M. Fosberry and M. Livadaru, “Digital Synthetic Receive Beamforming with the Xilinx

ZC1275 Evaluation Board,” in 2019 IEEE International Symposium on Phased Array

System and Technology (PAST), 2019, pp. 1–2.

[26] B. Lam, M. Price, and A. P. Chandrakasan, “An ASIC for Energy-Scalable, Low-Power

Digital Ultrasound Beamforming,” in 2016 IEEE International Workshop on Signal

Processing Systems (SiPS), 2016, pp. 57–62.

[27] “FPGA-Based Beamforming in Simulink: Algorithm De-

sign.” [Online]. Available: https://www.mathworks.com/help/phased/ug/

design-an-hdl-beamforming-algorithm-in-simulink.html

[28] “Guided Code Generation.” [Online]. Available: mathworks.com/help/hdlcoder/

hdl-workflow-advisor.html

[29] “FPGA-Based Beamforming in Simulink: Code Genera-

tion.” [Online]. Available: https://www.mathworks.com/help/phased/ug/

hdl-code-generation-and-verification-of-a-beamforming-algorithm-in-simulink.html

[30] 7 Series FPGAs Data Sheet: Overview (DS180).

[31] DC Ultra Concurrent Timing, Area, Power and Test Optimization Datasheet.

https://www.mathworks.com/help/phased/ug/design-an-hdl-beamforming-algorithm-in-simulink.html
https://www.mathworks.com/help/phased/ug/design-an-hdl-beamforming-algorithm-in-simulink.html
mathworks.com/help/hdlcoder/hdl-workflow-advisor.html
mathworks.com/help/hdlcoder/hdl-workflow-advisor.html
https://www.mathworks.com/help/phased/ug/hdl-code-generation-and-verification-of-a-beamforming-algorithm-in-simulink.html
https://www.mathworks.com/help/phased/ug/hdl-code-generation-and-verification-of-a-beamforming-algorithm-in-simulink.html

References 47

[32] PrimeTime Golden TimingSignoff Solution and Environment.

[33] Power Compiler User Guide.

[34] D. C. Gaydos, P. Nayeri, and R. L. Haupt, “Adaptive Beamforming With Software-

Defined-Radio Arrays,” IEEE Access, vol. 10, pp. 11 669–11 678, 2022.

[35] Z. Chen, Y. Zhou, J. Qiu, W. Wang, Z. Zhang, and R. Wang, “A Novel Approach to Further

Enhancing SNR in Digital Beamforming SAR Utilizing Hybrid Strip-Map/Spotlight

Mode,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[36] K. Li, C. Huang, Y. Gong, and G. Chen, “Double Deep Learning for Joint Phase-Shift

and Beamforming Based on Cascaded Channels in RIS-Assisted MIMO Networks,” IEEE

Wireless Communications Letters, vol. 12, no. 4, pp. 659–663, 2023.

	Digital Beamforming Implemented in Hardware
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Goals
	1.2 Contributions
	1.3 Organization

	2 Bibliographical Research
	2.1 A brief overview of beamforming and phased arrays
	2.1.1 Beamforming Algorithms
	2.1.1.1 Direction of Arrival and power method
	2.1.1.2 Null-steering techniques
	2.1.1.3 Adaptive Beamforming
	2.1.1.4 Phase-shift beamforming

	2.2 Digital Hardware Implementation
	2.2.1 Types of hardware platforms
	2.2.1.1 Field Programmable Gate Arrays
	2.2.1.2 Digital Signal Processor
	2.2.1.3 Application Specific Integrated Circuits

	3 MATLAB and Simulink Environment
	3.1 Behavioral Algorithm
	3.2 Hardware Description Language Algorithm
	3.2.1 Digital Conversion of the signal information
	3.2.2 Generating the Steering Vector

	3.3 Generating HDL code
	3.3.1 Target Platform
	3.3.2 HDL and Testbench Generation

	4 Simulation Results
	4.1 Simulation Results
	4.2 Co-simulation Results
	4.3 Testbench files

	5 Hardware Results
	5.1 Synthesis
	5.2 Pre and Post Scan Insertion Results
	5.3 Integrated Custom Compiler Results

	6 Conclusion
	6.1 Future Work

	References

