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Abstract

Transfer learning facilitates the training of a deep learning (DL) model with limited or no labeled data, by

initializing the network parameters using a similar model already trained on a different but related dataset

or task. This dissertation examines two special cases of transfer learning for image classification tasks:

cross-modal supervised learning, and cross-domain unsupervised adaptation. This dissertation proposes to

apply cross-modal transfer learning to guide the training process of a DL model on Synthetic Aperture Radar

(SAR) images via knowledge distillation from a DL model trained on corresponding electro-optical (EO)

images. Furthermore, this approach explores class-balanced sampling strategies and multi-stage training

procedures to account for the high class-imbalance encountered in a real-world SAR image dataset.

When models trained in one domain (source) are deployed in a new environment (target), they may en-

counter performance degradation due to the data distribution shift between the source and the target. Do-

main adaptation (DA) aims to address this limitation by aligning the source domain features with those

extracted from the target domain. Drawing inspiration from continual learning, we refine source-free con-

tinual unsupervised domain adaptation methods ConDA and UCL-GV, which are buffer-fed networks that

adapt to the continually incoming small batches of unlabelled target data. Our models outperform state-of-

the-art (SOTA) continual DA models on both static, and dynamic (gradually changing) target domains. We

further introduce new synthetic aerial datasets under gradually degrading weather conditions, and propose

techniques to improve training stability of continual DA methods.

Recent tools for the commercialization of DL models have sparked concerns about protecting proprietary

DL technologies during end-user deployment. We explore black-box domain adaptation (BBDA) as a means

to mitigate these concerns. We propose a curriculum-guided domain adaptation method called CABB that

splits the target data into clean and noisy subsets via pseudolabel distribution modeling, and progressively

adapts to the reliable and clean pseudolabels first, and then to the noisy pseudolabels later. Our method
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outperforms existing BBDA models by up to 9.3% across several popular DA datasets, and is on par with

white-box DA models.

All the object categories in the source and the target domains may not necessarily fully overlap, and the

target domain may contain samples from novel classes that are absent in the source domain. We introduce

Unknown Sample Discovery (USD) as a source-free open set domain adaptation (SF-OSDA) method that

also utilizes pseudolabel distribution modeling to conduct known-unknown target sample separation. USD

operates within a teacher-student framework using co-training and temporal consistency between the teacher

and the student models, thereby significantly reducing error accumulation resulting from imperfect known-

unknown sample separation. Empirical results show that USD is superior to existing SF-OSDA methods by

as much as ∼20% in terms of prediction accuracy.
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Chapter 1

Introduction

Deep learning has come a long way since the first mathematical model of a neural network was devised by

Warren McCulloch and Walter Pitts [148]. Backpropagation [129] is the driving force behind the effective

deep learning of today. However, Henry J. Kelley derived the basics of continuous backpropagation not in

the context of deep learning, but in the context of control theory in 1960 [96]. Building upon Rosenblatt’s

single layered artificial neural network [174], Fukusima developed the first convolutional neural network us-

ing convolutional and pooling layers [44] in 1982. Yann LeCun married backpropagation with convolutional

neural networks in 1989 for handwritten digit recognition [112]. With the advent of graphical processing

units (GPUs) around the turn of the century, deep learning based solutions were starting to catch up with sup-

port vector machines (SVMs) and other hand-designed feature extractors. In 2009, the ImageNet [34] visual

recognition challenge was launched with 14 million labeled images, the ideal grazing ground of big data for

deep artificial neural networks. Three years later in 2012, Alex Krizhevsky et al. introduced a convolutional

neural network (CNN) called AlexNet [104], and became champions of the ImageNet visual recognition

challenge [34] in 2012, beating the runners-up contestants by more than 10 percentage points, and thus pro-

pelling the deep learning revolution. Less than a decade later, the massive research and commercialization

of deep learning (DL) has made artificial intelligence ubiquitous.

Successful application of DL, however, relies on the availability of large amounts of data for a model to

train. But collection, processing, and annotation of large amounts of data for each task, modality or domain

where a DL model is deployed to is not feasible. This has motivated the practice of transfer learning, where

a model is trained with labelled source data for one task, and then subsequently trained with target data for

another task. In the simplest form of transfer learning, the target data are labelled and belong to the same

modality as the source data. In this dissertation, we consider two special forms of transfer learning: (i)

1



CHAPTER 1. INTRODUCTION 2

when a model trained on one modality of data is transferred to learn on labelled data from another modality,

and (ii) when a model trained with data from one domain is transferred to adapt to unlabelled data from a

different domain, and of the same modality.

For cross-modal transfer learning, we investigate aerial Synthetic Aperture Radar (SAR) image classifi-

cation. SAR signals can pass through adverse weather related occlusions, such as cloud cover, and are

thus preferred for aerial remote sensing using drones and other unmanned aerial vehicles (UAVs). SAR is

also vital for national defence, as the occlusion penetrating property of SAR is heavily utilized for aerial

surveillance. Deep learning solutions to SAR image classification and detection are an active area of re-

search [7,50,157,235,236]. Several types of neural network architectures have been applied to address this

issue, such as CNNs [23, 35], recurrent neural networks (RNNs) [7, 95], and autoencoders [45]. However,

SAR data are low resolution, and noisy in nature. This significantly hampers supervised training methods to

learn on SAR data. Some newer methods try to overcome the drawbacks of SAR data by fusing them with

corresponding EO data [1, 78, 149, 150, 155]. Doing so, however, limits the applicability of such models

under poor illumination (such as, inclement weather conditions) as aerial EO data may become practically

unusable in such scenarios.

For cross-domain transfer learning, we investigate unsupervised domain adaptation (UDA). A domain gap or

distribution shift is manifested when a deep network or model is trained with data from one domain/environment,

and the model is deployed is a different domain/environment, resulting in significant performance degrada-

tion for the model. UDA attempts to mitigate the effects of this domain shift/gap by aligning the feature

spaces of the source (training) domain and the target (deployment) domain. UDA has found its application

in many DL tasks, such as classification [207], image segmentation [199], object detection [161], etc. Al-

though many of the existing UDA methods work on the assumption that both the source and target data are

available during the adaptation phase [31,49,201], concerns about the source data privacy led to another DA

paradigm called source-free UDA [125, 221] that poses a more challenging problem by making the source

data unavailable during adaptation. However, in a more practical scenario such as autonomous driving and

robotics, the target data become available to the model for adaptation only in small batches at a time, and

not in their entirety.In this case, the model needs to adapt on the fly or during test-time.

As more and more technology companies bring AI products and solutions to the consumer market, protecting

their proprietary DL source models becomes a major concern, in addition to protecting the source data.

Black-box domain adaptation (BBDA) [126, 219] aims to learn a target model with the target data, and

their pseudolabels generated by a black-box source. By keeping the source model behind a veil, and never

disclosing its parameters, BBDA helps companies protect their intellectual property from piracy. Due to

lack of access to the source model, compared to standard UDA, performing BBDA is a more challenging
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problem that has not been sufficiently explored.

Moreover, the target data may have extra/novel classes that are absent in the target domain. This setting is

called open set domain adaptation (OSDA) [130,183]. OSDA necessitates feature alignment in the common

classes in the two domains, while increasing the inter-class feature distance between the known and unknown

classes in the target domain.

This dissertation explores the two aforementioned forms of transfer learning across modalities and sensing

modalities, and proposes several novel methods for cross-modal, and cross-domain transfer learning. Both

forms are challenging, and deal with effectively utilizing predictive models learned from the annotated

source data. In this dissertation, we propose novel ways to address several research questions related to

practical scenarios, and applications of the two forms of transfer learning. The objectives, research outline,

and results of our studies are discussed below.

1.1 Objectives

The broad objectives of this dissertation proposal are as follows.

1. Develop methods for synthetic aperture radar (SAR) image classification, using knowledge distillation

from a model trained on corresponding electro-optical images, while addressing the class imbalance

issue of SAR datasets. (Chapter 3)

2. Formulate novel models for continual domain adaptation for both static, and dynamic target domains,

in addition to introducing new synthetic benchmark datasets for gradually degrading weather condi-

tions in aerial images. (Chapter 4)

3. Design new methods for curriculum-guided domain adaptation without accessing the source data, and

the source model, thus protecting privacy of the training data and model parameters. (Chapter 5)

4. Develop techniques for identifying novel class samples in source-free open-set domain adaptation,

and formulate robust domain adaptation methods with increased inter-class discrimination between

known and unknown classes. (Chapter 6)



CHAPTER 1. INTRODUCTION 4

1.2 Dissertation outline

In this dissertation, we present six chapters in total, with the current introduction chapter being the first

chapter, and the sixth chapter being the one with the proposed timeline. The dissertation is outlined as

follows.

1.2.1 Chapter 2: Background

In this chapter, we discuss some preliminary background topics of this proposal, including artificial neural

networks, convolutional neural networks, and vision transformers.

1.2.2 Chapter 3: EO guided SAR image classification

In this chapter, we propose three DL training schemes for SAR image classification using coupled SAR-

EO training images via knowledge distillation from an already learned EO image trained model. This

chapter is based on three of our inter-related papers titled ”Cross-modal knowledge distillation in deep

networks for SAR image classification” [85], ”SAR Image Classification with Knowledge Distillation and

Class Balancing for Long-Tailed Distributions” [86], and ”Balanced sampling meets imbalanced datasets

for SAR image classification” [81] that appeared at SPIE DCS 2022, IVMSP 2022, and SPIE DCS 2023,

respectively.

1.2.3 Chapter 4: Continual unsupervised domain adaptation

This chapter introduces the more pragmatic continual unsupervised DA paradigm where the target data are

available for adaptation in small batches, instead of in their entirety during adaptation. We propose two

related models that address continual UDA: one for static target domain, and other for gradually varying tar-

get domain. Our methods outperform existing UDA models in both scenarios. We also introduce four new

benchmarking datasets for conducting continual UDA under gradually degrading weather conditions. This

chapter is based on our IEEE Transactions of Artificial Intelligence paper titled ”Continual Unsupervised

Domain Adaptation in Data-Constrained Environments” [198], our CVPR 2022 paper titled ”Unsupervised

Continual Learning for Gradually Varying Domains” [197], and another paper published in the SPIE Jour-

nal of Applied Remote Sensing titled ”Continual Domain Adaptation on Aerial Images under Gradually

Degrading Weather” [84].
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1.2.4 Chapter 5: Black-box domain adaptation

This chapter discusses a method to separate reliable and unreliable pseudolabels for domain adaptation by

modelling the target data distribution. Specifically, a black-box domain adaptation model called Curriculum

Adaptation for Black-Box (CABB) is introduced that utilizes curriculum learning strategy to effectively adapt

using noisy target pseudolabels generated by a black-box source model by separating them into clean and

noisy sets, and outperforms existing state-of-the-art black-box DA methods. This chapter is based on the

paper titled ”Curriculum Guided Domain Adaptation in the Dark” [82], which has been published in the

IEEE Transactions on Artificial Intelligence journal.

1.2.5 Chapter 6: Source-free open-set domain adaptation

This chapter introduces a method named Unknown Sample Discovery (USD) that models the Jensen-

Shannon distance between target pseudolabels and network outputs to distinguish between samples in the

target domain belonging to classes that are also present in the source domain, and those samples that belong

to the target-private classes. USD outperforms current source-free open-set DA methods. This chapter is

based on a paper titled ”Unknown Sample Discovery for Source Free Open Set Domain Adaptation” [83],

which was accepted to the 1st Workshop on Test-Time Adaptation: Model, Adapt Thyself! (MAT) at The

IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) 2024.

1.2.6 Chapter 7: Conclusion and future work

This chapter presents brief conclusions about the different projects discussed in this dissertation and outlines

some future directions for advancing these research projects.



Chapter 2

Background

We begin our background discussion with a brief introduction to the history and mechanism of artificial

neural networks, followed by descriptions of convolutional neural network and transformers for vision.

2.1 Perceptron

Figure 2.1: Rosenblatt’s perceptron proposed in 1958 [174].

Artificial neurons were conceived in the early 19th century when neural events were modeled mathematically

and the relations among them were explored [147]. Later in 1958, Rosenblatt [174] laid the foundational

groundwork for modern neural networks with a single layer of interconnected artificial neurons, called a

6
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perceptron, to solve a simple binary classification problem. Let us consider a training set S composed of

training samples Sk = (xk, yk), such that xk = (xk1 , xk2 , xk3 , ..., xkn) is a pattern vector of n dimensions,

and yk is the class label of sample Sk where yk ∈ C with C = {0, 1} as the label set. The training set S
can also be defined as S = S1

⋃
mathcalS0, where S1 = {xk;Sk = (xk, yk) ∈ S, yk = 1} is the subset

of positive training instances, and S0 = {xk;Sk = (xk, yk) ∈ S, yk = 0} is the subset of negative training

instances for a binary classification problem. The objective of the perceptron training algorithm is to find a

weight vector w = (w1, w2, w3, ..., wn) and the bias b such that,

∀xk ∈ S1 : wT .xk + b > 0

∀xk ∈ S0 : wT .xk + b < 0
(2.1)

If the bias b is negative, the weighted sum of inputs need to be greater than |b| in order to get a positive

prediction for the sample. The bias b thus alters the position of the linear decision boundary, while the

neuron weights controls the orientation. A heavy-side step activation function is also applied to the network

output to model whether or not the neuron is activated. The neuron output thus becomes,

ŷk = ϕ(

n∑
i=1

wixki + b) =

1
∑n

i=1wixki + b ≥ 0

0 otherwise
(2.2)

We note that, the bias term b can be modeled as a trainable parameter wk0 of the weight vector when the

input vector also has a fixed parameter xk0 = 1 appended at the beginning. With the estimated output ŷk for

sample Sk = (xk, yk), the network parameters (weights) can now be updated as,

wnew = wold + η(yk − ŷk)xk (2.3)

where η > 0 can be termed as the learning rate. This process is repeated until convergence.

The Rosenblatt perceptron model has several limitations. First, the training will never terminate if the input

set is not linearly separable. Second, the heavy-side step activation function splits the input space into two

halves, with an infinite gradient at the threshold. This prevents application of optimization techniques, such

as gradient descent. Minsky and Papert [151] proposed to replace the step activation function with a sigmoid

activation function defined as,

ϕ(x) =
1

1 + e−x
(2.4)
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The advantages of this sigmoid activation function over the step function are manifold. Unlike step func-

tion, the output of the sigmoid function is continuous, smooth, and most importantly, differentiable at all

positions. A perceptron with sigmoid activation function can therefore be optimized with gradient descent

(GD). Since then, many other activation functions have been proposed with similar properties, such as, Rec-

tified Linear Unit (ReLU) [160], Gaussian Error Linear Unit (GELU) [64], Softplus [51], Exponentially

Linear Unit (ELU) [29], Scaled Exponential Linear Unit (SELU) [102], Leaky Rectified Linear Unit (Leaky

ReLU) [145], Parametric Rectified Linear Unit (PReLU) [62], among others.

The sigmoid function limits the output to be continuous in the range of 0 to 1 and can be considered as

output probability of the input sample for belonging to the positive class. This enables utilization of model

optimization frameworks such as Maximum Likelihood Estimation (MLE) to heuristically find the proba-

bility distribution and model parameters that best explain the observed data. The maximum likelihood H
for our binary classification problem can be written as,

P (yk = 1|xk) =
1

1 + e−wT .xk

P (yk = 0|xk) = 1− P (yk = 1|xk)

H =
K∏
k=1

P (yk = 1|xk)
ykP (yk = 0|xk)

1−yk

(2.5)

The logistic loss or the binary cross-entropy loss can therefore be written as,

Llogistic = − logH = −
K∑
k=1

yk logP (yk = 1|xk)−
K∑
k=1

(1− yk) log(1− P (yk = 1|xk)) (2.6)

Given the loss L, gradient descent is popularly applied to update the weight vector w as follows.

w←− w − η
∂

∂w
L (2.7)

Updating weights with gradient descent (GD) after calculating loss on the entire dataset of K samples results

in slow convergence, and requires a large memory to store the gradients for each sample. Stochastic gradient

descent (SGD) updates the model weights each time a training sample is fed, resulting in faster convergence.

However, SGD may be unable to minimize the loss function as well as GD. Stochastic gradient descent

with minibatch updates the model parameters with the loss calculated on a randomly selected subset of the

training data, and thus achieves fast and optimal convergence.
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The learning capacity of a single-layer perceptron is quite limited. It cannot classify patterns that are not

separable with a hyperplane, for example a single-layer perceptron can model the linear OR logic, but fails

to model the non-linear XOR logic. As a solution, a multi-layered perceptron (MLP) can model the more

complex patterns. We briefly discuss MLP in the following section.

2.2 Multi-layer Perceptron

Figure 2.2: Multi layered perceptron (MLP) network.

Multi layered perceptron (MLP) consists of one or multiple hidden layers of fully connected artificial neu-

rons between the input layer and the output layer. Given that the number of hidden layers or the number of

nodes in a hidden layer are sufficient, and the activation functions are non-linear, MLPs can theoretically

model any continuous function [32]. Let us add a little more complexity to the binary classification problem

from the previous section, and assume that the training dataset has four classes, i.e yk = {0, 1, 2, 3} with

two additional subsets S2 = {xk;Sk = (xk, yk) ∈ S, yk = 2} and S3 = {xk;Sk = (xk, yk) ∈ S, yk = 3}
that constitute the training set S = S0

⋃
S1
⋃
S2
⋃
S3. An MLP that can model such a dataset is presented

in Figure 2.2. To get the probability distribution across the classes C = c1, c2, c3, c4, the sigmoid activation

function also has to be replaced with a different activation function to accommodate more than two output

classes, preferably a softmax activation function. If w1 and w2 are the weights of the two hidden layers, the

model output probability can be written as,

P (yk = c|xk) =
exp (wT

c w2
T (w1

T (xk)))∑C
j=1 exp (w

T
j w2

T (w1
T (xk)))

(2.8)
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If tk is the one-hot encoded target of C dimensions, the MLE and categorical cross-entropy loss then can be

expressed as,

H =
K∏
k=1

C=3∏
c=0

P (yk = c|xk)
tkc

Lsoftmax = −
K∑
k=1

C=3∑
c=0

tkc logP (yk = c|xk)

(2.9)

MLPs are however ill-suited for computer vision applications. An input RGB image with three channels of

size 224 × 224 × 3 has n = 150528 dimensions. If the number of nodes in the first hidden layer is only

five, the total number of parameters for the first layer alone becomes 5× (n+ 1) = 752645. For a deep or

wide network, the number of parameters can quickly blow up, making MLPs impractical even for medium

resolution images. Moreover, spatial relationship between image pixels are overlooked in MLPs, leading

to very low inductive bias. As opposed to MLPs, Convolutional neural network (CNN) preserves the local

spatial relationship among image pixels and reduces the number of model parameters drastically using a

moving window, and is therefore better suited for dealing with images. CNNs are briefly described in the

next section.

2.3 Convolutional Neural Network (CNN)

Inspired by visual nervous system in vertebrates, Fukushima et al. [44] proposed in 1982 an artificial neural

network that used convolutions on images to extract features, and then pooled these features for global

representations. The model consisted of alternate layers of (i) simpler S-cells that extract local features via

convolution, and (ii) complex C-cells that pool the features and hierarchically produce global features. This

model was used for Japanese character recognition. Convolutional neural networks (CNNs) in their present

form was first proposed by Lecun et al. [112] in 1989, where the model learns a bank of convolutional

filters or kernels that pan around an entire image with shared weights, and introduced gradient descent

based backpropagation for deep convolutional model updates. The hyperbolic tangent activation function

used in the model, however, faced the problem of exploding or vanishing gradients in a deep network.

Over the course of the next decade, the model was refined and Lecun et al. [113] came up with LeNet for

hand-written digit recognition with more hidden convolutional layers, pooling layers, and a scaled version

of the earlier hyperbolic tangent activation function. The model was also trained with stochastic minibatch

gradient descent for faster optimization. The LeNet model was, however, limited in terms of capacity to

learn features on diverse large-scale datasets.
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Starting in 2010, the ImageNet large scale visual recognition challenge (ILSVRC) [34] provided a bench-

mark dataset for researchers to evaluate their machine learning models on a common large-scale computer

vision task. Then in 2012, Krizhevsky, Sutskever, and Hinton [104] proposed a deep CNN based architec-

ture named AlexNet, and significantly reduced the error rate on the ImageNet classification task from 25.8%

a year earlier to 16.4%. This development revolutionized neural networks, and propelled us into the new age

of artificial intelligence fueled real-world solutions. To achieve quicker convergence, AlexNet normalized

the response across all the channels locally at a particular location. It also introduced the rectified linear

unit (ReLU) activation function, which was relatively simpler in design and easily differentiable, thereby

significantly reducing vanishing and exploding gradients during training. The activation layer for the final

classifier was a softmax function with 1000 classes. AlexNet was also drastically efficient; it had about

60 million parameters (same as LeNet), and 95% of the computation was done in the convolution layers

which accounted for only 5% of the parameters. AlexNet proved the viability of deep neural networks for

addressing real-world problems.

Machine learning based classification models usually consist of two parts: (i) a backbone or feature extractor

that embeds the input image into the feature space, and (ii) a classifier that takes these features as input and

produces the probability distribution function. Before deep neural networks were practically usable, the

features were calculated via hand-crafted methods, such as Harris corner detector [57], SIFT [141], ORB

[178] etc. Deep learning with gradient descent enabled the models to learn the proper feature representations

without human intervention. Following AlexNet, several newer and deeper convolutional models were

proposed, such as VGG [188] and InceptionNet [193]. VGG systematically reduced of 2D dimensions of

input image through each layer, while increasing the number of channels in each layer in an organized

way, enabling the deeper model with more parameters to learn representations for diverse datasets. Naively

increasing the depth of a model however exacerbates the problem of exploding and vanishing gradients, as

well as overfitting on the training data due to overparameterization [232]. Residual networks or ResNets [63]

were proposed to curb vanishing gradients by carrying over activations from a shallow layer to a deep

layer using skip connections. ResNets connect the activations of every other layer with skip connections or

“shortcuts”, and directly connects the adjacent layers. Two layers with a skip connection between the input

and the output together form a residual block. A ResNet model is made up of stacked residual blocks. Since

ResNets systematically decrease the input dimensions using pooling layers, it becomes an issue for dense

predictions, such as segmentation. HRNet [206] preserves the image at multiple high resolutions (hence

the name HRNet: high-resolution net), and fuses the multi-resolution features at the deep layers, enabling

improved dense predictions. ResNets and HRNets are however very parameter intensive, with millions

of parameters and several GigaFLOPs of operations. To be able to deploy deep neural models in edge

devices, such as mobile phones, an efficient CNN called MobileNet [72] was proposed which contained

depth wise separable convolutions, thereby considerably reducing the number of parameters and keeping a
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sweet balance between output accuracy and network latency.

2.4 Transformers in vision

Transformers can be considered as the latest family of deep neural network backbones. Natural language

processing had mostly been done with recurrent neural networks (RNN) that could classify a word in a

sentence by drawing context from earlier words in the sentence. However, due to sequential nature of

word processing in RNNs, the context at one state or word was dominated by the immediately earlier state

or word. In 2017, Vashwani et al. [203] presented the modern transformer model for processing natural

languages that could capture context from across the entire text, due to its self-attention mechanism. But

due to the large number of pixel dimensions in an image, applying transformer models in visual tasks

was not feasible at that time. Dosovitskiy et al. [37] in 2020, proposed to break an image into patches

of 16 × 16 pixels, embed the patches into a embedding space and feed to a transformer model. They

termed their model Vision Transformer (ViT), and added learnable positional embeddings to the image patch

embeddings, in order to preserve spatial relationship among the patches. The embeddings pass through a

number of stacked transformer encoder blocks, before the output is taken from the zero-th positional MLP

head. Each transformer block consists of a normalization layer, followed by a multi-headed self-attention

module, then another normalization layer and finally an MLP module. Skip connections connect the inputs

at each normalization layer. The self attention module takes the patch embeddings and feeds them through

query, key, and value parameters. Let us express the outputs of the three trainable parameters over all

the image patches be Q ∈ Rn×dk ,K ∈ Rn×dk , and V ∈ Rn×dv , respectively, where dk and dv are the

dimensions of the query/key and value parameters, respectively. Self attention is calculated as a dot product

as follows,

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.10)

The dot product between Q and KT produces a matrix of size n × n, which consists of attention scores

for each element i with all other elements in the input. It is then passed through a softmax layer before

being scaled with
√
dk, and then finally multiplied with the value vector V to obtain weighted means of all

attention probabilities. The self-attention module enables a transformer model to capture context between

two distant patches in an image. ViT is thus able to achieve global contextual understandings of an image,

even at the shallower blocks, whereas CNN-based architectures are hierarchical and achieve global feature

representations in the deeper layers. Having shown impressive results, ViT paved the way for numerous new
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transformer based vision models, such as Swin [132, 134], DeepViT [237], Multiscale ViT (MViT) [41],

among others. Swin breaks the image into a number of windows, and each window is then divided into a

number of smaller 4 × 4 pixel patches. Swin applies self-attention more locally, across only the patches

within each window. Swin overcomes local feature representations by shifting the windows, and achieves

hierarchical feature scale by patch merging. MViT adopts multiscale feature hierarchies in CNN models

and develops a multiscale feature pyramid for transformers with small number of channels at the higher

resolutions, and larger number of channels at the lower resolution. MViT is thus able to capture context at

multiple resolutions.



Chapter 3

EO-guided SAR image classification

This chapter is based on three of our inter-related papers titled ”Cross-modal knowledge distillation in deep

networks for SAR image classification” [85], ”SAR Image Classification with Knowledge Distillation and

Class Balancing for Long-Tailed Distributions” [86], and ”Balanced sampling meets imbalanced datasets

for SAR image classification” [81] that appeared at SPIE DCS 2022, IVMSP 2022, and SPIE DCS 2023

conferences, respectively. Deep learning based classification of SAR images is a challenging task due to the

nature of SAR imagery and apparent noise. On the other hand, Electro-Optical (EO) image classification

has been extensively studied with great success using deep learning methodologies. In this chapter, we

propose a novel framework for knowledge distillation from EO to SAR, that is response-based and takes into

consideration the differences in network size and feature representations in the two modalities. Our training

approach includes of two/three stages consisting of 1) EO network training, 2) SAR network training with

transfer learning and knowledge distillation from the EO network, and an optional 3) class-balanced training

of the SAR network to account for long-tailed distributions in the data. Our approach is guided by the

differences in physical characteristics between the EO and SAR modalities, as our knowledge distillation

is performed at the soft output level and allows different types of features in the EO and SAR networks.

Our model is agnostic in the selection of network backbone and does not place any constraints on the

network architecture, thus making knowledge transfer applicable even from a smaller network to a larger

network. We test our approach on a recent EO-SAR coupled dataset with promising results on SAR image

classification. Our method achieves performance gains in each stage and for each component of the model,

as evidenced in our ablation studies.

14
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3.1 Introduction

Recent advances in earth observation data collection technology [53] have contributed to a dramatic in-

crease in the amount and variety of remotely sensed images. This has facilitated research into data-driven

deep learning methods that can leverage the ever increasing volume of data. Several deep learning based

methods have explored ways to perform pixel, object and scene-level image classification of remotely col-

lected satellite imagery [73,121,142]. Most of these methods deal with Electro-Optical (EO) imagery sensed

in the visual spectrum [25,26,118]. Some models have been developed for image classification of Synthetic

Aperture Radar (SAR) data, either at the pixel level [50, 157, 235] for coarse semantic segmentation of the

overall scene, or at the object level [7,236], under certain limitations and prior assumptions. However, none

of these methods take advantage of joint learning with coupled EO-SAR sample pairs for knowledge transfer

and/or distillation from the EO domain to the SAR domain.

Here, we propose a method to leverage learning of electro-optical image data to guide SAR object classifica-

tion. This approach is promising because the two modalities are drastically different in their physics of light

capture. Due to the difference in image appearance between EO and SAR, different types of features need to

be learned in each domain and knowledge transfer is performed during classification. Since EO samples are

more easily accessible and less noisy, we propose cross-modal knowledge distillation from an EO trained

network to a network trained for SAR image classification. Such an EO-SAR knowledge transfer has not

been studied before.

Although several methods [1, 78, 149, 150, 155] have worked with EO-SAR data fusion, they require both

the EO and SAR images for inference. In contrast, we utilize corresponding EO-SAR image pairs to guide

the training of a SAR classification network. During inference, our model only requires the SAR images,

thereby allowing its deployment with SAR data only, under all weather conditions and taking full advantage

of radar images. To address the issue of class imbalance in the SAR-EO coupled dataset [136], we have

explored two sampling strategies during training: instance sampling and class balanced sampling. Examples

of EO and SAR images are shown in Figure 3.1.

The major contributions of this work are:

1. We propose a novel physics-guided deep learning framework for knowledge distillation across modal-

ities.

2. We present an EO-guided SAR image classification scheme, where a network model trained to classify

EO data guides the training of a SAR classification network.
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Figure 3.1: Representative examples from the coupled EO-SAR dataset. The top row shows EO images and
the bottom row shows SAR images. Each column represents one class. From left to right, the classes are:
sedan, SUV, van, motorcycle, flatbed truck, and pickup truck with trailer.

3. Our approach for cross-modal knowledge distillation from the EO to the SAR domain is independent

of the network backbone and can transfer knowledge from a smaller network to a larger network or

vice-versa.

4. Our multi-stage training procedure addresses the dataset class imbalance with class balanced dataload-

ing strategy, either mixed with instance data sampling in the second training stage, or in a separate

third and final stage of training, to reduce classifier bias towards the more populated classes.

5. Our SAR classification model does not require any EO data during inference, unlike existing SAR-EO

data fusion methods that require samples from both domains.

6. We validate our model on a new SAR-EO dataset, and conduct ablation studies for different parts of

our model and stages of training, showing the efficacy of each component.

The rest of the chapter is organized as follows: In Section 3.2, we discuss related works; in section 6.3, we

present the details of our method; in section 3.4, we discuss the SAR-EO coupled dataset we use to evaluate

our model; in section 3.5, we show quantitative results and ablation study for the different components of

our model; and in section 6.6, we present final remarks.
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3.2 Related Work

3.2.1 SAR image classification

Manual SAR image annotation for training classification models remains a challenging task that requires

extensive experience and is labor intensive and expensive. Hand-crafted feature extractors that work on

scattering properties and texture information were proposed by [61, 153]. Recently, with the advent of

unmanned aerial vehicles (UAVs) and cost-effective satellite technologies, significant gains have been made

in aerial image collection. The large inflow of such data has lead to feature generation and selection based

on data driven learning using deep networks, and has facilitated the development of automated data analysis

algorithms dedicated to aerial images. Chen et al. [24] proposed a method based on convolutional neural

network (CNN) deep feature extraction on hyperspectral images (HSI) in one of the earliest deep learning

models on remotely sensed data. Li et al. [122] proposed a light, easy-to-train 3D-CNN framework to extract

deep spectral–spatial-combined features from HSI.

Object detection using SAR images is an area of active research interest. Most of these methods mostly

utilized the Moving and Stationary Target Acquisition Recognition (MSTAR) dataset [2] and the ship de-

tection datasets [76, 172, 186] to validate their models. Chen et al. [22] was probably the first to use deep

learning on SAR images by developing a sparse autoencoder (SAE) with a mono-layer CNN on random

patches of a SAR image and training a softmax classifier on top of it to classify military vehicles. Later,

with a simple five-layer CNN, Chen et al. [23] achieved 99% accuracy on MSTAR. This led to subsequent

investigations into the efficacy of CNNs for SAR image classification. Building on promising results based

on deep learning methods, Morgan [154] used a shallow three-layer CNN on MSTAR, while Wilmanski

et al. [210] probed the effects of various methods of weight initialization and optimizer selection. Ding et

al. [35] examined the significance of SAR mode specific data augmentation techniques for a CNN-based

SAR object detection model. Du et al. [38] portrayed the importance of data augmentation of SAR training

samples and proposed a CNN invariant to both displacement and rotation. To identify and localize more

than one object in a SAR image, Furukawa [45] developed an encoder-decoder segmentation network. Bai

et al. [7] proposed SAR object classification via a bidirectional convolution-recurrent network under the

assumption that target images of an object are generated continuously and sequentially at a fixed azimuth

angle intervals.

More recently, researchers have looked at methods to complement legacy DL based SAR classification

algorithms. Dechesne et al. [33] used a multitask network for detection, classification, and prediction of

the length of ships, simultaneously. Mullissa et al. [157] used a CNN and Kazemi et al. [95] used an RNN

architecture on complex valued SAR data and on directly received SAR signals, respectively. Both Rostami
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et al. [176] and Huang et al. [77] worked on transfer learning from optical modality to the SAR modality

for image classification.

Several research works have also considered SAR-EO data fusion. In order to do this, it is imperative that

image pairs in both modalities are co-registered. To this end, these methods have relied on deep learning

to extract features from the two modalities, match correspondences, concatenate the features and finally

train a classifier [78, 155]. Merkel et al. [150] used a Siamese network to extract features and a dot product

layer as a similarity measure. Abdulkhanov et al. [1] developed a feature point descriptor using neural

nets and used random sample consensus [43] to match the detected descriptors. Merkle et al. [149] used a

conditional GAN to generate synthetic SAR images from optical images and then matched them to the real

SAR images. The success of this intermediate step in improving precision initiated more research into such

approaches [79].

Other than object classification, such SAR-EO data fusion has also been applied to semantic segmentation

[6, 224]. It is to be noted that all these methods used data from both SAR and EO modalities for training

and prediction, and did not consider predictions using SAR images alone without additional support from

EO data. This reliance on EO data poses the risk of biasing the system to perform classification based on

the EO features and to a large extent ignore the SAR data. In this work, we take the approach of performing

classification using SAR data alone, and using EO data to boost learning through knowledge distillation.

3.2.2 Knowledge distillation

Knowledge distillation (KD) was originally proposed by Hinton et al. [66], as a process for model compres-

sion where knowledge is distilled or transferred from a larger model to a smaller model. Large and deep

networks have achieved impressive results on several computer vision tasks [37, 63, 133]. However, large

models are not always feasible for deployment, particularly in mobile devices and embedded systems, due

to the model size and computational requirements. Through knowledge distillation, a smaller student model

is guided to mimic a larger teacher model.

In vanilla KD, the logits or soft predictions of the teacher network are considered as the knowledge to be

distilled to the student model. The objective of KD in student training is to minimize the Kullback-Leibler

divergence loss between the teacher and student network logits. This is also called response-based KD. In

contrast, feature-based KD [65, 173, 228] uses the intermediate feature representations at different layers of

a deep teacher network to train a student network. Passalis and Tefas [165] proposed KD by matching the

probability distributions of the teacher and student feature spaces. Jin et al. [91] proposed to train the student

network through outputs of certain hint layers of the teacher network. Challenges with feature-based KD
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include selecting the hint layers in the teacher network and the corresponding guided layers in the student

network, as well as finding the appropriate method of distilling knowledge due to the difference in sizes

between respective layers in the teacher and the student.

In this work, we present a method to leverage EO domain knowledge to train a SAR object prediction model

using response-based knowledge distillation. Our model differs from existing models in that we do not

need access to EO data for prediction. This method does away with any patch matching module or any

algorithmic overhead needed for data fusion between SAR and optical images. In the deployment stage, we

do not require an EO sensor and therefore our model can leverage the advantages of SAR imagery in all

weather conditions, including clouds or similar visual obstructions. Our multi-stage training also ensures

that our model is not skewed towards any particular class and we take steps to ensure that our model works

well for both common and rare class samples it may encounter.

3.3 Methodology

Let us denote labeled samples in the EO domain as {xit, yit}ni=1 where n is the total number of samples

xit ∈ Xt with corresponding labels yit ∈ Yt. Similarly, the SAR domain is denoted as {xis, yis}ni=1 where the

samples and corresponding labels are given by xis ∈ Xs and yis ∈ Ys, respectively. Our method of leveraging

EO data to better train the SAR model for classification involves three stages of training, as illustrated in

Figure 3.2. The operations in each stage are described below.

3.3.1 Stage 1: EO training

In the first phase, we train the EO teacher model ft : Xt → Yt using the principles of supervised learning

and by minimizing the cross entropy loss as follows.

Lt,ce(ft;Xt,Yt) = −E(xt,yt)∈Xt×Yt

C∑
m=1

qmlog(σm(ft(xt), T )) (3.1)

where q is the one-hot-encoding of the ground truth labels yt, such that qm is 1 for the correct class and

0 for the incorrect class. For the m-th element of the output logits vector z of C-dimensions, the softmax

probability function is represented by σm(zm, T ) as follows. 3.2.

σm(zm, T ) =
exp(zm/T )∑
i exp(z

i/T )
(3.2)
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where T is a temperature parameter. In order to facilitate smoother decision boundaries among the cate-

gories, we employ label smoothing [156] and modify the objective function as follows.

Lt,ce(ft;Xt,Yt) = −E(xt,yt)∈Xt×Yt

C∑
m=1

qlsmlog(σm(ft(xt), T )) (3.3)

Figure 3.2: Proposed framework for cross-modal training with knowledge distillation. In stage 1: EO
training, only the top branch is trained and the bottom branch along with KD block is removed. In Stage 2:
SAR training with knowledge distillation, the top branch is locked and the bottom branch is trained for SAR
image classification with knowledge distillation from the EO network. In an optional Stage 3: SAR training
with class balancing, only the bottom branch is trained and the top branch along with KD block is removed.

3.3.2 Stage 2: SAR training with knowledge distillation

In this stage, we introduce cross modal knowledge distillation from the EO modality (teacher) to the SAR

modality (student). We train the SAR student model fs : Xs → Ys by minimizing the following cross

entropy loss of the SAR samples xs and their corresponding ground truth labels ys.

Ls,ce(fs;Xs,Ys) = −E(xs,ys)∈Xs×Ys

C∑
m=1

qmlog(σm(fs(xs), T )) (3.4)
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Additionally, we conduct KD from the soft targets of the teacher model to the soft targets of the source

model. Our response-based KD method takes vectors of logits zt = fs(xs), zs = fs(xs) from the teacher

and student models, respectively. The logits are then converted to soft targets σ(zt, T ) of the teacher model

and soft predictions σ(zs, T ) of the student model following equation 3.2. The soft targets of the teacher

model are defined as those containing the informative knowledge that is transferred to the student [66]. In

our method, we employ the Kullback-Leibler (KL) divergence loss between the σ(zt, T ) and σ(zs, T ) as

our knowledge distillation loss, which can be written as

Lkd(σ(zs, T ), σ(zt, T )) = KL(σ(zs, T ), σ(zt, T )) (3.5)

where,

KL(a, b) =
∑
j∈J

a(j)log
a(j)

b(j) (3.6)

Romero et. al. [173] subsequently developed methods that use a feature-level distillation loss or an amalgam

of output and feature level distillation losses to transfer knowledge from teacher to student, as proposed in

[17,91,99,238]. However, such a process is not applicable in our case of transferring knowledge from EO to

SAR, because the two modalities are drastically different in their physics of light capture, image generation

and processing. Their respective samples are captured with different sensors at different wavelengths. Since

light interacts with the objects in the scene differently at different wavebands, the resulting images in the

two EO and SAR modalities are significantly different. Hence, by choice, we have focused our knowledge

distillation approach only on the final logit layer. We also understand that, although a SAR image may seem

to be very noisy to the naked eye, it contains object specific signatures, as the object may interact differently

with radar wavelengths, where the SAR operates, than the visible spectrum of EO images. These differences

in image appearance due to the sensing modality may prove to be significant for classification. Therefore,

we make the decision to avoid performing any despeckling in the SAR images, as it may remove important

and representative object signatures from the image. The objective function of this stage is, therefore,

Ls,tot(fs;Xs,Ys,Xt) = Ls,ce(fs;Xs,Ys) + αLkd(σ(zt, T ), σ(zs, T )) (3.7)

where α and T are hyper-parameters. We name our model upto this point Cross-KD [85].

3.3.3 Alternate Stage 2: Class balanced SAR training

Cross-KD does not consider the dataset imbalance that is prevalent in SAR image datasets, and therefore

performs underwhelming for the tail classes if the class imbalance is high. In order to account for this class
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Figure 3.3: Proposed framework for Balanced Cross-KD during SAR training, where the EO network is
locked and the SAR network undergoes training. The Sampling Block selects samples either based on in-
stance sampling or class-balanced sampling strategy. The laters FC, BN and WN represent Fully Connected
layer, Batch Normalization layer and Weight Normalization layer, respectively.

imbalance in the dataset and the resultant model bias towards the dominant classes, during the SAR model

training, we deploy the Sampling Block which implements a carefully curated alternating sampling strat-

egy between instance sampling and class balanced (CB) sampling. During training and optimization via

minibatch stochastic gradient descent, one iteration of class balanced sampling is done for every two itera-

tions of instance sampling. This mixture of balanced and imbalanced/instance sampling strategy attempts to

de-bias the SAR model to perform well across all the classes, irrespective of the number of samples in the

class, while optimally learning feature representations. In addition to cross-entropy loss from equation 3.4

and knowledge distillation loss from equation 3.5, we utilize equal diversity loss Leqdiv [198] for class bal-

anced sampling, shown in Equation (3.8), and to further help the network de-skew, we introduce distributed

entropy loss Ldisent for instance sampling, shown in equation (3.9) below.

Leqdiv(fs;Xs) =

C∑
m=1

pmlog

(
pm
pm

)
(3.8)

Ldisent(fs;Xs) = −Exs∈Xs

C∑
m=1

σ̂m(fs(xs), T )log(σm(fs(xs), T )) (3.9)



CHAPTER 3. EO-GUIDED SAR IMAGE CLASSIFICATION 23

where, σ̂ is the distributed probability function, defined as,

σ̂m =

σm if σm = max(σ)

1−max(σ)
C−1 if σm ̸= max(σ)

(3.10)

and, p is a C dimensional vector of uniform mean response, such that pm = 1
C . p is therefore the ideal mean

network output under a class balanced sampling strategy. pm = Exs∈Xs [σ(fs(xs), T )] is the real mean of

the output probabilities during the class-balanced sampling. Together with cross-entropy loss and KD loss,

the final objective function becomes the following.

Ls,tot(fs;Xs,Ys) =



Ls,ce(fs;Xs,Ys) + αLkd(σ(zs, T ), σ(zt, T )) + β1Ldisent(fs;Xs)

for instance sampling

Ls,ce(fs;Xs,Ys) + αLkd(σ(zs, T ), σ(zt, T )) + β2Leqdiv(fs;Xs)

for CB sampling
(3.11)

where, α, β1 and β2 are hyper-parameters. We term this model with mixed sampling strategy as Balanced-
CrossKD [81].

3.3.4 Optional Stage 3: SAR training with class balancing

We further explore separating the SAR feature learning stage and the network debaising stage. Instance

sampling helps the network learn better feature representations, while class balanced sampling trains the

classifier to perform better on samples from the imbalanced classes [93]. Building upon the training of

Stage 2 in Cross-KD, we take the SAR model trained with instance sampling, and train it further with

class-balanced minibatches in a separate Stage 3, as opposed to the mixture of instance and class balanced

sampling in the single stage 2 for Balanced-CrossKD.

We add to our objective function the equal diversity loss Leqdiv [198] as in Balanced Cross-KD, and the

entropy loss Lent that helps generate precise predictions. Together, these two form the information max-

imization (IM) loss, used in [52, 74, 125, 187, 198]. Mathematically, the entropy loss Lent can be written

as,

Lent(fs;Xs) = −Exs∈Xs

C∑
m=1

σm((fs(xs), T )log(σm((fs(xs)), T )) (3.12)
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The total objective function in this stage is therefore,

Ls,tot(fs;Xs,Ys) = Ls,ce(fs;Xs,Ys) + γ1Lent(fs;Xs) + γ2Leqdiv(fs;Xs) (3.13)

where γ1 and γ2 are hyper-parameters. This model with a distinct stage 3 of training is termed as Cross-
KD+ [86].

3.4 Datasets and Experiments

3.4.1 Datasets

The dataset used to evaluate our method was released for the ”NTIRE 2021 Multi-modal Aerial View Ob-

ject Classification Challenge - Track 1 (SAR)” competition [136], held as part of a 2021 Conference on

Computer Vision and Pattern Recognition Workshop. The dataset has coupled images of the same targets

captured by SAR and EO cameras. It has image chips of 10 classes of vehicles: sedan, SUV, pickup truck,

van, box truck, motorcycle, flatbed truck, bus, pickup truck with trailer and flatbed truck with trailer. The

EO images are of size 31 × 31 pixels, while the size of the SAR images ranges from 50 × 50 to 60 × 60

pixels. The objects of interest are all centered in the images. A few examples of the chips are shown in

Figure 3.1. The distribution of the dataset is given in Table 3.1 and shows that the dataset is imbalanced and

highly skewed towards the class “sedan”. We randomly split the dataset in a ratio of 9:1 for training and

testing, respectively. The resultant splits are representative of the class distribution of the whole dataset.

Table 3.1: Sample distribution across the ten classes in the dataset.

Class Samples in each mode % of total samples
Sedan 234,209 79.72
SUV 28,089 9.56
Pickup truck 15,301 5.21
Van 10,655 3.63
Box truck 1,741 0.59
Motorcycle 852 0.29
Flatbed truck 828 0.28
Bus 624 0.21
Pickup truck with trailer 840 0.29
Flatbed truck with trailer 633 0.22
Total 293,772 100.00



CHAPTER 3. EO-GUIDED SAR IMAGE CLASSIFICATION 25

3.4.2 Implementation details

Table 3.2: Class-wise accuracy for the EO model after training on the EO images only.

sedan SUV pickup
truck

van box
truck

motor
cycle

flatbed
truck

bus pickup
truck
with

trailer

flatbed
truck
with

trailer

Mean
per

class

99.99 99.41 99.14 98.86 100.0 95.12 100.0 95.31 99.01 100.0 98.68

We use ResNet-50 [63] as the feature extractor backbone for both the teacher and the student models. The

feature representations are then passed through a fully connected (FC) layer followed by a batch normal-

ization layer [80] and then another FC layer followed by a weight normalization layer [184]. The soft

outputs or class probabilities of the student and teacher models are used for calculating KL-divergence and

subsequently for conducting knowledge distillation.

We update our model weights using an SGD optimizer with a momentum of 0.9. The learning rate of the

ResNet backbone is set to 1/10th the learning rate of the layers after the backbone. The learning rate for the

backbone is set to η0 = 1e−3 while that of the later layers is set to η0 = 1e−2. A learning rate scheduler

η = η0 · (1 + 10 · p)−0.75 is also used, where p is the ratio of current iteration to maximum iterations and

increases from 0 to 1 as the training continues. In the second stage for all three methods, α is set to 0.9. For

Balanced Cross-KD, in the second stage, β1 = β2 = 1. In the third stage for Cross-KD+, both γ1 and γ2

are set to 1. Temperature T = 4 for calculating KD loss, in other cases, T = 1. The training is done using

an NVIDIA GeForce RTX-2080Ti GPU.

3.5 Results

In this section, we present results for our method, as well as the impact of different model components

and training strategies. Table 3.2 presents the class-wise accuracy for the EO model after training on the

EO images only, after the stage 1 training. We can see that the model performs very well for EO image

classification across all classes. Table 3.3 shows results for the three variants of our method. The results for

Cross-KD and Balanced Cross-KD are after their two-stage processes, and that for Cross-KD+ are after its

three-stage training regimen. It is evident that class balanced sampling greatly improves accuracies across

the tail classes, and thus the mean per class accuracies for Balanced Cross-KD and Cross-KD+ are higher

than that in Cross-KD. Cross-KD+ beats Cross-KD by ∼ 1 − 6%, and Balanced Cross-KD beats Cross-

KD by ∼ 1 − 5% across all classes except for the head-most class ”sedan”. However, Cross-KD with
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only instance sampling beats the other two versions in the ”sedan” class accuracy, particularly due to the

high degree of dataset imbalance. Moreover, Cross-KD+ beats Balanced Cross-KD, and thus shows the

effectiveness of separating the feature representation learning stage with instance sampling, and classifier

debiasing with class balanced sampling. Cross-KD+ however underperforms the other two variants for the

top ”sedan” class.

Table 3.3: Class-wise accuracy for different forms of our model. Cross-KD and Balanced Cross-KD are 2
stage processes, while CrossKD+ is a 3 stage process.

Class
Model

Cross-KD Balanced
Cross-KD

Cross-KD+

Sedan 99.26 97.75 97.27
SUV 97.01 97.22 98.02

Pickup truck 94.25 95.24 97.42
Van 92.37 93.61 94.76

Box truck 96.99 98.19 100.00
Motorcycle 82.93 90.24 90.24

Flatbed truck 97.30 97.3 100.00
Bus 85.94 89.06 93.75

Pickup truck with trailer 100.00 100.0 100.00
Flatbed truck with trailer 93.75 98.44 95.31

Mean Per Class 93.98 95.71 96.68

Ablation study on transfer learning by initializing the SAR network with the weights from the EO-trained

network and knowledge distillation from teacher EO network to student SAR network for Cross-KD is

given in table 3.4. The results show that the highest performance is obtained when we combine transfer

learning with knowledge distillation. This demonstrates the benefit of EO-guided training for SAR object

classification, which results in a boost in performance due to better training of the SAR prediction network.

We further conduct an ablation study on the loss functions for training the SAR network with a mix of

instance and class balanced sampling in Balanced Cross-KD is shown in table 3.5. ”Base” refers to the

model where the 2nd stage training is done with transfer learning and knowledge distillation from the EO-

trained teacher model, but without Leqdiv and Ldisent. We can see that the ”base” Balanced Cross-KD

model outperforms Cross-KD in terms of mean per class accuracy by ∼ 0.7%, and achieves better accuracy

on the five tail classes. This shows the efficacy of class balanced datasampling in debiasing the classifier

from being skewed by the dominant classes for the imbalanced EO-SAR coupled dataset. The gradually

increasing performance gains with the addition of Leqdiv and Ldisent to the objective function of Balanced

Cross-KD are evident in the results. All components of the objective function work in tandem to achieve the
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Table 3.4: Ablation study for Stage 2 SAR model training in CrossKD. ”TL” means transfer learning to
initiate the student model with teacher model parameters. ”KD” refers to knowledge distillation from EO
teacher to SAR student model.

Model Configuration for Cross-KD
Class w/o TL, w/o KD w TL, w/o KD w TL, w KD
Sedan 99.20 99.35 99.26
SUV 92.42 94.26 97.01
Pickup truck 92.93 93.33 94.25
Van 88.75 89.42 92.37
Box truck 96.99 96.99 96.99
Motorcycle 84.15 81.71 82.93
Flatbed truck 94.59 94.59 97.30
Bus 85.94 84.38 85.94
Pickup truck with trailer 99.01 99.01 100.00
Flatbed truck with trailer 90.62 93.75 93.75
Mean Per Class 92.46 92.68 93.98

Table 3.5: Balanced Cross-KD results for various configurations. ”Base” refers to the mixture of class
balanced sampling and instance sampling, and trained with knowledge distillation and cross-entropy losses
only.

Model Configuration for Balanced Cross-KD
Base ✓ ✓ ✓ ✓ ✓ ✓
Leqdiv ✓ ✓ ✓ ✓
Ldisent ✓ ✓

Class Percent Accuracy F1 Score
Sedan 97.78 97.58 97.75 0.98 0.98 0.98
SUV 94.85 93.53 97.22 0.94 0.95 0.96
Pick-up Truck 93.66 92.93 95.24 0.93 0.94 0.95
Van 91.23 92.76 93.61 0.91 0.89 0.90
Box truck 96.89 98.19 98.19 0.96 0.96 0.96
Motorcycle 86.09 89.02 90.24 0.90 0.91 0.91
Flat-bed truck 97.95 98.65 97.3 0.97 0.97 0.98
Bus 88.62 90.62 89.06 0.83 0.83 0.84
Pick-up truck with trailer 100.0 100.0 100.0 0.98 1.00 1.00
Flat-bed truck with trailer 100.0 96.88 98.44 0.95 0.95 0.96
Mean Per Class 94.71 95.02 95.71 0.935 0.938 0.944
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Table 3.6: Ablation study for the loss functions in the third stage for CrossKD+ SAR training with class-
balanced loader.

Model Configuration for Cross-KD+

Class
Stage 3

w/o Lent + Leqdiv with Lent + Leqdiv
Sedan 96.75 97.27
SUV 97.08 98.27
Pickup truck 96.90 97.42
Van 93.42 94.76
Box truck 99.4 100.00
Motorcycle 89.02 90.24
Flatbed truck 100.00 100.00
Bus 93.75 93.75
Pickup truck with trailer 100.00 100.00
Flatbed truck with trailer 98.44 95.31
Mean Per Class 96.47 96.68

(a) w/o TL, w/o KD: sedan
Cross-KD: flatbed truck
Cross-KD+: flatbed truck
GT: flatbed truck

(b) w/o TL, w/o KD: sedan
Cross-KD: sedan
Cross-KD+: flatbed truck
GT: flatbed truck

(c) w/o TL, w/o KD: sedan
Cross-KD: sedan
Cross-KD+: bus
GT: bus

(d) w/o TL, w/o KD: sedan
Cross-KD: bus
Cross-KD+: bus
GT: bus

Figure 3.4: Examples of correct predictions after training to illustrate the effects transfer learning and knowl-
edge distillation in Stage 2 for Cross-KD and subsequent class balanced training in Stage 3 for Cross-KD+.
Red labels indicate incorrect prediction, green labels indicate correct prediction, and blue labels indicate
ground truth.

best results, and leaving out any of them hurts optimal model performance.

We also conduct an ablation study for training on SAR images in a separate 3rd stage with class-balanced

loader for Cross-KD+, and present the results in Table 3.6. We observe in the first column of Table 3.6

that the mean per-class accuracy due to class balanced sampling in the third stage, increases by ∼ 2.49%

compared to instance sampling, as seen in results from Stage 2 in Cross-KD in Table 3.4. Results on
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individual classes improve for all cases, except ”sedan”, validating our assumption that the imbalanced

nature of the dataset requires additional training to reduce bias towards any particular class. Our method

of class-balanced sampling in the third stage trains the network to avoid the pitfalls of the long-tailed SAR

dataset, such as bias towards the most populated class. However, the network achieves diversity in prediction

at the expense of performance in the head class ”sedan”. In a practical deployment situation, such as when

an aircraft or UAV equipped with a SAR sensor hovers above a parking lot or a highway, our model is more

likely to come across sedans and less likely to encounter a more rare class, for instance a flatbed truck with

trailer. Towards this end, we added the entropy loss Lent, and equal diversity loss Leqdiv, as components in

the information maximization loss. The results of training in Stage 3 with the information maximization loss,

in addition to class balanced sampling are shown in the last column of Table 3.6. Training with the Lent loss

increases the certainty of prediction by learning a more robust decision boundary between classes, while the

Leqdiv loss maintains a global diversity of the outputs. This push-pull mechanism, increases the performance

for all classes of vehicles except for “flatbed truck with trailer”, which is the least represented class in the

training dataset. Categories “sedan”, “suv”, “pickup truck”, “van”, “box truck”, and “motorcycle” gain

classification accuracy increases between 1.33% and 0.52%. Other underrepresented classes maintain their

performance between the two variations of losses during the Stage 3 training. This illustrates that our model

is effective for both frequent and rare cases. A few examples of how our model learns during the three stages

are shown in Figure 3.4.

3.6 Conclusion

The classification of object classes in SAR images is a challenging task, owing to the nature of the image

and noise associated with it. On the other hand, EO image classification, including aerial images, is more

tractable and has been extensively studied with deep learning methodologies. In this work, our aim is to

take the knowledge gained from an EO image classification network, and employ it to train a SAR image

classification network. We employ knowledge distillation from EO to SAR for the first time, in a manner that

takes into consideration the differences between feature representations in the two modalities. Our models

can work across a variety of networks and can even transfer knowledge from a smaller to a larger network,

thus offering the flexibility needed for various training and deployment platforms.

Our training takes place in either two or three stages that progressively incorporates transfer learning, knowl-

edge distillation, and class balancing strategies. In order to account for high class imbalance in SAR datasets,

we perform SAR model training via a mix of balanced and instance sampling, either together in a single

stage or separately in two stages, and use entropy loss and equal diversity loss to mitigate model bias to-

wards any particular class. We explicitly define our loss functions to implement class balancing and ensure
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that our models are not biased towards the most populated classes. Our ablation studies show gradual im-

provement in performance for each component of our models and illustrate their benefits. We hope that

this work on EO-guided SAR image classification will invite more research in the area of cross-modal and

physics-guided learning, and advance deep network models that are suitable for deployment on platforms

with SAR sensors.



Chapter 4

Continual unsupervised domain adaptation

This chapter is based on our IEEE Transactions of Artificial Intelligence paper titled ”Continual Unsuper-

vised Domain Adaptation in Data-Constrained Environments” [198], our CVPR 2022 paper titled ”Unsuper-

vised Continual Learning for Gradually Varying Domains” [197], and another paper published in the SPIE

Journal of Applied Remote Sensing titled ”Continual Domain Adaptation on Aerial Images under Gradually

Degrading Weather” [84]. Domain Adaptation (DA) techniques aim to overcome the domain shift between

the source domain used for training and the target domain where testing takes place. However, current

DA methods assume that the entire target domain is available during adaptation, which may not hold in

practice. We introduce a new, data-constrained DA paradigm where unlabeled target samples are received

in batches and adaptation is performed continually. We propose a novel source-free method for continual

unsupervised domain adaptation that utilizes a buffer for selective replay of previously seen samples. In our

continual DA framework, we selectively mix samples from incoming batches with data stored in a buffer us-

ing buffer management strategies and use the combination to incrementally update our model. We evaluate

and compare the classification performance of the continual DA approach with state-of-the-art (SOTA) DA

methods based on the entire target domain. Results on three popular DA datasets demonstrate the benefits

of our method when operating in data constrained environments. We also conduct experiments for continual

domain adaptation to multiple sequential target domains, and our method performs favorably against the

SOTA methods. We further extend our work to address a gradually evolving target domain fragmented into

multiple sequential batches where the model continually adapts to the gradually varying stream of data in

an unsupervised manner. To tackle this challenge, we incorporate a contrastive loss is for better alignment

of the buffer samples and the continual stream of batches. Our experiments on the rotating MNIST and

CORe50 datasets confirm the benefits of our unsupervised continual learning method for gradually vary-

ing domains as well. We also synthesize two gradually worsening weather conditions on real images from

31
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two existing aerial imagery datasets, generating a total of four benchmark datasets for evaluating contin-

ual domain adaptation under gradually varying weather conditions. The combination of the constraints of

continual adaptation, and gradually deteriorating weather conditions provide the practical DA scenario for

aerial deployment in unmanned aerial vehicles and drones. We evaluate our continual models with both

convolutional and transformer architectures for comparison. We discover potential stability issues during

adaptation for our buffer-fed continual DA methods, and offer gradient normalization as a simple solution

to curb training instability.

4.1 Introduction

Domain adaptation (DA) methods based on deep learning have received significant attention in recent years

for mitigating the domain shift from the source domain used for training to the target domain where inference

takes place [31, 48, 90, 111, 125, 201]. In closed-set, unsupervised domain adaptation (UDA), the target

domain is not labeled, and the same classes are present in the source and target domains. The distribution

shift between the source domain data and target domain data causes a drop in classification accuracy. Many

of the popular deep learning based DA methods [21,31,108,139] employ adversarial training using both the

source and target data to learn domain agnostic features [48], or to align the feature spaces of the source and

target domains [201]. Inspired by Hypothesis Transfer Learning (HTL) [109], some recent methods transfer

only the source trained model for target adaptation [106, 111, 125], significantly reducing the data storage

footprint.

Current DA methods operate under the assumption that the entire target dataset is available during adapta-

tion, which may not be feasible in practice. For example, when a robot or an autonomous vehicle is deployed

in a new environment, it is unreasonable to expect all data from the new drastically different environment

to be available at the same time. This inspires a new DA paradigm where the deployed model is updated

continually as new data arrive in small batches, as depicted in Fig 4.1. In this work, our model is initially

trained using source domain data and is then deployed in a new domain where target data are collected

incrementally in small batches and the model adapts continually.

In a related approach, Hoffman et al. [68] proposed a manifold-based method that deals with streaming

target data from an evolving target domain that is changing slowly. Bitarafan et al. [10] used a semi-

supervised method for target adaptation under the assumption that there is no drastic domain shift between

the source and the first sequence of the target domain or between consecutive sequences of the evolving

target domain. Wulfmeier et al. [212] proposed a generative adversarial network based continual domain

adaptation method for a gradually changing target domain. A meta learning approach was presented in [131]
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to learn the representation of continuously evolving domains to avoid catastrophic forgetting. Moon et

al. [152] proposed a two-step adaptation process where the first step aligns the incoming target sequence

with earlier target sequences via a mean-target transformation matrix to reduce the distribution discrepancy

between target sequences. However, these methods were not applied to standard DA datasets, and assumed

that there was no sudden domain shift between the source and target domains or between two consecutive

time instances within the target domain. In our continual DA framework, the shift between the source

and target can be sudden due to differences between the two domains, and the target distribution may be

significantly different than the source distribution.

In another approach, Volpi et al. [205] proposed domain adaptation to continual time varying domains with

a significant domain shift between the source and target domains. A meta-learning approach with auxiliary

meta domains was used to avoid forgetting during adaptation. However, this work assumed that each target

domain was available at once, which does not accurately represent real-world scenarios. It also lacked

comparison with standard domain adaptation benchmarks.

Figure 4.1: Continual DA paradigm where initial training is performed with source domain labeled data and
the trained model is deployed in the target domain. During deployment, unlabelled target domain data are
received in streaming batches and the model is continuously adapted with each new batch of target data.

In contrast, we present a scenario where the target distribution is not directly related to the source distribution

and the target data are received in a series of smaller batches over time, as shown in Fig. 4.1. Our approach

is broader in scope, introduces a deep learning framework, and our results are reported on standard DA

datasets, making comparison with existing DA methods possible.

Continual learning (CL) can be broadly categorized into two major paradigms [164]. The first one deals

with incremental batch learning, where a labeled dataset is fragmented into multiple distinct batches. Tasks

are incrementally added while training and the model is allowed to train over multiple epochs for each new

batch of data [15, 60, 97]. Once a batch is processed, it is discarded and the next batch is provided to the
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learner. The other paradigm is streaming learning which is a special case of incremental batch learning,

where a single training sample is fed to the learner and the model is only allowed to train for one epoch on

the entire training dataset [46, 47].

In this work, we consider a batch streaming approach to split the target domain data into small, distinct,

unlabeled batches that are input sequentially to the network. Our model is allowed to adapt over only

one epoch of each incoming batch. Once a batch is processed, the next batch is fetched and provided to

the network. We note that this paradigm is more challenging than standard domain adaptation, due to the

streaming nature of processing and limited availability of target domain data during adaptation. This setting

also differs from the existing CL paradigms, due to lack of labels for the target samples and the challenge of

dealing with drastic domain shift from the source dataset to the target dataset.

Various techniques have been developed to overcome the challenges in CL settings. Three major techniques

are: partial replay, Elastic Weight Consolidation (EWC), and distillation [59]. In partial replay, training

samples are selectively stored and replayed during learning along with the incoming batch of samples. This

procedure shows strong results for supervised CL for image classification [15, 71, 171, 211]. In EWC, the

weights of the network are regularized by a quadratic term to enforce minimum change between already

learned weight and weights updated from a new batch [101]. In the distillation procedure, soft labels for the

distillation loss are computed for a new batch with the already learned weights from the previous batches,

and the distillation loss [66] is optimized along with the classification loss.

To tackle the continual DA problem, we take inspiration from CL methods [58,171,211] that utilize episodic

memory replay and propose the Continual Domain Adaptation (ConDA) framework that includes a buffer

to hold processed target samples and their predicted labels, and buffer management strategies to selectively

store and replay previously seen target samples. Furthermore, our method incorporates features with better

generalization capabilities that improve upon the performance of the state-of-the-art (SOTA) source-free DA

methods.

The proposed ConDA approach continually adapts the source model to the target domain as data arrive in

batches, which greatly reduces the data storage requirements. Our method does not require any source data

during adaptation, and additionally does not need to store the whole target domain at any time. During

adaptation, ConDA only requires the incoming batch of target data along with the data stored in the buffer.

This data constrained setting makes our work useful for edge AI systems, where neither the entire target

domain data are fully available at the same time, nor storing all previously encountered data is feasible.

We evaluate several buffer configurations, along with specific loss functions for continual adaptation, and

propose a buffer management strategy and associated adaptation procedure that is well-suited for continual
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DA. ConDA outperforms many standard (non-continual) DA methods that utilize the full target domain, yet

it operates at a fraction of their data storage footprint.

We also investigate continual domain adaptation when the target domain is dynamic (gradually evolving),

and each batch of data is presented only once to the network. Fast and dynamic adaptation is a key challenge

for such a case. For this task, we propose UCL-GV, a novel method based on selectively storing samples

in a buffer and replaying them when a new batch of samples is fetched, similar to ConDA. To mitigate the

small domain shift between the existing buffer samples and the incoming batch samples, due to the gradually

varying nature of the target data, we propose to perform alignment using a contrastive loss.

We further extend our work to specifically deal with continual DA on aerial imagery, where the target

data distribution is gradually shifting away from that of the source data due to inclement weather. We

propose four benchmark datasets for assessing domain adaptation on aerial images, given the domain shifts

are gradual. We consider degradation types of cloud cover layer, and snowfall layer on two widely used

aerial image datasets AID [213] and UCM [223]. The descriptions of the datasets, the degradation types,

and how they were created are described in Section 4.5.1. We then evaluate one standard source-free DA

model [125] and our two continual DA models on our newly constructed aerial datasets. We discover that

our continual DA models may suffer from stability issues, that not only harm optimal adaptation, but may

potentially collapse the model, if left unaddressed. We propose the simple solution of normalizing gradients

before model optimization to increase adaptation stability, and show empirical results to back our claim.

We also replace the original ResNet-50 [63] with attention-based transformer networks Vision Transformer

(ViT) [37] and Swin [133,135], and evaluate the models with the state-of-the-art feature extractors to explore

the effect of stronger backbone architectures on continual DA.

The main contributions of our work are outlined below.

1. We introduce a new paradigm of continual unsupervised DA that operates under data-constrained

conditions where batches of unlabeled target samples are received sequentially.

2. We propose a source-free DA framework named ConDA, which adapts continually to incoming

batches of unlabeled target data by utilizing a buffer for selective replay of previously encountered

samples.

3. We introduce equal diversity loss for effective adaptation across all classes.

4. Results indicate that although ConDA only has access to a small fraction of the target data at a time,

it is superior to several domain adaptation methods that require access to the entire source and target

datasets during adaptation.
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5. We extend ConDA to continually adapt to multiple target domains one after the other, and demonstrate

that our method performs well in such settings without significant forgetting.

6. We further incorporate dynamic or gradually varying target domains, and propose UCL-GV that uti-

lizes a contrastive loss in addition to the replay strategy in ConDA.

7. We synthesize 4 new benchmark datasets for replicating continual domain adaptation under gradually

degrading weather, and evaluate our continual models and a standard DA model.

8. We evaluate the effect of transformer network backbones on continual DA for our newly synthesized

changing weather aerial datasets, and also propose the simple solution of gradient normalization to

stabilize the adaptation process.

The rest of the paper is organized as follows: In Section 4.2, we discuss existing research in the field

of domain adaptation, continual learning, continual domain adaptation, and domain adaptation on aerial

imagery. In Section 4.3, we introduce the methodology of the continual framework for ConDA, discuss the

standard DA datasets we use to evaluate ConDA, and the obtained results. In Section 4.4, we describe the

adaptation process for UCL-GV, and the gradually varying domain adaptation datasets used to evaluate the

model, and corresponding results. In Section 4.5, we present our novel gradually varying weather aerial

datasets, and discuss our observations on the continual DA methods using the datasets. In Section 4.6, we

present final remarks on continual DA based on our evaluations.

4.2 Related Work

4.2.1 Domain adaptation

A domain gap manifests due to the dataset bias when the data distributions in the source and target domains

are significantly different [200]. Many unsupervised DA (UDA) techniques have been proposed to mitigate

this domain gap for computer vision tasks, such as object detection and semantic segmentation [20,98,125].

Long et al. [138] and Tzeng et al. [202] proposed minimizing the maximum mean discrepancy (MMD) for

UDA. Zellinger et al. [229] proposed minimizing central moment discrepancy (CMD) by matching higher

order central moments of probability distributions in the source and target data. Ganin et al. [49] aligned

distributions of source and target domains via an adversarial domain discriminator. Many other methods

since then have implemented aligning latent spaces adversarially [140,166]. Tzeng et al. [201] adversarially

aligned features of source and target domain data while transferring the source domain classifier to the target

domain. Pan et. al. [163] trains a separate source classifier with labels and a separate target classifier with
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pseudo-labels, and aligns the score distributions of the individual classifiers to enforce prediction consis-

tency across domains. Likewise, generative models have also been employed to create source-like images

at the pixel level for domain adaptation [239]. However, during such adversarial alignment, the intrinsic

target feature discrimination may get lost, leading to suboptimal performance. Tang et. al. [194] addresses

this clustering the target features by regularizing using the source feature distribution. Ruijia et al. [218]

proposed to adapt the feature norms of source and target domains to a large range of scalers, thus facilitating

a reliable knowledge transfer from the source domain.

Adversarial methods require access to source data at the time of adaptation, but this is likely to create issues

related to storage requirements or privacy when sharing of sensitive and private data. Domain adaptation

research has been exploring such practical scenarios where adaptation is done without using source data.

Source-free UDA methods consist of an initialization stage with access to source data for training and an

adaptation stage with access only to the target data without any of the source data [107]. Chidlovskii et

al. [27] proposed a semi-supervised source-free DA framework where no source domain data are available

during adaptation, but some representation of the source domain is available, such as class means or a few

annotated target samples. Liang et al. [124] identified a subspace where target and source centroids are only

modestly shifted and used class-wise distribution estimator of the source data to conduct distant supervi-

sion for target adaptation. An end-to-end, source-free DA method based on information maximization was

proposed in [125].

4.2.2 Continual learning

Mammals, as opposed to artificial neural networks trained within the standard deep leaning framework, learn

continuously so that their intelligence increases gradually over time. When neural networks are subjected

to such a process, they run the risk of catastrophic forgetting, where they forget the knowledge gained in

earlier training stages [146]. Continual or lifelong learning methods have proposed a few mechanisms to

mitigate catastrophic forgetting in deep neural networks. Among them, the most prominent are (i) replay of

previously seen data [58,171,211], (ii) constraining network parameter updates according to a regularization

scheme [101, 123, 230], and (iii) network expansion with increasing data [70, 179, 227]. Memory replay

mimics the mechanism of the human brain, where during both the sleeping [89] and awake [94] phases,

past experiences are regenerated from encoded representations and the neocortex is trained on them [162,

191]. Rebuffi et al. first applied memory replay in iCaRL [171], for class-incremental learning in the

context of neural networks, where 20 raw samples from each class were stored for later replay. More recent

replay methods extended iCaRL to make it end-to-end trainable [15], introduced a loss function to correct

for class bias [211], and stored mid-level features instead of raw images to reduce storage footprint [58].
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Regularization based models learn new tasks incrementally, while preserving knowledge from previous tasks

by varying the plasticity of the network’s convolutional filter weights, which are significant for retaining

earlier knowledge. Kirkpatric et al. [101] proposed to selectively lower the learning rate from one task to

the next. Z. Li and D. Hoiem [123] proposed to regularize the network updates using the network outputs

from the original model for the new task data.

In this work, we mainly draw from the concept of memory replay. We present a way to continually adapt a

source trained model to a new target domain when the target data are received in small batches. This is an

area of domain adaptation that, to the best of our knowledge, has not yet been explored.

4.2.3 Continual domain adaptation

Existing DA research formulates the problem of continual domain adaptation in primarily two major ways:

gradually evolving domain shift [10, 11, 68, 105], and sudden domain shift [170, 175, 195] between the

source and target domains. Rostami et al. [175] proposed a continual DA technique where multiple target

domains are sequentially fetched by the network. To mitigate catastrophic forgetting due to domain shift,

the method proposed to selectively store raw samples and replay them with the samples from the next

domains. A Gaussian Mixture Model was utilized to consolidate the distribution of already learned domains.

Rakshit et. al. [170] similarly proposed a continual domain adaptation approach named FRIDA across

multiple sequential target domains, where an entire domain is made available at each time step. A Generative

Adversarial Network (GAN) was proposed in conjunction with an existing domain adaptation approach to

learn the domain distribution of each domain and produce samples for replay in future time steps. This

method showed effectiveness in mitigating catastrophic forgetting. A similar formulation is used by [195],

where EWC is used to mitigate catastrophic forgetting.

The work in [105] proposed an UDA method for an evolving target domain. The sequential gradually

varying data were split into three different domains: a source domain, an intermediate domain, and a target

domain. The intermediate domain was introduced to represent the gradually evolving nature of the data,

rather than having a drastic domain shift between the source and the target domains. A meta learning

approach was proposed for continual adaptation. Following [105], the work in [18] proposed to perform

domain adaptation without having the sequential indexes of the intermediate domains.

Our work differs from [170, 175] in terms of the continual settings considered. The methods in [170, 175]

consider transitions across multiple target domains, but for each new target domain, the setting is similar

to that of standard DA where the entire target domain is made available for adaptation. In our setting, we

consider continual adaptation within each domain, in addition to transitions across multiple target domains.



CHAPTER 4. CONTINUAL UNSUPERVISED DOMAIN ADAPTATION 39

At a given time, ConDA only has access to a small batch of unlabeled samples from the target domain,

instead of the entire target domain. This batch streaming setting makes adaptation more challenging, but

results in a more efficient system that requires a much smaller data storage footprint.

Our proposed setting of for continual domain adaptation to gradually evolving domains also has two major

differences from [18, 105]. First, each batch of data from the intermediate and target domains are only fed

once rather than multiple times as proposed in [18, 105]. Second, both the source data and the intermedi-

ate/target data are required during meta training, while ours is a more realistic source-free adaptation setting

to address the constraints in data access or privacy concerns.

4.2.4 Domain adaptation on aerial imagery

Although DA has been extensively studied for ground-level imagery, few studies have explored DA on aerial

images. Nagananda et al. [159] and Xu et al. [215] evaluated the state-of-the-art standard (non-continual)

DA methods on aerial datasets. Nagananda et al. [159] created three pairs of aerial datasets for DA based

on common class labels. However, both works [159, 215] dealt with standard DA settings, with sudden

and drastic domain shift between the source and the target domains, and did not consider gradually varying

domains. To the best of our knowledge, continual domain adaptation has not yet been studied within the

scope of remote sensing datasets and there are no aerial datasets that could be utilized to assess continual DA

on gradually changing environments. In this work, we prepare four continually varying weather condition

aerial datasets, and evaluate ConDA and UCL-GV on these benchmarks.
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4.3 ConDA

4.3.1 Method

Figure 4.2: Proposed ConDA framework adapting on target domain data that arrive in small batches. A
subset of the samples that are already seen by the network are stored in a buffer for replay with the incoming
batches. The buffer manager is responsible for selecting the samples that populate the buffer. The incoming
target samples are mixed with the current buffer samples and sent to the network for adaptation.

Let us denote the source domain as Ds with labelled samples {xis, yis}ns
i=1, where ns is the total number of

samples xis ∈ Xs, and corresponding labels yis ∈ Ys. The target domain is Dt with nt unlabeled samples

{xit}nt
i=1 and xt ∈ Xt. In closed-set UDA, the classes Cs present in the source domain are the same as the

classes Ct present in the target domain, and the task is to predict the target labels {yit}
nt
i=1 where yt ∈ Yt.

In the continual DA setting, the target domain Dt is randomly divided into m i.i.d. batches, i.e., Xt =

{X 1
t ,X 2

t ,X 3
t , ....,Xm

t } with samples {xj,it }
m,nj

t
j=1,i=1 where nj

t is the number of i.i.d. samples in the jth

batch and j ∈ {1, 2, 3, .....,m}. Operating in a data-constrained environment, the source trained model

fs : Xs → Ys has access to only a batch of unlabeled target samples X j
t at a time and our objective is to

learn a target model ft : X j
t → Y

j
t where Yj

t represents the predicted labels of X j
t .

The continual DA scenario runs the risk of the model overfitting to the current batch of target samples and
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failing to adapt to the marginal distribution of the entire target domain due to the continual nature of the

incoming samples. Therefore, our task is to reduce the performance gap between the model that is adapted

based on continuous batches of target data, i.e., ft : Xm
t → Ym

t and the model that is adapted given the

entire target domain simultaneously (standard DA framework), i.e., ft : Xt → Yt, both evaluated on the full

target domain Xt.

In our continual adaptation setting, the network is continually fed with small incoming batches of target

domain data Xt = {X 1
t ,X 2

t ,X 3
t , ....,Xm

t }, as illustrated in Figure 4.2. After processing each X i
t batch,

few samples are selectively stored in a memory buffer according to our buffer management strategy, and

the samples that are not stored in the buffer are discarded. The buffer configuration is described in Section

4.3.1, and the details of our buffer management scheme are given in Section 4.3.1. When the next batch

of target domain data is received, the existing buffers samples are combined with the new incoming batch

samples and adaptation is performed on the combined set of samples over only one pass. This process of

storing samples in a buffer and replaying them with incoming batches continues until all the target batches

are continually fed into the network. Since only one pass of the combined set of incoming batch samples

and existing buffer samples takes place, the total number of passes during the whole adaptation process is

equal to m, the total number of incoming target batches.

Our ConDA framework for continual adaptation is shown in Fig. 4.2. The source model fs(x) = hs(gs(x))

consists of two parts: a feature generator model gs, consisting of a backbone and a fully-connected (FC) layer

followed by a batch normalization (BN) layer, and a hypothesis model hs that includes a fully connected

layer and a weight normalization (WN) layer [125]. Inspired by [125], we train the source model fs in a

supervised manner with label smoothing [156]. During target adaptation, the target hypothesis model is set

to the source model, ht = hs, and the parameters remain unchanged during adaptation. The target feature

extractor gt is initialized with the source feature extractor model gs and adapts continually with incoming

batches of target samples.

Our continual adaptation setting can further be extended to multiple target domains {Dt1 ,Dt2 , · · ·,Dtτ }
where t1, t2, · · ·, tτ are sequential time steps when samples from various distinct domains are fetched as

shown in Figure 4.3. Each target domain is fragmented into multiple i.i.d. batches as mentioned above for a

single domain.

Buffer

We introduce a buffer Bt with states {B1t ,B2t , ....,Bmt } each corresponding to m batches of target data to

conduct continual domain adaptation. We maintain a class-balanced Bt, i.e., an equal number of buffer
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Figure 4.3: Continual adaptation for multi-target domains. For demonstration purpose, we consider 5 cat-
egories from the Office-Home dataset. The network processes each batch Xti only once along with the
replayed buffer samples. When samples from target domain Dt1 end, batch samples from new domain Dt2

start to be fetched by the network and the same process continues until the last domain Dtτ is fetched.

slots are allocated for each class calculated from buffer length and the number of classes present in the

target domain assuming that Ct = Cs. The buffer is populated after the network is trained on a batch of

target samples. The buffer stores the samples and their corresponding class labels predicted by the network.

Our model only requires access to the samples stored in the buffer for subsequent adaptation along with

new target batches that arrive. The sample selection process to populate the buffer is handled by a buffer

manager discussed in the following section.

Buffer Manager

The network is adapted on a batchX j
t and outputs {Yj

t ,U
j
t }where Ut is the softmax classification score. We

compute the soft labels Vj−1
t for the buffer samples with the current state of the model ft : Bj−1

t → Vj−1
t .

The buffer manager takes in {X j
t , Yj

t , U j
t , Bj−1

t , and Vj−1
t } and outputsX ′

t ⊆ X
j
t

⋃
Bj−1
t and corresponding

labels to populate the buffer state Bjt .

At first, both the batch and buffer samples are filtered based on the softmax prediction and clustering pseudo

labels. Only the samples for which there is a match between the softmax label and pseudo label are retained.

Then the incoming batch samples are grouped based on the output label Yj
t , and samples of each class are

sorted based on the confidence U j
t . Then, the buffer manager only picks the high confidence samples if the

number of samples for any class exceeds the allotted number of slots for that class in the buffer. Finally, if
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available, the remaining space for that class is filled with randomly drawn samples from Bj−1
t of that class.

Several buffer selection mechanisms have been proposed for supervised CL. Popular techniques include

uniform random [15, 16], minimum logit distance [16], minimum confidence [59], minimum margin [59],

maximum loss [59], maximum time since last replay [59] and minimum replays [59]. However, during

unsupervised DA, the true labels are not available and these methods are not suitable except for the uniform

random selection. The reason is intuitive, because for the supervised case when the true labels are available,

it is beneficial to replay the low confidence samples to train the network to identify class boundaries. But

since we compute pseudo labels via clustering in unsupervised DA, the low confidence samples may be

assigned incorrect labels and training through replaying such samples will create more confusion and result

in performance reduction.

We conducted multiple experiments with various buffer selection techniques, such as choosing the incoming

samples randomly, or selecting the buffer samples based on the cosine distance to the nearest self-supervised

cluster centers. We did not find any significant performance variation with various buffer sample selection

techniques. We found a slight increase in performance with the sample selection mechanism based on the

higher confidence scores.

When multiple domains are fetched by the network, we store Bt1 ,Bt2 , · · ·,Btτ for τ target domains and

randomly replay R samples with uniform probability from the existing buffer. The replay samples R are

selected from the entire buffer samples available at any instance, e.g., at step 1, R ∈ Bt1 , at step 2, R ∈
Bt1
⋃
Bt2 , and at final step τ , R ∈ Bt1

⋃
Bt2
⋃
· · ·
⋃
Btτ . This process ensures that samples from all of the

domains previously seen by the network are provided in conjunction with the current batch of samples. The

multi-target continual adaptation process is demonstrated in Fig. 4.3.

In the (j + 1)th batch, the current buffer samples Bjt and the incoming batch samples X j+1
t are appended

and provided to the network. We do not use any label information of the buffer samples when they are

concatenated with the incoming batch samples. During adaptation with the incoming batch and buffer

samples, we performed clustering to compute pseudo labels. The clustering technique is described next.

Clustering

Several clustering-based pseudo-labelling approaches [14,125,194,208] have been explored in literature for

unlabelled target data. We adopted a self-supervised clustering method introduced in [125] as an extension

of the Deep Cluster [14] method. The combination of the batch and the buffer samples is denoted as X ∗
t =

X j
t

⋃
Bj−1
t . The initial estimate of the cluster centers is obtained by utilizing the softmax output of the input
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target samples as follows.

c
(0)
k =

∑
xt∈X ∗

t
f̂t(xt)ĝt(xt)∑

xt∈X ∗
t
f̂t(xt)

(4.1)

After computing the initial estimate of the centroids, the initial estimate of the pseudo labels ŷ(0)t is found

using the cosine distance function.

ŷ
(0)
t = argmin

k
d(ĝt(xt), c

(0)
k ) (4.2)

where d(·, ·) is the cosine distance function. After computing the initial estimates of the pseudo labels, the

cluster centers are recomputed as follows.

c
(1)
k =

∑
xt∈X ∗

t
1(ŷt = k)ĝt(xt)∑

xt∈X ∗
t
1(ŷt = k)

(4.3)

where 1(·) is the indicator function. The final pseudo labels are computed using the updated cluster centers.

ŷ
(1)
t = argmin

k
d(ĝt(xt), c

(1)
k ) (4.4)

where ŷ
(1)
t ∈ Ŷ∗

t .

Adaptation Objective Function

For our objective function, we consider the information maximization (IM) loss from [52, 74, 125, 187] to

produce individually precise predictions, while maintaining a global diversity of the network outputs. The

IM loss is a combination of the entropy loss Lent and equal diversity loss Leqdiv functions shown below.

Lent(ft;Xt) = −Ext∈X ∗
t

Cs∑
k=1

σk(ft(xt)) log(σk(ft(xt)))

Leqdiv(ft;Xt) =

Cs∑
k=1

qk log

(
qk
q̂k

) (4.5)

where σk(a) = exp(ak)∑
i exp(ai)

is the softmax function. Since we maintain a class-balanced buffer, we take qk

as the ideally uniform mean response, such that qk is a Cs dimensional vector with all values of 1/Cs and

q̂k = Ext∈X ∗
t
[σ(ft(xt))] is the mean of the softmax output for the incoming target batch and buffer samples.
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The equal diversity loss Leqdiv attempts to make network predictions equally diverse for all classes and is

calculated as the KL divergence between the ideal uniform distribution and the softmax distribution from

the network outputs. Additionally, ft(xt) = ht(gt(xt)) is a Cs-dim output for each target sample.

We further minimize Lce, the cross-entropy loss for the target samples, as shown below.

Lce(ft;Xt) = Ext∈X ∗
t ,ŷt∈Ŷ∗

t

Cs∑
k=1

1[k=ŷt] log(σk(ft(xt))) (4.6)

Our final objective function therefore becomes,

L(gt) = Lent + γ1Leqdiv + γ2Lce (4.7)

where γ1 and γ2 are hyper-parameters.

We present Algorithm 1 to demonstrate the overall procedure of our proposed method for multi-domain

experiments.

4.3.2 Experimental Setup

Datasets

We use three commonly used DA benchmarks for our experiments: Office [180], Office-Home [204] and

VisDA-C [167]. Office-31 is a small-scale DA dataset consisting of images of 31 classes of common objects

found in an office across 3 domains viz. Amazon (A), Webcam (W), and DSLR (D). Office-Home is a

medium-sized DA dataset consisting of 4 domains viz. Art (A), Clipart (C), Product (P), and Real-World

(R). The dataset contains images of 65 classes of items found in office and home environments. VisDA-C
is a large-scale dataset consisting of 12 classes of objects across two domains: Synthetic (S) and Real (R).

The 152K synthetic images are generated by 3D rendering and taken as the source domain. The 55K real

samples are taken from MS COCO dataset [128] and taken as the target domain.

For our multi domain experiments, we utilize the Office-Caltech [54] and Office-Home datasets. Office-

Caltech has 4 domains, Caltech (C) is added as a domain in addition to the three domains of the Office

dataset. The Office-Caltech dataset has 10 shared classes.



CHAPTER 4. CONTINUAL UNSUPERVISED DOMAIN ADAPTATION 46

Algorithm 1: ConDA Algorithm
Input : Trained source model fs : Xs → Ys, streaming batches of target data

{X 1
t1 ,X

2
t1 , · · ·X

m
t1 }
⋃
· · ·
⋃
{X 1

tτ ,X
2
tτ , · · ·X

m
tτ } from domains {Dt1 · · · Dtτ }.

Output : A set of models {ft1 , ft2 , · · ·, ftτ } after continually adapting on each domains
{Dt1 · · · Dtτ }.

Init. : The target model ft1 is initialized with the source trained model fs. The feature
extraction network is set to trainable on the target data while keeping the hypothesis
(classification) network frozen throughout the entire adaptation process.

1 for i← 1 to τ ; /* τ = number of target domains */
2 do
3 Get the target samples: {X 1

ti ,X
2
ti , · · ·X

m
ti } from Dti ∈ {Dt1 · · · Dtτ };

4 for j ← 1 to m ; /* m represents the number of continual batches in Dti

*/
5 do
6 if i = 1 & j = 1 then
7 X ← X j

ti
; /* No buffer for the very first incoming batch */

8 else
9 X ← X j

ti

⋃
Bj−1
ti

⋃i−1
c=1,i ̸=1 Btc ;

10 end
11 Ŷ ← Compute pseudo labels for X;
12 for k ← 1 to nb ; /* nb = number of minibatches */
13 do
14 Get i.i.d batch samples from (X, Ŷ );
15 Optimize model fti using Eq. 4.7;
16 end
17 Bjti ← Fill buffer with samples {Xti ,B

j−1
ti
};

18 end
19 Evaluate fti on test samples from domains {Dt1 · · · Dtτ };
20 Store

⋃i
c=1 Btc ; /* Store the buffer for further adaptation to newer

domains for multi-domain adaptation. */

21 end
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Continual Dataset Setup

In our continual DA experiments on Office-31, the buffer size is set to 124 samples (four samples per class

when fully balanced) and the number of incoming samples in each batch is set to 32 samples. For our

experiments on Office-Home, the buffer size is set at 520 (eight samples per class when fully balanced) and

the incoming batch size contains 64 samples. In the case of VisDA-C dataset, the experiments are conducted

with a buffer size of 96 samples (four samples per class when fully balanced) and the number of samples

in each incoming batch was set to 32 samples. For all the datasets, each time a new incoming batch of data

arrives, our model is trained for only 1 epoch of the memory buffer and incoming batch.

For the multi-domain experiments, we consider the Office-Home dataset with domain sequence R→ P →
C → A, and the Office-Caltech with domain sequence A → D → W → C, consistent with [170]. For

each domain, 70% of the samples are randomly drawn as adaptation samples and remaining 30% samples

are set aside for testing. For all datasets, all the source domain samples are used for source training. The

target domains are fragmented into batch sizes of 32 samples for Office-Caltech and 128 samples for Office-

Home. For both Office-Caltech and Office-Home, tests are performed with a buffer size such that the buffer

holds a maximum of 4 samples per class per domain. Therefore, for Office-Home, the buffer size is set at

260 samples per domain, i.e. 260 for the first domain, and another 250 for the second domain, and so on.

For Office-Caltech dataset, the buffer size is set at 40 samples per domain. The number of samples that are

randomly chosen from the multi-domain buffer for replay at each iteration is limited to 128 or fewer in all

cases.

Implementation Details

We use ResNet50 [63] as the common backbone for all our models except for VisDA-C dataset for which we

use ResNet101, along with a bottleneck fully connected (FC) layer with 256 units and a batch normalization

layer, as shown in Fig. 4.2, followed by a final task-specific FC classifier and weight normalization layer,

respectively [125].

We train our network with stochastic gradient descent (SGD) optimizer with 0.9 momentum. The learning

rate for the layers after the ResNet backbone is set to 10 times the learning rate of the backbone. The

learning rate for the backbone is set to η0 = 1e−3 for all datasets except for VisDA-C which has a learning

rate of η0 = 1e−4. We also use a learning rate scheduler η = η0 · (1 + 10 · p)−0.75 where p changes from

0 to 1 as training progresses [125]. We empirically find that γ1 = 1 and γ2 = 0.5 work best for all of the

datasets.
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Evaluation Protocol

We calculate mean accuracy for the entire target domain for our single domain experiments to easily compare

our results with existing SOTA methods. For multiple domains, we calculate three metrics: (a) Average

accuracy, ACC, (b) Forgetting, FG, and (c) Forward Transfer, FW . The ACC and FG metrics are used

for direct comparison with [170] while the FW metric is inspired by existing CL approaches [39, 59].

Considering transitions through τ target domains, we compute the mean accuracy on the test dataset of every

target domain at each transition step of t1, t2, · · ·, tτ which will provide an accuracy matrix A ∈ Rτ×τ .

AC(DT ) =
1

τ

τ∑
i=1

1

τ − i+ 1

τ∑
j≥i

Ai,j (4.8)

FG(DT ) =
1

τ − 1

τ−1∑
i=1

1

τ − i

τ∑
j>i

Ai,j −Ai,j−1 (4.9)

FW (DT ) =
1

τ − 1

τ∑
i=2

1

i− 1

τ∑
j<i

Ai,j (4.10)

Table 4.1: Mean accuracy of adaptation using the Office-31 dataset. The top part of the table shows results
of traditional DA methods using the full target dataset. The bottom part of the table shows results for ConDA
and SHOT using the continual setting. The ConDA experiments are performed with a continual batch size
of 32 and buffer size of 124 (four samples per class).

Method Target A −→ D A −→W D −→ A D −→W W −→ A W −→ D Mean

ResNet50 [63] Full 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DAN [138] Full 78.6 80.5 63.6 97.1 62.8 99.6 80.4
DANN [48] Full 79.7 82.0 68.2 96.9 67.4 99.1 82.2
JAN [140] Full 84.7 85.4 68.6 97.4 70.0 99.8 84.3
MADA [166] Full 87.8 90.0 70.3 97.4 66.4 99.6 85.2
SAFN+ENT [218] Full 92.1 90.3 73.4 98.7 71.2 100.0 87.6
ALDA [21] Full 94.0 95.6 72.2 97.7 72.5 100.0 88.7
MDD+IA [90] Full 92.1 90.3 75.3 98.7 74.9 99.8 88.8
GVB-GD [31] Full 95.0 94.8 73.4 98.7 73.7 100.0 89.4
SRDC [194] Full 95.8 95.7 76.7 99.2 77.1 100.0 90.9
SHOT [125] Full 94.0 90.1 74.7 98.4 74.3 99.9 88.6

SHOT [125] Cont. 84.74±0.00 85.32±0.07 69.77±0.18 97.86±0.00 65.50±0.16 99.20±0.00 83.73±0.05
ConDA Cont. 84.74±0.00 88.68±0.58 72.75±0.93 98.20±0.39 70.04±0.92 99.80±0.00 85.70±0.09

The average model accuracy is denoted as ACC. We compute the average accuracy at each step when a new

target domain is fetched ACC(Dti). We average the ACC scores over all domains to obtain ACC(DT ).

Forgetting, denoted as FG, is computed for every step except the last, and the FG scores over all domains
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Table 4.2: Mean accuracy of adaptation using the Office-Home dataset. The top part of the table shows
results of traditional DA methods using the full target dataset. The bottom part of the table shows results
for ConDA and SHOT using the continual setting. The ConDA experiments are performed with a continual
batch size of 128 and buffer size of 520 (eight samples per class).

Method Target Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Mean

DANN [49] Full 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
ALDA [21] Full 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
SAFN [218] Full 54.4 73.3 77.9 65.2 71.5 73.2 63.6 52.6 78.2 72.3 58.0 82.1 68.5
MDD+IA [90] Full 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
CADA-P [108] Full 56.9 76.4 80.7 61.3 75.2 75.2 63.2 54.5 80.7 73.9 61.5 84.1 70.2
GVB-GD [31] Full 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SPL [208] Full 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
SRDC [194] Full 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
HDMI [111] Full 57.8 76.7 81.9 67.1 78.8 78.8 66.6 55.5 82.4 73.6 59.7 84.0 71.9
SHOT [125] Full 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

LDAuCID [175] Full 48.3 67.4 74.1 48.7 61.9 63.8 49.6 42.1 71.3 60.3 47.6 76.6 59.4

SHOT [125] Cont. 49.3±0.19 71.0±0.03 75.0±0.16 59.9±0.07 70.1±0.22 70.2±0.13 58.7±0.02 47.2±0.3 76.7±0.05 69.4±0.07 54.0±0.03 79.6±0.10 65.1±0.06
ConDA Cont. 54.9±0.35 75.2±0.18 79.4±0.10 65.9±0.39 75.3±0.54 77.0±0.56 64.5±0.15 53.5±0.29 80.0±0.05 73.0±0.29 55.9±0.24 81.8±0.20 69.7±0.08

Table 4.3: Mean per class accuracy of adaptation using the VisDA-C dataset. The top part of the table shows
results of traditional DA methods using the full target dataset. The bottom part of the table shows results
for ConDA and SHOT using the continual setting. The ConDA experiments are performed with a continual
batch size of 32 and a buffer size of 96 (eight samples per class).

Method Target plane bycycl bus car house knife mcycle person plant sktbrd train truck Per class

DANN [49] Full 81.9 77.7 82.8 44.3 81.2 29.5 65.2 28.6 51.9 54.6 82.8 7.8 57.6
SAFN [218] Full 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
ALDA [21] Full 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
SHOT [125] Full 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

SHOT [125] Cont. 94.8±0.00 74.1±0.00 82.5±0.02 60.0±0.00 92.5±0.00 94.5±0.05 86.3±0.00 80.3±0.00 88.0±0.01 76.5±0.08 84.5±0.01 48.2±0.01 80.0±0.01
ConDA Cont. 95.2±0.17 81.1±0.36 81.4±0.81 61.0±1.71 92.9±0.43 93.2±2.20 84.7±1.24 81.4±0.22 87.3±0.79 88.3±0.95 84.2±1.11 52.6±0.58 81.9±0.24
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are averaged to obtain FG(DT ). A negative value of FG represents forgetting. The Forward Transfer is

denoted as FW and is computed for every step except the first. We take the mean of the FW scores over all

domains to obtain FW (DT ). This score represents how well the model generalizes to the unseen domains.

4.3.3 Results

Single Target Domain

The continual DA results for Office-31 are shown in Table 4.1. The SHOT [125] method struggles in

the continual setting and performance drops by 4.87% compared to SHOT using the full target domain.

ConDA outperforms continual SHOT by 1.97%. ConDA performs reasonably well compared to other SOTA

standard DA methods [21, 90, 108, 218] that use the full target dataset, although ConDA requires only a

fraction of the data and memory footprint that other methods need. Another constraint imposed on ConDA

that contributes to loss in performance on this small dataset is the limit of one pass over the entire target

dataset during adaptation.

For the Office-Home dataset, ConDA, while operating in a continual setting, outperforms some of the recent

standard DA methods that access the full target dataset, such as ALDA [21], SAFN [218] and MDD+IA [90],

and is on par with other SOTA DA methods. While SHOT [125] is one of the most effective methods on

Office-Home, in the continual setting it loses its top performance by 6.7%. ConDA outperforms continual

SHOT by 4.6% in terms of mean accuracy.

In the VisDA-C dataset, ConDA outperforms existing state-of-the-arts methods like ALDA [21] and SAFN

[218]. SHOT [125] is the most accurate of the models with mean per class accuracy of 82.9%. However,

continual SHOT is 2.9% less accurate than SHOT. ConDA outperforms continual SHOT by 1.9% and trails

behind standard SHOT by only 1%. We attribute this to the fact that VisDA-C contains a large number

(1,730) continual batches of target data which allows ConDA to approximate the performance of the baseline

SHOT model.

Mutiple Target Domains

We further extend our continual adaptation experiments to multiple target domains and validate our method

on multi-domain transitions using the Office-Caltech and Office-Home datasets. For comparison with SOTA

under similar conditions, we consider the multi-domain adaptation results by FRIDA provided in [170] that

are shown in Tables 4.5 and 4.5. DANN [49] is a standard unsupervised DA method developed for single
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Table 4.4: Multi domain adaptation results for Office-Caltech dataset. The benchmark results are obtained
from [170]. The continual experiments are done with an incoming batch size of 32 samples and a buffer size
of 40 samples per domain (four samples per class per domain).

Method
Dt1(D) Dt2(W ) Dt3(C) DT (Average)

AC FG AC FG FW AC FW AC FG FW

DANN [49] 94.44 0.00 82.03 -4.49 - 70.92 - 82.46 -2.25 -
IADA [212] 95.14 -1.04 85.39 -2.25 - 87.83 - 89.45 -1.65 -
CUA [11] 95.13 -1.04 84.83 +1.12 - 80.71 - 86.89 +0.04 -

EWC [101] 92.36 -3.13 84.83 -1.12 - 76.56 - 84.58 -2.13 -
LwF [123] 95.84 -1.05 85.95 -1.13 - 82.49 - 88.09 -0.55 -

FRIDA [170] 97.67 -1.03 99.07 -1.87 - 88.42 - 95.05 -1.45 -

SHOT-Cont. [125] 92.16 0.0 94.62 +2.15 88.17 91.01 87.57 92.60 +1.08 87.87
ConDA 92.81 +2.94 96.78 +2.15 87.1 92.98 86.99 94.18 +2.54 87.05

Table 4.5: Multi domain adaptation results for Office-Home dataset. The benchmark results are obtained
from [170]. The continual experiments are done with an incoming batch size of 128 samples and a buffer
size of 260 samples per domain (four samples per class per domain).

Method
Dt1(P ) Dt2(C) Dt3(A) DT (Average)

AC FG AC FG FW AC FW AC FG FW

DANN [49] 73.42 -5.70 45.30 +0.23 - 45.40 - 54.71 -2.73 -
IADA [212] 75.60 +1.31 46.18 0.00 - 59.26 - 60.35 +0.65 -
CUA [11] 76.10 -1.35 47.45 +1.50 - 55.42 - 59.66 +0.07 -

EWC [101] 73.22 -6.25 46.10 +1.37 - 47.33 - 55.55 -2.69 -
LwF [123] 72.20 -5.33 44.47 +1.45 - 50.48 - 55.72 -1.94 -

FRIDA [170] 77.40 -0.41 64.31 +2.06 - 67.76 - 69.82 +0.83 -

SHOT-Cont. [125] 78.05 -0.98 52.79 -0.99 49.01 72.43 65.77 67.75 -0.98 57.39
ConDA 80.63 +0.11 55.65 -0.46 49.01 73.25 67.62 69.84 -0.18 58.32

Table 4.6: Ablation study of ConDA on the effects of using a buffer and Leqdiv using the Office-31 dataset.
The ablation study for ConDA had a continual batch size of 32 and a buffer size of 124 (four samples per
class).

Method BufferLeqdiv Target A→D A→W D→A D→W W→A W→D Mean

SHOT [125] Cont. 84.74±0.00 85.32±0.07 69.77±0.18 97.86±0.00 65.50±0.16 99.20±0.00 83.73±0.05
ConDA ✓ Cont. 84.54±0.00 85.28±0.00 70.46±0.08 97.99±0.00 65.60±0.03 99.20±0.00 83.85±0.01
ConDA ✓ Cont. 83.73±0.00 87.26±0.06 71.52±0.12 97.86±0.10 70.16±0.47 99.67±0.09 85.03±0.03
ConDA ✓ ✓ Cont. 84.74±0.00 88.68±0.58 72.75±0.93 98.20±0.39 70.04±0.92 99.80±0.00 85.70±0.09
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target DA. IADA [212] and CUA [11] are continual domain adaptation methods specifically developed for

continually changing target domains. Both of these methods proposed to utilize replay strategies to aid

domain adaptation and mitigate catastrophic forgetting. They utilize DANN as the base DA method. Elastic

Weight Consolidation (EWC) [101] and Learning without Forgetting (LwF) [123] are two popular methods

for supervised CL. These techniques are implemented alongside DANN for benchmarking the continual

multi-domain experiments. FRIDA [170] is a continual domain adaptation method specially developed to

tackle incremental domain adaptation on continually varying target domains. SHOT [125] is our baseline

method and we provide the SHOT results on continual settings per our proposed paradigm.

The results for the Office-Caltech dataset are shown in Table 4.4, and those for Office-Home are shown

in Table 4.5. The computed Accuracy (ACC), Forgetting (FG), and Forward transfer (FW ) metrices are

provided in both Tables 4.4 and 4.5. Our method outperforms existing standard SOTA DA methods, beating

IADA and CUA by large margins in ACC: 4,73% and 7.29%, respectively in the Office-Caltech dataset, and

9.49% and 10.18%, respectively in the Office-Home dataset. ConDA in the multi-domain also outperforms

CL methods, beating EWC and LwF by 9.6% and 6.09%, respectively in the Office-Caltech dataset, and

by 14.29% and 14.12%, respectively in the Office-Home dataset. This demonstrates the CL capability of

our method. ConDA also comes on top of the baseline SHOT method in the continual setting by 1.58%

in the Office-Caltech dataset, and by 2.09% in the Office-Home dataset. ConDA is on par with the multi-

target DA method FRIDA [170] in the Office-Home dataset, and performs slightly worse than FRIDA in the

Office-Caltech dataset, in terms of AC scores.

In terms of the FG metric, while ConDA has a small negative score on Office-Home, it has a positive score

on the Office-Caltech dataset. To explain this, we have to be mindful of the limited room for ConDA to

achieve stability on smaller datasets. Unlike FRIDA which adapts over multiple epochs, ConDA adapts

over only a single epoch of the target data. The positive FG score for ConDA on the smaller Office-Caltech

dataset is evidence that model stabilty may not be achieved fully after adaptation to new domains if the

number of samples is low. But the presence of a multi-domain buffer and sample replay from earlier domains

during adaptation to subsequent domains not only prevents forgetting, but makes the model more stable

across all target domains. The issue of model stability is resolved for the larger Office-Home dataset. The

small negative FG score is expected. The larger target domains enable stable adaptation, and consequently

selective sample replay prevents drastic forgetting as newer domains are adapted. Since ConDA is designed

and expected to operate continually on large datasets, stability should not be an issue in real-life applications.

We only have scores for ConDA and baseline SHOT in the continual setting for the FW metric, since results

are not available for other methods. ConDA consistently outperforms SHOT on both datasets, exhibiting

ConDA’s better generalization capability on unseen domains. To visualize the effect of adaptation with
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Figure 4.4: Performance with various buffer management strategies on Office-31 dataset. The experiments
are performed with a batch size of 32 and buffer size of 124.

Figure 4.5: Ablation studies on Office-31 dataset with varying buffer sizes for batch size of 128.

ConDA on the latent feature space, we present t-SNE plots [67] in Figure 4.6 for continual adaptation from

Real-World to Product in the Office-Home dataset. We only show the first 10 classes for clearer visualization

and to avoid crowding in the plot.

The performance variation with various buffer management strategies is shown in Fig. 4.4. As mentioned

in Sec. 4.3.1, the sample selection strategy based on softmax confidence provides slightly better perfor-

mance over the sample selection mechanisms based on the distance to the cluster center (closer) and random

selection with uniform probability.

We perform ablation studies shown in Table 4.6 to demonstrate the impact of various components of our
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(a) Before adaptation (b) After adaptation

Figure 4.6: Feature visualization plots for 10 classes before and after continual adaptation from Real-World
(Source) to Product (Target) from the Office-Home dataset. (a) t-SNE plot for source-trained model on
Real-World before adaptation, and (b) t-SNE plot for the target-adapted model.

model on the Office-31 dataset. These studies are performed on continual adaptation to single target do-

mains. We note that, in the absence of a memory buffer or other continual DA modification, the perfor-

mance of SHOT drops significantly during continual adaptation (in batch mode). With the addition of the

buffer, performance improves by 1.3% over continual SHOT. The addition of equal diversity loss without

the buffer marginally improves performance compared to continual SHOT. However, ConDA with the equal

diversity loss and buffer, outperforms continual SHOT by 1.97%, which demonstrates the effectiveness of

our proposed continual adaptation method.

We perform additional experiments on Office-31 (single domain), as shown in Fig. 4.5, to understand the

impact of varying the buffer size during continual adaptation. To study the impact of buffer size, we fix

the continual batch size at 128 samples and consider four different buffer sizes; 32, 64, 128, 256, and 520

samples. Our findings indicate that increasing the buffer length improves performance.
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4.4 UCL-GV

Figure 4.7: Proposed paradigm of Unsupervised Continual Learning for Gradually Varying domain adap-
tation (UCL-GV). The network is trained on a source domain and continually adapts using small incoming
batches of data from a gradually varying target domain that has no labels.

4.4.1 Method

For the UDA problem, we consider three domains as illustrated in Fig. 4.7: a source domain, an intermediate

domain, and a target domain. The source domain, Ds, has Cs classes with source data {xis, yis}
ns
i=1 with ns

labeled samples, where xs ∈ Xs with labels ys ∈ Ys. As in [105], we further consider an unlabeled

intermediate domain, Dint, that has Cint classes with Xint samples, and an unlabeled target domain, Dtar,

that has Ctar classes with samples Xtar. By generalizing the notations, we combine the intermediate and

target domain as Dt with unlabeled data Xt = Xint
⋃
Xtar with Ct = Cint = Ctar = Cs classes. Here

xt ∈ Xt and {xit}
nt
i=1 with nt is the total number of unlabeled samples and t is gradually varying, t ∈

[0, 1]. We further consider that Dt is split into m sequential batches Xt = {Xt1 ,Xt2 ,Xt3 , · · ·,Xtm} where

t1 < t2 < t3 < · · · < tm and each batch has nti i.i.d. samples where nt =
∑m

i=1 nti . Since we

consider a gradual domain adaptation, we assume that the domain change in continual batches is small, i.e.,

lim∆t→0 d(Dt,Dt+∆t) = 0 for any domain distribution distance measurement method d [131].

The objective of UCL-GV is to train a model fs : Xs → Ys, parameterized by θs, and continually adapt it

on Dt so that the model ft : Xti → Yti , parameterized by θt, provides better performance on Xtar when

i = m, compared to ft : Xt → Yt with having only fs and Xt during adaptation. The overall objective can

also be represented in terms of the loss computation as follows [131].
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min
θt

Et∼U(0,1)E(xt,yt)∼Dtar
L(ft(xt), yt) =

min
θt

∫ 1

0
E(xt,yt)∼Dtar

L(ft(xt), yt) dt
(4.11)

Figure 4.8: Proposed UCL-GV method for unsupervised continual learning for domain adaptation in grad-
ually varying domains.

The architecture of UCL-GV is shown in Fig. 4.8. Inspired by [125], we initially train our source model

fs(x) = hs(gs(x)) on the source data. The model consists of two parts, a feature extractor with a backbone

followed by a fully connected layer and a batch normalization layer denoted as gs. The generated features

are passed through the hypothesis layer that consists of a fully convolutional layer, followed by a weight

normalization layer denoted as hs. The source network is trained with a label smoothing loss. For the target

model, ft(x) = ht(gt(x)), the feature extractor model gt is initialized with gs and set as trainable, while the

transferred hypothesis model ht = hs is kept frozen throughout the adaptation procedure.

The unlabeled data from Dt are sequentially presented to the network and certain samples are selectively

stored in a buffer after processing each incoming new batch, Xti . At each step in time when a new batch is

received, the existing buffer samples are added to the incoming batch samples for adaptation. This prevents

the clusters from deviating too much from one batch to the next. The details of the buffer and buffer man-
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agement strategies are provided next, in Sec. 4.4.1 and 4.4.1. Since the incoming samples are without labels,

clustering is needed for pseudo-label assignment. However, the clustering techniques utilized in [14, 125]

primarily deal with samples from a stationary distribution and are not suitable for gradually varying do-

mains. In this paper, we improve upon this clustering technique to incorporate samples from non-stationary

distributions. Since the domain gap between the incoming batch samples and the buffer samples is small, we

utilize contrastive alignment between the buffer prototypes (cluster centers) and the batch samples by min-

imizing the prototypical contrastive loss Lpc, as shown in Fig. 4.8. The procedure is detailed in Sec. 4.4.1.

It is important to note that the existing buffer samples and new incoming batch samples are fed through

the network only once, i.e. only one epoch of the Bti−1

⋃
Xti samples is allowed at each time step during

adaptation. The total number of adaptation time steps is equal to the number of sequential incoming batches

of data from Dt, the combined intermediate and target domain.

Buffer

In our setting we consider closed-set domain adaptation where Cs = Ct with the same classes in the source

and target domains. We allocate equal number of samples from each class in the buffer Bt = {Bt1 ,Bt2 , · ·
·,Btm} based on pseudo-label assignment on incoming target samples. This allows the class-wise data

distribution to be considerably uniform throughout the adaptation process. The buffer stores raw samples

for adaptation, and the buffer samples are managed by a buffer manager as described in the next subsection.

Buffer Manager

The buffer manager is responsible for populating the buffer with new samples while partially or fully drop-

ping the existing samples depending on the number of batch and buffer sizes. We considered multiple buffer

sample selection mechanisms that exist for the supervised CL paradigm. One popular scheme of sample

selection is uniform random, where all the incoming batch samples are combined with the existing buffer

samples and the samples to be stored for the next time step are randomly selected with uniform probabil-

ity [15]. Minimum logit distance is another method where the samples are selected based on the distance to a

decision boundary [16]. Some other mechanisms are also introduced in [59] such as choosing samples with

minimum confidence, maximum loss, maximum time since last replay, and so on. However, we argue that

most of the supervised buffer management strategies are not readily applicable to unsupervised continual

learning, except the random selection technique. We tested several schemes for updating the buffer sam-

ples, such as selecting samples randomly with uniform probability, samples with high confidence, samples

closer to the cluster center, and samples with first-in, first-out queue. We found that first-in, first-out queue
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performs slightly better than all of the other methods for gradually varying domain adaptation. Intuitively,

since the domain is gradually evolving, the estimated pseudo labels are the most appropriate when the do-

main shift within the available data is minimum. If the domain shift between existing buffer samples and

the incoming batch samples is high, the estimated pseudo label quality degrades and hence the adaptation

performance also degrades.

Clustering

At time ti, the network utilizes a new batch of samples Xti and the existing buffer samples Bti−1 from the

previous time step. The combined dataXti

⋃
Bti−1 produces nb i.i.d. minibatches that are passed through the

feature extraction network gt, and the features are accumulated to perform clustering. We adopted weighted

k-means clustering encouraged from [14, 125, 198] that provides the pseudo labels and cluster centers.

Figure 4.9: Application of contrastive loss using the buffer prototypes (cluster centers) and the batch sam-
ples, for better clustering.

Contrastive Alignment

Since the domain gap between two consecutive data batches is small (due to the gradually varying domains),

we propose to align the feature representations of the incoming batch and buffer samples using a contrastive

loss. Such alignment between the buffer and batch features complements the clustering process and gener-

ates better pseudo labels. We compute a cosine distance based contrastive loss from the buffer prototypes

to the batch samples, as shown in Fig. 4.9. The buffer prototypes (cluster centers) are computed with the

current state of the feature extractor ĝt, using the pseudo-labels ŷt ∈ Ŷt for the samples in the buffer and the
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incoming batch samples, Bti−1

⋃
Xti , as follows [125].

zk =

∑
xt∈Bti−1

1(ŷt = k)ĝt(xt)∑
xt∈Bti−1

1(ŷt = k)
(4.12)

In our experiments, zk ∈ R|Ct|×256. The batch features are computed as follows.

z = ĝt(xt),∀xt ∈ Xti (4.13)

Both the batch features and the buffer features are normalized.

ẑk =
zk
||zk||

, ẑ =
z

||z||
(4.14)

The normalized features are used to compute the prototypical contrastive (PC) loss Lpc [116, 117].

Lpc = − log
exp

(
ẑi · ẑk=ŷit

)
∑|Ct|

c=1 exp (ẑi · ẑk=c)
(4.15)

We minimize the PC loss in conjunction with the other loss functions.

Overall Loss Function

We adopt the Information Maximization (IM) [103, 125] loss, according to the formulation in ConDA that

minimizes the entropy Lent and equal diversity loss Leq. With the pseudo labels computed in the overall

clustering, we compute the cross-entropy loss below.

Lce = Ext∈Bti−1

⋃
Xti ,ŷt∈Ŷt

− log σk(ft(xt)) (4.16)

where, σk is the softmax function. The overall loss function is written as follows.

L(gt) = Lent + γ1Leqdiv + γ2Lce + γ3Lpc (4.17)

where γ1, γ2, and γ3 are hyper-parameters. The overall process is presented in Algorithm 2.
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Algorithm 2: UCL-GV algorithm
Input : A source trained model fs = hs · gs : Xs → Ys, evolving data batches

{Xt1 ,Xt2 , · · ·Xtm} from Dt.
Output : A model continually adapted on Dt and the corresponding predicted labels for Xtar.
Init. : Initialize the target network gt with gs and set the hypothesis network ht = hs and keep

it frozen during adaptation.
1 for i← 1 to m do
2 if i = 1 then
3 X ← Xti ;
4 else
5 X ← Xti

⋃
Bti−1 ;

6 end
7 Ŷ ← Compute psuedo labels for X;
8 for j ← 1 to nb do
9 Get i.i.d batch samples from (X, Ŷ );

10 Compute Lent, Leq, and Lce;
11 if i = 1 then
12 Lpc ← 0;
13 else
14 Lpc ← Compute the PC loss using Equation (4.15);
15 end
16 Compute L(gt) using Equation (4.17);
17 Optimize gt with L(gt);
18 end
19 Bti ← Fill buffer using gtand (Xti ,Bti−1);
20 end
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4.4.2 Datasets and experiments

We used two datasets, rotating MNIST and CORe50, for evaluation. We adopt the rotating MNIST [105]

which has 50,000 training and 10,000 test images. It is created to mimic an evolving domain where the

first 20,000 images are used for training our source model and are rotated between [0◦, 10◦]. The next

30,000 images from the training set form the intermediate domain and are rotated between [10◦, 50◦]. The

10,000 test images are selected as the target domain and are rotated between [50◦, 60◦]. Following [125], we

consider the entire target domain for evaluation after adaptation on the intermediate and the target domains.

Examples of the rotating MNIST dataset are shown in Fig. 4.10.

Further, we restructure the CORe50 [137] dataset to evaluate UCL-GV under the continually evolving

domain adaptation setting. CORe50 dataset is specifically designed for CL research and has 50 domestic

objects from 10 categories collected on 11 sessions. We found that choosing eight sessions makes the dataset

suitable for gradually varying domains where the backgrounds of the images vary gradually in appearance.

Additionally, there are pose and illumination changes among various sessions. We used the samples from

session ‘s1’ as the source domain, ‘s2’, ‘s3’, and ‘s8’ as the unlabeled intermediate domain, and ‘s9’, ‘s11’,

‘s4’, and ‘s10’ as the target domain where the samples are appended according to the order mentioned here.

Examples of the CORe50 dataset are shown in Fig. 4.11.

Figure 4.10: Rotating MNIST dataset.

The source model is trained with randomly sampled data from the entire source domain. Following the

setting in [105], the intermediate domain is chosen to implement a gradual change, rather than a drastic

change from the source domain to the target domain. The intermediate domain and the target domain are

provided to the network sequentially, however, the classes are randomly mixed. For the rotating MNIST

dataset, we utilize a LeNet backbone [113] with two convolutional layers. For the CORe50 dataset, we

choose a ResNet18 backbone [63]. We normalize the rotating MNIST samples to have 0.5 mean and 0.5

standard deviation. CORe50 samples undergo resizing to 256 × 256 pixels, and random cropping to size

224 × 224, random horizontal flipping, and normalization for adaptation. The starting learning rate for
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Figure 4.11: CORe50 [137] dataset in a gradual time varying setting.

Table 4.7: Percent accuracy of UCL-GV and comparison with other methods. The experiments on rotating
MNIST are performed with a continual batch size of 128 and buffer size of 512. CORe50 experiments are
performed with a continual batch size of 16 and buffer size of 32. All evaluations are conducted on the target
domain Dtar.

Method Adaptation domain Domain availability Rotating MNIST CORe50

Baseline [125] None (No adaptation) Full 45.16 74.59
Baseline [125] Target only Full 67.88 90.19
Baseline [125] Intermediate + Target Full 96.20 91.49

Gradual ST [105] Intermediate + Target Continual 92.03 N/A
Baseline [125] Intermediate + Target Continual 94.20 87.14

UCL-GV Intermediate + Target Continual 95.66 89.07
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rotating MNIST is 0.01 and for CORe50 is 0.001, and are varied according to the setup of [125].

4.4.3 Results

Performance on Full Target Domain

We computed the domain adaptation performance with our baseline method [125] using the full target

dataset, as shown in Table 4.7. For all settings, the model is evaluated only on the target dataset, Xtar.

The model with only source training (without adaptation on the intermediate or the target domain) evaluated

on the target domain indicates the domain gap between the source and the target domain. On the rotating

MNIST dataset, the low classification score of 45.16% of the source trained model indicates a large domain

gap between the source domain and the target domain. On the other hand, the performance of the source

trained model on CORe50 dataset is 74.59%, which shows a smaller domain gap between the source and the

target domains. The CORe50 dataset contains slight changes among the three domains in the background.

The target-only model is the case where the model is trained on the source dataset and adapted to the

target dataset, Xtar without any intermediate domain data. After adapting to the target domain with the

baseline method, performance on both datasets improves significantly. For the rotating MNIST dataset, the

performance improves by 22.72% and for the CORe50 dataset, the performance improves by 15.6%.

With the availability of the intermediate domain, the shift between the source and the adaptation domains

is much smaller. This leads to significant performance gains compared to the target-only adapted baseline

model, even for the cases of continual learning from small incoming batches.

Performance on Gradually Varying Domains

UCL-GV shows significant improvement over the existing baseline [125] and Gradual ST [105], as shown in

Table 4.7. The results on Gradual ST [105] are obtained by running the publicly available codebase on our

dataset settings. In the continual adaptation setting, the performance of the baseline [125] method degrades

by 2% on the rotating MNIST dataset and by 4.35% on the CORe50 dataset, compared to the adaptation on

the full intermediate and target domains simultaneously. UCL-GV outperforms Gradual ST by 3.63% and

the baseline method by 1.46% on rotating MNIST dataset on the continual settings. On the CORe50 dataset,

UCL-GV outperforms the continual baseline method by 1.93%.

To further illustrate the continual learning capability of our method, we evaluate the classification perfor-
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mance on all of the target samples Xtar of the rotating MNIST dataset after each incoming batch Xti from

Dt, as shown in Fig. 4.12. Our method shows consistent performance gains while learning on new batches

of data.

Figure 4.12: Performance of UCL-GV on the rotating MNIST target domain Dtar during continual adapta-
tion on each incremental batch from the combined intermediate and target domain Dt.

Effects of Batch and Buffer Sizes

To understand the impact of batch and buffer sizes on continual adaptation, we conducted ablation studies

on the rotating MNIST dataset. Fig. 4.13 shows the results obtained when varying the buffer size (left)

and batch size (right). The results in Fig. 4.13 (left) also demonstrate the effectiveness of the first-in, first-

out queue. Additionally, we observe that the performance increases with increase in the buffer size. This

observation is consistent with the existing supervised streaming learning scenario [59]. Based on intuition,

Figure 4.13: Impact of varying the buffer size (left) and batch size (right) of UCL-GV on the rotating MNIST
dataset.
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increasing the buffer size provides access to more samples, which improves unsupervised clustering and pro-

totype representation from the buffer samples. However, this comes at the cost of larger memory footprint,

and the buffer size selection will depend on the available system resources.

The results for various batch sizes, while the buffer size is kept fixed, are shown in Fig. 4.13 (right). When

the incoming batch size is varied from 64 to 512, the performance degrades with increase in batch size,

which may appear counter intuitive. However, since the target domain data is varying gradually, that is, the

class-wise data distribution is continuously changing, having a larger batch size might cause overlap between

different class distributions across the varying domain. This can potentially lead to incorrect pseudo-label

assignments and eventually result in negative adaptation and lower performance.

Ablation Studies

We demonstrate the effectiveness of various aspects of UCL-GV by performing ablation studies on the ro-

tating MNIST dataset. We performed each experiment three times and report the average in Table 4.8. The

UDA baseline [125] method achieves 94.20% accuracy in continual adaptation across varying domains.

After adding the buffer, we observe ∼1% improvement in performance, which corresponds to 14.8% re-

duction in error, validating the effectiveness of including the memory buffer. With the introduction of con-

trastive alignment between the buffer prototypes and the batch samples, the final performance of UCL-GV

is 95.66%, which is a 1.46% total improvement over the baseline, or 25.2% reduction in error .

Table 4.8: Ablation studies of UCL-GV on the rotating MNIST dataset. Experiments are performed with a
continual batch size of 128 and buffer size of 512.

Method Percent Accuracy

Baseline 94.20
Baseline+Buffer 95.06
UCL-GV: Baseline+Buffer+Lpc 95.66
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4.5 Continual domain adaptation on aerial images under gradually degrad-
ing weather

4.5.1 Benchmark Datasets

To the best of our knowledge, no existing dataset meets our criteria for evaluating continual domain adap-

tation under gradually changing weather conditions. We therefore utilize two existing aerial datasets AID

[213] and UCM [223] to generate gradually varying weather conditions using the imgaug Python library

[92]. We use all 30 classes for AID, and all 21 classes for UCM. We use two augmenters CloudLayer

and SnowflakesLayer from imgaug.augmenters.weather library to synthesize cloudy, and snowfall weather

conditions on real AID, and UCM images. With two augmentations on AID, and two augmentations on

UCM, we get a total of four datasets with gradually degrading weather conditions. We call the new AID

dataset with cloud cover distortion, and with snowfall distortion AID-CC and AID-SF, respectively. Sim-

ilarly, we name the new UCM dataset with cloud cover distortion, and with snowfall distortion UCM-CC

and UCM-SF, respectively.

Figure 4.14: AID-CC dataset with cloud cover degradation. (1) is the source domain, (8) is the target
domain, and (2-7) are progressively degrading intermediate domains.

We take the clear weather images from AID, and UCM as the source data for each respective dataset. The
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Figure 4.15: UCM-CC dataset with cloud cover degradation. (1) is the source domain, (8) is the target
domain, and (2-7) are progressively degrading intermediate domains.

seven levels of cloud cover degradation are made by varying the density and size of clouds. The five levels of

snowfall degradation are made by varying the density of the snowflakes, and overall brightness of the scene.

The data with the highest level of degradation for both types are taken as the respective target domain data,

while the rest are treated as gradually varying intermediate domains, depending on the intensity of weather

degradation. We therefore have six intermediate domains for cloud cover, and four intermediate domains

for snowfall.

We present a few examples of our newly created synthetic datasets in Figures 4.14, 4.15, 4.16, and 4.17.

Figures 4.14 and 4.15 show examples of the seven stages of gradually worsening cloud coverage on AID

and UCM, respectively. Figures 4.16 and 4.17 show examples of the five gradually degrading snowfall

conditions on AID and UCM, respectively.

4.5.2 Implementation details

All three models we evaluated consist of a backbone or feature extractor, followed by a bottleneck layer, and

finally a classifier layer. The buffer sizes for ConDA and UCL-GV are fixed at 420 samples, while Continual

SHOT does not contain a buffer. The models are adapted with an SGD optimizer with momentum of 0.9.
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Figure 4.16: AID-SF dataset with snowfall degradation. (1) is the source domain, (6) is the target domain,
and (2-5) are progressively degrading intermediate domains.

The initial learning rates η0 = 0.02 and η0 = 0.002 are used with a learning rate scheduler such that the

learning rate η = η0 · (1+10 ·p)−0.75, where p = i
iT

changes from 0 to 1 for each incoming batch. Here i is

the current iteration, and iT is the total number of iterations for each incoming batch of intermediate/target

data.

4.5.3 Results and discussion

Table 4.9: Initial results on the gradually degrading AID and UCM datasets with ResNet-50 backbone on
the final target domain. Source-trained refers to the model trained on the source data only, without any
adaptation. The top accuracy is in bold and the second best is underlined.

Method
Cloud Cover Snowfall

AID-CC UCM-CC AID-SF UCM-SF
Source-trained 12.29 32.81 42.65 58.38

Continual-SHOT [125] 84.14 80.10 94.21 95.00
ConDA 80.41 85.54 95.38 95.90

UCL-GV 79.40 85.19 95.49 95.95
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Figure 4.17: UCM-SF dataset with snowfall degradation. (1) is the source domain, (6) is the target domain,
and (2-5) are progressively degrading intermediate domains.

Initial results for all three methods considered using a ResNet-50 backbone are shown in Table 4.9. The

two continual DA models, UCL-GV and ConDA, outperform Continual-SHOT for snowfall degradation,

but the results for cloud cover are mixed. For AID-CC, we see significant drops in performance for the

ConDA and UCL-GV, compared to continual-SHOT. With additional examination of the results, we found

occasional lack of stability that ConDA and UCL-GV may encounter for certain batches during adaptation.

The continual batches within a domain do not have any particular order in which they are received, and the

performance drops can happen at any time during the adaptation process. Such adaptation instability needs

to be addressed to improve performance, since continual DA does not revisit batches of images that have

already been processed or seen by the model.

We propose gradient normalization to help stabilize the adaptation process for the continual models, and

improve their performance. Empirically, we conduct L2-normalization of all the gradients after backpropa-

gation through the model and before optimization for each adaptation iteration. In Figure 4.18, we plot the

continual adaptation performance for each incoming batch, with and without gradient normalization, for the

continual models on AID-CC.

From Fig. 4.18, we can see that ConDA and UCL-GV may face significant stability issues at times, and

model performance may drop significantly (up to ∼ 40%) from one incoming batch to the next. Although
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(a) Accuracy of ConDA with ResNet-50 backbone on the final target data, with and without gradient
normalization, as it continually adapts to the incoming batches of intermediate and target domains of AID-
CC.

(b) Accuracy of UCL-GV with ResNet-50 backbone on the final target data, with and without gradient
normalization, as it continually adapts to the incoming batches of intermediate and target domains of AID-
CC.

Figure 4.18: Effect of gradient normalization on adaptation stability for the continual models ConDA and
UCL-GV.

the continual models start to recover in the subsequent incoming batches for AID-CC, they may not adapt

optimally. In our experiments, it is evident that gradient normalization greatly mitigates the drops in per-

formance for some of the batches, that are observed in the original forms of the models. With gradient

normalization, both ConDA and UCL-GV gradually continue to better adapt to the target domain as the

adaptation process progresses.

The results for all three methods with gradient normalization, and different learning rates are tabulated in

Table 4.10. In all cases, ConDA and UCL-GV outperform continual SHOT, but the best results depend on

the learning rate. It has to be noted that for optimal performance, continual DA necessitates the models to

undergo fast optimization, as revisits to earlier data batches are not allowed, and the models need to adapt

to the target domain over single passes of the continual data stream. On the smaller UCM-CC and UCM-
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Table 4.10: Results on the gradually degrading AID and UCM datasets, using ResNet-50 backbone, gradient
normalization, and initial learning rate of η0 = 0.002 and η0 = 0.02. Source-trained refers to the model
trained on the source data only, without any continual target adaptation over the intermediate and target
domains. The top accuracy is in bold and the second best is underlined.

Method
AID-CC UCM-CC AID-SF UCM-SF

η0 =
0.002

η0 =
0.02

η0 =
0.002

η0 =
0.02

η0 =
0.002

η0 =
0.02

η0 =
0.002

η0 =
0.02

Source-trained 12.29 12.29 32.81 32.81 42.65 42.65 58.38 58.38
Continual-SHOT [125] 80.37 79.36 67.95 81.71 88.71 94.50 78.29 95.57

ConDA 86.13 58.91 79.43 81.33 94.87 93.12 90.05 97.38
UCL-GV 85.67 65.09 78.76 82.10 95.05 93.68 90.48 96.71

SF datasets, both ConDA and UCL-GV adapt better with a higher learning rate, due to faster optimization

afforded by the higher initial learning rate. On the other hand, the models cannot adequately adapt to

the target domain for UCM-CC and UCM-SF at the smaller initial learning rate of η = 0.002, due to

comparatively slower optimization. Therefore, for UCM-CC and UCM-SF, best results are obtained for

higher learning rates. It also has to be noted that, the continual adaptation process becomes more susceptible

to instability at higher learning rates, the effects of which can be seen in the results for AID-CC at η0 = 0.02.

On the larger AID-CC and AID-SF datasets, better performance is obtained with the smaller initial learning

rate of η0 = 0.002. As AID-CC and AID-SF have large number of samples to process, continual models can

reach an optimal solution with a slower optimization at smaller learning rates, while the pitfalls of higher

instability at higher learning rates can be avoided.

We further evaluate the continual models with two transformer backbones: Vision Transformer (ViT) [37]

and Swin-V2 [133, 135]. To keep the computational load tractable, we choose the base versions of the

transformer backbones for our experiments. We report the adaptation performance of the three models, with

and without gradient normalization, on the AID-CC and AID-SF datasets at the lower initial learning rate of

η0 = 0.002 in Table 4.11, and on the UCM-CC and UCM-SF datasets at the higher initial learning rate of

η0 = 0.02 in Table 4.12.

We can see from the results in Table 4.11 that while gradient normalization may prevent optimal adaptation

performance for the continual-SHOT model, adaptation stability increases for the two buffer-fed continual

models ConDA and UCL-GV, and both models generally adapt better to the target domains at the end of the

adaptation process. Having been stabilized with gradient normalization, the models ConDA and UCL-GV

can be considered comparable in adaptation performance. Accuracies of ConDA and UCL-GV on the target

domain for continual adaptation for AID-CC, with Swin-B as the backbone are plotted in Figure 4.19, to

inspect the increase of adaptation stability due to gradient normalization.
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Table 4.11: Results on AID-CC, and AID-SF with ResNet-50, ViT-B, and Swin-B backbones, at initial
learning rate of 0.002. Source-trained method refers to the model trained on the source data only, without
any continual target adaptation over the intermediate and target domains. The top accuracy is in bold and
the second best is underlined. respectively.

Method
Backbone
(# params)

AID-CC AID-SF
w/o. Grad

Norm
w. Grad
Norm

w/o. Grad
Norm

w. Grad
Norm

Source-trained
ResNet-50
(23M)

12.29 12.29 42.65 42.65
Continual-SHOT [125] 84.14 80.37 94.21 88.71

ConDA 80.41 86.13 95.38 94.87
UCL-GV 79.40 85.67 95.49 95.05

Source-trained
ViT-B
(86M)

11.50 11.50 55.85 55.85
Continual-SHOT [125] 80.43 74.18 90.41 88.79

ConDA 78.28 79.94 89.65 89.77
UCL-GV 79.55 79.84 88.56 90.29

Source-trained
Swin-B
(88M)

19.96 19.96 67.34 67.34
Continual-SHOT [125] 89.76 91.20 96.29 94.12

ConDA 81.82 93.20 95.82 97.77
UCL-GV 81.67 92.82 93.22 97.84

The results in Table 4.12, particularly those for UCM-CC show the dangers of instability during adaptation.

At the higher initial learning rate, and without stabilization by gradient normalization, the adaptation process

may completely collapse. The impact is more severe for UCM-CC due to the higher degree of degradation

of cloud cover in our datasets. But when the gradients are normalized and the adaptation process is stabi-

lized, the models show promising performance. This clearly shows the necessity and effectiveness of the

improvement over no gradient normalization in the continual methods we propose in this dissertation. Sim-

ilar to results for AID-CC and AID-SF, ConDA and UCL-GV with Swin-B backbone beat the other two

backbone architectures.

Overall, the two continual DA models ConDA and UCL-GV beat the standard SHOT model under continual

setting. This shows the efficacy of selectively storing samples in a memory buffer and replaying these

samples from earlier batches mixed with the samples from new incoming batch. Such memory replay

helps in retaining knowledge gained from earlier batches, and results in a better domain adaptation to the

target domain. Gradient normalization with smaller learning rates, despite preventing optimal adaptation in

certain cases for smaller datasets, significantly increases adaptation stability, and prevents the models from

potentially collapsing.

In terms of backbones, Swin generally outperform the CNN-based ResNet-50 model for continual DA on
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Table 4.12: Results on UCM-CC, and UCM-SF with ResNet-50, ViT-B, and Swin-B backbones, at initial
learning rate of 0.02. Source-trained method refers to the model trained on the source data only, without any
continual target adaptation over the intermediate and target domains. The top accuracy is in bold and the
second best is underlined. respectively.

Method
Backbone
(# params)

UCM-CC UCM-SF
w/o. Grad

Norm
w. Grad
Norm

w/o. Grad
Norm

w. Grad
Norm

Source-trained
ResNet-50
(23M)

32.81 32.81 58.38 58.38
Continual-SHOT [125] 9.33 81.71 73.81 95.57

ConDA 6.95 81.33 96.00 97.38
UCL-GV 8.52 82.10 92.14 96.71

Source-trained
ViT-B
(86M)

48.00 48.00 59.24 59.24
Continual-SHOT [125] 82.00 79.38 95.10 94.14

ConDA 56.29 77.81 82.71 95.71
UCL-GV 25.52 71.95 76.19 94.52

Source-trained
Swin-B
(88M)

14.10 14.10 72.67 72.67
Continual-SHOT [125] 55.62 86.05 87.10 97.05

ConDA 3.76 87.29 69.43 96.95
UCL-GV 7.38 85.81 46.38 97.38

our benchmark evaluations. This can be attributed to its attention mechanism, as well as the increased

ability of transformers to capture global feature representations at the lower layers, compared to CNN-based

architectures. Between the two attention models evaluated, Swin consistently outperforms ViT. ResNet-50,

with much lower number of parameters, beat ViT at well. This can be attributed to the weak inductive bias

observed in ViT [190], leading to increased overfitting on the source data. Raghu et al. [169] showed that

the lower layer effective receptive fields for ViT are larger than those in ResNets, and by design also than

those in Swin transformer. This however results in weaker inductive bias, and therefore requires a large

amount of data to effectively train on. Swin transformer is a hierarchical transformer where self-attention

is calculated within a local sliding window, leading to stronger inductive bias and requires comparatively

less data for training. This makes ViT as the feature extractor/backbone worse suited for continual DA with

single pass network updates on limited amount of data, compared to both ResNet-50 and Swin.

4.6 Conclusions

This work introduces a new paradigm of unsupervised CL for domain adaptation where a source-trained

model adapts to target domain data that are received continually in small batches. We tackle this problem
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(a) Accuracy of ConDA with Swin backbone, both with, and without gradient normalization on the final
target data as it continually adapts to the incoming batches of intermediate and target domains of AID-CC.

(b) Accuracy of UCL-GV with Swin backbone, both with, and without gradient normalization on the final
target data as it continually adapts to the incoming batches of intermediate and target domains of AID-CC.

Figure 4.19: Continual models ConDA and UCL-GV with Swin backbone, showing increase in adaptation
stability and final accuracy due to gradient normalization.

by combining source-free DA with buffer management and sample replay inspired from CL research. We

introduce ConDA as the first DA method to address such a setting. In ConDA, we selectively store samples

in a buffer and replay them with the incoming batches to improve our network’s generalization capabilities

for the overall target domain. We also propose a novel loss function that improves the overall performance of

our network. Our results demonstrate that ConDA outperforms existing SOTA DA methods under continual

settings on various datasets at a fraction of the standard DA data storage requirements. We extend ConDA

for multiple target domains and our method beats the baseline and continual SOTA methods. We further

explore continual learning under gradually varying domains, and propose UCL-GV that utilizes a memory

buffer for sample replay in a manner similar to ConDA, but with a first-in-first-out strategy, while utilizing

a contrastive loss for domain alignment between the buffer and the incoming samples in each iteration.

UCL-GV outperforms SOTA continual DA on gradually varying domains on two benchmark datasets. We

propose four datasets for evaluating continual DA models under gradually degrading weather conditions
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for domain adaptation from a clean weather domain to a severely worsened weather domain. We identify

stability issues in continual DA models, and propose a simple trick of gradient normalization for increasing

stability.



Chapter 5

Curriculum-Guided Domain Adaptation in
the Dark

This chapter is based on the paper titled ”Curriculum Guided Domain Adaptation in the Dark” [82], which

has been published in the IEEE Transactions on Artificial Intelligence journal. Addressing the rising con-

cerns of privacy and security, domain adaptation in the dark aims to adapt a black-box source trained model

to an unlabeled target domain without access to any source data or source model parameters. The need for

domain adaptation of black-box predictors becomes even more pronounced to protect intellectual property

as deep learning based solutions are becoming increasingly commercialized. Current methods distill noisy

predictions on the target data obtained from the source model to the target model, and/or separate clean/noisy

target samples before adapting using traditional noisy label learning algorithms. However, these methods

do not utilize the easy-to-hard learning nature of the clean/noisy data splits. Also, none of the existing

methods are end-to-end, and require a separate fine-tuning stage and an initial warmup stage. In this work,

we present Curriculum Adaptation for Black-Box (CABB), which provides a curriculum guided adaptation

approach to gradually train the target model, first on target data with high confidence (clean) labels, and later

on target data with noisy labels. CABB utilizes Jensen-Shannon divergence as a better criterion for clean-

noisy sample separation, compared to the traditional criterion of cross entropy loss. Our method utilizes

co-training of a dual-branch network to suppress error accumulation resulting from confirmation bias. The

proposed approach is end-to-end trainable and does not require any extra finetuning stage, unlike existing

methods. Empirical results on standard domain adaptation datasets show that CABB outperforms existing

state-of-the-art black-box DA models and is comparable to white-box domain adaptation models.

76
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Figure 5.1: Overview of BBDA, where the source model parameters are not available during adaptation.
The source model may only be accessed as a black box to generate pseudolabels for the unlabeled target
data. These pseudolabels may be used to adapt the target model on the target domain without true labels.

5.1 Introduction

Source-Free UDA [125, 221] has recently emerged to address cases where the adaptation process utilizes

only a model trained on the source data, without accessing the source data. Such methods still fail to

adequately alleviate data privacy and security concerns as model attacks may potentially retrieve the raw

source data or corrupt the model. Moreover, with the commercialization of deep learning based solutions,

companies may be reluctant to share their proprietary model parameters with the end users. These issues

brought forth a newer UDA paradigm called black-box domain adaptation (BBDA) that adapts without

accessing neither the source data, nor the source model parameters [126]. Practically, a vendor can have

the source trained model as an API in the cloud, and the end user can access the black-box source model to

generate predictions for each unlabelled target instance to adapt on the target domain.

Existing BBDA methods transfer knowledge from the source trained model predictions to the target model,

and then finetune the target model on the target data [126,219]. The approach in [219] utilizes a noisy label

learning (NLL) algorithm [115] to separate the target domain into an easy-to-adapt subdomain with cleaner

pseudolabels, and a hard-to-adapt subdomain with noisier pseudolables using low cross-entropy (CE) loss

criterion as the separator [56], and then applies supervised and semi-supervised learning strategies on the

easy- and hard-to-adapt subdomains, respectively.

In this work, we propose Curriculum Adaptation for Black-Box (CABB) as an unsupervised domain adapta-

tion framework for black-box predictors. We present Jensen-Shannon distance (JSD) as a better criterion to

separate clean and noisy samples using pseudolabels generated by the source model. JSD can be modelled
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using a two-component Gaussian Mixture Model (GMM), where the distribution with the lower distance can

be considered to be consisting of cleaner samples and that with the higher distance contains noisier samples.

As opposed to traditional low loss criterion for clean-noisy separation, low JSD criterion produces a more

conservative, but more accurate clean sample set. To reduce error accumulation from confirmation bias,

CABB employs co-training [56,115] two identical networks and adapts one network on the clean-noisy sep-

arated sets generated by the other, and vice versa. CABB introduces a curriculum learning strategy to adap-

tively learn from the clean samples first, and the noisy samples later during the adaptation process. CABB

foregoes the finetuning stage of existing methods by utilizing mutual information maximization [125, 198]

within its curriculum, making it end-to-end adaptable. The main contributions of our work are as follows.

• We introduce CABB as a curriculum guided domain adaptation model that progressively learns from

the clean target set and the noisy target set, while utilizing co-training of a dual-branch network to

suppress error accumulation resulting from confirmation bias.

• We identify Jensen-Shannon divergence loss as a better criterion than cross-entropy loss for separation

of clean and noisy samples for BBDA.

• CABB incorporates mutual information maximization within its curriculum and makes the adaptation

process end-to-end without the need for any separate finetuning stage.

• CABB produces robust pseudolabels from the mean of an ensemble of predictions generated by the

two branches of the network on a set of augmentations.

5.2 Related Work

Table 5.1: Methodology comparison between CABB and existing BBDA methods.

Model Distillation Co-teaching Sample splitting Curriculum learning Fine-tuning

DINE [126]
BETA [219] CE loss

CABB Jensen-Shannon distance

5.2.1 Unsupervised domain adaptation

Domain gap or domain shift occurs when the data distribution of the training data (source domain) is con-

siderably different from that of the testing data (target domain) [200]. Long et al. [138], and Tzeng et
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al. [202] proposed to mitigate this distribution shift by minimizing the maximum mean discrepancy (MMD)

between the two distributions, while Zellinger et al. [229] proposed to match the higher order central mo-

ments of source and target probability distributions, and thus minimize central moment discrepancy (CMD)

for UDA. Sun and Saenko [192] devised Deep CORAL to minimize second-order distribution statistics to

mitigate domain shift. Ganin et al. [49] utilized a domain discriminator module, and introduced gradient

reversal layer (GRL) to adversarially align the two distributions. Many methods followed since then that

have utilized adversarial alignment on the latent feature space. [140, 166]. While [49] uses a common en-

coder for the source and target data, Tzeng et al. [201] proposed to decouple the encoders by first training an

encoder and a classifier on the labelled source data, followed by training a separate target data encoder using

a domain discriminator, and finally deploying the same source classifier as the target classifier. Hoffman et

al. [69] produced source-like images using generative image-to-image translation [239] and adversarially-

aligned source and target data distributions at the low-level or pixel-level. Global domain-wise adversarial

alignment, however, may cause loss of intrinsic target class discrimination in the embedding space, and

lead to suboptimal performance. To preserve class-wise feature discrimination, Li et al. [120] simultane-

ously aligned the domain-wise and class-wise distributions across the source and target data by solving two

complementary domain-specific and class-specific minimax problems. In a non-adversarial approach, Pan

et al. [163] proposed to calculate the source class prototypes for the labelled source data, and target class

prototypes from the pseudo-labelled target data, and then enforce consistency on the prototypes in the em-

bedding space. Tang et al. [194] similarly bases structural domain similarity to enforce structural source

regularization and conducts discriminative clustering of target data without any domain alignment.

5.2.2 Source-free domain adaptation

Although domain divergence minimization [200, 202, 229], adversarial adaptation [49, 69], and optimal

transport [19,217] are widely used techniques for UDA, they require access to both the source and target data

during adaptation. Addressing situations where source data is unavailable, several source-free DA (SFDA)

methods have been proposed recently. Chidlovskii et al. [27] proposed to use a few source prototypes or

representatives in place of the entire source data for semi-supervised domain adaptation. Liang et al. [124]

proposed to conduct target adaptation using source-free distant supervision to iteratively find taret pseudo-

labels, a domain invariant subspace where the source and target data centroids are only moderately shifted,

and finally target centroids/prototypes by implementing an alternating minimization strategy. Liang et al.

[125] introduced SHOT as an SFDA framework which transfers the source hypothesis or classifier to the

target model, and adapts via self-training with information maximization [74, 103, 187] and class centroid-

based pseudolabel refinement. Yang et al. [221] proposed G-SFDA which refines the pseudolabels further

via consistency regularization among neighboring target samples. Ding et al. [36] introduced SFDA-DE
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Figure 5.2: UDA pipeline in CABB. The target data is fed to the source model fs and the knowledge
generated from fs is transferred to both target branches ft1 and ft2 . The source predicted pseudolabels are
also used to calculate JSD and produce clean-noisy sample sets. In subsequent co-training of ft1 and ft2 ,
the samples sets created by one branch are used to update the other branch, using curriculum guided losses
to progressively adapt to clean samples first, and the noisy samples later.

which samples from an estimated source data distribution, and conducts contrastive alignment between

the estimated source and target distributions. Yang et al. [220] proposed BAIT that utilizes maximum

classifier discrepancy [182] for SFDA after separating the target samples into certain and uncertain sets

using entropy as the criterion. This approach is similar to identifying novel class samples in the open set

versions of [125, 222]. However, BAIT [220] did not conduct any data distribution modeling, and simply

split the target samples into half for each set without considering the possible high noise rate.

5.2.3 Black box domain adaptation

Extending the premise of SFDA further, Liang et al. [126] introduced a newer paradigm of black box DA

where, in addition to the source data, the source model parameters are also unavailable during adaptation.

This new challenging scenario is important to protect intellectual property (source model parameters) from

the end users. Liang et al. [126] proposed DINE which distills knowledge from the black-box source model

to the target model in the first stage, followed by finetuning with target pseudolabels in the second stage.

Yang et al. [219] proposed BETA as a method that separates easy- and hard-to-learn pseudolabels using

a conventional noisy label learning technique [56], and applies a twin-network co-training strategy similar
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to [115], and adversarial alignment during adaptation.

5.2.4 Curriculum learning

Bengio et al. [8] introduced curriculum learning as a method of training a model with increasingly complex

data samples, to mimic the human learning process. In practice, a difficulty criterion is utilized to rank the

training samples from easy to hard. Model training begins with the easy-to-learn samples, and a scheduler

decides when to update the curriculum, i.e when to incorporate harder-to-learn samples in the training ob-

jective during the process. This method results in faster convergence, and achieves better local minima, as

evidenced by its superior performance compared to training a model with the standard random sampling

approach [8].

While [8] treated the complexity of geometric shapes (basic vs. intricate) as the measure for selecting

easy-to-hard samples and applied curriculum learning strategy for image classification task, Spitkovsky et

al. [189] considered the length of sentences (short vs long) as the data separation criterion for curriculum

learning in Natural Language Processing (NLP) tasks, and Braun et al. [12] used signal-to-noise ratio for

the sample ranking criterion in speech recognition.

In terms of curriculum learning for domain adaptation, Roy et al. [177] utilized mean entropy as the domain

ranking measure in a multi-target domain adaptation setting, and applied curriculum learning strategy with

a graph convolution network to consecutively adapt to easier target domains first, and harder target domains

later. Zhang et al. [231] and Zhan et al. [234] used curriculum learning for training on unlabelled auxiliary

data for semi-supervised domain adaptation for neural machine translation.

5.2.5 CABB comparison with other BBDA methods

In relation to other works, CABB adopts the process of source model distillation to the target model and

subsequent exponential moving average updates for pseudo-label refinement during adaptation, as done in

DINE [126]. CABB also uses co-teaching of a dual-branch network [56, 115] for reducing confirmation

bias in sample separation. We identify Jensen-Shannon distance (JSD) as a more appropriate criterion for

clean-noisy sample separation for the unbounded noise rate in UDA, compared to existing BBDA method

BETA [219] that uses the low CE loss for the bounded noise rate in NLL, and no such clean-noisy separation

as in DINE [126].

As opposed to BETA which makes no distinction between the weights given to losses from clean or noisy
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samples, we acknowledge the varying impacts of clean and noisy samples and formulate a curriculum learn-

ing strategy to train the target model end-to-end with cleaner samples first, and progressively with noisy

samples later. CABB is also end-to-end trainable as it foregoes any final fine-tuning stage used in DINE and

BETA. In addition, we use ensemble-based pseudolabeling using a series of weak and strong augmentations

using AutoAugment [30], and utilize a mix of active-passive losses (normalized cross-entropy and reverse

cross-entropy) [144] for adaptation on the noisy sample subset. A brief comparison of our CABB method

against existing BBDA methods is presented in Table 5.1.

5.3 Methodology

The black-box source model fs(θs) : Xs → Ys with model parameters θs, maps the multiclass source data

xs ∈ Xs of source domain Ds, to the label space ys ∈ Ys. For BBDA, we however do not have access to

θs, but only the hard predictions (ŷt ∈ Yt) = fs(θs, xt) from fs on the target data xt ∈ Xt of target domain

Dt. There exists a domain shift between the source data distribution Ds and the target data distribution Dt,

while the label space is shared, i,e Ys = Yt. Due to this domain shift, a large number of predictions ŷt may

be incorrect and could result in a set of noisy pseudolabels generated by the source model. Our objective for

DA is to learn a mapping function ft(θt) : Xt → Yt.

Research has shown that when deep networks are trained with noisy labels, the resulting models tend to

memorize the wrongly-labelled samples owing to confirmation bias, as the training progresses [232]. Fur-

thermore, in regular training of a single-branch network with noisy labels, the error from one training mini-

batch flows back into the network itself for the next mini-batch, and thus the error increasingly accumu-

lates [56]. In this work, during adaptation, we employ co-teaching [56] of a dual-branch network [115,219]

to mitigate error accumulation, resulting from the confirmation bias. In co-teaching, due to the difference in

branch parameters of the dual-branch design, error introduced by the noisy pseudolabels in one branch can

be filtered out by the other branch. In practice, one branch conducts the clean-noisy sample separation for

the other branch, and vice versa. Since each branch generates different sets of clean and noisy samples, co-

teaching breaks the flow of error through the network, and thus error accumulation attenuates. To simplify

notation, the dual target branches/models ft1 and ft2 may be represented by ft in later parts of this paper.

Both networks are trained/adapted, and the final inference can be taken from either one.

We follow [126] to distill knowledge from the source model predictions to the target model in a teacher-

student manner via Kullback-Leibler (KL) divergence loss and information maximization loss [125] (equa-

tions 6.10 and 6.11), at the beginning of each epoch throughout the adaptation process. However, un-

like [126], we only have access to the hard predictions from the source model. Similar to [126], the source
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model predictions ŷit are updated during adaptation at certain intervals via temporal ensembling by expo-

nential moving average (EMA) between the source model predicted pseudolabels ŷit and the target model

predicted pseudolabels yit.

It is to be noted that, the purpose of distillation is not to initialize the target model in the absence of source

model parameters; rather distillation acts as an anchor from the source model to the target model during

adaptation. Distillation continues to take place from the temporally-ensembled source (teacher) generated

pseuduolabels to the target (student) model, which has been shown to improve generalization [196]. The

process of generating yit is described in section 5.3.2.

5.3.1 Clean-noisy separation

The predictions ŷt generated by the black box source model fs are noisy and unreliable due to domain

shift between Ds and Dt. Research on learning with noisy labels shows that deep learning models tend

to fit on the clean samples first, and on the noisy samples later during training [5, 115]. We follow this

insight and separate the target domain data into a clean sample set Xtc with reliable predictions, and a noisy

sample set Xtn with unreliable predictions. In traditional noisy label settings, the noisy labels are either

caused by wrong annotations from humans or from image search engines. The noise rate is, therefore,

bounded. However, as the noisy labels in UDA are generated by the source model, the noise rate in this

case is unbounded and can approach unity [225]. We propose Jensen-Shannon distance (JSD) [40] between

the source predicted hard labels ŷit and the target model class probabilities as the criterion for clean-noisy

sample separation under unbounded noise rate. JSD is calculated as,

JSD(ŷit, p
i
t) =

1

2
KL(ŷit,

ŷit + pit
2

) +
1

2
KL(pit,

pit + ŷit
2

) (5.1)

where, KL(a, b) is the Kullback-Leibler divergence between a and b, and pit is the target model output

probability for target sample xit. Compared to cross-entropy loss, JSD is symmetric by design, and ranges

between 0 and 1, thus becoming less susceptible to noise. When applied to the network response, JSD

produces a bimodal distribution, which is modelled by a two-component Gaussian Mixture Model (GMM)

with equal priors. In DA, the target model may confidently categorize an image as the wrong class with very

high prediction probability. Therefore, this is a poor criterion for identifying whether a sample is clean or

noisy. For the potentially unbounded pseudolabel noise rate in BBDA, we take the probability of belonging

to the JSD Gaussian distribution with the lower mean value as the confidence metric of being a clean sample

in our clean-noisy sample separation stage. Empirically, we apply a threshold δt on our confidence score of

belonging to the lower-mean GMM distribution to select our clean sample set Xtc, at the beginning of each
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Figure 5.3: Ensemble-based pseudolabeling in CABB. Each sample is augmented to produce 6 different
views that are fed through both branches ft1 and ft2 to create a total of 12 output predictions, which are then
averaged to produce the soft pseudolabel for co-training ft1 and ft2 .

epoch for adaptation. The remaining target samples are included in the noisy label set Xtn.

5.3.2 Ensemble based pseudolabeling

In order to produce robust target model pseudolabels yit, we apply a series of augmentations on the target

samples based on AutoAugment [30] and produce an ensemble of output prediction probabilities from our

two target models. We give equal weights to each output prediction and take the mean of the outputs as the

soft pseudolabel as follows.

yit =
1

2M

M∑
0

ft1(x
i
tm) + ft2(x

i
tm) (5.2)

where M is the number of augmentations for the i-th target sample. The predictions are further sharpened

with a temperature factor T (0 < T < 1) and then normalized as follows.

yit =
(yit)

1
T∑

C(y
iC
t )

1
T

(5.3)
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where yiCt is the C-th dimensional value of the pseudolabel vector yit.

5.3.3 Curriculum-guided noisy learning

In order to mitigate early training time memorization [5] induced from noisy labels during the adaptation of

deep models, we introduce a curriculum-guided learning to train the target model on the clean samples first,

and on the noisy samples later. As the adaptation/training progresses, more noisy samples are reclassified

as clean samples.

We employ separate training losses for the clean and noisy sample set. The clean set is trained with standard

cross-entropy (CE) loss as follows.

Ltc(ft;Xtc) = −Exi
t∈Xtc

C∑
k=1

yitk log(σk(ft(x
i
t))) (5.4)

where σk(a) = exp(ak)∑
i exp(ai)

is the softmax function and C is the number of classes. For the noisy set, we

minimize a combination of active-passive losses [144] constructed of normalized cross-entropy loss LtnNCE

and reverse cross-entropy loss LtnRCE . [144] showed that such normalization makes a model robust to noisy

data. Reverse cross-entropy loss is applied to avoid any underfitting on the noisy set. Due to the unbounded

nature of noise rate in UDA and conservative clean-noisy separation criteria in CABB, we employ this

particular combination of active-passive losses as our noisy set loss Ltn to make target training/adaptation

robust and comprehensive on the noisy sample set. The loss function is expressed as follows.

LtnNCE (ft;Xtn) = −Exi
t∈Xtn

∑C
k=1 y

i
tk
log(σk(ft(x
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(5.5)

LtnRCE (ft;Xtn) = −Exi
t∈Xtn

C∑
k=1

σk(ft(x
i
t))log(y

i
tk
) (5.6)

Ltn = LtnNCE + βLtnRCE (5.7)

where β is a hyperparameter.

To promote learning of clean samples first and to mitigate noisy label memorization, target training is done

under curriculum guidance [8]. Based on the success of the clean-noisy sample separation, the pseudolabels
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in the clean sample set Xtc are more likely to be correct, while those in the noisy sample set Xtn have a

much higher noise rate. Therefore, a deep network tends to easily learn from the unambiguous Xtc set. We

set a curriculum factor γn according to the following equation.

γn = γn−1(1− αϵ−Ltcn/Ltcn−1 ) (5.8)

where, α is a hyperparameter and n is the iteration number. γn−1 is the curriculum factor for the previous

iteration. The ratio Ltcn/Ltcn−1 determines how much the curriculum factor decreases from iteration n− 1

to n. If the CE loss on the clean set increases, γ decreases by a small value to allow for further training

on the clean set in the subsequent iterations. But if the CE loss decreases by a large margin, γ decreases

accordingly to accommodate learning from the noisy sample set in the coming iterations. Our curriculum

guidance balances the supervised and unsupervised losses on the respective clean and noisy sets as follows.

Lt = γnLtc + (1− γn)Ltn (5.9)

We adopt the formulation of information maximization (IM) loss [103, 125, 187] from [198] to help our

model produce precise predictions, while maintaining a global diversity across all classes in the output

predictions. The IM loss is a combination of the following entropy loss Lent and equal diversity loss Leqdiv.

Lent(ft;Xt) = −Exi
t∈Xt

C∑
k=1

σk(ft(x
i
t))log(σk(ft(x

i
t))) (5.10)

Leqdiv(ft;Xt) =

C∑
k=1

qklog

(
qk
q̂k

)
(5.11)

where q̂k = Exi
t∈Xt

[σ(ft(xt))] is the mean of the softmax of the target network output response. Leqdiv
conducts KL divergence between q̂k and the ideal uniform response qk. Our curriculum guided IM loss is

as follows.

LIM = Leqdiv + (1− γn)Lent (5.12)

Minimization of entropy loss Lent is gradually activated as the model sufficiently adapts to the clean sample.

Such curriculum guidance ensures that the potentially erroneous predictions produced in the early stages of

self-training are not accumulated. The Leqdiv loss enforces diversity in the output predictions throughtout
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the training process. The overall objective function is,

Ltot = Lt + LIM (5.13)

A brief demonstration of the CABB pipeline can be found in Algorithm 4.

Algorithm 3: Pseudocode for CABB
Input: Black-box source trained model fs and target data xit ∈ Xt

Output: Target adapted model ft
Initialization: Dual target models ft1 and ft2

1 for epoch = 1 to epochtotal do
2 while m ≤ iterdistill do
3 Distill from teacher fs to students ft1 and ft2 following [126]
4 end
5 Conduct clean(Xtc)-noisy(Xtn) sample separation using JSD from model ft1 for ft2 and vice-versa
6 for ft ∈ ft1 , ft2 do
7 while n ≤ iteradapt do
8 Get ensemble averaged pseudolabels yit ∈ Yt from equations 6.2 and 5.3
9 Calculate Ltc on Xtc, Ltn on Xtn, and Lent and Leqdiv on (Xtc,Xtn) ∈ Xt using equations

5.4, 5.7, 6.10, and 6.11 respectively
10 Calculate γn using equation 5.8
11 Calculate Lt and LIM using equations 5.9 and 5.12
12 Optimize ft with loss Ltot using equation 5.13
13 end
14 end
15 end

5.4 Experimental setup

5.4.1 Datasets

We evaluate CABB on three popular domain adaptation datasets viz. Office-31 [180], Office-Home [204],

and VisDA-C [167]. These datasets have been described in Chapter 4.
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Figure 5.4: Accuracy on the clean sample set achieved via clean-noisy sample separation using low JSD
(CABB) vs low CE (BETA), after distillation from the source teacher at the first epoch.

Table 5.2: Mean accuracy on the Office31. ’SF’ refers to source-free and ’BB’ means black-box. The top
performing results among the BBDA methods are in bold letters.

Method SF BB A→D A→W D→A D→W W→A W→D Mean

DANN [49] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
ALDA [21] 94.0 95.6 72.2 97.7 72.5 100.0 88.7
GVB-GD [31] 95.0 94.8 73.4 98.7 73.7 100.0 89.4
SRDC [194] 95.8 95.7 76.7 99.2 77.1 100.0 90.9

SHOT [125] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
A2Net [214] 94.5 94.0 76.7 99.2 76.1 100 90.1
SFDA-DE [36] 96.0 94.2 76.6 98.5 75.5 99.8 90.1

LNL-OT [226] 88.8 85.5 64.6 95.1 66.7 98.7 83.2
LNL-KL [233] 89.4 86.8 65.1 94.8 67.1 98.7 83.6
HD-SHOT [127] 86.5 83.1 66.1 95.1 68.9 98.1 83.0
SD-SHOT [127] 89.2 83.7 67.9 95.3 71.1 97.1 84.1
DINE [126] 91.6 86.8 72.2 96.2 73.3 98.6 86.4
BETA [219] 93.6 88.3 76.1 95.5 76.5 99.0 88.2

CABB (Ours) 94.0 88.6 76.0 97.9 76.0 99.6 88.7



CHAPTER 5. CURRICULUM-GUIDED DOMAIN ADAPTATION IN THE DARK 89

Table 5.3: Mean accuracy on the Office-Home dataset. ’SF’ refers to source-free and ’BB’ means black-box.
The top performing results among the BBDA methods are in bold letters.

Method SF BB A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean

DANN [49] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
ALDA [21] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
GVB-GD [31] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SRDC [194] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
FixBi [158] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

G-SFDA [221] 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
SHOT [125] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
HCL [75] 64.0 78.6 82.4 64.5 73.1 80.1 64.8 59.8 75.3 78.1 69.3 81.5 72.6
A2Net [214] 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
SFDA-DE [36] 59.7 79.5 82.4 69.7 78.6 79.2 66.1 57.2 82.6 73.9 60.8 85.5 72.9

LNL-OT [226] 49.1 71.7 77.3 60.2 68.7 73.1 57.0 46.5 76.8 67.1 52.3 79.5 64.9
LNL-KL [233] 49.0 71.5 77.1 59.0 68.7 72.9 56.4 46.9 76.6 66.2 52.3 79.1 64.6
HD-SHOT [127] 48.6 72.8 77.0 60.7 70.0 73.2 56.6 47.0 76.7 67.5 52.6 80.2 65.3
SD-SHOT [127] 50.1 75.0 78.8 63.2 72.9 76.4 60.0 48.0 79.4 69.2 54.2 81.6 67.4
DINE [126] 52.2 78.4 81.3 65.3 76.6 78.7 62.7 49.6 82.2 69.8 55.8 84.2 69.7
BETA [219] 57.2 78.5 82.1 68.0 78.6 79.7 67.5 56.0 83.0 71.9 58.9 84.2 72.1

CABB (Ours) 57.4 79.5 82.0 68.1 79.3 78.8 68.2 57.9 82.7 73.6 60.0 86.4 72.8

5.4.2 Implementation details

We follow the same protocol in [126, 219] for source training to ensure fairness for comparison. Our target

models are initialized with ImageNet pretrained weights, since source model parameters are inaccessible.

For Office-31 and Office-Home, we use ResNet50, and for VisDA-C we use ResNet101 as the backbone

[63], on top of which we attach an MLP-based classifier, similar to [126,219]. The target models are trained

with SGD optimizer with 0.9 momentum and weight decay 1e−3. The learning rate for the backbone is set

to 1e−3, while that of the classifier is set to 1e−2. α in the curriculum factor is set to 2e−3 for Office-31,

and 2e−4 for Office-Home and VisDA-C, depending on the size of the dataset. The model is adapted for 50

epochs for Office-31 and Office-Home datasets, and for five epochs for the VisDA-C dataset. Temperature

sharpening factor T is set to 0.5. We implement our method using the PyTorch library on an NVIDIA-A100

GPU.
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Table 5.4: Mean per-class accuracy on the VisDA-C dataset. ’SF’ refers to source-free and ’BB’ means
black-box. The top performing results among the BBDA methods are in bold letters.

Method SF BB plane bcycl bus car horse knife mcycle person plant sktbrd train truck Per-class

DANN [49] 81.9 77.7 82.8 44.3 81.2 29.5 65.2 28.6 51.9 54.6 82.8 7.8 57.6
ALDA [21] 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8

SHOT [125] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
A2Net [214] 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
SFDA-DE [36] 95.3 91.2 77.5 72.1 95.7 97.8 85.5 86.1 95.5 93.0 86.3 61.6 86.5

LNL-OT [226] 82.6 84.1 76.2 44.8 90.8 39.1 76.7 72.0 82.6 81.2 82.7 50.6 72.0
LNL-KL [233] 82.7 83.4 76.7 44.9 90.9 38.5 78.4 71.6 82.4 80.3 82.9 50.4 71.9
HD-SHOT [127] 75.8 85.8 78.0 43.1 92.0 41.0 79.9 78.1 84.2 86.4 81.0 65.5 74.2
SD-SHOT [127] 79.1 85.8 77.2 43.4 91.6 41.0 80.0 78.3 84.7 86.8 81.1 65.1 74.5
DINE [126] 81.4 86.7 77.9 55.1 92.2 34.6 80.8 79.9 87.3 87.9 84.3 58.7 75.6
BETA [219] 96.2 83.9 82.3 71.0 95.3 73.1 88.4 80.6 95.5 90.9 88.3 45.1 82.6

CABB (Ours) 95.1 87.0 82.6 71.5 94.5 89.7 87.5 81.5 93.8 92.4 87.3 55.5 84.9

Table 5.5: Performance evaluation of curriculum adaptation involving different parts of CABB on the
VisDA-C dataset. The ’tick’ marks mean the part is present in the model, and the ’cross’ mark means
that part is absent. When curriculum is absent and Ltn is present, γn is set to 0.5. ∗ refers to replacement of
our active-passive loss with standard cross-entropy loss for noisy samples.

Curriculum Ltn Lent plane bcycl bus car horse knife mcycle person plant sktbrd train truck Per-class

98.0 93.1 79.1 41.8 97.1 81.6 79.5 79.9 93.3 91.1 90.3 49.5 81.2
98.2 89.2 82.2 58.1 97.2 83.5 84.3 71.3 95.8 92.2 90.4 18.1 80.0

∗ 96.2 86.6 83.2 71.1 95.5 90.1 85.1 80.1 93.0 91.9 84.3 40.1 83.1
97.1 82.3 85.0 79.1 91.7 93.2 89.0 77.7 94.4 92.5 83.9 1.2 80.6

97.3 89.9 78.3 60.1 96.4 76.1 80.2 77.3 93.5 90.0 88.7 52.8 81.7
∗ 96.0 85.2 80.9 68.2 95.0 85.0 86.0 79.6 93.2 92.1 88.7 55.8 83.8

95.2 85.9 83.5 68.9 93.8 88.6 83.6 80.7 95.1 92.0 86.0 56.7 84.2
95.1 87.0 82.6 71.5 94.5 89.7 87.5 81.5 93.8 92.4 87.3 55.5 84.9

Table 5.6: Performance evaluation of CABB with different kinds of pseudolabeling schemes, and the impact
of dual-branched co-training on error accumulation for VisDA-C dataset.

Dual-branch
co-training

Pseudolabeling plane bcycl bus car horse knife mcycle person plant sktbrd train truck Per-class

Model Predictions 91.2 68.5 68.0 48.1 87.0 1.2 41.7 24.1 73.1 56.5 78.3 46.2 57.0
Clustering [14, 125] 95.0 86.0 83.4 60.7 93.7 20.8 85.4 81.0 89.5 81.5 86.6 50.7 76.2

Ensemble 95.1 87.0 82.6 71.5 94.5 89.7 87.5 81.5 93.8 92.4 87.3 55.5 84.9

Ensemble 97.8 91.6 78.8 48.1 96.3 77.7 81.2 79.1 94.8 90.3 89.4 51.4 81.4
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5.5 Results

5.5.1 Overall evaluation

Liang et al. [126] pioneered this area and formulated the problem statement. They also presented a number

of baselines for comparison. Among them NLL-KD and NLL-OT are inspired by noisy label learning and

utilize KL divergence and optimal transport respectively for refining pseudolabels. HD-SHOT and SD-
SHOT are based on the SHOT [125] model and treat the source model predictions as hard labels and soft

labels, respectively. In addition to these baselines, we compare CABB against state-of-the-art black-box DA

models DINE [126] and BETA [219]. We further compare against a number of standard DA methods, such

as DANN [49], ALDA [21], GVB-GD [31], SRDC [194], SHOT [125], A2-Net [214], SFDA-DE [36] etc.

Table 5.7: Performance evaluation of CABB with various values for the hyperparameter α for VisDA-C
dataset.

α plane bcycl bus car horse knife mcycle person plant sktbrd train truck Per-class

2e−3 97.6 89.1 80.0 57.9 96.7 79.8 85.5 81.1 93.4 91.0 89.4 49.5 82.6
2e−4 95.1 87.0 82.6 71.5 94.5 89.7 87.5 81.5 93.8 92.4 87.3 55.5 84.9
2e−5 98.0 88.4 83.8 51.0 96.9 75.2 84.6 80.1 93.8 92.9 88.4 48.0 81.8

In Figure 5.4, we present the accuracy of the clean sample set after clean-noisy sample separation for the

first epoch after distillation from the source teacher model to the target student model. We can see that our

choice of low JSD separation criterion in CABB consistently outperforms the low CE loss criterion used in

BETA by 1-7% across all 12 source-target domain pairs for Office-Home dataset.

The classification accuracies after adaptation across the 6 domain pairs for Office-31 dataset are shown in

Table 5.2. CABB outperforms BETA and DINE on average by 0.5% and 2.3%, respectively. While CABB

beats DINE across all the domain pairs, it only underperforms BETA for Webcam-Amazon adaptation by

0.5%. Overall, CABB is on-par with white-box source-free model SHOT and non-source-free model ALDA.

The results for Office-Home dataset are presented in Table 5.3. CABB outperforms BETA and DINE by

0.7% and 3.1%, respectively. Moreover, CABB outperforms several standard non-source-free DA methods

such as SRDC and FixBi, and is either better than, or on par with existing state-of-the-art white-box source-

free DA models like HCL, A2Net, and SFDA-DE.

A comparative evaluation of CABB against other state-of-the-art DA methods and BBDA baselines on

the VisDA-C dataset is shown in Table 5.4. CABB surpasses both DINE and BETA by 9.3% and 2.3%,

respectively in terms of mean-per-class accuracy. CABB beats BETA in the most challenging catergory
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truck by 10.4%. CABB also outperforms white-box source-free models SHOT and A2Net comfortably.

5.5.2 Ablation study

A detailed ablation study on the efficacy of our curriculum adaptation method is given in Table 5.5. The

impact of curriculum on the noisy set loss Ltn and entropy loss Lent is shown, as curriculum is applied

to these two components. In this table, in the absence of curriculum adaptation, γn is set to 0.5. In rows

two and five, Ltn is set to 0. In addition, we further compare our active-passive loss against standard cross-

entropy (CE) loss for the unreliable sample subset, and present results with CE loss for noisy samples in

rows three and six (denoted by ∗ for Ltn).

The results clearly indicate the benefit of a guided adaptation framework that progressively learns from

the clean samples first and the noisy samples later. We see in the first four rows in Table 5.5 that without

curriculum guidance, adaptation performance suffers significantly. In the absence of curriculum guidance,

we see that leaving out learning from the noisy samples during the adaptation process is better than adapting

to the noisy samples with active-passive Ltn loss, and further enforcing the wrong predictions with Lent
loss.

The drawback of blindly adapting to noisy samples becomes evident in the second and fourth rows, partic-

ularly in the most challenging truck class. By adapting to unrefined noisy samples from the beginning, the

model performance drastically deteriorates and accuracy on truck can fall to as low as ∼ 1%. Adaptation

with CE loss on noisy samples is however robust, even without curriculum, particularly due to significantly

higher accuracy for truck class.

The results in the 5th through 8th rows in Table 5.5 show the necessity for curriculum guidance during adap-

tation. In the presence of curriculum learning, CABB outperforms existing state-of-the-art BBDA methods.

Curriculum guidance progressively refines the noisy sample pseudolabels. While enforcing the refined pre-

dictions by minimizing the Lent loss produces improved results, learning from the noisy pseudolabels by

minimizing the Ltn loss significantly boosts the model performance. Minimizing losses Ltn and Lent on

the refined pseudolabels together produce the strongest results. Comparing between rows 6 and 8, it can be

seen that adaptation with active-passive loss on noisy samples outperforms that with standard CE loss on

noisy samples by ∼ 1%.

Table 5.6 illustrates the impact of dual branch co-teaching and the pseudolabeling process on our CABB

framework. Model Predictions refer to pseudolabeling based on the model prediction probabilities on

the non-augmented images. Clustering refers to the self-supervised pseudolabeling technique used in
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SHOT [125], based on DeepCluster [14]. To get soft-pseudolabels, we convert the cosine distances into class

probabilities using SoftMin ( exp(−xi)∑
j exp(−xj)

). The results in Table 5.6 clearly demonstrate that our ensemble-

based pseudolabeling is much more robust compared to other pseudolabeling methods. Model Predictions

produces high rate of wrong pseudolabels due to domain gap on non-augmented samples, while clustering-

based pseudolabeling tends to preserve feature clusters but disregard class boundaries. Ensemble-based

pseudolabeling preserves class boundaries and produces robust pseudolabels due to averaging over predic-

tions generated by both the branches on a number of augmented views.

We can further see that co-training with two branches helps to reduce error accumulation and outperforms

training with a single branch. We also assess the impact of the value of hyperparameter α (curriculum

factor) on CABB in Table 5.7. For VisDA-C, α = 2e−4 produces the best results. The hyperparameter α

determines the balance between the clean set loss and the noisy set loss, and is dependent on the size of the

dataset and domain gap between the source and target domains. Higher domain gaps will necessitate lower

values of α to delay learning from the noisy set. Smaller datasets would require higher α to avoid overfitting

on the clean set.

5.6 Conclusion

In this paper we present a curriculum-guided self-training based domain adaptation method called CABB

to adapt a black-box source model/predictor to the target domain. Without access to the source data or

the source model parameters during adaptation, we draw inspiration from noisy label learning algorithms.

We employ a co-training scheme and propose to use Jensen-Shannon distance or JSD as the criterion to

filter clean and reliable samples from noisy and unreliable samples. JSD calculated between the source

model predicted pseudolabels and target model predictions is modelled using a mixture of Gaussian distri-

butions. The samples with high probability of lying on the distribution with the lower mean JSD are taken

as clean samples, and the target model is trained under a curriculum schedule first on the clean samples and

progressively on the noisy samples. The dual-branch design of CABB also allows robust ensemble-based

pseudolabeling. CABB consistently outperforms existing black-box domain adaptation models on three

popular domain adaptation benchmarks, and is on par with other white-box source free models.



Chapter 6

Unknown Sample Discovery for Source Free
Open Set Domain Adaptation

This chapter is based on a paper titled ”Unknown Sample Discovery for Source Free Open Set Domain

Adaptation” [83], which was accepted to the 1st Workshop on Test-Time Adaptation: Model, Adapt Thy-

self! (MAT) at The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) 2024. Open

Set Domain Adaptation (OSDA) aims to adapt a model trained on a source domain to a target domain that

undergoes distribution shift and contains samples from novel classes outside the source domain. Source-free

OSDA (SF-OSDA) techniques eliminate the need to access source domain samples, but current SF-OSDA

methods utilize only the known classes in the target domain for adaptation, and require access to the entire

target domain even during inference after adaptation, to make the distinction between known and unknown

samples. In this paper, we introduce Unknown Sample Discovery (USD) as an SF-OSDA method that

utilizes a temporally ensembled teacher model to conduct known-unknown target sample separation and

adapts the student model to the target domain over all classes using co-training and temporal consistency

between the teacher and the student. USD promotes Jensen-Shannon distance (JSD) as an effective measure

for known-unknown sample separation. Our teacher-student framework significantly reduces error accu-

mulation resulting from imperfect known-unknown sample separation, while curriculum guidance helps to

reliably learn the distinction between target known and target unknown subspaces. USD appends the target

model with an unknown class node, thus readily classifying a target sample into any of the known or un-

known classes in subsequent post-adaptation inference stages. Empirical results show that USD is superior

to existing SF-OSDA methods and is competitive with current OSDA models that utilize both source and

target domains during adaptation.

94
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6.1 Introduction

Figure 6.1: Different domain adaptation settings depending on the classes present in the source and target
domains. For open-set DA, the classes novel to the target domain are grouped into a single unknown class
during adaptation.

While the vast majority of existing UDA literature deals with closed-set domain adaptation, where the target

domain and source domain share the same classes, a more realistic scenario is open-set domain adaptation

(OSDA) [130, 183] where the target domain contains samples belonging to novel classes that are absent in

the source domain (Figure 6.1). In the OSDA setting, closed-set UDA solutions would enforce alignment

of the source and target feature spaces under the unknown category mismatch, leading to negative transfer

[42] and deteriorating performance. The majority of the existing OSDA methods [130, 183] utilize domain

adversarial learning techniques to align the source domain with only the known classes in the target domain,

leaving out the target-unknown classes. Such methods fail to properly learn the features for the unknown

classes, and hence no clear decision boundary between the known classes and the unknown class in the

target domain is realized. Some universal domain adaptation methods, i.e. UDA methods designed to work

in both closed and open-set settings [114, 181], have attempted to conduct self-supervised learning (SSL)

to discover latent target domain features without explicit distribution matching. However, such methods

fail under large domain gaps. More recently, [88] proposed a three-way domain adversarial feature space

alignment between the source domain and the known and the unknown target subdomains, thus segregating
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the known and unknown classes in the target domain.

In this work, we introduce Unknown Sample Discovery (USD) as a source-free OSDA (SF-OSDA) method

that utilizes an ensemble-based pseudolabeling strategy for the target data, and generates known and un-

known target subsets based on Jensen-Shannon distance (JSD) between the pseudolabels and the predictions

from a teacher model. USD uses two-component Gaussian Mixture Model (GMM) to model the target do-

main JSD, where the distribution with the lower mean JSD is considered to be of the known class samples

and that with the greater mean JSD is taken as that consisting of unknown class samples. The known-

unknown target subsets are used to adapt the student model. The student model is updated with gradient

descent, while the teacher model is updated by exponential moving averages (EMA) of the teacher and stu-

dent models. The teacher-student framework in USD helps to mitigate error accumulation induced from any

possibly faulty known-unknown sample separation.

USD introduces an unknown class output node in the target model. The adapted target model infers new

target samples in one one of the known classes or the unknown class, without operating on the entire target

dataset first to identify known and unknown samples. The main contributions of this work are as follows.

• We introduce USD as an SF-OSDA model that co-trains a dual-branch teacher-student framework to

split the target domain into known and unknown class subsets.

• USD proposes the Jensen-Shannon distance between the target pseudolabels and teacher model pre-

dictions as an effective criterion for separating target samples in known and unknown classes.

• Co-training in USD, aided by weak-strong consistency between the teacher and student outputs, sig-

nificantly mitigates error accumulation resulting from imperfect known-unknown separation, and sus-

tains the adaptation performance.

• USD generates reliable pseudolabels from the student model outputs on an ensemble of weak and

strong target data augmentations.

• USD utilizes curriculum adaptation to progressively learn the known class feature space first, and the

unknown class feature space later, thus enabling robust alignment of the entire target space with the

source domain.

• Extensive experiments on 3 popular UDA benchmarks demonstrate the superiority of USD over ex-

isting SF-OSDA methods.
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6.2 Related Work

6.2.1 Unsupervised domain adaptation

Domain gap originates from the distribution shift between the source domain where a deep network model

is trained, and the target domain where the model is deployed [200]. This domain gap may be reduced

by minimizing the maximum mean discrepancy (MMD) [138, 202], or the central moment discrepancy

(CMD) [229] between the distributions in the source and target domains. Deep CORAL [192] mitigated

domain shift by matching second-order distribution statistics. [49] introduced the Gradient Reversal Layer

(GRL) and made use of a domain discriminator to adversarially align the source and target distributions in a

common feature space using a common feature encoder. The Adversarial Discriminative Domain Adaptation

(ADDA) [201] method decoupled the feature extraction process by learning two separate feature encoders

for the two domains and aligned them adversarially to perform classification with a common classifier.

Generative adversarial networks (GANs) have been utilized to produce images in an intermediate domain

between the source and target to facilitate easier and smoother adaptation [69]. Domain-wise global adver-

sarial alignment in the absence of target annotations may lead to loss of class discrimination in the target

embeddings. To align the domain-wise and class-wise distributions across the source and target data while

maintaining target class feature discrimination, [120] simultaneously solved two complementary domain-

specific and class-specific minimax objectives. The non-adversarial alignment approach in [163] imposed

a consistency constraint between the labeled source prototypes and the pseudo-labeled target prototypes in

the feature space.

6.2.2 Source free domain adaptation

UDA methods that adversarially align the embedding space [49, 69, 201] or minimize the source-target do-

main divergence [138,202,229] require access to both the source and target data during adaptation, rendering

them unusable in situations where the source data is private or restricted. A semi-supervised UDA method

involving a few source representatives or prototypes instead of the full source data was proposed in [27].

Distant supervision for SFDA [124] iteratively assigned pseudo-labels to the target data and used them to

learn a domain invariant feature space and obtain the target class centroids. Liang et al. [125] introduced

SHOT which adapts the source-pretrained feature encoder to the target domain via self-training with in-

formation maximization [103,187] and self-supervised clustering for pseudolabeling, while transferring the

source hypothesis (classifier model) to the target. Ahmed et al. [3] proposed to calculate more than one class

prototype for each class in the target domain, as a single prototype may fail to fully characterize the class
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in the latent space. To further refine the pseudolabels, [221] proposed to enforce neighborhood consistency

regularization among the target samples. To generate compact target clusters, [222] considered minimizing

the distance among K-nearest neighbors for each target sample and dispersing the rest by retrieving target

features stored in a memory bank. Noisy label learning (NLL) is also another promising avenue for filtering

pseudo-labels, as domain shift may cause significant number of incorrect pseudolabels. Kim et al. [100] pro-

posed to calculate multiple prototypes for each class and recognize a sample as reliable when the Hausdorff

distance from the sample to the its most similar class prototypes is smaller than that between the sample and

the second-most similar class prototypes. Chu et al. [28] built on Arpit’s et al. [5] claim that weak models

are less prone to memorization, and proposed to use an additional untrained model to identify incorrect

pseudolabels in the target domain. SHOT++ [127] utilized MixMatch [9] between high confidence samples

and low confidence samples to increase the fidelity of the low confidence ones. CABB [82] employed NLL

techniques to identify noisy target samples in black-box SFDA, and made use of curriculum guidance for

progressive adaptation.

6.2.3 Open set domain adaptation

In addition to aligning the source and target subspaces, a critical step in OSDA is detecting target samples

from novel or unknown categories that are absent in the source domain. [87] applied a simple class-wise

confidence threshold to reject those samples with lower confidence as unknown. [183] adversarially aligned

the source domain and known target subdomain, where the unknown target samples were identified based

on a preset threshold. Alignment for only the known classes however results in subpar performance in iden-

tifying the unknown samples. The adversarial alignment objective was modified in [130] with an instance

weighting procedure, where higher weights were given to known target samples and lower weight to un-

known samples. This somewhat smoothened the known-unknown distinction, but lower weights produced

less contributions in the objective loss from the unknown samples, leading to suboptimal performance. A

three-way domain adversarial alignment between source, known target, and unknown target in the feature

space was proposed in [88] such that the source and known target are aligned while the target-unknown gets

segregated. [125] and [222] are SF-UDA methods that also conduct SF-OSDA by separating the known and

unknown samples based on clustering the sample entropies into two clusters, and taking the cluster with

lower mean entropy as the known subset.
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6.3 Method

For unsupervised OSDA, we have ns labeled samples {xis, yis}
ns

i=1 ∈ Xs,Ys belonging to the source domain

Ds, and nt unlabeled samples {xit}
nt

i=1 ∈ Xt belonging to the target domain Dt. The task of SF-OSDA is

to take the source model fs(θs) : Xs → Ys with model parameters θs trained on the Cs-multiclass source

data {xis, yis}
ns

i=1 ∈ Xs,Ys, and adapt it to ft(θt) : Xt → Yt with model parameters θt that can map the

{xit}
nt

i=1 ∈ Xt to the Ct classes, where Ct = Cs + 1. The additional class in the target domain is a catch-all

class for all samples in the target domain that do not belong to any of the classes in the source domain.

We follow [125] for Source model training follows [125] to ensure fair comparison with other source-

free UDA models. The source model is trained by minimizing the standard cross entropy loss with label

smoothing [156] as follows.

Ls(fs;Xs,Ys) = −Exs∈Xs,ys∈Ys

Cs∑
k=1

qlsk log(σk(fs(xs))) (6.1)

where σk(a) =
exp(ak)∑
i exp(ai)

is the k-th element in its softmax output of a Cs-dimensional vector a, and qls is

the one-hot encoded and smoothed Cs-dimensional vector for sample label yis, such that qlsk = (1− α)qk +

α/Cs, where qk is 1 for the correct class and 0 for all other classes, and α is the smoothing factor set at 0.1.

The source model fs consists of a feature extractor gs : Xs → Rd and a Cs-class classifier hs : Rd → RCs ,

such that fs(x) = hs(gs(x)). USD consists of a student target model fS
t (θ

S
t ) and a teacher target model

fT
t (θ

T
t ). The feature extractors gSt and gTt , in the student and teacher networks respectively, are initialized

with the source model feature extractor, i.e., gSt = gTt = gs. To account for the novel class samples in the

target domain, the source classifier hs is expanded in the student and teacher models to include an additional

trainable output node for the unknown class. The known class nodes in the target classifiers hSt and hTt ,

for the student and teacher respectively, are initialized with hs, and remain frozen during adaptation. The

unknown class nodes in hSt , hTt and the feature extractors gSt , gTt are adapted using only the unlabeled target

samples.

6.3.1 Known-unknown sample separation

The first step for target adaptation is to reliably separate the known class samples and the novel class samples

in the target data. This step is visually depicted in Figure 6.2. In order to generate pseudolabels ŷt, the

target data undergoes M = 6 number of weak and strong augmentations (1 weak and 5 strong) based on

AutoAugment [30] policy for ImageNet. The softmax output over Cs classes for each augmented view xiMt
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Figure 6.2: Pseudolabel generation for the target samples and known-unknown sample separation based on
JSD

Figure 6.3: Adaptation process for USD using co-training. The student model receives pseudolabels for the
target samples (see Figure 6.2) and is optimized using a combination of triplet, weak-strong consistency,
information maximization (IM) and cross-entropy losses. The teacher model is updated via exponential
moving averages (EMA) at the end of each epoch.

is taken from the student model fS
t , and then averaged over the augmentations, as follows.

ŷit = argmax
1

M

M∑
1

fS
t (x

iM
t ) (6.2)

The index corresponding to the maximum averaged softmax output is taken as the hard pseudolabel ŷit for

each target sample xit. These pseudolabels are however only over the Cs known classes, and therefore

the samples need to be split into known class subset XK
t and unknown class subset XU

t . Existing SF-

OSDA methods [125,222] identify unknown class samples by utilizing the output entropy of the target data.

Entropies for all samples are calculated at the beginning of each epoch and then normalized in the range

of [0, 1] by dividing the each sample entropy by logCs. The normalized entropies are then clustered by

two-class k-means clustering. The cluster with the higher mean entropy or uncertainty is considered to be

the one containing unknown samples, while the other cluster with lower mean entropy is taken as containing

known class samples.
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Sample separation is a critical component for noisy label learning (NLL) algorithms where clean and noisy

samples are separated for robust supervised training of a model. Traditionally, NLL calculates the cross-

entropy loss on the whole dataset and then uses low cross-entropy loss as the criterion to identify clean

samples [4,115,119]. In USD, we conduct known-unknown sample separation for SF-OSDA based on JSD

between the network outputs and their corresponding pseudolabels, which is calculated as follows.

JSD(ŷit, p
i
t) =

1

2
KL

(
ŷit,

ŷit + pit
2

)
+

1

2
KL

(
pit,

pit + ŷit
2

)
(6.3)

where, KL(a, b) is the Kullback-Leibler divergence between a and b, and pit = σ(fT
t (x

i
t)) is the output

softmax probability for target sample xit from the target teacher model fT
t .

We consider the unknown class samples in the target domain as noisy samples when predictions are made

over only the known Cs classes. In comparison to entropy or cross-entropy loss, JSD is symmetric by

design and ranges between 0 and 1. As shown in Figure 6.2, when plotted against the number of samples,

JSD produces a bimodal histogram. It is possible to set a threshold on the JSD histogram and split the

target samples into known and unknown subsets based on the threshold value. However, such a threshold

would depend on the location of the modes in the histogram, and therefore a fixed threshold cannot be

applied across all source-target domain pairs. We therefore model the JSD distribution with two-component

Gaussian Mixture Model (GMM) with equal priors, resulting in probabilities [wi
tL
, wi

tH
] for each target

sample xit to belong to either of the two components. We consider the samples with higher probability of

belonging to the distribution with the lower-mean Gaussian component as samples from one of the known

classes, and conversely consider those samples with higher probability of belonging to the higher-mean

Gaussian component as coming from the unknown target class.

Practically, we take the probability wi
tL

of belonging to the lower-mean GMM component for each target

sample xit, and in order to be conservative in our sample splitting, we set a lower-bound/threshold δt on wi
tL

to select the known sample subset XK
t . The remaining target samples are included in the unknown subset

XU
t . The pseudolabels ŷit are updated accordingly, where the known subset retain their earlier assigned

pseudolabel from among the Cs classes, and the unknown subset of target samples get the new unknown

class pseudolabel |Ct|. It has to be noted that during adaptation, the teacher network conducts the known-

unknown sample separation at the beginning of each epoch, and the student network is adapted over the Ct

classes with the target data.
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6.3.2 Teacher-student co-training and regularization

USD simultaneously adapts the student and teacher target models, such that the student model parameters

θSt are updated based on the minibatch gradient descent, and the teacher network parameters θTt are updated

as temporally ensembled version of the student network [196] at the end of each epoch as follows.

θTtN = mθTtN−1
+ (1−m)θStN (6.4)

where, m is the momentum parameter for weight ensembling, and N = 2, 3, .., E is the epoch number.

Such co-training and cross-network sample splitting by the teacher for the student work to lessen error

accumulation from imperfect known-unknown sample separation and stabilizes the adaptation process. As

a means of training regularization, USD further maintains weak-strong temporal consistency between the

teacher network outputs and the student network outputs by minimizing the following consistency loss.

Lcont (fS
t , f

T
t ;Xt) = KL

(
piSt , piTt

)
=

Ct∑
k=1

piTt log

(
piTt
piSt

)
(6.5)

where, piSt = σ(fS
t (x

iS
t )) is the softmax output from the student on an strongly augmented target sample

xiSt , and piTt = σ(fT
t (x

iW
t )) is the softmax output from the teacher on the weakly augmented version xiWt

of the same target instance. The strong and weak augmentations are done following the AutoAugment [30]

ImageNet policy.

Contrastive learning is a viable method to learn discriminative representations by minimizing the distance

between an anchor and a corresponding positive instance and by maximizing the distance between the anchor

and a corresponding negative instance. In a source-free setting, it is exceedingly difficult to identify positive

and negative instances for a target anchor. USD deftly utilizes the teacher-student framework and weak-

strong augmentations, and employs a triplet loss [185] to effectively learn the decision boundary between

known and unknown classes. The output ziaT = [fT
t (x

iW
t )]a of the teacher model on an weakly augmented

known class sample is taken as the anchor, and the corresponding output zi+S = [fS
t (x

iS
t )]+ on the strongly

augmented version of the same sample from the student model is taken as the positive instance. The negative

instance is the student model output zi−S = [fS
t (x

iS
t )]− on a randomly chosen unknown class sample. Cosine

distance is taken as the distance metric, and is calculated as follows.

D(z1, z2) = 1− z1.z2
||z1||2||z2||2

(6.6)
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where z1 and z2 are any two network outputs. Triplet loss is in turn calculated as follows.

Ltript (fS
t , f

T
t ;Xt) = max(D(ziaT , zi+S )−D(ziaT , zi−S ) + 1, 0) (6.7)

In addition, the student network is trained with the instance-weighted standard cross-entropy loss with label

smoothing [156], as follows.

Lcet (fS
t ;Xt) = −Exi

t∈Xt
ωi

Ct∑
k=1

ŷitk log(σk(f
S
t (x

iS
t ))) (6.8)

The instance weights ωi are the probability wi
tL

for known target samples xti ∈ XK
t of belonging to the

lower-mean JSD component, and probability wi
tH

for unknown target samples xti ∈ XU
t of belonging to the

higher-mean JSD component, during the known-unknown sample separation. In order to promote adaptation

to the known samples first and to progressively learn the unknown class feature space, USD utilizes cross-

entropy loss under curriculum guidance, dictated by the curriculum factor γr as follows.

Lcet (fS
t ;XK

t ,XU
t ) = γnLcetK(fS

t ;XK
t ) + (1− γr)LcetU (fS

t ;XU
t ) (6.9)

where γr = max(0.5, γr−1(1 − βϵ
−Lce

tKr
/Lce

tKr−1 )) such that, β is a hyperparameter and r is the current

iteration number. The ratio LcetKr
/LcetKr−1

dictates the degree by which the curriculum factor decreases

from the earlier (r − 1)-th iteration to the current r-th iteration. When loss LcetK on the known sample

subset increases, γ marginally decreases to accommodate further adaptation on the known samples in the

subsequent iterations. But if LcetK decreases by a large margin, γ decreases accordingly to progressively

adapt to the unknown samples in the following iterations. Curriculum guidance balances the adaptation of

the target model to the known and unknown subsets.

To encourage individually precise and globally diverse predictions, USD further minimizes the information

maximization (IM) [125] loss as formulated in [198], [197].

Lentt (fS
t ;XK

t ) = −Exi
t∈XK

t

Ct∑
k=1

σk(f
S
t (x

iS
t ))log(σk(f

S
t (x

iS
t ))) (6.10)

Leqdivt (fS
t ;XK

t ) =

Ct∑
k=1

piSt log

(
piSt

piSt

)
(6.11)

LIMt (fS
t ;XK

t ) = Lentt (fS
t ;XK

t ) + Leqdivt (fS
t ;XK

t ) (6.12)
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where piSt = Exi
t∈XK

t
[σ(fS

t (x
iS
t ))] is the mean softmax output vector over known target samples in a mini-

batch. The overall objective function is therefore,

Ltott = Lcet + LIMt + ζ1Ltript + ζ2Lcont (6.13)

where ζ1 and ζ2 are two hyperparameters.

A brief demonstration of the USD domain adaptation pipeline is presented in Algorithm 4.

Algorithm 4: Pseudocode for USD
Input: Source trained model fs and nt unlabled target data samples xit ∈ Xt

Output: Target adapted student model fS
t

Initialization: Teacher target model fT
t and student target model fS

t , are both initialized with
parameters θs from fs

1 for epoch = 1 to E do
2 Conduct M = 6 weak-strong augmentations and assign ensemble averaged pseudolabels ŷit using

eq. (6.2)
3 Conduct known (XK

t ) - unknown (XU
t ) target sample separation using JSD between ŷit and teacher

softmax output pit = σ(fT
t (x

i
t))

4 for i = 1 to nt do
5 Optimize, for each minibatch, student model fS

t with loss Ltot using eq. (6.13) and get new
student model parameters θSt

6 end
7 Update teacher model fT

t using new student model weights θSt and current teacher model weights
θTt using eq. (6.4)

8 end

6.4 Experimental Setup

6.4.1 Datasets

We evaluate USD on three popular domain adaptation benchmarks: Office-31 [180], Office-Home [204],

and VisDA-C [167]. These datasets have been previously described in Chapter 4. We follow [183] for

splitting the data into shared (known) and target-private (unknown) classes for all three datasets evaluated.
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Table 6.1: Evaluation of USD on Office-31 dataset. * are results computed for the methods using publicly
released code.

Method SF
Office

A→ D A→W D→ A D→W W→ A W→ D Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

DANN [49] 90.8 59.2 71.5 87.4 55.7 68.1 72.9 74.5 73.7 99.3 77.0 86.7 72.1 73.1 72.6 100.0 70.2 82.5 87.1 68.3 75.9
CDAN [139] 92.2 52.4 66.8 90.3 50.7 64.9 74.9 70.6 72.7 99.6 73.2 84.3 72.8 69.3 71.0 100.0 67.3 80.5 88.3 63.9 73.4
STA [130] 91.0 63.9 75.0 86.7 67.6 75.9 83.1 65.9 73.2 94.1 55.5 69.8 66.2 68.0 66.1 84.9 67.8 75.2 84.3 64.8 72.5

OSBP [183] 90.5 75.5 82.4 86.8 79.2 82.7 76.1 72.3 75.1 97.7 96.7 97.2 73.0 74.4 73.7 99.1 84.2 91.1 87.2 80.4 83.7
PGL [143] 82.1 65.4 72.8 82.7 67.9 74.6 80.6 61.2 69.5 87.5 68.1 76.5 80.8 61.8 70.1 82.8 64.0 72.2 82.7 64.7 72.6

OSLPP [209] 92.6 90.4 91.5 89.5 88.4 89.0 82.1 76.6 79.3 96.9 88.0 92.3 78.9 78.5 78.7 95.8 91.5 93.6 89.3 85.6 87.4
UADAL [88] 85.1 87.0 86.0 84.3 94.5 89.1 73.3 87.3 79.7 99.3 96.3 97.8 67.4 88.4 76.5 99.5 99.4 99.5 84.8 92.1 88.1

SHOT* [125] 94.0 46.3 62.0 95.6 42.3 58.7 83.3 39.1 53.3 100.0 75.7 86.1 82.7 46.6 59.6 100.0 69.7 82.1 92.6 53.3 67.0
AaD* [222] 73.0 84.6 78.3 63.5 89.5 74.3 63.6 88.9 74.2 78.0 98.5 87.0 61.9 88.9 73.0 94.6 96.8 95.7 72.4 91.2 80.4
USD (Ours) 90.7 73.4 81.2 82.8 72.7 77.9 65.7 84.4 73.9 97.9 96.6 97.3 64.6 86.7 74.0 98.0 92.6 95.2 83.3 84.4 83.3

Table 6.2: Evaluation of USD on Office-Home and VisDA-C datasets. * are results computed for the
methods using publicly released code.

Method SF
Office-Home

A→ C A→ P A→ R C→ A C→ P C→ R P→ A
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

DANN [49] 37.1 82.7 51.2 60.0 71.3 65.2 75.1 67.3 71.0 43.8 84.3 57.6 50.1 77.6 60.9 61.1 73.5 66.7 42.4 83.9 56.3
CDAN [139] 39.7 78.9 52.9 61.7 68.8 65.1 75.2 66.7 70.7 44.9 82.8 58.2 51.6 76.8 61.7 61.5 73.7 67.1 45.8 81.2 58.6
STA [130] 46.0 72.3 55.8 68.0 48.4 54.0 78.6 60.4 68.3 51.4 65.0 57.4 61.8 59.1 60.4 67.0 66.7 66.8 54.2 72.4 61.9

OSBP [183] 50.2 61.1 55.1 71.8 59.8 65.2 79.3 67.5 72.9 59.4 70.3 64.3 67.0 62.7 64.7 72.0 69.2 70.6 59.1 68.1 63.2
PGL [143] 63.3 19.1 29.3 78.9 32.1 45.6 87.7 40.9 55.8 85.9 5.3 10.0 73.9 24.5 36.8 70.2 33.8 45.6 73.7 34.7 47.2

OSLPP [209] 55.9 67.1 61.0 72.5 73.1 72.8 80.1 69.4 74.3 49.6 79.0 60.9 61.6 73.3 66.9 67.2 73.9 70.4 54.6 76.2 63.6
UADAL [88] 54.9 74.7 63.2 69.1 72.5 70.8 81.3 73.7 77.4 53.5 80.5 64.2 62.1 78.8 69.5 69.1 78.3 73.4 50.5 83.7 63.0

SHOT [125] 67.0 28.0 39.5 81.8 26.3 39.8 87.5 32.1 47.0 66.8 46.2 54.6 77.5 27.2 40.2 80.0 25.9 39.1 66.3 51.1 57.7
AaD [222] 50.7 66.4 57.6 64.6 69.4 66.9 73.1 66.9 69.9 48.2 81.1 60.5 59.5 63.5 61.4 67.4 68.3 67.8 47.3 82.4 60.1

USD (Ours) 53.3 71.5 61.1 65.7 74.9 70 73.3 79.5 76.3 52.2 70.8 60.1 62.4 68.4 65.2 69.3 68.6 68.9 54.3 73.8 62.6

Method SF
Office-Home

VisDA-C
P→ C P→ R R→ A R→ C R→ P Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

DANN [49] 30.1 86.3 44.6 67.7 72.0 69.8 56.8 77.1 65.4 37.1 80.9 50.9 69.6 67.2 68.4 52.6 77.1 60.7 52.1 - -
CDAN [139] 33.1 82.4 47.2 69.8 69.7 69.7 59.8 73.6 66.0 40.3 75.8 52.7 70.9 64.6 67.6 54.5 74.6 61.4 - - -
STA [130] 44.2 67.1 53.2 76.2 64.3 69.5 67.5 66.7 67.1 49.9 61.1 54.5 77.1 55.4 64.5 61.8 63.3 61.1 62.4 82.4 71.0

OSBP [183] 44.5 66.3 53.2 76.2 71,7 73.9 66.1 67.3 66.7 48.0 63.0 54.5 76.3 68.6 72.3 64.1 66.3 64.7 50.9 81.7 62.7
PGL [143] 59.2 38.4 46.6 84.8 27.6 41.6 81.5 6.1 11.4 68.8 0.0 0.0 84.8 38.0 52.5 76.1 25.0 35.2 - - -

OSLPP [209] 53.1 67.1 59.3 77.0 71.2 74.0 60.8 75.0 67.2 54.4 64.3 59.0 78.4 70.8 74.4 63.8 71.7 67.0 - - -
UADAL [88] 43.4 81.5 56.6 71.6 83.1 76.9 66.7 78.6 72.1 51.1 74.5 60.6 77.4 76.2 76.8 62.6 78.0 68.7 - - -

SHOT [125] 59.3 31.0 40.8 85.8 31.6 46.2 73.5 50.6 59.9 65.3 28.9 40.1 84.4 28.2 42.3 74.6 33.9 45.6 57.5* 12.1* 20.1*
AaD [222] 45.4 72.8 55.9 68.4 72.8 70.6 54.5 79.0 64.6 49.0 69.6 57.5 69.7 70.6 70.1 58.2 71.9 63.6 32.0* 62.9* 42.4*

USD (Ours) 47.3 69.6 56.3 70 74.5 72.2 64.6 71.3 67.8 53.8 65.5 59.1 73.3 69.1 71.1 61.6 71.5 65.9 57.8 86.7 69.4
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6.4.2 Implementation details

For source training, we follow the protocol from [125, 222] for fair comparison against existing SF-OSDA

methods. The basic structure of the teacher and student models also follow that of [125, 222], that is, the

feature extractor is a ResNet-50 [63], followed by a fully-connected (FC) bottleneck layer, a batch normal-

ization layer [80], another FC classifier layer, and finally a weight normalization layer [184], respectively.

The student target model is trained with an SGD optimizer with momentum of 0.9 and weight decay of 10−3.

Due to the difference in the number of samples in each dataset, USD is adapted for 40 epochs on Office and

for 2m Office-Home, and for 5 epochs on VisDA-C, at minibatch size of 64 samples in all cases. Similarly,

the hyperparameter β in curriculum factor γr is set at 0.01 for Office and Office-Home datasets, while β is

set at 0.001 for VisDA-C dataset. The threshold δt for known-unknown sample separation is set at 0.8, and

the momentum parameter m for temporal ensembling is set according to schedule in [216] with a maximum

of 0.9995. Further, ζ1 = 0.01 and ζ2 is gradually increased to 0.5 from 0.0 following the schedule in [110].

All experiments are done on a NVIDIA A100 GPU.

6.4.3 Evaluation metrics

The mean-per-class accuracy OS over all known classes and the unified unknown class for all the target data

may be considered as a metric for evaluating OSDA. However, such a metric is dominated by the accuracy

on the known classes, as all the unknown samples are lumped into one unknown class [13]. A better metric

is therefore to calculate the mean-per-class accuracy OS* over only the known classes, and the accuracy

UNK for the unknown class, and then take the harmonic mean HOS of the two for fair evaluation over the

known and the unknown classes. Mathematically, the metrics are formulated as follows.

OS∗ =
1

|Cs|

|Cs|∑
i=1

|xt : xt ∈ Di
t ∩ ỹit = i|

|xt : xt ∈ Di
t|

(6.14)

UNK =
|xt : xt ∈ D|Ct|

t ∩ ỹit = |Ct||
|xt : xt ∈ D|Ct|

t |
(6.15)

HOS =
2×OS∗ × UNK

OS∗ + UNK
(6.16)

Here, ỹit = argmax(σ(fS
t (x

i
t))) is the prediction from the student model fS

t and Di
t is the target domain

data belonging to class i. In this work, we report OS*, UNK, and HOS for the evaluated adaptation tasks.
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6.5 Results

6.5.1 Overall results

We compare USD to a number of existing UDA methods: closed-set UDA methods (1) DANN [49], (2)

CDAN [139], open-set UDA methods (3) STA [130], (4) OSBP [183], (5) PGL [143], (6) OSLPP [209], and

(7) UADAL [88]. These methods however are not source-free. We compare USD to open-set versions of

SF-UDA methods SHOT [125] and AaD [222]. The open-set results for SHOT and AaD on Office-Home

are provided in their respective publications. We generate results for Office-31 and VisDA-C using their

publicly released code.

The results on Office-31 over all 6 domain pairs are presented in Table 6.1. USD outperforms SHOT and

AaD by∼ 16% and∼ 3%, respectively in terms of mean HOS. Distinguishing between known and unknown

class samples is crucial in OSDA, and USD strikes the best balance among the other SF-OSDA methods.

SHOT clearly adapts primarily to the known classes without good adaptation on the unknown samples.

AaD overcompensates in identifying unknown samples at the expense of correctly adapting to the known

classes. USD performs equally well over both known and unknown classes, leading to higher HOS. USD

also outperforms non-source-free methods STA and PGL, while being comparable to OSBP.

A comparative evaluation for USD against existing UDA methods on Office-Home is given in Table 6.2.

USD outperforms SHOT and AaD by ∼ 20% and ∼ 2%, respectively in terms of the average HOS over the

12 domain pairs. Similar to Office-31, SHOT adapts better to the known classes, but fails to competently

identify unknown samples, while AaD performs worse on the known classes and better on the unknown

samples. USD is more balanced across the known and unknown classes and also outperforms non-SF

OSDA methods STA, OSBP and PGL.

Results on VisDA-C are given in the bottom right section in Table 6.2. SHOT severely suffers from negative

transfer in the unknown class, while AaD fails to learn the target-known feature space. USD greatly out-

performs SHOT and AaD, as well as the non-SF method OSBP, while being comparable to STA in terms of

mean HOS.

6.5.2 Ablation study

A detailed ablation study was performed on the known-unknown sample selection criterion and on the

modeling of the criterion distribution. The results of the ablation study on both Office-31 and VisDA-C
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Figure 6.4: Impact of JSD threshold δt on HOS for Office dataset.

Figure 6.5: Impact of co-training on reducing error accumulation during adaptation on Office-Home dataset.
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Table 6.3: Evaluation of separation criterion and distribution modeling for known-unknown sample separa-
tion in USD on Office dataset.

Separation
criterion

Distribution
modeling

Office
A→ D A→W D→ A D→W

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
JSD GMM 89.4 70.2 78.6 82.7 73.0 77.6 66.4 85.2 74.6 97.5 97.0 97.2

Entropy GMM 88.9 70.2 78.4 83.3 74.5 78.6 65.3 90.5 75.9 97.9 93.3 95.5
CE GMM 90.7 68.6 78.1 90.0 61.8 73.3 69.6 81.0 74.9 98.2 93.3 95.6
JSD BMM 91.4 53.7 67.7 93.6 53.2 67.8 77.7 72.3 74.9 100.0 82.4 90.3

Entropy BMM 90.2 60.1 72.1 87.2 78.3 82.5 66.3 88.5 75.8 89.5 92.1 90.8
CE BMM 96.0 25.0 39.7 93.6 37.8 53.9 81.0 61.2 69.7 100.0 63.3 77.5

Separation
criterion

Distribution
modeling

Office
VisDA-C

W→ A W→ D Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

JSD GMM 68.3 85.4 75.9 98.0 93.6 95.8 83.7 84.1 83.3 57.8 86.7 69.4
Entropy GMM 60.2 88.5 71.7 98.0 93.1 95.5 82.3 85.0 82.6 57.1 85.4 68.4

CE GMM 68.5 86.0 76.2 98.0 90.4 94.1 85.8 80.2 82.0 67.3 45.5 54.3
JSD BMM 77.1 72.5 74.8 100.0 71.3 83.2 90.0 67.6 76.5 67.6 58.3 62.6

Entropy BMM 60.8 87.1 71.6 100.0 88.8 94.1 82.3 82.5 81.2 42.3 83.4 56.1
CE BMM 78.4 68.0 72.8 100.0 71.3 83.2 91.5 54.4 66.1 68.6 24.0 35.5

Table 6.4: Ablation study on the objective function, and co-training for USD on Office-Home dataset.

Method
A→ C A→ P A→ R C→ A C→ P C→ R

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
USD (full) 53.3 71.5 61.1 65.7 74.9 70.0 73.3 79.5 76.3 52.2 70.8 60.1 62.4 68.4 65.2 69.3 68.6 68.9

USD w/o Ltript 52.9 69.9 60.2 66.4 75.1 70.4 73.6 78.9 76.2 52.0 70.0 59.3 62.3 68.5 65.2 68.0 67.8 67.9
USD w/o Lcont 50.5 75.6 60.6 63.3 77.7 69.8 69.6 83.1 75.8 49.4 74.4 59.3 57.9 73.8 64.9 64.3 72.9 68.3
USD w/o LIMt 50.1 74.7 59.9 64.6 73.5 68.7 73.5 77.7 75.5 51.2 67.9 58.4 60.2 68.3 64.0 66.7 69.0 67.9

USD w/o curriculum 47.5 77.1 58.8 60.8 79.4 68.9 69.3 82.5 75.3 44.7 79.1 57.1 57.8 74.6 65.2 62.2 73.8 67.5
USD w/o co-training 44.0 80.4 56.8 58.5 78.4 67.0 64.1 78.2 70.5 43.4 72.3 54.3 50.5 71.0 59.0 51.4 76.1 61.4

Method
P→ A P→ C P→ R R→ A R→ C R→ P Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
USD (full) 54.3 73.8 62.6 47.3 69.6 56.3 70 74.5 72.2 64.6 71.3 67.8 53.8 65.5 59.1 73.3 69.1 71.1 61.6 71.5 65.9

USD w/o Ltript 51.2 75.9 61.1 47.6 70.4 56.8 69.5 74.2 71.8 63.9 69.9 66.8 51.4 66.9 58.2 73.5 67.6 70.4 61.0 71.3 65.4
USD w/o Lcont 49.4 78.0 60.5 44.9 71.8 55.3 66.0 78.4 71.7 60.3 75.3 67.0 50.1 70.1 58.4 70.6 73.9 72.2 58.0 75.4 65.3
USD w/o LIMt 50.6 75.4 60.6 45.5 68.1 54.5 68.7 74.1 71.3 63.2 72.8 67.7 49.7 66.5 56.9 73.1 67.3 70.1 59.8 71.3 64.6

USD w/o curriculum 46.1 80.7 58.6 40.4 74.5 52.4 64.7 78.3 70.9 57.9 77.7 66.4 48.0 73.3 58.0 69.0 73.4 71.1 55.7 77.0 64.2
USD w/o co-training 48.3 78.9 59.9 38.5 71.8 50.1 51.6 79.2 62.5 53.9 76.5 63.2 46.6 77.6 58.2 60.7 80.5 69.2 51.0 76.7 61.0

Table 6.5: Ablation study on the pseudolabeling scheme for USD on Office-Home dataset.

Pseudolabel
A→ C A→ P A→ R C→ A C→ P C→ R

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
Ensemble 53.3 71.5 61.1 65.7 74.9 70.0 73.3 79.5 76.3 52.2 70.8 60.1 62.4 68.4 65.2 69.3 68.6 68.9
Clustering 50.8 73.5 60.1 67.0 73.2 69.9 74.8 75.8 75.3 54.3 67.0 60.0 61.5 66.9 64.1 67.2 66.1 66.7

Student Predictions 50.7 74.1 60.2 65.9 73.6 69.5 74.7 78.5 76.5 51.3 68.2 58.6 61.7 67.3 64.4 67.2 69.5 68.3

Pseudolabel
P→ A P→ C P→ R R→ A R→ C R→ P Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
Ensemble 54.3 73.8 62.6 47.3 69.6 56.3 70.0 74.5 72.2 64.6 71.3 67.8 53.8 65.5 59.1 73.3 69.1 71.1 61.6 71.5 65.9
Clustering 53.4 73.6 61.9 48.6 69.0 57.1 71.0 71.8 71.4 63.4 72.2 67.5 52.2 68.1 59.1 70.0 68.3 69.2 61.2 70.5 65.2

Student Predictions 53.0 73.2 61.5 46.6 71.3 56.4 68.9 73.8 71.3 61.8 73.0 66.9 53.3 65.8 58.9 72.7 70.6 71.6 60.6 71.6 65.3
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are given in Table 6.3. USD uses JSD as the known-unknown sample splitting criterion, while entropy

has been extensively used in existing OSDA methods (SHOT, AaD, UADAL etc.) for this purpose. In

addition, cross-entropy (CE) loss is a popular criterion for separating clean-noisy samples for noisy label

learning (NLL) algorithms [4, 115, 119]. We evaluate all three criteria to find the best performing one.

The criterion distribution can be modelled by either Gaussian Mixture Model (GMM) or a Beta Mixture

Model (BMM). UADAL models sample entropy distribution using BMM to distinguish between known and

unknown samples. Our results in Table 6.3 show that modeling the distribution of the JSD with a GMM

outperforms all of the other combinations for unknown sample discovery.

The effect of the JSD threshold δt for known-unknown separation on the final HOS is shown in Figure

6.4. The performance is relatively uniform, which suggests robustness of adaptation to the hyperparameter

δt. Nonetheless, if the threshold is set too high (such as 0.9), too few samples may be denoted as known

samples, and this could lead to inferior performance.

Table 6.4 shows the impact of different components of our objective function and the effects of our teacher-

student co-training scheme on the final adaptation performance for Office-Home. It is evident that each of

our losses (Ltript ,Lcont ,LIMt ) contributes to the adaptation, and leaving out any one of them hurts perfor-

mance. We observe that curriculum guidance considerably benefits adaptation and the final average HOS

increases by > 1.5% (from 64.2% to 65.9%) when such guidance is included. Notably, without curriculum,

adaptation to the known classes is impacted drastically (OS* falls by ∼ 6%), signalling that progressively

learning the known class subspace first and then the unknown class subspace later is the superior strategy.

The final row in Table 6.4 presents results in the absence of the teacher network, where the student network

conducts the known-unknown sample separation for itself. Both the weakly and strongly augmented samples

are fed through the student network, and losses Ltript , Lcont are calculated over the student model outputs

between the weak and strong augmentations. Empirical results clearly show that co-training in a teacher-

student framework is pivotal for mitigating the effect of any imperfect known-unknown separation and

average HOS over the 12 domain pairs in Office-Home decreases by ∼ 5% when the teacher network is

removed. As seen in Figure 6.5, in the absence of co-training, the student model adapts faster, but its

performance drops from its peak during the course of adaptation due to error accumulation. In contrast,

adaptation with co-training is slightly slower but maintains its peak performance.

The effect of the pseudolabeling scheme on the adaptation performance for Office-Home is shown in Table

6.5. SHOT and AaD use a self-supervised clustering process built on DeepCluster [14] to get pseudolabels

for the known samples. We see that such clustering is not better than taking the hard predictions from the stu-

dent model as pseudolabels. In open set settings, the unknown samples can drift the known class centroids,

leading to faulty clusters. Our multi-view augmentation ensembled pseudolabeling strategy outperforms
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both pseudolabeling from clustering or direct student predictions.

6.6 Conclusion

We present Unknown Sample Discovery as a teacher-student co-training framework that conducts source-

free open-set domain adaptation. USD calculates the Jensen-Shannon distance between the target model

outputs and the pseudolabels and models the distance histogram by a two-component Gaussian mixture

model. USD splits the target domain data into known and unknown subsets based on the two Gaussian

components. Co-training regularization via contrastive and consistency losses greatly mitigates error ac-

cumulation, while curriculum guidance progressively adapts the target model to effectively learn both the

known and unknown target feature spaces. The student model in USD has an additional node for the lumped

unknown class for all the unknown samples, thus readily classifying any sample as one of the known classes

or as the unknown class in subsequent inference stages after adaptation. Empirically, USD outperforms

existing SF-OSDA methods and is comparable to non-source-free OSDA techniques.



Chapter 7

Conclusion and Future Work

Transfer learning facilitates the transfer of learned knowledge from one task/domain/modality to another.

This dissertation explores two fundamental settings of transfer learning viz. cross-modal supervised transfer

learning for guiding training in EO modality to SAR modality and, unsupervised cross-domain transfer

learning or domain adaptation from one a source domain to an unlabelled target domain. Our method

validates the efficacy of using knowledge distillation from the EO pre-trained network to guide training of a

SAR network on an EO-SAR co-registered dataset. For mitigating class bias prevalent in SAR datasets, we

further present sampling strategies and multi-stage training schemes, which results in accuracy performance

improvements of 2.7%. In future work, denoising the SAR images prior to training can be a viable option

to improve model performance. Recent SAR denoising algorithms [55, 168] based on denoising diffusion

models are promising in this regard.

In the realm of cross-domain unsupervised adaptation, this dissertation delves into several source-free UDA

settings viz. continual DA, black-box DA, and open-set DA. Our methods, with their memory buffers and

selective replay, address the problem of catastrophic forgetting seen in continual learning and in continual

DA. Our methods are applicable for both static and dynamic (gradually changing) target data distributions,

and also across multiple target distributions. ConDA and UCL-GV exhibit strong knowledge retention for

the entire target distribution(s) at the end of adaptation. We also introduce four new continual DA aerial

datasets based on gradually varying weather conditions, and provide baseline benchmarks on these datasets

for ConDA, UCL-GV and continual-SHOT. Continual DA is a practical research problem. Further research

in this direction may involve incorporating more generalized large vision models, instead of ResNet-50

backbones for feature extraction. This would lead to stronger performance for the source-trained model,

and in turn more robust adaptation to the target distribution. It will also be interesting to explore unique
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adaptation algorithms catered towards continual DA of large vision models.

This dissertation also presents a promising method for modeling the target samples using the histogram of

the Jensen-Shannon distance between target pseudolabels and network predictions using Gaussian Mixture

Models, for both black-box DA and source-free open-set DA. In black-box DA, the unreliable target samples

can be separated from the reliable samples using this modeling process, while for open-set DA, the unknown

class samples may be separated from the known class samples. Our BBDA method CABB uses a dual-

branch network where each branch conducts sample separation for the other, and both are simultaneously

adapted on the target data. Our SF-OSDA method USD is based on a teacher-student framework, where the

teacher network is updated as a temporally-ensembled version of the student network. The simultaneous

adaptation and sample cross-splitting of the two branches in CABB, and temporal consistency loss and

triplet contrastive loss between the teacher and student in USD mitigate error accumulation originating from

imperfect sample splitting (either into reliable-unreliable samples, or into known-unknown samples). CABB

use curriculum guidance to progressively adapt to the reliable samples first, and the unreliable samples later,

enabling robust alignment between the source data and the reliable target subset and weakening the adverse

effect of outliers or hard-to-adapt target samples on adaptation in the early steps of the process. CABB beats

existing SOTA BBDA methods by as much as 2.3%, while USD beats current SOTA SF-OSDA methods

by up to ∼ 3%. Although our target sample separation method is robust to high noise rates in target

pseudolabels, future research may focus on developing more effective sample separation processes. Stronger

backbone architectures, such as vision transformers, for the source model would produce more reliable

samples and lower the noise rate in the pseudolabels, thereby making the clean-noisy sample separation

more accurate. For identifying unknown class samples in OSDA, future research may also focus on cross-

validation of pseudolabeling obtained from multiple augmentation methods, in order to filter out unknown

target samples that are wrongly but confidently predicted as a known class.
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[113] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[114] Guangrui Li, Guoliang Kang, Yi Zhu, Yunchao Wei, and Yi Yang. Domain consensus clustering for

universal domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 9757–9766, 2021.

[115] Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix: Learning with noisy labels as semi-

supervised learning. In International Conference on Learning Representations, 2020.

[116] Junnan Li, Caiming Xiong, and Steven CH Hoi. Learning from noisy data with robust representation

learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

9485–9494, 2021.

[117] Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi. Prototypical contrastive learning of

unsupervised representations. arXiv preprint arXiv:2005.04966, 2020.

[118] Ke Li, Gang Wan, Gong Cheng, Liqiu Meng, and Junwei Han. Object detection in optical remote

sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote

Sensing, 159:296–307, 2020.

[119] Shikun Li, Xiaobo Xia, Shiming Ge, and Tongliang Liu. Selective-supervised contrastive learning

with noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 316–325, June 2022.

[120] Shuang Li, Chi Harold Liu, Binhui Xie, Limin Su, Zhengming Ding, and Gao Huang. Joint adver-

sarial domain adaptation. In Proceedings of the 27th ACM International Conference on Multimedia,

pages 729–737, 2019.



BIBLIOGRAPHY 125

[121] Shutao Li, Weiwei Song, Leyuan Fang, Yushi Chen, Pedram Ghamisi, and Jón Atli Benediktsson.

Deep learning for hyperspectral image classification: An overview. IEEE Transactions on Geoscience

and Remote Sensing, 57(9):6690–6709, 2019.

[122] Ying Li, Haokui Zhang, and Qiang Shen. Spectral–spatial classification of hyperspectral imagery

with 3d convolutional neural network. Remote Sensing, 9(1):67, 2017.

[123] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 40(12):2935–2947, 2017.

[124] Jian Liang, Ran He, Zhenan Sun, and Tieniu Tan. Distant supervised centroid shift: A simple and

efficient approach to visual domain adaptation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 2975–2984, 2019.

[125] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source

hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine

Learning, pages 6028–6039. PMLR, 2020.

[126] Jian Liang, Dapeng Hu, Jiashi Feng, and Ran He. Dine: Domain adaptation from single and multiple

black-box predictors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022.

[127] Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, and Jiashi Feng. Source data-absent unsupervised

domain adaptation through hypothesis transfer and labeling transfer. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 44(11):8602–8617, 2021.

[128] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr

Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Confer-

ence on Computer Vision, pages 740–755. Springer, 2014.

[129] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical Mathemat-

ics, 16(2):146–160, 1976.

[130] Hong Liu, Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Qiang Yang. Separate to adapt: Open

set domain adaptation via progressive separation. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 2927–2936, 2019.

[131] Hong Liu, Mingsheng Long, Jianmin Wang, and Yu Wang. Learning to adapt to evolving domains.

In NeurIPS, 2020.



BIBLIOGRAPHY 126

[132] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng

Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up capacity and resolu-

tion. In International Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[133] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng

Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up capacity and resolu-

tion. In International Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[134] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.

Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[135] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.

Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[136] MultiMedia LLC. NTIRE 2021 multi-modal aerial view object classification challenge - track 1

(SAR), 2021.

[137] Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous

object recognition. In Conference on Robot Learning, pages 17–26. PMLR, 2017.

[138] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with

deep adaptation networks. In International Conference on Machine Learning, pages 97–105. PMLR,

2015.

[139] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial do-

main adaptation. In Advances in Neural Information Processing Systems, pages 1645–1655, 2018.

[140] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint

adaptation networks. In International Conference on Machine Learning, pages 2208–2217. PMLR,

2017.

[141] David G Lowe. Distinctive image features from scale-invariant keypoints. International Journal of

Computer Vision, 60(2):91–110, 2004.

[142] Xiaoqiang Lu, Xiangtao Zheng, and Yuan Yuan. Remote sensing scene classification by unsupervised

representation learning. IEEE Transactions on Geoscience and Remote Sensing, 55(9):5148–5157,

2017.



BIBLIOGRAPHY 127

[143] Yadan Luo, Zijian Wang, Zi Huang, and Mahsa Baktashmotlagh. Progressive graph learning for

open-set domain adaptation. In International Conference on Machine Learning, pages 6468–6478.

PMLR, 2020.

[144] Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey. Nor-

malized loss functions for deep learning with noisy labels. In ICML, 2020.

[145] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network

acoustic models. In Proc. icml, volume 30, page 3. Citeseer, 2013.

[146] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The

sequential learning problem. In Psychology of Learning and Motivation, volume 24, pages 109–165.

Elsevier, 1989.

[147] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.

The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[148] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. In Bulletin

of Mathematical Biophysics 5, page 115–133, 1943.

[149] Nina Merkle, Stefan Auer, Rupert Müller, and Peter Reinartz. Exploring the potential of conditional

adversarial networks for optical and SAR image matching. IEEE Journal of Selected Topics in Ap-

plied Earth Observations and Remote Sensing, 11(6):1811–1820, 2018.

[150] Nina Merkle, Wenjie Luo, Stefan Auer, Rupert Müller, and Raquel Urtasun. Exploiting deep match-

ing and SAR data for the geo-localization accuracy improvement of optical satellite images. Remote

Sensing, 9(6):586, 2017.

[151] Marvin L Minsky and Seymour A Papert. Perceptrons: expanded edition, 1988.

[152] JH Moon, Debasmit Das, and CS George Lee. Multi-step online unsupervised domain adaptation.

In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 41172–41576. IEEE, 2020.

[153] Alberto Moreira, Pau Prats-Iraola, Marwan Younis, Gerhard Krieger, Irena Hajnsek, and Konstanti-

nos P Papathanassiou. A tutorial on synthetic aperture radar. IEEE Geoscience and remote sensing

magazine, 1(1):6–43, 2013.

[154] David AE Morgan. Deep convolutional neural networks for ATR from SAR imagery. In Algorithms

for Synthetic Aperture Radar Imagery XXII, volume 9475, page 94750F. International Society for

Optics and Photonics, 2015.



BIBLIOGRAPHY 128

[155] Lichao Mou, Michael Schmitt, Yuanyuan Wang, and Xiao Xiang Zhu. A CNN for the identification

of corresponding patches in SAR and optical imagery of urban scenes. In 2017 Joint Urban Remote

Sensing Event (JURSE), pages 1–4. IEEE, 2017.

[156] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. When does label smoothing help? arXiv

preprint arXiv:1906.02629, 2019.

[157] Adugna G Mullissa, Claudio Persello, and Alfred Stein. PolSARNet: A deep fully convolutional

network for polarimetric SAR image classification. IEEE Journal of selected topics in applied earth

observations and remote sensing, 12(12):5300–5309, 2019.

[158] Jaemin Na, Heechul Jung, Hyung Jin Chang, and Wonjun Hwang. Fixbi: Bridging domain spaces for

unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 1094–1103, 2021.

[159] Navya Nagananda, Abu Md Niamul Taufique, Raaga Madappa, Chowdhury Sadman Jahan, Breton

Minnehan, Todd Rovito, and Andreas Savakis. Benchmarking domain adaptation methods on aerial

datasets. Sensors, 21(23):8070, 2021.

[160] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In

Icml, 2010.

[161] Poojan Oza, Vishwanath A Sindagi, Vibashan Vishnukumar Sharmini, and Vishal M Patel. Unsuper-

vised domain adaptation of object detectors: A survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2023.

[162] Joseph O’Neill, Barty Pleydell-Bouverie, David Dupret, and Jozsef Csicsvari. Play it again: reacti-

vation of waking experience and memory. Trends in Neurosciences, 33(5):220–229, 2010.

[163] Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah Ngo, and Tao Mei. Transferrable prototyp-

ical networks for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 2239–2247, 2019.

[164] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual

lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

[165] Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic knowledge

transfer. In Proceedings of the European Conference on Computer Vision (ECCV), pages 268–284,

2018.



BIBLIOGRAPHY 129

[166] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain adapta-

tion. In Thirty-second AAAI Conference on Artificial Intelligence, 2018.

[167] Xingchao Peng, Ben Usman, Neela Kaushik, Dequan Wang, Judy Hoffman, and Kate Saenko. Visda:

A synthetic-to-real benchmark for visual domain adaptation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops, pages 2021–2026, 2018.

[168] Malsha V. Perera, Nithin Gopalakrishnan Nair, Wele Gedara Chaminda Bandara, and Vishal M. Pa-

tel. Sar despeckling using a denoising diffusion probabilistic model. IEEE Geoscience and Remote

Sensing Letters, 20:1–5, 2023.

[169] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.

Do vision transformers see like convolutional neural networks? Advances in Neural Information

Processing Systems, 34:12116–12128, 2021.

[170] Sayan Rakshit, Anwesh Mohanty, Ruchika Chavhan, Biplab Banerjee, Gemma Roig, and Subhasis

Chaudhuri. FRIDA-Generative feature replay for incremental domain adaptation. Computer Vision

and Image Understanding, page 103367, 2022.

[171] Sylvestre Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incre-

mental classifier and representation learning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2001–2010, 2017.

[172] Rhammell. Ships in satellite imagery, Jul 2018.

[173] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and

Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[174] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in

the brain. Psychological review, 65(6):386, 1958.

[175] Mohammad Rostami. Lifelong domain adaptation via consolidated internal distribution. Advances

in Neural Information Processing Systems, 34, 2021.

[176] Mohammad Rostami, Soheil Kolouri, Eric Eaton, and Kyungnam Kim. Deep transfer learning for

few-shot SAR image classification. Remote Sensing, 11(11):1374, 2019.

[177] Subhankar Roy, Evgeny Krivosheev, Zhun Zhong, Nicu Sebe, and Elisa Ricci. Curriculum graph

co-teaching for multi-target domain adaptation. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 5351–5360, 2021.



BIBLIOGRAPHY 130

[178] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to sift

or surf. In 2011 International conference on computer vision, pages 2564–2571. Ieee, 2011.

[179] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Ko-

ray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint

arXiv:1606.04671, 2016.

[180] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new

domains. In European Conference on Computer Vision, pages 213–226. Springer, 2010.

[181] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation through

self supervision. Advances in neural information processing systems, 33:16282–16292, 2020.

[182] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier discrep-

ancy for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3723–3732, 2018.

[183] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adapta-

tion by backpropagation. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 153–168, 2018.

[184] Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accel-

erate training of deep neural networks. arXiv preprint arXiv:1602.07868, 2016.

[185] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face

recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 815–823, 2015.

[186] Colin P Schwegmann, Waldo Kleynhans, Brian P Salmon, Lizwe W Mdakane, and Rory GV Meyer.

Very deep learning for ship discrimination in synthetic aperture radar imagery. In 2016 IEEE Inter-

national Geoscience and Remote Sensing Symposium (IGARSS), pages 104–107. IEEE, 2016.

[187] Yuan Shi and Fei Sha. Information-theoretical learning of discriminative clusters for unsupervised

domain adaptation. arXiv preprint arXiv:1206.6438, 2012.

[188] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[189] Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Baby steps: How “less is more” in

unsupervised dependency parsing. In Proceedings of NIPS Workshop on Grammar Induction, Repre-

sentation of Language and Language Learning, 2009.



BIBLIOGRAPHY 131

[190] Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and

Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision transformers.

Transactions on Machine Learning Research, 2022.

[191] Robert Stickgold, J Allen Hobson, Roar Fosse, and Magdalena Fosse. Sleep, learning, and dreams:

off-line memory reprocessing. Science, 294(5544):1052–1057, 2001.

[192] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In

Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16,

2016, Proceedings, Part III 14, pages 443–450. Springer, 2016.

[193] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru

Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[194] Hui Tang, Ke Chen, and Kui Jia. Unsupervised domain adaptation via structurally regularized deep

clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 8725–8735, 2020.

[195] Shixiang Tang, Peng Su, Dapeng Chen, and Wanli Ouyang. Gradient regularized contrastive learning

for continual domain adaptation. In Proceedings 35th of the AAAI Conference on Artificial Intelli-

gence, pages 2–13, 2021.

[196] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-

tency targets improve semi-supervised deep learning results. Advances in neural information pro-

cessing systems, 30, 2017.

[197] Abu Md Niamul Taufique, Chowdhury Sadman Jahan, and Andreas Savakis. Unsupervised continual

learning for gradually varying domains. In 2022 IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pages 3739–3749, 2022.

[198] Abu Md Niamul Taufique, Chowdhury Sadman Jahan, and Andreas Savakis. Continual unsupervised

domain adaptation in data-constrained environments. IEEE Transactions on Artificial Intelligence,

5(1):167–178, 2024.

[199] Marco Toldo, Andrea Maracani, Umberto Michieli, and Pietro Zanuttigh. Unsupervised domain

adaptation in semantic segmentation: a review. Technologies, 8(2):35, 2020.

[200] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 1521–1528. IEEE, 2011.



BIBLIOGRAPHY 132

[201] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain

adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 7167–7176, 2017.

[202] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:

Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[203] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing

systems, 30, 2017.

[204] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep

hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5018–5027, 2017.

[205] Riccardo Volpi, Diane Larlus, and Grégory Rogez. Continual adaptation of visual representations via

domain randomization and meta-learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4443–4453, 2021.

[206] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong

Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[207] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312:135–

153, 2018.

[208] Qian Wang and Toby Breckon. Unsupervised domain adaptation via structured prediction based se-

lective pseudo-labeling. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,

pages 6243–6250, 2020.

[209] Qian Wang, Fanlin Meng, and Toby P Breckon. Progressively select and reject pseudo-labelled

samples for open-set domain adaptation. arXiv preprint arXiv:2110.12635, 2021.

[210] Michael Wilmanski, Chris Kreucher, and Jim Lauer. Modern approaches in deep learning for SAR

ATR. In Algorithms for synthetic aperture radar imagery XXIII, volume 9843, page 98430N. Inter-

national Society for Optics and Photonics, 2016.

[211] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.

Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 374–382, 2019.



BIBLIOGRAPHY 133

[212] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incremental adversarial domain adaptation for

continually changing environments. In 2018 IEEE International conference on robotics and automa-

tion (ICRA), pages 4489–4495. IEEE, 2018.

[213] Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai, Yanfei Zhong, Liangpei Zhang, and

Xiaoqiang Lu. Aid: A benchmark data set for performance evaluation of aerial scene classification.

IEEE Transactions on Geoscience and Remote Sensing, 55(7):3965–3981, 2017.

[214] Haifeng Xia, Handong Zhao, and Zhengming Ding. Adaptive adversarial network for source-free

domain adaptation. In Proceedings of the IEEE/CVF international conference on computer vision,

pages 9010–9019, 2021.

[215] Mengqiu Xu, Ming Wu, Kaixin Chen, Chuang Zhang, and Jun Guo. The eyes of the gods: A sur-

vey of unsupervised domain adaptation methods based on remote sensing data. Remote Sensing,

14(17):4380, 2022.

[216] Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. A fourier-based framework for

domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 14383–14392, June 2021.

[217] Renjun Xu, Pelen Liu, Liyan Wang, Chao Chen, and Jindong Wang. Reliable weighted optimal trans-

port for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 4394–4403, 2020.

[218] Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger norm more transferable: An adaptive

feature norm approach for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 1426–1435, 2019.

[219] Jianfei Yang, Xiangyu Peng, Kai Wang, Zheng Zhu, Jiashi Feng, Lihua Xie, and Yang You. Divide to

adapt: Mitigating confirmation bias for domain adaptation of black-box predictors. In The Eleventh

International Conference on Learning Representations, 2023.

[220] Shiqi Yang, Yaxing Wang, Luis Herranz, Shangling Jui, and Joost van de Weijer. Casting a bait for

offline and online source-free domain adaptation. Computer Vision and Image Understanding, page

103747, 2023.

[221] Shiqi Yang, Yaxing Wang, Joost Van De Weijer, Luis Herranz, and Shangling Jui. Generalized source-

free domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 8978–8987, 2021.



BIBLIOGRAPHY 134

[222] Shiqi Yang, Yaxing Wang, Kai Wang, SHANGLING JUI, and Joost van de weijer. Attracting and

dispersing: A simple approach for source-free domain adaptation. In Alice H. Oh, Alekh Agar-

wal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing

Systems, 2022.

[223] Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for land-use classifica-

tion. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic

information systems, pages 270–279, 2010.

[224] Wei Yao, Dimitrios Marmanis, and Mihai Datcu. Semantic segmentation using deep neural networks

for SAR and optical image pairs. In BiDS’17: Conference on Big Data from Space, 2017.

[225] Li Yi, Gezheng Xu, Pengcheng Xu, Jiaqi Li, Ruizhi Pu, Charles Ling, Ian McLeod, and Boyu Wang.

When source-free domain adaptation meets learning with noisy labels. In The Eleventh International

Conference on Learning Representations, 2023.

[226] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling via simultaneous clustering and representa-

tion learning. In International Conference on Learning Representations, 2020.

[227] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically

expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[228] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-

formance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,

2016.

[229] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne Saminger-
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