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Abstract

The notion of Attack Surface refers to the critical points on the boundary of a software system

which are accessible from outside or contain valuable content for attackers. The ability to iden-

tify attack surface components of software system has a significant role in effectiveness of different

security analysis approaches such as vulnerability analysis. Most prior works focus on the secu-

rity analysis approach and use an approximation of attack surfaces. There have not been many

attempts to create a comprehensive list of attack surface components. Although limited number of

studies have focused on attack surface analysis, they defined attack surface components based on

project specific hypotheses to evaluate security risk of specific types of software applications. This

thesis provides a comprehensive attack surface model and proposes novel approaches for automat-

ing detection of attack surface components in source code. By leveraging a qualitative analysis

approach, we empirically identify an extensive list of attack surface components. To this end,

we conduct a Grounded Theory (GT) analysis on 1444 previously published vulnerability reports

and weaknesses. We extract vulnerability information from two publicly available repositories: 1)

Common Vulnerabilities and Exposures (CVE) and 2) Common Weakness Enumeration (CWE).

We ask three key questions: where the attacks come from, what they target, and how they emerge.

To answer these questions three core categories for attack surface components are defined: Entry

points, Targets, and Mechanisms. We extract attack surface concepts related to each category from

collected vulnerability information using the GT analysis and provide a comprehensive categoriza-

tion that represents attack surface components of software systems from various perspectives. This

research introduces 254 new attack surface components that did not exist in the literature. In this

study, we propose two new generic approaches based on Language Models (LM) that can be used to

detect different types of attack surface components. 1) A probability-based classification approach

using novel term weighting technique; 2) A novel Natural Language Inference (NLI) model based
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on pre-trained CodeBERT model. We evaluate the approaches for identifying nine different types

of attack surface components using a java dataset collected from GitHub. The experimental results

show that the term weighting approach can detect attack surface components with Fscore higher

than 80%. The proposed CodeBERT NLI approach can detect the attack surface components with

Fscore higher than 92% and for some attack surface components the Fscore is 100%. We also

evaluate ChatGPT performance in identifying the attack surface components. ChatGPT responses

show that its capability in identifying attack surface components is different. It can detect different

attack surface components with Fscore between 30%- 90%. Finally, we compare three approaches

and show that the proposed CodeBERT NLI has the best performance in comparison to the term

weighting approach and ChatGPT.
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Chapter 1

Introduction

1.1 Attack Surface Analysis

Nowadays, many cyber attacks are rooted in software vulnerabilities and software security is more

increasingly becoming a day-to-day concern for organizations. A wide range of security analysis

techniques have been used by software security practitioners to improve the confidentiality, in-

tegrity, and availability of software systems. These techniques often directly or indirectly rely on

understanding a set of critical points on the boundary of a software system, where an attacker can

try to enter, cause an effect on, or extract data from [42, 60] them which are called application’s

attack surfaces.

Attack surface analysis—the process of identifying applications’ attack surface components (a.k.a

points) plays a key role in numerous security analysis techniques such as risk analysis [9,36,42,60,

61, 62], vulnerability detection [13, 45, 52, 54, 73, 84, 98, 99, 105], and software testing [8]. Although

prior software vulnerability detection and testing approaches consider parts of code such as Sink,

Source, Entry point, and API/Function calls as attack surface, but these studies primarily focus

on the analysis itself, rather than identifying attack surface components. There are a few studies

that elaborate on the notion of the attack surface [36, 42, 43, 60, 61, 62, 73]. These studies consider

entry points, exit points, channels, etc. as attack surface components, and test and validate them as

existing theories [42,43,61,62,73]; However, they focus on limited-scope and describe attack surfaces

of a specific system such as operating systems [42,43,60,62] and web applications [7]. These studies

show that applications with smaller attack surfaces are less vulnerable. While there has been a

significant interest by practitioners and in the literature to study attack surface components of a

1



CHAPTER 1. INTRODUCTION 2

given system, unfortunately, we lack a generic comprehensive guidance to support security research

engineers in identifying attack surfaces of a given system. To the best of our knowledge, there is

no prior research that takes a comprehensive approach to characterize and identify attack surface

components in software systems.

In this thesis, we leverage a Grounded Theory (GT)-based approach [29, 31, 95] to characterize

software attack surfaces and develop an extensive list of attack surface components that can be

used by researchers and practitioners. Grounded theory is a social science research method that

extracts theories from unstructured data and leads to discoveries directly supported by empirical

evidence [28,30,31,82,95]. In this research, 810 vulnerability reports from Common Vulnerabilities

and Exposures (CVE) data published by MITRE Corporation [69] are extracted and analyzed. In

addition, 634 entries in Common Weakness Enumeration (CWE) data [70], which is an extensive

catalog of different types of software and hardware weaknesses, are analyzed. By leveraging the

Grounded Theory and reviewing vulnerability reports and weaknesses, high-level concepts which

are related to software systems’ attack surface are defined. We use Straussian GT [18, 96] as

a systematic inductive method for conducting qualitative research of identifying attack surface

components.

We consider three core theories, which are Entry Points, Targets, and Mechanisms. We extract the

concepts related to each theory from collected vulnerability data and define a generic taxonomy for

each core theory. The defined concepts related to each theory are categorized in four major groups:

software source code (Code), its executable (Program), the System, and the Network environment.

Then, we identify attack surface components under each category and compare the proposed attack

surface categorization model with the literature. The comparison results indicate that the proposed

attack surface model covers almost all attack surface components defined in the literature, while

prior works cover only a small portion of the concepts identified by our analysis. The result of

quantitative comparison shows that on average, only 6.7% of the studied Code level attack surface

components are covered by previous works. In the best case only 50% and 20% of the Network and

Program level mechanisms and 20% of the Network level entry points identified by this paper are

covered in the literature.

The other aspect of this thesis focuses on automating the identification of attack surface components

in source code. To reach this goal we propose two generic automatic approach to identify attack

surface components using Language Models (LM). First, we propose a novel approach based on

Natural Language Processing (NLP) term frequency technique to classify methods that contain

attack surface components. It identifies indicator terms for each attack surface component and then
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uses a probability-based classification approach to identify parts of the code that contain attack

surface components; Second, we propose a novel model based on Natural Language Inference (NLI)

and pre-trained CodeBERT model for detecting attack surface components in source code. To train

and evaluate the approaches, we collect data for nine attack surface components defined in the first

step of the study which are: Input Stream File, Execute OS Command, Execute SQL Command,

User Input, Serialization Deserialization, Read Socket, OS Signal Handler, Weak Encryption, and

Reflection. Two types of data was collected: 1) Standard Java APIs, and 2) Methods collected

from GitHub repository. We totally collected 38,568 java APIs and 524 java method samples. We

manually reviewed data for labeling them. The experimental results show that in the best threshold

the term weighting approach can detect the attack surface components with average Fscore of 90%.

The average Fscore in CodeBERT NLI model is 96%. We also evaluate the performance of the

ChatGPT Large Language Model(LLM) in identifying attack surface components. The results

show that ChatGPT can detect some attack surface components with Fscore of 90% but it does

not perform well in identifying some other attack surface components – the worst Fscore was 30%

for Execute OS Command and Reflection components.

1.2 Research Goals

The research goals of this dissertation work are:

Goal 1 Characterizing Software Attack Surface Components As a first step towards the

goal of identifying software attack surface components, first need to characterize attack surface

components and provide an extensive list of attack surface components. To achieve this goal, this

Ph.D. work leverages a qualitative approach, which is a social science research method, and reported

vulnerabilities available in public repositories. The section 4.1 from chapter 4 discusses the steps

performed to identify and define concepts related to attack surface from reported vulnerabilities.

Research Questions:

• RQ1: Where are the critical entry points in a software system that are used by attackers to

get in?

• RQ2: What assets or components in a software system are targeted by attackers?

• RQ3: How do attack surfaces emerge, and what types of mechanisms are utilized to reach

the targets?
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Goal 2 Detecting Software Attack Surface Components in Source Code The second goal

of this research work is to propose an automatic approach to identify attack surface components,

which are defined in the first step, in source code. This step of the research involves collecting data,

proposing, and evaluating different attack surface detection models. We propose two approaches:

1) Novel term weighting and probability-based classification approach; and 2) NLI model. We also

evaluate the performance of ChatGPT model in identifying attack surface components. The section

4.2 in chapter 4 discusses how the detection models work.

Research Questions:

• RQ4: Can a term weighting and probability-based approach detect software attack surface

components?

• RQ5: How precisely the probability based approach detects different attack surface compo-

nents?

• RQ6: Can a NLI based approach detect attack surface components?

• RQ7: How effective is the NLI based approach in detecting different attack surface compo-

nents?

• RQ8: Can ChatGPT model detect attack surface components?

• RQ9: How precisely the ChatGPT can detect different attack surface components?

• RQ10: Which language model (term weighting, NLI, and ChatGPT) performs better in

detecting different attack surface components?

1.3 Contributions

• Proposing a comprehensive attack surface model by leveraging a qualitative approach. The

proposed model can be used by researchers and security practitioners in different software

security analysis approaches.

• Introducing 254 new attack surface concepts that have not been studied before.

• Proposing a comprehensive code level attack surface components. A small portion of the code-

level attack surface concepts (6.7%) defined in the model are introduced in the literature.
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• Proposing a new approach by leveraging text processing and machine learning techniques for

identifying software attack surface components in source code.

• Proposing a new CodeBERT NLI approach by leveraging pre-trained models for identifying

software attack surface components in source code.

• Evaluating the performance of ChatGPT model in identifying software attack surface com-

ponents in source code.

1.4 Outline

The remainder of this thesis is organized as follows: In the next chapter, software vulnerability

databases, grounded theory, and NLP approach which are used in this thesis are reviewed. Chapter

3 reviews the literature. Chapter 4 presents how a qualitative analysis approach has been used

to identify attack surface components from reported vulnerabilities and describe the automatic

approaches proposed for detecting attack surface components in source code. Then, in chapter 5,

current results are discussed. This includes data collection and experimental results that has been

performed to evaluate the model. Finally, chapter 6 summarizes this thesis and a list of publications

and proposed publications have been provided.



Chapter 2

Background

This chapter defines the main concepts used throughout this thesis to ensure that this work can be

understood by a broader audience.

2.1 Software Vulnerability and Vulnerability Databases

Software vulnerabilities are defects that affect a system’s intended security properties. These secu-

rity weaknesses are typically disclosed and discussed across online forums, and many other websites,

as well as tracked by vulnerability databases. A well-known vulnerability database is the Common

Vulnerabilities and Exposures (CVE). The Mitre corporation CVE is an open platform to list pub-

licly disclosed vulnerabilities [69]. An instance of vulnerability recorded in NVD is shown in figure

2.1.

As demonstrated in this excerpt, each entry in NVD includes a short description of the vulnerability

as well as a list of references that are links to other Web sites (such as issue tracking systems,

advisories, exploit databases, etc.) that may contain more details about the CVE instance. NVD

also indicates the software’s releases affected by the vulnerability. In this example, multiple openwrt

versions were affected. Some of the CVE instances may also include CWE IDs that indicate the

vulnerability type. The CWE tag refers to an entry from the Common Weakness Enumeration

(CWE) dictionary. CWE enumerates a list of common security weaknesses and categorizes them

based on different views to help practitioners in securing their applications [70]. As shown in

figure 2.2, it provides a concise description of the weakness, common consequences, likelihood of

6
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CVE-2020-7248

Description: libubox in OpenWrt before 18.06.7 and 19.x before 19.07.1 has a tagged binary data

JSON serialization vulnerability that may cause a stack based buffer overflow.

References:

https://github.com/openwrt/openwrt/commits/master

https://openwrt.org/advisory/2020-01-31-2

https://nvd.nist.gov/vuln/detail/CVE-2020-7248#range-4512438

Affected Software Configurations:

openwrt from 18.06.0 to 18.06.7, openwrt:19.07.0, openwrt:19.07.0:rc1, openwrt:19.07.0:rc2

Related CWE:

CWE-787: Out-of-bounds Write (source: NIST)

...

Figure 2.1: CVE-2020-7248: An instance of vulnerability recorded in NVD

CWE-787: Out-of-bounds Write

Description: The software writes data past the end, or before the beginning, of the intended buffer.

Extended Description: Typically, this can result in corruption of data, a crash, or code execution.

The software may modify an index or perform pointer arithmetic that references a memory location that is

outside of the boundaries of the buffer. A subsequent write operation then produces undefined or unexpected

results.

Common Consequences: Modify Memory; DoS: Crash, Exit, or Restart; Execute Unauthorized Code or

Commands

Likelihood Of Exploit: High

Applicable Platforms: C, C++

Example: In the following example, it is possible to request that memcpy move a much larger segment

of memory than assumed:

(bad code)

Example Language: C

int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,* else, return -1 to indicate an error*/

...}
int main() {...

memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));

... } . . . . . . .

Figure 2.2: CWE-787: An instance of a weakness in CWE dictionary

exploitation, demonstrative examples, and reference to other resources.

2.2 Grounded Theory

Grounded theory (GT) is a method originally described by Glaser and Strauss [29] in their book

titled ”The Discovery of Grounded Theory” [38]. The goal of GT is to generate theory from
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unstructured data. It is used to define new theories rather than test or validate existing theory.

GT is a suitable approach for investigating questions such as what’s going on here? [2].

GT has provided an extremely useful methodological approach in numerous areas such as medical

sociology [11], nursing [5], education [80] and management [47].

2.2.1 Versions of Grounded Theory

Glaser’s GT (classic or Glaserian GT)

Glaser’s version of GT is called Classic GT [28]. In this version of the GT research questions are

not defined at the beginning and they emerge from the research. In classic GT, literature review

should be delayed until the end of the analysis. It helps that the concepts defined in the literature

does not affect the emerging theories. This version includes three coding process:

• Open Coding: In open coding process all data are analyzed and define codes which are related

to the problem statement. Code is a phrase that summarizes the key points in a descriptive

way.

• Selective Coding: During selective coding core variables are defined based on the relationships

between codes defined in the open coding process. These core variables guide further data

collection.

• Theoretical Coding: It establishes the conceptual relationships between substantive codes and

define the final theory.

This approach is guided by asking questions like ”What do we have here?”

Strauss and Corbin’s GT(Straussian GT):

In this version of the GT the research questions might be asked upfront [18]. The literature can be

reviewed during the analysis process and concepts from the literature may be used. The Straussian

GT includes three coding process:

• Open Coding: In open coding process the key points are extracted from data and the codes

or are defined.
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• Axial Coding: In axial coding coded data are defined in new ways by identifying their rela-

tionship. It is like theoretical coding in the Glasert’s version.

• Selective Coding: During selective coding central categories are defined that all major cate-

gories can be linked to theses central categories

This approach is guided by asking questions like ”When,where, and under what conditions phe-

nomena occur?”

Charmaz’s constructivist GT:

In this version of the GT analysis begins by asking initial research questions which evolve throught

the research [12]. Charmaz considers the Glaser’s approach for delaying literature review as im-

practical and mentions that a literature review should be tailored which fit the GT process. This

version includes three coding process:

• Initial Coding: In open coding process, the data is examined and coding is performed.

• Focused Coding: In focused coding, important and frequent codes and categories are selected

and categorization is performed based on them.

• Theoretical Coding: During theoretical coding the relationship between categories are identi-

fied and a cohesive theory is defined.

This approach is guided by asking questions like ”What do the data suggest?”

2.3 Natural Language Processing

Natural Language Processing (NLP) is the sub-filed of Artificial Intelligence (AI). NLP is used to

make machine capable of identifying, processing, and understanding information in human lan-

guage. NLP has different application areas such as document summarization, sentiment analysis,

automatic speech recognition, machine translation, etc. It also has been used in software security

analysis such as vulnerability detection [104, 119]. In NLP approaches, first, a set of text prepro-

cessing steps are performed on text data then different embedding approaches are used to convert

the text into machine readable vectors. Text preprocessing includes following steps:
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• Tokenization: The first step in text processing is word identification. In tokenization phase

the text paragraphs are splitted into their word components.

• CamelCase Split: In this step, camelcase type strings are converted into a slice of words. For

instance, removePropertyChangeListener which is a method name is converted into ”remove

Property Change Listener”.

• Stop Word Removal: A stop word is a commonly used word in languages such as ’the’, ’in’,

’a’, etc. In this step, the stop words are removed because they does not provide meaningful

insights in text identification.

• Lemmatization: The text may contain different grammatical forms of a word. For instance,

the text may contain speak, speaking, spoke. Lemmatization technique reduces these forms to

a common base form which is called Lemma.

Once the required data is available in the right format, and level of quality, we start building

the Language model. The Language model understands and processes the textual data. Word

Embedding or Language Models are the algorithms which are able to convert texts into vectors. In

text processing, term weights are mainly used to represent the usefulness of a term. For instance,

Term Frequency (TF) is a weighting approach which is used to measure that how many times a

term is present in a document.



Chapter 3

Related Work

3.1 Vulnerability Detection

Most software security analysis approaches are focused on vulnerability detection. Vulnerability

discovery approaches can be categorized into two main categories:

3.1.1 Program Analysis Approaches

Static Analysis

Static analysis techniques have been used to detect software defects and vulnerabilities. They pro-

vide an Intermediate representation of programs such as Abstract Syntax Tree (AST), Control Flow

Graph (CFG) and Program Dependency Graph (PDG). The perform different data-flow, control-

flow analysis [118] and also rule matching [14] to detect defects or vulnerabilities. Static analysis

approaches detect vulnerabilities based on patterns of known vulnerabilities. Therefore, they are

not able to detect unseen vulnerabilities. Since they do through program path analysis, they have

complexity for large code bases and converting a program to symbolic formula is computationally

expensive. They also result in a large amount of false positives [58].

11
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Dynamic Analysis

Dynamic analysis approaches detect software vulnerabilities by providing different inputs and moni-

toring the run time behaviour of the program [48,75,97]. Fuzzing [97] is a dynamic analysis approach

that generate inputs to trigger security flaws. Dynamic analysis approaches cover some part of the

code and requires considerable effort to generate inputs.

Hybrid Approaches

Many studies have combined the properties of static and dynamic analysis to provide a more com-

plete solution [85,106]. However, all these approaches are difficult to scale up to large applications

and have path explosion problem.

3.1.2 Machine learning-based approaches

Pattern-based Approaches

These approaches provide an abstract representation of source code by tokens [48], tree or graph

structures [49]. They provide the same representation for vulnerable code fragments to characterize

vulnerabilities. They use code similarity algorithms [51] to identify vulnerabilities in programs.

Then, they use vector comparison [110] or approximate matching (ex. sub-graph matching [49]) to

detect vulnerable location of the code. These approaches uses program syntax, semantic or both

to create abstract representation. These approaches need different aspects of software information

such as syntactic, control-flow and data-flow information that makes them complex.

Deep Learning-based Approaches

Limited number of studies proposed deep learning based models to detect rich feature from source

code automatically. This will relieve human expert from defining and selecting features. These

approaches provide an intermediate representation of source code and then map it to a vector that

is used as input for deep learning model. Vuldeepecker [55] is a deep-learning based vulnerability

detection system that use code gadjets as intermediate representation. It extracts program slices

which are related to forward and backward API calls using data flow analysis. It uses the semantic

of the program to create intermediate representation. Sysevr [53] use the syntactic and semantic of
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the source code to create intermediate representation. The intermediate representation is created

based on program dependence graph. It considers the vulnerability related syntactic and semantic

information but it is dependent on another pattern based tool to extract vulnerability patterns.

Therefore, it has the limitations of pattern based approaches and it also has challenges of program

dependence graph analysis. Lin et al. [56] considered Abstract Syntax Tree as an intermediate

representation to provide input vector for deep learning models. They provide deep features at file

level and did not consider any dependency between files. Besides that, they did not consider any

vulnerability information to provide the representation.

Metric-based Approaches

Software metric is a measure of some property of a piece of software. Software metrics such as

complexity, code churn and developer activity metrics have been widely used for software fault

prediction [3, 10, 25, 32, 83, 111, 117]. In recent years, they have been used to predict vulnerability-

prone components [17,21,22,44,76,88,91,92,94,101]. All metric-based approaches except [22] used

supervised learning models. However, training data that are provided for vulnerability prediction

are highly imbalanced because of rare number of discovered vulnerabilities. Therefore, supervised

models can not perform well. Besides that, Jimenez et al. [44] showed that training data that is

provided for vulnerability prediction are based on unrealistic labelling and using realistic labelling

provides poor performance. All these studies except [22] used different sets of regular metrics

that have been used for fault prediction. However, they could not provide acceptable accuracy

for vulnerability prediction. Patrick et al. [71] showed that these metric-based approaches can not

perform well enough to provide actionable results.

Text Mining-based Approaches

Zhang et al. [119] and Walden et al. [104] utilized text mining to predict vulnerable location of

the code. They considered source code as text and tokenized the source code. Frequency of Items

considered as metrics for vulnerability prediction. This approaches also can not perform well from

the perspective of accuracy and takes a lot of time to calculate the frequency of tokens.
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Supervised Prediction Models

Most initial studies on software defect prediction used multiple releases of a project. They built pre-

diction models on a project and evaluated the model on the same project. Basili et al. [4] assessed

the usefulness of CK metrics [16] for predicting fault-prone classes in a management information

system. Using logistic regression, these object-oriented (OO) metrics could provide high perfor-

mance in fault prediction. Briand et al. [7] also evaluated the effectiveness of CK metrics and other

OO design metrics to predict faulty components in an industrial project. To evaluate the prediction

model they performed 10-cross validation. Gyimothy et al. [33] evaluated the applicability of the

CK metrics to predict the number of bugs in classes. Their experiment on seven versions of Mozilla

showed that CBO was the best metric in predicting the fault-proneness of classes. Nagappan et al.

used code churn, LOC, and code complexity metrics from Windows XP to estimate the post-release

failure-proneness of Windows Server 2003 [74]. Ostrand et al. [82] used code metrics such as LOC

and file change history to predict the number of faults in a multiple release software system. They

used a negative binomial regression model for fault prediction. Denaro et al. [19] used regression

models and data from the Apache 1.3 project to predict defects on the Apache 2.0 project. These

studies were conducted in the context of project defect prediction. However, these approaches are

unsuitable for projects that do not have historical data available to be used to train the prediction

models. Therefore, some researchers proposed cross-project defect prediction models.

In cross-project defect prediction studies, prediction models were created based on one or more

projects and the models were evaluated on other projects. Zimmerman et al. [121] found that

among 622 cross-project experiments only 3.4% worked. Turhan et al. [103] showed that cross-

company defect predictors could not outperform within-company defect predictors. Rahman et

al. [88] evaluated cross-project predictors based on cost-sensitive measures rather than usual classi-

fication measures. They showed that inspection of a smaller fraction of the code – in cross-project

defect prediction- is as good as within-project defect prediction and better than a random model.

Canfora et al. [9] proposed multi-objective cross-project predictor based on the Rahman et al.’s

study. They found that multi-objective predictors perform better than single-objective in cross-

project defect prediction. He et al. [34] and Herbold [35] used distributional characteristics of

datasets to select suitable training data for projects without historical data. Singh and Verma [93]

showed that cross-project predictors that were built using design metrics are good predictors for

software faulty modules. Panichella et al. [86] proposed a combined approach based on different

classifiers that improve the performance of cross-project predictors. Xia et al. [109], Ryu et al. [90]

and Li et al. [50] proposed methods to improve the performance of cross-project defect predictors.

Kamei et al. [46] proposed cross-project predictors that identify source code changes that have a
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high risk of introducing a defect. The review reveals that cross-project defect prediction studies

have challenges of selecting suitable training data because of heterogeneity [41] and used different

methods to improve the performance of these kinds of predictors.

Unsupervised Prediction Models

Unsupervised approaches try to detect defective components from unlabeled data. They used clus-

tering algorithms to capture software defect clusters. Zhong et al. [120] used k-means and Neural-

Gas clustering algorithms to cluster software modules into a small number of coherent group. Then,

the software engineering expert inspected different clusters to label them as either fault-prone or

not fault-prone. Their results showed that this unsupervised method achieves comparable classifi-

cation accuracies with other classifiers. Bishnu and Bhattacherjee [6] used k-means algorithm for

fault prediction when the fault data for modules are not available. They used Quad Tree-based

method and the concept of clustering gain to assign the appropriate initial cluster centers. They

showed that the performance of the Quad-tree based fault predictor is comparable with the super-

vised learning approaches. Park and Hong [87] built unsupervised models for fault prediction using

clustering algorithm. They tried to solve the issue of clustering algorithms that is the number of

clusters, by using Expectation–Maximization (EM) and Xmeans, which determine the number of

clusters automatically. Zhang et al. [114] proposed connectivity-based unsupervised classifier using

spectral clustering. They considered the connectivity among software entities based on similarity

between metric values. They showed that this unsupervised approach achieves impressive perfor-

mance in a cross-project defect prediction. In these studies, labeling the clusters as defect-prone

or non-defect-prone is a challenging problem. Zhang et al. [115] tried to solve the labeling issue

by using average metrics value in each cluster. They considered the cluster with higher average

value as defective. Fu and Menzies [26] and Yang et al. [113] used unsupervised approaches,

which are not based on clustering algorithms, for change-level defect prediction. Yan et al. [112]

used the same approach for file-level defect prediction. Despite the importance and ease of use of

unsupervised approaches, limited studies have been conducted in this area.

3.2 Attack Surface Analysis

Measurement of the attack surface is one of the elements in the design phase of Trustworthy

Computing Security Development Lifecycle (SDL) introduced at Microsoft in 2004 [57]. The phrase

software attack surface having been introduced only a year earlier by Howard [42]. Software security
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researchers used Howard’s concept of the attack surface to measure the overall security of a system.

After that, a variety of definitions are provided for the phrase attack surface:

• ”...union of code, interfaces, services, protocols, and practices available to all users, with a

strong focus on what is accessible to unauthenticated users.” [43]

• ”...the system’s actions that are externally visible to its users and the system’s resources that

each action increases or modifies.” [60]

• ”...a list of attack features: Open sockets, Open RPC endpoints, Open named pipes, Services,

etc.” [42]

This shows that there is not a generic definition for attack surface and researchers have different

views on what the phrase attack surface means. Besides that, the phrase has been used at different

granularity levels: [100]

• Function: The phrase attack surface has been used with methods, functions or individual lines

of code. For example, the attack surface defined as certain set of functions to be accessible

through the Application Program Interface (API).

• File: The phrase attack surface applied to source code files. For example, having source code

in certain files vulnerable to particular type of attack.

• Binary: The phrase attack surface with source code packages such as binaries, packages,

modules or components.

• System: The phrase attack surface is used when reasoning about entire systems. For example,

enabling certain features in an operating system such as Windows and Linux.

• Computer Network: The phrase attack surface is applied to entire networks. For example,

evaluating the notion of isolating certain set of sensitive hosts to a sub-network.

• Theoretical: The phrase attack surface is used in a theoretical capacity. For example, quan-

tifying the attack surface of an entity based on theoretical notions.

Limited studies have been proposed for identifying attack surface of a software system. Some of

these studies tried to approximate the attack surface using stack traces [98,99]. Theisen et al. [98]

have approximated the attack surface and run vulnerability prediction models on the attack surface

to improve the performance of vulnerability prediction models. They considered information in
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stack traces of windows crashes as approximation of attack surface. They mentioned that stack

traces can be approximation of attack surface because they contain both direct and indirect entry

point and control and data flow graph. They extracted binaries and source files from stack traces

and replicated Zimmerman et al. metric-based vulnerability prediction models(VPM) [122] on these

parts of the code. They could improve the performance of the VPM. Recall improved from 0.07 to

0.1 for binaries and from 0.02 to 0.05 for source files. Precision remained at 0.5 for binaries, while

improving from 0.5 to 0.69 for source files. In this study, they used stack traces for approximating

attack surface which is not available for all software systems. Howard et al [43] described attack

surface in three abstract dimensions which are targets and enablers, channels and protocols and

access rights. They defined targets and enablers as resources that attacker can use such as process

and data. For channels they considered two types of channels: message passing and shared memory.

They also considered account, privilege level and trust-relationship as access rights. They added

three attack vectors to the 17 attack vectors that Howard [42] identified for windows system. They

also proposed state machines to model the system and threats. Theses attack surfaces were used

to define a metric to compare two versions of a system. This study is system level because they

considered the services that run on a system. Manadhata and wing [4, 63] proposed an attack

surface metric to compare the security of two versions of a system. They proposed a model of

system and its environment using state machine and considered any component that can be used

to send/receive data to/from environment as an attack surface for Linux systems. They considered

methods of the system, channels and data items as resources. They used the model to identify the

accessible subset of resources (in terms of access rights ) that contribute to the system’s attack

surface. In this study, the attackability of a resource is defined based on its potential damage

and the effort required to acquire an access right level. Therefore, they defined different attack

classes based on the attackability level and defined that attack surface of the system in three

dimensiosn: data, channel, and system attackability. They validated the attack surface components

by performing regression test on Microsoft Security Bulletin (MSB) (to measure correlation between

attack surface components and severity of vulnerabilities) and also performing expert user surveys.

They also evaluated the attack surface metric for Firefox and Proftp patches and showed that for

each project, in order, 67 and 70 percent of patches reduced the attack surface. Huemann et al. [36]

defined the components of the attack surface for web applications. They proposed attack surface of

web application as a vector that has 22 dimensions. The dimensions are categorized in 7 groups and

a weight is considered for each components. They proposed Euclidean norm of the vector as attack

surface indicator. They evaluated the proposed metric on six applications. The results showed that

the indicator values are close for the sites that use similar technologies. For detailed analysis they

calculated intermediate square sums for the seven parameter groups to see which factors are more
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effective in attack surface of each web site. Nuthan and Meneely [73] proposed function and file

level attack surface metrics. They considered entry and exit points and also dangerous system calls

as attack surface components. They provided static and static+dynamic call graphs and calculated

the proximity and risky walk metrics based on the call graph. They proposed three proximity-

based metrics which are proximity to entry points, exist points and dangerous points. They also

computed Risky walk of a function/file is the PageRank of that node in the call graph that simulate

the behaviour of the attacker. They evaluated their metrics for Wireshark and FFmpeg in two

ways: First, they performed association between metrics and post-release vulnerabilities in NVD;

Second, they used the metrics to predict vulnerabilities at file/function level. The experimental

results showed statistically significant association with historical vulnerabilities and showed that

prediction models which are based on these attack surface metrics outperformed prediction models

which are based on SLOC and coupling metrics. These studies proposed attack surface metrics and

then evaluate their proposed metrics on vulnerability resources of one or two projects.

Theisen et al. [100] performed a survey on attack surface. They categorized the papers based

on define, supported use and unsupported use based on the definition of attack surface. They

categorized the attack surface into 6 categories which are methods, adversaries, flows, features,

barriers and reachable vulnerabilities. They mentioned that researchers should focus on one of

these categories based on their area of the research.

3.3 Grounded Theory in Software Engineering

Qualitative research methods have been increasingly employed in Software Engineering (SE) re-

search [20, 23]. Grounded Theory is one of the qualitative methods that is attracting particular

attention [2,40]. Some studies evaluated the challenges of using GT in SE and proposed approaches

to solve these challenges. Stol et al. [96] surveyed 100 articles in nine prominent SE journals that

used GT. They provided a comparison between three variant of the GT. Their evaluation results

showed that many SE studies do not generate a theory and do not clearly indicate which variant

of the GT is used. In this study, they enumerated substantial challenges related to applying GT

research in software engineering, including the proliferation of heterogeneous unstructured, semi-

structured and structured data. Hoda [37] proposed a method called Socio-Technical Grounded

Theory (STGT) to overcome the challenges of using GT in SE studies such as not acknowledging

the version of GT being applied, combining guidelines without rationales, etc. This study also

provided guidelines to provide ease of use of the method and improve the quality of outcome.
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Some other studies used GT in different areas of SE. Hoda and Noble [38] studied a theory of

software development teams transitioning to agile development. They evaluated how develop-

ment teams transition to agile practices by evaluation data of 18 development teams. Using GT

they found five dimensions for agile transition: software development practices transitions from

traditional to agile practices; team practices changes from manager-driven to team-driven; the

management approach changes from driving to empowering; the reflective practices changes from

being limited to becoming embedded as a means of guiding continuous improvement; and culture

changes from hierarchical to open. Other study [107] used GT to study how much up-front archi-

tecture design effort is enough in agile software development to decrease risk and chance of failure.

Danilova et al. evaluated the security warnings which shows security issues. They used GT to find

developers’ wishes concerning how and when they would like to receive security warnings. They

conducted the study with 33 participants from different fields of software development. They de-

fined the theory that context is the key to designing and presenting security warnings to developers.

They also found that developers’ preferences are based on the coding purpose, their characteristics,

team, and organization context.



Chapter 4

Methodology

4.1 Attack Surface Analysis

Attack surface refers to the amount of code, functionality, and interfaces of a system exposed to

attackers [43]. In this thesis, we rely on publicly available vulnerability repositories to identify

common attack surface components in software systems. Vulnerability databases describe vulner-

abilities using natural language and contain unstructured data. In order to identify attack surface

components, we use an approach based on the Grounded Theory (GT) [29, 31,95].

The Straussian GT is preferred over the Classic Glaserian GT approach [28,30], because the study

is led by research questions and existing concepts in the literature are used during the analysis [18,

89,96]. The Straussian grounded theory encompasses the following activities: (1) defining research

questions, (2) theoretical sampling, (3) open coding, (4) constant comparisons, (5) memoing, (6)

axial coding, and (7) selective coding. Figure 4.1 shows how the Straussian GT was applied. Over
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20



CHAPTER 4. METHODOLOGY 21

one year, the authors met weekly [72] to discuss, merge and finalize the codes, concepts, and

categories. All collected data, derived intermediate data that contains codes and concepts, and the

final attack surface categories are shared with the research community through a public GitHub

repository [1].

4.1.1 Research Questions

In Straussian grounded theory approach [18], research questions may defined upfront. In this study,

we consider broad and open-ended research questions for detecting attack surface components by

inspiring from the apparent attack surfaces of a house. For example, in a house, front and back

doors, windows, garage door, climbable trees or tables can be entry points and the attacker would

consider precious items in the house, such as safe box, as target. There might be some mechanisms

in building a house such as emergency stairs that could make the house more vulnerable. By consid-

ering similarities between a software system and a house from the perspective of a cyberattacker,

the core concepts which help in defining attack surface components are identified. We focus on

three research questions during the GT process and try to do coding in a way that can find theories

from data to answer these questions:

• RQ1: Where are the critical entry points in a software system that are used by attackers to get

in?

• RQ2: What assets or components in a software system are targeted by attackers?

• RQ3: How do attack surfaces emerge, and what types of mechanisms are utilized to reach the

targets?

4.1.2 Data Collection

Given the topic of interest of this study, we need access to software vulnerability reports, the

description of these vulnerabilities, in-depth analysis of how they occurred, as well as vulnerable

code snippets and their patches. Thus, publicly available vulnerability repositories are targeted

that contain different types of vulnerabilities and vulnerable code snippets.
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Theoretical Sampling

It is a data collection process that data is gathered in different stages based on the concepts derived

in each stage [12,18,96]. In theoretical data sampling, unlike conventional approaches, all data are

not collected at the beginning. Data collection and analysis is a circular process. Concepts that

are identified in each cycle guide the data collection process until the saturation occurs [96].

Data Sources

Vulnerability information is obtained from two publicly available vulnerability repositories: CWE

and CVE. CVE list and additional information provided in the National Vulnerability Database

(NVD) [77] are used in this study to extract vulnerability meta-data. Besides that, all information

pieces provided in CWE dictionary were reviewed to extract attack surface components.

Issue tracking systems were used to obtain further discussions about CVEs, exploit information to

identify how the vulnerability is being exploited, source code repositories to identify patches, and

further resources to extract other related information if existed. Figure 4.2 shows the information

model of the vulnerability data collected. The summary of the data sources used:

1 Retrieve vulnerabilities from MITRE and NVD: We obtained vulnerability reports

from MITRE CVE and NVD by consuming their public data feeds. Vulnerabilities disclosed in

CVE are assigned a unique Identifier (CVE ID), a concise description, a list of affected software

releases, and a list of references that can be used to obtain further details about the CVE, such

as Issue Tracking Systems.

2 Obtain vulnerability details from issue tracking systems: Although CVE reports

provide information about different attributes of a vulnerability, they do not contain enough

information to identify attack surface components at code level. Thus, we reviewed associated

issue tracking systems for vulnerabilities that are related to open source projects. We leveraged

the list of “references” to identify URLs to the corresponding bug entry of the issue tracking

system and we read the developers’ discussion about the problem, original code fragments, and

their proposed solution(s).

3 Gather patches from code repositories: To retrieve patches that fixed vulnerabilities,

we gathered the commits whose message explicitly mentioned the related bug id in the issue

tracking systems or directly referred to the associated CVE. These patches often contained more
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Figure 4.2: Information Model for the Collected Data

information about the vulnerability, and the files that were affected, i.e., modified, added or

removed during the fix. Identifying patches helped us to identify entry points, targets and

mechanisms at the code level.

4 Collect vulnerability details from other references: In addition to information that

are provided in CVE website, we analyzed all the URLs that are provided as references for

each vulnerability. These references include links to vulnerability reports, advisories or exploit

information. These references provide more information for attack surface analysis of the vul-

nerability.

5 Get vulnerability details from related CWEs We identified related CWEs for each

vulnerability. The CWEs helped us to understand the security issue of the CVE and extract

attack surface components.

Data Collection Process

Number of reported vulnerabilities in NVD has increased from 6500 in 2016 to above 18000 in

2020 [78]. We collected data form the vulnerabilities that have been reported from 2016 to 2020 to

cover different types of vulnerabilities. For a more comprehensive attack surface analysis, we also

collected data from Introduced During Design and Introduced During Implementation views [64,65]

in CWE [70].
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First stage: At the beginning, meta-data of 500 CVEs were collected by selecting 100 random CVE

ID from each year. For some of these vulnerabilities only a CVE description was available (without

any patch or advisory info), therefore, we were able to collect limited amount of information from

the descriptions of such vulnerabilities. During the first stage of data collection, coding process

was performed and initial concepts were extracted.

Second stage: During this stage, 200 CVEs were randomly selected from 2016-2020 but the areas

that were theoretically saturated [12] during the first stage of the analysis were omitted. Therefore,

we didn’t do coding for the CVEs that were related to vulnerabilities such as SQL injection, Buffer

Overflow, Cross-site scripting, and Command injection (36 CVEs), because reviewing more data

related to these types of vulnerabilities no longer provided new theoretical insights about attack

surface components at the end of the first stage. CVEs collected during the first stage, covered

limited number of CWE branches (70 CWE IDs), therefore we also collected data from Introduced

During Design and Introduced During Implementation views [64,65] in CWE (which totally contain

634 weaknesses after removing their common CWE IDs) to be more comprehensive. During our

analysis in the second stage, we defined all components that can be part of an Entry Point, Target

or Mechanism.

Third stage: In this stage, to identify new CVEs for emerged concepts that seemed incomplete and

needed further analysis, keyword-based selection of CVEs was performed. We selected 110 CVEs

related to these concepts. For example, for program architecture category we searched CVEs based

on ”Architecture”, ”Model”, ”Event Driven”, ”Master Slave”, ”Client Server”, etc.

4.1.3 Open Coding

Open coding process analyzes collected data for each vulnerability and annotates them with codes

(concepts) [18, 31]. In this step of the GT, the information gathered for each vulnerability (de-

scription, discussions, exploitation mechanism, and patches, etc.) are reviewed, key points that

are related to Entry Point, Target or Mechanism are annotated, and codes are assigned to the

annotated key points. Code is a phrase that summarizes the key point in a descriptive way. De-

fined codes are assigned to the three general groups of attack surface components based on their

relevance. Figure 4.3 shows the data that was collected for CVE-2020-7248. In addition to the

information available in MITRE website, data were collected from its security advisory (for ex-

ploit information), related GitHub repository (for source code), and CWE. The key points that are

highlighted in red were extracted from both source code and descriptions. Codes which are defined

based on the identified key points are assigned to the Entry Point, Target, and Mechanism:
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CVE-2020-7248

Description: libubox in OpenWrt before 18.06.7 and
19.x before 19.07.1 has a tagged binary data JSON
serialization vulnerability that may cause a stack
based buffer overflow.
References:
https://github.com/openwrt/openwrt/commits/master
https://openwrt.org/advisory/2020-01-31-2
Related CWE:
CWE-787: Out-of-bounds Write
...

Codes: Entry points:“...”; Targets:“stack mem-
ory”, “memory manipulation statement”; Mecha-
nisms: “Serialization/Deserialization”.

Security Advisory 2020-01-31-2

Description: Possibly exploitable vulnerability exists
in the libubox library of OpenWrt, specifically in the
parts related to JSON conversion of tagged binary
data, so called blobs. An attacker could possibly
exploit this behavior by providing specially crafted
binary blob or JSON which would then be trans-
lated into blob internally. This malicious blobmsg
inputblobmsg input would contain blob attribute
holding large enough numeric value of type dou-
ble which then processed by blobmsg format json
would overflow the buffer array designated for
JSON output allocated on the stack. The libubox
library is a core component in the OpenWrt project
and utilized in other parts of the project. Those inter-
dependencies are visible by looking up of the above
mentioned vulnerable blobmsg format json func-
tion in the project’s LXR[1], which reveals references
in netifd, procd, ubus, rpcd, uhttpd. .... libubox in
OpenWrt before 18.06.7 and 19.x before 19.07.1 has a
tagged binary data JSON serialization vulnerability
that may cause a stack based buffer overflow.
Exploit Info:
In order to exploit this vulnerability, a malicious
attacker would need to provide specially crafted bi-
nary blobs or JSON input to blobmsg format json,
thus creating stack based overflow condition
during serialization of the double value into
the JSON buffer. It was verified, that its pos-
sible to crash rpcd by following shell com-
mand: ubus call luci getFeatures {́ ”banik”:
00192200197600198000198100200400.1922 }´
References:
https://lxr.openwrt.org/ident?i=blobmsg format json
https://github.com/openwrt/packages/blob/master/
utils/auc/src/auc.c

Codes: Entry points:“service request”, “ubus com-

mand” ,“binary blob/json (input data)” , “procedure

call”, “message handler”; Targets:“stack memory”,

“buffer array”; Mechanisms:“JSON Serialization”.

Openwrt Github

packages/utils/auc/src/auc.c:
...
39 #include <libuboxvlist.h>
40 #include <libuboxblobmsg json.h>
41 #include <libuboxavl-cmp.h>
. . .
679 DPRINTF(”status code: %d\n”, cl� >status code);
680 DPRINTF(”headers:\n%s\n”,blobmsg format json indent
(cl� >meta, true, 0));
681 blobmsg parse(header policy, H MAX, tb,
blob data(cl� >meta), blob len(cl->meta)); ...

CWE-787

Description: The software writes data past the end,
or before the beginning, of the intended buffer.
Example:
. . . ..
In the following example, it is possible to request that
memcpy move a much larger segment of memory
than assumed:
(bad code)
Example Language: C
int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable
memory, * else, return -1 to indicate an error */
...}
int main() {...

memcpy(destBuf, srcBuf, (returnChunk-
Size(destBuf)-1));
...
}
. . . . . . .

Codes: Entry points:“...”; Targets:“memory copy

statement”, “memcpy() function”; Mechanisms: “Se-

rialization/Deserialization”.

OpenWrt.org Cross Reference

libuboxblobmsg json.h
. . . .
40 static inline char *blobmsg format json indent(struct blob attr *attr,
bool list, int indent)
41 {
42 return blobmsg format json with cb(attr, list, NULL, NULL, indent);
43 } ...
libuboxblobmsg json.c
322 char *blobmsg format json with cb(struct blob attr *attr, bool list,
blobmsg json format t cb, void *priv, int indent)
323{...
336 blobmsg format json list(&s, blobmsg data(attr),
blobmsg data len(attr), array);
354 ...}
static bool blobmsg puts(struct strbuf *s, const char *c, int len)
130 {
131 size t new len; 132 char *new buf;
133
134 if (len <= 0)
135 return true;
136
137 if (s� >pos + len >= s� >len) {
138 new len = s� >len + 16 + len;
139 new buf = realloc(s� >buf, new len);
140 if (new buf)
141 return false;
146 ...
147 memcpy(s� >buf + s� >pos, c, len);
148 s� >pos += len;
149 return true;

150 }

Codes: Entry points: “binary blob(input data) ”;

Targets: “stack memory”, “memory copy statement”;

Mechanisms: “Serialization/Deserialization”.

Fig. 3. Open Coding of data that are collected for a CVE-2020-7248

key point in a descriptive way. Extracted codes are categorize
to the three general groups of attack surface components (entry
points, targets, and the programming mechanisms) based on
their relevance. Fig.3 shows the data collected for CVE-2020-
7284. For this CVE, in addition to information available in
MITRE website, we could extract other information such
as security advisory (which contained exploit information),
Github repository, another source of code, and associated
CWE. The key points that are highlighted in red extracted
from both code and descriptions: tagged binary data JSON
serialization, stack based buffer overflow, JSON conversion
of tagged binary data, blobs, crafted binary blob or JSON,
blobmsg input, ..., intended buffer, memcpy, memcpy(destBuf,
srcBuf, returnChink-Size(destBuf)-1));. These key points are
summerized to codes based on their relevance to the reseaarch
questions:

• Entry points: service request, ubus command ,binary
blob/json (input data) , procedure call, message handler;

• Targets: stack memory, memory manipulation statement,
memcpy() function, buffer array;

• Mechanisms: Serialization/Deserialization, JSON serial-

ization;
Identified codes are constantly refined during the open cod-
ing process, leading to core categories and their associated
concepts. The core categories, which are the attack surface
components, are the main concern or problem observed in the
phenomena under study.

D. Constant Comparisons

In GT approach, the gathered data are analyzed by means
of a process called constant comparisons [26]. In this process,
we constantly compared the code emerged from vulnerability
report analysis with existing codes to observe commonal-
ities and differences. Codes that are conceptually similar
are grouped to produce higher level of abstraction called
concept. For instance, in Fig.3 and Fig.4 the key points for
targets are similar and they have been assigned code such
as ”memory copy statement” and ”memory write statements”.
They are conceptually similar we can categorize them in a
new ”memory manipulation statements” concept in targets. It
shows that lines of code that do memory manipulation can
be target of attacks. We annotated vulnerability reports using

Figure 4.3: Open coding of data collected for CVE-2016-9424

• Entry Point : service request, ubus command, binary blob/json (input data);

• Target : stack memory, memory manipulation statement, memory copy statement, memcpy()

function, buffer array;

• Mechanism: Serialization/Deserialization, JSON serialization.

Figure 4.4 also shows the data collected for the other CVE (CVE-2016-9424), highlighted key

points, and the defined codes. Codes which are defined for this CVE during open coding process

are:

• Entry Point : tag attribute, crafted HTML page, functions that get tag attribute;

• Target : heap, array access, write memory, memory buffer;
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CVE-2016-9424

Description: An issue was discovered in the Tatsuya Kinoshita w3m fork before 0.5.3-31. w3m
doesn’t properly validate the value of tag attribute, which allows remote attackers to cause a denial
of service (heap buffer overflow crash) and possibly execute arbitrary code via a crafted HTML
page.
References:
https://github.com/tats/w3m/blob/master/ChangeLog; https://github.com/tats/w3m/issues/12
Related CWE: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

Codes: Entry points:“HTML tag attribute”, “crafted HTML page (input data)”; Targets:“heap

buffer”; Mechanisms: “...”.

W3M Github Issues 2020-01-31-2

heap out of bound write due to negative array index 12:
How to reproduce:
$ echo -e ’ <table><>\x00 ><select int selectnumber=90000000000>’ | ./w3m �
Ttext/html � dump>/dev/null Segmentationfault
$ echo -e ’ <table<>\x00><select int selectnumber=-90000>’ | ./w3m � Ttext/html �
dump>/dev/null Segmentationfault
Here, selectnumber could be negative, or positive but overflows to negative.
The corresponding code snippet:
6033 if (parsedtag get value(tag, ATTR SELECTNUMBER, &n select)
6034 && n select <max select) {
6035 select option[n select].first = NULL;
n select is the selectnumber mentioned above. It will crash at line 6035.
Similar code pattern at line 6015:

if (parsedtag get value(tag, ATTR TEXTAREANUMBER,&n textarea)
&& n textarea <max textarea) {
textarea str[n textarea] = Strnew();

this is found by afl-fuzz

Codes: Entry points:“tag attribute ”, “functions that get tag attribute”; Targets:“array access”, “write

memory”; Mechanisms:“...”.

W3M Github Changelog

2016-08-17 Tatsuya Kinoshita tats@debian.org>
....
* file.c, form.c:
Prevent negative array index for selectnumber and textareanum-
ber.
Bug-Debian: https://github.com/tats/w3m/issues/12 [CVE-2016-
9424]
....

Codes: Entry points: “...”; Targets: “array access”; Mecha-

nisms: “...”.

CWE-119

Description: The software performs operations on a memory
buffer, but it can read from or write to a memory location
that is outside of the intended boundary of the buffer.
Example:
. . . ..
The following example asks a user for an offset into an array to
select an item.
Example Language: C
int main (int argc, char **argv) {
char *items[] = ”boat”, ”car”, ”truck”, ”train”;
int index = GetUntrustedOffset();
printf(”You selected %s”, items[index-1]);
}
The programmer allows the user to specify which element in the
list to select, however an attacker can provide an out-of-bounds
offset, resulting in a buffer over-read (CWE-126).
. . . . . . .

Codes: Entry points: “...”; Targets: “memory buffer”, “array

access”, “write memory statement”; Mechanisms: “...”.

Fig. 4. Open Coding of data that are collected for a CVE-2016-9424

either existing codes or creating new codes (if existing codes
are not suitable for vulnerability report which is analyzed). For
instance, in Fig.4 the entry points related to CVE-2016-9424 is
”HTML tag” which does not exist in previous analyzed CVE
(CVE-2020-7248 in Fig.4). Therefore, we create new code
for it. During the analysis of vulnerability reports, we also
compared the existing concepts/categories against vulnerabil-
ity reports to evolve categories and data interpretations. The
goal of the open coding and constant comparison analysis is
to identify the core concepts and categories related to attack
surface.

E. Memoing

Memoing is performed throughout the entire process of
data coding and categorization. Memos are notes, diagrams,
or sketches that aid researchers to describe their preliminary
ideas about properties and conceptual relationship between
categories. Then, the researcher has stacks of memos in his
or her hands and put them in an organized order by doing
memo sorting [26]. In this study, we used mind map diagrams
to show the relationship between codes/concepts to identify
core categories.

F. Axial coding:

In this step, we put codes in new ways by identifying the
relationship and links between them [24], [26]. We categorize

Fig. 5. Mindmap example for target

Fig. 6. Mindmap example for entry points

the codes based on their relationship into higher level con-
cepts. We perform axial coding for each research questions
separately. For instance, for Fig.3 and Fig.4, we can categorize
the emerged codes for target into two higher level concepts:
1) Application source code (e.x. memory manipulation state-
ments), and 2) Application resource (e.x. memory (stack, heap,
and etc))5. We can also define two categories for entry points:
1) Input data (e.x. JSON, HTML tag, and etc), and 2) Part of
application code that receive inputs (e.x. functions that get tag
attribute)6.

Figure 4.4: Open coding of data collected for CVE-2020-7248

• Mechanism: -

Identified codes are constantly refined during the open coding process, leading to core categories

and their associated concepts.

4.1.4 Constant Comparisons

Vulnerability reports were annotated either by using the existing codes or creating new ones (if

existing codes were not suitable for a newly analyzed vulnerability report). During the analysis of

vulnerability reports, the existing concepts/categories were compared against vulnerability reports

to evolve categories and data interpretations. The overall goal of the open coding and constant

comparison analysis is to identify the core concepts and categories related to the attack surface.
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Target
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Application Resource Memory

Memory Manipulation
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Write Memory

Copy Memory
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Figure 4.5: Mindmap example for Targets

4.1.5 Memoing

Memos are notes, diagrams, or sketches that researchers use to describe their preliminary ideas

about the concepts and conceptual relationship between categories. After memoing, the researcher

has stacks of memos in hand and puts them in an organized order by doing memo sorting [18].

Memoing is performed throughout the entire process of data coding and defining taxonomies. In

this research, we used mind map diagrams to show the relationship between codes/concepts to

identify core categories.

4.1.6 Axial Coding

During axial coding, new codes are defined as a result of identifying new relationships [18, 96]

between defined codes and categorizing them into higher level concepts. Axial coding was performed

based on the codes/concepts defined for each core category separately. For instance, as shown in

Figure 4.5, codes gathered from CVE-2020-7248 (Figure 4.3) and CVE-2016-9424 (Figure 4.4) for

the Targets category were categorized into two higher level concepts: 1) Application Code (Memory

Manipulation, Array Access) and 2) Application Resource (Memory). Three higher level concepts

were defined for the Entry Points: 1) Input data (e.x. BLOB/JSON, HTML Page, and HTML

Tag), 2) Methods Receive Inputs, and 3) Service/Server Requests (Figure 4.6). In this step, CVE

instances were revisited in order to further refine their codes and attack surface components.

Data Analysis Instruments

For the GT analysis, we developed a custom-built web-based tool to support our coding activi-

ties. This tool presents the information retrieved for each vulnerability report, codes, and defined

concepts.
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Service Request

 HTML Page

Ubus Command

Figure 4.6: Mindmap example for Entry Points

4.1.7 Selective Coding

In the last step of the GT analysis, final categories are defined by sorting the defined concepts

and associating them with the central branches, i.e., the Program (P), Code (C), System (S) and

Network (N) [96]. During this process, we integrate previously identified concepts and structure

them into higher level of abstraction (theories) if needed. Selective coding re-organizes categories

developed during axial coding and define final taxonomies for entry point, target and mechanism.



CHAPTER 4. METHODOLOGY 29

4.2 Attack Surface Detection

4.2.1 Term weighting Approach

This section discusses an approach based on Natural Language Processing (NLP) to automatically

identify attack surface components in source code (to answer RQ4). The proposed approach relies on

the frequent terms related to each attack surface component to identify attack surface components

in source code. The proposed approach has been evaluated for Java programming language. In

order to identify frequent terms related to each attack surface components a concise description

of the components are required. To collect this information, we rely on Standard Java APIs. We

collect all methods of the standard java classes in Oracle database [81] and manually review them to

identify methods which are related to each component. The total number of methods are 38,568.

For each method we considered Class Name, Identifiers and Return Type, Method Name, Input

Parameters, and Description of the Method as features that describe it. Figure 4.7 and 4.8 show

some of the sample methods collected to describe the Read Input Stream component defined in the

entry point category and the Execute SQL Command component defined in the target category.

To evaluate the model, for each attack surface components, sample files collected from GitHub

repository. Methods in each file are extracted and labeled. For each attack surface component

label ”0” shows the methods that are not associated with that attack surface component and label

”1” shows the methods which are associated with that attack surface component. For instance,

method getSoundbank which is shown in Figure 4.9 is considered as positive for Input Stream File

component because it reads from AudioInputStream in line 8 and 15. Method runTest in the

Figure considered as positive function for Execute SQL Command component since it executes

SQL queries in lines 4, 5, 16, and 23.

Training

All data is preprocessed using standard information retrieval techniques (tokenization, removing

stop words, camel case split, and lemmatization) and each API description is transformed into

a vector of terms. The training phase takes a set of API descriptions for each attack surface

component as input, and produces a set of indicator terms for that attack surface component.

These terms are considered as representative of the attack surface component. For example, a

term such as stream, is found more commonly in the APIs related to the Input Stream File. More

formally, let c be a specific attack surface component such as Input Stream File. Indicator terms
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Entry Point ->Input Stream File

DataInputStream byte readByte() See the general contract of the readByte method of DataInput.

DataInputStream char readChar() See the general contract of the readChar method of DataInput.

DataInputStream double readDouble() See the general contract of the readDouble method of DataInput.

DataInputStream float readFloat() See the general contract of the readFloat method of DataInput.

FileReader FileReader(File file) Creates a new FileReader, given the File to read from.

FileReader FileReader(FileDescriptor fd) Creates a new FileReader, given the FileDescriptor to read from.

FileReader FileReader(String fileName) Creates a new FileReader, given the name of the file to read from.

FileImageInputStream int read() Reads a single byte from the stream and returns it as an int between 0

and 255.

FileImageInputStream int read(byte[] b, int off, int len) Reads up to len bytes from the stream, and stores

them into b starting at index off.

Streamable void read(InputStream istream) Reads data from istream and initalizes the value field of the

Holder with the unmarshalled data.

StreamSource InputStream getInputStream() Get the byte stream that was set with setByteStream.

StringHolder void read(InputStream input) Reads the unmarshalled data from input and assigns it to the

value field of this StringHolder object.

StringSeqHolder void read(InputStream i) Reads data from istream and initalizes the value field of the

Holder with the unmarshalled data.

StringValueHelper Serializable read value(InputStream istream)

...

Figure 4.7: Description of Java APIs related to Input Stream File component in entry point cate-

gory

of component c are mined by considering all API descriptions that are related to that component.

Each term t is assigned a weight score Prc(t) that corresponds to the probability that a particular

term t identifies the attack surface component c. Prc(t) is defined as:

Prc(t) =

∑
APIdesc∈c freq(t, APIdesc)

Nc
∗ Nc(t)

N(t)
∗ Nc(t)

Nc
(4.1)

where Nc(t) is the number of APIs related to attack surface component c that contain term t, N(t)

is total number of APIs contain term t, Nc(t) is number of APIs related to attack surface component

c and freq(t, APIdesc) is frequency of term t in APIdesc c. After computing the probability of

the terms top 0.1 percent of the terms are considered as indicator term for each attack surface

component.
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Target ->Execute SQL Command

PreparedStatement boolean execute() Executes the SQL statement in this PreparedStatement object, which

may be any kind of SQL statement.

PreparedStatement default long executeLargeUpdate() Executes the SQL statement in this PreparedState-

ment object, which must be an SQL Data Manipulation Language (DML) statement, such as INSERT,

UPDATE or DELETE; or an SQL statement that returns nothing, such as a DDL statement.

PreparedStatement ResultSet executeQuery() Executes the SQL query in this PreparedStatement object

and returns the ResultSet object generated by the query.

RowSet void execute() Fills this RowSet object with data.

Statement boolean execute(String sql) Executes the given SQL statement, which may return multiple results.

Statement boolean execute(String sql, int autoGeneratedKeys) Executes the given SQL statement, which

may return multiple results, and signals the driver that any auto-generated keys should be made available

for retrieval.

Statement boolean execute(String sql, int[] columnIndexes) Executes the given SQL statement, which may

return multiple results, and signals the driver that the auto-generated keys indicated in the given array

should be made available for retrieval.

Statement int[] executeBatch() Submits a batch of commands to the database for execution and if all

commands execute successfully, returns an array of update counts.

Statement default long[] executeLargeBatch() Submits a batch of commands to the database for execution

and if all commands execute successfully, returns an array of update counts. ...

Figure 4.8: Description of Java APIs related to Execute SQL Command component in target tax-

onomy

Classification

During the classification phase, the indicator terms computed in training phase are used to evaluate

the likelihood Prc(m) that a given method m is associated with the the attack surface component

c. The classification score that method m is associated with attack surface component c is defined

as follows:

Prc(m) =

∑
t∈f∩Ic Prc(t)∑
t∈Ic Prc(t)

(4.2)

where Ic is indicator terms for attack surface component c. The probability score is computed as

the sum of the term weights of all indicator terms of attack surface component c that are contained

in method m divided by the sum of the term weights for all attack surface component c. The

probabilistic classifier for a given attack surface component c will assign a higher score Prc(m) to

method m that contains several strong indicator terms of the component c.

Methods are considered to be related to a given attack surface component c if their classification

score is higher than a specific threshold.
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public Soundbank getSoundbank(AudioInputStream ais){

try {

byte[] buffer;

if (ais.getFrameLength() == -1) {

ByteArrayOutputStream baos = new ByteArrayOutputStream();

byte[] buff = new byte[1024 - (1024 % ais.getFormat().getFrameSize())];

int ret;

while ((ret = ais.read(buff)) != -1) {

baos.write(buff, 0, ret);

ais.close();

buffer = baos.toByteArray();

} else {

buffer = new byte[(int) (ais.getFrameLength() * ais.getFormat().getFrameSize())];

new DataInputStream(ais).readFully(buffer);

}

ModelByteBufferWavetable osc = new ModelByteBufferWavetable(

new ModelByteBuffer(buffer), ais.getFormat(), -4800);

ModelPerformer performer = new ModelPerformer();

performer.getOscillators().add(osc);

SimpleSoundbank sbk = new SimpleSoundbank();

SimpleInstrument ins = new SimpleInstrument();

ins.add(performer);

sbk.addInstrument(ins);

return sbk;

} catch (Exception e) {

return null;

}

}

private static void runTest() {

try (var conn = getConnection("jdbc:derby://localhost:1527/COREJAVA", "Issac", "123456");

var statement = conn.createStatement()) {

statement.executeUpdate("CREATE TABLE Greetings (MESSAGE_TEXT VARCHAR(20) )");

statement.executeUpdate("INSERT INTO Greetings VALUES ('HELLO - WORLD!')");

try (ResultSet resultSet = statement.executeQuery("SELECT * FROM Greetings")) {

while (resultSet.next()) {

var curCellValue = resultSet.getObject(1, String.class);

//resultSet.getString(1);<!>getXXX

System.out.println(curCellValue);

}

}

var preparedStatement = conn.prepareStatement("SELECT * FROM Greetings WHERE 

MESSAGE_TEXT = ?", Statement.RETURN_GENERATED_KEYS);

preparedStatement.setString(1, "HELLO - WORLD!");

var result = preparedStatement.executeQuery();

while (result.next()) {

System.out.println(result.getString(1));

}

result.close();

preparedStatement.close();

statement.executeUpdate("DROP TABLE Greetings");

} catch (SQLException sqlException) {

sqlException.printStackTrace();

}

}
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Figure 4.9: Sample functions related to input stream/file and execute SQL command attack surface

components components

Evaluation

To answer RQ5 Precision, Recall, and Fscore in Equations 4.3, 4.4, and 4.5 were used as performance

measures. In Equation 4.3 , precision represents the quality of a positive prediction made by the

model. In Equation 4.4 represents the percentage of positive methods associated with the attack

surface component that are correctly identified. Fscore is harmonic mean of Precision and Recall.

Precision =
TP

FP+TP
(4.3)

Recall =
TP

FN+TP
(4.4)

Fscore = 2 ∗ Precision*Recall

Precision+Recall
(4.5)

4.2.2 CodeBERT NLI Approach

Natural Language Inference (NLI) is a task that involves assessing the relationship between two

components: the premise and the hypothesis. The primary objective of NLI is to determine whether

the premise entails, contradicts, or remains neutral towards the hypothesis. In our study, we
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Figure 4.10: CodeBERT NLI model

formulate the identification of attack surface component into an entailment task, and utilize an

NLI approach to tackle this (to answer RQ6). To this end, we train the model with a source

code and a description of the attack surface component. The model’s objective is to determine

whether the given source code contains the attack surface component or not. The output of the

model is binary, with ”True” indicating the presence of the component and ”False” representing

its nonexistence.

In this model, we utilized CodeBERT [24], a language-source code pretraining model. CodeBERT

has been trained on large corpus of code and code-related text, which allows it to learn represen-

tations that capture both syntactic and semantic aspects of code. The model and preprocessing

steps are shown in figure 4.10.

In order to provide the model with appropriate data format, we adopt a data preparation process

that conforms to the format required by the model. This transformation of the input data is

depicted in Equation 4.6:

[Code,AttackComponentDescription] → [CLS]Tcode[SEP ]TAtt. Comp. Desc.[SEP ]

In Equation 4.6, the tokenizer takes the raw input, which includes both the source code and its

corresponding component description. Table 4.1 shows the description provided for each attack

surface components. Through this tokenization process, the model generates two token sequences:

Tcode and TAtt. Comp. Desc.. These sequences are accompanied by a [CLS] token at the beginning

and a [SEP] token to separate the code from the text description. This resulting representation is
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Attack Surface Com-

ponent

Description

Input stream file This method reads data from inputstream, istream or file.

Execute OS Command This method executes a command or run, submit, cancel, or stop a task or

service on operating system (OS).

Execute SQL Command This method executes a sql query or sql statement (insert, selete, update) or a

batch of commands and return results or fill row sets.

User Input This method reads, gets, scans user input from console via reader or scanner.

Serialization Deserialization This method marshals or serailizes data objects or unmarshals or deserializes

them to an object such as xml tree.

Read Socket This method reads a sequence of bytes form socket buffer, channel, or input

stream.

OS Signal Handler This method handles system signals and interrupts such as aquire, read, signal,

or await for lucks.

Weak-Encryption This method does encoding or decoding by weak encription algorithm such

base64, sha1, md5, dsa using hashing or encription algorithms (such as cipher

or digest classes).

Reflection This method finds or lookups classes or interfaces. instantiates new objects,

load classes, invokes methods or constructors and get or set field values in

classes using reflection.

None This method does not contain any attack components.

Table 4.1: Attack surface components’ description

then fed into the pretraining model for further processing. In order to adapt the pretrained model,

we considered three hidden layers with ReLU activation function and an output layer with Sigmoid

activation. Afterward, the processed samples are passed to the pretraining model, which generates

vector representations for each sample. These representations are then inputted into a feed-forward

model to perform the inference task. During training, the labels associated with each model is used

as the groundtruth, and will be utilized to train the model. The CodeBERT NLI model produces

a binary output, represented by 0 or 1, signifying the entailment relationship between the given

source code and the corresponding textual attack component description.

The CodeBERT NLI Approach was implemented using python 3.8 and torch version 0.14.0. All

parameters are shown in Table 4.2. As a base model we use RobertaModel using codebert-base as

pretrained model. We conduct all the experiments on a 2.8 GHz Quad-Core Intel Core i7 CPU

with an Intel Iris Plus Graphics 655 1536 MB.
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Parameter Value

N EPOCHS 10

HIDDEN DIM 768

batch size 16

max seq length 512

Table 4.2: CodeBERT NLI implementation parameters

4.2.3 Using ChatGPT to Identify Attack Surface Components

Chat Generative Pre-Trained Transformer (ChatGPT) [79], released by OpenAI in November 2022,

has become one of the most advanced language models in existence, with numerous applications [79].

It is a conversational large language model (LLM) based on Reinforcement Learning from Human

Feedback (RLHF). ChatGPT attracted widespread attention from software engineering community

to leverage its capabilities in solving problems related to code and security. Cheshkov et al. [15]

evaluated the capability of ChatGPT model in identifying vulnerabilities. Ma et al. [59] evaluated

the capability of ChatGPT in understanding the syntax, static, and dynamic behaviour of the

code . Xia and Zhang [108] leverage ChatGPT model for path generation and program repair.

Tian et al. [102] showed that ChatGPT is effective in code generation, program repair, and code

summarization tasks .

In order to evaluate the performance of ChatGPT in identifying different attack surface compo-

nents (to answer RQ8), we used the API provided by OpenAI to send requests to ChatGPT. These

prompts were designed to ask whether the Java method contains a specific attack surface com-

ponent, with the goal of generating a ”Yes” or ”No” response from both. Table 4.3 shows the

questions that are asked from ChatGPT for identifying the methods that contain attack surface

components. For some of the methods, ChatGPT didn’t provide the explicit ”Yes” or ”No” re-

sponse. Therefore, we manually reviewed this responses to see if the ChatGPT response is ”Yes” or

”No”. Table 4.4 describe sample questions asked from ChatGPT and their related responses. First

example, shows the deleteStudentfromDM method that executes an update sql query. Based on the

question related to Execute SQL Command that has been asked, ChatGPT clearly answers ”Yes”

and explain the method. The second example is a deserialize() method. Based on the question

related to Serialization Deserialization that has been asked ChatGPT answers ”No” but in the

description it explains that it is a deserialization method for byte array. This example shows that

ChatGPT responses are very sensitive to the questions that we ask. It asnwers ”No” based on the

first part of question. The third example is textDrawableMazeArch() method that was asked from
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Attack Surface Com-

ponent

Prompt

Input stream file Does this code snippet directly read data from fileinput-

stream,inputstream, istream, file or any other type of input stream?

Execute OS Command Does this method execute a command, task, or service or execute, run, submit,

cancel, shutdown, or stop a task, thread or service on operating system (OS)?

Execute SQL Command Does this method execute a sql/database query or statement (insert, selete,

update) or a batch of sql commands and return results or fill row sets?

User input Does this method directly read, get, scan user input from console via reader or

scanner?

Serialization deserialization Does this method directly marshal or serailize data objects or unmarshalor

deserialize them to an object such as xml tree?

Read socket Does this method read a sequence of bytes form socket buffer, channel, or socket

stream, or connect to or open any network channel?

Os signal handler Does this method handle system signals and interrupts such as aquire, read,

signal, or await for lucks or doing synchronization?

Weak-encryption Does this method perform encoding, decoding, encryption, or decryption using

weak encription algorithm such base64, sha1, md5, dsa using hashing or en-

cription algorithms?

Reflection Does this method directly perform code reflection such as lookup classes/in-

terfaces, invokes class methods/constructors and get or set class fields using

reflection?

Table 4.3: Prompts asked from ChatGPT for each attack surface component

ChatGPT if it is related to OS Signal Handler class or not. ChatGPT answers ”Yes” followed by

”... does not directly handle system signals ...”. The forth example is getTotalAmbulance() method

that is related to Weak-Encryption attack surface component because it uses Base64 algorithm.

ChatGPT does not answer ”Yes” or ”No” and answer the question by explaining it. Therefore, we

did not only rely on ”Yes” or ”No” part of responses and checked the description of the answer.

For instance, for the third example we considered the response of ChatGPT as ”No’ for evaluating

the performance of ChatGPT in identifying attack surface components.
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Prompt Response

Q: Does this method execute a sqldatabase query or statement (insert, select, update) or a batch of sql

commands and return results or fill row sets?

pub l i c s t a t i c void deleteStudentFromDB ( St r ing lastname St r ing name) {
St r ing d e l e t e = ”DELETE FROM ” + Constant .STUDENT TABLE +

” WHERE lastname = ’” + lastname + ” ’ and name = ’” + name + ” ’”

try {
PreparedStatement preparedStatement = getConnection ( ) .

prepareStatement ( d e l e t e )

preparedStatement . executeUpdate ( )

} catch ( SQLException | ClassNotFoundException e ) {
e . pr intStackTrace ( )

}}

R: Yes, the provided method ex-

ecutes a SQL database query. It

specifically performs a DELETE

operation on the specified ta-

ble (Constant.STUDENT TABLE)

based on the provided lastname and

name values. The deleteStudent-

FromDB method does not return

any results or fill row sets; it sim-

ply executes the delete statement to

remove the matching rows from the

database table.

Q: Does this method directly marshal or serailize data objects or unmarshalor deserialize them to an

object such as xml tree?

pub l i c ObjectInputStream d e s e r i a l i z e (ObjectName name byte [ ] data )

throws Operat ionsExcept ion

{
re turn mbeanServer \ . d e s e r i a l i z e (name data )

}

R: No, the method you provided

does not directly marshal or seri-

alize data objects. Instead, it is

used to deserialize or unmarshal a

byte array representing an object,

using an ObjectInputStream. The

method takes an ObjectName and

a byte array as parameters, and re-

turns an ObjectInputStream.

Q: Does this method handle system signals and interrupts such as aquire, read, signal, or await for lucks

or doing synchronization?”

p r i va t e s t a t i c boolean testDrawableMazeArch ( )

{
boolean pass = true

i n t t e s t = 1

in t cnt

DrawableSquare [ ] [ ] squares = new DrawableSquare [ 1 ] [ 1 ]

squares [ 0 ] [ 0 ] = new DrawableSquare ( t rue true true true 0 0)

DrawableMaze drMaze = new DrawableMaze ( squares 1 1)

R: Yes, this method does not di-

rectly handle system signals and in-

terrupts. It is a test method de-

signed to check the architecture of a

DrawableMaze class. It checks var-

ious properties of the class such as

the number of constructors and in-

terfaces, the superclass, the num-

ber and visibility of methods and

fields. It does not perform any syn-

chronization or handle system sig-

nals and interrupts.

Q: Does this method perform encoding, decoding, encryption, or decryption using weak encryption algo-

rithm such base64, sha1, md5, dsa using hashing or encryption algorithms (such as cipher or digest classes)?

pub l i c @ResponseBody JsonResponse<Object> getTotalAmbulance

(Model model @RequestParam(” country ”) St r ing encodecountry

@RequestParam(” date ”) St r ing encodedate @RequestParam(” type ”)

St r ing encodetype HttpSess ion s e s s i o n ) {
l o gg e r . i n f o (”Method : getTotalAmbulance s t a r t s ”)

byte [ ] encodeByte1 = Base64 . getDecoder ( ) . decode ( encodecountry . getBytes ( ) )

byte [ ] encodeByte2 = Base64 . getDecoder ( ) . decode ( encodedate . getBytes ( ) )

byte [ ] encodeByte3 = Base64 . getDecoder ( ) . decode ( encodetype . getBytes ( ) )

S t r ing country = (new Str ing ( encodeByte1 ) )

St r ing date = (new Str ing ( encodeByte2 ) )

St r ing type = (new Str ing ( encodeByte3 ) )

. . .

}

R: This method performs de-

coding using the Base64 algo-

rithm. It decodes the values of the

parameters ”encodecountry”, ”en-

codedate”, and ”encodetype” from

Base64 encoded strings into their

original values. The decoded val-

ues are then used in the REST API

call to retrieve the total ambulance

data.

The method does not perform any

encryption, decryption, or weak en-

cryption algorithms such as SHA-

1, MD5, or DSA. It mainly focuses

on decoding using the Base64 algo-

rithm.

Table 4.4: Sample prompts asked from ChatGPT and their response
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Results

5.1 Results of Grounded Theory Analysis

Based on the concepts emerged at the end of our analysis, we find that each core category Entry

Point, Target, and Mechanism can be divided into four major groups, i.e., Code (C), Program (P),

System (S), and Network (N). From Where the attackers are entering into a system (entry points),

what they are targeting for (targets) and how they are reaching the targets (mechanisms) are all

related to the source Code of a software, its executable version named Program, the System that

application is installed on, and the Network that the system is interacting with. The results of this

qualitative study learned from reviewing CVEs and CWEs are presented based on three research

questions associated with Entry Points, Targets and Mechanisms:

5.1.1 Entry Points

Figure 5.1 shows the key categories were defined for entry points based on the concepts identified

at the end of our analysis to answer to Research Question #1. Entry points are defined based on

four core categories:

38
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Code

This category represents parts of source code that an attacker can leverage to enter a system. As

shown in Figure 5.1 they are categorized into three sub categories:

1 User Interface (UI) defines components in the UI that can be used by attackers to enter

a system. For example, an attacker can interact with an application through components in the

graphical user interface (Input Box, File Upload [36], RSS Feed [36], etc.) or Console. 2 Meth-

ods/Directives defines methods or directives that receive input. They can be parts of the code

that directly receive input (Direct Entry) such as Input Methods [62,73] that receive inputs directly

from User, Device, or File or Handlers that handle different requests such as OS Signal (Interrupts)

or web requests (REST API, Java Servlet). Indirect Entry covers parts of the source code that

indirectly receive input by loading Code, reading Indirect Inputs (such as Environment Variable,

System Attributes, etc.) or User Created Resources. 3 Configuration File category contains

accessible configuration files of an application that can act as an indirect entry point for software

application.

Program

This category considers an application as an executable and defines attack surface components

related to that:

1 Components refer to special software components that open the doors for attackers, such

as application components which are designed during the design phase of software development.

For example, Plugin, Installer Components, Chatting Component, and Authentication/login com-

ponents are software components that can be considered as entry points at the design level. 2

Maintenance/Deployment category covers any action that is performed during Deployment or

Maintenance of programs that can open the doors for attackers. Install, Configuration, and Update

operations are defined in this category. 3 Direct Input category covers data that is sent to

the program. Application can receive Direct Input from User, Device, Operating System (OS), or

as Messaging Object from other components/applications (Intent in Android). It can also receive

4 Indirect Input by reading/loading Environment Variables, DLL Files, OMX buffer, System

Properties, Virtual Machine Properties, and Cookies [36].
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Figure 5.1: Identified Entry Points during attack surface analysis

System

As a platform for running software applications, can provide entry points:

1 System input contains both Direct Input and Indirect Input. Direct Input represents the

requests that are sent to the system and is categorized into Connection Requests (SSH request),

OS Commands, and Service Requests. Indirect Inputs represent the types of data imported by the

system such as Load Driver. 2 Access Control contains actions that may open the door for

attackers. It contains Local Access to the system or Improper Access Control.
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Figure 5.2: Identified Targets during attack surface analysis

Network

category contains the Packet, Port, Protocol, Socket, and Access Control sub categories : 1 Packet

represents the input data at the network level. 2 Socket [?,?, 60], 3 Port, and 4 Protocol

[36, 43, 62] could provide entry points at the network level. 5 Access Control contains actions

that open the doors for attackers such as Local Access to the network.

5.1.2 Targets

Figure 5.2 represents the categorization model created for Targets to answer to Research Question

#2.
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Code

This category defines source code related components that can be target of attacks. Attacker might

try to access parts of source code to do malicious action. As shown in Figure 5.2 these components

are categorized into two categories: 1 User Interface (UI) category refers to components in the

user interface that can be target of an attack. The analysis identified target components in this

category such as Validators and HTML/Webscript that are related to Web-Based applications.

2 Method/Code Fragment represents methods or other related parts of the code that can be

target of attacks. As shown in Figure 5.2, parts of source code that handle requests (Handlers),

execute Commands (Database or OS [73]), doMemory Manipulation, Serialization/Deserialization,

Reflection, Dangerous Operations such as Type Casting, Integer Operations, Encoding/Decoding,

etc.can be attractive targets for attackers. Besides that, code fragments such as Exit points [62,73],

Critical Section, some Special Objects such as Gadget Classes, Cryptography Objects, and Path are

other targets at the code Level.

Program

The concepts under Program are categorized into two general categories: 1 Resource contains

resources allocated or used by the application such asMemory. Stack, Heap, Cache, Shared Memory

[43] and other memory types that are allocated, used, or read by the application. 2 Data covers

important application data that are identified as target during GT analysis. This category considers

application data from two perspectives: 1) Data Resource which represents the location where

data is stored (Database, File, etc.) and 2) Sensitive Information that represents various kinds

of important data that an attacker may look for. We found important files that can be target

of attacks such as Lock File, Log File, Certificate, and Keystore File. Credentials such as User,

Used Service (Notarization Service), and Database credentials, Application Configuration Data, and

Encryption Keys (ECDSA Secret, Master Key, etc.) are types of sensitive information identified

during the coding process.

System

This category defines components in the OS or firmware that can be target of attacks. They can be

directly accessed through attacks against the system or indirectly through attacks against software

programs that use these components. These components are categorized into two major categories:
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1 Operating System (OS) contains OS and server related target components. They are catego-

rized into different abstraction levels. System Availability covers actions that affect the availability

of systems. For instance, a malicious System Reboot could interrupt a system and affect its avail-

ability. System Data categorizes different types of data in a system that can be target of attacks.

It categorizes System Data based on the resource it is stored (Data Resource) and the type of

the data (Sensitive Information). Data Resources can be a database on the OS (like Windows

Registry [43, 62]) or an important File/Directory on the file system. Critical Directory may con-

tain sensitive information (like etc/passwd in Linux), Symlinks/Shortcuts (like Unix Hard Link or

Symbolic Link [60] and Windows Shortcut), File System Specific Files (like Data/Resource Fork

of a File in HFS+ file system, Alternate Data Streams (ADS) in NTFS file system, etc.), and

System/Server Critical Files (WSDL File in Web Server, Zone File in DNS Server, Node Catalogue

in Distributed System, etc.). User Account information, Process Information, and Connection Pool

are Sensitive Information in a system. Services/Server defines types of servers or services on a

system that are usually target of attacks. For instance, SSL and NAS Servers are identified as

targets in various vulnerability reports [66,68].

2 Firmware. category covers parts of firmware that contain Device Information or control Device.

Network

1 Packets and information on 2 Network Devices OS such as Process (Routing Engine on

Routers), Device Setting, and Device Data, and also 3 Socket Buffer could be the target of

attacks at the network level.

5.1.3 Mechanisms

This category answers the Research Question #3 by discussing mechanisms that are used at the

source code, program, system, and network level that could lead to the emergence of vulnerable at-

tack surfaces. Figure 5.3 represents the categorization model for Mechanism. We briefly summarize

the mechanisms:

Code

Mechanisms used at the code level are categorized in three major categories:
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Mechanism C
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Fragments Controlled by
Input

Polymorphic
Deserialization

Allow Location Access

Install Add-on
Add Plugins

Add Extension

Connecting to Other
Servers

Development Framework
Improper Configuration 

Installing Package
Installers

Encryption

Load Multiple
Certificates together

Open File in High
Privilege Mode

Security Mechanism

Dangerous Service/
Server

Improper Configuration

Accessible Private
Network

Permission/Access Level

Enable Specific Feature

 Server Configuration 

Enabled Dangerous
Feature

Configuration

Active Content

Permission/Access Level

Install Dangerous
Program

Special Servers
Unsafe Services/Server

Creating Debug binary

User Interface (UI)

Reflection

Design

Architecture

Interaction

Deployment

Unsafe Workflow

Web Widget

Improper Security Check

Improper Input
Validation
Weak Encryption

Number of Request
Authentication Method

Authentication Location
Web-basedDomain

Interacting with Other
Applications

Authentication
Implementation

C

S

Code

Program

System

Network N

P

Figure 5.3: Identified Mechanisms during attack surface analysis

1 User Interface (UI) defines mechanisms used in the UI to open the doors for attackers. The

concepts under this category are related to Using Unsafe Techniques in Web-Based applications

such as CSS Filters, RSS Feeds [36], Active Content [36], and Web Widget.

2 Methods/Code Fragments category discusses vulnerable mechanisms used during coding

such as Using Third-party Library, Serialization/Deserialization, Polymorphic Deserialization, Im-

proper Security Check, and Authentication, etc. Improper Security Check focuses on security mecha-

nisms that are missed or implemented incorrectly such as Improper Input Validation [36], Weak En-

cryption, Load Multiple Certificates (like system and SSL certificate), and Number of Requests. Au-

thentication category contains Authentication Methods (Password, Token-based, Certificate-based,

etc.) and Authentication Implementation mechanisms such as Location (No Server Side Authen-

tication) and Insecure Implementation (use == operator instead of === for Hash Comparison

or unsafe info such as IP address for Authentication). 3 Development Framework category

discusses vulnerable mechanisms which are related to the software development frameworks, like

Improper Configuration (Creating Debug Binary or Improper Encryption) and Installing Package

Installers.
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Program

This category categorizes the mechanism that are related to the design and deployment phase of a

software system: 1 Design category discusses mechanisms related to the design such as program

Architecture (Client/Server, etc.), Interaction (connecting to Other Servers or Other Applications),

and insecurely designed Workflow. 2 Deployment category covers mechanisms during program

deployment such as improper Configuration and Unsafe Actions that users can do on a system

such as Install Add-on and Enable Dangerous Features [43].

System Level

category covers the following concepts:

1 Dangerous Services/Server category refers to activating special Servers (e.x. SSL, NAS,

and Mail) or installing/activating Unsafe Services/Server (like Unsafe FTP server) that can lead to

emergence of attacks. 2 Dangerous Program refers to installing special programs that can open

the door for attackers (e.x. Android application that allows disabling/enabling WIFI to co-located

apps [67]). 3 Improper Configuration refers to the configuration mechanisms that make the

system vulnerable. These include Permission/Access Level (for File, Registery, etc.) [?, 43, 60],

improper Server Configuration, Security Mechanism (Non-strict Security Mechanism in Firewall or

Proxy), Enable Specific Feature, and Allow Location Access.

Network Level

mechanisms include 1 Accessible Private Network and 2 Using Unsafe Channel/Proto-

col [36, 43,62] (using HTTP instead of HTTPS).
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5.1.4 Comparing to Related Work

The search strategy of our systematic literature review [116] consists of a manual search of five

sources: the ACM Digital Library, IEEE Explore Library, ScienceDirect, Springer Link, and Google

Scholar. Our inclusion criteria are as follows: the work is (i) a full paper; and (ii) focus on

discussing software system attack surface. Exclusion criteria are (i) position papers, short papers,

keynotes, reviews, tutorial summaries, and panel discussions; (ii) not fully written in English; (iii)

duplicated study; (iv) focused on attack surface outside the domain of software system; and (v)

focused on attack surface of a specific type of system (e.x. IoT). We use the following search query:

(Software OR Application) AND (Attack Surface OR Attack-Surface). From our manual search, we

collected a total of 2,150 papers. Inclusion and exclusion criteria were applied through reading the

paper’s title, abstract, and keywords (if present), resulting in 30 papers. Then, in this round the

inclusion and exclusion criteria were applied by reading the full papers, resulting in a remaining 8

papers. Some of the papers that were removed for further analysis, have misused the term “attack

surface” (e.g. referring to software vulnerabilities). The remaining papers were carefully reviewed,

to verify the extent to which the findings from our study were supported by the literature or were

complementary. Limited studies have been proposed for identifying attack surface of a software

system.

To evaluate the proposed attack surface categorization, it is compared with the attack surface com-

ponents proposed in the literature. The comparison results (Table 5.1) show that the categorization

provided by this paper covers all attack surface components introduced in the literature. The con-

cepts which are missed in our categorization such as Search in Program and RPC and Named Pipe

in Network level entry points are specific concepts that can be covered by the proposed core cat-

egories. The comparison results indicate that the proposed attack surface model differs from the

previously introduced components in that it:

• Provides a comprehensive attack surface categorization that considers different aspects in System,

Network, Program, and Source levels. Previous works mostly focused on defining attack surface

components by low level concepts.

• Defines clear concepts that can be part of an attack surface. For instance, Data Item which

is defined as an attack surface component in [62] is a vague concept. Based on the examples

mentioned for it, our categorization clearly indicates that the data item could be program or

system data.

• Provides comprehensive Code Level attack surface components. For example, previous studies
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Core Category Low Level Concepts
E
n
t
r
y

P
o
in

t
s

C

UI GUI: General (Input Box, File Upload [36]), Web-Based (RSS Feed [36], CSS Techniques, Form Validation, HTML

Tag)

Console: General (Console), Web-Based (Web Console)

Method [62]/ Directive Direct Entry: Input Methods [36, 62, 73] (Input from User, Input from Devices, Read File/Stream), Handlers (OS

Signal Handler, Firmware (Message Handler), Web (API))

Indirect Entry: (Load Code, Load Indirect Inputs, Load User Created Resources (Repositories))

Config. File Database Config, Other Settings

P

Components Plugin, Installer Components, Chatting Component, Authentication and Login, Search [36]

Maintenance/ Deployment Deployment: Install, Application Configuration

Maintenance: Update

Direct Input User Input: General (Command Line Arguments, Streams, Files (EDS, PDF, XML, ICS )), Web-Based (Get Request

Parameter [36], Post Request Parameter, URL, Hidden Form Fields [36], HTTP Header, JSON, Certificates (X509,

SSL))

Device Input, OS Input, Messaging Object

Indirect Input Environment Variables, DLL Files, OMX Buffer, Font, Command Input Buffer, Virtual Machine Properties, System

Properties, User Attribute, Cookies [36,62]

S
System Input Direct Input: (Connection Requests, Service Requests), Indirect Input: Load Drivers

Access Control [?, 62] Improper Access Control, Local Access

N

Packet IPV6 Packet, UDP Datagram, IPSec Packets, TCP Segments, TCP Reset (RST) Packet, Network Time Protocol

Packets

Port

Protocol [?, 36,62] SMB File Transfer, Video Codec, Border Gateway Protocol (BGP), APDU Command Response, Protocol Fragments

Socket [43,60,61] TCP [43,60,61], UDP [43,60], RPC endpoint, named pipe [?, 61]

Access Control Local Access, Remote Access

M
e
c
h
a
n
is
m

s

C

UI Web-Based: Using Unsafe Techniques (CSS Filters, RSS Feeds [36], Active Content [36], Web Widget)

Methods / Code Frag-

ments
Using third-party Library, Serialization/Deserialization, Polymorphic deserialization, Reflection, Error Handling,

Race Condition, Target Function/Code Fragments Controlled by Input, Open File in High Privilege Mode, Improper

Security Check (Improper Input Validation [36], Weak Encryption, Load Multiple, Certificates together, Number of

Request), Authentication ( Authentication Method, Authentication Implementation (Location, Insecure Implemen-

tation))

Development Framework Improper Configuration ( Creating Debug binary, Encryption), Installing Package Installers

P
Design Architecture, Interaction (Connecting to Other Servers, Interacting with Other Applications), Unsafe Workflow

Deployment Configuration: (Permission/Access Level, Web-Based (Domain) [36]), Unsafe Actions: (Install Add-on (Add Plugins,

Add Extension) , Enabled Dangerous Feature [43])

S

Dangerous Services/Server Special Servers, Unsafe Services/Server

Install Dangerous Program

Improper Configuration Permission/Access Level [?,?, 60], Server Configuration , Security Mechanism, Enable Specific Feature, Allow Loca-

tion Access

N

Accessible Private Net-

work

Unsafe Channel/ProtocoL

[36]

T
a
r
g
e
t
s

C

UI Web-Based: Validators, HTML/Webscript

Methods / Code Frag-

ments
Handler (Exception Handlers, OS Signal Handlers, Web Request Handlers), Commands (Operating System Com-

mands [73] , Database Commands), Memory Manipulation (Uninitialized Memory, Memory Allocation, Memory

Reallocation, Memory Deallocation, Memory Copy, Loop Counting Buffer Size, Buffer Access, Pointer Manipula-

tion ( Pointer Increment/Decrement, Setting Address Variable)), Serialization/Deserialization (Serialize/Deserialize

APIs, Deserializing Polymorphic Class), Reflection, File manipulation (Read File, Write to File/Log), Exit Points

(Output Method/API Calls [62, 73], Write to Log File, Web-Based (HTTP Response, Assert, Download)), Danger-

ous operations (Type Casting, Integer Operations (Type Casting, Arithmetic Operations), Encoding/Decoding, API

calls from third-party Library, Resource Allocation (Socket, Thread, Database Connection), Listening to a Port,

Web-Based (Dynamic Code Execution, Dynamic Code Inclusion , Redirect), Recursive Function), Critical Section,

Special Objects/Components (General (Gadget Classes, Cryptographic Objects, Clonable Class Contains Sensitive

Information, Serializable Class Contains Sensitive Information, Regular Expression, Path), Web-Based (Objects in

DOM))

P

Resource Memory: Stack Memory, Heap Memory, Cache, Shared Memory [43], Collaborating Application Resources, Web-

Based (Web Browser Cache, Session)

Data Data Resource: Database , File (Configuration File, Lock File, Log File, Inc File, CSV, Certificate, Temporary File,

Backup File, Keystore File, Web-Based (Cookie [36,62], Error Page, Authentication Token))

Sensitive Information: Credentials (User , Used Service, Database), Application Configuration Data, Encryption

Keys

S

Operating System Availability, Data (Data Resource (System Database [43, 62], File/Directory (Critical Directory (Contain Sensitive

Information, Shared Directory), SymLink/Shortcut [60], File Systems’ Specific File, System/Server Critical Files),

Sensitive Information (User Account, Process Information, Connection Pool)), Services/Server

Firmware Data: Device Information, Device: (Access, Availability)

N

Packet

Network Device OS Process, Device Settings, Device Data

Socket Buffer

Table 5.1: Comparison of the concepts in the proposed attack surface model with the literature
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Category Level N NL PL

Entry

Points

C 30 3 10

P 42 3 7.14

S 10 1 10

N 20 4 20

Targets

C 59 2 3.4

P 32 2 6.2

S 23 2 8.7

N 6 0 0

Mechanisms

C 30 3 10

P 15 3 20

S 10 1 10

N 2 1 50

Table 5.2: Quantitative comparison of the concepts in the proposed attack surface model with

the literature. N shows the number of concepts identified in the model. NL and PL represent the

number and percentage of concepts covered in literature, respectively

considered I/O methods as Entry Points [62, 73] at the source level, however, we find that

different Handlers and Indirect Entry Points can also be part of an attack surface. Nuthan and

Meeneely [73] defined System Calls as Dangerous Points, however, we identify additional concepts

as Dangerous Points such as Type Casting, Integer Operations, and Encryption/Decryption. We

also define other code fragments such as Serialization/Deserialization, Reflection, etc.that can

be target of attacks. Heumann et al. [7] define URL Parameters and Hidden Fields as input

vectors, however, some other important input vectors such as Post Request Parameter, HTTP

Header, and Certificate identified in our GT analysis are missed.

We compare the concepts defined by our GT analysis with the concepts defined in the literature.

The comparison results are shown in Table 5.2. The results indicate that the literature covers a

small percentage of Code level entry points, targets, and mechanisms, i.e., 10%, 3.4%, and 10%,

respectively. On average, at the Code level only 8 of the 119 concepts (6.7%) are covered by

the literature. Network and Program level mechanisms, and Network level entry points are major

categories that are covered in the literature with 50%, 20%, and 20%, respectively. In summary, the

model proposed by this paper covers previously studied attack surface components and introduces

254 new concrete components that did not exist int the literature (
∑

i (Ni −NLi) in Table 5.2).
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Attack Surface Component No. of APIs

Input Stream File 525

Execute OS Command 51

Execute SQL Command 21

User Input 27

Serialization Deserialization 75

Read Socket 11

OS Signal Handler 43

Weak Encryption 44

Reflection 58

Table 5.3: Number of Java APIs related to each attack surface components.

5.2 Attack Surface Detection Results

5.2.1 Term weighting Approach

This section discusses the results of using the term weighting approach to automatically iden-

tify attack surface components in source code. In order to evaluate the model data was col-

lected for nine different types of attack surface components: Input stream file (entry point) ,

Execute OS Command (target), Execute SQL Command (target), User input (entry point), Seri-

alization deserialization (target), Read socket (entry point), and OS Signal Handlers (entry point),

Weak-Encryption (mechanism), and Reflection (mechanism). We collected two types of data: 1)

Standard Java APIs. 2) Sample Methods related to each attack surface component from GitHub.

Table 5.2.1 shows the number of java APIs related to each of the attack surface components which

are used in training phase. We collected some sample files from Github repository that contain

these nine attack surface components and some files that does not contain any attack surface com-

ponent. We extracted 463 methods from these files to evaluate the models at method level. Number

of methods associated with each attack surface components and number of methods that does not

contain any attack surface component are shown in Table 5.4.

Table 5.5 shows the indicator terms identified for each attack surface components. The indicator

terms identified for each attack surface components show that they are highly associated with

these components. For instance, read, input, stream, istream, etc. are the terms identified for the

Input Stream File attack surface component.
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Attack Surface Component No. of Methods

Input Stream File 36

Execute OS Command 28

Execute SQL Command 53

User Input 25

Serialization Deserialization 22

Read Socket 22

OS Signal Handler 32

Weak Encryption 38

Reflection 58

None 210

Table 5.4: Number of Java Methods collected from GitHub related to each attack surface compo-

nents.

Attack Surface Com-

ponent

Indicator Terms

Input Stream File read, input, stream, istream, helper, byte, unmarshalled, initalizes, data,

holder, int, static, len, next, value, seq, image, idl, sqlinput, unsigned, file,

short, conceptually, fully, array, contract, b, scanner, field, void, token, scan,

object, reader, general, long, concatenate, bytes, accord, programming, see,

length, access, java, store, return

Execute OS Command task, future, runnable, executor, execution, submit, submits, fork, join, exe-

cutes, execute, pool, run, service, gt, lt, cancel, running, stop

Execute SQL Command executes, statement, sql, execute, retrieval, signal, ddl

User Input scanner, token, scan, console, next, passphrase, input, radix, fmt

Serialization Deserialization unmarshal, jaxb, xml, marshal, unmarshaller, tree, content, object, deserial-

ize, jaxbelement, result, pull, xmlstructure, unmarshals, data, impl, abstract

Read Socket dsts, channel, socket, read

OS Signal Handlers interrupt, interruptibly, acquire, await, acquires, thread, interrupted, elapses,

timeout, lock, signal, wait, condition

Weak Encryption base64, cipher, digest, encode, encodes, scheme, byte, final, opmode, encrypts,

decrypt

Table 5.5: Indicator terms identified for attack surface components in training phase.
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Figure 5.4: Precision of classifier based on different thresholds

The indicator terms are used to classify the methods considered as test data for each attack surface

component. We run the classifier for each attack surface component separately as a binary classifier.

First, the probability score Prc(m) which is defined in section 4.2.1 is calculated for each method

collected as test data. Second, the probability scores are normalized between 0 and 1. Third, the

methods are classified as related or non-related using different thresholds (0.01, 0.02, 0.05, 0.1, 0.3,

0.5, and 0.7 ). We also considered small thresholds because small number of standard java APIs that

are associated with each attack surface component in comparison to large number of total standard

java APIs (38,568) may cause having small probability scores Prc(m). The performance measures

are shown in Figures 5.4, 5.5, and 5.6. Figure 5.4 shows that for all attack surface components

except Serialization Deserialization and Reflection, precision is higher than 0.80% in thresholds

0.05 and increases in all cases as threshold increases. After threshold 0.5 precision decreases. As

shown in the figure 5.5 at threshold 0.03 recall is above 90% for attack surface components. By

increase in threshold Recall decreases for all attack surface components. This shows that higher

thresholds can not cover most of the methods which are associated to attack surface components.

The results of Fscore in figure 5.6 shows that by threshold 0.02 the classifier can reach the Fscore of

higher than 0.80 for all attack surface components. For Input Stream File, Execute SQL Command,

Execute OS Command, User Input, and Read Socket Fscore is in order 0.943, 0.912, 0.957, 0.96,

and 0.952%. The experimental results show that the model can detect different attack surface

components with average Fscore of 0.90%.



CHAPTER 5. RESULTS 52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.03 0.05 0.1 0.3 0.5 0.7

Re
ca
ll

Thresholds

Input_Stream_File Execute_OS_Command Execute_SQL_Command

User_Input Serialization_Deserialization Read_Socket

OS_Signal_Handler Weak_Encryption Reflection

Figure 5.5: Recall of classifier based on different thresholds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.03 0.05 0.1 0.3 0.5 0.7

Fs
co
re

Threshold

Input_Stream_File Execute_OS_Command Execute_SQL_Command

User_Input Serialization_Deserialization Read_Socket

OS_Signal_Handler Weak_Encryption Reflection

Figure 5.6: Fscore of classifier based on different thresholds



CHAPTER 5. RESULTS 53

Attack Surface Component Precision Recall Fscore

Input Stream File 0.9600 1.0000 0.9796

Execute OS Command 1.0000 0.8750 0.9333

Execute SQL Command 0.8621 1.0000 0.9259

User Input 1.0000 0.9200 0.9583

Serialization Deserialization 1.0000 1.0000 1.0000

Read Socket 1.0000 1.0000 1.0000

OS Signal Handler 1.0000 0.9231 0.9600

Weak Encryption 0.9200 0.9200 0.9200

Reflection 0.9667 1.0000 0.9830

Table 5.6: NLI Results

5.2.2 CodeBert NLI Approach

This section discusses the results of applying CodeBERT NLI approach in identifying attack surface

components in methods collected from GitHub (Table 5.4). For evaluation we performed binary

classification for each attack surface component at method level to answer RQ7. So, we performed

nine experiments. In each experiment methods that contain related attack surface component con-

sidered as positive samples and methods that does not contain any attack surface component or

contain other attack surface components as negative samples. The distribution of 80:10:10 was

considered for train, validation, and test data. We considered two descriptions provided in 4.1 for

data. The first description is the definition of the attack surface component and the second one is

None description. We divided the positive samples related to the attack surface component into two

groups. For the first group we used the description of the attack surface component as hypo and

labeled them as ”True” and for the second group we used the None description and labeled them

as ”False”. We performed the same for the negative samples. We divided them into two groups.

For the first group we used None description and labeled them as ”True” and for the second group

we used the component description as hypo and labeled them as ”False”. The result of the NLI

approach has shown in 5.6. The results show that NLI can detect attack surface components with

Fscore higher than 92% for all attack surface components. For Execute OS Eommand, User Input,

Serialization Deserialization, Read Socket, and OS Signal Handler the NLI approach could de-

tect attack surface components with Precision of 100%. This model could detect Input Stream,

Execute SQL Command, Serialization Deserialization, Read Socket, and Reflection attack surface

components with Recall of 100%.
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Attack Surface Component Precision Recall Fscore

Input Stream File 0.81 0.31 0.68

Execute OS Command 0.2 0.57 0.30

Execute SQL Command 0.83 0.96 0.89

User Input 0.47 0.88 0.61

Serialization Deserialization 0.67 0.91 0.77

Read Socket 0.31 0.68 0.43

OS Signal Handler 0.59 0.72 0.65

Weak Encryption 0.92 0.89 0.91

Reflection 0.18 0.97 0.30

Table 5.7: ChatGPT evaluation results

5.2.3 ChatGPT Approach

This sections shows how ChatGPT performs in identifying different attack surface components to

answer RQ9. The evaluation results in table 5.7 shows that ChatGPT performance in identify-

ing attack surface components are different. For some attack surface components such as Exe-

cute SQL Command, Serialization Deserialization, and Weak Encryption ChatGPT could detect

attack surface components with Fscore of in order 89%, 77%, and 91% but, for some other attack

surface components such as Execute OS Command and Reflection the fscore is 30%. The exper-

imental results show that the ChatGPT performance is highly dependant on the attack surface

component.

Figure 5.7 shows the comparison result of the Fscore for the three approaches (to answer RQ10).

The comparison results shows that ChatGPT performs worse than CodeBERT NLI and term

weighting approach in identifying attack surface components. For Execute SQL Command and

User Input attack surface components term weighting approach has higher Fscore than CodeBERT

NLI approaches. For other attack surface components the CodeBERT NLI approach performs bet-

ter than term weighting approach and ChatGPT. The comparison result shows that CodeBERT

NLI is more stable in identifying different attack attack surface components and ,on average, per-

forms better than term weighting approach and ChatGPT .
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Chapter 6

Conclusions and Future Directions

6.1 Contributions

This study focuses on characterizing and detecting software attack surface components. Getting

inspired from the similarity between the attack surfaces of a house and a software system, and asking

three key questions (Where the attacks come from, What they target, and How they emerge),

this study develops a comprehensive attack surface model based on the Entry Points (Where),

Targets (What), and Mechanisms (How). First, we leverage a grounded theory-based approach to

study attack surface components of software systems. Specifically, we focus on the software Entry

Points , Targets, and Mechanisms to define the attack surface components in our model. The

identified attack surface components are categorized into four major categories for each of these

three branches, i.e., Code, Program, System, and Network. We conduct a systematic literature

review to verify to what extent previous studies corroborate with our findings. Comparison results

show that the proposed model covers all attack surface components defined in the literature, while

prior works cover only a small portion of the concepts identified by our analysis. In the best case,

the literature covers only 50% of Network level mechanisms, 20% of Program level mechanisms,

and 20% of Network level entry points studied in this paper.

Second, we use NL models to automate the identification of attack surface components. First,

we propose an approach using term weighting and probability based classification. The evaluation

results show the proposed approach can detect methods in source code which are associated with the

attack surface component with Fscore higher than 0.80% for different attack surface components.

Second, we propose a CodeBERT NLI approach that can detect different attack surface components

56
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with Fscore higher than 92%. Third, we evaluate the performance of ChatGPT in detecting different

attack surface components. The experimental results show that ChatGPT performance is different

for identifying different attack surface components and Fscore is between 30%- 90%.

The comparison results of the three studied LMs show that NLI performs better than term weighting

and ChatGPT models in detecting software attack surface components. This shows that using both

source code and description of the vulnerability provides better representation of data samples and

helps in detecting different types of attack surface components. Besides that, since we use pre-

trained CodeBERT model that was trained and tuned in large dataset and adapt it for attack

surface detection problem, it can perform better than other two approaches in detecting attack

surface components.

6.2 Limitations and Threats to Validity

While the aim of a GT study is to generate new theory, the verifiability of the theory can be inferred

from the soundness of the research method. In this study, GT was strictly followed, each step was

peer-reviewed and linked to the intermediary data to enable the reproducibility of findings. During

the GT process, we implemented the triangulation concept to enhance the process validity [27]:

1. Data triangulation: We collected data from a diverse set of CVEs which report real vulnera-

bilities from a variety of domains and also CWE that describes software security weaknesses.

Additionally, as shown in Figure 4.3, for each CVE we looked at three interrelated data: vulner-

ability description from the product advisory, patches (source code), and exploit information.

2. Investigator triangulation: Three authors [72] worked together and performed the same GT

steps. Over a period of one year, the authors met weekly, discussed, peer-reviewed, and finalized

the code, memos, and emerged concepts.

The main limitation of our study is related to the GT method itself, because the validation phase

of the GT process is challenging [39]. We mitigate this challenge partially by using literature as

a source of validation. We evaluate the identified concepts by conducting a systematic literature

review to explore how well these concepts fit to the previously studied software attack surfaces.

The GT analysis includes an extensive manual analysis process and such manual analysis can be

prone to biases. To help mitigate this threat, we followed the investigator triangulation method.

Another limitation of this study is that the proposed model may reflect attack surfaces from recent



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 58

vulnerability exposures, because the analysis covers CVEs between 2016 and 2020. To mitigate this

threat partially, we included CWEs which are not time dependent as an additional data source.

The limitation of the automating detection of attack surface components is related to dataset.

There is no other dataset available for attack surface detection and the models were tested on our

collected data. We tried to mitigate it to some extent by collecting different samples from different

projects.

6.3 Future Work

In future, we will investigate how attack surface components can be used to show how vulnerable

a system is. It can be done by measuring attack surface components in a software system and

studying how it is related to reported vulnerabilities.

6.4 Publications
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Title Year Venue

A grounded theory based approach to characterize software

attack surfaces.

Moshtari, S., Okutan, A. ,Mirakhorli, M.

2022 ICSE

Data Type Bugs Taxonomy: Integer Overflow, Juggling, and

Pointer Arithmetics in Spotlight

Bojanova, I., Galhardo C.E.C. , Moshtari, S.

2022 STC

Input/Output Check Bugs Taxonomy – Injection in Spot-

light.

Bojanova, I., Galhardo C.E.C. , Moshtari, S.

2021 IWSF & SHIFT

Looking for Software Defects? First Find the Noncon-

formists.

Moshtari, S., Santos, J.C., Mirakhorli, M. and Okutan, A.

2020 SCAM

An Automated Approach to Recover the Use-case View of

an Architecture.

Santos, C.J., Moshtari, S. and Mirakhorli, M.

2020 ICSA-C

Table 6.1: Published papers

Title Year Venue

Automatic Attack Surface Detection 2024 USENIX

Table 6.2: The target publication
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Tegawendé F Bissyandé. Is chatgpt the ultimate programming assistant–how far is it? arXiv

preprint arXiv:2304.11938, 2023.



BIBLIOGRAPHY 69
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